Extrapolation reasoning on temporal knowledge graphs (TKGs) aims to forecast future facts based on past counterparts. There are two main challenges: (1) incorporating the complex information, including structural dependencies, temporal dynamics, and hidden logical rules; (2) implementing differentiable logical rule learning and reasoning for explainability. To this end, we propose an explainable extrapolation reasoning framework TEemporal logiCal grapH networkS (TECHS), which mainly contains a temporal graph encoder and a logical decoder. The former employs a graph convolutional network with temporal encoding and heterogeneous attention to embed topological structures and temporal dynamics. The latter integrates propositional reasoning and first-order reasoning by introducing a reasoning graph that iteratively expands to find the answer. A forward message-passing mechanism is also proposed to update node representations, and their propositional and first-order attention scores. Experimental results demonstrate that it outperforms state-of-the-art baselines.
Persona attribute extraction is critical for personalized human-computer interaction. Dialogue is an important medium that communicates and delivers persona information. Although there is a public dataset for triplet-based persona attribute extraction from conversations, its automatically generated labels present many issues, including unspecific relations and inconsistent annotations. We fix such issues by leveraging more reliable text-label matching criteria to generate high-quality data for persona attribute extraction. We also propose a contrastive learning- and generation-based model with a novel hard negative sampling strategy for generalized zero-shot persona attribute extraction. We benchmark our model with state-of-the-art baselines on our dataset and a public dataset, showing outstanding accuracy gains. Our sampling strategy also exceeds others by a large margin in persona attribute extraction.
Recent studies have revealed some issues of Multi-Head Attention (MHA), e.g., redundancy and over-parameterization. Specifically, the heads of MHA were originally designed to attend to information from different representation subspaces, whereas prior studies found that some attention heads likely learn similar features and can be pruned without harming performance. Inspired by the minimum-redundancy feature selection, we assume that focusing on the most representative and distinctive features with minimum resources can mitigate the above issues and lead to more effective and efficient MHAs. In particular, we propose Grouped Head Attention, trained with a self-supervised group constraint that group attention heads, where each group focuses on an essential but distinctive feature subset. We additionally propose a Voting-to-Stay procedure to remove redundant heads, thus achieving a transformer with lighter weights. Extensive experiments are consistent with our hypothesis. Moreover, our method achieves significant performance gains on three well-established tasks while considerably compressing parameters.
Metaphoric expressions are a special linguistic phenomenon, frequently appearing in everyday language. Metaphors do not take their literal meanings in contexts, which may cause obstacles for language learners to understand them. Metaphoric expressions also reflect the cognition of humans via concept mappings, attracting great attention from cognitive science and psychology communities. Thus, we aim to develop a computational metaphor processing online system, termed MetaPro Online, that allows users without a coding background, e.g., language learners and linguists, to easily query metaphoricity labels, metaphor paraphrases, and concept mappings for non-domain-specific text. The outputs of MetaPro can be directly used by language learners and natural language processing downstream tasks because MetaPro is an end-to-end system.
Sentiment analysis is a task that highly depends on the understanding of word senses. Traditional neural network models are black boxes that represent word senses as vectors that are uninterpretable for humans. On the other hand, the application of Word Sense Disambiguation (WSD) systems in downstream tasks poses challenges regarding i) which words need to be disambiguated, and ii) how to model explicit word senses into easily understandable terms for a downstream model. This work proposes a neurosymbolic framework that incorporates WSD by identifying and paraphrasing ambiguous words to improve the accuracy of sentiment predictions. The framework allows us to understand which words are paraphrased into which semantically unequivocal words, thus enabling a downstream task model to gain both accuracy and interpretability. To better fine-tune a lexical substitution model for WSD on a downstream task without ground-truth word sense labels, we leverage dynamic rewarding to jointly train sentiment analysis and lexical substitution models. Our framework proves to effectively improve the performance of sentiment analysis on corpora from different domains.
Automatic depression detection on Twitter can help individuals privately and conveniently understand their mental health status in the early stages before seeing mental health professionals. Most existing black-box-like deep learning methods for depression detection largely focused on improving classification performance. However, explaining model decisions is imperative in health research because decision-making can often be high-stakes and life-and-death. Reliable automatic diagnosis of mental health problems including depression should be supported by credible explanations justifying models’ predictions. In this work, we propose a novel explainable model for depression detection on Twitter. It comprises a novel encoder combining hierarchical attention mechanisms and feed-forward neural networks. To support psycholinguistic studies, our model leverages metaphorical concept mappings as input. Thus, it not only detects depressed individuals, but also identifies features of such users’ tweets and associated metaphor concept mappings.
Distance metric learning has become a popular solution for few-shot Named Entity Recognition (NER). The typical setup aims to learn a similarity metric for measuring the semantic similarity between test samples and referents, where each referent represents an entity class. The effect of this setup may, however, be compromised for two reasons. First, there is typically a limited optimization exerted on the representations of entity tokens after initing by pre-trained language models. Second, the referents may be far from representing corresponding entity classes due to the label scarcity in the few-shot setting. To address these challenges, we propose a novel approach named COntrastive learning with Prompt guiding for few-shot NER (COPNER). We introduce a novel prompt composed of class-specific words to COPNER to serve as 1) supervision signals for conducting contrastive learning to optimize token representations; 2) metric referents for distance-metric inference on test samples. Experimental results demonstrate that COPNER outperforms state-of-the-art models with a significant margin in most cases. Moreover, COPNER shows great potential in the zero-shot setting.
The bloom of the Internet and the recent breakthroughs in deep learning techniques open a new door to AI for E-commence, with a trend of evolving from using a few financial factors such as liquidity and profitability to using more advanced AI techniques to process complex and multi-modal data. In this paper, we tackle the practical problem of restaurant survival prediction. We argue that traditional methods ignore two essential respects, which are very helpful for the task: 1) modeling customer reviews and 2) jointly considering status prediction and result explanation. Thus, we propose a novel joint learning framework for explainable restaurant survival prediction based on the multi-modal data of user-restaurant interactions and users’ textual reviews. Moreover, we design a graph neural network to capture the high-order interactions and design a co-attention mechanism to capture the most informative and meaningful signal from noisy textual reviews. Our results on two datasets show a significant and consistent improvement over the SOTA techniques (average 6.8% improvement in prediction and 45.3% improvement in explanation).
End-to-end training with Deep Neural Networks (DNN) is a currently popular method for metaphor identification. However, standard sequence tagging models do not explicitly take advantage of linguistic theories of metaphor identification. We experiment with two DNN models which are inspired by two human metaphor identification procedures. By testing on three public datasets, we find that our models achieve state-of-the-art performance in end-to-end metaphor identification.
Variational Autoencoder (VAE) is a powerful method for learning representations of high-dimensional data. However, VAEs can suffer from an issue known as latent variable collapse (or KL term vanishing), where the posterior collapses to the prior and the model will ignore the latent codes in generative tasks. Such an issue is particularly prevalent when employing VAE-RNN architectures for text modelling (Bowman et al., 2016; Yang et al., 2017). In this paper, we present a new architecture called Full-Sampling-VAE-RNN, which can effectively avoid latent variable collapse. Compared to the general VAE-RNN architectures, we show that our model can achieve much more stable training process and can generate text with significantly better quality.
Metaphoric expressions are widespread in natural language, posing a significant challenge for various natural language processing tasks such as Machine Translation. Current word embedding based metaphor identification models cannot identify the exact metaphorical words within a sentence. In this paper, we propose an unsupervised learning method that identifies and interprets metaphors at word-level without any preprocessing, outperforming strong baselines in the metaphor identification task. Our model extends to interpret the identified metaphors, paraphrasing them into their literal counterparts, so that they can be better translated by machines. We evaluated this with two popular translation systems for English to Chinese, showing that our model improved the systems significantly.
This paper describes the system that we submitted for SemEval-2018 task 10: capturing discriminative attributes. Our system is built upon a simple idea of measuring the attribute word’s similarity with each of the two semantically similar words, based on an extended word embedding method and WordNet. Instead of computing the similarities between the attribute and semantically similar words by using standard word embeddings, we propose a novel method that combines word and context embeddings which can better measure similarities. Our model is simple and effective, which achieves an average F1 score of 0.62 on the test set.