Oyvind Tafjord


2023

pdf
Increasing Probability Mass on Answer Choices Does Not Always Improve Accuracy
Sarah Wiegreffe | Matthew Finlayson | Oyvind Tafjord | Peter Clark | Ashish Sabharwal
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

When pretrained language models (LMs) are applied to discriminative tasks such as multiple-choice questions, they place probability mass on vocabulary tokens that aren’t among the given answer choices. Spreading probability mass across multiple surface forms with identical meaning (such as “bath” and “bathtub”) is thought to cause an underestimation of a model’s true performance, referred to as the “surface form competition” (SFC) hypothesis. This has motivated the introduction of various probability normalization methods. However, many core questions remain unanswered. How do we measure SFC? Are there direct ways of reducing it, and does doing so improve task performance? We propose a mathematical formalism for SFC which allows us to quantify and bound its impact for the first time. We identify a simple method for reducing it—namely, increasing probability mass on the given answer choices by a) including them in the prompt and b) using in-context learning with even just one example. We show this method eliminates the impact of SFC in the majority of instances. Our experiments on three diverse datasets and six LMs reveal several additional surprising findings. For example, both normalization and prompting methods for reducing SFC can be ineffective or even detrimental to task performance for some LMs. We conclude with practical insights for effectively prompting LMs for multiple-choice tasks.

pdf
Language Models with Rationality
Nora Kassner | Oyvind Tafjord | Ashish Sabharwal | Kyle Richardson | Hinrich Schuetze | Peter Clark
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

While large language models (LLMs) are proficient at question-answering (QA), it is not always clear how (or even if) an answer follows from their latent “beliefs”. This lack of interpretability is a growing impediment to widespread use of LLMs. To address this, our goals are to make model beliefs and their inferential relationships explicit, and to resolve inconsistencies that may exist, so that answers are supported by interpretable chains of reasoning drawn from a consistent network of beliefs. Our approach, which we call REFLEX, is to add a **rational, self-reflecting layer** on top of the LLM. First, given a question, we construct a **belief graph** using a backward-chaining process to materialize relevant model beliefs (including beliefs about answer candidates) and their inferential relationships. Second, we identify and minimize contradictions in that graph using a formal constraint reasoner. We find that REFLEX significantly improves consistency (by 8%-11% absolute) without harming overall answer accuracy, resulting in answers supported by faithful chains of reasoning drawn from a more consistent belief system. This suggests a new style of system architecture in which an LLM extended with a rational layer can provide an interpretable window into system beliefs, add a systematic reasoning capability, and repair latent inconsistencies present in the LLM.

2022

pdf
Entailer: Answering Questions with Faithful and Truthful Chains of Reasoning
Oyvind Tafjord | Bhavana Dalvi Mishra | Peter Clark
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Our goal is a question-answering (QA) system that can show how its answers are implied by its own internal beliefs via a systematic chain of reasoning. Such a capability would allow better understanding of why a model produced the answer it did. Our approach is to recursively combine a trained backward-chainingmodel, capable of generating a set of premises entailing an answer hypothesis, with a verifier that checks that the model itself believes those premises (and the entailment itself) through self-querying. To our knowledge, this is the first system to generate multistep chains that are both faithful (the answer follows from the reasoning) and truthful (the chain reflects the system’s own internal beliefs). In evaluation using two different datasets, users judge that a majority (70%+) of generated chains clearly show how an answer follows from a set of facts - substantially better than a high-performance baseline - while preserving answer accuracy. By materializing model beliefs that systematically support an answer, new opportunities arise for understanding the model’s system of belief, and diagnosing and correcting its misunderstandings when an answer is wrong.

pdf
LILA: A Unified Benchmark for Mathematical Reasoning
Swaroop Mishra | Matthew Finlayson | Pan Lu | Leonard Tang | Sean Welleck | Chitta Baral | Tanmay Rajpurohit | Oyvind Tafjord | Ashish Sabharwal | Peter Clark | Ashwin Kalyan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Mathematical reasoning skills are essential for general-purpose intelligentsystems to perform tasks from grocery shopping to climate modeling. Towards evaluating and improving AI systems in this domain, we proposeLILA, a unified mathematical reasoning benchmark consisting of 23 diversetasks along four dimensions:(i) mathematical abilities e.g., arithmetic, calculus (ii) language format e.g., question-answering, fill-in-the-blanks (iii) language diversity e.g., no language, simple language (iv) external knowledge e.g., commonsense, physics. We construct our benchmark by extending 20 datasets benchmark by collecting task instructions and solutions in the form of Python programs,thereby obtaining explainable solutions in addition to the correct answer. We additionally introduce two evaluation datasets to measure out-of-distribution performance and robustness to language perturbation. Finally, we introduce BHASKARA,a general-purpose mathematical reasoning model trained on LILA. Importantly, we find that multi-tasking leads to significant improvements (average relative improvement of 21.83% F1 score vs. single-task models),while the best performing model only obtains 60.40%,indicating the room for improvement in general mathematical reasoning and understanding.

pdf
Towards Teachable Reasoning Systems: Using a Dynamic Memory of User Feedback for Continual System Improvement
Bhavana Dalvi Mishra | Oyvind Tafjord | Peter Clark
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Our goal is a teachable reasoning system for question-answering (QA), where a user can interact with faithful answer explanations, and correct its errors so that the system improves over time. Our approach is to augment a QA model with a dynamic memory of user feedback, containing user-supplied corrections toerroneous model beliefs that users identify during interaction. Retrievals from memory are used as additional context for QA, to help avoid previous mistakes in similar new situations - a novel application of memory-based continuous learning. With simulated feedback, we find that our system (called TeachMe) continually improves with time, and without model retraining, requiring feedback on only 25% of training examples to reach within 1% of the upper-bound (feedback on all examples). Similarly, in experiments with real users, we observe a similar trend, with performance improving by over 15% on a hidden test set after teaching. This suggests new opportunities for using frozen language models in an interactive setting where users can inspect, debug, and correct the model’s beliefs, leading to improved system’s performance over time.

2021

pdf
Explaining Answers with Entailment Trees
Bhavana Dalvi | Peter Jansen | Oyvind Tafjord | Zhengnan Xie | Hannah Smith | Leighanna Pipatanangkura | Peter Clark
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Our goal, in the context of open-domain textual question-answering (QA), is to explain answers by showing the line of reasoning from what is known to the answer, rather than simply showing a fragment of textual evidence (a “rationale”). If this could be done, new opportunities for understanding and debugging the system’s reasoning become possible. Our approach is to generate explanations in the form of entailment trees, namely a tree of multipremise entailment steps from facts that are known, through intermediate conclusions, to the hypothesis of interest (namely the question + answer). To train a model with this skill, we created ENTAILMENTBANK, the first dataset to contain multistep entailment trees. Given a hypothesis (question + answer), we define three increasingly difficult explanation tasks: generate a valid entailment tree given (a) all relevant sentences (b) all relevant and some irrelevant sentences, or (c) a corpus. We show that a strong language model can partially solve these tasks, in particular when the relevant sentences are included in the input (e.g., 35% of trees for (a) are perfect), and with indications of generalization to other domains. This work is significant as it provides a new type of dataset (multistep entailments) and baselines, offering a new avenue for the community to generate richer, more systematic explanations.

pdf
BeliefBank: Adding Memory to a Pre-Trained Language Model for a Systematic Notion of Belief
Nora Kassner | Oyvind Tafjord | Hinrich Schütze | Peter Clark
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Although pretrained language models (PTLMs) contain significant amounts of world knowledge, they can still produce inconsistent answers to questions when probed, even after specialized training. As a result, it can be hard to identify what the model actually “believes” about the world, making it susceptible to inconsistent behavior and simple errors. Our goal is to reduce these problems. Our approach is to embed a PTLM in a broader system that also includes an evolving, symbolic memory of beliefs – a BeliefBank – that records but then may modify the raw PTLM answers. We describe two mechanisms to improve belief consistency in the overall system. First, a reasoning component – a weighted MaxSAT solver – revises beliefs that significantly clash with others. Second, a feedback component issues future queries to the PTLM using known beliefs as context. We show that, in a controlled experimental setting, these two mechanisms result in more consistent beliefs in the overall system, improving both the accuracy and consistency of its answers over time. This is significant as it is a first step towards PTLM-based architectures with a systematic notion of belief, enabling them to construct a more coherent picture of the world, and improve over time without model retraining.

pdf
ProofWriter: Generating Implications, Proofs, and Abductive Statements over Natural Language
Oyvind Tafjord | Bhavana Dalvi | Peter Clark
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
“Let Your Characters Tell Their Story”: A Dataset for Character-Centric Narrative Understanding
Faeze Brahman | Meng Huang | Oyvind Tafjord | Chao Zhao | Mrinmaya Sachan | Snigdha Chaturvedi
Findings of the Association for Computational Linguistics: EMNLP 2021

When reading a literary piece, readers often make inferences about various characters’ roles, personalities, relationships, intents, actions, etc. While humans can readily draw upon their past experiences to build such a character-centric view of the narrative, understanding characters in narratives can be a challenging task for machines. To encourage research in this field of character-centric narrative understanding, we present LiSCU – a new dataset of literary pieces and their summaries paired with descriptions of characters that appear in them. We also introduce two new tasks on LiSCU: Character Identification and Character Description Generation. Our experiments with several pre-trained language models adapted for these tasks demonstrate that there is a need for better models of narrative comprehension.

2020

pdf
SUPP.AI: finding evidence for supplement-drug interactions
Lucy Lu Wang | Oyvind Tafjord | Arman Cohan | Sarthak Jain | Sam Skjonsberg | Carissa Schoenick | Nick Botner | Waleed Ammar
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Dietary supplements are used by a large portion of the population, but information on their pharmacologic interactions is incomplete. To address this challenge, we present SUPP.AI, an application for browsing evidence of supplement-drug interactions (SDIs) extracted from the biomedical literature. We train a model to automatically extract supplement information and identify such interactions from the scientific literature. To address the lack of labeled data for SDI identification, we use labels of the closely related task of identifying drug-drug interactions (DDIs) for supervision. We fine-tune the contextualized word representations of the RoBERTa language model using labeled DDI data, and apply the fine-tuned model to identify supplement interactions. We extract 195k evidence sentences from 22M articles (P=0.82, R=0.58, F1=0.68) for 60k interactions. We create the SUPP.AI application for users to search evidence sentences extracted by our model. SUPP.AI is an attempt to close the information gap on dietary supplements by making up-to-date evidence on SDIs more discoverable for researchers, clinicians, and consumers. An informational video on how to use SUPP.AI is available at: https://youtu.be/dR0ucKdORwc

pdf
Multi-class Hierarchical Question Classification for Multiple Choice Science Exams
Dongfang Xu | Peter Jansen | Jaycie Martin | Zhengnan Xie | Vikas Yadav | Harish Tayyar Madabushi | Oyvind Tafjord | Peter Clark
Proceedings of the Twelfth Language Resources and Evaluation Conference

Prior work has demonstrated that question classification (QC), recognizing the problem domain of a question, can help answer it more accurately. However, developing strong QC algorithms has been hindered by the limited size and complexity of annotated data available. To address this, we present the largest challenge dataset for QC, containing 7,787 science exam questions paired with detailed classification labels from a fine-grained hierarchical taxonomy of 406 problem domains. We then show that a BERT-based model trained on this dataset achieves a large (+0.12 MAP) gain compared with previous methods, while also achieving state-of-the-art performance on benchmark open-domain and biomedical QC datasets. Finally, we show that using this model’s predictions of question topic significantly improves the accuracy of a question answering system by +1.7% P@1, with substantial future gains possible as QC performance improves.

pdf
“You are grounded!”: Latent Name Artifacts in Pre-trained Language Models
Vered Shwartz | Rachel Rudinger | Oyvind Tafjord
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Pre-trained language models (LMs) may perpetuate biases originating in their training corpus to downstream models. We focus on artifacts associated with the representation of given names (e.g., Donald), which, depending on the corpus, may be associated with specific entities, as indicated by next token prediction (e.g., Trump). While helpful in some contexts, grounding happens also in under-specified or inappropriate contexts. For example, endings generated for ‘Donald is a’ substantially differ from those of other names, and often have more-than-average negative sentiment. We demonstrate the potential effect on downstream tasks with reading comprehension probes where name perturbation changes the model answers. As a silver lining, our experiments suggest that additional pre-training on different corpora may mitigate this bias.

pdf
UNIFIEDQA: Crossing Format Boundaries with a Single QA System
Daniel Khashabi | Sewon Min | Tushar Khot | Ashish Sabharwal | Oyvind Tafjord | Peter Clark | Hannaneh Hajishirzi
Findings of the Association for Computational Linguistics: EMNLP 2020

Question answering (QA) tasks have been posed using a variety of formats, such as extractive span selection, multiple choice, etc. This has led to format-specialized models, and even to an implicit division in the QA community. We argue that such boundaries are artificial and perhaps unnecessary, given the reasoning abilities we seek to teach are not governed by the format. As evidence, we use the latest advances in language modeling to build a single pre-trained QA model, UNIFIEDQA, that performs well across 19 QA datasets spanning 4 diverse formats. UNIFIEDQA performs on par with 8 different models that were trained on individual datasets themselves. Even when faced with 12 unseen datasets of observed formats, UNIFIEDQA performs surprisingly well, showing strong generalization from its outof-format training data. Finally, simply finetuning this pre trained QA model into specialized models results in a new state of the art on 10 factoid and commonsense question answering datasets, establishing UNIFIEDQA as a strong starting point for building QA systems.

2019

pdf
QuaRTz: An Open-Domain Dataset of Qualitative Relationship Questions
Oyvind Tafjord | Matt Gardner | Kevin Lin | Peter Clark
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We introduce the first open-domain dataset, called QuaRTz, for reasoning about textual qualitative relationships. QuaRTz contains general qualitative statements, e.g., “A sunscreen with a higher SPF protects the skin longer.”, twinned with 3864 crowdsourced situated questions, e.g., “Billy is wearing sunscreen with a lower SPF than Lucy. Who will be best protected from the sun?”, plus annotations of the properties being compared. Unlike previous datasets, the general knowledge is textual and not tied to a fixed set of relationships, and tests a system’s ability to comprehend and apply textual qualitative knowledge in a novel setting. We find state-of-the-art results are substantially (20%) below human performance, presenting an open challenge to the NLP community.

pdf
Reasoning Over Paragraph Effects in Situations
Kevin Lin | Oyvind Tafjord | Peter Clark | Matt Gardner
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., “animal pollinators increase efficiency of fertilization in flowers”), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%.

2018

pdf bib
AllenNLP: A Deep Semantic Natural Language Processing Platform
Matt Gardner | Joel Grus | Mark Neumann | Oyvind Tafjord | Pradeep Dasigi | Nelson F. Liu | Matthew Peters | Michael Schmitz | Luke Zettlemoyer
Proceedings of Workshop for NLP Open Source Software (NLP-OSS)

Modern natural language processing (NLP) research requires writing code. Ideally this code would provide a precise definition of the approach, easy repeatability of results, and a basis for extending the research. However, many research codebases bury high-level parameters under implementation details, are challenging to run and debug, and are difficult enough to extend that they are more likely to be rewritten. This paper describes AllenNLP, a library for applying deep learning methods to NLP research that addresses these issues with easy-to-use command-line tools, declarative configuration-driven experiments, and modular NLP abstractions. AllenNLP has already increased the rate of research experimentation and the sharing of NLP components at the Allen Institute for Artificial Intelligence, and we are working to have the same impact across the field.

2016

pdf
Semantic Parsing to Probabilistic Programs for Situated Question Answering
Jayant Krishnamurthy | Oyvind Tafjord | Aniruddha Kembhavi
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing