Minda Hu
2023
Large Language Models as Source Planner for Personalized Knowledge-grounded Dialogues
Hongru Wang
|
Minda Hu
|
Yang Deng
|
Rui Wang
|
Fei Mi
|
Weichao Wang
|
Yasheng Wang
|
Wai-Chung Kwan
|
Irwin King
|
Kam-Fai Wong
Findings of the Association for Computational Linguistics: EMNLP 2023
Open-domain dialogue system usually requires different sources of knowledge to generate more informative and evidential responses. However, existing knowledge-grounded dialogue systems either focus on a single knowledge source or overlook the dependency between multiple sources of knowledge, which may result in generating inconsistent or even paradoxical responses. To incorporate multiple knowledge sources and dependencies between them, we propose SAFARI, a novel framework that leverages the exceptional capabilities of large language models (LLMs) in planning, understanding, and incorporating under both supervised and unsupervised settings. Specifically, SAFARI decouples the knowledge grounding into multiple sources and response generation, which allows easy extension to various knowledge sources including the possibility of not using any sources. To study the problem, we construct a personalized knowledge-grounded dialogue dataset Knowledge Behind Persona (KBP), which is the first to consider the dependency between persona and implicit knowledge. Experimental results on the KBP dataset demonstrate that the SAFARI framework can effectively produce persona-consistent and knowledge-enhanced responses.
2022
Momentum Contrastive Pre-training for Question Answering
Minda Hu
|
Muzhi Li
|
Yasheng Wang
|
Irwin King
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Existing pre-training methods for extractive Question Answering (QA) generate cloze-like queries different from natural questions in syntax structure, which could overfit pre-trained models to simple keyword matching. In order to address this problem, we propose a novel Momentum Contrastive pRe-training fOr queStion anSwering (MCROSS) method for extractive QA. Specifically, MCROSS introduces a momentum contrastive learning framework to align the answer probability between cloze-like and natural query-passage sample pairs. Hence, the pre-trained models can better transfer the knowledge learned in cloze-like samples to answering natural questions. Experimental results on three benchmarking QA datasets show that our method achieves noticeable improvement compared with all baselines in both supervised and zero-shot scenarios.
Search
Co-authors
- Yasheng Wang 2
- Irwin King 2
- Muzhi Li 1
- Hongru Wang 1
- Yang Deng 1
- show all...