Miguel Domingo


2023

pdf
PRHLT’s Submission to WLAC 2023
Angel Navarro | Miguel Domingo | Francisco Casacuberta
Proceedings of the Eighth Conference on Machine Translation

This paper describes our submission to the Word-Level AutoCompletion shared task of WMT23. We participated in the English–German and German–English categories. We extended our last year segment-based interactive machine translation approach to address its weakness when no context is available. Additionally, we fine-tune the pre-trained mT5 large language model to be used for autocompletion.

pdf
Segment-based Interactive Machine Translation at a Character Level
Angel Navarro | Miguel Domingo | Francisco Casacuberta
Proceedings of the 24th Annual Conference of the European Association for Machine Translation

To produce high quality translations, human translators need to review and correct machine translation hypothesis in what it is known as post-editing. In order to reduce the human effort of this process, interactive machine translation proposed a collaborative framework in which human and machine work together to generate the translations. Among the many protocols proposed throughout the years, the segment-based one established a paradigm in which the post-editor was allowed to validate correct word sequences from a translation hypothesis and introduced a word correction to help the system improve the next hypothesis. In this work we propose an extension to this protocol: instead of having to the type the complete word correction, the system will complete the user’s correction while they are typing. We evaluated our proposal under a simulated environment, achieving a significant reduction of the human effort.

2022

pdf
PRHLT’s Submission to WLAC 2022
Angel Navarro | Miguel Domingo | Francisco Casacuberta
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper describes our submission to the Word-Level AutoCompletion shared task of WMT22. We participated in the English–German and German–English categories. We proposed a segment-based interactive machine translation approach whose central core is a machine translation (MT) model which generates a complete translation from the context provided by the task. From there, we obtain the word which corresponds to the autocompletion. With this approach, we aim to show that it is possible to use the MT models in the autocompletion task by simply performing minor changes at the decoding step, obtaining satisfactory results.

2020

pdf
A User Study of the Incremental Learning in NMT
Miguel Domingo | Mercedes García-Martínez | Álvaro Peris | Alexandre Helle | Amando Estela | Laurent Bié | Francisco Casacuberta | Manuel Herranz
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

In the translation industry, human experts usually supervise and post-edit machine translation hypotheses. Adaptive neural machine translation systems, able to incrementally update the underlying models under an online learning regime, have been proven to be useful to improve the efficiency of this workflow. However, this incremental adaptation is somewhat unstable, and it may lead to undesirable side effects. One of them is the sporadic appearance of made-up words, as a byproduct of an erroneous application of subword segmentation techniques. In this work, we extend previous studies on on-the-fly adaptation of neural machine translation systems. We perform a user study involving professional, experienced post-editors, delving deeper on the aforementioned problems. Results show that adaptive systems were able to learn how to generate the correct translation for task-specific terms, resulting in an improvement of the user’s productivity. We also observed a close similitude, in terms of morphology, between made-up words and the words that were expected.

2019

pdf
Demonstration of a Neural Machine Translation System with Online Learning for Translators
Miguel Domingo | Mercedes García-Martínez | Amando Estela Pastor | Laurent Bié | Alexander Helle | Álvaro Peris | Francisco Casacuberta | Manuel Herranz Pérez
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We present a demonstration of our system, which implements online learning for neural machine translation in a production environment. These techniques allow the system to continuously learn from the corrections provided by the translators. We implemented an end-to-end platform integrating our machine translation servers to one of the most common user interfaces for professional translators: SDL Trados Studio. We pretend to save post-editing effort as the machine is continuously learning from its mistakes and adapting the models to a specific domain or user style.

pdf
Incremental Adaptation of NMT for Professional Post-editors: A User Study
Miguel Domingo | Mercedes García-Martínez | Álvaro Peris | Alexandre Helle | Amando Estela | Laurent Bié | Francisco Casacuberta | Manuel Herranz
Proceedings of Machine Translation Summit XVII: Translator, Project and User Tracks

2018

pdf
A Machine Translation Approach for Modernizing Historical Documents Using Backtranslation
Miguel Domingo | Francisco Casacuberta
Proceedings of the 15th International Conference on Spoken Language Translation

Human language evolves with the passage of time. This makes historical documents to be hard to comprehend by contemporary people and, thus, limits their accessibility to scholars specialized in the time period in which a certain document was written. Modernization aims at breaking this language barrier and increase the accessibility of historical documents to a broader audience. To do so, it generates a new version of a historical document, written in the modern version of the document’s original language. In this work, we propose several machine translation approaches for modernizing historical documents. We tested these approaches in different scenarios, obtaining very encouraging results.

pdf
Spelling Normalization of Historical Documents by Using a Machine Translation Approach
Miguel Domingo | Francisco Casacuberta
Proceedings of the 21st Annual Conference of the European Association for Machine Translation

The lack of a spelling convention in historical documents makes their orthography to change depending on the author and the time period in which each document was written. This represents a problem for the preservation of the cultural heritage, which strives to create a digital text version of a historical document. With the aim of solving this problem, we propose three approaches—based on statistical, neural and character-based machine translation—to adapt the document’s spelling to modern standards. We tested these approaches in different scenarios, obtaining very encouraging results.

2016

pdf
Interactive-Predictive Translation Based on Multiple Word-Segments
Miguel Domingo | Alvaro Peris | Francisco Casacuberta
Proceedings of the 19th Annual Conference of the European Association for Machine Translation