Junru Lu
2023
NapSS: Paragraph-level Medical Text Simplification via Narrative Prompting and Sentence-matching Summarization
Junru Lu
|
Jiazheng Li
|
Byron Wallace
|
Yulan He
|
Gabriele Pergola
Findings of the Association for Computational Linguistics: EACL 2023
Accessing medical literature is difficult for laypeople as the content is written for specialists and contains medical jargon. Automated text simplification methods offer a potential means to address this issue. In this work, we propose a summarize-then-simplify two-stage strategy, which we call NapSS, identifying the relevant content to simplify while ensuring that the original narrative flow is preserved. In this approach, we first generate reference summaries via sentence matching between the original and the simplified abstracts. These summaries are then used to train an extractive summarizer, learning the most relevant content to be simplified. Then, to ensure the narrative consistency of the simplified text, we synthesize auxiliary narrative prompts combining key phrases derived from the syntactical analyses of the original text. Our model achieves results significantly better than the seq2seq baseline on an English medical corpus, yielding 3% 4% absolute improvements in terms of lexical similarity, and providing a further 1.1% improvement of SARI score when combined with the baseline. We also highlight shortcomings of existing evaluation methods, and introduce new metrics that take into account both lexical and high-level semantic similarity. A human evaluation conducted on a random sample of the test set further establishes the effectiveness of the proposed approach. Codes and models are released here: https://github.com/LuJunru/NapSS.
2022
Event-Centric Question Answering via Contrastive Learning and Invertible Event Transformation
Junru Lu
|
Xingwei Tan
|
Gabriele Pergola
|
Lin Gui
|
Yulan He
Findings of the Association for Computational Linguistics: EMNLP 2022
Human reading comprehension often requires reasoning of event semantic relations in narratives, represented by Event-centric Question-Answering (QA). To address event-centric QA, we propose a novel QA model with contrastive learning and invertible event transformation, call TranCLR. Our proposed model utilizes an invertible transformation matrix to project semantic vectors of events into a common event embedding space, trained with contrastive learning, and thus naturally inject event semantic knowledge into mainstream QA pipelines. The transformation matrix is fine-tuned with the annotated event relation types between events that occurred in questions and those in answers, using event-aware question vectors. Experimental results on the Event Semantic Relation Reasoning (ESTER) dataset show significant improvements in both generative and extractive settings compared to the existing strong baselines, achieving over 8.4% gain in the token-level F1 score and 3.0% gain in Exact Match (EM) score under the multi-answer setting. Qualitative analysis reveals the high quality of the generated answers by TranCLR, demonstrating the feasibility of injecting event knowledge into QA model learning. Our code and models can be found at https://github.com/LuJunru/TranCLR.
2020
CHIME: Cross-passage Hierarchical Memory Network for Generative Review Question Answering
Junru Lu
|
Gabriele Pergola
|
Lin Gui
|
Binyang Li
|
Yulan He
Proceedings of the 28th International Conference on Computational Linguistics
We introduce CHIME, a cross-passage hierarchical memory network for question answering (QA) via text generation. It extends XLNet introducing an auxiliary memory module consisting of two components: the context memory collecting cross-passage evidences, and the answer memory working as a buffer continually refining the generated answers. Empirically, we show the efficacy of the proposed architecture in the multi-passage generative QA, outperforming the state-of-the-art baselines with better syntactically well-formed answers and increased precision in addressing the questions of the AmazonQA review dataset. An additional qualitative analysis revealed the interpretability introduced by the memory module.
Search
Co-authors
- Gabriele Pergola 3
- Yulan He 3
- Lin Gui 2
- Binyang Li 1
- Jiazheng Li 1
- show all...