Jenny Huang


2020

pdf
Alignment Annotation for Clinic Visit Dialogue to Clinical Note Sentence Language Generation
Wen-wai Yim | Meliha Yetisgen | Jenny Huang | Micah Grossman
Proceedings of the Twelfth Language Resources and Evaluation Conference

For every patient’s visit to a clinician, a clinical note is generated documenting their medical conversation, including complaints discussed, treatments, and medical plans. Despite advances in natural language processing, automating clinical note generation from a clinic visit conversation is a largely unexplored area of research. Due to the idiosyncrasies of the task, traditional methods of corpus creation are not effective enough approaches for this problem. In this paper, we present an annotation methodology that is content- and technique- agnostic while associating note sentences to sets of dialogue sentences. The sets can further be grouped with higher order tags to mark sets with related information. This direct linkage from input to output decouples the annotation from specific language understanding or generation strategies. Here we provide data statistics and qualitative analysis describing the unique annotation challenges. Given enough annotated data, such a resource would support multiple modeling methods including information extraction with template language generation, information retrieval type language generation, or sequence to sequence modeling.