Huixing Jiang


2022

pdf
Disentangled Knowledge Transfer for OOD Intent Discovery with Unified Contrastive Learning
Yutao Mou | Keqing He | Yanan Wu | Zhiyuan Zeng | Hong Xu | Huixing Jiang | Wei Wu | Weiran Xu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Discovering Out-of-Domain(OOD) intents is essential for developing new skills in a task-oriented dialogue system. The key challenge is how to transfer prior IND knowledge to OOD clustering. Different from existing work based on shared intent representation, we propose a novel disentangled knowledge transfer method via a unified multi-head contrastive learning framework. We aim to bridge the gap between IND pre-training and OOD clustering. Experiments and analysis on two benchmark datasets show the effectiveness of our method.

pdf
Revisit Overconfidence for OOD Detection: Reassigned Contrastive Learning with Adaptive Class-dependent Threshold
Yanan Wu | Keqing He | Yuanmeng Yan | QiXiang Gao | Zhiyuan Zeng | Fujia Zheng | Lulu Zhao | Huixing Jiang | Wei Wu | Weiran Xu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Detecting Out-of-Domain (OOD) or unknown intents from user queries is essential in a task-oriented dialog system. A key challenge of OOD detection is the overconfidence of neural models. In this paper, we comprehensively analyze overconfidence and classify it into two perspectives: over-confident OOD and in-domain (IND). Then according to intrinsic reasons, we respectively propose a novel reassigned contrastive learning (RCL) to discriminate IND intents for over-confident OOD and an adaptive class-dependent local threshold mechanism to separate similar IND and OOD intents for over-confident IND. Experiments and analyses show the effectiveness of our proposed method for both aspects of overconfidence issues.

pdf
Domain-Oriented Prefix-Tuning: Towards Efficient and Generalizable Fine-tuning for Zero-Shot Dialogue Summarization
Lulu Zhao | Fujia Zheng | Weihao Zeng | Keqing He | Weiran Xu | Huixing Jiang | Wei Wu | Yanan Wu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The most advanced abstractive dialogue summarizers lack generalization ability on new domains and the existing researches for domain adaptation in summarization generally rely on large-scale pre-trainings. To explore the lightweight fine-tuning methods for domain adaptation of dialogue summarization, in this paper, we propose an efficient and generalizable Domain-Oriented Prefix-tuning model, which utilizes a domain word initialized prefix module to alleviate domain entanglement and adopts discrete prompts to guide the model to focus on key contents of dialogues and enhance model generalization. We conduct zero-shot experiments and build domain adaptation benchmarks on two multi-domain dialogue summarization datasets, TODSum and QMSum. Adequate experiments and qualitative analysis prove the effectiveness of our methods.

pdf
Co-VQA : Answering by Interactive Sub Question Sequence
Ruonan Wang | Yuxi Qian | Fangxiang Feng | Xiaojie Wang | Huixing Jiang
Findings of the Association for Computational Linguistics: ACL 2022

Most existing approaches to Visual Question Answering (VQA) answer questions directly, however, people usually decompose a complex question into a sequence of simple sub questions and finally obtain the answer to the original question after answering the sub question sequence(SQS). By simulating the process, this paper proposes a conversation-based VQA (Co-VQA) framework, which consists of three components: Questioner, Oracle, and Answerer. Questioner raises the sub questions using an extending HRED model, and Oracle answers them one-by-one. An Adaptive Chain Visual Reasoning Model (ACVRM) for Answerer is also proposed, where the question-answer pair is used to update the visual representation sequentially. To perform supervised learning for each model, we introduce a well-designed method to build a SQS for each question on VQA 2.0 and VQA-CP v2 datasets. Experimental results show that our method achieves state-of-the-art on VQA-CP v2. Further analyses show that SQSs help build direct semantic connections between questions and images, provide question-adaptive variable-length reasoning chains, and with explicit interpretability as well as error traceability.

2021

pdf
Slot Transferability for Cross-domain Slot Filling
Hengtong Lu | Zhuoxin Han | Caixia Yuan | Xiaojie Wang | Shuyu Lei | Huixing Jiang | Wei Wu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Task-Oriented Clustering for Dialogues
Chenxu Lv | Hengtong Lu | Shuyu Lei | Huixing Jiang | Wei Wu | Caixia Yuan | Xiaojie Wang
Findings of the Association for Computational Linguistics: EMNLP 2021

A reliable clustering algorithm for task-oriented dialogues can help developer analysis and define dialogue tasks efficiently. It is challenging to directly apply prior normal text clustering algorithms for task-oriented dialogues, due to the inherent differences between them, such as coreference, omission and diversity expression. In this paper, we propose a Dialogue Task Clustering Network model for task-oriented clustering. The proposed model combines context-aware utterance representations and cross-dialogue utterance cluster representations for task-oriented dialogues clustering. An iterative end-to-end training strategy is utilized for dialogue clustering and representation learning jointly. Experiments on three public datasets show that our model significantly outperform strong baselines in all metrics.

pdf
Capturing Event Argument Interaction via A Bi-Directional Entity-Level Recurrent Decoder
Xi Xiangyu | Wei Ye | Shikun Zhang | Quanxiu Wang | Huixing Jiang | Wei Wu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Capturing interactions among event arguments is an essential step towards robust event argument extraction (EAE). However, existing efforts in this direction suffer from two limitations: 1) The argument role type information of contextual entities is mainly utilized as training signals, ignoring the potential merits of directly adopting it as semantically rich input features; 2) The argument-level sequential semantics, which implies the overall distribution pattern of argument roles over an event mention, is not well characterized. To tackle the above two bottlenecks, we formalize EAE as a Seq2Seq-like learning problem for the first time, where a sentence with a specific event trigger is mapped to a sequence of event argument roles. A neural architecture with a novel Bi-directional Entity-level Recurrent Decoder (BERD) is proposed to generate argument roles by incorporating contextual entities’ argument role predictions, like a word-by-word text generation process, thereby distinguishing implicit argument distribution patterns within an event more accurately.

pdf
Novel Slot Detection: A Benchmark for Discovering Unknown Slot Types in the Task-Oriented Dialogue System
Yanan Wu | Zhiyuan Zeng | Keqing He | Hong Xu | Yuanmeng Yan | Huixing Jiang | Weiran Xu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Existing slot filling models can only recognize pre-defined in-domain slot types from a limited slot set. In the practical application, a reliable dialogue system should know what it does not know. In this paper, we introduce a new task, Novel Slot Detection (NSD), in the task-oriented dialogue system. NSD aims to discover unknown or out-of-domain slot types to strengthen the capability of a dialogue system based on in-domain training data. Besides, we construct two public NSD datasets, propose several strong NSD baselines, and establish a benchmark for future work. Finally, we conduct exhaustive experiments and qualitative analysis to comprehend key challenges and provide new guidance for future directions.

pdf
Modeling Discriminative Representations for Out-of-Domain Detection with Supervised Contrastive Learning
Zhiyuan Zeng | Keqing He | Yuanmeng Yan | Zijun Liu | Yanan Wu | Hong Xu | Huixing Jiang | Weiran Xu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Detecting Out-of-Domain (OOD) or unknown intents from user queries is essential in a task-oriented dialog system. A key challenge of OOD detection is to learn discriminative semantic features. Traditional cross-entropy loss only focuses on whether a sample is correctly classified, and does not explicitly distinguish the margins between categories. In this paper, we propose a supervised contrastive learning objective to minimize intra-class variance by pulling together in-domain intents belonging to the same class and maximize inter-class variance by pushing apart samples from different classes. Besides, we employ an adversarial augmentation mechanism to obtain pseudo diverse views of a sample in the latent space. Experiments on two public datasets prove the effectiveness of our method capturing discriminative representations for OOD detection.

2020

pdf
Syntactic Graph Convolutional Network for Spoken Language Understanding
Keqing He | Shuyu Lei | Yushu Yang | Huixing Jiang | Zhongyuan Wang
Proceedings of the 28th International Conference on Computational Linguistics

Slot filling and intent detection are two major tasks for spoken language understanding. In most existing work, these two tasks are built as joint models with multi-task learning with no consideration of prior linguistic knowledge. In this paper, we propose a novel joint model that applies a graph convolutional network over dependency trees to integrate the syntactic structure for learning slot filling and intent detection jointly. Experimental results show that our proposed model achieves state-of-the-art performance on two public benchmark datasets and outperforms existing work. At last, we apply the BERT model to further improve the performance on both slot filling and intent detection.

2010

pdf
An Double Hidden HMM and an CRF for Segmentation Tasks with Pinyin’s Finals
Huixing Jiang | Zhe Dong
CIPS-SIGHAN Joint Conference on Chinese Language Processing