Feng Yao


2023

pdf
OmniEvent: A Comprehensive, Fair, and Easy-to-Use Toolkit for Event Understanding
Hao Peng | Xiaozhi Wang | Feng Yao | Zimu Wang | Chuzhao Zhu | Kaisheng Zeng | Lei Hou | Juanzi Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Event understanding aims at understanding the content and relationship of events within texts, which covers multiple complicated information extraction tasks: event detection, event argument extraction, and event relation extraction. To facilitate related research and application, we present an event understanding toolkit OmniEvent, which features three desiderata: (1) Comprehensive. OmniEvent supports mainstream modeling paradigms of all the event understanding tasks and the processing of 15 widely-used English and Chinese datasets. (2) Fair. OmniEvent carefully handles the inconspicuous evaluation pitfalls reported in Peng et al. (2023), which ensures fair comparisons between different models. (3) Easy-to-use. OmniEvent is designed to be easily used by users with varying needs. We provide off-the-shelf models that can be directly deployed as web services. The modular framework also enables users to easily implement and evaluate new event understanding models with OmniEvent. The toolkit is publicly released along with the demonstration website and video.

pdf
The Devil is in the Details: On the Pitfalls of Event Extraction Evaluation
Hao Peng | Xiaozhi Wang | Feng Yao | Kaisheng Zeng | Lei Hou | Juanzi Li | Zhiyuan Liu | Weixing Shen
Findings of the Association for Computational Linguistics: ACL 2023

Event extraction (EE) is a crucial task aiming at extracting events from texts, which includes two subtasks: event detection (ED) and event argument extraction (EAE). In this paper, we check the reliability of EE evaluations and identify three major pitfalls: (1) The data preprocessing discrepancy makes the evaluation results on the same dataset not directly comparable, but the data preprocessing details are not widely noted and specified in papers. (2) The output space discrepancy of different model paradigms makes different-paradigm EE models lack grounds for comparison and also leads to unclear mapping issues between predictions and annotations. (3) The absence of pipeline evaluation of many EAE-only works makes them hard to be directly compared with EE works and may not well reflect the model performance in real-world pipeline scenarios. We demonstrate the significant influence of these pitfalls through comprehensive meta-analyses of recent papers and empirical experiments. To avoid these pitfalls, we suggest a series of remedies, including specifying data preprocessing, standardizing outputs, and providing pipeline evaluation results. To help implement these remedies, we develop a consistent evaluation framework OmniEvent, which can be obtained from https://github.com/THU-KEG/OmniEvent.

2022

pdf
LEVEN: A Large-Scale Chinese Legal Event Detection Dataset
Feng Yao | Chaojun Xiao | Xiaozhi Wang | Zhiyuan Liu | Lei Hou | Cunchao Tu | Juanzi Li | Yun Liu | Weixing Shen | Maosong Sun
Findings of the Association for Computational Linguistics: ACL 2022

Recognizing facts is the most fundamental step in making judgments, hence detecting events in the legal documents is important to legal case analysis tasks. However, existing Legal Event Detection (LED) datasets only concern incomprehensive event types and have limited annotated data, which restricts the development of LED methods and their downstream applications. To alleviate these issues, we present LEVEN a large-scale Chinese LEgal eVENt detection dataset, with 8,116 legal documents and 150,977 human-annotated event mentions in 108 event types. Not only charge-related events, LEVEN also covers general events, which are critical for legal case understanding but neglected in existing LED datasets. To our knowledge, LEVEN is the largest LED dataset and has dozens of times the data scale of others, which shall significantly promote the training and evaluation of LED methods. The results of extensive experiments indicate that LED is challenging and needs further effort. Moreover, we simply utilize legal events as side information to promote downstream applications. The method achieves improvements of average 2.2 points precision in low-resource judgment prediction, and 1.5 points mean average precision in unsupervised case retrieval, which suggests the fundamentality of LED. The source code and dataset can be obtained from https://github.com/thunlp/LEVEN.