Fabian Fischbach
2020
A Comparison of Explicit and Implicit Proactive Dialogue Strategies for Conversational Recommendation
Matthias Kraus
|
Fabian Fischbach
|
Pascal Jansen
|
Wolfgang Minker
Proceedings of the Twelfth Language Resources and Evaluation Conference
Recommendation systems aim at facilitating information retrieval for users by taking into account their preferences. Based on previous user behaviour, such a system suggests items or provides information that a user might like or find useful. Nonetheless, how to provide suggestions is still an open question. Depending on the way a recommendation is communicated influences the user’s perception of the system. This paper presents an empirical study on the effects of proactive dialogue strategies on user acceptance. Therefore, an explicit strategy based on user preferences provided directly by the user, and an implicit proactive strategy, using autonomously gathered information, are compared. The results show that proactive dialogue systems significantly affect the perception of human-computer interaction. Although no significant differences are found between implicit and explicit strategies, proactivity significantly influences the user experience compared to reactive system behaviour. The study contributes new insights to the human-agent interaction and the voice user interface design. Furthermore, we discover interesting tendencies that motivate futurework.