This paper summarizes two approaches developed for BioNLP2023 workshop task 1A: clinical problem list summarization. We develop two types of methods with either rules or pre-trained language models. In the rule-based summarization model, we leverage UMLS (Unified Medical Language System) and a negation detector to extract text spans to represent the summary. We also fine tune three pre-trained language models (BART, T5 and GPT2) to generate the summaries. Experiment results show the rule based system returns extractive summaries but lower ROUGE-L score (0.043), while the fine tuned T5 returns a higher ROUGE-L score (0.208).
We present MEGAnno, a novel exploratory annotation framework designed for NLP researchers and practitioners. Unlike existing labeling tools that focus on data labeling only, our framework aims to support a broader, iterative ML workflow including data exploration and model development. With MEGAnno’s API, users can programmatically explore the data through sophisticated search and automated suggestion functions and incrementally update task schema as their project evolve. Combined with our widget, the users can interactively sort, filter, and assign labels to multiple items simultaneously in the same notebook where the rest of the NLP project resides. We demonstrate MEGAnno’s flexible, exploratory, efficient, and seamless labeling experience through a sentiment analysis use case.
Pre-trained multilingual language models play an important role in cross-lingual natural language understanding tasks. However, existing methods did not focus on learning the semantic structure of representation, and thus could not optimize their performance. In this paper, we propose Multi-level Multilingual Knowledge Distillation (MMKD), a novel method for improving multilingual language models. Specifically, we employ a teacher-student framework to adopt rich semantic representation knowledge in English BERT. We propose token-, word-, sentence-, and structure-level alignment objectives to encourage multiple levels of consistency between source-target pairs and correlation similarity between teacher and student models. We conduct experiments on cross-lingual evaluation benchmarks including XNLI, PAWS-X, and XQuAD. Experimental results show that MMKD outperforms other baseline models of similar size on XNLI and XQuAD and obtains comparable performance on PAWS-X. Especially, MMKD obtains significant performance gains on low-resource languages.
Recently, active learning (AL) methods have been used to effectively fine-tune pre-trained language models for various NLP tasks such as sentiment analysis and document classification. However, given the task of fine-tuning language models, understanding the impact of different aspects on AL methods such as labeling cost, sample acquisition latency, and the diversity of the datasets necessitates a deeper investigation. This paper examines the performance of existing AL methods within a low-resource, interactive labeling setting. We observe that existing methods often underperform in such a setting while exhibiting higher latency and a lack of generalizability. To overcome these challenges, we propose a novel active learning method TYROUGE that employs a hybrid sampling strategy to minimize labeling cost and acquisition latency while providing a framework for adapting to dataset diversity via user guidance. Through our experiments, we observe that compared to SOTA methods, TYROUGE reduces the labeling cost by up to 43% and the acquisition latency by as much as 11X, while achieving comparable accuracy. Finally, we discuss the strengths and weaknesses of TYROUGE by exploring the impact of dataset characteristics.