Ayush Jain


2022

pdf
COGMEN: COntextualized GNN based Multimodal Emotion recognitioN
Abhinav Joshi | Ashwani Bhat | Ayush Jain | Atin Singh | Ashutosh Modi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Emotions are an inherent part of human interactions, and consequently, it is imperative to develop AI systems that understand and recognize human emotions. During a conversation involving various people, a person’s emotions are influenced by the other speaker’s utterances and their own emotional state over the utterances. In this paper, we propose COntextualized Graph Neural Network based Multi- modal Emotion recognitioN (COGMEN) system that leverages local information (i.e., inter/intra dependency between speakers) and global information (context). The proposed model uses Graph Neural Network (GNN) based architecture to model the complex dependencies (local and global information) in a conversation. Our model gives state-of-the- art (SOTA) results on IEMOCAP and MOSEI datasets, and detailed ablation experiments show the importance of modeling information at both levels.

2021

pdf
Does Social Pressure Drive Persuasion in Online Fora?
Ayush Jain | Shashank Srivastava
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Online forums such as ChangeMyView have been explored to research aspects of persuasion and argumentative quality in language. While previous research has focused on arguments between a view-holder and a persuader, we explore the premise that apart from the merits of arguments, persuasion is influenced by the ambient social community. We hypothesize that comments from the rest of the community can either affirm the original view or implicitly exert pressure to change it. We develop a structured model to capture the ambient community’s sentiment towards the discussion and its effect on persuasion. Our experiments show that social features themselves are significantly predictive of persuasion (even without looking at the actual content of discussion), with performance comparable to some earlier approaches that use content features. Combining community and content features leads to overall performance of 78.5% on the persuasion prediction task. Our analyses suggest that the effect of social pressure is comparable to the difference between persuasive and non-persuasive language strategies in driving persuasion and that social pressure might be a causal factor for persuasion.

2020

pdf
Identifying Collaborative Conversations using Latent Discourse Behaviors
Ayush Jain | Maria Leonor Pacheco | Steven Lancette | Mahak Goindani | Dan Goldwasser
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue

In this work, we study collaborative online conversations. Such conversations are rich in content, constructive and motivated by a shared goal. Automatically identifying such conversations requires modeling complex discourse behaviors, which characterize the flow of information, sentiment and community structure within discussions. To help capture these behaviors, we define a hybrid relational model in which relevant discourse behaviors are formulated as discrete latent variables and scored using neural networks. These variables provide the information needed for predicting the overall collaborative characterization of the entire conversational thread. We show that adding inductive bias in the form of latent variables results in performance improvement, while providing a natural way to explain the decision.

2018

pdf
Uniform Information Density Effects on Syntactic Choice in Hindi
Ayush Jain | Vishal Singh | Sidharth Ranjan | Rajakrishnan Rajkumar | Sumeet Agarwal
Proceedings of the Workshop on Linguistic Complexity and Natural Language Processing

According to the UNIFORM INFORMATION DENSITY (UID) hypothesis (Levy and Jaeger, 2007; Jaeger, 2010), speakers tend to distribute information density across the signal uniformly while producing language. The prior works cited above studied syntactic reduction in language production at particular choice points in a sentence. In contrast, we use a variant of the above UID hypothesis in order to investigate the extent to which word order choices in Hindi are influenced by the drive to minimize the variance of information across entire sentences. To this end, we propose multiple lexical and syntactic measures (at both word and constituent levels) to capture the uniform spread of information across a sentence. Subsequently, we incorporate these measures in machine learning models aimed to distinguish between a naturally occurring corpus sentence and its grammatical variants (expressing the same idea). Our results indicate that our UID measures are not a significant factor in predicting the corpus sentence in the presence of lexical surprisal, a competing control predictor. Finally, in the light of other recent works, we conclude with a discussion of reasons for UID not being suitable for a theory of word order.