Anna Salmela


2022

pdf
Towards better structured and less noisy Web data: Oscar with Register annotations
Veronika Laippala | Anna Salmela | Samuel Rönnqvist | Alham Fikri Aji | Li-Hsin Chang | Asma Dhifallah | Larissa Goulart | Henna Kortelainen | Marc Pàmies | Deise Prina Dutra | Valtteri Skantsi | Lintang Sutawika | Sampo Pyysalo
Proceedings of the Eighth Workshop on Noisy User-generated Text (W-NUT 2022)

Web-crawled datasets are known to be noisy, as they feature a wide range of language use covering both user-generated and professionally edited content as well as noise originating from the crawling process. This article presents one solution to reduce this noise by using automatic register (genre) identification -whether the texts are, e.g., forum discussions, lyrical or how-to pages. We apply the multilingual register identification model by Rönnqvist et al. (2021) and label the widely used Oscar dataset. Additionally, we evaluate the model against eight new languages, showing that the performance is comparable to previous findings on a restricted set of languages. Finally, we present and apply a machine learning method for further cleaning text files originating from Web crawls from remains of boilerplate and other elements not belonging to the main text of the Web page. The register labeled and cleaned dataset covers 351 million documents in 14 languages and is available at https://huggingface.co/datasets/TurkuNLP/register_oscar.

2021

pdf
Beyond the English Web: Zero-Shot Cross-Lingual and Lightweight Monolingual Classification of Registers
Liina Repo | Valtteri Skantsi | Samuel Rönnqvist | Saara Hellström | Miika Oinonen | Anna Salmela | Douglas Biber | Jesse Egbert | Sampo Pyysalo | Veronika Laippala
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop

We explore cross-lingual transfer of register classification for web documents. Registers, that is, text varieties such as blogs or news are one of the primary predictors of linguistic variation and thus affect the automatic processing of language. We introduce two new register-annotated corpora, FreCORE and SweCORE, for French and Swedish. We demonstrate that deep pre-trained language models perform strongly in these languages and outperform previous state-of-the-art in English and Finnish. Specifically, we show 1) that zero-shot cross-lingual transfer from the large English CORE corpus can match or surpass previously published monolingual models, and 2) that lightweight monolingual classification requiring very little training data can reach or surpass our zero-shot performance. We further analyse classification results finding that certain registers continue to pose challenges in particular for cross-lingual transfer.

2020

pdf
From Web Crawl to Clean Register-Annotated Corpora
Veronika Laippala | Samuel Rönnqvist | Saara Hellström | Juhani Luotolahti | Liina Repo | Anna Salmela | Valtteri Skantsi | Sampo Pyysalo
Proceedings of the 12th Web as Corpus Workshop

The web presents unprecedented opportunities for large-scale collection of text in many languages. However, two critical steps in the development of web corpora remain challenging: the identification of clean text from source HTML and the assignment of genre or register information to the documents. In this paper, we evaluate a multilingual approach to this end. Our starting points are the Swedish and French Common Crawl datasets gathered for the 2017 CoNLL shared task, particularly the URLs. We 1) fetch HTML pages based on the URLs and run boilerplate removal, 2) train a classifier to further clean out undesired text fragments, and 3) annotate text registers. We compare boilerplate removal against the CoNLL texts, and find an improvement. For the further cleaning of undesired material, the best results are achieved using Multilingual BERT with monolingual fine-tuning. However, our results are promising also in a cross-lingual setting, without fine-tuning on the target language. Finally, the register annotations show that most of the documents belong to a relatively small set of registers, which are relatively similar in the two languages. A number of additional flags in the annotation are, however, necessary to reflect the wide range of linguistic variation associated with the documents.