Aman Chadha


2023

pdf
CONFLATOR: Incorporating Switching Point based Rotatory Positional Encodings for Code-Mixed Language Modeling
Mohsin Mohammed | Sai Kandukuri | Neeharika Gupta | Parth Patwa | Anubhab Chatterjee | Vinija Jain | Aman Chadha | Amitava Das
Proceedings of the 6th Workshop on Computational Approaches to Linguistic Code-Switching

While code-mixing is a common linguistic practice in many parts of the world, collecting high-quality and low-cost code-mixed data remains a challenge for natural language processing (NLP) research. The recent proliferation of Large Language Models (LLMs) compels one to ask: how capable are these systems in generating code-mixed data? In this paper, we explore prompting multilingual LLMs in a zero-shot manner to generate code-mixed data for seven languages in South East Asia (SEA), namely Indonesian, Malay, Chinese, Tagalog, Vietnamese, Tamil, and Singlish. We find that publicly available multilingual instruction-tuned models such as BLOOMZ and Flan-T5-XXL are incapable of producing texts with phrases or clauses from different languages. ChatGPT exhibits inconsistent capabilities in generating code-mixed texts, wherein its performance varies depending on the prompt template and language pairing. For instance, ChatGPT generates fluent and natural Singlish texts (an English-based creole spoken in Singapore), but for English-Tamil language pair, the system mostly produces grammatically incorrect or semantically meaningless utterances. Furthermore, it may erroneously introduce languages not specified in the prompt. Based on our investigation, existing multilingual LLMs exhibit a wide range of proficiency in code-mixed data generation for SEA languages. As such, we advise against using LLMs in this context without extensive human checks.

pdf
Counter Turing Test (CT2): AI-Generated Text Detection is Not as Easy as You May Think - Introducing AI Detectability Index (ADI)
Megha Chakraborty | S.M Towhidul Islam Tonmoy | S M Mehedi Zaman | Shreya Gautam | Tanay Kumar | Krish Sharma | Niyar Barman | Chandan Gupta | Vinija Jain | Aman Chadha | Amit Sheth | Amitava Das
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

With the rise of prolific ChatGPT, the risk and consequences of AI-generated text has increased alarmingly. This triggered a series of events, including an open letter, signed by thousands of researchers and tech leaders in March 2023, demanding a six-month moratorium on the training of AI systems more sophisticated than GPT-4. To address the inevitable question of ownership attribution for AI-generated artifacts, the US Copyright Office released a statement stating that “if the content is traditional elements of authorship produced by a machine, the work lacks human authorship and the office will not register it for copyright”. Furthermore, both the US and the EU governments have recently drafted their initial proposals regarding the regulatory framework for AI. Given this cynosural spotlight on generative AI, AI-generated text detection (AGTD) has emerged as a topic that has already received immediate attention in research, with some initial methods having been proposed, soon followed by the emergence of techniques to bypass detection. This paper introduces the Counter Turing Test (CT2), a benchmark consisting of techniques aiming to offer a comprehensive evaluation of the robustness of existing AGTD techniques. Our empirical findings unequivocally highlight the fragility of the proposed AGTD methods under scrutiny. Amidst the extensive deliberations on policy-making for regulating AI development, it is of utmost importance to assess the detectability of content generated by LLMs. Thus, to establish a quantifiable spectrum facilitating the evaluation and ranking of LLMs according to their detectability levels, we propose the AI Detectability Index (ADI). We conduct a thorough examination of 15 contemporary LLMs, empirically demonstrating that larger LLMs tend to have a lower ADI, indicating they are less detectable compared to smaller LLMs. We firmly believe that ADI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making.

pdf
The Troubling Emergence of Hallucination in Large Language Models - An Extensive Definition, Quantification, and Prescriptive Remediations
Vipula Rawte | Swagata Chakraborty | Agnibh Pathak | Anubhav Sarkar | S.M Towhidul Islam Tonmoy | Aman Chadha | Amit Sheth | Amitava Das
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The recent advancements in Large Language Models (LLMs) have garnered widespread acclaim for their remarkable emerging capabilities. However, the issue of hallucination has parallelly emerged as a by-product, posing significant concerns. While some recent endeavors have been made to identify and mitigate different types of hallucination, there has been a limited emphasis on the nuanced categorization of hallucination and associated mitigation methods. To address this gap, we offer a fine-grained discourse on profiling hallucination based on its degree, orientation, and category, along with offering strategies for alleviation. As such, we define two overarching orientations of hallucination: (i) factual mirage (FM) and (ii) silver lining (SL). To provide a more comprehensive understanding, both orientations are further sub-categorized into intrinsic and extrinsic, with three degrees of severity - (i) mild, (ii) moderate, and (iii) alarming. We also meticulously categorize hallucination into six types: (i) acronym ambiguity, (ii) numeric nuisance, (iii) generated golem, (iv) virtual voice, (v) geographic erratum, and (vi) time wrap. Furthermore, we curate HallucInation eLiciTation (HILT), a publicly available dataset comprising of 75,000 samples generated using 15 contemporary LLMs along with human annotations for the aforementioned categories. Finally, to establish a method for quantifying and to offer a comparative spectrum that allows us to evaluate and rank LLMs based on their vulnerability to producing hallucinations, we propose Hallucination Vulnerability Index (HVI). Amidst the extensive deliberations on policy-making for regulating AI development, it is of utmost importance to assess and measure which LLM is more vulnerable towards hallucination. We firmly believe that HVI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making. In conclusion, we propose two solution strategies for mitigating hallucinations.

pdf
FACTIFY3M: A benchmark for multimodal fact verification with explainability through 5W Question-Answering
Megha Chakraborty | Khushbu Pahwa | Anku Rani | Shreyas Chatterjee | Dwip Dalal | Harshit Dave | Ritvik G | Preethi Gurumurthy | Adarsh Mahor | Samahriti Mukherjee | Aditya Pakala | Ishan Paul | Janvita Reddy | Arghya Sarkar | Kinjal Sensharma | Aman Chadha | Amit Sheth | Amitava Das
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Combating disinformation is one of the burning societal crises - about 67% of the American population believes that disinformation produces a lot of uncertainty, and 10% of them knowingly propagate disinformation. Evidence shows that disinformation can manipulate democratic processes and public opinion, causing disruption in the share market, panic and anxiety in society, and even death during crises. Therefore, disinformation should be identified promptly and, if possible, mitigated. With approximately 3.2 billion images and 720,000 hours of video shared online daily on social media platforms, scalable detection of multimodal disinformation requires efficient fact verification. Despite progress in automatic text-based fact verification (e.g., FEVER, LIAR), the research community lacks substantial effort in multimodal fact verification. To address this gap, we introduce FACTIFY 3M, a dataset of 3 million samples that pushes the boundaries of the domain of fact verification via a multimodal fake news dataset, in addition to offering explainability through the concept of 5W question-answering. Salient features of the dataset include: (i) textual claims, (ii) ChatGPT-generated paraphrased claims, (iii) associated images, (iv) stable diffusion-generated additional images (i.e., visual paraphrases), (v) pixel-level image heatmap to foster image-text explainability of the claim, (vi) 5W QA pairs, and (vii) adversarial fake news stories.

pdf
FACTIFY-5WQA: 5W Aspect-based Fact Verification through Question Answering
Anku Rani | S.M Towhidul Islam Tonmoy | Dwip Dalal | Shreya Gautam | Megha Chakraborty | Aman Chadha | Amit Sheth | Amitava Das
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automatic fact verification has received significant attention recently. Contemporary automatic fact-checking systems focus on estimating truthfulness using numerical scores which are not human-interpretable. A human fact-checker generally follows several logical steps to verify a verisimilitude claim and conclude whether it’s truthful or a mere masquerade. Popular fact-checking websites follow a common structure for fact categorization such as half true, half false, false, pants on fire, etc. Therefore, it is necessary to have an aspect-based (delineating which part(s) are true and which are false) explainable system that can assist human fact-checkers in asking relevant questions related to a fact, which can then be validated separately to reach a final verdict. In this paper, we propose a 5W framework (who, what, when, where, and why) for question-answer-based fact explainability. To that end, we present a semi-automatically generated dataset called FACTIFY-5WQA, which consists of 391, 041 facts along with relevant 5W QAs – underscoring our major contribution to this paper. A semantic role labeling system has been utilized to locate 5Ws, which generates QA pairs for claims using a masked language model. Finally, we report a baseline QA system to automatically locate those answers from evidence documents, which can serve as a baseline for future research in the field. Lastly, we propose a robust fact verification system that takes paraphrased claims and automatically validates them. The dataset and the baseline model are available at https: //github.com/ankuranii/acl-5W-QA

pdf
ANALOGICAL - A Novel Benchmark for Long Text Analogy Evaluation in Large Language Models
Thilini Wijesiriwardene | Ruwan Wickramarachchi | Bimal Gajera | Shreeyash Gowaikar | Chandan Gupta | Aman Chadha | Aishwarya Naresh Reganti | Amit Sheth | Amitava Das
Findings of the Association for Computational Linguistics: ACL 2023

Over the past decade, analogies, in the form of word-level analogies, have played a significant role as an intrinsic measure of evaluating the quality of word embedding methods such as word2vec. Modern large language models (LLMs), however, are primarily evaluated on extrinsic measures based on benchmarks such as GLUE and SuperGLUE, and there are only a few investigations on whether LLMs can draw analogies between long texts. In this paper, we present ANALOGICAL, a new benchmark to intrinsically evaluate LLMs across a taxonomy of analogies of long text with six levels of complexity – (i) word, (ii) word vs. sentence, (iii) syntactic, (iv) negation, (v) entailment, and (vi) metaphor. Using thirteen datasets and three different distance measures, we evaluate the abilities of eight LLMs in identifying analogical pairs in the semantic vector space. Our evaluation finds that it is increasingly challenging for LLMs to identify analogies when going up the analogy taxonomy.

pdf
Are Personalized Stochastic Parrots More Dangerous? Evaluating Persona Biases in Dialogue Systems
Yixin Wan | Jieyu Zhao | Aman Chadha | Nanyun Peng | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2023

Recent advancements in Large Language Models empower them to follow freeform instructions, including imitating generic or specific demographic personas in conversations. We define generic personas to represent demographic groups, such as “an Asian person”, whereas specific personas may take the form of specific popular Asian names like “Yumi”. While the adoption of personas enriches user experiences by making dialogue systems more engaging and approachable, it also casts a shadow of potential risk by exacerbating social biases within model responses, thereby causing societal harm through interactions with users. In this paper, we systematically study “persona biases”, which we define to be the sensitivity of dialogue models’ harmful behaviors contingent upon the personas they adopt. We categorize persona biases into biases in harmful expression and harmful agreement, and establish a comprehensive evaluation framework to measure persona biases in five aspects: Offensiveness, Toxic Continuation, Regard, Stereotype Agreement, and Toxic Agreement. Additionally, we propose to investigate persona biases by experimenting with UNIVERSALPERSONA, a systematically constructed persona dataset encompassing various types of both generic and specific model personas. Through benchmarking on four different models- including Blender, ChatGPT, Alpaca, and Vicuna- our study uncovers significant persona biases in dialogue systems. Our findings also underscore the pressing need to revisit the use of personas in dialogue agents to ensure safe application.