Harvesting grammars from the Matrix: Evaluating a bumper crop

anonymous

Abstract

The Grammar Matrix customization sys-
tem allows users to configure starter-
grammars which add language-specific in-
formation across a range of linguistic phe-
nomena to a cross-linguistic core gram-
mar. With four phenomenon-libraries im-
plemented so far (word order, negation,
yes-no questions, and coordination) we
can already define hundreds of thousands
of language types. We present a method-
ology for creating test suites for any lan-
guage type generated by the customization
system and then evaluate the current sys-
tem against those test suites for a small,
random sample of language types.

1 Introduction

The Grammar Matrix is an open-source starter kit
designed to jump-start the development of broad-
coverage precision grammars, capable of both pars-
ing and generation and suitable for use in a vari-
ety of NLP applications. Initial work on the Ma-
trix ([self-reference omitted]) focused on the devel-
opment of a cross-linguistic core grammar. The
core grammar provides a solid foundation for sus-
tained development of linguistically-motivated yet
computationally tractable grammars (e.g., (Hellan
and Haugereid, 2003; Kordoni and Neu, 2005)).
However, the core grammar alone cannot parse and
generate sentences: it needs to be specialized with
language-specific information such as the order of

daughters in its rules (e.g., head-subject or subject-
head), and it needs a lexicon. Although word order
and many other phenomena vary across languages,
there are still recurring patterns. To allow reuse
of grammar code across languages and to increase
the size of the jump-start provided by the Matrix,
in more recent work ([self-reference omitted]), we
have been developing ‘libraries’ implementing real-
izations of various linguistic phenomena. Through
a web interface, grammar developers can configure
an initial starter grammar by filling out a typologi-
cal questionnaire about their language, which in turn
calls a CGI script to ‘compile’ a grammar by making
appropriate selections from the libraries.

The initial set of libraries includes: basic word or-
der of major constituents in matrix clauses (SOV et
al), optionality/obligatoriness of determiners, noun-
determiner order, NP v. PP arguments of intransitive
and transitive verbs, strategies for expressing senten-
tial negation and yes-no questions, and strategies for
constituent coordination. Even with this small set
of phenomena covered (and limiting ourselves arbi-
trarily for testing purposes to a maximum of two co-
ordination strategies per language), we have already
defined a space of hundreds of thousands of possible
grammars. !

Precision grammar engineering usually proceeds
by continually testing the grammar against hand-
constructed test suites as well as selections from nat-

'If all of the choices in the customization system were in-

dependent, we would have more than 2 x 10?” grammars. In
actuality, constraints on possible combinations of choices (e.g.,
if a grammar has two case-marking adpositions, they must both
be prepositions or both be postpositions) limit this space con-
siderably.

urally occurring corpora, and refining the grammar
as necessary. In this case, it is simply not practical
to test all of the hundreds of thousands of grammars.

Our development methodology has been to test
each option in each library as we create it. Testing
any part of one library involves instantiating choices
from at least a few other libraries (word order, lex-
icon). However, We have not attempted to system-
atically vary those other choices (e.g., strategies for
expressing sentential negation may all be tested with
SOV grammars). In this paper, we describe our
methodology for validating the interaction of the li-
braries over a random sample of grammars from the
grammar space and the associated creation of a test
suite resource for future regression testing.

2 Background

The Grammar Matrix is written within the HPSG
framework (Pollard and Sag, 1994; Sag et al., 2003).
HPSG is a constraint-based grammar framework im-
plemented in typed feature structures. HPSG gram-
mars are declarative resources which can be used
by both parsing and generation algorithms. The
particular variant of the formalism we use is TDL
(type description language) as interpreted by the
LKB (Copestake, 2002) grammar development en-
vironment. The LKB includes grammar visualizion
and debugging tools, a parser, and a generator. For
test suite management, we use [incr tsdb()] (Oepen,
2001).

The customization system presents users with a
web-based interface through which they may in-
put typological information about the language they
wish to build a grammar for and then download an
appropriately customized version of the Grammar
Matrix. These little grammars describe very small
fragments of the languages they model, but they are
not toys. Their purpose is to be good starting points
for further development. Usability considerations
put two important constraints on the customization
system:

1. The questions must be ones that are sensible to
linguists, who tend to consider phenomena one
at a time.

2. The output grammar code must be both read-
able and maintainable.

To achieve readable grammar code in the output
TDL, among other things, we follow the guideline
that any given constraint is stated only once. If mul-
tiple types require the same constraint, they should
all inherit from some supertype which bears the con-
straint. In addition, all constraints pertaining to a
particular type are stated in one place.

The Grammar Matrix customization system reads
in the user’s language specification and then outputs
language-specific definitions of types (rule types,
lexical entry types and ancillary structures) which
inherit from types defined in the crosslinguistic core
of the Matrix but add constraints appropriate for the
language at hand. The customization system is im-
plemented as a Python script which builds TDL de-
scriptions, prints them to the appropriate files, in-
cludes the cross-linguistic shared files, and presents
the user with an archive for downloading.

In light of the two basic constraints on the cus-
tomization system, we have found that it is not pos-
sible to treat the libraries as black-box modules with
respect to each other. The libraries are interde-
pendent, and the portions of the script which inter-
pret one part of the input questionnaire frequently
need to make reference to information elicited by
other parts of the questionnaire. For example, the
customization system implements major constituent
word order by specializing the head-complement
and head-subject rule types provided in the core
grammar. In an SOV language, these would both
be cross-classified with the type head-final, and the
head-subject rule would further be constrained to
take only complement-saturated phrases as its head
daughter. The TDL encoding of these constraints is
shown in Figure 1.

Following standard practice in HPSG, we use the
head-complement phrase not only for combining
verbs with their complements to make VPs, but also
for all other head complement structures, notably
PPs, CPs, and VPs headed by auxiliaries. These
three are notable because they are all implemented
in the Grammar Matrix customization system and
because the order of head and complement can dif-
fer among them. Consider Polish, a free word or-
der language that nonetheless has prepositions. The
order of a verb with respect to its complements is
free, so we instantiate both head-comp and comp-
head rules, which inherit from head-initial and head-

comp-head-phrase := basic-head-lst-comp-phrase & head-final.
subj-head-phrase := basic-head-subj-phrase & head-final &
[HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.COMPS < >].

Figure 1: Specialized phrase structure rule types for SOV language

final respectively. Yet the prepositions must be
barred from the head-final version lest the grammar
license postpositional phrases by mistake. We do
this by constraining the HEAD value of the comp-
head phrase. Similarly, question particles (such as
est-ce que in French or ma in Mandarin) are treated
as complementizers: heads which select for an S
complement. Since these, too, may differ in their
word order properties from verbs (and prepositions),
we need information about the question particles
(elicited with the rest of the information about yes-
no questions) before we have complete information
about the head-complement rule. Furthermore, it is
not simply a question of adding constraints to ex-
isting types: Consider the case of an SOV language
with prepositions and sentence-initial question parti-
cles. This language would need a head-initial head-
comp rule that can take only prepositions and com-
plementizers as its head. To express the disjunction,
we must use the supertype to prep and comp. This,
in turn, means that we can’t decide what constraint
to put on the head value of the head-comp rule un-
til we’ve considered questions as well as the basic
word order facts.

We expect to study the issue of (non-)modularity
as we add additional libraries to the resource and to
investigate whether the grammar code can be refac-
tored in such a way as to make the libraries into
true modules. We suspect at this point that while it
might be possible to reduce the degree of interdepen-
dence, it will not be possible to achieve completely
independent libaries, because syntactic phenomena
are inherently interdependent. Consider the case of
agreement in NP coordination. In English and many
other languages, coordinated NPs are always plural,
regardless of the number value of the coordinands.
Furthermore, the person of the coordinated NP is the
minimal person value of the coordinands.

(1) a. A catand a dog are/*is chasing a mouse.
b. Kim and I should handle this ourselves.

¢. You and Kim should handle this yourselves.

In languages with gender systems, there is often a
similar hierarchy of gender values, e.g., in French
coordianted NPs the whole NP is feminine iff all
coordinands are feminine and masculine otherwise.
Thus it appears that it is not possible to define
all of the necessary constraints on the coordination
rules without having access to information about the
agreement system.

Even if the libraries could be made completely in-
dependent at the customization level, however, the
various parts of the grammar need to be able to
interact properly in the analysis of individual sen-
tences. Any sentence which illustrates sentential
negation, a matrix yes-no question, or coordination
also necessarily illustrates at least some aspects of
word order, the presence v. absence of determiners
and case-marking adpositions, and the subcatego-
rization of the verb that heads the sentence. Fur-
thermore, broad-coverage grammars need to allow
negation, questions, coordination etc. all to appear
in the same sentence.

Given the complexity of the system in general and
the interdependence between the libraries, it is not
sufficient to test each library in isolation. On the
other hand, testing all possible combinations is not
computationally tractable. In practice, in the course
of developing any given library, we define grammars
which test all options given by that library while
keeping the rest of the choices more or less constant.
The following sections describe the system we de-
veloped for sampling the rest of the grammar space,
providing sentences with associated semantic repre-
sentations and well-formedness predictions for eval-
uating any given grammar in that space, and thereby
testing the cross-compatibility of our libraries.

3 Remarks on evaluation

There are many levels at which the Grammar Ma-
trix customization system could and should be eval-
uated. At the highest level, its twin purposes are re-
ducing the cost of developing broad-coverage pre-
cision grammars and crosslinguistic hypothesis test-

ing. Regarding the first, the system should be evalu-
ated in terms of how much time and effort it saves in
the development of grammars. Regarding the sec-
ond, the system should be tested against naturally-
occuring data as well as linguist-developed test
suites from a typologically balanced sample of the
world’s languages. Each of these evaluations, but
especially the second, is prohibitively expensive. By
using the Grammar Matrix in grammar engineer-
ing courses where students each model different lan-
guages and by soliciting feedback from other users
of the system, we are gathering information from
actual languages which, while not giving any pre-
cise measure of the performance or correctness of
the system overall, does allow us to incrementally
refine the system.

This paper addresses a logically prior question to
evaluation at the levels of usefulness or correctness,
namely, whether the system indeed performs as in-
tended. Each library is intended to produce (or play
its part in producing) particular semantic represen-
tations for particular types of sentences. Given the
overall complexity of the system, it is non-trivial
to verify whether the libraries each function as in-
tended. We describe here how we build the set of
reference cases needed to answer this question, and
evaluate the performance of a system developed with
a small set of grammars against a sample from the
much larger set.

In general, with precision grammars, there are
three relevant metrics:

1. Coverage (% of grammatical sentences parsed,
a type of recall)

2. Overgeneration (% of ungrammatical sentences
parsed, a type of precision)

3. Accuracy (% exact match on semantics for the
sentences parsed)

It follows that our gold standard resource will need
to include both ’grammatical’ and "ungrammatical’
examples, an indication of the intended grammati-
cality of each, and an associated semantic represen-
tation.

4 Methodology

4.1 Test suite resource

In order to test an arbitrary selection from the space
of grammars we have defined, we need a parallel,
independent system which can generate a gold stan-
dard for comparison for any abitrary language type.
Fortunately, this can be a simpler sort of grammar
because it can be restricted to a finite set of sen-
tences.

In creating this test resource, we make two ab-
stractions. The first concerns vocabulary. Much of
the idiosyncrasy in language resides in the lexicon,
both in the form of morphemes and in the particu-
lar grammatical and collocational constraints asso-
ciated with them. While our customization system
allows for some lexical variation (e.g., each verb
can select for either an NP or a PP subject), we as-
sume that each grammar tested will draw its lexi-
con from the standardized set of lexical entries with
standardized forms shown in Table 1 (though not all
languages will use all of these forms). Using the
same word forms for each grammar contributes sub-
stantially to building a single resource which can be
adapted for the testing of each language type.

The second abstraction has to do with the no-
tions of grammaticality and language. The gram-
mars produced by the customization system are un-
derspecified with respect to actual languages. For
example, they currently lack any analysis of case
(outside the option of case-marking adpositions) or
agreement. In fact, they will always be underspec-
ified, no matter how large the system gets, because
it is not possible to describe all of the details of all
of the world’s languages in a system like this—just
getting the ‘core’ grammar down will be challenge
enough. Thus one and the same starter grammar
might be extended into multiple models correspond-
ing to multiple actual human languages. Accord-
ingly, in what follows, we speak of language types
rather than languages. When we talk about the pre-
dicted (un)grammaticality of a candidate string, we
are referring to its predicted well- or ill-formedness
given the information contained in the language type
definition.

It turns out it is possible to create a gold-standard
resource by enumerating a set of ‘seed strings’, pro-
ducing all possible permutations of them, and then

Form Description Options

det determiner

nl, n2 nouns det is optional, obligatory, impossible
tv transitive verb subj, obj are NP or PP

v intransitive verb subj is NP or PP

p-nom, p-acc | case-marking adpositions | preposition or postposition

neg negative element adverb, prefix, suffix

col, co2 coordination marks word, prefix, suffix

gpart question particle

Table 1: Standardized lexicon

using regular expressions to filter the permutations.?

The seed strings can be grouped into semantic
equivalence classes. From each equivalence class,
we select one representative string which we parse
with an appropriate grammar derived from the Ma-
trix customization system. The parses that the LKB
returns are actually large feature structures. From
the feature structure, we ‘harvest’ the sub-feature
structure which encodes the semantic representation
of the whole string.

The remaining seed strings in the equivalence
class differ from each other and from the ‘harvester’
string in the presence or absence of various semanti-
cally empty elements (case-marking adpositions and
tense-marking auxiliaries*) and the affix v. word sta-
tus of some of the formatives (negation, coordina-
tor). To get the full set of candidate strings for a
given semantic representation, we take all permu-
tations of the formatives (including affixes) in each
seed string.

The strings are filtered in two passes—once to re-
move strings which are predicted to be ungrammat-
ical in all language types and a second time relative
to the particular langauge type being tested. On each
pass, a selection of ungrammatical examples is re-
tained (and marked as such) in order to test for over-
generation. It is not practical to retain all ungram-
matical examples, as the resulting test suites would
be too large (millions of sentences).

The filters are sensitive to the intended semantics
of the candidate strings. This is important for two
reasons: First and foremost, it allows us to create a

>This approach is similar in spirit to (Arnold et al., 1994).
3The auxiliaries are only semantically empty currently be-
cause we don’t yet have an analysis of tense/aspect.

resource against which to measure the accuracy of
the grammars, that is, their ability to produce all and
only the correct semantic representations for a par-
ticular string. In many cases, the same string might
well be grammatical in different language types, but
only on different interpretations. For example, in a
VSO langauge, tv det nl det n2 would be mapped
to a declarative representation with ‘nl’ as the first
semantic argument. In a VOS language, the same
string would be mapped to a declarative representa-
tion with ‘n2’ as the first semantic argument. And
in an SVO language which expressed yes-no ques-
tions with subject-verb agreement, that same string
would map to a question representation with ‘nl’ as
the first semantic argument.

Second, giving the filters access to semantic rep-
resentations allows us to write filters for each di-
mension of variation mostly independently from the
other dimensions. For example, since we know that
the candidate strings with the same semantics as det
nl det n2 tv all have exactly two determiners in
them, we can check that the determiners are adja-
cent to the nouns with the regular expression in (2).

(2) det n[12].%det n[12] | det
n[12].%n[12] det | n[12] det.xn[12]
det | n[12] det.xdet n[12]

Because we know, for any given equivalence class,
what words might be in the string, it is easier to write
filters that only make reference to one or two prop-
erties of the language definition at a time. This, in
turn, means that we can create a gold standard re-
source over our particular seed strings for any lan-
guage type that can be generated by the system.

A further complication arises in the case of am-

biguous harvester strings. In our current set of seed
strings, this arises with the coordination examples.
The example in (3) has two semantic representa-
tions, schematized in (4).

(3) det n1 col nl col nl iv (cf. The horse and
buggy and wagon left)

(4) a. iv (and (nl, and (n1, nl)))
b. iv (and (and (nl, nl), nl))

To handle this, we generalize the string-semantic
representation mapping to relate strings to sets of se-
mantic representations. In most cases, our candidate
strings have just one semantic representation. In the
ambiguous cases, they have more than one. The pro-
cess of permuting the formatives of the seed strings
can create candidate string-representation pairs with
the same string. When we have created the gold-
standard resource for a particular language type, we
search for such cases and collapse them into one en-
try, where all of the semantic representations are in-
cluded in its set.

In summary, candidate strings mapping to the
same semantics can vary in the lexical elements they
contain or the order of the lexical elements. We han-
dle the first by enumerating seed strings and the sec-
ond by permuting the lexical elements. The process
of associating seed strings to semantic representa-
tions, creating candidate string-representation pairs,
and then filtering them is shown in Figure 2.

Harvester Map'
string- semant!cs Sged Permute
sematics to equiv string-
classes semantics

pairs

specific
filters

pairs

string-

semantics Universal Candidate

pairs well- filters string-

formed for semantics
pairs

specific
gold standard

7

Figure 2: Filtering process

4.2 Random grammars

Underlying both the customization script and the
web-based questionnaire form is a single file which
defines the parameters available for configuration,
their possible values, and how the choice should be
displayed in the web interface presented to the user.
We take advantage of this file yet again in a third
script which reads it in and produces randomly se-
lected grammars. For each choice it randomly se-
lects among the possibilities (including the possibil-
ity of making no choice at all). The result is then run
through the same validation routine that we use on
the web page to alert users if they’ve made incom-
patible or incomplete specifications. Only grammars
that pass the validation constraints are used.

5 Results

5.1 Test grammars

We worked with roughly 20 hand-configured gram-
mars in developing the filters. In addition, we used
15 randomly generated grammars to do further de-
bugging. We then produced 4 more randomly gen-
erated grammars and used them to measure system
performance. Note that we are comparing the out-
put of two separate systems (the grammars and the
filters), and points of disagreement can indicate an
error on either side. This is explored further in §5.3.

5.2 Performance

Our 30 harvester strings and 208 other seed strings
together produced 12,754,772 candidate string-
semantics pairs. Of these pairs, 25,840 were deemed
potentially grammatical in some language. 258 uni-
versally ungrammatical examples (up to four per
seed string) were kept. This universal resource was
used as the input for creating the language type-
specific resources for 3 language types. In addition
to the selection of universally ungrammatical exam-
ples, a selection of examples that would otherwise
have been filtered at the language-type specific level
was also kept. The test suites for our test language
types are described in Table 2.

For each language type, we calculated coverage
(% of grammatical strings which parsed), overgen-
eration (% of ungrammatical strings which parsed),
and semantic accuracy (% of test items for which we

Lg. type | Gram. Avg. Ungram | Total
readings
1. 38 1.23 358 | 396
2. 3 1 342 | 345
3. 6 1 377 | 383
Table 2: Language-specific test suites
(Preliminary numbers)
Lg. type | Coverage Over- Accuracy
generation
% | # % %
1. 26| 684 3 1.6 63
2. 3] 100 | 2 0.6 100
3.1 213332 0.5 33

Table 3: Performance of test grammars
(Preliminary numbers)

have exactly the right set of readings). The results
are shown in Table 3.

5.3 Error analysis

The errors (both under- and over-generation) in
Grammar 3 all relate to a single bug in the cus-
tomization script. In this language, nl has an oblig-
atory specifier while n2 can’t take a specifier at all.
The customization script is erroneously making the
specifier obligatory for all nouns. A related problem
leads to the overgeneration in Grammar 1.

Grammar 1 is a particularly interesting case. It
has more positive test items than the rest because it
is a free word-order type. The ungrammatical ex-
amples are all clustered in the negation seed strings.
This language type has specified VP attachment of
the negative adverb as the means of expressing sen-
tential negation. However, in some of the possi-
ble orders of S, V, and O, there is no VP, that is,
no constituent which combines the V and O to the
exclusion of S. Thus, there is nowhere for the VP-
modifying adverb to attach. In this situation, the
filters do not match what we have coded in the
grammar customization system, and indeed, it is not
entirely clear how to interpret this combination of
choices.

6 Conclusion and future work

This initial system has allowed us to validate the
testing approach and evaluate the grammar compi-
lation system. It has also proved itself handy in di-
agnosing bugs in the compilation code, and we ex-
pect to be able to report on the effect that consider-
ing a larger sample of grammars in the debugging
phase has on the performance of grammars sampled
for testing. While the system is quite complex, we
expect a moderate amount of further refinement to
iron out most of the bugs.

We envision extending the current system by
adding seed strings which more extensively test the
interaction between the various modules (e.g., nega-
tion, questions, and coordination all in one), as well
as more thorough coverage of the coordination mod-
ule. More importantly, we are actively working on
extending the linguistic coverage of the libraries pro-
vided in the customization system. As we do so,
the verified test suites discussed here provide a base-
line for regression testing. Furthermore, as the error
analysis above suggests, we expect the bulk of the
cases of filter-grammar mismatch to appear in typo-
logically unusual grammar specifications. Thus, this
test suite resource will also aid us in exploring the
typological predictions of our system.

References

Doug Arnold, Martin Rondell, and Frederik Fouvry.
1994. Design and implementation of test suite tools.
Technical report, University of Essex, UK. LRE 62-
089 D-WPs.

Ann Copestake. 2002.
Structure Grammars.
CA.

Implementing Typed Feature
CSLI Publications, Stanford,

Lars Hellan and Petter Haugereid. 2003. Norsource:
An exercise in matrix grammar-building design. In
Emily M. Bender, Dan Flickinger, Freerik Fouvry, and
Melanie Siegel, editors, Proceedings of the Workshop
on Ideas and Strategies for Multilingual Grammar De-
velopment, ESSLLI 2003, pages 41-48, Vienna, Aus-
tria.

Valia Kordoni and Julia Neu. 2005. Deep analysis
of Modern Greek. In Keh-Yih Su, Jun’ichi Tsujii,
and Jong-Hyeok Lee, editors, Proceedings of IICNLP
2004, volume 3248, pages 674—683. Springer-Verlag,
Berlin.

Stephan Oepen. 2001. [incr tsdb()] — Competence and
performance laboratory. User manual. Technical re-
port, Computational Linguistics, Saarland University,
Saarbriicken, Germany.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase
Structure Grammar. Studies in Contemporary Lin-
guistics. The Univeristy of Chicago Press and CSLI
Publications, Chicago, IL and Stanford, CA.

Ivan A. Sag, Thomas Wasow, and Emily M. Bender.
2003. Synactic Theory: A Formal Introduction. CSLI,
Stanford, CA, second edition.

A. Appendix

The following strings were parsed with an SOV
grammar with optional determiners in order to get
the semantic representations for their equivalence
class. Each string is paired here with an English ex-
ample where n1 is cats, n2 is dogs, and the verbs as
slept and chased. Note that, while a number of the
coordination examples at the end share the same En-
glish gloss, their strings all differ and represent some
of the many attested marking strategies for coordina-
tion. In our analysis, these strategies differ subtly in
their semantics, including their degree of ambiguity
(cf. [self reference omitted]).

det col nl col nl col
nl iv

detnl col nl col nl iv

nl nl col nl iv

col nl col nl col nl iv

nl col nl col nl iv

detnl nl co2 nl iv

det co2 nl co2 nl co2
nl iv

det nl co2 nl co2 nl iv

nl nl co2 nl iv

co2 nl co2 nl co2 nl iv

nl co2 nl co2 nl iv

nl iv cats slept

det nl iv the cats slept

nl n2 tv cats chase dogs

det nl det n2 tv the cats chase the dogs
detnl n2 tv the cats chase dogs

nl det n2 tv cats chase the dogs

n2 nl tv dogs chase cats

det n2 det nl tv the dogs chase the cats
det n2 nl tv the dogs chase cats

n2 detnl tv dogs chase the cats

nl n2 neg tv cats don’t chase dogs

det nl det n2 neg tv

n2 nl neg tv
det n2 det nl neg tv

nl n2 tv gpart

det n1 det n2 tv gpart
n2 nl tv gpart

det n2 det nl tv gpart
detnl nl col nl iv

the cats don’t chase
the dogs
dogs don’t chase cats
the dogs don’t chase
the cats
do cats chase dogs?
do the cats chase the dogs?
do dogs chase cats?
do the dogs chase the cats?
the cats, cats, and cats slept

the cats, cats, and cats slept
the cats, cats, and cats slept
cats, cats, and cats slept
cats, cats, and cats slept
cats, cats, and cats slept
the cats, cats, and cats slept

the cats, cats, and cats slept
the cats, cats, and cats slept
cats, cats, and cats slept
cats, cats, and cats slept
cats, cats, and cats slept

