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A Supplementary Material

This supplementary document contains additional
details and plots omitted from the main paper.

A.1 Models

We use FastText v0.2.0, available from https:
//fasttext.cc/ (Joulin et al., 2017) as one
of the baseline classifiers, for all 3 datasets. Fast-
Text is freely available general supervised learning
classifier from Facebook’s Al lab.

For the MTL models we construct a feed-
forward, neural-network model, with a single hid-
den layer, regularised using dropout (Srivastava
et al., 2014) with a fixed dropout rate of 0.5. We
take as input the sentence embeddings of the ut-
terances of each dataset, generated using an un-
tuned version of the pre-trained ELMO (Peters
et al.,, 2018) word embedding model' with di-
mension 1024. The MTL model is written using
Keras (Chollet, 2015) and tensorflow (Abadi et al.,
2016).

Consistent with (Simaki et al., 2017), the Logis-
tic Regression (LR) classifier for the BBC dataset,
uses the top 10 statistically significant linguistic
features from (Simaki et al., 2018), which we aug-
ment with the top five hundred uni- and bi-grams,
ordered by term frequency across the dataset, with
English stop words removed, extracted using the
sklearn (Pedregosa et al., 2011) CountVectorizer.
The LR model is implemented in scikit-learn (Pe-
dregosa et al., 2011).

A.2 Training

Accuracy, precision, recall and F1 (Sorower,
2010) are the standard metrics for binary classi-
fication tasks. The metrics can be extended to
a multiclass setting by averaging over individual
class scores. However, in a multilabel setting, the
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relationship between the true and predicted out-
puts is more complicated. Accuracy, also called
Exact Match Ratio (Sorower, 2010) in a multil-
abel setting, can be a harsh metric, requiring, as
it does, an exact match between the predicted and
target labels. Consider the multilabel binary value
y =[1,0,0,1, 1], and predictiony = [1,1,0,0, 1].
Since y # ¥, the accuracy score for y is 0, however
they partially match, since they are equal in the 2
out of 4 positions for which at least one is defined.
Consequently, we use the Jaccard Similarity Score
(JSS) (Jaccard, 1902), (Levandowsky and Winter,
1971), (Pedregosa et al., 2011) as our metric; the
JSS for y and y above is 0.5.

Hyper-parameter selection is done using 5-fold
cross-validation using the relevant score metric.
For the LR model the hyper-parameters are C': the
inverse of regularisation strength, and the choice
of regularisation penalty: Ly or L. For the Fast-
Text models, the hyper-parameters are the word
embedding dimension (300, 512, 1024), and the
number of word ngrams to use (1, 2); the re-
maining FastText parameters are left at their de-
fault values. For the multi-task models, the hyper-
parameters are the coefficients a coefficients con-
trolling the contribution of the cross-label depen-
dency loss to overall loss. We train the MTL mod-
els with stochastic gradient descent (SGD) using
the Adam (Kingma and Ba, 2015) optimizer, and
a batch size of 32, and 50 epochs of training.

A.3 Experiments

Figures 1, 2, 3,4, 5, and 6 show the learning curves
for the MFTC discourse domains omitted from the
main paper. The learning curves show that for dis-
course domains ALM, BLM, Davidson, Election
and MeToo, MTL-LP is superior to MTL-XLD at
all training set sizes, however MTL-XLD is supe-
rior to MTL-LP for the Baltimore domain.
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Figure 1: MFTC: ALM bootstrapped learning curve.
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Figure 2: MFTC: BLM bootstrapped learning curve.
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Figure 3: MFTC: Baltimore bootstrapped learning
curve.

—&— MTL-¥LD
MTL-LP
055

050

045

0.40

035

0o 0z 04 06 0& 1a

Figure 4: MFTC: Davidson bootstrapped learning
curve.

0675 1 —a— MTL-XLD
MTL-LP

0.650

0625

0.600

0575

0.550

0525

0.500

0.0 0z 0.4 06 0.8 10

Figure 5: MFTC: Election bootstrapped learning curve.
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Figure 6: MFTC: MeToo bootstrapped learning curve.
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