A Implementation Details

For all experiments, our model has 256-
dimensional hidden states and 128-dimensional
word embeddings. Since the pointer-generator
model has the ability to deal with the OOV words,
we choose a small vocabulary size of 5k, and we
train the word embedding from scratch. We also
truncate both the input and output sentences to 20
tokens.

For the training part, we first pre-train a pointer
generator model using MLE, and then fine-tune
this model with the REINFORCE, DAGGER and
other variant learning algorithms respectively. In
the pre-training phase, we use the Adagrad opti-
mizer with learning rate 0.15 and an initial accu-
mulator value of 0.1; use gradient clipping with
a maximum gradient norm of 2; and do auto-
evaluation on the validation set every 1000 itera-
tions, in order to save the best model with the low-
est validation loss. In the fine-tuning phase, we
use the Adam optimizer with learning rate 1075;
use gradient clipping with the same setting in pre-
training; and do auto-evaluation on the validation
set every 10 iterations.

When applying the REINFORCE and its variant
algorithms, we compute the reward as follows:

N
5
LY ROUGE(Gy)

n=1

where NV is the total number of sentences gener-
ated by random sampling, in all the experiments,
we set N = 4.

At test time, we use beam search with beam size
8 to generate the paraphrase sentence.

=
o

=]
'S

Schedule rate

=)
N

0.0

0 20000 40000 60000 80000 100000
Iterations

Figure 1: The schedule sampling rate for o and 3

According to Bengio et al. (2015), we define the
schedule rate a9 = (where 0 < k < 1,14
is the 4th training iteration), and ") = k/(k +

exp(i/k)) (where k > 1, i is the ith training iter-
ation). In the experiments shown in Tabel 1, for
the schedule rate a, we set k& = 0.9999; for the
schedule rate 3, we set k& = 3000, and the result-
ing schedule rate curve is shown in Figure 1.

B Additional Results

10 — a=05
k=0.9999
— k=10.99999

— k=10.999997

o
@

=
o

=)
s

Schedule rate

=)
N

00

0 200000 400000 600000 800000 1000000

Iterations

Figure 2: The schedule rate « in DAGGER

We try different schedule rate settings in DAG-
GER as shown in Figure 2, and compare their
model performances on both datasets. The corre-
sponding experimental results are shown in Table
3 and Table 4 respectively.

We find that if « decreases faster (k = 0.9999)
than the model convergence speed, the model will
stop improving before it learns the optimal pol-
icy; if o decreases slower (K = 0.999997) than
the model convergence speed, the model will get
stuck in the sub-optimal policy.

For the Quora dataset, we find our model learns
the optimal policy when it gets half chance to take
the ground truth word y;_1 as 4;—1 (i.e. the sched-
ule rate setting is « = 0.5 and § = 1).

For the twitter dataset, we find our model learns
the optimal policy when it has higher probability
to take the decoded word 9,1 as 31 (i.e. the
schedule rate setting is & = 0.2 and 5 = 1).



SCHEDULE RATE

EVALUATION METRICS

@ B8 ko ROUGE-1 ROUGE-2 BLEU Avg-Score
lla=05 pB=1 ko =1 68.34 49.99 55.75 58.02
2 a—=0 B=1 ky=0.9999 67.64 48.96 55.06 57.22
41 a—=0 pB=1 kq=0.99999 67.92 49.45 55.44 57.60
4| a—=0 pB=1 k,=0.999997 67.73 49.19 55.65 57.52

Table 3: Experiment results for DAGGER under different schedule rate settings on Quora dataset

SCHEDULE RATE

EVALUATION METRICS

o B kq ROUGE-1 ROUGE-2 BLEU Avg-Score
l|a=02 p=1 ko =1 58.95 44.34 39.04 47.44
2 a—=0 pB=1 ky=0.9999 58.84 44.24 38.95 47.34
41 a—0 pB=1 ky=0.99999 58.81 44.08 38.85 47.24
41 a—=0 pB=1 kq=0.999997 58.79 44.22 38.88 47.29

Table 4: Experiment results for DAGGER under different schedule rate settings on Twitter dataset



