A Appendices

A.1 Detailed Dataset introduction

CNN/DailyMail The CNN/DailyMail ques-
tion answering dataset (Hermann et al., 2015) mod-
ified by Nallapati et al. (2016) is commonly used
for summarization. The dataset consists of online
news articles with paired human-generated sum-
maries. For the data preprocessing, we use the non-
anonymized data as See et al. (2017), which doesn’t
replace named entities.

XSUM XSUM (Narayan et al., 2018) is a dataset
consists of the articles and the single-sentence an-
swers of the question “What is the article about?”
as summary. It is more abstractive compared with

CNN/DailyMail.

PUBMED PUBMED (Cohan et al., 2018) is drawn
from scientific papers specifically medical journal
articles from the PubMed Open Access Subset. We
use the introduction as source document and the
abstract as summary here.

BIGPATENT BIGPATENT (Sharma et al., 2019)
consists of 1.3 million records of U.S. patent doc-
uments and the corresponding summaries are cre-
ated by human. According to Cooperative Patent
Classification (CPC), the dataset is divided to nine
categories. One of the nine categories is chosen as
a dataset in difference domain in our experiment
(Category B: Performing Operations; Transport-
ing).

REDDIT TIFU REDDIT TIFU (Kim et al.,
2019) is a dataset with less formal posts compared
with datasets mentioned above which mostly use
formal documents as source. It is collected from the
online discussion forum Reddit. They regard the
body text as source, the title as short summary, and
the TL;DR summary as long summary, thus mak-
ing two sets of datasets: TIFU-short and TIFU-long.
TIFU-long is used in this paper.

A.2 Dataset statistics

The detailed dataset statistics are presented in table
1

A.3 Experimental setup

A.3.1 Extractive Summarizers

We use the same training setup in (Zhong et al.,
2019). We use cross entropy as loss function to
train LSTM,,,,, and Trans,,:,. The hidden state di-
mension of LSTM in LSTM,,,, is set to 512 and the

Datasets Statistics Topics Oracle Lead-k
CNNDM  2,764/123/107TM  News 5521 40.32
Xsum 1126/60/59M News 3041 16.38
Pubmed 644/36/38M  Scientific 46.21  37.52
BigPatent B 4,812/265/262M  Patents  51.53  31.85
Reddit 206/3.3/3.6M Posts  36.47 11.09

Table 1: Detailed statistics of five datasets. Lead-k in-
dicates ROUGE-1 F1 score of the first k& sentences in
the document and Oracle indicates the globally opti-
mal combination of sentences in terms of ROUGE-1 F1
scores with ground truth, the latter represents the upper
bound of extractive models.

hidden state dimension of Transformer in Transq o
is 2048. We use Transformer with 8 heads.

BERT ,on, and Trans,.,, is constructed according
to Liu and Lapata (2019). All documents and sum-
maries are truncated to 512 tokens when training.
BERT o, and Trans,, are trained for 50000 steps,
the gradient is accumulated every two steps. We
use Adam as optimizer and the learning rate is set
to 2e-3.

BERT,,4¢ch 1s trained as in Zhong et al. (2020).
It uses the base version of BERT as base model. We
use Adam optimizer with warming up. The learning
rate schedule follows Vaswani et al. (2017).

A.3.2 Abstractive Summarizers

L2L, L2Ly,, and L2137} are trained using the py-
torch reproduced version code of See et al. (2017).
We use the same size of vocabulary(50k), hidden
state dimension (256) and word embedding dimen-
sion (128) as in the paper. All of three models are
trained with 650000 maximum training steps, We
use Adagrad to train the models with learning rate
of 0.15.

BE2T and 72T is constructed according to Liu
and Lapata (2019). We use two separate optimizers
for the decoder and encoder regarding BE2T to off-
set the mismatch of encoder and decoder, since the
former is pre-trained while the latter is not. Learn-
ing rates for the optimizers of encoder and decoder
are 0.002 and 0.2 respectively. On the other hand,
BE2T and T2T are trained with gradient accumu-
lation every five steps, training step for which is
200000.

BART uses the large pre-trained sequence to se-
quence model in Lewis et al. (2019). The total learn-
ing step when fine-tuning is set to 20000 with 500
steps warming up. We use Adam as optimizer and
learning rate is 3e-05.



CNNDM XSUM PubMed Bigpatent b Reddit
Models RI R2 RL RI R2 RL RI R2 RL RI R2 RL RI R2 RL
LSTM,or 4136 1881 37.73 1951 3.10 1450 4298 1659 3828 39.29 13.07 32.61 2046 505 1633
Transnon 4084 1823 37.00 1574 1.67 1158 3845 1328 34.16 3441 1005 2875 1625 2.60 12.57
Ex. Transauro 4135 1877 3775 1929 2.80 1421 4274 16.34 3805 38.76 1260 32.17 1855 344 1462
BERT,on  42.69 19.88 3899 2176 424 1600 38.74 13.62 3448 3585 11.05 2997 2184 521 17.15
BERTmaten 4426 20.58 4040 2497 476 1848 41.19 1491 3673 38.89 12.82 3248 2532 6.16 20.17
LoL 3280 12.84 3034 2831 871 2230 27.84 745 2569 3046 9.76 27.61 1689 124 13.63
L2L,e, 37.06 1596 3374 29.67 958 2340 32.04 1038 2897 31.03 9.92 2535 2132 446 17.14
L2LES®  39.95 17.54 3625 2883 883 2262 3527 1189 31.92 3590 1231 3278 2128 439 17.22
Abs. o1 30.00 17.66 37.08 2001 9.13 2277 3071 8.10 27.97 42.94 1675 37.06 1996 3.36 15.60
BE2T 4134 18.98 3841 3899 16.64 31.23 37.11 13.38 33.72 43.10 17.11 3734 26.66 7.00 2121
BART 4475 21.69 4146 4473 21.99 37.02 45.02 1694 41.17 4578 1831 3898 3400 11.88 26.91

Table 2: Representative summarizers we have studied in this paper and their correspond performance (ROUGE-1

F1, ROUGE-2 F1, ROUGE-L F1) on different datasets.

A.4 In-dataset ROUGE results for all models

Tab. 2 displays in-dataset ROUGE-1 F1 ,ROUGE-2
F1 ,ROUGE-L F1 scores.

A.5 The ROUGE-1 F1 score difference of all
model pairs which are meaningful to
compare

The holistic and fine-grained results of pair-wise
comparison are displayed in Tab. 5.

A.6 Cross-dataset factuality results of all
models

The cross-dataset factcc results for abstractive mod-
els are shown in Fig. 3 and the factcc results of
extractive models are demonstrated in Fig. 4.

A.7 Code urls
A.7.1 Training code urls

The models and their training code urls are listed
below:

LSTM,,,, and Transg,:, are trained from
the code in Zhong et al. (2019), the code
url is https://github.com/maszhongming/Effective_
Extractive_Summarization.

We use the code from Liu and Lapata (2019) for
BERT,,, Trans,.,, BE2T and T2T. Code url is
https://github.com/nlpyang/PreSumm.

BERT,,qtch uses the code from Zhong et al.
(2020) and the code url is https://github.com/
maszhongming/MatchSum.

L2L, L2Ly, and L2L777 are trained from the
code of See et al. (2017), code url is https://github.
com/atulkum/pointer_summarizer.

We use code in fairseq (Ott et al., 2019) to
fine-tune BART, the code url is https://github.com/
pytorch/fairseq/tree/master/examples/bart.

A.7.2 Evaluation code urls

The evaluation metrics code urls are listed below:

We use pyrouge  (https://github.com/
bheinzerling/pyrouge) to evaluate the ROUGE
performance of models.

The url for Factcc (KrySciniski et al., 2019) is
https://github.com/salesforce/factCC.

The url for other metrics for dataset bias is https:
//github.com/zide05/Data-bias-metrics.
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Table 5: The difference of ROUGE-1 F1 scores between different models pairs. Every column of the table rep-
resents the compared result of one pair of models. The line of holistic analysis displays the overall stiffness and
stableness of compared models. The rest of the table is the fine-grained results, the first and third lines of which
are the origin compared result (Ua — Up for models pairs A and B) and the second and fourth lines are the
normalized compared result (Ua — Ug for models pairs A and B). For all heatmap, ‘grey’ represents positive,
‘red’ represents negative and ‘white’ represents approximately zero.
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