Automatic classification of doctor-patient questions for a virtual patient record query task
Leonardo Campillos Llanos, Sophie Rosset, Pierre Zweigenbaum
Abstract
We present the work-in-progress of automating the classification of doctor-patient questions in the context of a simulated consultation with a virtual patient. We classify questions according to the computational strategy (rule-based or other) needed for looking up data in the clinical record. We compare ‘traditional’ machine learning methods (Gaussian and Multinomial Naive Bayes, and Support Vector Machines) and a neural network classifier (FastText). We obtained the best results with the SVM using semantic annotations, whereas the neural classifier achieved promising results without it.- Anthology ID:
 - W17-2343
 - Volume:
 - BioNLP 2017
 - Month:
 - August
 - Year:
 - 2017
 - Address:
 - Vancouver, Canada,
 - Editors:
 - Kevin Bretonnel Cohen, Dina Demner-Fushman, Sophia Ananiadou, Junichi Tsujii
 - Venue:
 - BioNLP
 - SIG:
 - SIGBIOMED
 - Publisher:
 - Association for Computational Linguistics
 - Note:
 - Pages:
 - 333–341
 - Language:
 - URL:
 - https://aclanthology.org/W17-2343
 - DOI:
 - 10.18653/v1/W17-2343
 - Cite (ACL):
 - Leonardo Campillos Llanos, Sophie Rosset, and Pierre Zweigenbaum. 2017. Automatic classification of doctor-patient questions for a virtual patient record query task. In BioNLP 2017, pages 333–341, Vancouver, Canada,. Association for Computational Linguistics.
 - Cite (Informal):
 - Automatic classification of doctor-patient questions for a virtual patient record query task (Campillos Llanos et al., BioNLP 2017)
 - PDF:
 - https://preview.aclanthology.org/ingest-acl-2023-videos/W17-2343.pdf
 - Data
 - Doctor-patient questions (French)