Abstract
This paper presents an open-source toolkit for negation detection. It identifies negation cues and their corresponding scope in either raw or parsed text using maximum-margin classification. The system design draws on best practice from the existing literature on negation detection, aiming for a simple and portable system that still achieves competitive performance. Pre-trained models and experimental results are provided for English.- Anthology ID:
 - W17-1810
 - Volume:
 - Proceedings of the Workshop Computational Semantics Beyond Events and Roles
 - Month:
 - April
 - Year:
 - 2017
 - Address:
 - Valencia, Spain
 - Editors:
 - Eduardo Blanco, Roser Morante, Roser Saurí
 - Venue:
 - SemBEaR
 - SIG:
 - Publisher:
 - Association for Computational Linguistics
 - Note:
 - Pages:
 - 64–69
 - Language:
 - URL:
 - https://aclanthology.org/W17-1810
 - DOI:
 - 10.18653/v1/W17-1810
 - Cite (ACL):
 - Martine Enger, Erik Velldal, and Lilja Øvrelid. 2017. An open-source tool for negation detection: a maximum-margin approach. In Proceedings of the Workshop Computational Semantics Beyond Events and Roles, pages 64–69, Valencia, Spain. Association for Computational Linguistics.
 - Cite (Informal):
 - An open-source tool for negation detection: a maximum-margin approach (Enger et al., SemBEaR 2017)
 - PDF:
 - https://preview.aclanthology.org/ingest-acl-2023-videos/W17-1810.pdf
 - Code
 - marenger/negtool