Neural-Davidsonian Semantic Proto-role Labeling
Rachel Rudinger, Adam Teichert, Ryan Culkin, Sheng Zhang, Benjamin Van Durme
Abstract
We present a model for semantic proto-role labeling (SPRL) using an adapted bidirectional LSTM encoding strategy that we call NeuralDavidsonian: predicate-argument structure is represented as pairs of hidden states corresponding to predicate and argument head tokens of the input sequence. We demonstrate: (1) state-of-the-art results in SPRL, and (2) that our network naturally shares parameters between attributes, allowing for learning new attribute types with limited added supervision.- Anthology ID:
 - D18-1114
 - Volume:
 - Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
 - Month:
 - October-November
 - Year:
 - 2018
 - Address:
 - Brussels, Belgium
 - Editors:
 - Ellen Riloff, David Chiang, Julia Hockenmaier, Jun’ichi Tsujii
 - Venue:
 - EMNLP
 - SIG:
 - SIGDAT
 - Publisher:
 - Association for Computational Linguistics
 - Note:
 - Pages:
 - 944–955
 - Language:
 - URL:
 - https://aclanthology.org/D18-1114
 - DOI:
 - 10.18653/v1/D18-1114
 - Cite (ACL):
 - Rachel Rudinger, Adam Teichert, Ryan Culkin, Sheng Zhang, and Benjamin Van Durme. 2018. Neural-Davidsonian Semantic Proto-role Labeling. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 944–955, Brussels, Belgium. Association for Computational Linguistics.
 - Cite (Informal):
 - Neural-Davidsonian Semantic Proto-role Labeling (Rudinger et al., EMNLP 2018)
 - PDF:
 - https://preview.aclanthology.org/ingest-acl-2023-videos/D18-1114.pdf
 - Code
 - decomp-sem/neural-sprl