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Introduction

The Eighth Conference on Machine Translation (WMT 2023) took place on Wednesday, December 6
and Thursday, December 7, 2023, immediately preceding the 2023 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2023).

This is the eighth time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, the second time at EMNLP 2017 in Copenhagen, Denmark, the
third time at EMNLP 2028 in Brussels, Belgium, the fourth time at ACL 2019 in Florence, Italy, the
fifth time at EMNLP-2020, which was held as an online event due to the COVID-19 pandemic, the sixth
time at EMNLP 2021 at Punta Cana, Dominican Republic, and the seventh time at EMNLP 2022 in Abu
Dhabi, United Arab Emirates. Prior to being a conference, WMT was held 10 times as a workshop.
WMT was held for the first time at HLT-NAACL 2006 in New York City, USA. In the following years
the Workshop on Statistical Machine Translation was held at ACL 2007 in Prague, Czech Republic,
ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala, Sweden,
EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia, Bulgaria,
ACL 2014 in Baltimore, USA, EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation, we
conducted 13 shared tasks. These consisted of 13 translation tasks: General translation, Terminology,
Literary translation, Word-level autocompletion, Sign language, Biomedical, Low-resource Indic
language translation, Large-scale machine translation evaluation for African languages, Metrics, Quality
estimation, MT test suites, Automatic post-editing, and Parallel data curation.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2023 has received 50 full research paper submissions (not counting withdrawn
submissions). In total, WMT 2023 featured 18 full research paper presentations and 71 shared task
presentations.

WMT 2023 featured a panel on the role of large language models for machine translation. The invited
panelists were: Eleftheria Briakou (University of Maryland), Arul Menezes (Microsoft), and José de
Souza (Unbabel).

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof Monz

Co-Organizers
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11:00–12:30 Challenging the State-of-the-art Machine Translation Metrics from a Linguistic Per-
spective
Eleftherios Avramidis, Shushen Manakhimova, Vivien Macketanz and Sebastian
Möller
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Sören DREANO, Derek Molloy and Noel Murphy
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Embeddings
Muhammad ElNokrashy and Tom Kocmi
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Thamme Gowda, Tom Kocmi and Marcin Junczys-Dowmunt

11:00–12:30 MetricX-23: The Google Submission to the WMT 2023 Metrics Shared Task
Juraj Juraska, Mara Finkelstein, Daniel Deutsch, Aditya Siddhant, Mehdi Mirza-
zadeh and Markus Freitag
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mance on a Wider Landscape of Translation Quality
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Zhanglin Wu, Yilun Liu, Min Zhang, Xiaofeng Zhao, Junhao Zhu, Ming Zhu, Xi-
aosong Qiao, Jingfei Zhang, Ma Miaomiao, Zhao Yanqing, Song Peng, shimin tao,
Hao Yang and Yanfei Jiang
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11:00–12:30 Unify Word-level and Span-level Tasks: NJUNLP’s Participation for the WMT2023
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Xiang Geng, Zhejian Lai, Yu Zhang, shimin tao, Hao Yang, Jiajun CHEN and Shu-
jian Huang

11:00–12:30 HW-TSC 2023 Submission for the Quality Estimation Shared Task
Yuang Li, Chang Su, Ming Zhu, Mengyao Piao, Xinglin Lyu, Min Zhang and Hao
Yang

11:00–12:30 Scaling up CometKiwi: Unbabel-IST 2023 Submission for the Quality Estimation
Shared Task
Ricardo Rei, Nuno M. Guerreiro, JosÃ© Pombal, Daan van Stigt, Marcos Treviso,
Luisa Coheur, José G. C. de Souza and André Martins

11:00–12:30 SurreyAI 2023 Submission for the Quality Estimation Shared Task
Archchana Sindhujan, Diptesh Kanojia, Constantin Orasan and Tharindu Ranas-
inghe
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Xingyu Chen and Rui Wang
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Angel Navarro, Miguel Domingo and Francisco Casacuberta

11:00–12:30 KnowComp Submission for WMT23 Word-Level AutoCompletion Task
Yi Wu, Haochen Shi, Weiqi Wang and Yangqiu Song

11:00–12:30 Termninology Translation Task

11:00–12:30 Terminology-Aware Translation with Constrained Decoding and Large Language
Model Prompting
Nikolay Bogoychev and Pinzhen Chen

11:00–12:30 Lingua Custodia’s Participation at the WMT 2023 Terminology Shared Task
Jingshu Liu, Mariam Nakhlé, Gaëtan Caillout and Raheel Qadar

11:00–12:30 Domain Terminology Integration into Machine Translation: Leveraging Large Lan-
guage Models
Yasmin Moslem, Gianfranco Romani, Mahdi Molaei, John D. Kelleher, Rejwanul
Haque and Andy Way

11:00–12:30 OPUS-CAT Terminology Systems for the WMT23 Terminology Shared Task
Tommi Nieminen

11:00–12:30 VARCO-MT: NCSOFT’s WMT’23 Terminology Shared Task Submission
Geon Woo Park, Junghwa Lee, Meiying Ren, Allison Shindell and Yeonsoo Lee
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Ivana Kvapilíková and Ondřej Bojar
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Edoardo Signoroni and Pavel Rychly
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Kshetrimayum Boynao Singh, Avichandra Singh Ningthoujam, Loitongbam
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Abstract

This paper presents the results of the General
Machine Translation Task organised as part of
the 2023 Conference on Machine Translation
(WMT). In the general MT task, participants
were asked to build machine translation sys-
tems for any of 8 language pairs (correspond-
ing to 14 translation directions), to be evaluated
on test sets consisting of up to four different do-
mains. We evaluate system outputs with profes-
sional human annotators using a combination
of source-based Direct Assessment and scalar
quality metric (DA+SQM).

1 Introduction

The Eighth Conference on Machine Translation
(WMT23)1 was held at EMNLP 2023 and hosted
a number of shared tasks on various aspects of
machine translation (MT). This conference built
on 17 previous editions of WMT as a workshop
or a conference (Koehn and Monz, 2006; Callison-
Burch et al., 2007, 2008, 2009, 2010, 2011, 2012;
Bojar et al., 2013, 2014, 2015, 2016, 2017, 2018;
Barrault et al., 2019, 2020; Akhbardeh et al., 2021;
Kocmi et al., 2022).

Following last year’s shift from focusing mainly
on the news domain, we have continued to explore
the capabilities of “General Machine Translation”.

1http://www2.statmt.org/wmt23/

While the news domain provided a clear and famil-
iar benchmark, we realized the need to test MT in
more diverse settings. Our goal is to assess MT
systems’ ability to handle a broader range of lan-
guage use. How to test general MT performance is
a research question in itself. Countless phenomena
could be evaluated, the most important being:

• various domains (news, medicine, IT, patents,
legal, social, gaming, etc.)

• style of text (formal or spoken language, fic-
tion, technical reports, etc.)

• robustness to non-standard (or noisy) user-
generated content (grammatical errors, code-
switching, abbreviations, etc.)

Evaluating all phenomena is nearly impossible
and creates numerous unforeseen problems. There-
fore, we decided to simplify the problem and start
with an evaluation of different domains. We se-
lected the following domains: news, e-commerce,
social/user-generated content (UGC), speech, and
manuals. They were chosen to represent topics
with different content styles and to be understand-
able for humans without special in-domain knowl-
edge, thus not requiring specialized translators or
human raters for evaluation. Due to limited access
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to monolingual data across all languages, each lan-
guage direction contains only a subset of up to four
domains.

In addition to language pairs evaluated last year:

Czech→Ukrainian,
English↔Chinese,
English→Czech,
English↔German,
English↔Japanese,
English↔Russian,
Ukrainian→English,

we introduce a new language pair to WMT, namely:

English↔Hebrew.

Other than language pairs, there are several dif-
ferences with respect to last year’s task. All lan-
guage pairs are provided with the sentence bound-
aries marked except for English↔German, where
we decided to experiment with paragraph-level
translation. Another significant change for this
year is the unification of our human evaluation
protocol. We no longer rely on reference-based
MTurk evaluation and move the evaluation towards
source-based DA+SQM evaluation (introduced last
year) with professional annotators. Finally, this
year’s shared task included an increased number
of test suites (Section 6), allowing the evaluation
of MT outputs from different perspectives, includ-
ing a range of linguistic phenomena, purposely
difficult sentences, specialist domains, gendered
translations and non-standard UGC translation.

All General MT task submissions, sources, ref-
erences and human judgements are available at
Github 2. The interactive visualization and com-
parison of differences between systems can be
browsed online on an interactive leaderboard3

using MT-ComparEval (Klejch et al., 2015; Su-
darikov et al., 2016).

The structure of the paper is as follows. We
describe the process of collecting, cleaning and
translating the test sets in Section 2 followed by
a summary of the permitted training data for the
constrained track Section 3. We list all submit-
ted systems in Section 4. The human evaluation
approach of DA+SQM is described in Section 5.
Finally, Section 6 describes the test suites and sum-
marises their conclusions.

2https://github.com/wmt-conference/
wmt23-news-systems

3http://wmt.ufal.cz

Summary of the WMT2023 General MT task
The main findings are as follows:

• Large Language Models (LLMs) exhibit
strong performance across the majority of lan-
guage pairs, although this is based only on two
LLM-based system submissions. Test suite
analysis revealed that although GPT4 excelled
in some areas (e.g. UGC translation) strug-
gled with other aspects such as speaker gender
translation and specific domains (e.g. legal),
whereas it ranked lower than encoder-decoder
systems when translating from English into
less-represented languages (e.g. Czech and
Russian)

• We have observed a decline in the number of
submissions into the constrained track. Conse-
quently, we plan to re-evaluate the definition
and the incentives of the constrained track and
consider incorporating open-source LLMs in
future evaluations.

• We demonstrate the feasibility of paragraph-
level German↔English tasks, although more
investigation would be required before gener-
alising to all language pairs.

• Professional human translations do not always
guarantee high quality. For Hebrew↔English,
our references are likely to be post-edited
MT, while for Chinese→English, the refer-
ence translation is worse than the majority of
automatic translations.

• The manual evaluation results obtained from
DA+SQM and MQM methods yield compara-
ble cluster rankings.

2 Test Data

In this section, we describe the process of collect-
ing data in Section 2.1, followed by the explanation
of preprocessing steps in Section 2.2. Producing
human references is summarized in Section 2.3 and
lastly test set analysis is conducted in Section 2.4.

2.1 Collecting test data
As in the previous years, the test sets consist of
unseen translations collected especially for the task.
This has become even more important with the
rise of LLMs trained on unspecified training data.
To prevent possible contamination, we focused on
collecting as recent data as possible across various

2



Lang. pair Domain name Domain type #docs #segs #segs/#docs

cs→uk * * 156 2017 12.93
games News 17 180 10.59
news News 35 567 16.20
official Social/UGC 26 347 13.35
personal Social/UGC 31 390 12.58
voice Speech 47 533 11.34

de→en * * 210 549 2.61
manuals Manuals 15 74 4.93
mastodon Social/UGC 95 103 1.08
news News 47 277 5.89
user_review E-commerce 53 95 1.79

en→{cs,he,ja,ru,uk,zh} * * 192 2074 10.80
mastodon Social/UGC 79 504 6.38
news News 30 516 17.20
speech Meeting notes 25 547 21.88
user_review E-commerce 58 507 8.74

en→de * * 192 557 2.90
mastodon Social/UGC 79 212 2.68
news News 30 139 4.63
speech Meeting notes 25 113 4.52
user_review E-commerce 58 93 1.60

he→en * * 94 1910 20.32
news News 68 1558 22.91
reviews Social/UGC 26 352 13.54

ja→en * * 282 1992 7.06
ad Social/UGC 53 245 4.62
ec Social/UGC 25 255 10.20
news News 37 495 13.38
qa Conversational 118 497 4.21
user_review E-commerce 49 500 10.20

ru→en * * 162 1723 10.64
manuals Manuals 15 505 33.67
news News 54 676 12.52
reviews Social/UGC 93 542 5.83

uk→en * * 132 1826 13.83
clipboard Social/UGC 30 504 16.80
news News 26 514 19.77
other Social/UGC 27 538 19.93
voice Speech 49 270 5.51

zh→en * * 179 1976 11.04
manuals Manuals 14 487 34.79
news News 38 763 20.08
user_review E-commerce 127 726 5.72

Table 1: Test set statistics per direction and domain (rows marked * are over all domains). Note that en→de shares source test
data with the other from-English directions, but as translation and evaluation for both en→de and de→en were carried out on the
paragraph level (a segment therefore being a paragraph rather than a sentence), this results in a lower number of segments per
document. The domain name is as indicated in the released test sets and domain type indicates the broader domain category.

domains. This task is incredibly difficult and needs
further investigation in future years. There are three
main limitations:

• Finding sources with different domains.

• Finding data that are in the public domain or
under open licenses.

• Finding recently created data to minimize
the risk of them being part of the training
pipelines.

The test sets are publicly released to be used as
translation benchmarks. Here we describe the test
sets’ production and composition.

We decided to collect data from 5 domains
(news, social/user-generated, e-commerce, man-
uals, and speech). For all language pairs, we aimed
for a test set size of 2,000 sentences and to ensure
that the test sets were “source-original”, namely
that the source text was first written in the source
language, and then the target text is the human

3



translation. This is to avoid “translationese” effects
on the source language, which can have a detri-
mental impact on the accuracy of evaluation (Toral
et al., 2018; Freitag et al., 2019; Läubli et al., 2020;
Graham et al., 2020). We collected roughly the
same number of sentences for each domain. For
some languages, we could not locate high qual-
ity data and therefore we selected more sentences
from other domains. Note that descriptions in this
section refer to source monolingual data when men-
tioning a language.

News domain For most languages this domain
contains data prepared in the same way as in previ-
ous years (Akhbardeh et al., 2021). We collected
news articles from February 2023 extracted from
online news sites, preserving document boundaries.
We expect that news domain text will generally be
of high quality. The news in Hebrew was kindly
provided by the Israeli Association of Human Lan-
guage Technologies (IAHLT).4 These are samples
of originally Hebrew texts from news published in
Israel Hayom5 in 2022.

E-commerce domain (product reviews) This
domain consists of user reviews of different Ama-
zon products selected from the publicly available
multilingual corpus (Keung et al., 2020). This
corpus was designed for multilingual text classi-
fication and consists of reviews written in English,
Japanese, German, French, Spanish, and Chinese,
between 2015 and 2019. We used the test parts of
the English, German, Japanese and Chinese cor-
pora for extracting the source part of the WMT test
set. The reviews were selected so that the resulting
corpus covers each product, all rating scores for
the product, and the lexical diversity is maximized.
The lexical diversity was estimated as a simple
ratio between the number of distinct words/char-
acters (vocabulary) divided by the total number of
words/characters.

Social/user-generated domain For English and
German, we relied on the Mastodon Social API.6

Mastodon is a federated social network that is com-
patible with the W3C standard ActivityPub (Web-
ber et al., 2018). Users publish short-form content
similar to tweets that are referred to as “toots” for
historical reasons. As this is a decentralized social

4https://www.iahlt.org
5https://www.israelhayom.co.il
6https://mastodon.social/api/v1/timelines/

public

media network, different servers have very different
data, policies, communities, and uses. We decided
to use mastodon.social, the original server, as
it has a large community as well as publicly avail-
able toots. We collected data in early May of 2023.
We used the reported language ID label, but were
only able to collect enough data in German and
English. We only collected toots with more than
150 characters in length in order to allow for data
that was more likely to be semantically interesting
for evaluating translation systems.

For Hebrew, we used comments on news articles
from the Israel Hayom site mentioned above. This
data was also provided by IAHLT.

For Russian, we used data from the Geo Re-
views Dataset containing reviews about organiza-
tions published on Yandex Maps and open for aca-
demic and research purposes.7

For Japanese, we used product descriptions of
a b2b e-commerce site and search advertising text
ads for the social and user-generated domain, be-
cause we could not obtain high-quality data for this
domain type. MonotaRo Co., Ltd. provided prod-
uct descriptions of their private label brands listed
on their b2b e-commerce site.8 We defined a doc-
ument for a product description as a combination
of a title, product description, and cautionary note.
CyberAgent, Inc.9 provided search advertising text
ads with their client’s consent. We defined a docu-
ment for an ad as the longest possible combination
of multiple titles and descriptions.

Manuals For this domain, we primarily sourced
scanned versions of different mostly gaming man-
uals provided by Centific10. These were then con-
verted to digital text format using Optical Character
Recognition (OCR) technology. Given the inaccu-
racies of OCR, the digitized content underwent a
subsequent post-editing phase, where humans re-
viewed and corrected any errors. The selection of
manuals ranged across various sources, and none
of them were older than five years.

Speech The exact data types used in the “conver-
sational” or “speech” domain vary across language
pairs.

For English→Czech, the data comes from the
test set which was created for the 2023 instance of

7https://github.com/yandex/
geo-reviews-dataset-2023

8https://www.monotaro.com/
9https://www.cyberagent.co.jp

10https://www.centific.com
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AutoMin 2023 (Ghosal et al., 2022).11 The texts
are manually curated transcripts of project meet-
ings, same in style as released in ELITR Minuting
Corpus (Nedoluzhko et al., 2022). The meetings
were held mostly remotely or in a hybrid form, all
meeting participants were non-native speakers of
English and the meetings were always on rather
technical and in-depth topics. Our manual cura-
tion corrected ASR errors (but not errors in English
grammar or vocabulary) and de-identified the tran-
scripts, replacing names with placeholders (“PER-
SONxy”, “PROJECTxy” and similar). For person
names, round brackets are used at the beginnings
of lines to indicate the speaker and square brack-
ets are used in the text when the person was men-
tioned. The data contain also some markup, e.g.
“<unintelligible/>”. These conventions are
likely to be distorted by translation systems and
we also noticed that they were distorted in the ref-
erence translation (the style of the brackets was
ignored). This tiny detail can influence both man-
ual and automatic scoring on this domain.

For Japanese, we used question-answer pairs
from a community question-answering service.
NTT Resonant Inc., which recently merged with
NTT DOCOMO, INC., provided question-answer
pairs from their website, Oshiete! goo.12 For every
question-answer pair, we defined a document as
a combination of a question and its best answer
marked by the user.

Czech and Ukrainian source texts Source texts
for Czech→Ukrainian and Ukrainian→English
translation included the News domain as described
above and texts collected through the Charles
Translator for Ukraine.13 With users’ consent, the
service can log their inputs for the purpose of cre-
ating a dataset of real use cases. The datasets are
extracted from the inputs collected from May 2022
to April 2023.

The Charles Translator mobile app supports
voice input, which is converted to text using Google
ASR (automatic speech recognition). The texts
collected this way were marked as the voice
domain. For Ukrainian→English, the remain-
ing Ukrainian inputs were classified either as
clipboard (texts inserted to the Charles Trans-
lator using the Paste from clipboard button) and
other. The clipboard texts are more likely to in-

11https://ufal.github.io/automin-2023/
12https://oshiete.goo.ne.jp/
13http://translator.cuni.cz

clude formal communication copied from web sites,
but we noticed it includes personal communication
(copied from chat applications) as well. Thus for
Czech→Ukrainian, we decided to classify the re-
maining Czech inputs either as official (formal
communication) or personal (personal communi-
cation), ignoring whether they were inserted from
a clipboard or written using a keyboard.

The texts were filtered and pseudonymized in the
same way as last year (Kocmi et al., 2022), so for
example we asked the annotators not to delete or
fix noisy inputs as long as they are comprehensible.
There was one exception from this rule this year:
the Czech voice domain data was post-edited to
fix ASR errors, including missing punctuation and
casing.

The source texts were translated by professional
translators principally following the brief in Ap-
pendix C. Last year, parts of the Ukrainian→Czech
test set was detected to be post-edited MT. There-
fore this year, we decided to hire two professional
translators directly without the mediation of a trans-
lation agency, we emphasised the rule that the trans-
lations must be done from scratch (without MT
postediting and without translation memories). We
could not detect any MT postediting in the resulting
translations.

2.2 Human preprocessing of test data

Although testing of robustness of MT is an impor-
tant task, the noisy data introduces problems for
human translators and annotators. Therefore, we
decided to discard data considered too noisy. Fur-
thermore, publicly available data often contains
inappropriate content, which can stress either hu-
man translators or human annotators, leading to
a decrease in the quality (for example, translators
refuse to translate political content considered cen-
sored in their countries).

Therefore, we asked humans to check collected
data and carry out minor corrections (mainly check-
ing sentence splits and discarding similar or re-
peated content). This was sufficient for the news
domain because it was often clean and without
serious problems. However, with the expansion to-
wards general MT, we find ourselves running into
an issue of source data being noisier and less well
formatted and that therefore needs to be handled
before translation. Furthermore, we asked them to
remove shortest documents to keep longer context.
The source data for test sets therefore goes through
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human validation checks involving linguists dis-
carding inappropriate content altogether and carry-
ing out minor textual corrections to the data. You
can find the linguistic brief for prepossessing in
Appendix B.

2.3 Test set translation

The translation of the test sets was performed by
professional translation agencies, according to the
brief in Appendix C. Different partners sponsored
each language pair and various translation agencies
were therefore used, which may affect the quality
of the translation.

Regrettably, upon reviewing translations pro-
cured from one of the agencies (the one respon-
sible for English to Hebrew and Hebrew to English
translations), it appeared that the translations might
have been post-edited from publicly available on-
line translation systems. This observation contra-
dicts the initial instruction provided for agency that
precluded the use of any automated translation plat-
forms. While the agency has asserted that their pro-
fessional translations conducted translations from
scratch, our evaluation suggested otherwise. Mov-
ing forward, we propose to build a step-by-step
verification system to avoid such discrepancies.

Human translations would not be possible with-
out the sponsorship of our partners: Microsoft,
Toloka AI, Google, Charles University, NTT, and
Dubformer.

2.4 Test set analysis

As described previously, the chosen domains,
sources for the data and the number of sentences
per domain was subject to the availability of high
quality data in each language direction. For exam-
ple, while the news domain was available for all lan-
guage directions, social media data was only avail-
able for English, German (both from Mastodon)
and Hebrew (from comments on news articles).
The number of documents, segments, average doc-
ument length and type-token ratio (of the source
side of the test sets) are given in Table 1.

Document context Document context is avail-
able for all language directions, although the av-
erage document length varies both by domain and
language direction. Manuals tend to represent the
longest domains, followed by the news domain.
The social media domain tends to represent the
shortest documents. along with reviews. Note
that this year, we piloted translation and evalua-

tion of en→de and de→en at the paragraph level
(with each segment therefore containing several
sentences), with the aim of avoiding the constraint
of having a one-to-one mapping at the level of the
sentence between source texts and their translations.
This is visible in the statistics in Table 1 as the num-
ber of segments is lower for these two directions,
as is the average document length.

Lexical diversity We can compare the type-
token ratio (TTR) to get an idea of the relative
lexical diversity of (i) domains and (ii) original
vs. translated sentences.14,15 Raw TTRs for each
language pair and domain are shown in Table 11 in
Appendix D. Regarding domains, the TTR appears
highest for texts mastodon, perhaps illustrating the
diversity of conversational topics and also of the
potentially non-standard nature of the texts. User
reviews appear to have the lowest TTR, most likely
due to the fact that similar vocabulary is used across
reviews. The TTR of course differs according to
the language in question, according to the differing
morphological properties.

Anonymisation and markup A particularity of
the ‘speech’ domain is the presence of placeholders
for anonymised elements and markup (in the form
of tags). For example, there are 35 placeholders
surrounded either by square or rounded brackets to
indicate different people, organisations and projects
(e.g. (PERSON1), [PERSON9], [ORGANIZA-
TION4], [PROJECT8], etc.). The ‘person’ tags
are used both in-text to replace the names of people
and at the beginning of lines to indicate who is talk-
ing. Markup is added to indicate speakers talking
at the same time (<parallel_talk>), unintelli-
gible passages (<unintelligible/>), laughter
(<laugh/>) and other noise (<other_noise/>).

2.5 Test suites

In addition to the test sets of the regular domains,
the test sets given to the system participants were
augmented with several test suites, i.e. custom-
made test sets focusing on particular aspects of
MT translation. The test suites were contributed
and evaluated by test suite providers as part of a

14The TTR is the ratio of unique tokens to total tokens,
and it is higher the diverse the vocabulary of a text is. It is
dependent on the morphological complexity of a language,
but can also vary due to other factors.

15Texts are tokenised using the language-specific Spacy
models (Honnibal and Montani, 2017) where available. For
Hebrew, we took the multilingual Spacy model, since a
language-specific one was not available.
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decentralized sub-task, which will be detailed in
Section 6.

3 Training Data

Similar to the previous years, we provide a se-
lection of parallel and monolingual corpora for
model training. The provenance and statistics
of the selected parallel datasets are provided in
Appendix in Table 9 and Table 10. Specifi-
cally, our parallel data selection include large mul-
tilingual corpora such as Europarl-v10 (Koehn,
2005), Paracrawl-v9 (Bañón et al., 2020), Com-
monCrawl, NewsCommentary-v18, WikiTitles-v3,
WikiMatrix (Schwenk et al., 2021), TildeCor-
pus (Rozis and Skadin, š, 2017), OPUS (Tiedemann,
2012), UN Parallel Corpus (Ziemski et al., 2016),
and language-specific corpora such as CzEng-
v2.0 (Kocmi et al., 2020), YandexCorpus,16 ELRC
EU Acts, JParaCrawl (Morishita et al., 2020),
Japanese-English Subtitle Corpus (Pryzant et al.,
2018), KFTT(Neubig, 2011), TED (Cettolo et al.,
2012), CCMT, and back-translated news. Links for
downloading these datasets were provided on the
task web page;17 in addition, we automated the data
preparation pipeline using MTDATA (Gowda et al.,
2021).18 MTDATA downloads all the mentioned
datasets, except CCMT and CzEng-v2.0, which
required user authentication. This year’s mono-
lingual data include the following: News Crawl,
News Discussions, News Commentary, Common-
Crawl, Europarl-v10 (Koehn, 2005), Extended
CommonCrawl (Conneau et al., 2020), Leipzig
Corpora (Goldhahn et al., 2012), UberText and Le-
gal Ukrainian.

4 System submissions

This year, we received a total of 72 primary sub-
missions from 17 participants. In addition, we col-
lected translations from online MT systems across
all language pairs. Online system outputs come
from 6 public MT services and were anonymized
as ONLINE-{A,B,G,M,W,Y}, which added addi-
tional 77 system outputs. The participating systems
are listed in Table 2 and detailed in the rest of this
section.

Finally, we added translations by three con-
trastive systems. Two of them are based on

16https://github.com/mashashma/WMT2022-data
17https://statmt.org/wmt23/translation-task.

html
18http://www2.statmt.org/wmt23/mtdata

the NLLB translation model (NLLB Team et al.,
2022) modified by (Freitag et al., 2023) to have a
suboptimal performance, using (i) greedy search
(NLLB_Greedy) and (ii) following minimum
Bayes risk decoding (MBR) optimizing the BLEU
metric (NLLB_MBR_BLEU). Neither of them is
the official (and better performing) NLLB model.
The third contrastive translation is produced by the
large language model GPT4 using 5-shot prompt-
ing with fixed random translation examples, using
the exact prompt by Hendy et al. (2023) together
with their predefined few-shot examples. For lan-
guages not evaluated in their study, we took exam-
ples from the last WMT test sets.

Appendix E provides details of the submitted
systems if the authors provided such details.

4.1 Constrained and unconstrained tracks

For presentation of the results, systems are treated
as either constrained or unconstrained. A system
is classified as constrained if the authors reported
training only on the provided data and adhering to
the rules describing the use of publicly available
pre-trained models. The constrained track imposes
restrictions on training data, metrics, and pretrained
models, while the unconstrained track provides
unrestrained flexibility.

The constrained track limitations are mainly
around the training and testing data, together with
the limitation on pretrained models:

• Training data: Only data specified for the
current year are permissible, see Section 3.
Multilingual systems can be used as long as
they only use WMT23 data.

• Metrics: The training pipeline can use pre-
trained metrics evaluated in previous WMT
Metrics shared tasks, e.g., COMET (Rei et al.,
2022), Bleurt (Yan et al., 2023).

• Pretrained models: only the following list
of models is allowed together with all their
public sizes: mBART (Liu et al., 2020),
BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), XLM-RoBERTa (Conneau et al.,
2020), sBERT (Reimers and Gurevych, 2019),
and LaBSE (Feng et al., 2022).

• Linguistic tools: Basic tools like taggers,
parsers, and morphology analyzers are al-
lowed.
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Submission Name Language Pairs System Description

AIRC de-en, en-ja, ja-en, en-de (Rikters and Miwa, 2023)

ANVITA ja-en, zh-en, en-ja, en-zh (no associated paper)

CUNI-DOCTRANSFORMER en-cs (Popel, 2020)

CUNI-GA en-cs, cs-uk (Jon et al., 2023)

CUNI-TRANSFORMER en-cs, cs-uk (Popel, 2020)

GPT4-5SHOT All language pairs (Hendy et al., 2023)

GTCOM de-en, ja-en, he-en, en-cs, en-he, cs-uk, en-uk, uk-en (Zong, 2023)

HW-TSC de-en, en-zh, zh-en (Wu et al., 2023b)

IOL-RESEARCH zh-en, en-zh (Zhang, 2023)

TEAMKYB ja-en, en-ja (LI et al., 2023)

LAN-BRIDGEMT All language pairs (Wu and Hu, 2023)

MUNI-NLP cs-uk (Rychlý and Teslia, 2023)

NAIST-NICT en-ja, ja-en (Deguchi et al., 2023)

NLLB_GREEDY All language pairs (Freitag et al., 2023)

NLLB_MBR_BLEU All language pairs (Freitag et al., 2023)

ONLINE-A All language pairs -

ONLINE-B All language pairs -

ONLINE-G All language pairs -

ONLINE-M en-ru, zh-en, en-zh, de-en, en-cs, ja-en, en-de, en-ja,
ru-en

-

ONLINE-W en-uk, ja-en, de-en, en-ja, ru-en, en-de, uk-en, en-ru,
zh-en, en-cs, en-zh, cs-uk

-

ONLINE-Y All language pairs -

PROMT en-ru, ru-en (Molchanov and Kovalenko,
2023)

SRPH he-en, en-he (Cruz, 2023)

SKIM en-ja, ja-en (Kudo et al., 2023)

UPCITE-CLILLF fr-en, en-fr (no associated paper)

UVA-LTL he-en, en-he (Wu et al., 2023a)

YISHU zh-en, en-zh (Min et al., 2023)

LANGUAGEX en-zh, en-uk, ru-en, uk-en, en-de, he-en, ja-en, zh-en,
en-he, de-en, en-cs, en-ja, en-ru

(Zeng, 2023)

Table 2: Participants in the General MT shared task. Online system translations were not submitted by their respective companies
but were obtained by us, and are therefore anonymized in a fashion consistent with previous editions of the task.
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The online systems and contrastive systems are
treated as unconstrained during the automatic and
human evaluation.

4.2 OCELoT

We used the open-source OCELoT platform19

to collect system submissions again this year.
The platform provides anonymized public leader-
boards20 and was also used for two other WMT23
shared tasks: Biomedical (Neves et al., 2023) and
Sign Language Translation (Müller et al., 2023).
As in previous years, only registered and verified
teams with correct contact information were al-
lowed to submit their system outputs and each ver-
ified team was limited to 7 submissions per test
set. Submissions on leaderboards with BLEU (Pa-
pineni et al., 2002) and CHRF (Popović, 2015)
scores from SacreBLEU (Post, 2018) were dis-
played anonymously to avoid publishing rankings
based on automatic scores during the submission
period. Until one week after the submission period,
teams could select a single primary submission per
test set, specify if the primary submission followed
a constrained or unconstrained setting, and submit
a system description paper abstract. These were
mandatory for a system submission to be included
in the human evaluation campaign.

5 Human Evaluation

Human evaluation for all language translation direc-
tions is performed with source-based (“bilingual”)
Direct Assessment (DA, Graham et al., 2013) of in-
dividual segments in document context with Scalar
Quality Metrics (SQM) guidelines, mostly follow-
ing the setup established at WMT22 (DA+SQM,
Kocmi et al., 2022). DA+SQM asks the annotators
to provide a score between 0 and 100 on a sliding
scale, but the slider is presented with seven labelled
tick marks, as demonstrated in Figure 1.

Two different annotation platforms and four
distinct pools of annotators (Table 3) are used
for annotation of different language pairs. We
use the open-source framework Appraise (Feder-
mann, 2018) for the evaluation of English→Czech,
English↔{Chinese, German, Japanese}, and
Czech→Ukrainian. Toloka AI21 hosts the eval-
uation of English↔{Hebrew, Russian, Ukrainian}
using their own implementation of the source-based

19https://github.com/AppraiseDev/OCELoT
20https://ocelot-wmt23.mteval.org
21https://toloka.ai

document-level DA+SQM task, which is as close
as possible to the Appraise user interface.

We keep the selection process of documents for
annotation mostly the same as in the previous year.
The only change made in order to align closer
with the MQM-based evaluation run at the Met-
rics shared task (Freitag et al., 2023) is to present
the first 10 segments from a document instead of
random 10 consecutive segments.

We again collect both segment-level scores and
document-level scores, but compute rankings based
on segment scores only.

5.1 Human annotators
Annotations for different language pairs are pro-
vided by four different parties with their pool of
annotators of distinct profiles as presented in Ta-
ble 3. We shift towards more professional or semi-
professional annotators’ pools and decide not to use
MTurk annotations as in past years for reference-
based DA evaluation for into-English language di-
rections.

Assessments for English↔{Chinese, German,
Japanese} are provided by Microsoft and their pool
of bilingual target-language native speakers, profes-
sional translators or linguists, highly experienced in
MT evaluation. Microsoft monitors the annotators’
performance over time and permanently removes
from the pool those who fail quality control, which
increases the overall quality of the human assess-
ment.

Charles University provides annotators for
language pairs involving the Czech language,
i.e., English→Czech and Czech→Ukrainian. Their
annotators are linguists, translators, researchers and
students who are native speakers of the target lan-
guage with high proficiency in the source language.

DA scores for English↔{Hebrew, Russian,
Ukrainian} are collected by Toloka AI using their
paid crowd of bilingual target-language native
speakers. Toloka AI tests proficiency of their anno-
tator crowd across different NLP annotation tasks
and allowed only annotators who deemed reliable
according to their quality control measures.

5.2 Document selection and quality control
The document selection process remains the same
as in the previous year with minor changes. We first
randomly sample a subset of document snippets
from each of the domains for annotations, sam-
pling the domains with approximately the same
number of segments per domain. This ensures that
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(a) Top part of the screen with segment-level scoring. (b) Bottom part of the screen with document-level scoring.

Figure 1: Screenshot of the document-level DA+SQM configuration in the Appraise interface for an example assessment
from the human evaluation campaign for out of English language pairs. The annotator is presented with the entire translated
document snippet randomly selected from competing systems (anonymized) with additional static contexts, and is asked to rate
the translation of individual segments and then the entire document on sliding scales between 0 and 100.

all systems in the given language pairs are evalu-
ated on the same subset of the test set, allowing fair
comparison between them. As in previous years,
we aim to collect approximately 1,500 assessments
per system per language pair. Due to concerns
about having sufficient annotations, we create two
batches of HITs, each providing half of the required
assessments, such that at least all segments in the
first batch could be covered for all systems, with
the second campaign completed if possible.

For HIT generation for English↔German,
which feature paragraph-level test sets (documents
consist of paragraphs instead of sentences), we sim-
ply consider a whole paragraph as a “segment”, col-
lecting paragraph-level assessments. In that regard,
we collect fewer DA scores per system comparing
to other language pairs, but the human evaluation
covers a larger subset of the testsets.

Last year, we used snippets of at most 10 ran-
domly selected consecutive segments from a doc-
ument as “documents” for document-level annota-
tion. This year, we use 10 first segments from a
document instead, in order to align with the MQM-
based evaluation used at the Metrics shared task

(Freitag et al., 2023).
All HITs consist of exactly 100 segments and

are generated as in the past:

1. Snippet-system pairs are randomly sampled
(from the restricted set of pre-sampled snip-
pets) to create up to 80 segments;

2. Random snippets for the remaining 20 (or
more) segments are duplicated from the first
80 to serve as quality control items;

3. BAD references are introduced to the random
segments in the duplicated snippets to have
about 12-14% of quality control segments per
HIT.

BAD translations are created by replacing an em-
bedded sequences of tokens in the segment with a
random phrase of the same length from a different
reference segment.22

We perform quality control by measuring an an-
notator’s ability to reliably score BAD translations

22For full details, see the HIT and batch gener-
ation code: https://github.com/wmt-conference/
wmt23-news-systems
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Language pairs Annotators’ profile Tool

English↔Chinese/German/Japanese Microsoft annotators: bilingual target-language native speakers, pro-
fessional translators or linguists, experienced in MT evaluation

Appraise

Czech→Ukrainian Paid translators and target-language native speakers Appraise

English→Czech Czech paid linguists, annotators, researchers, students with high profi-
ciency in English

Appraise

English↔Hebrew/Russian/Ukrainian Toloka AI paid crowd: bilingual target-language native speakers high-
performing in other task types

Toloka.ai

Table 3: Annotators’ profiles and annotation tools for each language pair in human evaluation.

Language Pair Sys. Assess. Assess/Sys

Chinese→English 16 20,535 1283.4
Czech→Ukrainian 14 23,191 1656.5
German→English 14 13,573 969.5
English→Chinese 16 24,551 1534.4
English→Czech 16 25,527 1595.4
English→German 13 14,267 1097.5
English→Japanese 17 26,115 1536.2
Japanese→English 18 27,858 1547.7

Table 4: Amount of segments evaluated in the WMT23 man-
ual evaluation campaign; including human references as sys-
tems; after excluding quality control items and document-level
scores.

Language Pair Ann. HITs HITs/Ann.

Chinese→English 13 128 9.8
Czech→Ukrainian 9 146 16.2
German→English 21 82 3.9
English→Czech 36 162 4.5
English→German 22 87 4.0
English→Japanese 21 164 7.8
English→Chinese 13 154 11.8
Japanese→English 20 174 8.7

Table 5: Numbers of individual annotators taking part in the
WMT23 human evaluation campaign and the average number
of HITs collected per annotator.

significantly lower than corresponding original sys-
tem outputs using a paired significance test with
p < 0.05. We pair two HITs into a single annota-
tion task with about 24-28 quality control segments
to ensure a sufficient sample size for the statisti-
cal test. In campaigns hosted on Appraise, if an
annotator is not able to demonstrate reliability on
BAD references, they are excluded from further
annotations, the HITs are reset and annotated from
scratch by another annotator if possible.

The total number of assessments collected for
each language pair and the average number of as-
sessments per system in WMT23 manual evalua-
tion are presented in Table 4.

5.3 Calibration HITs

Last year we introduced calibration HITs, which
this year we collect for all language pairs. A cali-
bration HIT is a HIT with 100 randomly selected
segments, which is identical for and completed by
all annotators, in addition to their regular annota-
tion HITs. We release these alongside the other
annotations and the anonymized mapping between
annotators and HITs in order to enable additional
analysis. With a small set of sentences annotated by
all annotators, we are better able to examine ques-
tions about inter-annotator consistency and provide
data for future research in this area.

Table 5 shows the number of unique annotators
per language pair along with the total number of
HITs and average number of HITs per annotator.
We leave more detailed analysis of collected cali-
bration data to future work.

5.4 Human ranking computation

The official rankings shown in Table 6 are gen-
erated on the basis of the segment-level raw
DA+SQM scores that are collected within docu-
ment context for all language pairs.23 Whole doc-
uments with at least one quality control segment
(i.e., BAD references) and HITs that failed to pass
quality control are removed prior to computing the
rankings.24

In this year’s evaluation, we have chosen not
to normalize scores by discontinuing the use of
z-scores, given their potential to exacerbate sys-
tem comparisons (Knowles, 2021). While utilizing
raw scores is not flawless—considering each an-
notator employs distinct annotation strategies —
we have sought to counteract this by distributing

23The code used to generate the rankings in Table 6 can
be found here: https://github.com/AppraiseDev/
Appraise/blob/main/Campaign/management/
commands/ComputeWMT23Results.py

24Two HITs for Czech→Ukrainian and one HIT for
English→Czech.
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German→English
Rank Ave. System
1-3 90.3 GPT4-5shot
1-3 89.9 Human-refA
1-5 89.6 ONLINE-A
3-6 89.1 ONLINE-B
3-6 88.8 ONLINE-W
4-7 88.0 ONLINE-Y
6-8 87.7 ONLINE-G
8-9 86.5 GTCOM_DLUT
7-9 85.3 ONLINE-M

10-11 81.8 LanguageX
10-13 80.0 Lan-BridgeMT
11-14 79.6 NLLB_MBR_BLEU
12-14 78.8 AIRC
11-14 77.9 NLLB_Greedy

English→German
Rank Ave. System
1-5 89.0 GPT4-5shot
1-5 88.8 ONLINE-B
1-4 88.3 ONLINE-W
2-6 88.1 ONLINE-A
4-6 88.0 ONLINE-Y
1-6 87.7 Human-refA
7-8 86.7 ONLINE-M
7-8 85.5 ONLINE-G
9 84.0 Lan-BridgeMT

10 82.7 LanguageX
11-12 76.8 NLLB_MBR_BLEU
11-12 75.7 NLLB_Greedy

13 73.6 AIRC

English→Czech
Rank Ave. System

1 85.4 Human-refA
2 84.1 ONLINE-W

3-5 81.8 GPT4-5shot
3-4 80.4 CUNI-GA
5-8 80.3 ONLINE-A
5-8 79.4 CUNI-DocTransformer
4-7 78.8 ONLINE-B
8-14 78.6 NLLB_MBR_BLEU
6-11 78.4 GTCOM_DLUT
8-12 77.4 CUNI-Transformer

10-14 76.8 NLLB_Greedy
9-14 75.7 ONLINE-M

10-15 75.2 ONLINE-G
13-15 75.0 ONLINE-Y
8-15 75.0 Lan-BridgeMT
16 74.1 LanguageX

Czech→Ukrainian
Rank Ave. System
1-3 83.7 ONLINE-B
1-3 83.6 GPT4-5shot
1-3 83.2 Human-refA
4-8 82.8 ONLINE-W
4-8 82.4 CUNI-GA
4-8 81.8 CUNI-Transformer
4-8 81.3 GTCOM_DLUT
4-8 80.6 ONLINE-A

9-11 79.5 ONLINE-G
9-13 78.7 ONLINE-Y
9-13 78.7 MUNI-NLP

10-13 77.4 Lan-BridgeMT
10-13 76.9 NLLB_MBR_BLEU

14 76.7 NLLB_Greedy

Chinese→English
Rank Ave. System
1-2 82.9 Lan-BridgeMT
1-2 80.9 GPT4-5shot
3-8 80.3 Yishu
3-7 80.2 ONLINE-W

5-10 80.0 ONLINE-G
3-7 79.8 ONLINE-B
4-9 79.7 ONLINE-Y
3-8 79.1 HW-TSC

6-10 77.8 ONLINE-A
10-11 77.7 IOL_Research
8-11 77.2 LanguageX

12-13 76.9 ONLINE-M
13-16 76.2 NLLB_MBR_BLEU
12-15 76.1 Human-refA
14-16 74.0 NLLB_Greedy
13-16 72.6 ANVITA

English→Chinese
Rank Ave. System
1-5 82.2 Yishu
1-5 82.1 Human-refA
1-7 82.1 GPT4-5shot
3-8 82.0 Lan-BridgeMT
1-6 81.8 ONLINE-B
1-8 81.5 HW-TSC
4-8 81.4 ONLINE-W
5-8 80.2 ONLINE-Y

9-10 79.8 IOL_Research
9-10 79.7 ONLINE-A

11-13 78.6 LanguageX
11-13 78.2 ONLINE-M
11-13 77.1 ONLINE-G

14 64.5 ANVITA
15 64.3 NLLB_Greedy
16 57.2 NLLB_MBR_BLEU

Japanese→English
Rank Ave. System

1 81.3 GPT4-5shot
2-4 80.6 SKIM
3-8 80.4 Human-refA
3-8 79.5 ONLINE-Y
2-8 79.4 ONLINE-B
3-9 79.2 ONLINE-A
2-8 78.8 ONLINE-W
3-8 78.4 NAIST-NICT
8-9 76.9 GTCOM_DLUT

10-13 76.4 Lan-BridgeMT
10-13 75.8 ANVITA
10-13 74.8 ONLINE-G
10-13 74.6 LanguageX
14-15 72.9 ONLINE-M
14-15 72.4 KYB

16 68.9 AIRC
17-18 66.7 NLLB_MBR_BLEU
17-18 66.1 NLLB_Greedy

English→Japanese
Rank Ave. System
1-2 80.7 Human-refA
2-6 79.5 GPT4-5shot
1-5 78.8 ONLINE-B
2-6 78.6 ONLINE-Y
2-5 78.5 SKIM
4-6 78.4 ONLINE-W
7-10 76.6 LanguageX
7-10 76.2 ONLINE-A
7-10 76.1 NAIST-NICT
7-10 75.2 Lan-BridgeMT

11-12 73.1 ANVITA
11-12 72.6 ONLINE-M
13-15 70.8 KYB
13-15 69.6 AIRC
13-15 69.6 ONLINE-G

16 64.5 NLLB_Greedy
17 61.3 NLLB_MBR_BLEU

Table 6: Official results of WMT23 General Translation Task. Systems ordered by DA score; systems within a cluster are
considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05; rank ranges indicate the number of
systems a system significantly underperforms or outperforms; grayed entry indicates resources that fall outside the constraints
provided. All language pairs used document-level evaluation.
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systems evenly across annotators. This approach
aims to minimize the potential bias of a particularly
stringent annotator disproportionately penalizing a
single system. Ideally, every annotator would as-
sess documents translated by all systems; however,
this could introduce task repetitiveness concerns.
For future considerations, employing calibration
HITs (see Section 5.3) to normalize each annota-
tor’s behaviour could offer a promising solution.

All segment-level scores are averaged per system
to compute the system-level scores. The clusters
are computed using the Wilcoxon rank-sum test
with p < 0.05. Rank ranges indicate the number
of systems a particular system underperforms or
outperforms: the top end of the rank range is l + 1
where l is the number of losses, while the bottom
is n − w where n is the total number of systems
and w is the number of systems that the system in
questions significantly wins against.

Tables with head-to-head comparisons between
all systems are included in Appendix G.

At the time of preparation of the camera-ready
version of the paper, we have not been able to col-
lect the required number of high-quality assess-
ments for language pairs run through Toloka AI
that would meet WMT standards for human eval-
uation. In that regard, we decided not to publish
official rankings based on manual evaluation for
English↔{Hebrew, Russian, Ukrainian} until the
conference, we are planning to address it later.

5.5 Comparison of human evaluation methods

In collaboration with the metrics shared task (Fre-
itag et al., 2023), human annotation data for the
Chinese→English and English→German direction
was collected using two different approaches: the
source-based DA+SQM approach, and the Multi-
dimensional Quality Metrics (MQM) framework
(Freitag et al., 2021). We present the rankings pro-
duced by the two approaches in Table 7.

Upon examining the system rankings and in-
dividual clusters produced by both techniques, it
is evident that DA+SQM produces fewer clusters.
This suggests that it might not be sufficiently robust
to differentiate smaller system differences, whereas
MQM creates more detailed clusters. One potential
explanation is that DA+SQM, constrained by bud-
getary restrictions, might be under-powered. As
highlighted by Wei et al. (2022), the 1500 segments
we gather per system might not suffice to segregate
systems in a more detailed manner.

Conversely, the largest difference in the evalua-
tion techniques is the cost. While MQM manages
to establish more refined clusters, its deployment is
significantly more costly and complex, especially
when training professionals. An interesting ques-
tion would be determining the number of MQM
labels that could be procured within the budget
allocated for DA+SQM.

It is also important to note that the set of data
over which each of these rankings was produced
may have differed slightly due to the sampling (e.g.,
the distribution over topic domains or the amount
of coverage of the full test set), making it difficult
to determine whether these differences in rankings
represent differences due to data or due to different
annotation methods.

6 Test Suites

As can be seen in the general MT task, the improve-
ment of translation quality has made it difficult to
discriminate MT output from human translation
with the current evaluation methods. Nevertheless,
there are still cases where MT has difficulties, de-
livering outputs which despite seeming fluent and
being surrounded by other seemingly perfect trans-
lations, entail serious flaws. In general evaluation
methods, such flaws can get “hidden in the aver-
age” or simply get missed altogether. In an effort to
shed light to these cases, evaluation via test suites
is embedded in the shared task.

6.1 Setup of the sub-task

Test suites are custom extensions to standard test
sets, constructed so that they can focus on particular
aspects of the MT output. Here, the evaluation
of the MT outputs takes place in a decentralized
manner as a part of a sub-task, where test suite
providers were invited to submit their customized
test sets, following the setting introduced at the
Third Conference on Machine Translation (Bojar
et al., 2018).

Every test suite provider submitted a source-side
test set, which the shared task organizers appended
to the standard test sets of the shared task. The
corresponding outputs from the MT systems of the
shared task were returned to the test suite providers,
who were responsible for running the evaluation,
based on their own custom evaluation methods.
The results of each test suite evaluation, together
with the relevant analysis, appear in separate de-
scription papers.
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Rank Ave. ↑ System (En-De)
1-5 89.0 GPT4-5shot
1-5 88.8 ONLINE-B
1-4 88.3 ONLINE-W
2-6 88.1 ONLINE-A
4-6 88.0 ONLINE-Y
1-6 87.7 Human-refA
7-8 86.7 ONLINE-M
7-8 85.5 ONLINE-G
9 84.0 Lan-BridgeMT
10 82.7 LanguageX

11-12 76.8 NLLB_MBR_BLEU
11-12 75.7 NLLB_Greedy

13 73.6 AIRC

System (En-De) MQM ↓
refA 2.96
GPT4-5shot 3.72
ONLINE-W 3.95
ONLINE-B 4.71
ONLINE-Y 5.64
ONLINE-A 5.67
ONLINE-G 6.57
ONLINE-M 6.94
Lan-BridgeMT 8.67
LanguageX 9.25
NLLB_Greedy 9.54
NLLB_MBR_BLEU 10.79
AIRC 14.23

Rank Ave. ↑ System (Zh-En)
1-2 82.9 Lan-BridgeMT
1-2 80.9 GPT4-5shot
3-8 80.3 Yishu
3-7 80.2 ONLINE-W

5-10 80.0 ONLINE-G
3-7 79.8 ONLINE-B
4-9 79.7 ONLINE-Y
3-8 79.1 HW-TSC

6-10 77.8 ONLINE-A
10-11 77.7 IOL_Research
8-11 77.2 LanguageX

12-13 76.9 ONLINE-M
13-16 76.2 NLLB_MBR_BLEU
12-15 76.1 Human-refA
14-16 74.0 NLLB_Greedy
13-16 72.6 ANVITA

System (Zh-En) MQM ↓
Lan-BridgeMT 2.10
GPT4-5shot 2.31
Yishu 3.23
ONLINE-B 3.39
HW-TSC 3.40
ONLINE-A 3.79
ONLINE-Y 3.79
ONLINE-G 3.86
ONLINE-W 4.06
LanguageX 4.23
IOL_Research 4.59
refA 4.83
ONLINE-M 5.43
ANVITA 6.08
NLLB_MBR_BLEU 6.36
NLLB_Greedy 6.57

Table 7: Comparison of system clustering as done by DA+SQM and MQM technique. Top two tables are for English to German,
while bottom two are for Chinese to German.

6.2 Submissions

The test suite sub-task received 5 submissions with
6 test suites, whose overview can be seen in Table 8.
The descriptions of each submission and their main
findings are given below.

DFKI (Manakhimova et al., 2023) test suite of-
fers a fine-grained linguistically motivated anal-
ysis of the shared task MT outputs, based on
more than 11,500 manually devised test items,
which cover up to 110 phenomena in 14 cate-
gories per language direction. Extending their
previous test suite efforts (e.g. Avramidis et al.,
2018; Macketanz et al., 2022), the submission of
this year includes an updated test set featuring
new linguistic phenomena and focuses addition-
ally on the participating LLMs. The evaluation
spans German→English, English→German, and
English→Russian language directions.

Some of the phenomena with the lowest accu-
racies for German→English are idioms and resul-
tative predicates. For English→German, these in-
clude mediopassive voice, and noun formation(er).
As for English→Russian, these include idioms and

semantic roles. GPT4 performs equally or compa-
rably to the best systems in German→English and
English→German but falls in the second signifi-
cance cluster for English→Russian.

HW-TSC (Chen et al., 2023) propose a system-
atic approach to select test sentences with high-
level of difficulty from the Wiki Corpus. The strat-
egy considers the difficulty level of a sentence from
four dimensions: word difficulty, length difficulty,
grammar difficulty and model learning difficulty.
They open-source two Multifaceted Challenge Sets
for Chinese→English and English→Chinese, each
of them containing 2,000 sentences. Then, they use
these challenge sets to test the shared task systems,
presenting results by three automatic metrics.

The resulting system ranks are quite different
from the official results. The authors point out that
systems that perform well on average test sets may
not perform as well on sets with high difficulty.
If the ranking difference is caused by domain is-
sues, the top-ranked systems on the official test sets
may not be so general. GPT4 is ranked in the first
two positions in Chinese→English but its rank in
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Test suite Directions Phenomena #Sentences Citation Link

DFKI de–en, en–de,
en–ru

110 linguistic phenomena 11,517 Manakhimova et al. (2023) DFKI-NLP

HW-TSC zh–en, en–zh 4 difficulty dimensions 4,000 Chen et al. (2023) HwTsc

IIIT HYD en–de 5 domains, 5 writing styles 2,268 Mukherjee and Shrivastava (2023) wmt23

INES en–de Inclusive language forms 162 Savoldi et al. (2023) fbk.eu

MuST-SHE en–de Binary gender bias 200 Savoldi et al. (2023) fbk.eu

RoCS-MT en–de, en–cs,
en–uk, en–ru

Non-standard user-
generated content

1,922 Bawden and Sagot (2023) RoCS-MT

Table 8: Overview of the participating test suites.

English→Chinese is much lower (ranks 4-9).

IIIT HYD (Mukherjee and Shrivastava, 2023)
This test suite covers five specific domains (en-
tertainment, environment, health, science, legal)
and spans five distinct writing styles (descriptive,
judgments, narrative, reporting, technical-writing)
for English–German. The authors conduct their
analysis through a combination of au- tomated as-
sessments and manual evaluations.

Based on their evaluation, it is evident that both
ONLINE-B and ONLINE-Y consistently surpassed
other MT systems in performance across a diverse
array of writing styles and domains. When fo-
cusing on GPT4, whereas it performs comparably
to the best systems for most domains and writing
styles, it gives considerably worse results when ap-
plied to the legal domain, and the writing style of
judgments.

MuST-SHEWMT23 and INES (Savoldi et al.,
2023) By focusing on the en-de and de-en lan-
guage pairs, the authors rely on these newly created
test suites to investigate systems’ ability to trans-
late feminine and masculine gender and produce
gender-inclusive translations. Furthermore, they
discuss metrics associated with the test suites and
validate them by means of human evaluations.

The results indicate that systems achieve rea-
sonable and comparable performance in correctly
translating both feminine and masculine gender
forms for naturalistic gender phenomena. Instead,
the generation of inclusive language forms in trans-
lation emerges as a challenging task for all the
evaluated MT models, indicating room for future
improvements and research on the topic.

Concerning GPT 4, it is noticeable that its overall
accuracy is 2% worse than the best MT system,
whereas it achieves a relatively low accuracy with
regard to the feminine gender, when evaluating
whether the first-person singular references to the

speaker are translated according to the speaker’s
linguistic expression of gender.

RoCS-MT (Bawden and Sagot, 2023) The
RoCS-MT Challenge Set is designed to test MT
systems’ robustness to user-generated content
(UGC) displaying non-standard characteristics,
such as spelling errors, devowelling, acronymi-
sation, etc. It is composed of non-standard En-
glish comments from Reddit, manually normalised
and professionally translated into four of the WMT
2023 target languages, German, Czech, Ukrainian
and Russian, and also French.

Through automatic and manual analysis of sys-
tem outputs, we find that many of the phenomena
remain challenging for most systems, but to varying
degrees depending on the phenomenon, the particu-
lar instance (notably how frequent the non-standard
word is) and the system, especially with respect to
the quantity of training data. For example, non-
standard instances of words (e.g. through devow-
elling or through phonetically inspired spelling) are
often either omitted in the translation or copied un-
changed. When non-standard words are translated,
it is often in their standard form, but with some ex-
ceptions, for example capitalisation is sometimes
preserved. However, there is often inconsistency
within a same system’s outputs.

GPT4-5shot has a clear lead over all other sys-
tems, correctly translating even some of the most
challenging examples. It sometimes (although in-
consistently) reproduces non-standardness in its
outputs, but also does not always remain entirely
faithful to the source sentence. However, aside
the huge disparity in the amount of training data
compared to other systems, notably the constrained
ones, the lack of access to its training data is a
serious obstacle to any meaningful scientific com-
parison; we cannot know which phenomena were
seen during training and how frequently, and more
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crucially, we cannot verify whether RoCS-MT sen-
tences were seen during training.

7 Conclusions

The General Machine Translation Task at WMT
2023 covered 14 translation pairs, where the only
non-English language pair was Czech→Ukrainian.
Source based DA+SQM was the main human
golden truth. The evaluation included 72 pri-
mary submissions from 17 participants, 6 online
systems and 3 additional contrastive systems in-
cluding GPT4. It was performed by 155 human
(semi-)professional annotators, who contributed
more than 175,000 judgments altogether. For most
language pairs (apart from English→Czech), MT
systems produce outputs that cannot be identified
as being worse than the manually produced refer-
ences translations in a statistically significant way,
using our current evaluation methods.

It is apparent that this year, the amount of un-
constrained submissions are lower thank in past
years (27 submissions by 11 participants). Addi-
tionally, for some language pairs there are only few
submissions by participants, and therefore they are
dominated by many online systems, of whom we
have no technical descriptions. We are therefore
considering ways to encourage participation in the
future, whereas redefining the constrained setting
may be needed.

It is the first time that Large Language Models
(LLMs) are included in the Shared Task as trans-
lation systems. Although the technology is very
apparent in NLP research, we received only one
submission using LLM methods (Lan-BridgeMT),
whereas one dominant commercial LLM (GPT4)
was included via our own efforts. GPT4 was in the
first significance cluster for all systems translating
towards English, but fell in the second significance
cluster (rank 3-5) for English→Czech, whereas a
similar sign was given by one of the test suites
for English→Russian (rank 3; Manakhimova et al.,
2023). Additionally, test suites providers noted
that GPT4 outputs are not always faithful to the
source sentence (Bawden and Sagot, 2023) and
that they have some issues with speaker gender
translation (Savoldi et al., 2023) and specific do-
mains (Mukherjee and Shrivastava, 2023, e.g. le-
gal;). Due to the closed-source nature of commer-
cial tools, it is hard to know the exact reasons for
these findings, although they confirm previous ob-
servations that GPT models have difficulties with

under-represented languages (Hendy et al., 2023).
We believe that a more transparent comparison in-
cluding open source LLMs should be sought for
the future.

8 Limitations

We investigated a research question of testing gen-
eral capabilities of MT systems. However, we have
simplified this approach. Firstly, we only used four
domains that are not specialized. Secondly, we
used only cleaner sentences, avoiding noisy in the
source sentences.

Although we accept human judgement as a gold
standard, giving us more reliable signal than au-
tomatic metrics, we should mention that human
annotations are noisy (Wei and Jia, 2021) and their
performance is affected by quality of other evalu-
ated systems (Mathur et al., 2020).

Different annotators are using different ranking
strategy which may have an effect on the system
ranking as we are using raw scores.

9 Ethical Consideration

Several of the domains contained texts that in-
cluded personal data, for example the speech data
(See Section 2.4 for more details). Entities were
replaced by anonymisation tags (e.g. #NAME#,
#EMAIL#) to preserve the anonymity of the users
behind the content.

The sentences in Ukrainian datasets were col-
lected with users’ opt-in consent, and any personal
data related to people other than well-known people
was pseudonymized (using random first names and
surnames). Sentences where such pseudonymiza-
tion would not be enough to preserve reasonable
anonymity of the users (e.g. describing events
uniquely identifying the persons involved) were
not included in the test set.

As described in Section 2.2 and in the linguis-
tic brief (Appendix Section B), inappropriate, con-
troversial and/or explicit content was filtered out
prior to translation, particularly keeping in mind the
translators and not exposing them to such content
or obliging them to translate it. A few sentences
containing explicit content managed to escape the
filter, and we removed these sentences from the test
sets without translation.

Human evaluation using Appraise for collecting
human judgements was fully anonymous. Auto-
matically generated accounts associated with an-
notation tasks with single-sign-on URLs were dis-
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tributed randomly among pools of annotators and
did not allow for storing personal information. For
language pairs for which we used calibration HITs,
we received lists of tasks completed by an individ-
ual anonymous annotator. Annotators have been
well paid in respect to their countries.
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A Statistics of training data

This section describes statistics of the training corpora.

Dataset ID Segs Tokens Chars

eng-ces eng ces eng ces
Facebook-wikimatrix-1-ces-eng 2.09M 33.56M 29.66M 206.82M 216.62M
ParaCrawl-paracrawl-9-eng-ces 50.63M 692.12M 626.34M 4.33B 4.68B
Statmt-commoncrawl_wmt13-1-ces-eng 161.84k 3.35M 2.93M 20.66M 20.75M
Statmt-europarl-10-ces-eng 644.43k 15.63M 13.00M 94.31M 98.14M
Statmt-news_commentary-16-ces-eng 253.27k 5.46M 4.96M 34.58M 37.97M
Statmt-wikititles-3-ces-eng 410.94k 1.03M 965.62k 7.47M 7.57M
Tilde-ecb-2017-ces-eng 3.10k 52.12k 45.21k 327.57k 339.24k
Tilde-eesc-2017-ces-eng 1.33M 28.78M 25.63M 188.53M 205.14M
Tilde-ema-2016-ces-eng 495.23k 7.64M 7.28M 50.31M 57.01M
Tilde-rapid-2019-ces-eng 263.29k 5.79M 5.30M 37.36M 41.26M
(Total) 56.29M 793.41M 716.10M 4.97B 5.36B
eng-deu eng deu eng deu
Facebook-wikimatrix-1-deu-eng 6.23M 100.50M 96.95M 623.66M 701.23M
ParaCrawl-paracrawl-9-eng-deu 278.31M 4.27B 3.99B 26.37B 29.46B
Statmt-commoncrawl_wmt13-1-deu-eng 2.40M 51.40M 47.05M 314.18M 340.51M
Statmt-europarl-10-deu-eng 1.82M 45.51M 42.41M 272.94M 312.14M
Statmt-news_commentary-16-deu-eng 388.48k 8.55M 8.77M 54.40M 65.94M
Statmt-wikititles-3-deu-eng 1.47M 3.61M 3.08M 26.48M 25.50M
Tilde-airbaltic-1-deu-eng 0.84k 17.60k 15.08k 104.34k 105.52k
Tilde-czechtourism-1-deu-eng 6.76k 128.29k 114.44k 769.04k 829.41k
Tilde-ecb-2017-deu-eng 4.15k 85.52k 74.81k 545.51k 582.63k
Tilde-eesc-2017-deu-eng 2.86M 61.47M 58.28M 400.37M 469.94M
Tilde-ema-2016-deu-eng 347.63k 5.09M 5.01M 33.48M 39.43M
Tilde-rapid-2016-deu-eng 1.03M 20.65M 19.85M 134.26M 158.13M
Tilde-rapid-2019-deu-eng 939.81k 19.90M 19.30M 129.03M 153.08M
(Total) 295.81M 4.59B 4.29B 28.36B 31.73B
eng-heb eng heb eng heb
ELRC-wikipedia_health-1-eng-heb 3.16k 69.71k 54.76k 442.38k 583.87k
Facebook-wikimatrix-1-eng-heb 2.04M 35.83M 28.96M 218.77M 300.61M
Neulab-tedtalks_train-1-eng-heb 211.82k 4.45M 3.44M 22.36M 29.00M
OPUS-bible_uedin-v1-eng-heb 62.20k 1.55M 830.23k 8.16M 7.46M
OPUS-ccmatrix-v1-eng-heb 25.23M 313.87M 249.49M 1.81B 2.45B
OPUS-elrc_2922-v1-eng-heb 3.16k 69.73k 54.77k 442.40k 583.54k
OPUS-elrc_3065_wikipedia_health-v1-eng-heb 3.16k 69.71k 54.76k 442.31k 583.51k
OPUS-elrc_wikipedia_health-v1-eng-heb 3.16k 69.71k 54.76k 442.31k 583.51k
OPUS-globalvoices-v2018q4-eng-heb 1.03k 20.31k 15.03k 122.39k 158.63k
OPUS-gnome-v1-eng-heb 0.15k 0.42k 0.40k 2.89k 3.96k
OPUS-kde4-v2-eng-heb 79.32k 338.22k 347.35k 2.09M 3.13M
OPUS-multiccaligned-v1-eng-heb 5.33M 60.55M 52.81M 380.74M 518.33M
OPUS-opensubtitles-v2018-eng-heb 29.89M 195.98M 154.25M 1.03B 1.40B
OPUS-php-v1-eng-heb 27.82k 83.46k 93.03k 498.72k 789.34k
OPUS-qed-v2.0a-eng-heb 464.35k 6.37M 4.48M 34.70M 42.34M
OPUS-tatoeba-v20220303-eng-heb 164.20k 1.02M 806.38k 5.41M 7.37M
OPUS-tatoeba-v2-eng-heb 54.36k 357.09k 277.32k 1.87M 2.56M
OPUS-ubuntu-v14.10-eng-heb 1.44k 6.13k 5.78k 38.78k 54.69k
OPUS-wikimedia-v20210402-eng-heb 226.83k 8.51M 7.56M 57.58M 78.26M
OPUS-wikipedia-v1.0-eng-heb 139.85k 2.69M 2.27M 16.45M 22.43M
OPUS-xlent-v1.1-eng-heb 3.19M 9.61M 7.93M 60.53M 73.11M
Statmt-ccaligned-1-eng-heb_IL 5.33M 60.55M 52.81M 380.76M 518.34M
(Total) 72.46M 702.05M 566.59M 4.04B 5.45B

Table 9: Statistics for parallel training set provided for General/News Translation Task. Suffixes, k, M, and B, are short for
thousands, millions, and billions, respectively. Dataset ID is the unique identifier created by MTData, example mtdata echo
<dataset_id>.
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Dataset ID Segs Tokens Chars

eng-jpn eng eng jpn
Facebook-wikimatrix-1-eng-jpn 3.90M 61.63M 379.09M 454.97M
KECL-paracrawl-3-eng-jpn 25.74M 599.02M 3.69B 4.58B
Phontron-kftt_train-1-eng-jpn 440.29k 9.74M 59.91M 49.08M
StanfordNLP-jesc_train-1-eng-jpn 2.80M 19.34M 104.00M 119.62M
Statmt-news_commentary-16-eng-jpn 1.84k 39.50k 247.70k 310.56k
Statmt-ted-wmt20-eng-jpn 241.74k 4.03M 23.02M 27.32M
Statmt-wikititles-3-jpn-eng 757.04k 1.94M 13.96M 18.67M
(Total) 33.88M 695.74M 4.27B 5.25B
eng-rus eng rus eng rus
Facebook-wikimatrix-1-eng-rus 5.20M 86.79M 76.48M 537.73M 965.44M
OPUS-unpc-v1.0-eng-rus 25.17M 563.82M 520.71M 3.70B 7.31B
ParaCrawl-paracrawl-1_bonus-eng-rus 5.38M 101.31M 80.41M 632.54M 1.06B
Statmt-backtrans_enru-wmt20-eng-rus 36.77M 736.20M 670.93M 4.31B 7.73B
Statmt-commoncrawl_wmt13-1-rus-eng 878.39k 18.77M 17.40M 116.16M 214.59M
Statmt-news_commentary-16-eng-rus 331.51k 7.67M 7.13M 48.79M 97.41M
Statmt-wikititles-3-rus-eng 1.19M 3.13M 2.88M 22.80M 39.34M
Statmt-yandex-wmt22-eng-rus 1.00M 21.25M 18.68M 130.99M 250.76M
Tilde-airbaltic-1-eng-rus 1.09k 23.98k 18.79k 142.52k 252.73k
Tilde-czechtourism-1-eng-rus 7.33k 140.09k 110.10k 838.09k 1.50M
Tilde-worldbank-1-eng-rus 25.85k 588.58k 573.93k 3.85M 8.21M
(Total) 75.96M 1.54B 1.40B 9.50B 17.67B
eng-ukr eng ukr eng ukr
ELRC-acts_ukrainian-1-eng-ukr 129.94k 3.04M 2.60M 19.55M 35.69M
Facebook-wikimatrix-1-eng-ukr 2.58M 41.55M 35.59M 257.56M 447.33M
ParaCrawl-paracrawl-1_bonus-eng-ukr 13.35M 505.83M 487.47M 3.28B 6.04B
Tilde-worldbank-1-eng-ukr 1.63k 36.07k 34.18k 237.96k 477.91k
(Total) 16.06M 550.46M 525.68M 3.55B 6.52B
eng-zho eng eng zho
Facebook-wikimatrix-1-eng-zho 2.60M 49.87M 311.07M 277.84M
OPUS-unpc-v1.0-eng-zho 17.45M 417.25M 2.75B 2.14B
ParaCrawl-paracrawl-1_bonus-eng-zho 14.17M 217.60M 1.34B 1.18B
Statmt-backtrans_enzh-wmt20-eng-zho 19.76M 364.22M 2.16B 1.96B
Statmt-news_commentary-16-eng-zho 313.67k 6.92M 44.14M 38.83M
Statmt-wikititles-3-zho-eng 921.96k 2.37M 17.82M 16.28M
(Total) 55.22M 1.06B 6.62B 5.61B
ces-ukr ces ukr ces ukr
ELRC-acts_ukrainian-1-ces-ukr 130.00k 2.48M 2.56M 19.61M 35.26M
Facebook-wikimatrix-1-ces-ukr 848.96k 10.43M 10.07M 75.97M 127.31M
OPUS-bible_uedin-v1-ces-ukr 7.95k 140.03k 132.06k 904.31k 1.33M
OPUS-ccmatrix-v1-ces-ukr 3.99M 45.13M 45.10M 330.68M 566.27M
OPUS-elrc_5179_acts_ukrainian-v1-ces-ukr 130.00k 2.48M 2.56M 19.61M 35.26M
OPUS-elrc_wikipedia_health-v1-ces-ukr 0.19k 3.23k 3.18k 24.27k 41.63k
OPUS-eubookshop-v2-ces-ukr 1.51k 23.71k 19.15k 187.30k 275.14k
OPUS-gnome-v1-ces-ukr 0.15k 0.42k 0.41k 3.53k 5.82k
OPUS-kde4-v2-ces-ukr 133.67k 593.82k 677.35k 4.45M 7.97M
OPUS-multiccaligned-v1.1-ces-ukr 1.61M 19.75M 19.77M 146.44M 244.36M
OPUS-multiparacrawl-v9b-ces-ukr 2.20M 25.62M 25.55M 188.08M 325.50M
OPUS-opensubtitles-v2018-ces-ukr 730.80k 3.88M 3.90M 24.20M 40.62M
OPUS-qed-v2.0a-ces-ukr 161.02k 2.02M 2.04M 13.44M 22.80M
OPUS-tatoeba-v20220303-ces-ukr 2.93k 10.85k 11.40k 68.70k 118.67k
OPUS-ted2020-v1-ces-ukr 114.23k 1.57M 1.56M 10.70M 17.93M
OPUS-ubuntu-v14.10-ces-ukr 0.23k 1.67k 1.76k 13.02k 20.86k
OPUS-wikimedia-v20210402-ces-ukr 1.96k 39.18k 34.91k 285.74k 414.20k
OPUS-xlent-v1.1-ces-ukr 695.41k 1.78M 1.58M 12.92M 18.30M
(Total) 10.76M 115.95M 115.57M 847.58M 1.44B

Table 10: Statistics for parallel training set provided for General/News Translation Task. Suffixes, k, M, and B, are short for
thousands, millions, and billions, respectively.
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B Preprocessing cleanup brief for linguists

Human check briefing 
In this task, we wish to check the data to remove all inappropriate content, remove repetitive 

content, or correct minor problems with the text. 

The data is automatically broken down into individual sentences, which may contain wrong 

sentence splitting that needs to be fixed. Each paragraph is separated by empty lines. Keep the 

document-separators intact. 

We ask you to read each document and either: 

• Delete document completely if it contains any of following issues. Be on the save side, 

rather remove documents where you are uncertain 

o Remove documents written in different language (natural code-switching is fine) 

o Remove inappropriate content (such as sexually explicit, vulgar, or otherwise 

inappropriate) 

o Remove controversial content (propagandist, controversial political topics, etc.) 

o Remove content that is too noisy or doesn't resemble natural text (such as 

documents badly formatted, hard to understand, containing unusual language, 

lists of numbers/data, or other structured data generated automatically) 

• Keep document while checking 

o Fix sentence-breaking, each line must be one sentence (do not reformulate, 

simply remove or add end of lines on a proper place).  

o Remove or move fragments of sentences to previous or following sentence (for 

example emoticons, one or few words sentences) 

o Fix minor issues and keep it (do not spent too much time on fixing it). 

▪ It is fine to keep some errors or problems 

▪ Remove boilerplates (segments that break the document, for example 

ads, page numbers, signatures, artefacts, …)  

o If a given document has more than around 30 sentences, consider splitting it by 

adding an empty line on a meaningful place splitting it into paragraphs 

This task shouldn’t take much longer than reading through documents. 
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C Translator Brief for General MT

Translator Brief  
In this project we wish to translate online news articles for use in evaluation of Machine 

Translation (MT). The translations produced by you will be compared against the translations 

produced by a variety of different MT systems.  They will be released to the research 

community to provide a benchmark, or “gold-standard” measure for translation quality. The 

translation therefore needs to be a high-quality rendering of the source text into the target 

language, as if it was news written directly in the target language. However, there are some 

constraints imposed by the intended usage:  

● All translations should be “from scratch”, without post-editing from MT. Using post-

editing would bias the evaluation, so we need to avoid it. We can detect post-editing 

so will reject translations that are post-edited.   

● Translation should preserve the sentence boundaries. The source texts are  

provided with exactly one sentence per line, and the translations should be the 

same, one sentence per line. Blank lines should be preserved in the translation.  

● Translators should avoid inserting parenthetical explanations into the translated text 

and obviously avoid losing any pieces of information from the source text.  We will 

check a sample of the translations for quality, and we will check the entire set for 

evidence of post-editing.   

● Please do not translate the anonymization tags (e.g. #NAME#), but use the same 

form as in the source text. These tags are used to de-identify names and various 

other sensitive data. In other words, translation must contain given tag #NAME# on a 

position where it would naturally be placed before anonymization. 

● If the original data contain errors, typos, or other problems, do not try to fix them (or 

introduce them in the translation), instead try to prepare correct translation as if the 

error wouldn’t be in the source. 

  

The source files will be delivered as text files (sometimes known as “notepad” files), with one 

sentence per line. We need the translations to be returned in the same format. If you prefer 

to receive the text in a different format, then please let us know as we may be able to 

accommodate it.   

27



D Additional statistics of the test sets

Table 11 shows the type-token ratios for the source and target side of each of the test sets, shown for
the four main domains. As mentioned previously, texts are tokenised using the language-specific Spacy
models (Honnibal and Montani, 2017) where available. For Hebrew, we use the multilingual Spacy model
as no language-specific model is available. The type-token ratio is calculated as the number of unique
tokens divided by the total number of tokens. The absolute value depends not only on the lexical diversity
of the text but also on the morphological complexity of the language in question.

manuals mastodon news user_review
src trg src trg src trg src trg

From English

en–cs – – 0.30 0.42 0.27 0.39 0.22 0.35
en–de – – 0.30 0.32 0.27 0.29 – –
en–he – – 0.30 0.30 0.27 0.29 0.22 0.24
en–ja – – 0.30 0.23 0.27 0.19 0.22 0.17
en–ru – – 0.30 0.41 0.27 0.38 0.22 0.33
en–uk – – 0.30 0.41 0.27 0.38 0.22 0.34
en–zh – – 0.30 0.29 0.27 0.26 0.22 0.21

Other language directions

cs–uk – – – – 0.43 0.41 – –
de–en 0.32 0.23 0.49 0.42 0.34 0.26 – –
he–en – – – – 0.34 0.09 – –
ja–en – – – – 0.22 0.23 0.22 0.21
ru–en 0.47 0.28 – – 0.40 0.24 – –
uk–en – – – – 0.36 0.21 – –
zh–en 0.25 0.25 – – 0.23 0.19 0.22 0.17

Table 11: Type-token ratio for individual source languages used in the general translation test sets.

E News Task System Submission Summaries

This section lists all the submissions to the translation task and provides the authors’ descriptions of their
submission.

E.1 AIRC (Rikters and Miwa, 2023)

AIRC trained constrained track models for translation between English, German, and Japanese. Before
training the final models we first filtered the parallel and monolingual data (Rikters, 2018), then performed
iterative back-translation as well as parallel data distillation to be used for non-autoregressive model
training. We experimented with training Transformer models, Mega (Ma et al., 2022) models, and
custom non-autoregressive sequence-to-sequence models with encoder and decoder weights initialised
by multilingual BERT base. Our primary submissions contain translations from ensembles of two Mega
model checkpoints and our contrastive submissions are generated by our non-autoregressive models.

E.2 ANVITA (no associated paper)

ANVITA-ZhJa Machine Translation system for WMT2023 Shared Task:General MT(News). This
paper describes ANVITA-ZhJa MT system, architected for submission to WMT 2023 General Machine
Translation(News) shared task by the ANVITA team, where the team participated in 4 translation directions:
Chinese, Japanese→English and English→Chinese, Japanese. ANVITA-ZhJa MT system comprised of
four NMT models.Chinese, Japanese→English and English→Chinese, Japanese multilingual models for
primary and Chinese→English and English→Chinese bilingual models for contrastive submissions. Base
MT models are built using transformer(base) architecture, trained over the organizer provided parallel
corpus and subsequently used deep transformer with added layers and other parameters. We also distilled
corpus using heuristics based filtering and used model ensemble for enhanced performance.
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E.3 CUNI-DocTransformer (Popel, 2020)

Exactly the same system as submitted in WMT20, document-level Transformer trained with Block
Backtranslation.

E.4 CUNI-GA (Jon et al., 2023)

Our submission is a result of applying a novel n-best list reranking and modification method on translation
candidates produced by two other competing systems, CUNI-Transformer and CUNI-DocTransformer.
Our method uses a genetic algorithm and MBR decoding to search for optimal translation under a given
metric (in our case, a weighted combination of ChrF, BLEU, COMET22-DA, and COMET22-QE-DA).

E.5 CUNI-Transformer (Popel, 2020)

The English↔Czech sentence-level models are exactly the same as submitted in WMT20 (Popel, 2020).
The Ukrainian↔Czech models are very similar, also trained with Block Backtranslation.

E.6 GTCOM (Zong, 2023)

GTCOM uses transformer as the basic architecture and leverages multilingual models to improve transla-
tion quality. Besides, GTCOM does a lot of data cleaning and data augmentation work.

E.7 HW-TSC (Wu et al., 2023b)

HW-TSC’s submission is a standard Transformer model equipped with our recent technique.

E.8 IOL-Research (Zhang, 2023)

This paper describes the IOL Research team’s submission system for the WMT23 General Machine
Translation shared task. We participate in two language translation directions, including English-to-
Chinese and Chinese-to-English. Our final primary submissions belong to constrained systems, which
means for both translation directions we only use officially provided monolingual and bilingual data
to train the translation systems. Our systems are based on Transformer architecture with pre-norm or
deep-norm, which has been proven to be helpful for training deeper models. We employ methods such
as back-translation, data diversification, domain fine-tuning and model ensemble to build our translation
systems. Another important aspect is that we carefully conduct data cleaning and use as much monolingual
data as possible for data augmentation.

E.9 TeamKYB (LI et al., 2023)

We here describe our neural machine translation system for the general machine translation shared task in
WMT 2023. Our systems are based on the Transformer with base settings. We trained our model with
preprocessed train data. We collect multiple checkpoint from our model and performed inference with
several hyperparameter settings. Collected translations were processed via some rule-based corrections.
We chose best translation from the results by using N-best ranking method.

E.10 Lan-BridgeMT (Wu and Hu, 2023)

With the emergence of large-scale models, various industries have undergone significant transformations,
particularly in the realm of document-level machine translation. This has introduced a novel research
paradigm that we have embraced in our participation in the WMT23 competition. Focusing on advance-
ments in models such as chatGPT and GPT4, we have undertaken numerous prompt-based experiments.
Our objective is to achieve optimal human evaluation results for document-level machine translation,
resulting in our submission of the final outcomes in the general track.

E.11 MUNI-NLP (Rychlý and Teslia, 2023)

MUNI-NLP system is a standard transformer.
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E.12 NAIST-NICT (Deguchi et al., 2023)

In this paper, we describe our NAIST-NICT submission to the WMT’23 English-Japanese general machine
translation task. Our system generates diverse translation candidates and reranks them with a two-stage
reranking system to find the best translation. We first generate 50 candidates each from 18 different
translation methods using a variety of techniques to increase the diversity of the translation candidates. We
trained 7 different models per language direction using different combinations of hyperparameters. From
these models we used various decoding algorithms, ensembling the models, and using kNN-MT. The
900 translation candidates go through a two-stage reranking system in order to find the most promising
candidate.The first step compares the 50 candidates from each translation method using DrNMT and
returns the one with the highest score. The final 18 candidates are ranked using COMET-MBR, and the
highest scoring is returned as the system output. We found that generating diverse translation candidates
improves the translation quality by using the well-designed relanker model.

E.13 PROMT (Molchanov and Kovalenko, 2023)

This paper describes the PROMT submissions for the WMT23 Shared General Translation Task. This
year we participated in two directions of the Shared Translation Task: English to Russian and Russian to
English. Our models are trained with the MarianNMT toolkit using the transformer-big configuration. We
use BPE for text encoding, both models are unconstrained. We achieve competitive results according to
automatic metrics in both directions.

E.14 SRPH (Cruz, 2023)

We submit single-model encode-decoder Transformer systems for the constrained English to Hebrew
and Hebrew to English translation directions. Our dataset is cleaned and filtered via a combination of
heuristic-based, ratio-based, and embedding-based (LaBSE) methods, resulting in a dataset with high
alignment. We train models with heavy use of back-translation and decode using Noisy Channel Reranking
using a reverse model and a language model trained with contest data.

E.15 SKIM (Kudo et al., 2023)

The SKIM team submission took a standard procedure of building ensemble Transformer models, including
base-model training, data augmentation using back-translation of base models, and retraining several final
models using back-translated training data. Each final model has its own architecture and configuration,
including a 10.5B parameter at most, substituting self and cross sublayers in decoder with cross+self-
attention sub-layer (Peitz et al., 2019). We select the best candidate from large candidate pools, namely 70
translations generated from 16 distinct models for each sentence, with an MBR reranking method using
COMET and COMET-QE (Fernandes et al., 2022). We also applied data augmentation and selection
techniques to training data of the Transformer models.

E.16 UPCite-CLILLF (no associated paper)

In this biomedical shared task, we have created data filters to better "choose" relevant training data for
fine-tuning, among provided training data sources. In particular, we have used the textometric analysis tool
ITRAMEUR to filter the segments and terms that characterize the test set and then extracted them from train-
ing data to fine-tune MBart-50 baseline (decoder_attention_heads: 16, decoder_ffn_dim: 4096,
decoder_layers: 12, encoder_attention_heads: 16, encoder_ffn_dim: 4096,
encoder_layers: 12, num_hidden_layers: 12, max_length: 200, epoch: 3). In doing
so, we hope to meet several objectives : to build feasible fine-tuning strategy to train biomedical
in-domain fr<->en models ; to specify filtering criteria of in-domain training data and to compare models’
predictions, fine-tuning data and test set in order to better understand how neural machine translation
systems work. We will also compare the pipeline of the shared task of this year to those of the past 2
years to evaluate the benefits of our training strategies of in-domain machine translation models.

30



E.17 UvA-LTL (Wu et al., 2023a)
We present our WMT system, UvA-MT, in the WMT 2023 shared general translation task. This year, we
developed a single Multilingual Machine Translation (MMT) system to participate in the two-directional
translation track between English and Hebrew. The main architecture is based on the prior work of
Beyond Shared Vocabulary (Wu and Monz, 2023). We scaled it up to a transformer-large level (422M
parameters). Additionally, we employed back translation to generate synthetic data and labeled them with
a new language tag. After convergence, we further fine-tuned the system without using synthetic data.
Several domain shift techniques were also introduced, such as the domain-aware language model, to filter
monolingual data.

E.18 YiShu (Min et al., 2023)
Yishu’s team participated in WMT23 Machine Translation Competition and adopted the most advanced
neural machine translation method. They use Transformer model structure and use large-scale parallel
corpus for training. In order to improve the translation quality, the team adopted cutting-edge data
preprocessing technology, various attention mechanisms and improved decoding strategies. In addition,
they also carried out in-depth parameter adjustment and model optimization. Yishu team incorporated
evaluation indicators such as BLEU and TER into the training constraints of the model to achieve better
translation performance. They strive for high accuracy and fluency in the competition, and strive to
achieve excellent results in the field of translation.

E.19 LanguageX (Zeng, 2023)
LanguageX’s submission is a many-to-many encoder decoder transformer model.
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F Automatic scores

This section contains automatic metric scores. While human judgement is the official ranking of systems
and their performance, we share automatic scores to show expected system performance for various
testsets.

We use COMET (Rei et al., 2020) as the primary metric and chrF (Popović, 2015) as the secondary
metric, following recommendation by (Kocmi et al., 2021). We also present BLEU (Papineni et al.,
2002) scores as it is still a widely used metric. The COMET scores are calculated with the default model
Unbabel/wmt22-comet-da. The chrF and BLEU scores are calculated using SacreBLEU (Post, 2018).
Scores are multiplied by 100. We ranked the systems according to their scores. Unconstrained systems
are indicated with a grey background in the tables.

System COMET

CUNI-GA 90.9
GPT4-5shot 90.8
ONLINE-W 89.4

GTCOM_Peter 88.9
ONLINE-B 88.8
ONLINE-A 88.2

CUNI-Transformer 88.0
ONLINE-G 87.7
MUNI-NLP 87.0
ONLINE-Y 86.5

NLLB_Greedy 86.3
NLLB_MBR_BLEU 86.3

Lan-BridgeMT 86.0

System chrF

GPT4-5shot 61.0
CUNI-GA 57.9

GTCOM_Peter 57.6
CUNI-Transformer 57.4

MUNI-NLP 57.0
Lan-BridgeMT 55.7

ONLINE-W 55.0
ONLINE-B 54.7
ONLINE-A 54.4
ONLINE-G 53.7
ONLINE-Y 53.4

NLLB_Greedy 52.5
NLLB_MBR_BLEU 52.3

System BLEU

GPT4-5shot 32.8
CUNI-Transformer 30.2

GTCOM_Peter 29.8
CUNI-GA 29.5

MUNI-NLP 28.3
Lan-BridgeMT 27.5

ONLINE-W 26.8
ONLINE-B 25.7
ONLINE-A 25.4

NLLB_MBR_BLEU 25.1
NLLB_Greedy 24.9

ONLINE-G 24.8
ONLINE-Y 24.2

Table 12: Scores for the cs→uk translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).

System COMET

ONLINE-W 91.8
CUNI-GA 90.8

ONLINE-B 89.9
GPT4-5shot 89.4
ONLINE-A 88.4

CUNI-DocTransformer 88.3
GTCOM_Peter 87.7

ONLINE-M 87.4
Lan-BridgeMT 87.3

CUNI-Transformer 87.2
NLLB_Greedy 87.1

ONLINE-Y 87.0
NLLB_MBR_BLEU 86.9

ONLINE-G 85.9
ZengHuiMT 85.4

System chrF

ONLINE-W 76.3
ONLINE-B 70.4

ZengHuiMT 67.5
ONLINE-A 66.3

CUNI-GA 65.9
GTCOM_Peter 65.4

CUNI-DocTransformer 65.1
ONLINE-Y 64.6

CUNI-Transformer 63.9
Lan-BridgeMT 63.8

ONLINE-G 63.7
ONLINE-M 63.2
GPT4-5shot 62.3

NLLB_Greedy 60.0
NLLB_MBR_BLEU 59.1

System BLEU

ONLINE-W 59.4
ONLINE-B 50.1
ONLINE-A 43.4

CUNI-GA 43.3
ZengHuiMT 43.1

CUNI-DocTransformer 42.5
GTCOM_Peter 42.3

CUNI-Transformer 41.4
ONLINE-Y 40.8

Lan-BridgeMT 40.7
ONLINE-G 39.6
ONLINE-M 39.6
GPT4-5shot 37.8

NLLB_Greedy 35.9
NLLB_MBR_BLEU 35.1

Table 13: Scores for the en→cs translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).

System COMET

GPT4-5shot 86.3
ONLINE-W 86.0
ONLINE-B 85.6
ONLINE-A 85.5
ONLINE-Y 84.9
ONLINE-M 84.8
ONLINE-G 84.6

GTCOM_Peter 82.7
NLLB_MBR_BLEU 81.4

ZengHuiMT 81.1
Lan-BridgeMT 80.9
NLLB_Greedy 79.9

AIRC 78.7

System chrF

ONLINE-W 72.1
ONLINE-A 70.0
GPT4-5shot 69.8
ONLINE-B 69.1
ONLINE-G 69.1
ONLINE-Y 68.4

ZengHuiMT 67.6
Lan-BridgeMT 66.7
GTCOM_Peter 66.6

ONLINE-M 66.5
NLLB_MBR_BLEU 57.6

NLLB_Greedy 57.3
AIRC 57.2

System BLEU

ONLINE-W 51.8
GPT4-5shot 47.9
ONLINE-A 47.9
ONLINE-B 46.3
ONLINE-G 46.0
ONLINE-Y 43.9

GTCOM_Peter 42.2
Lan-BridgeMT 42.1

ONLINE-M 41.3
ZengHuiMT 40.8

NLLB_Greedy 33.1
AIRC 32.4

NLLB_MBR_BLEU 32.4

Table 14: Scores for the de→en translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).
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System COMET

ONLINE-W 85.5
GPT4-5shot 85.0
ONLINE-B 84.8
ONLINE-Y 84.1
ONLINE-A 83.7
ONLINE-G 82.5
ONLINE-M 81.7

Lan-BridgeMT 80.4
ZengHuiMT 79.4

NLLB_MBR_BLEU 78.0
NLLB_Greedy 77.9

AIRC 72.9

System chrF

ONLINE-W 71.8
ONLINE-A 69.7

ZengHuiMT 69.4
GPT4-5shot 69.1
ONLINE-B 69.1
ONLINE-Y 69.1
ONLINE-G 69.0
ONLINE-M 66.9

Lan-BridgeMT 66.1
NLLB_Greedy 56.2

NLLB_MBR_BLEU 55.4
AIRC 52.2

System BLEU

ONLINE-W 47.8
ONLINE-A 43.7
GPT4-5shot 43.6
ONLINE-Y 43.6
ONLINE-G 43.2
ONLINE-B 42.7
ONLINE-M 40.5
ZengHuiMT 40.5

Lan-BridgeMT 39.4
NLLB_Greedy 31.1

NLLB_MBR_BLEU 29.6
AIRC 26.5

Table 15: Scores for the en→de translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).

System COMET

ONLINE-B 89.9
ONLINE-A 87.0
GPT4-5shot 86.9

GTCOM_Peter 86.7
ONLINE-G 85.6

ZengHuiMT 85.6
ONLINE-Y 84.9

UvA-LTL 84.7
NLLB_MBR_BLEU 82.9

NLLB_Greedy 82.8
Samsung_Research_Philippines 82.6

Lan-BridgeMT 82.4

System chrF

ONLINE-B 87.5
ZengHuiMT 76.3

GTCOM_Peter 76.2
ONLINE-A 73.3
GPT4-5shot 71.4

UvA-LTL 70.9
ONLINE-Y 70.5
ONLINE-G 69.8

NLLB_Greedy 64.4
Lan-BridgeMT 63.5

NLLB_MBR_BLEU 63.0
Samsung_Research_Philippines 55.5

System BLEU

ONLINE-B 76.5
GTCOM_Peter 59.2

ZengHuiMT 56.6
ONLINE-A 53.9
GPT4-5shot 51.2

UvA-LTL 51.0
ONLINE-Y 49.8
ONLINE-G 49.3

NLLB_Greedy 42.5
Lan-BridgeMT 41.4

NLLB_MBR_BLEU 40.7
Samsung_Research_Philippines 34.0

Table 16: Scores for the he→en (refA) translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6 |nw:0|space:no|version:2.2.1),
BLEU (nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).

System COMET

GPT4-5shot 86.4
ONLINE-B 85.6
ONLINE-A 85.3

GTCOM_Peter 84.5
ONLINE-G 84.0

UvA-LTL 83.3
ZengHuiMT 83.3
ONLINE-Y 82.9

NLLB_MBR_BLEU 81.8
NLLB_Greedy 81.7
Lan-BridgeMT 81.3

Samsung_Research_Philippines 81.3

System chrF

GPT4-5shot 69.5
ONLINE-B 66.5
ONLINE-A 65.6

GTCOM_Peter 65.3
ZengHuiMT 65.1

UvA-LTL 63.3
ONLINE-G 62.8
ONLINE-Y 62.0

NLLB_Greedy 59.6
Lan-BridgeMT 59.0

NLLB_MBR_BLEU 58.6
Samsung_Research_Philippines 51.3

System BLEU

GPT4-5shot 50.4
ONLINE-B 45.0

GTCOM_Peter 44.4
ONLINE-A 44.4

UvA-LTL 41.7
ZengHuiMT 41.7
ONLINE-G 40.9
ONLINE-Y 38.5

NLLB_Greedy 37.1
Lan-BridgeMT 36.2

NLLB_MBR_BLEU 36.2
Samsung_Research_Philippines 29.8

Table 17: Scores for the he→en (refB) translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6 |nw:0|space:no|version:2.3.1),
BLEU (nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1), COMET (Unbabel/wmt22-comet-da).

System COMET

ONLINE-B 86.4
ONLINE-A 85.7
GPT4-5shot 84.9

GTCOM_Peter 84.7
ONLINE-Y 84.7

UvA-LTL 84.2
Samsung_Research_Philippines 83.7

Lan-BridgeMT 83.0
NLLB_Greedy 82.9

ZengHuiMT 82.7
NLLB_MBR_BLEU 82.5

ONLINE-G 82.2

System chrF

ONLINE-B 66.4
ZengHuiMT 62.1
ONLINE-A 61.7

GTCOM_Peter 61.1
ONLINE-Y 60.4

UvA-LTL 59.0
ONLINE-G 58.1

Samsung_Research_Philippines 57.3
Lan-BridgeMT 54.9
NLLB_Greedy 54.8

NLLB_MBR_BLEU 54.3
GPT4-5shot 54.0

System BLEU

ONLINE-B 47.8
ONLINE-A 38.9

GTCOM_Peter 37.2
ONLINE-Y 37.2

ZengHuiMT 36.5
UvA-LTL 35.0

Samsung_Research_Philippines 33.3
ONLINE-G 33.2

NLLB_MBR_BLEU 30.8
Lan-BridgeMT 30.5
NLLB_Greedy 30.3

GPT4-5shot 27.0

Table 18: Scores for the en→he translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).
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System COMET

SKIM 84.0
GPT4-5shot 83.4
ONLINE-W 82.3

NAIST-NICT 81.9
ONLINE-Y 81.6
ONLINE-B 81.5
ONLINE-A 81.0

GTCOM_Peter 80.2
ANVITA 79.5

Lan-BridgeMT 79.3
ZengHuiMT 79.2
ONLINE-G 77.8
ONLINE-M 77.5

KYB 76.6
NLLB_MBR_BLEU 75.2

AIRC 74.5
NLLB_Greedy 74.3

System chrF

ONLINE-W 51.4
GPT4-5shot 51.2

SKIM 51.1
ONLINE-A 49.6

NAIST-NICT 49.5
ONLINE-Y 49.5

ZengHuiMT 49.5
ONLINE-B 49.3

GTCOM_Peter 48.7
Lan-BridgeMT 47.3

ANVITA 46.7
ONLINE-G 45.5

KYB 43.9
ONLINE-M 43.9

AIRC 40.5
NLLB_MBR_BLEU 39.2

NLLB_Greedy 39.0

System BLEU

ONLINE-W 25.9
SKIM 24.8

GPT4-5shot 24.1
ONLINE-B 23.9

NAIST-NICT 23.0
ONLINE-A 23.0

ZengHuiMT 22.6
GTCOM_Peter 22.3

ONLINE-Y 22.3
ANVITA 20.9

Lan-BridgeMT 20.2
ONLINE-G 18.3

KYB 17.6
ONLINE-M 17.2

AIRC 14.9
NLLB_MBR_BLEU 14.7

NLLB_Greedy 14.2

Table 19: Scores for the ja→en translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).

System COMET

ONLINE-B 88.2
ONLINE-W 87.5
ONLINE-Y 87.3
GPT4-5shot 87.0

SKIM 86.6
NAIST-NICT 86.2
ZengHuiMT 85.3
ONLINE-A 85.2

Lan-BridgeMT 84.5
ONLINE-M 13.3

ANVITA 82.7
KYB 80.8

AIRC 80.7
ONLINE-G 80.4

NLLB_Greedy 79.3
NLLB_MBR_BLEU 77.7

System chrF

ONLINE-B 35.2
ONLINE-Y 34.1
ONLINE-W 33.5

SKIM 33.5
ZengHuiMT 32.9

NAIST-NICT 32.0
ONLINE-A 31.4
GPT4-5shot 31.0

Lan-BridgeMT 30.4
ONLINE-M 29.6

ANVITA 29.3
KYB 27.7

AIRC 27.6
ONLINE-G 27.3

NLLB_Greedy 20.9
NLLB_MBR_BLEU 18.7

System BLEU

ONLINE-B 25.3
ONLINE-W 24.5
ONLINE-Y 24.5

SKIM 24.3
NAIST-NICT 22.6
ZengHuiMT 22.6
ONLINE-A 21.4
GPT4-5shot 21.3

Lan-BridgeMT 20.5
ONLINE-M 19.8

ANVITA 19.4
KYB 17.8

AIRC 17.6
ONLINE-G 17.2

NLLB_Greedy 11.3
NLLB_MBR_BLEU 9.0

Table 20: Scores for the en→ja translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:ja-mecab-0.996-IPA|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).

System COMET

GPT4-5shot 83.5
ONLINE-Y 82.5
ONLINE-B 82.3

ONLINE-W 82.2
ONLINE-G 82.0
ONLINE-A 81.9

PROMT 80.9
ONLINE-M 80.7

NLLB_MBR_BLEU 80.5
NLLB_Greedy 80.1
Lan-BridgeMT 79.9

ZengHuiMT 79.5

System chrF

GPT4-5shot 60.4
ONLINE-G 59.6
ONLINE-A 59.4
ONLINE-B 59.4

ZengHuiMT 58.9
ONLINE-Y 58.6

PROMT 58.4
ONLINE-W 58.3

Lan-BridgeMT 57.4
ONLINE-M 56.7

NLLB_MBR_BLEU 55.8
NLLB_Greedy 55.5

System BLEU

ONLINE-B 34.5
GPT4-5shot 34.4
ONLINE-G 34.0
ONLINE-A 33.8
ONLINE-Y 33.2
ONLINE-W 33.1

PROMT 32.8
Lan-BridgeMT 31.8

ZengHuiMT 31.3
NLLB_MBR_BLEU 31.0

ONLINE-M 30.7
NLLB_Greedy 30.3

Table 21: Scores for the ru→en translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).

System COMET

ONLINE-G 86.6
ONLINE-W 86.6
ONLINE-B 86.2
GPT4-5shot 86.1
ONLINE-Y 85.5
ONLINE-A 85.3
ONLINE-M 83.2

Lan-BridgeMT 83.1
NLLB_Greedy 82.9

NLLB_MBR_BLEU 82.7
PROMT 82.3

ZengHuiMT 81.3

System chrF

ONLINE-B 61.9
ONLINE-A 59.0
ONLINE-G 58.9

ZengHuiMT 58.8
ONLINE-W 56.6
ONLINE-Y 56.4
GPT4-5shot 56.2

Lan-BridgeMT 55.7
PROMT 55.4

ONLINE-M 55.1
NLLB_Greedy 53.3

NLLB_MBR_BLEU 53.1

System BLEU

ONLINE-B 40.4
ONLINE-A 34.8
ONLINE-G 32.9
ONLINE-Y 32.0

ZengHuiMT 31.6
ONLINE-W 31.4
ONLINE-M 30.9

Lan-BridgeMT 30.7
GPT4-5shot 30.6

PROMT 30.5
NLLB_MBR_BLEU 28.4

NLLB_Greedy 28.2

Table 22: Scores for the en→ru translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).
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System COMET

ONLINE-W 87.5
GPT4-5shot 87.1
ONLINE-B 86.8

GTCOM_Peter 86.3
ONLINE-A 86.3
ONLINE-G 86.2
ONLINE-Y 85.8

Lan-BridgeMT 84.8
ZengHuiMT 84.4

NLLB_MBR_BLEU 84.3
NLLB_Greedy 84.2

System chrF

GTCOM_Peter 69.3
ONLINE-W 69.2
ONLINE-B 69.0

ZengHuiMT 68.5
ONLINE-A 68.3
ONLINE-Y 68.2
GPT4-5shot 68.1
ONLINE-G 68.0

Lan-BridgeMT 66.2
NLLB_Greedy 62.4

NLLB_MBR_BLEU 62.4

System BLEU

ONLINE-W 47.4
GTCOM_Peter 46.4

ONLINE-B 46.0
ONLINE-A 45.9
ONLINE-Y 45.7
ONLINE-G 44.9
GPT4-5shot 43.9
ZengHuiMT 43.5

Lan-BridgeMT 42.3
NLLB_MBR_BLEU 38.1

NLLB_Greedy 37.8

Table 23: Scores for the uk→en translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).

System COMET

ONLINE-W 86.7
ONLINE-B 85.6
GPT4-5shot 85.3
ONLINE-G 85.3
ONLINE-A 83.2
ONLINE-Y 82.9

GTCOM_Peter 82.1
NLLB_Greedy 82.1

NLLB_MBR_BLEU 81.7
Lan-BridgeMT 80.4

ZengHuiMT 79.0

System chrF

ONLINE-B 61.7
ONLINE-W 59.2
ZengHuiMT 56.4
ONLINE-G 56.1
ONLINE-A 55.8
ONLINE-Y 55.4

GTCOM_Peter 54.4
GPT4-5shot 53.0

Lan-BridgeMT 51.9
NLLB_Greedy 50.8

NLLB_MBR_BLEU 50.5

System BLEU

ONLINE-B 39.8
ONLINE-W 34.9
ONLINE-A 30.3
ONLINE-Y 29.5
ONLINE-G 28.6

ZengHuiMT 27.8
GTCOM_Peter 27.5

GPT4-5shot 25.2
NLLB_MBR_BLEU 24.9

Lan-BridgeMT 24.6
NLLB_Greedy 24.5

Table 24: Scores for the en→uk translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).

System COMET

HW-TSC 82.8
ONLINE-B 82.7

Yishu 82.7
GPT4-5shot 81.6

Lan-BridgeMT 81.2
ONLINE-G 80.9
ONLINE-Y 80.6
ONLINE-A 80.3

ZengHuiMT 79.6
ONLINE-W 79.3

IOL_Research 79.2
ONLINE-M 77.7

NLLB_MBR_BLEU 76.8
ANVITA 76.6

NLLB_Greedy 76.4

System chrF

HW-TSC 57.5
ONLINE-B 57.5

Yishu 57.4
ZengHuiMT 54.6
ONLINE-G 53.9
ONLINE-A 53.4
GPT4-5shot 53.1

Lan-BridgeMT 53.1
ONLINE-W 52.5

IOL_Research 52.4
ONLINE-Y 52.3
ONLINE-M 49.7

ANVITA 47.1
NLLB_Greedy 46.1

NLLB_MBR_BLEU 45.8

System BLEU

HW-TSC 33.6
ONLINE-B 33.5

Yishu 33.4
ONLINE-A 28.3

Lan-BridgeMT 27.3
IOL_Research 27.2

ZengHuiMT 27.0
GPT4-5shot 26.8
ONLINE-G 26.6
ONLINE-W 26.4
ONLINE-Y 25.0
ONLINE-M 23.5

ANVITA 21.8
NLLB_Greedy 20.5

NLLB_MBR_BLEU 19.8

Table 25: Scores for the zh→en translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).

System COMET

ONLINE-B 88.1
Yishu 88.1

HW-TSC 87.3
GPT4-5shot 87.1
ONLINE-W 86.8

Lan-BridgeMT 86.6
ONLINE-Y 86.5
ONLINE-A 86.2

IOL_Research 85.3
ZengHuiMT 84.3
ONLINE-M 84.2
ONLINE-G 83.8

NLLB_Greedy 75.7
ANVITA 75.6

NLLB_MBR_BLEU 71.5

System chrF

HW-TSC 53.8
Yishu 53.0

ONLINE-B 52.9
ONLINE-A 52.8

IOL_Research 51.9
ONLINE-M 50.6
ONLINE-Y 49.8
ONLINE-G 49.4
ONLINE-W 47.3
ZengHuiMT 47.0

Lan-BridgeMT 46.8
GPT4-5shot 46.5

ANVITA 36.9
NLLB_Greedy 26.3

NLLB_MBR_BLEU 21.1

System BLEU

HW-TSC 58.6
ONLINE-A 58.5

Yishu 57.6
ONLINE-B 57.5

IOL_Research 56.9
ONLINE-M 54.9
ONLINE-Y 54.2
ONLINE-G 54.1

ZengHuiMT 52.9
ONLINE-W 52.1

Lan-BridgeMT 50.2
GPT4-5shot 49.6

ANVITA 38.9
NLLB_Greedy 27.4

NLLB_MBR_BLEU 19.1

Table 26: Scores for the en→zh translation task: chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), BLEU
(nrefs:1|case:mixed|eff:no|tok:zh|smooth:exp|version:2.2.1), COMET (Unbabel/wmt22-comet-da).
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G Head to head comparisons

Following tables show differences in average human scores for each language pair. The numbers in each
of the tables’ cells indicate the difference in average human scores for the system in that column and the
system in that row.

Because there were so many systems and data conditions the significance of each pairwise comparison
needs to be quantified. We applied Wilcoxon rank-sum test to measure the likelihood that such differences
could occur simply by chance. In the following tables ⋆ indicates statistical significance at p < 0.05,
† indicates statistical significance at p < 0.01, and ‡ indicates statistical significance at p < 0.001,
according to Wilcoxon rank-sum test.

Each table contains final rows showing the average score achieved by that system and the rank range
according to Wilcoxon rank-sum test (p < 0.05). Gray lines separate clusters based on non-overlapping
rank ranges.
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ONLINE-B — 0.1 0.4 0.9⋆ 1.3‡ 1.8† 2.4⋆ 3.1⋆ 4.1‡ 5.0‡ 5.0‡ 6.2‡ 6.7‡ 7.0‡
GPT4-5shot -0.1 — 0.4 0.8† 1.2‡ 1.8‡ 2.3† 3.1‡ 4.1‡ 4.9‡ 4.9‡ 6.2‡ 6.7‡ 6.9‡
Human-refA -0.4 -0.4 — 0.5‡ 0.9‡ 1.4‡ 1.9‡ 2.7‡ 3.7‡ 4.6‡ 4.6‡ 5.8‡ 6.3‡ 6.6‡

ONLINE-W -0.9 -0.8 -0.5 — 0.4 0.9 1.5 2.2 3.2‡ 4.1‡ 4.1‡ 5.3‡ 5.8‡ 6.1‡
CUNI-GA -1.3 -1.2 -0.9 -0.4 — 0.6 1.1 1.8 2.9† 3.7‡ 3.7† 5.0‡ 5.5‡ 5.7‡

CUNI-Transformer -1.8 -1.8 -1.4 -0.9 -0.6 — 0.5 1.3 2.3† 3.1‡ 3.2‡ 4.4‡ 4.9‡ 5.1‡
GTCOM_DLUT -2.4 -2.3 -1.9 -1.5 -1.1 -0.5 — 0.8 1.8‡ 2.6‡ 2.6‡ 3.9‡ 4.4‡ 4.6‡

ONLINE-A -3.1 -3.1 -2.7 -2.2 -1.8 -1.3 -0.8 — 1.0‡ 1.9‡ 1.9‡ 3.1‡ 3.6‡ 3.9‡

ONLINE-G -4.1 -4.1 -3.7 -3.2 -2.9 -2.3 -1.8 -1.0 — 0.8 0.9 2.1⋆ 2.6† 2.8‡
ONLINE-Y -5.0 -4.9 -4.6 -4.1 -3.7 -3.1 -2.6 -1.9 -0.8 — 0.0 1.3 1.8 2.0†
MUNI-NLP -5.0 -4.9 -4.6 -4.1 -3.7 -3.2 -2.6 -1.9 -0.9 -0.0 — 1.2 1.7 2.0‡

Lan-BridgeMT -6.2 -6.2 -5.8 -5.3 -5.0 -4.4 -3.9 -3.1 -2.1 -1.3 -1.2 — 0.5 0.7⋆
NLLB_MBR_BLEU -6.7 -6.7 -6.3 -5.8 -5.5 -4.9 -4.4 -3.6 -2.6 -1.8 -1.7 -0.5 — 0.2⋆

NLLB_Greedy -7.0 -6.9 -6.6 -6.1 -5.7 -5.1 -4.6 -3.9 -2.8 -2.0 -2.0 -0.7 -0.2 —

score 83.7 83.6 83.2 82.8 82.4 81.8 81.3 80.6 79.5 78.7 78.7 77.4 76.9 76.7
rank 1-3 1-3 1-3 4-8 4-8 4-8 4-8 4-8 9-11 9-13 9-13 10-13 10-13 14

Table 27: Head to head comparison for Czech→Ukrainian systems
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GPT4-5shot — 0.4 0.8 1.2† 1.5† 2.3† 2.6‡ 3.8‡ 5.0‡ 8.5‡ 10.3‡ 10.7‡ 11.5‡ 12.4‡
Human-refA -0.4 — 0.4 0.8⋆ 1.1⋆ 1.9† 2.2‡ 3.4‡ 4.6‡ 8.1‡ 9.9‡ 10.3‡ 11.1‡ 12.0‡
ONLINE-A -0.8 -0.4 — 0.4 0.7 1.6⋆ 1.9† 3.0‡ 4.2‡ 7.7‡ 9.6‡ 9.9‡ 10.8‡ 11.7‡
ONLINE-B -1.2 -0.8 -0.4 — 0.3 1.1 1.4⋆ 2.6‡ 3.8‡ 7.3‡ 9.2‡ 9.5‡ 10.3‡ 11.2‡

ONLINE-W -1.5 -1.1 -0.7 -0.3 — 0.8 1.1⋆ 2.3‡ 3.5‡ 7.0‡ 8.9‡ 9.2‡ 10.0‡ 10.9‡
ONLINE-Y -2.3 -1.9 -1.6 -1.1 -0.8 — 0.3 1.5‡ 2.7† 6.2‡ 8.0‡ 8.4‡ 9.2‡ 10.1‡
ONLINE-G -2.6 -2.2 -1.9 -1.4 -1.1 -0.3 — 1.2‡ 2.4 5.9‡ 7.7‡ 8.1‡ 8.9‡ 9.8‡

GTCOM_DLUT -3.8 -3.4 -3.0 -2.6 -2.3 -1.5 -1.2 — 1.2 4.7‡ 6.6‡ 6.9‡ 7.8‡ 8.6‡
ONLINE-M -5.0 -4.6 -4.2 -3.8 -3.5 -2.7 -2.4 -1.2 — 3.5‡ 5.3‡ 5.7‡ 6.5‡ 7.4‡

LanguageX -8.5 -8.1 -7.7 -7.3 -7.0 -6.2 -5.9 -4.7 -3.5 — 1.9 2.2† 3.0‡ 3.9†
Lan-BridgeMT -10.3 -9.9 -9.6 -9.2 -8.9 -8.0 -7.7 -6.6 -5.3 -1.9 — 0.3 1.2⋆ 2.1

NLLB_MBR_BLEU -10.7 -10.3 -9.9 -9.5 -9.2 -8.4 -8.1 -6.9 -5.7 -2.2 -0.3 — 0.8 1.7
AIRC -11.5 -11.1 -10.8 -10.3 -10.0 -9.2 -8.9 -7.8 -6.5 -3.0 -1.2 -0.8 — 0.9

NLLB_Greedy -12.4 -12.0 -11.7 -11.2 -10.9 -10.1 -9.8 -8.6 -7.4 -3.9 -2.1 -1.7 -0.9 —

score 90.3 89.9 89.6 89.1 88.8 88.0 87.7 86.5 85.3 81.8 80.0 79.6 78.8 77.9
rank 1-3 1-3 1-5 3-6 3-6 4-7 6-8 8-9 7-9 10-11 10-13 11-14 12-14 11-14

Table 28: Head to head comparison for German→English systems
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Human-refA — 1.3⋆ 3.6‡ 5.0‡ 5.1‡ 6.0‡ 6.6‡ 6.8‡ 7.0‡ 8.0‡ 8.6‡ 9.7‡ 10.2‡ 10.4‡ 10.4‡ 11.3‡

ONLINE-W -1.3 — 2.3‡ 3.7‡ 3.8‡ 4.7‡ 5.3‡ 5.5‡ 5.7‡ 6.7‡ 7.3‡ 8.4‡ 8.9‡ 9.1‡ 9.1‡ 10.0‡

GPT4-5shot -3.6 -2.3 — 1.4 1.5† 2.5⋆ 3.0 3.2‡ 3.4† 4.4‡ 5.1‡ 6.1‡ 6.6‡ 6.8‡ 6.8‡ 7.7‡
CUNI-GA -5.0 -3.7 -1.4 — 0.0‡ 1.0‡ 1.5⋆ 1.8‡ 2.0‡ 3.0‡ 3.6‡ 4.7‡ 5.1‡ 5.3‡ 5.4‡ 6.3‡

ONLINE-A -5.1 -3.8 -1.5 -0.0 — 1.0 1.5 1.7‡ 1.9 2.9⋆ 3.6‡ 4.7† 5.1‡ 5.3‡ 5.4⋆ 6.3‡
CUNI-DocTransformer -6.0 -4.7 -2.5 -1.0 -1.0 — 0.5 0.7‡ 0.9 1.9† 2.6‡ 3.7‡ 4.1‡ 4.3‡ 4.4† 5.3‡

ONLINE-B -6.6 -5.3 -3.0 -1.5 -1.5 -0.5 — 0.2‡ 0.4⋆ 1.4‡ 2.1‡ 3.2‡ 3.6‡ 3.8‡ 3.9‡ 4.8‡
NLLB_MBR_BLEU -6.8 -5.5 -3.2 -1.8 -1.7 -0.7 -0.2 — 0.2 1.2 1.9 3.0 3.4 3.6⋆ 3.7 4.5‡

GTCOM_DLUT -7.0 -5.7 -3.4 -2.0 -1.9 -0.9 -0.4 -0.2 — 1.0 1.7‡ 2.8† 3.2‡ 3.4‡ 3.5 4.3‡
CUNI-Transformer -8.0 -6.7 -4.4 -3.0 -2.9 -1.9 -1.4 -1.2 -1.0 — 0.7⋆ 1.7 2.2† 2.4‡ 2.4 3.3‡

NLLB_Greedy -8.6 -7.3 -5.1 -3.6 -3.6 -2.6 -2.1 -1.9 -1.7 -0.7 — 1.1 1.5 1.7⋆ 1.8 2.7‡
ONLINE-M -9.7 -8.4 -6.1 -4.7 -4.7 -3.7 -3.2 -3.0 -2.8 -1.7 -1.1 — 0.4 0.6† 0.7 1.6‡
ONLINE-G -10.2 -8.9 -6.6 -5.1 -5.1 -4.1 -3.6 -3.4 -3.2 -2.2 -1.5 -0.4 — 0.2 0.3 1.1†
ONLINE-Y -10.4 -9.1 -6.8 -5.3 -5.3 -4.3 -3.8 -3.6 -3.4 -2.4 -1.7 -0.6 -0.2 — 0.1 1.0⋆

Lan-BridgeMT -10.4 -9.1 -6.8 -5.4 -5.4 -4.4 -3.9 -3.7 -3.5 -2.4 -1.8 -0.7 -0.3 -0.1 — 0.9‡

LanguageX -11.3 -10.0 -7.7 -6.3 -6.3 -5.3 -4.8 -4.5 -4.3 -3.3 -2.7 -1.6 -1.1 -1.0 -0.9 —

score 85.4 84.1 81.8 80.4 80.3 79.4 78.8 78.6 78.4 77.4 76.8 75.7 75.2 75.0 75.0 74.1
rank 1 2 3-5 3-4 5-8 5-8 4-7 8-14 6-11 8-12 10-14 9-14 10-15 13-15 8-15 16

Table 29: Head to head comparison for English→Czech systems
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GPT4-5shot — 0.1 0.7 0.8 1.0† 1.3 2.3‡ 3.4‡ 5.0‡ 6.3‡ 12.1‡ 13.2‡ 15.4‡
ONLINE-B -0.1 — 0.6 0.7 0.8⋆ 1.2 2.2‡ 3.3‡ 4.8‡ 6.2‡ 12.0‡ 13.1‡ 15.2‡

ONLINE-W -0.7 -0.6 — 0.2⋆ 0.3‡ 0.6 1.6‡ 2.7‡ 4.3‡ 5.6‡ 11.5‡ 12.5‡ 14.7‡
ONLINE-A -0.8 -0.7 -0.2 — 0.1 0.5 1.4‡ 2.6‡ 4.1‡ 5.5‡ 11.3‡ 12.4‡ 14.5‡
ONLINE-Y -1.0 -0.8 -0.3 -0.1 — 0.3 1.3† 2.5⋆ 4.0‡ 5.3‡ 11.2‡ 12.3‡ 14.4‡

Human-refA -1.3 -1.2 -0.6 -0.5 -0.3 — 1.0‡ 2.1‡ 3.7‡ 5.0‡ 10.8‡ 11.9‡ 14.1‡

ONLINE-M -2.3 -2.2 -1.6 -1.4 -1.3 -1.0 — 1.1 2.7† 4.0‡ 9.9‡ 10.9‡ 13.1‡
ONLINE-G -3.4 -3.3 -2.7 -2.6 -2.5 -2.1 -1.1 — 1.5‡ 2.9‡ 8.7‡ 9.8‡ 11.9‡

Lan-BridgeMT -5.0 -4.8 -4.3 -4.1 -4.0 -3.7 -2.7 -1.5 — 1.4⋆ 7.2‡ 8.3‡ 10.4‡

LanguageX -6.3 -6.2 -5.6 -5.5 -5.3 -5.0 -4.0 -2.9 -1.4 — 5.8‡ 6.9‡ 9.1‡

NLLB_MBR_BLEU -12.1 -12.0 -11.5 -11.3 -11.2 -10.8 -9.9 -8.7 -7.2 -5.8 — 1.1 3.2‡
NLLB_Greedy -13.2 -13.1 -12.5 -12.4 -12.3 -11.9 -10.9 -9.8 -8.3 -6.9 -1.1 — 2.2‡

AIRC -15.4 -15.2 -14.7 -14.5 -14.4 -14.1 -13.1 -11.9 -10.4 -9.1 -3.2 -2.2 —

score 89.0 88.8 88.3 88.1 88.0 87.7 86.7 85.5 84.0 82.7 76.8 75.7 73.6
rank 1-5 1-5 1-4 2-6 4-6 1-6 7-8 7-8 9 10 11-12 11-12 13

Table 30: Head to head comparison for English→German systems
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Human-refA — 1.2‡ 1.9 2.1† 2.2⋆ 2.3‡ 4.1‡ 4.5‡ 4.6‡ 5.5‡ 7.6‡ 8.1‡ 9.9‡ 11.1‡ 11.1‡ 16.2‡ 19.4‡
GPT4-5shot -1.2 — 0.7 0.9 1.0 1.1 2.9⋆ 3.3† 3.4† 4.3‡ 6.4‡ 6.9‡ 8.8‡ 9.9‡ 10.0‡ 15.0‡ 18.3‡
ONLINE-B -1.9 -0.7 — 0.2 0.3 0.4⋆ 2.3‡ 2.7‡ 2.7‡ 3.6‡ 5.7‡ 6.2‡ 8.1‡ 9.3‡ 9.3‡ 14.3‡ 17.6‡
ONLINE-Y -2.1 -0.9 -0.2 — 0.1 0.2 2.0‡ 2.4‡ 2.5‡ 3.4‡ 5.5‡ 6.0‡ 7.8‡ 9.0‡ 9.0‡ 14.1‡ 17.3‡

SKIM -2.2 -1.0 -0.3 -0.1 — 0.1⋆ 1.9‡ 2.3‡ 2.4‡ 3.3‡ 5.4‡ 5.9‡ 7.7‡ 8.9‡ 8.9‡ 13.9‡ 17.2‡
ONLINE-W -2.3 -1.1 -0.4 -0.2 -0.1 — 1.8† 2.2† 2.3‡ 3.2‡ 5.3‡ 5.8‡ 7.6‡ 8.8‡ 8.8‡ 13.8‡ 17.1‡

LanguageX -4.1 -2.9 -2.3 -2.0 -1.9 -1.8 — 0.4 0.5 1.4 3.5‡ 4.0‡ 5.8‡ 7.0‡ 7.0‡ 12.0‡ 15.3‡
ONLINE-A -4.5 -3.3 -2.7 -2.4 -2.3 -2.2 -0.4 — 0.0 1.0 3.1‡ 3.5‡ 5.4‡ 6.6‡ 6.6‡ 11.6‡ 14.9‡

NAIST-NICT -4.6 -3.4 -2.7 -2.5 -2.4 -2.3 -0.5 -0.0 — 0.9 3.0‡ 3.5‡ 5.4‡ 6.5‡ 6.6‡ 11.6‡ 14.9‡
Lan-BridgeMT -5.5 -4.3 -3.6 -3.4 -3.3 -3.2 -1.4 -1.0 -0.9 — 2.1† 2.6‡ 4.5‡ 5.6‡ 5.6‡ 10.7‡ 14.0‡

ANVITA -7.6 -6.4 -5.7 -5.5 -5.4 -5.3 -3.5 -3.1 -3.0 -2.1 — 0.5 2.3‡ 3.5‡ 3.5‡ 8.5‡ 11.8‡
ONLINE-M -8.1 -6.9 -6.2 -6.0 -5.9 -5.8 -4.0 -3.5 -3.5 -2.6 -0.5 — 1.9† 3.0‡ 3.1† 8.1‡ 11.4‡

KYB -9.9 -8.8 -8.1 -7.8 -7.7 -7.6 -5.8 -5.4 -5.4 -4.5 -2.3 -1.9 — 1.2 1.2 6.2‡ 9.5‡
AIRC -11.1 -9.9 -9.3 -9.0 -8.9 -8.8 -7.0 -6.6 -6.5 -5.6 -3.5 -3.0 -1.2 — 0.0 5.0‡ 8.3‡

ONLINE-G -11.1 -10.0 -9.3 -9.0 -8.9 -8.8 -7.0 -6.6 -6.6 -5.6 -3.5 -3.1 -1.2 -0.0 — 5.0‡ 8.3‡

NLLB_Greedy -16.2 -15.0 -14.3 -14.1 -13.9 -13.8 -12.0 -11.6 -11.6 -10.7 -8.5 -8.1 -6.2 -5.0 -5.0 — 3.3‡

NLLB_MBR_BLEU -19.4 -18.3 -17.6 -17.3 -17.2 -17.1 -15.3 -14.9 -14.9 -14.0 -11.8 -11.4 -9.5 -8.3 -8.3 -3.3 —

score 80.7 79.5 78.8 78.6 78.5 78.4 76.6 76.2 76.1 75.2 73.1 72.6 70.8 69.6 69.6 64.5 61.3
rank 1-2 2-6 1-5 2-6 2-5 4-6 7-10 7-10 7-10 7-10 11-12 11-12 13-15 13-15 13-15 16 17

Table 31: Head to head comparison for English→Japanese systems
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English→Chinese
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Yishu — 0.0 0.1 0.2⋆ 0.3 0.7 0.8⋆ 2.0⋆ 2.3‡ 2.5‡ 3.6‡ 4.0‡ 5.0‡ 17.7‡ 17.9‡ 25.0‡
Human-refA -0.0 — 0.0 0.1† 0.3 0.7 0.8⋆ 1.9† 2.3‡ 2.5‡ 3.6‡ 3.9‡ 5.0‡ 17.7‡ 17.8‡ 25.0‡
GPT4-5shot -0.1 -0.0 — 0.1 0.3 0.6 0.7 1.9⋆ 2.3‡ 2.4‡ 3.5‡ 3.9‡ 5.0‡ 17.6‡ 17.8‡ 24.9‡

Lan-BridgeMT -0.2 -0.1 -0.1 — 0.2 0.5 0.6 1.8 2.2† 2.3‡ 3.4‡ 3.8‡ 4.9‡ 17.5‡ 17.7‡ 24.8‡
ONLINE-B -0.3 -0.3 -0.3 -0.2 — 0.3 0.4† 1.6† 2.0‡ 2.2‡ 3.2‡ 3.6‡ 4.7‡ 17.3‡ 17.5‡ 24.7‡

HW-TSC -0.7 -0.7 -0.6 -0.5 -0.3 — 0.1 1.3 1.7‡ 1.8‡ 2.9‡ 3.3‡ 4.4‡ 17.0‡ 17.2‡ 24.3‡
ONLINE-W -0.8 -0.8 -0.7 -0.6 -0.4 -0.1 — 1.2 1.6† 1.7‡ 2.8‡ 3.2‡ 4.3‡ 16.9‡ 17.1‡ 24.2‡
ONLINE-Y -2.0 -1.9 -1.9 -1.8 -1.6 -1.3 -1.2 — 0.4⋆ 0.5† 1.6‡ 2.0‡ 3.1‡ 15.7‡ 15.9‡ 23.0‡

IOL_Research -2.3 -2.3 -2.3 -2.2 -2.0 -1.7 -1.6 -0.4 — 0.2 1.2† 1.6† 2.7‡ 15.3‡ 15.5‡ 22.7‡
ONLINE-A -2.5 -2.5 -2.4 -2.3 -2.2 -1.8 -1.7 -0.5 -0.2 — 1.1⋆ 1.5⋆ 2.5‡ 15.2‡ 15.4‡ 22.5‡

LanguageX -3.6 -3.6 -3.5 -3.4 -3.2 -2.9 -2.8 -1.6 -1.2 -1.1 — 0.4 1.5 14.1‡ 14.3‡ 21.4‡
ONLINE-M -4.0 -3.9 -3.9 -3.8 -3.6 -3.3 -3.2 -2.0 -1.6 -1.5 -0.4 — 1.1 13.7‡ 13.9‡ 21.0‡
ONLINE-G -5.0 -5.0 -5.0 -4.9 -4.7 -4.4 -4.3 -3.1 -2.7 -2.5 -1.5 -1.1 — 12.6‡ 12.8‡ 20.0‡

ANVITA -17.7 -17.7 -17.6 -17.5 -17.3 -17.0 -16.9 -15.7 -15.3 -15.2 -14.1 -13.7 -12.6 — 0.2‡ 7.3‡

NLLB_Greedy -17.9 -17.8 -17.8 -17.7 -17.5 -17.2 -17.1 -15.9 -15.5 -15.4 -14.3 -13.9 -12.8 -0.2 — 7.1‡

NLLB_MBR_BLEU -25.0 -25.0 -24.9 -24.8 -24.7 -24.3 -24.2 -23.0 -22.7 -22.5 -21.4 -21.0 -20.0 -7.3 -7.1 —

score 82.2 82.1 82.1 82.0 81.8 81.5 81.4 80.2 79.8 79.7 78.6 78.2 77.1 64.5 64.3 57.2
rank 1-5 1-5 1-7 3-8 1-6 1-8 4-8 5-8 9-10 9-10 11-13 11-13 11-13 14 15 16

Table 32: Head to head comparison for English→Chinese systems
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Japanese→English
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GPT4-5shot — 0.7⋆ 0.9‡ 1.8‡ 1.9‡ 2.1‡ 2.5† 2.9‡ 4.4‡ 4.8‡ 5.5‡ 6.5‡ 6.7‡ 8.4‡ 8.9‡ 12.4‡ 14.6‡ 15.2‡

SKIM -0.7 — 0.2† 1.0⋆ 1.2 1.3† 1.7 2.2⋆ 3.6‡ 4.1‡ 4.7‡ 5.8‡ 5.9‡ 7.7‡ 8.1‡ 11.6‡ 13.8‡ 14.5‡
Human-refA -0.9 -0.2 — 0.9 1.0 1.1 1.5 2.0 3.5⋆ 3.9‡ 4.5‡ 5.6‡ 5.7‡ 7.5‡ 7.9‡ 11.4‡ 13.7‡ 14.3‡
ONLINE-Y -1.8 -1.0 -0.9 — 0.1 0.3 0.7 1.1 2.6† 3.1‡ 3.7‡ 4.7‡ 4.9‡ 6.6‡ 7.1‡ 10.6‡ 12.8‡ 13.4‡
ONLINE-B -1.9 -1.2 -1.0 -0.1 — 0.2 0.6 1.0 2.5† 2.9‡ 3.6‡ 4.6‡ 4.8‡ 6.5‡ 7.0‡ 10.5‡ 12.7‡ 13.3‡
ONLINE-A -2.1 -1.3 -1.1 -0.3 -0.2 — 0.4 0.8 2.3 2.8‡ 3.4‡ 4.4‡ 4.6‡ 6.3‡ 6.8‡ 10.3‡ 12.5‡ 13.2‡
ONLINE-W -2.5 -1.7 -1.5 -0.7 -0.6 -0.4 — 0.4 1.9† 2.4‡ 3.0‡ 4.0‡ 4.2‡ 6.0‡ 6.4‡ 9.9‡ 12.1‡ 12.8‡

NAIST-NICT -2.9 -2.2 -2.0 -1.1 -1.0 -0.8 -0.4 — 1.5† 2.0‡ 2.6‡ 3.6‡ 3.8‡ 5.5‡ 6.0‡ 9.5‡ 11.7‡ 12.3‡
GTCOM_DLUT -4.4 -3.6 -3.5 -2.6 -2.5 -2.3 -1.9 -1.5 — 0.5‡ 1.1† 2.1‡ 2.3† 4.0‡ 4.5‡ 8.0‡ 10.2‡ 10.9‡

Lan-BridgeMT -4.8 -4.1 -3.9 -3.1 -2.9 -2.8 -2.4 -2.0 -0.5 — 0.6 1.7 1.8 3.6‡ 4.0‡ 7.5‡ 9.7‡ 10.4‡
ANVITA -5.5 -4.7 -4.5 -3.7 -3.6 -3.4 -3.0 -2.6 -1.1 -0.6 — 1.1 1.2 3.0‡ 3.4‡ 6.9‡ 9.1‡ 9.8‡

ONLINE-G -6.5 -5.8 -5.6 -4.7 -4.6 -4.4 -4.0 -3.6 -2.1 -1.7 -1.1 — 0.2 1.9‡ 2.4‡ 5.9‡ 8.1‡ 8.7‡
LanguageX -6.7 -5.9 -5.7 -4.9 -4.8 -4.6 -4.2 -3.8 -2.3 -1.8 -1.2 -0.2 — 1.8‡ 2.2‡ 5.7‡ 7.9‡ 8.6‡

ONLINE-M -8.4 -7.7 -7.5 -6.6 -6.5 -6.3 -6.0 -5.5 -4.0 -3.6 -3.0 -1.9 -1.8 — 0.5 4.0‡ 6.2‡ 6.8‡
KYB -8.9 -8.1 -7.9 -7.1 -7.0 -6.8 -6.4 -6.0 -4.5 -4.0 -3.4 -2.4 -2.2 -0.5 — 3.5‡ 5.7‡ 6.4‡

AIRC -12.4 -11.6 -11.4 -10.6 -10.5 -10.3 -9.9 -9.5 -8.0 -7.5 -6.9 -5.9 -5.7 -4.0 -3.5 — 2.2† 2.9†

NLLB_MBR_BLEU -14.6 -13.8 -13.7 -12.8 -12.7 -12.5 -12.1 -11.7 -10.2 -9.7 -9.1 -8.1 -7.9 -6.2 -5.7 -2.2 — 0.6
NLLB_Greedy -15.2 -14.5 -14.3 -13.4 -13.3 -13.2 -12.8 -12.3 -10.9 -10.4 -9.8 -8.7 -8.6 -6.8 -6.4 -2.9 -0.6 —

score 81.3 80.6 80.4 79.5 79.4 79.2 78.8 78.4 76.9 76.4 75.8 74.8 74.6 72.9 72.4 68.9 66.7 66.1
rank 1 2-4 3-8 3-8 2-8 3-9 2-8 3-8 8-9 10-13 10-13 10-13 10-13 14-15 14-15 16 17-18 17-18

Table 33: Head to head comparison for Japanese→English systems
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Lan-BridgeMT — 1.9 2.6‡ 2.7‡ 2.9‡ 3.1‡ 3.2‡ 3.8‡ 5.1‡ 5.2‡ 5.6‡ 6.0‡ 6.7‡ 6.8‡ 8.9‡ 10.3‡
GPT4-5shot -1.9 — 0.6‡ 0.8‡ 1.0‡ 1.1† 1.2‡ 1.9† 3.1‡ 3.3‡ 3.7‡ 4.1‡ 4.7‡ 4.9‡ 6.9‡ 8.3‡

Yishu -2.6 -0.6 — 0.2 0.3⋆ 0.5 0.6 1.3 2.5 2.6‡ 3.1‡ 3.5‡ 4.1‡ 4.3‡ 6.3‡ 7.7‡
ONLINE-W -2.7 -0.8 -0.2 — 0.2⋆ 0.4 0.5 1.1 2.3⋆ 2.5‡ 2.9‡ 3.3‡ 4.0‡ 4.1‡ 6.2‡ 7.6‡
ONLINE-G -2.9 -1.0 -0.3 -0.2 — 0.2 0.3 0.9 2.2 2.3⋆ 2.8 3.1‡ 3.8‡ 3.9‡ 6.0‡ 7.4‡
ONLINE-B -3.1 -1.1 -0.5 -0.4 -0.2 — 0.1† 0.8 2.0‡ 2.1‡ 2.6‡ 3.0‡ 3.6‡ 3.8‡ 5.8‡ 7.2‡
ONLINE-Y -3.2 -1.2 -0.6 -0.5 -0.3 -0.1 — 0.7 1.9 2.0† 2.5⋆ 2.9‡ 3.5‡ 3.7‡ 5.7‡ 7.1‡

HW-TSC -3.8 -1.9 -1.3 -1.1 -0.9 -0.8 -0.7 — 1.2‡ 1.4‡ 1.8‡ 2.2‡ 2.8‡ 3.0‡ 5.0‡ 6.5‡
ONLINE-A -5.1 -3.1 -2.5 -2.3 -2.2 -2.0 -1.9 -1.2 — 0.1⋆ 0.6 1.0‡ 1.6‡ 1.8‡ 3.8‡ 5.2‡

IOL_Research -5.2 -3.3 -2.6 -2.5 -2.3 -2.1 -2.0 -1.4 -0.1 — 0.4 0.8† 1.5‡ 1.6‡ 3.7‡ 5.1‡
LanguageX -5.6 -3.7 -3.1 -2.9 -2.8 -2.6 -2.5 -1.8 -0.6 -0.4 — 0.4† 1.0‡ 1.2‡ 3.2‡ 4.6‡

ONLINE-M -6.0 -4.1 -3.5 -3.3 -3.1 -3.0 -2.9 -2.2 -1.0 -0.8 -0.4 — 0.6† 0.8 2.8‡ 4.3†
NLLB_MBR_BLEU -6.7 -4.7 -4.1 -4.0 -3.8 -3.6 -3.5 -2.8 -1.6 -1.5 -1.0 -0.6 — 0.2 2.2 3.6

Human-refA -6.8 -4.9 -4.3 -4.1 -3.9 -3.8 -3.7 -3.0 -1.8 -1.6 -1.2 -0.8 -0.2 — 2.0⋆ 3.4
NLLB_Greedy -8.9 -6.9 -6.3 -6.2 -6.0 -5.8 -5.7 -5.0 -3.8 -3.7 -3.2 -2.8 -2.2 -2.0 — 1.4

ANVITA -10.3 -8.3 -7.7 -7.6 -7.4 -7.2 -7.1 -6.5 -5.2 -5.1 -4.6 -4.3 -3.6 -3.4 -1.4 —

score 82.9 80.9 80.3 80.2 80.0 79.8 79.7 79.1 77.8 77.7 77.2 76.9 76.2 76.1 74.0 72.6
rank 1-2 1-2 3-8 3-7 5-10 3-7 4-9 3-8 6-10 10-11 8-11 12-13 13-16 12-15 14-16 13-16

Table 34: Head to head comparison for Chinese→English systems
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Abstract

We present an overview of the Biomedical
Translation Task that was part of the Eighth
Conference on Machine Translation (WMT23).
The aim of the task was the automatic transla-
tion of biomedical abstracts from the PubMed
database. It included twelve language direc-
tions, namely, French, Spanish, Portuguese,
Italian, German, and Russian, from and into
English. We received submissions from 18 sys-
tems and for all the test sets that we released.
Our comparison system was based on Chat-
GPT 3.5 and performed very well in compari-
son to many of the submissions.

1 Introduction

We describe the eighth edition of the Biomedical
Translation Task1 that was part of the Eighth Con-
ference on Machine Translation (WMT23). Similar
to previous years, we released multiple test sets
based on biomedical abstracts that we retrieved
from the PubMed database.2

∗The contribution of the authors are the following: MN
prepared the MEDLINE test sets, performed test set valida-
tion, manual validation, and organized the shared task; AJY
performed test set validation, manual validation, the automatic
evaluation and co-organized the shared task; AN compiled
information on participants’ methods, performed test sets vali-
dation, manual validation and annotations of chatGPT outputs
on the en2fr test set; RB, GMDN, RR, PT, FV, MVN, LY, DW
performed test set validation and/or manual validation; and CG
used OpenAI API to create the ChatGPT 3.5 point of compar-
ison; All authors approved the final version of the manuscript.
E-mail for contact: mariana.lara-neves@bfr.bund.de

1http://www2.statmt.org/wmt23/
biomedical-translation-task.html

2https://pubmed.ncbi.nlm.nih.gov/

We addressed six languages pairs, namely Ger-
man (de), Spanish (es), French (fr), Italian (it),
Russian (ru), and Portuguese (pt), from and into
English, as following:

• German into English (de2en) and English into
German (en2de);

• Spanish into English (es2en) and English into
Spanish (en2es);

• French into English (fr2en) and English into
French (en2fr);

• Italian into English (it2en) and English into
Italian (en2it);

• Russian into English (ru2en) and English into
Russian (en2ru);

• Portuguese into English (pt2en) and English
into Portuguese (en2pt).

Different from the previous editions of the
shared task, we did not release test sets for Chinese–
English or English–Chinese. Novel this year is that
we relied on ChatGPT 3.5 to create a performance
point of comparison (cf. Section 3), instead of our
baseline systems from the previous years.

2 Test sets

We created the test sets following a similar pro-
cedure to previous years. We downloaded the set
composed of daily update files from Pubmed3 on

3https://ftp.ncbi.nlm.nih.gov/pubmed/
updatefiles/
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April 26, 2023 and searched for articles that con-
tained abstracts in both English and one of the six
languages that we consider. We then randomly
selected 100 bilingual abstracts for each of the lan-
guage pairs.

For all language pairs, we split the sentences of
the abstracts using SciSpacy (Neumann et al., 2019)
and aligned them with the Geometric Mapping and
Alignment (GMA) tool.4 Native speakers of the
languages manually checked the alignment quality
in the Appraise tool (Federmann, 2018). In this
evaluation, we classified the automatically aligned
sentences into five categories:

1. “OK”: both sentences contain the same infor-
mation;

2. “Source>Target”: the source sentence con-
tains more information than the target one;

3. “Target>Source”. the target sentence contains
more information than the source one;

4. “Overlap”: both source and target sentences
have information not contained in the other
one;

5. “No Alignment”: the sentences refer to com-
pletely different contents, or one of hem is
missing.

We present the results in Table 1. The highest
alignment rates, i.e. the “OK” ones, were for Por-
tuguese (at least 90%, both en2pt and pt2en), and
the lowest ones for Russian (only 52% for en2ru).
For the latter, we notice that the biggest difference
with respect to the other language pairs is that many
sentence pairs are not aligned, i.e. the “No Align-
ment” ones. The percentages for “Source>Target”,
“Target>Source”, and “Overlap” are similar to the
other language pairs. An analysis of these errors
shows that they are due both to the sentence split-
ting and the alignment tool.

We released our test sets in two submission sys-
tems: (i) our Google form as announced on our
shared task’s web site; (ii) in OCELoT,5 both in the
General and in the Biomedical test sets.

3 Comparison system - ChatGPT 3.5

Instead of providing a baseline this year, we choose
to provide translations from the ChatGPT 3.5

4https://nlp.cs.nyu.edu/GMA/
5https://ocelot-wmt23.mteval.org/

model through the OpenAI API. We refer to Chat-
GPT as a comparison system rather than a baseline,
as it does not satisfy the usual criterion for a base-
line as being a transparent, well-understood and re-
producible model that provides a good (generally)
lower bound against which to compare systems.
Notably, the model is closed-sourced and trained
on huge amounts of data, of which the details are
not openly known.

ChatGPT 4 excels at many tasks (Chen et al.,
2023; Jahan et al., 2023), including translation.
Researchers from Tencent identified in a limited
early evaluation done before the API was availa-
ble ChatGPT 4 as a good translator (Jiao et al.,
2023). Please note that we abstained from using the
stronger ChatGPT 4 and used instead the faster but
expectedly weaker ChatGPT 3.5. More precisely
we used the model snapshot “gpt-3.5-turbo-0613”,
computed on June 13th 2023 but with the training
data “up to Sept 2021”6. This reduces the risk of
data contamination with respect to the abstracts
used in our test sets, which were published in 2023.

The ChatGPT variants are large and trained on
large quantities of data, but are generalist systems.
Ideally, systems dedicated to translation or special-
ized in biomedical translation would be able to
outperform them, or at least outperform the faster
lower-quality version that we proposed here as a
point of comparison. Otherwise, there are fewer
reasons remaining for developing and using an al-
ternative machine translation (MT) system: data
privacy, self-hosting, usage in low-resources, non-
connected systems.

We used the following prompt to perform the
translations and to keep ChatGPT from produc-
ing any comments beyond the translation text it-
self: “You are a helpful assistant specialised in
biomedical translation. You will be provided
with a sentence in {src}, and your task is to trans-
late it into {trg}.” where {src} was the source lan-
guage and {trg} was the target language (e.g. src =
Italian and trg = English).

Using ChatGPT through the API proved to be
more challenging than expected and seemed to act
as a stress test for the API servers or for the cloud-
fare content distribution network proxy they use.
For example we hit various intentional limitations,
such as a rate limit of 90,000 tokens per minute.
We then faced multiple other errors: read time out

6https://platform.openai.com/docs/models/
gpt-3-5
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Language OK Source>Target Target>Source Overlap No Align. Total

de2en 352 (82.2%) 20 (4.7%) 12 (2.8%) 9 (2.1%) 35 (8.2%) 428
en2de 471 (87.7%) 28 (5.2%) 9 (1.7%) 11 (2.0%) 18 (3.4%) 537

es2en 412 (89.5%) 16 (3.5%) 11 (2.4%) - 21 (4.6%) 460
en2es 388 (88.4%) 21 (4.8%) 15 (3.4%) 6 (1.4%) 9 (2.0%) 439

fr2en 215 (85.3%) 17 (6.7%) 10 (4.0%) 7 (2.8%) 3 (1.2%) 252
en2fr 432 (83.7%) 78 (15.1%) 4 (0.8%) - 2 (0.4%) 516

it2en 310 (73.4%) 46 (10.9%) 23 (5.5%) 6 (1.4%) 37 (8.8%) 422
en2it 298 (67.0%) 33 (7.4%) 29 (6.5%) 12 (2.7%) 73 (16.4%) 445

pt2en 385 (93.7%) 6 (1.4%) 7 (1.7%) 9 (2.2%) 4 (1.0%) 411
en2pt 450 (90.6%) 21 (4.2%) 12 (2.4%) 9 (1.8%) 5 (1.0%) 497

ru2en 233 (70.0%) 30 (9.0%) 16 (4.8%) 10 (3.0%) 44 (13.2%) 333
en2ru 221 (52.9%) 44 (10.5%) 23 (5.5%) 18 (4.3%) 112 (26.8%) 418

Table 1: Statistics (number of sentences and percentages) of the automatic alignment quality of the MEDLINE test
sets.

in the object “HTTPSConnectionPool” with host
api.openai.com, HTTP 502 (bad gateway), and “in-
ternal error”. After writing our API calling code
in an idempotent way, we were able to interrupt it
whenever it was stuck and restart it whenever we
stopped it or it stopped with an error. To this end,
the script would skip over the existing translations
and proceed with sending for translation, one by
one, the rest of the entries not yet translated.

The overall experience remained positive, as
building the ChatGPT 3.5 translations involved
674,470 tokens, resulting in a total API cost of only
1.15 USD. However, we have no information on
the CO2 impact of the computation, which should
include the impact of inference for translations as
well as a fraction of the impact of training the Chat-
GPT 3.5 model. Writing the scripts and executing
them took less than three days. The execution itself
was fast; as we reported here, at times we exceeded
the API limit of 90,000 tokens per minute.

4 Teams and systems

After the release of the test sets, the teams had
around two weeks to process the data and submit
their translations. We collected submissions from
the two systems (our Google form and OCELoT)
belonging to 18 teams (or systems), as listed in
Table 2. We allowed up to three runs for each
team and language pair. From all submissions,
we skipped only one translation from one team,
namely the one for fr2en from UPCite-CLILLF,
since it was in French (instead of English).

This year, the Google submission form also in-
cluded questions on material and methods used by

participants. The questions were identical to those
used in 2022. The response rate was lower than in
previous years (2020-2022) when the questionnaire
was operated separately from the submission sys-
tem and teams were asked to complete the survey
after submission. In Ocelot submissions, partici-
pants were asked to submit a narrative description
of their method. None of the teams reported the
CO2 impact of their participation in the task.

Many teams approached the task with
transformer-based neural MT (NMT), relying on
existing implementations. The use of prompting
autoregressive models was also introduced this
year. Table 3 presents details of the teams’
methods.

5 Automatic evaluation

We present BLEU scores (Papineni et al., 2002) for
the automatic evaluation in Tables 4 and 5. This in-
cludes translations received from both submission
systems (Google Form and OCELoT).

For both en2de and de2en test sets, the submis-
sions from HuaweiTSC, ZengHuiMT, GPT4-5shot,
and PROMT teams obtained higher scores than
our comparison system (ChatGPT) according to
BLEU. The BLEU scores of the Lan-BridgeMT
submissions (which use GPT3 and GPT4) came
very close to those of ChatGPT for most language
pairs, e.g., en2es, en2it, and were sometimes higher,
e.g., fr2en, it2en, and ru2en. Most of the ONLINE
system submissions also got higher BLEU scores
than ChatGPT. However, it is worth bearing in
mind the possibility that the ONLINE systems had
previously seen our test sets in the large data on
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Team ID Institution Biom. task Publication

AIRC Artificial Intelligence Research Center, Japan - (Rikters and Miwa, 2023)
GPT4-5shot Microsoft - (Hendy et al., 2023)
GTCOM_Peter Global Tone Communication, China - (Zong, 2023)
HuaweiTSC Huawei Translation Service Center Yes (Wu et al., 2023)
Lan-BridgeMT Lan-Bridge Communications, China Yes (Wu and Hu, 2023)
NLLB_Greedy (unknown) - -
NLLB_MBR_BLEU (unknown) - -
NRPU_FJWU Fatima Jinnah Women University, Pakistan Yes (Firdous and Rauf, 2023)
ONLINE-A (unknown) - -
ONLINE-B (unknown) - -
ONLINE-G (unknown) - -
ONLINE-M (unknown) - -
ONLINE-W (unknown) - -
ONLINE-Y (unknown) - -
PROMT PROMT LLC - (Molchanov and Kovalenko, 2023)
UPCite-CLILLF Université Paris Cité, France Yes (Zhu et al., 2023)
ustc_ml_group University of Science and Technology, China Yes -
ZengHuiMT LanguageX, China - (Zeng, 2023)

Table 2: List of the participating teams and systems. The third column indicates the teams that directly participated
on the Biomedical Translation Task.

Team ID Language pair MT method Trained Fine-
Tuned

BT LM

AIRC en/de Ensemble of Mega transformer
models

Yes No Yes Yes

GTCOM en/de Transformer model - - - multilingual
models

HuaweiTSC en/de Transformer model - - - -
Lan-BridgeMT en/de, en/es,

en/fr, en/it,
en/pt, en/ru

GPT prompting No No No GPT3, GPT4

NRPU_FJWU en/fr Fairseq NMT No Yes No No
PROMT en/ru Marian NMT Yes No - -
UPCite-CLILLF en/fr MBart-50 No Yes No No
USTC en/fr Fairseq NMT Yes No No No
ZengHuiMT en/de, en/ru many-to-many encoder decoder

transformer model
- - - -

Table 3: Overview of methods used by participating teams. Information is self-reported through the Google/Ocelot
submission form for each selected “best run”. BT indicates if backtranslation is used and LM if language models
were used.

which they were trained, or were used by the au-
thors to assist the production of the abstracts used
in the test sets. Although we use the ChatGPT
model based on data prior to 2022, meaning that it
could not be trained on the parallel abstracts used
in the test sets, it is also possible that ChatGPT was
used by authors to produce the abstracts that form
part of the test set.

6 Manual evaluation

We carried out a manual validation of the quality
of the translations for some language pairs using
the “3-way ranking” task in the Appraise tool. It
consists of a pairwise comparison with three text
spans, for example for en2pt: (i) the source text

in English, (ii) translation A in Portuguese, and
(iii) translation B also in Portuguese. The text is
either a sentence or the whole abstract, i.e., we
carried out the validation for each sentence and
then for the complete abstract.

The evaluator should choose one of the following
four options: (i) A=B, i.e., both translations have
similar quality; (ii) A>B, i.e., translation A is better
than translation B; (iii) A<B, i.e., translation A is
worse than translation B; and (iv) error flag in case
one or both of the translations do not refer to the
same source text.

For the language pairs that we considered, we
randomly selected the abstracts until we had at
least 100 sentences. We restricted the abstracts

46



Teams Runs en2de en2es en2fr en2it en2pt en2ru

AIRC 0.3443
GPT4-5shot 0.3881 0.3649
HuaweiTSC run1* *0.4369
HuaweiTSC run2 0.4345
HuaweiTSC run3 0.4422
Lan-BridgeMT 0.3463 0.5098 0.5164 0.4640 0.4832 0.3361
NLLB_Greedy 0.3663 0.3461
NLLB_MBR_BLEU 0.3625 0.3504
ONLINE-A 0.4332 0.4125
ONLINE-B 0.4298 0.4648
ONLINE-G 0.4263 0.3939
ONLINE-M 0.3984 0.3827
ONLINE-W 0.4451 0.4083
ONLINE-Y 0.4075 0.4049
PROMT 0.3872
UPCite-CLILLF 0.2706
ustc_ml_group run1 0.4908
ustc_ml_group run2* *0.4998
ZengHuiMT 0.3883 0.3775

ChatGPT 0.3851 0.5097 0.5318 0.4607 0.5098 0.3513

Table 4: BLEU scores for “OK” aligned test sentences, from English. The submissions without a run number are
the ones that were submitted to OCELoT. Primary runs are marked by *.

Teams Runs de2en es2en fr2en it2en pt2en ru2en

AIRC 0.3714
GPT4-5shot 0.4371 0.4774
GTCOM_Peter 0.4212
HuaweiTSC 0.4771
HuaweiTSC run1* *0.4778
HuaweiTSC run2 0.4776
HuaweiTSC run3 0.4853
Lan-BridgeMT 0.4215 0.5769 0.4323 0.5272 0.5569 0.4750
NLLB_Greedy 0.4040 0.4386
NLLB_MBR_BLEU 0.3992 0.4437
NRPU_FJWU run1* *0.3350
NRPU_FJWU(1) run1 0.3082
NRPU_FJWU run2 0.2202
NRPU_FJWU run3 0.2395
NRPU_FJWU(1) run3 0.3350
ONLINE-A 0.4606 0.5723
ONLINE-B 0.4662 0.4648
ONLINE-G 0.4364 0.5445
ONLINE-M 0.4465 0.4607
ONLINE-W 0.4759 0.4919
ONLINE-Y 0.4075 0.5089
PROMT 0.5156
UPCite-CLILLF
ustc_ml_group run1* *0.4124
ustc_ml_group run2 0.3854
ZengHuiMT 0.4316 0.5256

ChatGPT 0.4360 0.5827 0.4263 0.5067 0.5915 0.4417

Table 5: BLEU scores for “OK” aligned test sentences into English. The submissions without a run number are the
ones that were submitted to OCELoT. Primary runs are marked by *.

to those in which the rate of well aligned (OK)
sentences was at least 80%. We considered all pair-
wise combinations from the following translations:
(i) the reference translation, as originally available
in PubMed, (ii) translations from ChatGPT 3.5, and

(iii) translations from systems that directly took
part on the Biomedical Translation Task, and not
only on the General Task (see Table 2).

We present the results in Tables 6 and 7. We
compute a significance test (Wilcoxon test) when
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comparing the systems (or reference translation)
and we show in bold and with a star (⊛) those cases
in which one system (or the reference translation)
was better than the other one.

None of the teams could outperform the refer-
ence translation for all of the language pairs. Fur-
ther, for all language pairs that we checked, the
quality of the translations from ChatGPT was simi-
lar to the reference translation at the sentence level,
i.e., there was no significant difference in the re-
sults. However, on the abstract level, the ChatGPT
translations were found to be better than the refer-
ence translations for some language pairs, namely,
en2ru and fr2en.

For some of the languages (e.g. en2de), the
rankings from the automatic and manual transla-
tions appear consistent. The BLEU score from
the HuaweiTSC team was much higher than
the one from Lan-BrigdeMT (0.43 versus 0.35),
and indeed, the quality of the translations from
HuaweiTSC was better than the ones from Lan-
BrigdeMT. There are however some differences in
rankings. For example the manual rankings do not
correspond exactly to the automatic rankings for
ru2en, fr2en and en2it. Notably, ChatGPT appears
to be penalised by BLEU and does better in the
manual rankings.

6.1 Quality of the translations

We discuss below, for some language pairs, some
of the mistakes that we observed during the manual
validation of the submissions.

en2de Similarly to the last few years, the qual-
ity of the translations into German was very high.
Overall, the individual translations were often sim-
ilar and differed only in nuances, such as the or-
der of the syntactic constituents. Some models
seemed to favour compound nouns more often than
others (e.g., Lammellentrennung vs Trennung der
Lamellen). However, this usually had no impact on
the translation quality. Some systems translated
idioms, such as "window of opportunity", liter-
ally into German. Especially specialist terms were
translated differently by the individual models and
it was rather challenging to judge which of the
translated terms has better quality (see Example 1).

(1) en: The most common surgical fixation op-
tions are cerclages and screws, . . .
de1: Die häufigsten chirurgischen Fixierung-
soptionen sind Zerkel und Schrauben, . . .

de2: Die häufigsten chirurgischen Fix-
ierungsmöglichkeiten sind Zuggurte und
Schrauben, . . .
de3: Die häufigsten operativen Fixations-
möglichkeiten sind Cerclagen und Schrauben,
. . .

en2es As observed in the last few years, the over-
all quality of the translations into Spanish was very
high. MT systems output was indistinguishable
from human translations in many occasions for
both systems evaluated: ChatGPT and Lan-Bridge.

The reference translation outperformed Lan-
Bridge when evaluating sentences and abstracts.
The reference translation was more consistent in
the abstracts, had a higher fluency in the transla-
tion and a better choice of terminology than Lan-
BridgeMT.

For example, "illness recurrence" was translated
as "recurrencia’ by Lan-Bridge, whereas the ref-
erence translation used a more appropriate term
"recidiva". Another example in the translation of
the term "coronary heart disease", that Lan-Bridge
translates literaly as "enfermedad coronaria", while
the reference translation uses the medical term "car-
diopatía coronaria".

As mentioned, the reference translation was
more fluent when compared to Lan-Bridge, ofte-
times having a slightly better word order, better con-
cordance subject/verb and using punctuation (com-
mas and full stops) more fluently. Similarly, the
reference translation slightly outperformed Chat-
GPT when comparing abstracts.

However the baseline translation was better than
the reference translation at sentence level, this was
due to a more overall fluent and consistent transla-
tion of abstracts observed in the reference transla-
tion when compared to ChatGPT. It must be noted
that ChatGPT performed very well compared to
the reference translation in most abstracts evalu-
ated manually.

In the following example ChatGPT used the cor-
rect punctuation for numbers above 1,000 in Span-
ish and the reference translation used the incorrect
punctuation and was penalized for this fact.

(2) ChatGPT: Se incluyeron un total de 22,148
pacientes de 40 estudios.
Reference: Se incluyó un total de 22.148 pa-
cientes de 40 estudios.

When compared against each other, ChatGPT
outperformed Lan-Bridge both at the abstract level
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Lang. dir. Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2de HuaweiTSC vs. reference 10 0 6 ⊛ 4 100 25 57 17
HuaweiTSC vs. Lan-BridgeMT 10 ⊛ 7 2 1 100 ⊛ 41 54 5
HuaweiTSC vs. ChatGPT 10 5 3 2 100 ⊛ 29 59 12
reference vs. Lan-BridgeMT 10 6 3 1 100 ⊛ 32 54 3
reference vs. ChatGPT 10 3 6 1 100 18 64 17
Lan-BridgeMT vs. ChatGPT 10 0 3 ⊛ 7 100 10 61 ⊛ 29

en2es ChatGPT vs. Lan-BridgeMT 13 4 6 3 107 21 71 15
ChatGPT vs. reference 13 3 6 4 107 22 65 20
Lan-BridgeMT vs. reference 13 1 6 6 107 14 69 24

en2fr reference vs. Lan-BridgeMT 10 ⊛ 9 0 1 108 ⊛ 80 7 21
reference vs. ChatGPT 10 7 1 2 108 ⊛ 71 5 32
reference vs. UPCite-CLILLF 10 ⊛ 10 0 0 108 ⊛ 107 0 1
reference vs. ustc_ml_group 10 ⊛ 9 0 1 108 ⊛ 85 1 21
Lan-BridgeMT vs. ChatGPT 10 1 5 4 108 24 24 ⊛ 60
Lan-BridgeMT vs. UPCite-CLILLF 10 ⊛ 10 0 0 108 ⊛ 105 3 0
Lan-BridgeMT vs. ustc_ml_group 10 ⊛ 8 1 1 108 ⊛ 54 23 31
ChatGPT vs. UPCite-CLILLF 10 ⊛ 10 0 0 108 ⊛ 103 3 2
ChatGPT vs. ustc_ml_group 10 ⊛ 9 1 0 108 ⊛ 73 14 20
UPCite-CLILLF vs. ustc_ml_group 10 0 0 ⊛ 10 108 7 4 ⊛ 97

en2it Lan-BridgeMT vs. ChatGPT 15 2 1 ⊛ 12 92 16 29 ⊛ 47
Lan-BridgeMT vs. reference 15 4 1 10 92 25 31 36
ChatGPT vs. reference 15 9 1 5 92 24 31 37

en2pt reference vs. Lan-BridgeMT 11 ⊛ 5 6 0 105 35 45 25
reference vs. ChatGPT 11 4 4 3 105 25 48 32
Lan-BridgeMT vs. ChatGPT 11 1 5 5 105 18 62 25

en2ru reference vs. ChatGPT 13 4 3 6 94 8 60 ⊛ 25
reference vs. Lan-BridgeMT 13 5 4 4 94 22 47 25
ChatGPT vs. Lan-BridgeMT 13 7 3 3 94 20 64 10

Table 6: Pairwise manual evaluation results for the MEDLINE abstracts test set (from English). We show in bold
(and with ⊛) the values which were statistically significant (Wilcoxon test).

Lang. dir. Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

fr2en NRPU_FJWU vs. reference 19 1 0 ⊛ 18 108 18 6 ⊛ 83
NRPU_FJWU vs. ustc_ml_group 19 1 1 ⊛ 17 108 19 11 ⊛ 78
NRPU_FJWU vs. ChatGPT 19 0 0 ⊛ 19 108 3 8 ⊛ 97
NRPU_FJWU vs. Lan-BridgeMT 19 3 3 ⊛ 13 108 25 11 ⊛ 72
reference vs. ustc_ml_group 19 ⊛ 12 4 3 108 47 26 34
reference vs. ChatGPT 19 5 7 7 108 30 26 ⊛ 51
reference vs. Lan-BridgeMT 19 ⊛ 15 1 3 108 ⊛ 60 19 28
ustc_ml_group vs. ChatGPT 19 0 1 ⊛ 18 108 13 39 ⊛ 56
ustc_ml_group vs. Lan-BridgeMT 19 9 3 7 108 45 26 37
ChatGPT vs. Lan-BridgeMT 19 ⊛ 19 0 0 108 ⊛ 69 30 9

ru2en ChatGPT vs. reference 13 3 6 4 75 20 41 14
ChatGPT vs. Lan-BridgeMT 13 ⊛ 7 5 1 75 ⊛ 34 37 4
reference vs. Lan-BridgeMT 13 ⊛ 9 4 0 75 ⊛ 42 27 6

Table 7: Pairwise manual evaluation results for the MEDLINE abstracts test set (into English). We show in bold
(and with ⊛) the values which were statistically significant (Wilcoxon test).

and at the sentence level. As with the reference
translation, ChatGPT was more fluent, had a better
choice of terminology (domain specific terms) and
was more consistent overall at abstract level.

The ChatGPT translation was more fluent in the

following example with a better usage of wording.
Lan-bridge followed the English source text more
closely which made the output less idiomatic.

(3) ChatGPT: IO redujo los niveles de glucosa en
sangre, restableció el peso corporal y mejoró
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la sensibilidad a la insulina, así como la toler-
ancia a la insulina y a la glucosa en ratones
diabéticos.
Lan-bridge: IO redujo los niveles de glu-
cosa en sangre, restableció el peso corporal y
mejoró la sensibilidad a la insulina junto con
la tolerancia a la insulina y la tolerancia a la
glucosa en ratones diabéticos.

While issues are still being observed by the MT
systems evaluated manually this year, these are no
longer major translation issues as in past years. The
issues observed this year for the translations from
English to Spanish were minor issues that affect the
overall final quality, but can be remediated by edit-
ing the MT output to provide better terminology,
specially domain specific, more fluent sentences
and a better overall consistency in the translation
(specially for abstracts).

en2fr Translation quality was somewhat uneven
this year. While some translations were very high
quality and often similar or identical to reference
translations, others exhibited serious issues includ-
ing inserting erroneous information (see Exam-
ple 4) or conveying meaning drastically different
(see Example 5) or opposite to the original sen-
tence (see Example 6). This type of error can have
a severe impact when it results in incorrect medical
information (Example 6) or incorrect description
of a social group (see Example 5).

(4) en: Analysis (. . . ) showed that. . .
fr1: L’analyse (. . . ) a montré que. . .
fr2: * L’analyse (. . . ) a montré que. . . (Traduit
par Docteur Serge Messier)

(5) en: The criminalization of Black people
fr1: La criminalisation des Noirs
fr2: * La criminalisation des
personnes blanches

(6) en: blood potassium level > 6.5 mmol/L
fr1: taux de potassium sanguin
supérieur à 6,5 mmol/L
fr2: * taux sanguin de potassium
inférieur à 6,5 mmol/L

The translation of numerical values was also un-
reliable: example 5 illustrates the adequate trans-
lation of 6.5 mmol/L into 6,5 mmol/L, however in

another abstract the study population of 52 dogs
was erroneously translated by 54 chiens.

Issues remain with acronym translation where
acronyms are often kept verbatim upon definition
(e.g., developmental disabilities (DD) translated as
troubles du développement (DD) instead of the ref-
erence translation troubles du développement (TD)
although consistency seems improved: acronyms,
albeit erroneous, are often used throughout a text.

The comparison of translations exhibiting dif-
ferent types of issues also remains difficult. In
example 7, although enquête is a better translation
for survey in the context, translation fr1 was pre-
ferred to fr2 because of the correct translation for
asking about, which was central to the sentence.

(7) en: A survey asking about training
fr1: Un sondage demandant des informations
sur la formation
fr2: * Une enquête demandant une formation

Overall, the one-to-one comparisons seemed
quite consistent in ranking the systems and ref-
erence, and suggest that perhaps the most serious
issues identified were concentrated in a few sys-
tems.

In addition to the manual evaluation through ap-
praise, a complementary assessment of ChatGPT
outputs was conducted, with a focus on Acronyms
and Lab Values, which had been studied in our clin-
ical case descriptions last year. We found that over-
all, 39 out of 50 test documents contained acronyms
and only 3 contained lab values. The low frequency
of lab values in the test set suggests that this partic-
ular source of translation difficulty for automatic
system is not present in random scientifc abstracts.
Furthermore, we cannot draw conclusions on the
performance of ChatGPT on lab value translations.
Acronym translations were considered correct when
the ChatGPT translation was identical to the refer-
ence translation or consisted of an attested acronym
use in similar context. Correct acronym transla-
tions (74%) included frequent acronyms such as CI
(confidence interval), OR (odds ratio) or MRI (mag-
netic resonance imaging). In other cases, acronyms
were either untranslated (16%) or erroneous (10%).
These cases included acronyms for terms that were
unfrequent or ad-hoc to the documents - albeit of-
ten a major topic. It should be noted that they were
a source of inconsistent acronym translations in 14
documents - 36% of test documents with acronyms.
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fr2en Translation quality was good overall and
sometimes indistinguishable from reference transla-
tions. Aside from a problem with certain words be-
ing dropped at the beginning of translations, some-
times mid-word (quite possibly due to a bug by one
or several of the systems), the errors made were
similar to previous years.

Term and acronym translation (see Example 8)
remained a serious problem and one that was highly
influential in reranking decisions, i.e. more so than
other errors such as those involving grammar, style
or naturalness. In addition to acronym translation
errors, we also observed that acronym placement
was not always coherent (e.g. an acronym not be-
ing defined at the first instance and used consis-
tently afterwards), but in practice this did not influ-
ence reranking decisions because of the presence
of more serious errors.7

(8) fr: La migraine est la maladie neurologique
la plus fréquemment rencontrée. . .
en1: Migraine is the most common neurolog-
ical disorder. . .
en2: *Mimine is the most frequently encoun-
tered neurological disease. . .

The translation of non-domain-specific terms
also posed problem, either those that were am-
biguous in context (Example 9), including pronoun
translation (for example sa/son ‘his/her/its/their’
being translated as its rather than ‘his/their’ or in-
volving some degree of polarity (Example 10). On
a similar note, the omission of words, mainly ad-
jectives and adverbs (e.g. relativement ‘relatively’
and souvent ‘often’) sometimes made the differ-
ence between two translations, as did missing final
punctuation (when no other errors were present).

(9) fr: . . . les traitements oraux anciens. . .
en1: . . . older oral treatments. . .
en2: *. . . ancient oral treatments. . .

(10) fr: . . . un profil d’effets indésirables peu fa-
vorable
en1: . . . an unfavorable adverse effect profile
en2: *. . . a slightly favorable side effect pro-
file.

Finally, as in previous years, not all reference
translations of were entirely faithful to the French

7This could be something to look out for in future years
when evaluating whole abstracts, when the translation quality
allows such fine-grained observations.

source abstract (paraphrasing, missing or added
information). This resulted in some cases in the ref-
erence translation being ranked below a system out-
put, including imperfect outputs. Caution should
therefore be taken when drawing conclusions about
translation quality concerning humans, since inten-
tional paraphrasing by the authors resulted in good
abstracts but inferior in terms of our manual evalu-
ation criteria. This partly explains why ChatGPT
is “better” than the reference translations for this
language pair.

en2it The quality of the translation was on av-
erage higher than the previous years. Most of the
sentences compared was almost identical and flu-
ent in terms of the quality of language. From a
terminological viewpoint, it is possible to identify
some inaccuracies in the choice of translating terms
in the target language. For example, in tumour re-
currence, the correct translation of recurrence is
recidiva instead of ricorrenza.

Another frequent mistake, which is also a fre-
quent mistake for language learners, is the trans-
lation of hair in sentences like “hair cortisol con-
centration (HCC) in healthy and ill cows”. In these
cases, hair must be considered as the hair of an-
imals of body parts, therefore peli, and not scalp
hair, in Italian capelli.

In some cases, there were better choices made by
the reference system. For example, in the case of
the phrase “[the author] is an initiate into the topic”,
ChatGPT used iniziato to translate initiate while a
better equivalent would be in this case novizio as
proposed by the reference system.

Finally, from a syntactic point of view, the re-
sults were very similar and only in a few cases we
could find a construction that sounded odd or not
easy to read. For example, the sentence “Flowme-
try data always showed a more or less sudden
disappearance of vasomotion.” was translated by
the reference system with I dati della flussometria
hanno sempre mostrato una più o meno improvvisa
scomparsa della vasomotricità while it would be
more appropriate the translation of provided by the
baselinte I dati di flussometria mostravano sem-
pre una scomparsa più o meno improvvisa della
vasomozione.

en2pt The results show that many translations,
either from the referenc, ChatGPT, or from the
Lan-BridgeMT team, were as good as the refer-
ence translation for many sentences (cf. Table 6,

51



“Sentences”). However, there were many cases on
which we decide that one passage was better than
the other, we discuss some of these differences
here.

The most serious mistake that we found was the
translation of “back pain” into “pressão arterial”
(blood pressure), probably because both of them
have the same acronym in English, i.e., “BP”.

(11) en: The high incidence and worsening of BP
...
pt1: A alta incidência e agravamento do PC
...
pt2: A alta incidência e o
agravamento da pressão arterial ...

Similar to previous years, we still found cases
in which the English (or simply a wrong) acronym
was used (cf. exmple below). Some similar errors
might only be noticed when checking the complete
text (abstract), and not only single sentences, such
as when the translation includes an acronym that
was not defined previously.

(12) en: ... Creutzfeldt-Jakob disease (CJD) ...
pt1: ... doença de Creutzfeldt-Jakob (DCJ) ...
pt2: ... doença de Creutzfeldt-Jakob (CJD) ...

In some cases, even though both passages were
correct, we found that the translation was better
due to the use or more medical concepts.

(13) en: ... headache attributed to ischemic stroke
...
pt1: A cefaleia atribuída ao acidente vascular
cerebral isquêmico ...
pt2: ... a dor de cabeça atribuída ao derrame
isquêmico ...

Sometimes the translation included terms that
were not suitable, even thought the meaning was
close to the source, and it the might have been
understood by many readers.

(14) en: ... which were analyzed
fully and individually.
pt1: ... que foram analisados
na íntegra individualmente.
pt2: ... que foram analisados
de forma completa e individual.

We chose translation which better describe the
facts, depending of the use active or passive voice.
Further, in case of passive voice, we preferred caes
in which the subjective is closer to the verb, or even
before it. We find that it improves the readability.

(15) en: The patients underwent magnetic reso-
nance imaging.
pt1: Os pacientes realizaram ressonância
magnética. (active voice)
pt2: Os pacientes foram submetidos a
ressonância magnética. (passive voice)

(16) en: Twelve articles were included in the anal-
ysis.
pt1: Foram incluídos na análise 12 artigos.
pt2: Doze artigos foram incluídos na análise.

ru2en While the quality of ru2en translations
continues to impress, one recurrent issue centers
around the proper handling of abbreviations and
acronyms. Often, an acronym is introduced early
in the abstract, and holds a clear, defined mean-
ing. Yet, as the text progresses, these acronyms
are frequently mishandled by translation systems,
failing to link them to their previously estab-
lished acronym, and frequently transliterating an
acronym created in Russian text. This issue mani-
fests itself nearly every time an acronym appears,
which makes translations of abstracts that include
acronyms not consistently reliable.

For example, the term Ischemic Stroke is in-
troduced in the abstract and abbreviated to ”ИИ"
which corresponds to the Russian term "ишемиче-
ского инсульта". One of the reference translations
correctly uses the acronym IS to refer to Ischemic
Stroke, while the other comes up with an unrelated
abbreviation AI.

(17) ru: В исследование включили 120 паци-
ентов (57 женщин и 63 мужчины, сред-
ний возраст 58,4±6,4 года) в позднем
восстановительном периоде ИИ.
en1: The study included 120 patients in the
late recovery period of IS, 57 women and 63
men, average age 58.4±6.4 years.
en2: The study included 120 patients (57
women and 63 men, median age 58.4±6.4
years) in the late recovery period of AI.

7 Conclusions

We presented the finding of the edition of the WMT
Biomedical Translation Task. We received sub-
mission from 18 systems and compared them to
translations from ChatGPT 3.5.

In the automatic evaluation, some systems were
scored higher than BLEU according to the compar-
ison system (ChatGPT 3.5). In the manual evalua-
tion, none of the systems were systematically better
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than the reference translation for all of the language
pairs that we evaluated. However, in a couple of
cases, namely, for fr2en and en2ru, the translations
from ChatGPT were preferred over the reference
translations. We presented a details discussion of
the errors that we found during the manual evalua-
tion.

Limitations

Our test sets comprise 50 abstracts per language
pair/directions. Further, due to the time consuming,
difficulty of the task, and number of submissions,
the manual evaluation was only carried out for a
small sample. However, since our task has been
running for eight years, the cumulative number of
test sets is satisfactory for testing purposes, and
maybe even for few-shot training approaches.

We did not carry out manual evaluation for some
of the language pairs (directions), e.g., it2en, for
which we do not have experts who are native speak-
ers in the target language and have a very good
knowledge in the source language. However, we
always release the test sets and the submission files
from the participants, with which anyone can carry
out further experiments or manual evaluations.

Ethics Statement

Our test sets were derived from PubMed, a database
of biomedical citations. These publications are of-
ten used in many areas of the medicine, includ-
ing decision about diagnostic and treatment of pa-
tients. Automatic translation in this domain should
be used as part of a larger framework that should
include human experts for the interpretation of the
translations and, if necessary, correct and adapt the
text accordingly.
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Abstract

Translating literary works has perennially stood
as an elusive dream in machine translation
(MT), a journey steeped in intricate challenges.
To foster progress in this domain, we hold a
new shared task at WMT 2023, the first edition
of the Discourse-Level Literary Translation.
First, we (Tencent AI Lab and China Literature
Ltd.) release a copyrighted and document-level
Chinese-English web novel corpus. Further-
more, we put forth an industry-endorsed crite-
ria to guide human evaluation process. This
year, we totally received 14 submissions from 7
academia and industry teams. We employ both
automatic and human evaluations to measure
the performance of the submitted systems. The
official ranking of the systems is based on the
overall human judgments. In addition, our ex-
tensive analysis reveals a series of interesting
findings on literary and discourse-aware MT.
We release data, system outputs, and leader-
board at http://www2.statmt.org/wmt23/
literary-translation-task.html.

1 Introduction

In past decades, the evolution of machine transla-
tion (MT) has undergone significant improvements
in accuracy and efficiency, leading to many practi-
cal applications in various fields (Bojar et al., 2014;
Barrault et al., 2019; Farhad et al., 2021; Kocmi
et al., 2022). Despite its success, MT still struggles
in certain intricate scenarios to deliver translations
that meet high standards (Läubli et al., 2018; Koehn
and Knowles, 2017). Translating literary texts is
considered to be the greatest challenge for MT due
to its complex nature (Toral and Way, 2018; Toral
et al., 2018; Ghazvininejad et al., 2018):
• Rich Linguistic and Cultural Phenomena: liter-

ary texts contain more complex linguistic and
cultural knowledge than non-literary ones (Voigt
and Jurafsky, 2012; Ghazvininejad et al., 2018).
To generate a cohesive and coherent output, MT
models require an understanding of the intended

meaning and structure of the text at discourse
level (Wang et al., 2016, 2018a,b, 2019, 2023b).
Furthermore, it demands skillful adaptation of
cultural references, idioms, and subtle expres-
sions to capture the essence of the original work
in target languages.

• Limited Data: existing document-level datasets
are news articles and technical documents (Liu
and Zhang, 2020; Thai et al., 2022); there is lim-
ited availability of copyrighted, discourse-level,
parallel data in the literature domain. This makes
it difficult to develop models that are able to han-
dle the complexities of literary translation.

• Long-Range Context: literature such as novels
have much longer contexts than texts in other
domains (e.g. news articles). Translation models
need to acquire the capacity of modeling long-
range context for learning translation consistency
and lexical choice (Wang et al., 2017; Wang,
2019; Matusov, 2019; Du et al., 2023).

• Unreliable Evaluation Methods: literary evalua-
tion needs to measure the meaning and structure
of the text, and the nuances and complexities of
the source language. A single automatic evalua-
tion using a single reference is unreliable. Thus,
professional translators with well-defined error
typologies and targeted automatic evaluation are
considered a complement (Matusov, 2019).

With the swift progression of MT and the no-
table advancements in Large Language Models
(LLM) (Ouyang et al., 2022b; OpenAI, 2023), our
curiosity is piqued regarding the efficacy of MT
and LLM in the realm of literary translation. We
aim to explore the extent to which these technolo-
gies can aid in addressing the intricate challenges
of translating literary works. Therefore, we hold
the first edition of the Discourse-Level Literary
Translation in WMT 2023. Literary texts encom-
pass a wide range of forms, including novels, short
stories, poetry, plays, essays, and more. Among
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Figure 1: The word cloud represents institute and
companies from different regions that downloaded the
GuoFeng Webnovel Corpus.

these, web novels, also known as online or internet
novels, represent a unique and rapidly growing sub-
set of literature. Their popularity, accessibility, and
diverse genres set them apart. As they provide not
only an extensive volume of text but also exhibit
distinctive linguistic features, cultural phenomena,
and simulations of societies, web novels can serve
as valuable resources and challenging for MT re-
search. This year, the shared task mainly focuses
on document-level web novels, and we introduce
a document-level benchmark dataset and establish
human evaluation criteria specifically tailored to
address the challenges of literary translation:

• Benchmark Dataset: We build and release a
copyrighted and high-quality Chinese-English
training corpus, comprising 2 million sentences
sourced from 179 web fictions. This dataset
preserves both book-level and chapter-level con-
texts, and features manually-aligned sentence
pairs. We also provide three types of testsets,
varying in distribution and document length (in
Section 2).

• Evaluation Methods: In order to evaluate the
translation quality of the participating systems
we used both automatic and human evaluation
methods. About automatic evaluation, we em-
ploy document-level sacreBLEU (d-BLEU) as
our metric, which is computed by matching n-
grams in the whole document (Liu et al., 2020;
Post, 2018). In terms of human evaluation, we

Figure 2: Illustration of discourse-level literary transla-
tion, which is sampled from our Web Fiction Corpus.
Colored words demonstrate rich linguistic phenomena.

propose a well-defined criteria by adapting mul-
tidimensional quality metrics (MQM) (Lommel
et al., 2014) to fit the context of literary transla-
tion. Note that all evaluations are case-sensitive
(in Section 3).

We introduce the task overview and submission
form in Section 4. This year, 14 submissions were
received from 7 different teams, which are detailed
in Section 5. We report the evaluation results in
Section 6 followed by the conclusion in Section 7.

2 The GuoFeng Webnovel Corpus

We release a copyrighted and high-quality Chinese-
English corpus on web novels. Additionally, we
provide in-domain pretrained models as supplemen-
tary resources. As shown in Figure 1, a total of 45
institutes and companies from various regions have
downloaded our dataset, showing that the prposed
tasks and data have garnered widespread interest.

2.1 Datasets

Copyright Copyright is a crucial consideration
when it comes to releasing literary texts, and it is
also one of the primary reasons for limiting the
scale of data in this domain. We, Tencent AI Lab
and China Literature Ltd., are the copyright owners
of the web fictions included in this dataset. In order
to promote the advancement of research in this
field, we make this data available to the research
community, subject to certain terms and conditions.
• After registration, WMT participants can use the

corpus for non-commercial research purposes
and follow the principle of fair use (CC-BY).
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• Modifying or redistributing the dataset is strictly
prohibited.

• You should cite the this paper and claim the orig-
inal download link.

Data Processing The web novels are originally
written in Chinese by web novel writers and then
translated into English by professional translators.
Our data processing involves a combination of
automated and manual techniques: 1) we match
Chinese books with its English counterparts based
on bilingual titles; 2) within each book, Chinese-
English chapters are aligned using Chapter ID num-
bers; 3) within each chapter, we build a MT-based
sentence aligner to align sentences in parallel, pre-
serving the sentence order in the chapter; 4) hu-
man annotators are engaged to review and correct
any discrepancies in sentence-level alignment. To
ensure the retention of discourse information, we
permit null alignments. We totally spent 6 months
addressing copyright issues and around 40,000 eu-
ros for human annotation. Figure 2 shows the final
format of our corpus.

Training/Validation/Testing Data Table 3 lists
data statistics of our dataset. As seen, the training
set contains 23K continuous chapters from 179 web
novels, covering 14 genres such as fantasy science
and romance. To enable participants to evaluate
model performance by themselves, we provide two
unofficial validation/testing sets with one reference.
For dataset1, books overlap with the training data,
whereas dataset2 contains unseen books. The par-
ticipants can regard each chapter as a document to
train and test their discourse-aware models. Apart
from this, parallel training data in the General MT
Task can also be used for data augmentation. In the
final testing stage, participants use their systems
to translate the official testing set (Testfinal). We
select around 20 consecutive chapters from each
book. Thus, we participants could treat all chapters
within a book as a long document1. As seen, the
document length of Testfinal is quite longer than
other sets. The final testset contains two references:
Reference 1 is translated by human translators and
Reference 2 is bult by manually aligning bilingual
text in web page. The genres in the valid and test
sets are sampled evenly.

1The participants can still regard one chapter as a docu-
ment, which depends on the models’ length capability.

2.2 Pretrained Models
Apart from training dataset from web novels, we
also provide in-domain pretrained models as sup-
plementary resources. These models can be used
to finetune or initialize MT models.
• RoBERTa (base): The original model features

a 12-layer encoder and is trained on the Chinese
Wikipedia (Liu et al., 2019). It has a hidden size
of 768 and a vocabulary size of 21,128 using
whole word masking. We continuously train it
with Chinese literary texts (84B tokens) (Wang
et al., 2023a).

• mBART (CC25): This original model is
equipped with a 12-layer encoder and a 12-layer
decoder, having been trained on a web corpus
spanning 25 languages (Liu et al., 2020). It
boasts a hidden size of 1024 and a vocabu-
lary size of 250,000. We continuously train it
with English and Chinese literary texts (114B
tokens) (Wang et al., 2023a).

Besides, general-domain pretrained models listed
in General MT Track are also allowed in this task:
mBART, BERT, RoBERTa, sBERT, LaBSE.

3 Evaluation Methods

It is still an open question whether human and auto-
matic evaluation metrics are complementary or mu-
tually exclusive in measuring the document-level
and literary translation quality. Thus, we report
both automatic and human evaluation methods, and
officially rank the systems based on the overall hu-
man judgments.

3.1 Automatic Evaluation
We use widely-used sentence- and document-level
evaluation metrics: 1) sentence-level: we employ
sacreBLEU (Post, 2018), chrF (Popović, 2015),
TER (Snover et al., 2006) and pretraining-based
COMET (Rei et al., 2020); 2) document-level: we
mainly use document-level sacreBLEU (d-BLEU)
(Liu et al., 2020), which is computed by matching
n-grams in the whole document. For d-BLEU, We
combine all sentences in each document as one
line and then conduct sacreBLEU metric. Note
that all evaluations are case-sensitive. We em-
ploy sacrebleu2 to calculate sacreBLEU, chrF, TER
and d-BLEU with sacrebleu using two references.
The command is: cat output | python -m

2https://github.com/mjpost/sacrebleu with signa-
ture: nrefs:2|case:mixed|eff:no|tok:13a|smooth:exp
|version:2.3.1.
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Dataset #Book #Chap. #Sent. #Word |D|

Train 179 22.6K 1.9M 32.0M 1.4K

Valid1 22 22 755 18.3K 832
Test1 26 22 697 19.5K 884
Valid2 10 10 853 16.0K 1.6K
Test2 12 12 917 16.7K 1.4K

Testfinal 12 239 16.7K 337.0K ∗28.1K

Figure 3: Data statistics of the GuoFeng Webnovel Corpus on number of book, chapter (#Chap.), sentence (#Sent.),
word, and genre distribution in training set. The #Word is based on English texts. For dataset1, books overlap with
the training data, whereas dataset2 contains unseen books. Thus, each chapter is treated as a separate document. For
Testfinal, around 20 consecutive chapters from each book are selected, treating all chapters within a book as a long
document. The document length (|D|) is calculated by dividing #Word divided by the number of documents.

sacrebleu reference*. We employ unbabel-
comet3 to calculate COMET score using Reference
1. The command is: comet-score -s input -t
output -r reference1 (default model).

3.2 Human Evaluation

The human evaluation was performed by profes-
sional translators using an adaptation of the mul-
tidimensional quality metrics (MQM) framework
(Lommel et al., 2014). For example, we consider
the preservation of literary style and the overall
coherence and cohesiveness of the translated texts.
As shown in Table 6, we put forth an industry-
endorsed criteria to guide human evaluation pro-
cess. The main error types are:
• Accuracy (Acc.): The target text does not ac-

curately reflect the source text, allowing for any
differences authorized by specifications.

• Fluency (Flu.): Issues related to the form or
content of a text, irrespective as to whether it is a
translation or not.

• Style (Sty.): The text has stylistic problems.
• Terminology (Ter.): A term (domain-specific

word) is translated with a term other than the one
expected for the domain or otherwise specified.

• Locale Convention (Loc.): The text does not
adhere to locale-specific mechanical conventions
and violates requirements for the presentation of
content in the target locale.

• Others (Oth.): Other issues such as the signs of

3https://github.com/mjpost/sacrebleu.

MT, gender bias and source errors.
MQM utilizes a scorecard format to quantify the

quality assessment results. Evaluators assign nu-
merical values to identified translation errors based
on error types, severity, etc., making the assessment
results more intuitive. The overall quality score is
calculated based on per-word translation accuracy:

S = 1− 5× CMin. + 10× CMaj. + 25× CCri.

Total Word Count

where where we set four error severity levels: Neu-
tral (Neu.), Minor (Min.), Major (Maj.), Critical
(Cri.) with 0/5/10/25 severity penalty. C⋆ denotes
the number of errors. The “Total Word Count” is
calculated based on source input (Chinese word).
Considering our task is centered on Zh-to-En trans-
lation, we engaged four evaluators who are native
English speakers and also fluent in Chinese.

4 Task Description

Overview The shared task will be the translation
of literary texts between Chinese→English. Par-
ticipants will be provided with two types of train-
ing datasets: (1) discourse-level GuoFeng Web-
novel Corpus; (2) General MT Track Parallel Train-
ing Data. Additionally, they are provided two
types pretrained models: (1) in-domain pretrained
models, including In-domain RoBERTa (base) and
In-domain mBART (CC25). (2) other general-
domain pretrained models listed in General MT
Track. Note that basic linguistic tools are allowed
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in the constrained condition as well as pretrained
language models released before February 2023.

In the final testing stage, participants use their
systems to translate an official testing set. The
translation quality is measured by a manual evalua-
tion and automatic evaluation metrics. All systems
will be ranked by human judgement according to
our professional guidelines and translators. Partici-
pants can submit either constrained (i.e. only use
the training data specified above) or unconstrained
(i.e. it allows the participation with a system trained
without any limitations) systems with flags, and we
will distinguish their submissions.

Goals The main goals of the task are to:
• Encourage research in machine translation for

literary texts.
• Provide a platform for researchers to evaluate and

compare the performance of different machine
translation systems on a common dataset.

• Advance the state of the art in machine transla-
tion for literary texts.

Submission and Format Submissions will be
done by sending us an email to our official email.
Each team can submit at most 3 MT outputs per
language pair direction, one primary and up to two
contrastive. The requirements of submission for-
mat are (1) Keep 12 output files that are identical to
the testing input files. (2) In the output files, ensure
that each line is aligned with the corresponding
input line.

5 Participants’ and Baseline Systems

Here we briefly introduce each participant’s sys-
tems and refer the reader to the participant’s reports
for further details. Table 1 shows the summary of
systems and participant teams.

5.1 MaxLab (constrained)
The team from University of Southern Califor-
nia, Information Sciences Institute introduce three
translation systems. The Primary System is built
on a paragraph-level transformer, trained on a
paragraph-aligned corpus (with a source side cap
of 256 characters), executing translations at the
paragraph level. The Contrastive System 1 deploys
a sentence-level transformer, capitalizing on the
sentence alignment data available in the datasets.
The Contrastive System 2 adopts a paragraph-level
Mega model (Ma et al., 2022). The Mega model
proposed a single-head gated attention mechanism

equipped with an exponential moving average,
which achieves comparable performance compared
to Transformers having with fewer parameters. In
pre-processing, the team opted for Byte-Pair En-
coding (BPE) for tokenization. And they employed
Jaccard similarity for sentence alignment during
the post-processing phase.

5.2 MAKE-NMT-VIZ (constrained)

The team from Université Grenoble Alpes intro-
duced three translation systems. The Primary
System finetune the mBART (CC50) model using
Train, Valid1, Test1 of the GuoFeng Corpus, adopt-
ing settings similar to those described by Lee et al.
(2022). Specifically, they finetune models for 3
epochs, utilizing the GELU activation function, a
learning rate of 0.05, a dropout rate of 0.1, and
a batch size of 16. For decoding, a beam search
of size 5 was employed. The Contrastive System
1 is implemented upon a finetuned concatenation
transformer (Lupo et al., 2023) with two training
steps: (1) a sentence-level transformer is trained
for 10 epochs using General, Valid1, Test1 datasets;
(2) a document-level transformer is finetuned using
pseudo-document data (3-sentence concatenation)
from Train, Valid2, Test2 data for 4 epochs. They
use ReLU as an activation function, along with an
inverse square root learning rate, a dropout rate
of 0.1, and a batch size of 64. For decoding, a
beam search of size 4 was employed. The Con-
trastive System 2 is a sentence-level transformer
model trained for 10 epochs using General, Valid1,
Test1 datasets. The training adopted an inverse
square root scheduled learning rate, a dropout rate
of 0.1, and a batch size of 64. Decoding was done
using a beam search of size 4.

5.3 TJUNLP (constrained)

The team from Tianjin University introduced a Pri-
mary System based on a sentence-level Transformer
model. The training consists of two phases: ini-
tially, it undergoes 100k steps on a dense model,
followed by a 50k step fine-tuning on mixture of
experts (MOE). They adopt the Polynomial Decay
as their learning rate scheduling strategy, with a
learning rate set at 2e-4, a dropout rate of 0.1, and
a batch size encompassing 4096 tokens. For decod-
ing, a beam search of size 5 was employed. For
pre-processing, the team opted for SentencePiece
Model (SPM) for tokenization.
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ID Team Institution Flag #System Main Methods

1 MaxLab University of Southern California
⊙

3 para-level Transformer
2 MAKE-NMT-VIZ Université Grenoble Alpes

⊙
3 mBART

3 TJUNLP Tianjin University
⊙

1 sent-level Transformer
4 DLUT Dalian University of Technology

⊗
1 GPT-3.5-turbo

5 NTU Nantong University
⊗

1 Opus-MT
6 HITer-WMT Harbin Institute of Technology

⊗
2 Llama-7b

7 HW-TSC Huawei Translation Services Center
⊗

3 doc2doc Transformer

Table 1: The summary of system submission and their participant teams. We also report the number of systems
(#System) and the constrained (

⊙
) and unconstrained (

⊗
) flags.

5.4 NTU (unconstrained)

The Nantong University team introduce a Primary
System. It is based on a pretrained MT model,
Opus-MT,4, which is trained on OPUS dataset
(Tiedemann and Thottingal, 2020). The model
is finetuned on one NVIDIA Tesla A100 80 GB
where the learning rate is 5e-5, batch size is 64,
max length is 512 and the epoch number is 10.

5.5 DLUT (unconstrained)

The team form Dalian University of Technology
introduce a Primary System based on GPT-3.5-
turbo (Brown et al., 2020). They mainly propose
prompt engineering, data filtering, and document
segmentation to activate the capabilities of LLMs
for discourse-level translation (Zhao et al., 2023).

5.6 HITer-WMT (unconstrained)

The team form Harbin Institute of Technology
(Harbin) introduce two translation systems. The
Primary System centers on instruction fine-tuning,
executed through the Llama-7b model within the
Parrot framework (Jiao et al., 2023).5 Specifi-
cally, they build an instruction dataset from two
comprehensive chapters of our existing training
corpus according to methodologies in Peng et al.
(2023). This dataset was fine-tuned using Llama-
7b over 3 epochs with a learning rate of 2e-5. The
Contrastive System utilizes the GuoFeng mBART
Model provided by the shared task. This model was
trained over 10 epochs at a learning rate of 1e-4,
with gradient clipping applied to stabilize training.

5.7 HW-TSC (unconstrained)

The team form Huawei Translation Services Cen-
ter exploit a variety of techniques. They introduce

4https://huggingface.co/Helsinki-NLP/
opus-mt-zh-en.

5https://github.com/wxjiao/ParroT.

an unconstrained Document-to-Document Trans-
lation system. They first train a sentence-level
Transformer-big model with a 25-layer encoder and
a 6-layer decoder, and perform domain adaptation
with novel data on this model. They obtain a strong
baseline using data augmentation methods includ-
ing Back Translation, Forward Translation, and
Data Diversification. They then perform incremen-
tal training using the Doc2Doc technique to turn
the model into a document-level translation model.
They also conduct document-level data augmen-
tation using the Multi-resolutional Document-to-
Document approach (Sun et al., 2022), and ensue
the consistency of NE translations in a document
with TrAining Data Augmentation (TADA). They
submit three systems: the Primary System uses all
strategies. In contrast to the primary system, the
Contrastive System 1 system does not use TADA,
and the Contrastive System 2 sets the beam size to
6 during inference, while 10 for other tasks.

5.8 Baseline Systems (unconstrained)

We select three representative systems as baselines.
Commercial Translation System: we use Google
Translate,6, which usually performs state-of-the-
art in translation performance. Commercial LLM
Systems: we employ GPT-4 (8K) API7 to translate
documents, which is known for its extensive con-
text modeling capabilities (Ouyang et al., 2022a;
Wang et al., 2023c). Open-sourced LLM Mod-
els: we enhance Llama (2K) (Touvron et al., 2023)
on document-level translation by using the 200K
general-domain document-level training set (Du
et al., 2023). All testing were conducted between
August 1st and 30th, 2023. In the future, we will
use more diverse model architectures such as non-
autoregressive translation model (Gu et al., 2017;

6https://translate.google.com.
7https://platform.openai.com.
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Type System Sent-Level Doc-Level

BLEU↑ chrF↑ COMET↑ TER↓ d-BLEU↑

Baselines
Llama-MT⋆ n/a n/a n/a n/a 43.1

GPT-4⋆ n/a n/a n/a n/a 43.7
Google⋆ 37.4 57.0 80.50 57.4 47.3

Primary
(con)

MaxLab 34.1 53.3 78.24 62.4 45.0
MAKE-NMT-VIZ 37.9 56.6 81.50 58.7 48.0

TJUNLP 32.1 51.9 77.93 64.1 43.3

Primary
(uncon)

DLUT⋆ 40.5 58.5 82.58 54.6 50.2
NTU⋆ 32.3 52.5 78.07 64.3 43.4

HITer-WMT⋆ 16.1 37.1 69.84 80.1 28.0
HW-TSC⋆ 44.3 61.1 82.69 51.8 52.2

Contrastive

MaxLab1 34.5 54.7 79.14 62.7 44.9
MaxLab2 33.1 52.4 77.84 63.6 44.4

MAKE-NMT-VIZ1 33.8 51.2 76.91 63.5 45.5
MAKE-NMT-VIZ2 35.0 52.7 77.26 61.5 46.2

HITer-WMT⋆
1 30.8 49.2 76.41 67.2 40.6

HW-TSC⋆
1 44.6 61.0 82.67 51.8 52.6

HW-TSC⋆
2 44.4 61.5 82.63 52.1 52.2

Table 2: Evaluation results of baseline and participants’ systems in terms of automatic evaluation methods,
including 1) sentence-level metrics BLEU, chrF, COMET, TER; and 2) document-level metrics d-BLEU. Systems
marked with ⋆ are unconstrained, while others are constrained. The COMET is calculated with unbabel-comet using
Reference 1 while others are calculated with sacrebleu using two references. The best primary constrained and
unconstrained systems are highlighted.

Type System MQM Rank

Baselines
GPT-4⋆ 54.81 1

Llama-MT⋆ 28.40 2
Google⋆ 22.66 3

Primary
(con)

MAKE-NMT-VIZ 42.36 1
MaxLab 28.58 2
TJUNLP 18.34 3

Primary
(uncon)

DLUT⋆ 63.35 1
HW-TSC⋆ 53.01 2

NTU⋆ 31.66 3
HITer-WMT⋆ 5.56 4

Table 3: Evaluation results of baseline and primary sys-
tems in terms of human evaluation. We report MQM
score and System Rank.

Ding et al., 2020, 2021; Wang et al., 2023d).

6 Evaluation Results

6.1 Automatic Evaluation

We report the automatic evaluation scores of all
submissions in Table 2. The evaluation metrics

includes 1) sentence-level BLEU, chrF, COMET,
TER; and 2) document-level d-BLEU. To calcu-
late d-BLEU, we first concatenate all continuous
sentences in one book as on line, and then employ
sacreBLEU to obtain scorers. To compute d-BLEU,
we merge all the consecutive sentences from a sin-
gle book into one continuous line, and then utilize
the sacreBLEU to generate the scores.

Among constrained Primary systems, the
MAKE-NMT-VIZ system shows impressive perfor-
mance and achieves the best in terms of all metrics.
Similarly, the HW-TSC⋆ Primary system achieves
the best in constrained settings. As introduced in
Section 5, MAKE-NMT-VIZ mainly finetune the
mBART pretrained model while HW-TSC⋆ train
a doc2doc Transformer model using a number of
data augmentation methods.

In the majority of teams, the primary system
exhibits superior performance compared to the cor-
responding contrastive system. The exceptions to
this trend are noted in the cases of HITer-WMT⋆

and HW-TSC⋆, where this pattern does not hold.
Among the baseline systems, Google Translate, a
commercial translation service, outperforms both
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Type Systems Annotator
Average

1 2 3 4

Baselines
GPT-4⋆ 95.84 73.38 76.71 87.52 83.36

Llama-MT⋆ 94.18 65.06 78.37 83.36 80.24
Google⋆ 85.02 42.60 59.23 21.13 52.00

Primary
(con)

MAKE-NMT-VIZ 97.50 83.36 92.51 91.68 91.26
MaxLab 86.69 61.73 71.71 74.21 73.59
TJUNLP 88.02 55.07 20.97 69.22 58.32

Primary
(uncon)

HW-TSC⋆ 91.68 83.36 83.36 91.68 87.52
DLUT⋆ 95.01 69.22 84.19 90.02 84.61
NTU⋆ 85.02 39.27 28.45 62.56 53.83

HITer-WMT⋆ 57.57 21.80 0.00 31.78 27.79

Table 4: Analysis of human scores by different annotators on one sampled document. We report four annotators’
scores and average score of Baselines, primary constrained and unconstrained (⋆) systems.

Annotator 1 2 3 4

1 - - - -
2 0.858 - - -
3 0.824 0.878 - -
4 0.752 0.875 0.676 -

Average 0.902 0.976 0.927 0.891

Table 5: Pearson correlation coefficient between scores
by different annotators in Table 4.

commercial and open-source LLMs (GPT-4 API
and Llama-MT) in terms of d-BLEU scores. Inter-
estingly, both the top-1 ranked Primary constrained
and the top-2 ranked unconstrained systems surpass
the performance of the commercial MT system.

6.2 Human Evaluation

Table 3 presents the results of the human evaluation
and system rank for the Primary submissions. We
enlisted four human annotators to evaluate 5 docu-
ments, comprising a total of 2,194 words sourced
from distinct books within the final testset for each
translation system.

As seen, the MAKE-NMT-VIZ system outper-
forms the other three constrained systems, while
DLUT⋆ ranks first among the four unconstrained
systems. This is not fully consistent with the auto-
matic evaluation results in Table 2. Moreover, the
top-2 unconstrained systems outperform the best
constrained system, highlighting the benefits of ex-
ternal knowledge. This observation is consistent
with that of automatic evaluation.

Among the baseline systems, the LLM system
performs the best, whereas the MT system shows

the poorest performance, diverging from the obser-
vations of automatic evaluation. Interestingly, the
literary MT-enhanced models perform comparable
with some systems such as MaxLab and Google
Translate.

6.3 Analysis

Inter-Annotator Agreement We engaged four
annotators to independently review an identical
document (i.e. 601 words) selected from the test-
set. Table 4 outlines the individual scores given
by each annotator and the corresponding average
scores. The findings illustrate that (1) while there
is variance in the exact scores assigned by different
annotators, their scoring trends align; (2) the results
on this sample may diverge from those obtained
from a larger dataset, highlighting the necessity of
human evaluation on a larger scale.

In our effort to understand the consistency
among the human evaluators, we conducted a Pear-
son correlation analysis on their scoring patterns.
Table 5 illustrates the pairwise Pearson correlation
coefficients for the scores given by each annotator.
The results indicate a high degree of agreement
among the annotators. For example, Annotator 2
demonstrated a very high correlation with Anno-
tator 3 (r = 0.878) and Annotator 4 (r = 0.875).
Besides, the Average Scores also reveal strong eval-
uator consensus on translation quality. This consis-
tency underscores the reliability of the evaluators’
judgments across the assessed translations.

Error Type We further analyze the error distribu-
tion in human-annotated results. Figure 4 classifies
and counts the errors identified in the evaluated
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Figure 4: Analysis of error types in human annotations: Accuracy (Acc.), Fluency (Flu.), Style (Sty.), Terminology
(Ter.), Localization (Loc.), and Other (Oth.). We report the count of error checkpoints in four evaluated documents.
The four error severity levels are presented in different colors: Neutral (blue), Minor (light blue) , Major (light red),
Critical (red). Systems marked with ⋆ are unconstrained, while others are constrained.

documents by their severity. This visualization al-
lows for a direct comparison of the error profiles of
each system, highlighting their strengths and weak-
nesses in different aspects of translation quality.

In the baseline systems analysis, GPT-4⋆ regis-
ters a higher frequency of Minor errors, particularly
in Fluency and Style, indicating areas where refine-
ment could enhance the translation’s naturalness
and adherence to stylistic norms. Llama-MT⋆, by
contrast, has a pronounced incidence of Major and
Critical errors in Accuracy and Terminology, rais-
ing concerns about the fidelity and technical pre-
cision of its translations. Google⋆ stands out with
its Fluency errors, suggesting potential issues in
maintaining a coherent and natural flow compared
to the language models.

Regarding the constrained systems, MAKE-
NMT-VIZ displays an even spread of errors, with
relatively fewer instances in each category, which
points to a well-rounded performance in capturing
nuances across various aspects of translation. Both
MaxLab and TJUNLP exhibit an increased number
of Accuracy and Fluency errors, suggesting chal-
lenges in delivering translations that are not only

faithful to the source material but also exhibit a
seamless and natural flow in the target language.

The unconstrained systems, particularly HW-
TSC⋆ and DLUT⋆, show a notable reduction in
errors related to Accuracy and Fluency when com-
pared to their constrained counterparts. This trend
suggests that the lack of constraints may afford
these systems more flexibility, resulting in transla-
tions that are more accurate and fluid. However, the
overall error distribution across different systems
highlights the complex trade-offs and challenges
inherent in machine translation, underscoring the
need for continued innovation and optimization
in the field. In the future, we will also consider
hallucination errors (Zhang et al., 2023).

7 Conclusion and Future Work

We believe that the WMT2023 Shared Task on
discourse-level literary translation will be a valu-
able contribution to the field of machine translation
and will encourage further research in this area. We
discuss the potential limitations of this edition of
the shared task as follows:
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• Language Pair. This year, we only focus on
Chinese→English direction. However, we have
a long-term plan to continuously organize this
task, and will extend the copyrighted dataset into
Chinese-Russian and Chinese-German language
pairs next year.

• Literary Genre. This year, we mainly used the
Web Fiction Corpus which is only one type of
literary text. We use Web Fiction for two reasons:
(1) its literariness is less complicated than others
(e.g. poetry, masterpiece); (2) such bilingual data
are numerous and continuously increased. We
will consider to extend more literary genres such
as poetric translation in the next year.

• Discourse Benchmark. We have accumulated
some discourse- and context-aware benchmarks
(Xu et al., 2022, 2023; Wang et al., 2023a). These
benchmarks are pivotal for assessing the profi-
ciency of LLMs in handling complex language
structures and contextual nuances. As participa-
tion of LLM-based systems in our shared tasks
increases, we anticipate integrating these bench-
marks more comprehensively into our future eval-
uations to better measure and understand the evo-
lution of LLM capabilities in linguistic context
and discourse comprehension.
Machine translation of web novels not only holds

research value but also offers practical application
prospects (Huang et al., 2021; Lyu et al., 2023).
This shared task serves to spur competitive innova-
tion and fosters the advancement of sophisticated
machine translation systems capable of navigating
the intricate nuances of literary works. Anticipating
the future, our objective is to broaden the engage-
ment in the forthcoming shared task, inviting an
extensive range of collaborators from industry and
academia alike to contribute their unique insights
and expertise.
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Type Granular Definition Examples

Accuracy

Addition The target text includes text not
present in the raw.

A translation includes portions of another translation
that were inadvertently pasted into the document or
the translator has added too many details of his own.

Omission Content is missing from the trans-
lation that is present in the source.

A paragraph present in the source is missing in the
translation.

Mistranslation The target content does not accu-
rately match the raw.

A source text states that a medicine should not be
administered in doses greater than 200 mg, but the
translation states that it should be administered in
doses greater than 200 mg (i.e., negation has been
omitted).

Misnomer The target text is more/less specific
than the raw.

1. The source text refers to a boy but is translated
with a word that applies only to young boys rather
than the more general term. 2. The source text
uses words that refer to a specific type of military
officer but the target text refers to military officers
in general.

Untranslated Content that should have been
translated has been left untrans-
lated.

A sentence to be translated into English was left in
Chinese.

Fluency

Punctuation Punctuation marks missing or used
in a wrong way.

An English text uses a semicolon where a comma
should be used.

Spelling Issues related to spelling of words.
(Including those of capitalization,
hyphenated words, and use of as-
terisk for censored swear words.)

The English word “Translation” is spelled
“Transaltion”.

Grammar Issues related to the grammar or
syntax of the text, other than
spelling and orthography. (espe-
cially inconsistency of the tenses
and conditionals)

An English text reads “The man was seeing the his
wife.”

Inconsistency The text shows internal inconsis-
tency.

A text uses both “app.” and “approx.” for “approxi-
mately”.

Style

Awkwardness A text is written with an awkward
style.

A text is written with many embedded clauses and
an excessively wordy style. While the meaning can
be understood, the text is very awkward and difficult
to follow.

Inconsistent Style is inconsistent within a text. One part of a text is written in a light and terse style
while other sections are written in a more wordy
style.

Unidiomatic The content is grammatical, but
not idiomatic.

The following text appears in an English translation
of “我们衷心感谢他”: “We thanked him with heart”
where “with heart” is an understandable, but non-
idiomatic rendering, better stated as “heartily”.

Terminology

Mistranslation A genre-specific or cultural-
specific terminology is wrongly
translated.

A Chinese word “修士” is translated into “practi-
tioner” rather than the expected “cultivator”.

Inconsistent Terminology is used in an incon-
sistent manner within the text.

“斗罗大陆” is translated into “Douluo Land” in the
first few chapters and then into “Soul Land”.

Locale
Convention

Location For-
mat

Using the wrong format for ad-
dress, name etc.

A Chinese address “北京市朝阳区花园路22号” is
translated into “Beijing, Chaoyang district, Huayuan
Road N.22” instead of the expected “N.22, Huayuan
Road, Chaoyang District, Beijing”.

Number For-
mat

The translated date, time, currency,
telephone use formats inappropri-
ate for its locale.

An English text has 2012-06-07 instead of the ex-
pected 06/07/2012.

Others Other issues that haven’t been in-
cluded in this list.

E.g. signs of MT, mimetic word, gender bias, source
errors etc.

Table 6: The MQM-based evaluation criteria for literary translation.
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Abstract

This paper presents the results of the Second
WMT Shared Task on Sign Language Trans-
lation (WMT-SLT23)1. This shared task is
concerned with automatic translation between
signed and spoken2 languages. The task is un-
usual in the sense that it requires processing
visual information (such as video frames or hu-
man pose estimation) beyond the well-known
paradigm of text-to-text machine translation
(MT). The task offers four tracks involving
the following languages: Swiss German Sign
Language (DSGS), French Sign Language of
Switzerland (LSF-CH), Italian Sign Language
of Switzerland (LIS-CH), German, French and
Italian. Four teams (including one working on a
baseline submission) participated in this second
edition of the task, all submitting to the DSGS-
to-German track. Besides a system ranking and
system papers describing state-of-the-art tech-
niques, this shared task makes the following
scientific contributions: novel corpora and re-
producible baseline systems. Finally, the task
also resulted in publicly available sets of sys-
tem outputs and more human evaluation scores
for sign language translation.

1 Introduction

This paper presents the outcome of the Second
WMT Shared Task on Sign Language Translation

1https://www.wmt-slt.com/
2In this paper we use the word “spoken” to refer to any

language that is not signed, no matter whether it is represented
as text or audio, and no matter whether the discourse is formal
(e.g. writing) or informal (e.g. dialogue).

(WMT-SLT23). This shared task focuses on auto-
matic translation between signed and spoken lan-
guages. Our main goal is working towards includ-
ing signed languages in NLP research (Yin et al.,
2021).

Sign language translation requires processing vi-
sual information (such as video frames or human
pose estimation) beyond the well-known paradigm
of text-to-text machine translation (MT). As a con-
sequence, viable solutions need to consider a com-
bination of Natural Language Processing (NLP),
computer vision (CV), computer graphics and ani-
mation techniques.

We build on and extend the work done for
the first shared task on sign language translation
(WMT-SLT22; Müller et al., 2022). Compared to
the first edition, we

• extended our competition to more languages
(three language pairs instead of one),

• provided much more training data for Swiss
German Sign language compared to last year
(437 hours instead of 16),

• emphasized sign languages as the target lan-
guage instead of the source, for instance, by
offering official baseline systems for spoken-
to-signed translation (not offered last year).

In this second edition of the shared task, we
considered the following languages: Swiss German
Sign Language (DSGS), French Sign Language
of Switzerland (LSF-CH), Italian Sign Language
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of Switzerland (LIS-CH), German, French, and
Italian. We offered four tracks: DSGS-to-German
translation, German-to-DSGS translation, French-
to-LSF translation, and Italian-to-LIS translation.

Four teams participated in the task, which we
consider a success. All teams submitted to the
DSGS-to-German track, while there were no sub-
missions to any of the tracks where a sign language
is the target language.

The remainder of this paper is organized as fol-
lows:

• We give some background on sign languages
and sign language processing in §2.

• We describe the shared task tracks and sub-
mission procedure in §3.

• We report on the corpora we built and dis-
tributed specifically for this task in §4 and
§5.

• We describe all submitted systems, including
our baselines in §6.

• We ran both an automatic and a human evalu-
ation. We explain our evaluation in §7.

• We share the main outcomes in §8 and discuss
in §9.

2 Background

In recent years, Sign Language Processing (SLP)
has emerged as a sub-area of Natural Language
Processing (NLP). Within this field, automatic sign
language translation (SLT; or sign language ma-
chine translation, SLMT) represents a more spe-
cialized discipline, aiming to develop technology
that facilitates translation between sign languages
and spoken or written languages, but also between
sign and sign languages. However, the challenges
related to SLP and SLT differ from those of NLP
and MT for spoken languages in both range and
complexity. Due to the different modality, lack of
structured, high-quality, high-quantity data, and the
lack of NLP tools, joint efforts from the fields of
sign linguistics and computational linguistics, com-
puter science, machine learning, computer vision,
3D animation and others are needed in order to
advance this field.

In this section we give an introduction to sign
languages (§2.1) and describe the societal and aca-
demic relevance of SLP (§2.2). Then we give an

overview of SLP in general (§2.3) and of SLT in
particular (§2.4) For a general motivation for a
shared task involving sign languages see Müller
et al. (2022).

2.1 Sign languages
Sign languages are natural languages with their
own grammatical structures and lexicons, primarily
used by the deaf and hard-of-hearing communities.
Contrary to the popular belief that sign language
is universal, hundreds of different SLs have been
documented so far.

Nature of sign languages Sign languages are
visuo-gestural languages. A signer conveys an ut-
terance using their body: through the expression of
manual features (hand configuration, location, and
orientation) and non-manual features (including
facial expressions, mouthing and mouth gestures,
gaze and torso direction). The linguistic system
of SLs makes use of these specific channels. In-
formation is expressed simultaneously (as opposed
to the sequential nature of spoken language), or-
ganized in three-dimensional space, and iconicity
plays a central role (Woll, 2013; Perniss et al., 2015;
Slonimska et al., 2021).

Writing systems To date, SLs have no univer-
sally accepted written form or graphical system
for transcription (Pizzuto and Pietrandrea, 2001;
Filhol, 2020). Several notation systems, such as
HamNoSys (Hanke, 2004) or SignWriting (Sut-
ton, 1990; Bianchini and Borgia, 2012), are used
in research or teaching but are rarely adopted as a
writing system in everyday life, limiting the stan-
dardisation of data collection and processing. In
SL research, a common practice is therefore to use
glosses – text-based, semantic labels for signs, typ-
ically borrowed from the corresponding regional
spoken language.

A common misconception among MT re-
searchers is that transcribed glosses are a full-
fledged writing system for sign languages. In re-
ality, glossing can only be seen a linguistic tool,
useful for annotating corpora for linguistic studies
(Johnston, 2010). Glosses do not adequately repre-
sent the meaning of an SL utterance and, more im-
portantly, “deaf people do not read or write glosses”
in everyday life (Müller et al., 2023).

2.2 Relevance of sign language processing
SLP is a research area with high potential societal
and academic impact.
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Societal impact The overall aim of SLP is to
provide language technology for sign languages,
which currently are somewhat overlooked, since
the vast majority of NLP systems are designed only
for spoken languages. This means that more re-
search in SLP could result in more equal access to
language technology.

The more specific goal of SLT is to facili-
tate communication between the deaf and hard-
of-hearing communities on the one side and the
hearing community on the other side. There is
a need for this because speakers of spoken lan-
guages and signers of sign languages experience
communication difficulties (the same kind of dif-
ficulties encountered by speakers of different spo-
ken languages). We emphasize that these technolo-
gies should be developed in such a way, so that
deaf/hard-of-hearing and hearing people can bene-
fit from them in an equal measure.3

Besides aiding direct communication, SLT
would improve accessibility to spoken language
content, given that spoken languages are often a
second language for deaf people, where they ex-
hibit varying proficiency. The reverse direction is
also crucial, for example to automatically subtitle
signed content to make it accessible to people who
do not know sign languages (Bragg et al., 2019).

Academic relevance In the field of NLP, work-
ing on sign languages is highly innovative and
timely. Recently, a call for more inclusion of signed
languages in NLP (Yin et al., 2021) was widely
publicized, and an ACL initiative for Diversity and
Inclusion4 targets SL processing as well.

And even though sign languages are still a niche
topic in the general field of NLP (the vast majority
of NLP systems are designed for spoken languages,
not for signed languages), the advancement and
spread of SLP tools, calls, initiatives and events
lead to knowledge transfer not only within the aca-
demic spheres, or between researchers, developers
and users, but also, more importantly, between deaf,
hard-of-hearing and hearing individuals involved
in the process.

3We distance ourselves from the audistic view that only
deaf people are in need (of access to spoken language dis-
course). Language barriers are inherently two-way, and ad-
dressing them involves both parties.

4https://www.2022.aclweb.org/
dispecialinitiative

2.3 Sign language processing

Sign language processing is an interdisciplinary
field, bringing together research on NLP and com-
puter vision, among other disciplines (Bragg et al.,
2019). For a general overview in the context of
NLP see Yin et al. (2021); Moryossef and Gold-
berg (2021).

Tasks SLP involves a variety of (sub)tasks with
individual challenges. Widely known tasks are sign
language recognition, sign language translation,
and sign language production (or synthesis). Sign
language recognition usually refers to identifying
individual signs from videos; see Koller (2020) for
an overview. Sign language translation refers to the
task of transforming sign language data to a second
language, no matter whether signed or spoken; see
De Coster et al. (2022) for a comprehensive survey.
Finally, sign language production refers to render-
ing sign language as a video, using methods such
as avatar animation (Wolfe et al., 2022) or video
generation.

SLP research is challenging for a number of dif-
ferent reasons. The ones we chose to highlight here
are linguistic properties, availability of data, and
availability of basic NLP tools.

Linguistic challenges SLP is challenging be-
cause the characteristics of sign languages (§2.1)
cannot be fully handled with existing methods, for
instance, the multilinearity, the use of the signing
space, and the iconicity. As explained earlier, SLP
needs to take into account manual and non-manual
cues in order to capture a complete linguistic pic-
ture of an SL utterance (Crasborn, 2006). Informa-
tion is spatio-temporal in nature and the data is si-
multaneously conveyed by a number of articulators.
Signing makes frequent use of indexing strategies
for example to identify referents introduced earlier
in the discourse or timelines (Engberg-Pedersen,
1993). In other words, a sign language utterance is
not a simple sequence of lexical units.

Sign languages have an established vocabulary
but are also lexically productive to allow for the
definition of new signs or constructions to be used
to depict entities or situations (Johnston, 2011).

Availability of data Given the current research
landscape in NLP, sign languages are under-
resourced. An analysis by Joshi et al. (2020) places
all sign languages considered in this study in the
category “left behind” (together with many spoken
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languages). Existing resources are small and het-
erogeneous. They are created under a variety of
circumstances and vary in quality (e.g. video res-
olution), signer demographics (e.g. deaf vs. hear-
ing signers), richness of annotation (e.g. glosses,
sentence segmentation, translation to a spoken lan-
guage), and linguistic domain (e.g. only weather
reports, hence a very limited domain).

Also, not all corpora are easily accessible online
and some have restrictive licenses that disallow
NLP research. A survey of SL corpora available in
Europe can be found in Kopf et al. (2021). For an
account of further challenges relating to data see
De Sisto et al. (2022).

Lack of basic linguistic tools SLP currently
lacks fundamental NLP tools that are readily avail-
able for spoken languages. Such tools include au-
tomatic language identification (Monteiro et al.,
2016), sign segmentation (De Sisto et al., 2021),
sentence segmentation (Ormel and Crasborn, 2012;
Bull et al., 2020b) and sentence alignment (Varol
et al., 2021). Although there are experimental solu-
tions, they are not yet viable in practice.

Tools like these would be crucial to create better
corpora by constructing them automatically, as is
routinely done for spoken languages (Bañón et al.,
2020), and develop better high-level NLP solutions.

2.4 Sign language translation

In recent years, different methods to tackle SLT
have been proposed, most of them suggesting a
cascaded system where a signed video is first con-
verted to an intermediate representation and then
to spoken text (similarly for text-to-video transla-
tion). Intermediate representations (with individual
strengths and weaknesses) include pose estimation
(§5.3), glosses or writing systems such as Ham-
NoSys (§2.1, writing systems).

There is existing work on gloss-to-text transla-
tion (e.g. Camgöz et al. 2018; Yin and Read 2020)
and vice versa (e.g. Stoll et al., 2020), pose-to-text
translation and vice versa (e.g. Ko et al. 2019;
Saunders et al. 2020a,b,c; Inan et al. 2022; Viegas
et al. 2023) and systems involving HamNoSys (e.g.
Morrissey 2011; Walsh et al. 2022), or AZee ex-
pressions, designed to be used as input to avatar
synthesis systems (Bertin-Lemée et al., 2023). Re-
cently, direct video-to-text translation was also pro-
posed by Camgöz et al. (2020a,b). For rendering
sign language output, avatars are commonly used
(Wolfe et al., 2022), as well as methods to gener-

ate videos of realistic signers (e.g. Saunders et al.
2022).

Parallel datasets In terms of datasets, past work
in SLT can be characterized as focusing very
much on a narrow linguistic domain, most of
the work was done on one single data set called
RWTH-PHOENIX Weather 2014T (Forster et al.,
2014). PHOENIX has a size of 8k sentence pairs
and contains only weather reports. The biggest
parallel corpus for a European sign language to
date, the Public DGS Corpus (Hanke et al., 2020),
contains roughly 70k sentence pairs.

Thus, there is a clear shortage of usable parallel
corpora, and existing ones are orders of magni-
tude smaller than what is considered an acceptable
size for spoken language MT (as a rule of thumb,
at least hundreds of thousands of sentence pairs).
Nevertheless, there are plenty of spoken languages
that also have little parallel data and MT methods
have been developed specifically for low-resource
MT (Sennrich and Zhang, 2019).

Evaluation For spoken language MT a variety of
automatic metrics exist. These include more con-
ventional, string-based metrics such as BLEU (Pap-
ineni et al., 2002) or chrF (Popović, 2015), as well
as recent, learned metrics based on embeddings
like COMET (Rei et al., 2020). In the context of
SLT, no automatic metrics are validated empirically,
but if the target language is spoken, many existing
metrics are reasonable to use. However, if sign lan-
guage is the target language, no automatic metric
is known at the time of writing, and the only viable
evaluation method is human evaluation. Apart from
last year’s shared task, a human evaluation of SLT
systems has never been conducted on a large scale
before, and there are open questions regarding the
exact evaluation methodology and what the ideal
profile (e.g. hearing status, language proficiency)
for evaluators should be.

3 Tracks and submission procedure

We offered four translation directions (“tracks”):
translation from DSGS to German and vice versa,
French to LSF-CH, and Italian to LIS-CH.

For DSGS to German, submitted systems were
ranked on a leaderboard. For all other directions,
no automatic ranking was shown since automatic
metrics of translation quality do not exist for sign
languages as the target language.
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We provided baseline systems for both transla-
tion scenarios (translating from or to a sign lan-
guage). We were prepared to provide human eval-
uation for all submitted systems, regardless of the
translation direction or language pair.

We deliberately did not limit the shared task to
any particular kind of SL representation as input or
output of an MT system. For DSGS-to-German
translation, participants were free to use video
frames, pose estimation, or something else. For
German-to-DSGS participants were free to submit
a video showing pose estimation output, an avatar,
or a photo-realistic signer.

Participants had to submit their translation out-
puts on the OCELoT platform5 which displayed an
unofficial public leaderboard based on automatic
metrics. Participants were allowed to make up to
seven submissions and were asked to mark one of
them as their primary submission.

Main outcome Four teams (including one from
Northeastern University whose submission we con-
sider a baseline) participated in our task. All
of them submitted to the DSGS-to-German track,
while there were no submissions for other transla-
tion directions.

4 Data

For this task we provided separate training, devel-
opment and test data. While the training data was
available from the beginning, the test data has been
released in two stages, starting with a release of the
test sources only.

Table 1 gives a high-level overview of our train-
ing, development and test data.

4.1 Licensing and attribution

Both datasets (SRF23 and Signsuisse) can be used
for non-commercial research. Please note that dis-
tributing the datasets or making them accessible to
third parties is not permitted, either in their original
or edited form. In addition, this overview paper
should be cited if the corpora are used.

4.2 Training Data

The training data comprises two corpora called
Signsuisse (Jiang et al., 2023a) and SRF23 (Jiang
et al., 2023b). Signsuisse is a multilingual dictio-
nary containing lexical items in DSGS, LSF-CH
and LIS-CH, represented as videos and glosses.

5https://ocelot-wmt23.mteval.org/

Additionally, Signsuisse contains sentence-level
parallel data as well, since there is one example
sentence to show the use of the sign in context for
each lexical item. SRF23 contains parallel data
between DSGS and German, and its linguistic do-
main is general news. Both datasets are distributed
through SwissUbase6, where individual researchers
had to agree with the usage terms and apply for ac-
cess before downloading.

Training corpus 1: Signsuisse Lexicon We col-
lected 18, 221 lexical items from the Signsuisse
website, 17, 221 of which are released as training
data and 1, 000 are reserved for testing and there-
fore not included in the training data release. The
lexicon contains three languages: (i) DSGS (9044
items, 500 reserved), (ii) LSF-CH (6423 items, 250
reserved), and (iii) LIS-CH (2754 items, 250 re-
served).

The lexical items are represented as videos and
glosses, which enable sign-by-sign translation from
spoken to signed languages. The videos were
recorded with different framerates, either 24, 25, or
30 fps, and the video resolution is 640 x 480.

Training corpus 2: SRF23 These are daily na-
tional news and weather forecast episodes broad-
cast by the Swiss National TV (Schweizerisches
Radio und Fernsehen, SRF)7. The episodes are nar-
rated in Standard German of Switzerland (different
from Standard German of Germany, and different
from Swiss German dialects) and interpreted into
Swiss German Sign Language (DSGS). The in-
terpreters are hearing individuals, some of them
children of Deaf adults (CODAs).

The subtitles are partly preproduced, and partly
created live via respeaking to automatic speech
recognition. While both the subtitles and the sign-
ing are based on the original speech (audio), due
to the live subtitling and live interpreting scenario,
a temporal offset between audio and subtitles as
well as audio and signing is inevitable (Müller
et al., 2022). It should also be pointed out that
there are differences between interpreted and non-
interpreted language (Dayter, 2019) due to source
language interference and time constraints. SL dur-
ing real-time interpretation tends to closely follow
the grammatical structure of the spoken language
(Leeson, 2005).

6https://www.swissubase.ch/en/catalogue/
studies/20452/19280/overview

7https://www.srf.ch
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SRF23 Signsuisse Total

direction episodes segments segments lexical items segments lexical items

training
DSGS↔DE 771 231834 9044 9044 240878 9044
FR→LSF-CH - - 6423 6423 6423 6423
IT→LIS-CH - - 2754 2754 2754 2754

development DSGS↔DE 3 712 - - 712 -

test

DSGS→DE 1 246 250 250 496 250
DE→DSGS 1 258 250 250 508 250
FR→LSF-CH - - 250 250 250 250
IT→LIS-CH - - 250 250 250 250

Table 1: Overview of training, development and test data. SRF23 and Signsuisse are two different training corpora
(§4.2). Segment count for the training corpora is after automatic sentence segmentation. The training data and
development data for DSGS→DE and DE→DSGS are identical, while the test data is different. There was no
designated development data for LSF-CH and LIS-CH.

Different from the first edition of the shared task
(WMT-SLT22), the offset between the signing and
the subtitles was not manually corrected for the
training data of the current edition. On the other
hand, the size of the training data is much larger
than last year, presenting a different trade-off. See
Table 2 for a comparison between this year’s and
last year’s SRF resources. While last year our fo-
cus was providing training data of the highest qual-
ity, this year our focus was offering a large, noisy
dataset that lends itself to data cleaning or filtering
experiments such as automatic alignment.

Additional resources We encouraged partici-
pants to consider the MEDIAPI-SKEL corpus with
parallel examples between French Sign Language
and French (Bull et al., 2020a) as a further resource.
Besides, we suggested that participants re-use the
training corpora released for last year’s shared task
(Müller et al., 2022).

4.3 Development data

We did not provide any dedicated development data
for this edition of the shared task. As is customary
for WMT shared tasks, we encouraged participants
to use last year’s development and test data as de-
velopment data for the current year.

4.4 Test data

We distribute separate test data for our four transla-
tion directions. See Table 1 for an overview.

DSGS→DE The test data consists of segments
taken from undisclosed SRF23 and Signsuisse ma-
terial (see §4.2 for a general description). The final
test set is balanced, containing roughly 50% Sign-
suisse and 50% SRF23 examples. For the SRF23

part one episode was manually aligned using the
iLex editor (Hanke and Storz, 2008), and the signer
is a “known” person that appeared in the training
set. We did not intend to test generalization to un-
known signers during the shared task evaluation
campaign. For the Signsuisse part we do not use
the isolated lexical entries themselves for testing,
but the example sentences associated with each
lexical item.

DE→DSGS Same procedure as DSGS→DE, ex-
cept that a different SRF23 episode and different
sentences from Signsuisse are reserved for this
translation direction.

FR→LSF-CH 250 undisclosed sentences from
Signsuisse.

IT→LIS-CH 250 undisclosed sentences from
Signsuisse.

5 Data preprocessing

For each data set described in §4 we provided
videos and corresponding text in a spoken language.
In addition, we included pose estimates (location
of body keypoints in each frame) as a convenience.

5.1 Video processing (only SRF23)

Videos are re-encoded with lossless H264 and use
an mp4 container. The framerate of videos is un-
changed, meaning either 25, 30 or 50. We are not
distributing the original videos but ones that are
preprocessed in a particular way so that they only
show the part of each frame where the signer is
located (cropping) and the background is replaced
with a monochrome color (signer masking), see
Figure 1 for examples.
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SRF22 SRF23

Number of episodes 29 771
Time span of episodes March 2020 to March 2021 July 2014 to May 2021
Total duration videos 16 hours 437 hours
Total number of subtitles (before/after sentence segmentation) 14265 / 7071 354901 / 231834
Number of signers 3 4
Subtitle segmentation manual automatic
Subtitle alignment manual audio

Table 2: Comparison between SRF training data of the 2022 and 2023 edition of the WMT-SLT shared task. Subtitle
segmentation=ensuring that each subtitle unit is one entire sentence. Subtitle alignment=Subtitle times are either
manually corrected to match the signing in the video (manual) or are matched with the audio track (audio).

Figure 1: Illustration of video preprocessing steps (cropping, instance segmentation and masking). From left to
right: original frame, cropped frame, masked frame. Taken from Müller et al. (2022).

Cropping We manually annotate a rectangle
(bounding box) around where the signer is located
for each video. We then crop the video to only keep
this region using the FFMPEG library.

Signer segmentation and masking To the
cropped video we apply an instance segmentation
model, Solo V2 (Wang et al., 2020), to separate the
background from the signer. This produces a mask
that can be superimposed on the cropped video to
replace each background pixel in a frame with a
grey color ([127,127,127] in RGB).

The video processing steps described above are
only necessary for the SRF23 data, since Signsuisse
footage is recorded against a neutral background
and showing only one signer in the center of each
frame.

5.2 Subtitle processing (only SRF23)
Since SRF23 subtitles are not manually aligned,
automatic sentence segmentation8 is used to re-
distribute text across subtitle segments, see Table 3
for examples. This process also adjusts timecodes
in a heuristic manner if needed. For instance, if au-
tomatic sentence segmentation detects that a well-
formed sentence stops in the middle of a subtitle,

8https://github.com/bricksdont/srt/tree/
sentence_segmentation

a new end time will be computed. The end time is
proportional to the location of the last character of
the sentence, relative to the entire length of the sub-
title. See Example 2 in Table 3 for an illustration
of this case.

5.3 Pose processing (both corpora)

“Poses” are an estimate of the location of body
keypoints in video frames. The exact set of key-
points depends on the pose estimation system, well-
known ones are OpenPose (Cao et al., 2019)9 and
MediaPipe Holistic (Lugaresi et al., 2019)10. Usu-
ally such a system provides 2D or 3D coordinates
of keypoints in each frame, plus a confidence value
for each keypoint.

The input for pose processing are cropped and
masked videos (§5.1). See Figure 2 for examples
of pose estimation on our data.

OpenPose We use the Openpose 137 model
(which is the default) for the Signsuisse data and
the Openpose 135 model for the SRF data. The two
models are both widely used and the 137 model
has two additional keypoints because it represents

9https://github.com/CMU-Perceptual-Computing-Lab/
openpose

10https://ai.googleblog.com/2020/12/
mediapipe-holistic-simultaneous-face.html

74



Example 1

Original subtitle After automatic segmentation

81
00:05:22,607 –> 00:05:24,687
Die Jury war beeindruckt

82
00:05:24,687 –> 00:05:28,127
und begeistert von dieser gehörlosen Frau.

48
00:05:22,607 –> 00:05:28,127
Die Jury war beeindruckt und begeistert von
dieser gehörlosen Frau.

Example 2

Original subtitle After automatic segmentation

7
00:00:24,708 –> 00:00:27,268
Die Invalidenversicherung Region Bern startete

8
00:00:27,268 –> 00:00:29,860
dieses Pilotprojekt und will herausfinden, ob
man es

9
00:00:29,860 –> 00:00:33,460
zukünftig umsetzen kann. Es geht um die
Umsetzung

4
00:00:24,708 –> 00:00:31,720
Die Invalidenversicherung Region Bern startete
dieses Pilotprojekt und will herausfinden, ob
man es zukünftig umsetzen kann.

Table 3: Examples of automatic sentence segmentation for German subtitles. The subtitles are formatted as SRT, a
common subtitle format. Taken from Müller et al. (2022).

Figure 2: Examples of the output of pose estimation systems overlaid over the original video frames. Left: OpenPose,
right: MediaPipe Holistic. Taken from Müller et al. (2022).
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the wrists twice. OpenPose often detects several
people in our videos, even though there is only one
single person present. We distribute the original
predictions which contain all people that OpenPose
detected.

MediaPipe Holistic As an alternative, we also es-
timate signers’ poses with the MediaPipe Holistic
system developed by Google. Unlike our Open-
Pose model, which only provides 2D joint loca-
tions, MediaPipe produces both 2D and 3D joint
location coordinates. For the SRF data, values from
Holistic are normalized between 0 and 1, instead
of referring to actual video coordinates.

Unlike the first edition of the task, where the
keypoints were stored in a JSON format, to deliver
the pose data for more compact storage and faster
I/O, in WMT-SLT 23 the binary .pose format of
Moryossef and Müller (2021) was used.

6 Baselines and submitted systems

In this section we describe the submissions to our
shared task. In case there are substantial differences
between the primary and secondary submissions of
a team we opted to describe the primary submission
here. At the time of writing this overview paper
three out of four teams have given us detailed infor-
mation about their submissions. The submissions
are summarized in Table 4.

Overall, the participating teams have diverse aca-
demic backgrounds, but their expertise is leaning
towards NLP more than computer vision. All sub-
mitted systems are sequence-to-sequence models
based on Transformers (Vaswani et al., 2017). Par-
ticipants mostly chose to represent sign language
data as video frames (using a visual feature extrac-
tor on the encoder side). Only the baseline system
opted for Mediapipe pose features instead.

Two systems, by KNOWCOMP and TTIC, are
unconstrained because their visual or spoken text
components are pretrained on other datasets. Their
approaches are best summarized as a combina-
tion of visual embeddings and pre-trained language
models. TTIC used additional monolingual video
data from OpenASL for pretraining, and no submis-
sion used monolingual text in a spoken language.

Two teams have published their code, with an-
other team planning to do so in the future.

6.1 Baseline by Northeastern University
(DSGS→DE)

Based on the models of the previous challenge, we
pre-train the baseline signed-to-spoken system us-
ing a Transformer architecture. We use the fairseq
seq2seq translation library (Ott et al., 2019), and
the open-source implementation of the architecture
by Tarrés et al. (2023). We first train a Sentence-
piece tokenization model on the German text of the
example sentences of the Signsuisse dataset. Then,
we train the model on the Mediapipe Holistic poses
on the Signsuisse example sentences. We, then,
validate and test the model on the extracted Me-
diapipe Holistic poses of both the Signsuisse and
SRF DSGS-to-German datasets. The final output
is detokenized to result in spoken German text.

6.2 Baseline by UZH (DE→DSGS,
FR→LSF-CH, IT→LIS-CH)

As a naive solution, we choose a sign-by-sign trans-
lation baseline (Moryossef et al., 2023). The sys-
tem gets German text as input, performs text-to-
gloss translation, then for each gloss looks up a
sign in the Signsuisse lexicon. The estimated poses
from each sign are then concatenated and smoothed
out, to create a single pose video with the transla-
tion into a sign language.

Since there were no submissions by participants
to these tracks, this baseline was not used for any
subsequent evaluation.

6.3 Submission by KNOWCOMP (Xu et al.,
2023)

The team proposed a framework which combines
a pre-trained visual model to extract visual em-
beddings with a GPT2-based language model to
translate into text.

The framework first utilises an I3D model (Varol
et al., 2022) pre-trained on the BSL-1K corpus (Al-
banie et al., 2020) to extract 1024-dimensional
tensors for a 64-frame video input. The video
extractor, i.e. the I3D model, generates a 1024-
dimensional tensors as the visual representation
of the input video (64 frames). For decoding, a
German-GPT2 (Radford et al., 2019) large lan-
guage model (LLM) is used to generate the final
translations. To establish an alignment between
the visual and the textual embeddings from the two
models, the team trains an embedding alignment
block to project the obtained visual embeddings
into textual embeddings.
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BASELINE KNOWCOMP TTIC CASIA

Constrained ✔ - - ?
Multilingual - - - ?
Document-level - - - ?
Model ensemble - - - ?

Pretrained components - ✔ ✔ ?
Monolingual data - ✔ ✔ ?
Synthetic data - - - ?

Signed language representation Mediapipe I3D features Video frames ?
Spoken language representation SP BPE SP ?

Open-source code ✔ (✔) ✔ ?

Table 4: Overview of characteristics of submitted systems. CASIA did not disclose any information. In the code
row, checkmarks are clickable links. BPE=Byte Pair Encoding, SP=Sentencepiece, (✔)=authors plan to publish the
code.

This is implemented by stacking 6 Transformer
encoder layers together. Two fully connected neu-
ral networks are placed before and after the align-
ment block to extend the visual embeddings into a
sequential format and to densify the aligned embed-
dings into prefix embeddings for German-GPT2,
respectively.

Before training their model KnowComp first em-
ploys a data preprocessing step where the raw data
is divided into smaller video segments which are
then matched with the corresponding ground truth
German translations. To ensure that the input ob-
serves the visual model requirements, i.e. input of
64 frames, they downsample the video segments
taking the first of each three frames. In cases where
the video segment is smaller than 64 frames, pure
black frames are appended. Next, the video frames
are resized to 224 x 224.

At training time, to enhance training efficiency,
the parameters of the visual and the translation
models are first frozen; later, at a certain iteration,
the parameters of GPT2 are unfrozen. This strategy
ensures that the randomly initialized Transformer
encoder does not compromise the LLM. The hyper-
parameters they used are: batch size of 4, learning
optimizer Adam (Kingma and Ba, 2015) with a
learning rate of 5e− 6, and unfreezing the training
parameters at iteration 66000. The input and out-
put lengths of GPT2 were set to 20. The number
of heads in the multi-head attention was set to 8;
the prefix length for GPT2 to 4. Before the visual
embeddings were fed to the alignment block, the
sequence length was adjusted to 2 × 4, where 4 is
the GPT2’s prefix number. They ran their experi-
ments on an NVIDIA GeForce GTX 1080 Ti with
11G VRAM.

6.4 Submission by TTIC
(Sandoval-Castaneda et al., 2023)

The system by the TTIC team uses as visual back-
bone the VideoSwin Transformer (Liu et al., 2022)
and the T5 model by Raffel et al. (2020) for trans-
lation into text. The VideoSwin model was pre-
trained on the visual (video) side of OpenASL (Shi
et al., 2022, thus excluding the English transla-
tions) using the codebook from a discrete varia-
tional auto-encoder (dVAE, Ramesh et al., 2021) to
produce the labels in the self-supervision objective.
Next, the model was fine-tuned for the task of iso-
lated sign language recognition on the gloss-based
version (Dafnis et al., 2022) of the WLASL2000
dataset (Li et al., 2020).

The input data was segmented into non-
overlapping, padded chunks of 16 frames in order
to meet the input requirements of VideoSwin. The
outputs were concatenated together.

Following the findings of Uthus et al. (2023) that
English pre-trained T5 and fine-tuned for ASL to
English translation produces state-of-the-art results,
the TTIC team used a T5 model pre-trained on the
German Colossal Cleaned Common Crawl (GC4)
corpus.11 They used pre-trained checkpoints from
HuggingFace (Wolf et al., 2019). To tokenize the
target side, SentencePiece (Kudo and Richardson,
2018) trained on the same data was used to produce
a vocabulary of 32,128 tokens.

Their system employs a convolutional layer that
is trained to project the sequence of visual features
into a single vector per time step. The T5 embed-
dings layer is replaced by this convolutional layer.
The cross-entropy loss was used for the BEVT pre-

11https://german-nlp-group.github.io/projects/
gc4-corpus.html
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training, the ISLR fine-tuning, the text-to-text pre-
training as well as for the translation. At inference
time, the diverse beam search algorithm (Vijayaku-
mar et al., 2016) with 5 beams, 5 beam groups
and a diversity penalty of 1 was used. In contrast
to KNOWCOMP, the TTIC team used 8 GPUs to
train their system.

6.5 Submission by CASIA
Finally, we received several submissions from the
National Laboratory of Pattern Recognition at the
Institute of Automation, Chinese Academy of Sci-
ences (submission ID: CASIA). No system paper
was submitted and the authors did not provide fur-
ther information.

7 Evaluation Protocols

We performed both a human (§7.1) and an auto-
matic (§7.2) evaluation of translation quality. Our
final system ranking is based on the human evalua-
tion only.

7.1 Human evaluation
Our human evaluation follows the setting we es-
tablished last year for SLT human evaluation with
custom guidelines (Müller et al., 2022), which was
originally adapted from the evaluation protocol
used at the recent WMT conferences (Kocmi et al.,
2022).

Scoring method We employed the source-based
direct assessment (DA; Graham et al., 2013; Cet-
tolo et al., 2017) methodology with document con-
text, extended with Scalar Quality Metric (SQM;
Freitag et al., 2021). Assessments were performed
on a continuous scale between 0 and 100 as in tra-
ditional DA but with 0-6 markings on the analogue
slider and custom annotator guidelines specifically
designed for our task.

As a result of the human evaluation, the systems
are ranked from best to worst, after averaging the
segment-level DA scores given by the human anno-
tators. In contrast to previous evaluation campaigns
(Akhbardeh et al., 2021) which calculate the rank-
ings based on standardized scores (z-scores), we
decided to not do so, because the large number of
zero-scored items led to a rather skewed standard-
ization scale which affected the calculation of the
clusters. We did not make any distinction between
segment-level and document-level scores, simply
including the latter as additional data for computing
the average scores.

After ranking the systems based on their average
scores, they are grouped into significance clusters,
following the Wilcoxon rank-sum test. Rank ranges
give an indication of the translation quality of a
system within a cluster and are based on the same
head-to-head statistical significance tests.

Inter- and intra-annotator agreement was mea-
sured with Fleiss κ (Fleiss, 1971). This should be
considered an approximation, noting the concerns
of Ma et al. (2017) that kappa coefficients are not
suitable for continuous scales. In order to calculate
the coefficient, the values have been discretized in
seven bins in the scale 0-6, since those were the
scores marked on the continuous evaluation bar
that was given to the annotators.

Settings of evaluation campaign We used the
Appraise evaluation framework12 (Federmann,
2018) for collecting segment-level judgments. As
there were submissions in the DSGS-to-German
direction only (§6), we only set up a sign-to-text
human evaluation campaign. Annotators were pre-
sented with video fragments as source context and
translation outputs of a random document fragment
from an MT system. The reference translation and
the official baseline were included as additional
system outputs. Document fragments were created
from (up to) twelve consecutive segments. The
SRF23 part of the test set was evaluated within the
document context. Because the Signsuisse part is a
collection of utterances without document bound-
aries, we presented up to twelve random segments
at once but emphasized in the guidelines that those
are unrelated and should be assessed independently.

A screenshot of an example annotation in Ap-
praise is presented in Figure 3. The full instructions
to evaluators in English and German are listed in
Appendix B.

Data and scripts used for generating tasks and
computing the final system rankings are publicly
available in a Github repository.13

We hired three evaluators who are native German
speakers and trained DSGS interpreters. All of
them had prior experience with evaluation of MT
output. Each evaluator was assigned an identical
set of annotation tasks comprising the entire test set
and all participating systems, including the baseline
system and the reference translation. As last year,
we did not include any quality control items in the
annotation tasks as we had multiple independent

12https://github.com/AppraiseDev/Appraise
13https://github.com/WMT-SLT/wmt-slt23
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Figure 3: A screenshot of an example sign-to-text annotation task in Appraise featuring document-level source-based
direct assessment (DA) with scalar quality metrics (SQM) and custom annotator guidelines in German. Taken from
Müller et al. (2022).
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annotations of the entire test set and because of
the very low quality of translations, which would
make them indistinguishable from segments with
randomly replaced words or phrases used as quality
control items.

Feedback from evaluators After completing the
evaluation all three evaluators filled out the feed-
back form we used last year regarding the evalua-
tion procedure and the Appraise platform, where
they gave us additional informal feedback.

7.2 Automatic evaluation

As in the previous edition, to complement our hu-
man evaluation (which provides the main ranking)
we also provide an automatic evaluation. We evalu-
ate the submissions from DSGS into German using
three automatic metrics: BLEU (Papineni et al.,
2002), chrF (Popović, 2015) and BLEURT (Sellam
et al., 2020). We note that learned, semantic met-
rics correlate better with human judgement (Kocmi
et al., 2021), but if they consider the source text
as an input (e.g. COMET; Rei et al., 2020), they
cannot be used in our context because our source is
video and not text. There is no known learned met-
ric which supports sign language videos. We use
sacreBLEU (Post, 2018) for BLEU14 and chrF15

and the Python library for BLEURT.16 In all cases,
we estimate 95% confidence intervals via bootstrap
resampling (Koehn, 2004) with 1000 samples.

8 Results

8.1 Human evaluation

Assessment scores All three evaluators com-
pleted all tasks, which gave us three independent
judgements for each segment from the official test
set. In total, for the output of five systems, we col-
lected 7,800 segment-level and 792 document-level
assessment scores, which averages to 1,718 scores
per system.

System ranking The official system ranking is
presented in Table 5. The significance clusters
are indicated with horizontal lines. According to
our human evaluation (Table 5), the submission by
TTIC has achieved an average score of 0.7 on the
scale of 0 to 100, compared to a score of 83.8 for

14BLEU|nrefs:1|bs:1000|seed:12345|case:
mixed|eff:no|tok:13a|smooth:exp|version: 2.2.0

15chrF2|nrefs:1|bs:1000|seed:12345|case:
mixed|eff:yes|nc:6|nw:0|space:no|version: 2.2.0

16BLEURT v0.0.2 using checkpoint BLEURT-20.
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Figure 4: Histogram with the distribution of the system
outputs at the DA score scale (x axis) with overlapping
semi-transparent bars, discretized into 20 bins. For
every segment we include only the average of all ratings.
Bin 0, where most ratings belong (up to 496), is cropped
to 20 to make the histogram visible.

human translations. The score of TTIC is signif-
icantly better than the other systems in the table.
All other systems ended up in the same cluster with
overall lower translation quality.

Distribution of scores In order to make the dis-
tribution of DA scores more interpretable, it is vi-
sualized in Figure 4. TTIC had one segment with a
score of 99 out of 100, one with 83, one for each
of the scores 22, 18 and 15, then 4 segments with a
score of about 10, and 16 segments with a score of
about 5. CASIA had two segments with a score of
about 5. The rest of the segments, including all the
outputs from the KNOWCOMP and BASELINE
systems, have been given a score very close to 0.

Some example outputs of the highest-scoring
translations are listed in Table 6. One can see that
TTIC came close to correctly translating the gen-
eral introductory greetings of the news, but for the
rest of the MT ouputs, rated less than 20 out of 100,
only a few words match the reference.

Annotator agreement In Table 7 we are report-
ing intra-annotator agreement for every annota-
tor, measured with Fleiss κ (Fleiss, 1971) over
134 segments which were evaluated twice. (Lan-
dis and Koch, 1977; Agresti, 1996). The inter-
annotator agreement is κ = 0.80 ± 0.01. One
can observe that the intra-annotator agreement and
all 3 intra-annotator agreements are substantial
(0.61 < κ ≤ 0.80) based on Landis and Koch,
1977).
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both domains

Rank Ave. System

1 83.829 HUMAN
2 0.669 TTIC

3-5 0.024 CASIA
3-5 0.008 BASELINE
3-5 0.005 KNOWCOMP

SRF

Rank Ave. System

1 68.809 HUMAN
2 1.192 TTIC

3-4 0.046 CASIA
3-5 0.009 BASELINE
4-5 0.002 KNOWCOMP

Signsuisse

Rank Ave. System

1 98.630 HUMAN
2 0.154 TTIC

3-5 0.008 BASELINE
3-5 0.007 KNOWCOMP
3-5 0.003 CASIA

Table 5: Official results of the WMT23 Sign Language Translation task for translation from Swiss German Sign
Language to German. Systems are ordered by averaged (non-standardized) human score in the percentage scale.
Lines indicate clusters according to a Wilcoxon rank-sum test p < 0.05.

score system testset doc seg text

99.3 TTIC SRF 0 0 hyp: Guten Abend, meine Damen und Herren, willkommen zur "Tagesschau".
ref: Guten Abend, meine Damen und Herren, willkommen zur "Tagesschau".

83.3 TTIC SRF 0 1 hyp: Heute mit diesen Themen:
ref: Das macht heute Montag Schlagzeilen:

18.7 TTIC SRF 23 9 hyp: Der US-Präsident ist heute zu Gast bei "10vor10".
ref: Wesentliches gibt es auch heute bei "10vor10".

16.3 TTIC SRF 18 0 hyp: Und auch für EU-Bürger, die in die Schweiz einreisen wollen, soll es ver-
schärfte Einreiseregeln geben.

ref: Auch die EU will nun ihre Bürger vom Kreuzfahrtschiff zurückholen, denn
man misstraut Japans Krisenmanagement.

12.0 TTIC SRF 14 2 hyp: Die Leute müssen sich Gedanken machen, wie sie die Zukunft meistern
können.

ref: Das muss sich ändern, sind sich die EU-Aussenminister einig.

11.0 TTIC SS 18 5 hyp: Der Film kann auf YouTube angeschaut werden.
ref: Dieser Film ist spannend und interessant.

8.3 TTIC SRF 15 4 hyp: Tausende Menschen sind seither ohne Hilfe von aussen ausgewandert.
ref: Über 70’000 Menschen haben sich bis heute mit dem neuen Coronavirus

infiziert.

5.0 CASIA SRF 1 1 hyp: Die Temperaturen steigen in der Schweiz.
ref: Und morgen gibt es sonnige Phasen bei Temperaturen um 9 °C.

Table 6: Examples of some of the highest-scoring translations in the test set. hyp=MT outputs, ref=human translation
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annotator kappa

A 0.80±0.05
B 0.80±0.06
C 0.79±0.06

Table 7: Intra-annotator agreement based on the Fleiss
κ coefficient for reliability of agreement (with scores
discretized in the scale 0-6).
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Figure 5: Number of task completion times (a task con-
sists of 100 segments) grouped into 10-minute buckets,
after removing top and bottom 5-percentiles.

Evaluation speed A single task requiring provid-
ing 100 segment-level and about 12 document-level
scores took on average 29 minutes to complete,
after excluding 5% of slowest and fastest task an-
notations. The majority of tasks were finished in
between 10 and 30 minutes as shown in Figure 5.
This is substantially faster than last year, which
averaged around 45 minutes per task.

Feedback from evaluators After completing the
evaluation all three evaluators filled in a form meant
for feedback regarding the evaluation procedure
and the Appraise platform. All evaluators gave us
additional informal feedback.

In general, evaluators reported that their expe-
rience with Appraise was positive (two of them
had used Appraise before), and that our instruc-
tions were clear. All of them would be willing to
do similar work in the future. They found source
videos understandable and the documents or seg-
ments given were neither too long nor too short.
The general method of assessing translations (DA
with SQM) was not found difficult nor stressful, but
on the contrary annotators thought it was efficient,
simple, fast and practical.

Concerning Appraise development, nobody ex-
perienced technical problems, which is an improve-
ment over last year, when two people experienced
major technical issues. Evaluators suggested that
the user interface could be improved in some places.
For instance, automatically playing videos could
make evaluations more efficient, the videos should
be bigger by default, there should be more key-
board shortcuts and there should be a quick way to
give a low score to an entire document.

As explained in more detail below (§9.3), and
similar to last year, evaluators told us that some
videos do not have ideal cuts, in the sense that the
beginning or end are slightly cut off. This is per-
haps inevitable in continuous signing, or a problem
in our manual alignment process.

Full responses to the feedback form submitted
by evaluators are listed in Appendix C.

8.2 Automatic evaluation

Table 8 summarises the results of the automatic
evaluation. In general, the translation of the Sign-
suisse subset (SS) and the SRF23 subset seem to
have a similar complexity, especially according to
chrF and BLEURT evaluation scores. BLEU, on
the other hand, shows higher translation quality
for SRF in selected systems by CASIA and TTIC.
Both teams are able to significantly outperform the
baseline system according to the three evaluation
metrics. TTIC achieves the best scores with their
primary submission TTIC.423. Although chrF
points out another of their submissions as the best
system, the difference with respect to the primary
submission is not statistically significant.

9 Discussion

9.1 General translation quality

Overall, all systems perform poorly in our shared
task, as there is an extreme difference in average
score between all systems and the human refer-
ence translation. The systems exhibit well-known
problems of natural language generation such as
overfitting to few high-probability hypotheses and
hallucination (Lee et al., 2018; Raunak et al., 2021).

The best submitted system in the best case
achieves an average score of about 1 out of 100
(where the human translation achieved 69 out of
100), which indicates that current automatic trans-
lations are not usable in practice, unlike spoken
language MT where in specific scenarios experi-
ments have shown systems to be on par with human
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BLEU chrF BLEURT

Submission all SS SRF23 all SS SRF23 all SS SRF23

BASELINE 0.09±0.03 0.15±0.06 0.10±0.05 12.4±0.4 12.2±0.5 12.5±0.5 0.072±0.003 0.083±0.005 0.060±0.005

CASIA.426 0.38±0.20 0.16±0.04 0.52±0.28 14.6±0.4 14.2±0.5 14.8±0.7 0.148±0.006 0.143±0.008 0.152±0.007
CASIA.427 0.39±0.20 0.13±0.05 0.52±0.28 14.2±0.5 13.4±0.5 14.8±0.7 0.162±0.006 0.171±0.009 0.152±0.007
CASIA.428 0.16±0.07 0.16±0.04 0.20±0.10 13.5±0.4 14.2±0.5 13.0±0.5 0.156±0.005 0.143±0.008 0.168±0.007
CASIA.429 0.38±0.20 0.15±0.06 0.52±0.28 14.3±0.4 13.5±0.5 14.8±0.7 0.175±0.006 0.197±0.008 0.152±0.007
CASIA.430 0.33±0.16 0.15±0.10 0.52±0.28 14.7±0.4 14.6±0.5 14.8±0.7 0.166±0.006 0.179±0.008 0.152±0.007
CASIA.431 0.13±0.06 0.15±0.10 0.14±0.03 14.5±0.4 14.6±0.5 14.4±0.6 0.169±0.006 0.179±0.008 0.159±0.008
CASIA.432 0.37±0.19 0.11±0.05 0.52±0.28 14.4±0.4 13.7±0.5 14.8±0.7 0.172±0.006 0.190±0.008 0.152±0.007

KNOWCOMP.418 0.06±0.03 0.07±0.03 0.09±0.04 6.2±0.3 6.9±0.5 5.7±0.5 0.077±0.005 0.080±0.007 0.073±0.007
KNOWCOMP.419 0.07±0.05 0.06±0.02 0.11±0.09 7.6±0.3 8.2±0.4 7.2±0.4 0.083±0.005 0.084±0.007 0.081±0.007

TTIC.417 0.56±0.46 0.30±0.14 0.29±0.13 15.9±0.5 16.6±0.8 15.3±0.6 0.222±0.010 0.231±0.011 0.210±0.015
TTIC.420 0.78±0.83 0.21±0.04 0.17±0.02 16.0±0.5 16.2±0.6 15.5±0.6 0.224±0.010 0.228±0.011 0.216±0.015
TTIC.421 0.21±0.09 0.13±0.06 0.29±0.13 13.2±0.4 13.3±0.5 13.2±0.6 0.087±0.006 0.078±0.006 0.095±0.010
TTIC.422 0.77±0.74 0.22±0.13 0.29±0.12 17.3±0.5 16.7±0.6 17.4±0.6 0.239±0.010 0.230±0.011 0.245±0.015
TTIC.423 1.03±0.87 0.21±0.03 0.69±0.46 17.0±0.6 16.2±0.7 17.2±0.7 0.243±0.010 0.236±0.011 0.246±0.013
TTIC.424 0.79±0.74 0.24±0.12 0.33±0.14 17.2±0.5 16.6±0.7 17.5±0.7 0.236±0.009 0.228±0.011 0.241±0.015
TTIC.425 0.74±0.79 0.14±0.06 0.23±0.10 16.3±0.6 16.0±0.7 16.3±0.7 0.205±0.009 0.194±0.010 0.214±0.014

Table 8: Automatic evaluation of all the submission for the full WMT-SLT test set (all), the Signsuisse subset (SS)
and the SRF23 subset. Mean and 95% confidence intervals obtained via bootstrap resampling are shown. Primary
submissions manually evaluated are boldfaced.

translation (Hassan et al., 2018; Popel et al., 2020).
This assessment of general translation quality is
unchanged from last year, see Müller et al. (2022)
for potential reasons that still apply to the current
shared task.

9.2 No submissions for spoken-to-signed
translation directions

No teams participated in a track where a sign lan-
guage is the target language (§3). We believe this
could be due to the fact that generating sign lan-
guage may appear considerably harder to partici-
pants. The problem of signed-to-spoken translation
fits well into existing translation paradigms and
toolkits, because using arbitrary features on the
source side is easier than generating arbitrary nu-
merical data (such as a video). Decoding text on
the target side is considerably easier and more well-
defined in NLP than decoding a video or similar
data structure.

We thought that providing a baseline system for
spoken-to-signed translation (§6.2) may help lower
the barriers to entry but clearly, more measures are
needed. A different hypothesis is that our shared
task in its current form does not appeal to scientists
working in the field of sign language generation or
avatar technology. They may have felt alienated by
aspects of the shared task which are familiar to MT
researchers, but would need more explanation or
introduction for people from neighboring fields.

9.3 Low scores of human translations
When looking at the domain-specific results (Ta-
ble 5b and c), we observe that the human translation
in SRF was ranked considerably lower than Signsu-
isse (69% against 98%). This difference warrants
further investigation, as does the fact that a per-
centage of 69% is by itself rather low. We explain
potential reasons for this below, attributing the dif-
ference to the way the corpora were generated.

Interpretation vs. translation SRF is partially
generated as live interpretation of the spoken TV
shows (spoken-to-sign), where interpreters are un-
der time pressure. Due to specific efficiency strate-
gies they occasionally omit content to keep up with
the spoken audio. Therefore, since here we are
evaluating the performance of the systems in the
opposite direction (sign-to-spoken) it may as well
very often be that the content of the interpretation
does not match the one of the written or spoken
sentence. However, as explained in Section 4, the
Signsuisse part of the testset derives from a lexi-
con, containing sentences recorded as examples of
particular lexicon entries. Since these have been
generated for the purpose of being included in the
lexicon, the accuracy of the translation is expected
to be much higher than the one achieved within live
interpretation.

Video editing issues The measured bad human
performance on SRF may also be explained by the
fact that the video cuts are sometimes not ideal,
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i.e. the beginning or end of an SL utterance is cut
off, as noted by our evaluators. This may have
occurred because segmenting continuous signing
is difficult and there is no ideal way to separate
seamless transitions.

In the future these problems could perhaps be
mitigated by including more frames from the left
and right border of a video clip, or simply discard-
ing sentences with unclear boundaries.

Role of discourse context A third reason may
be that SLs are probably more dependent on con-
text than spoken languages, e.g. because of index
signs. This means that evaluating an isolated SL ut-
terance (the equivalent of one sentence in a spoken
language) may lead to low scores. This is a phe-
nomenon that would more likely occur in a news
report of SRF, as compared to the isolated example
sentences of Signsuisse.

Contrary to what was observed for the evaluation
of the human translation, the two submitted MT
systems TTIC and CASIA perform significantly
better on SRF than on Signsuisse. Here we may
provide the assumption, that since the amount of
training sentences from SRF is bigger than the ones
from Signsuisse, the systems are optimized better
for that domain. Additionally, it has been noted that
in interpretation settings similar to the ones of SRF,
the linguistic characteristics of the signing may be
more closely related to German than in an offline
translation setting, such as the one in Signsuisse.

9.4 Quality of training data and unexplored
potential

Compared to last year we offered considerably
more training data (hundreds of hours worth of
video compared to dozens last year; §4.2). How-
ever, while last year all training data was manu-
ally corrected, this year we offered the data as-is.
The SRF23 training data is best understood as a
comparable corpus, or web-crawled parallel corpus
including various types of noise (Khayrallah and
Koehn, 2018). For instance, the time stamps of the
German subtitles are more aligned with the audio
signal present in the broadcast and do not account
for the delay of live-interpreted signing. Any naive
extraction of parallel examples from SRF23 with-
out any alignment tools or shifting subtitle times
will result in noisy training data.

As far as we know no participant investigated
ways to improve the alignments automatically,
which is perhaps because we did not explain this

well in our online documentation. One reason for
this may be that we did not make it clear enough to
participants that one of our training corpora is ef-
fectively un-aligned. But essentially, it means there
is unexplored potential in improving or filtering the
training data instead of training on the raw corpora.

9.5 Limitations of shared task setup
The limitations we identified in last year’s find-
ings paper still apply. Briefly, the limitations con-
cern the lack of generalization across signers, the
favourable recording conditions of our sign lan-
guage data and interpretation vs. translation setups.
See Müller et al. (2022) for a more comprehensive
description.

10 Conclusion and future directions

In this paper we present the second WMT Shared
Task on Sign Language Translation (WMT-SLT23).
We consider automatic sign language translation,
and sign language processing in general, to be of
wide public interest and to have a high potential
impact in a societal and academic sense (§2).

Compared to last year we ran our shared task
for three language pairs instead of one, we dis-
tributed considerably more training data (albeit
with a higher amount of noise) and we put more
emphasis on scenarios where sign languages are
the target language.

Four teams participated in the second edition
of the shared task. Overall, we observed low sys-
tem performance with an average human evaluation
score of about 1 out of 100 (for the best-performing
system), which is not usable in practice. The main
reasons for this outcome are a lack of usable train-
ing data, a modality gap (considering that most
existing work in MT is based on text) and a lack of
basic NLP tools specifically for sign languages.

Future of the shared task After two successful
iterations the shared task is now well established,
in the sense that suitable protocols are in place
for human and automatic evaluation, reasonable
baseline systems exist, as well as several training
corpora and official WMT test sets.

So far our shared tasks have certainly helped
to paint a more realistic picture of the translation
quality of state-of-the-art systems, but they have
not led to any major technical innovation. This may
be because technologies more fundamental than
machine translation do not exist for sign languages,
or are not reliable enough. For this reason we will
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consider running shared tasks on more fundamental
problems in SLP such as alignment, segmentation,
or automatic filtering of parallel corpora.

In the future we could also try to shift the focus
away from interpreted news broadcast material as
the basis for training and test data. A major chal-
lenge to overcome is that interpreted material is
available in larger amounts, while signing produced
by conventional, off-line translation or produced
by native signers is harder to come by. Neverthe-
less, using non-interpreted material largely avoids
alignment shifts in the training data and leads to
higher scores for the human translations of the test
data, among other advantages.

11 Ethical statement

Within this shared task, two main ethical consider-
ations emerge: the potential impact of SL technol-
ogy on target users and privacy considerations.

Research in sign language processing, if not ex-
ecuted carefully, may inadvertently cause harm to
end users, especially members of deaf communi-
ties. Hearing scientists should refrain from pre-
scribing what sort of language technology should
be accepted by deaf or hard-of-hearing individu-
als and should avoid claiming that their approach
“solves” any particular problem. Ideally, research of
this nature should include deaf and hard-of-hearing
people, not only at evaluation time but in the entire
development cycle (Fox et al., 2023).

Secondly, there is a concern for the privacy of in-
dividuals depicted in SLP datasets. For the specific
use case of sign language data, proper anonymisa-
tion is impossible, since identifying details such
as facial expressions are crucial for sign language
communication. We have obtained written per-
mission of all individuals shown in our datasets.
Storing and processing pose estimation features
instead of raw videos may be an alternative that
provides anonymity (and has other generalization
effects such as ignoring differences in race, gender,
clothing, background, etc.). However, in our shared
task and related literature, (Moryossef et al., 2021;
Tarrés et al., 2023) video features outperform pose
features.
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A Details on shared task data and submission

A.1 Data resources

Direct download links: https://www.swissubase.ch/en/catalogue/studies/20452/19173/
datasets/2327/2705/overview
Signsuisse lexicon (release 2.0): https://www.swissubase.ch/en/catalogue/studies/20452/
19280/datasets/2350/2715/overview
SRF corpus poses and segmented subtitles (release 1.0): https://www.swissubase.ch/en/catalogue/
studies/20452/19280/datasets/2343/2721/overview
Test sources as a tar ball (release 2.0): https://files.ifi.uzh.ch/cl/archiv/2023/easier/
wmtslt/test_sources.v2.0.tar.gz
Test sources in WMT XML format for submissions: https://files.ifi.uzh.ch/cl/archiv/2023/
easier/wmtslt/xml/

A.2 XML submission schema

<? xml v e r s i o n = ' 1 . 0 ' encoding = ' u t f −8 ' ?>
< d a t a s e t i d =" s l t t e s t 2 0 2 2 . de − dsgs ">

<doc o r i g l a n g =" de " i d =" s r f . 0 ">
< s r c l a n g =" de ">

<p>
< seg i d =" 0 ">Guten Abend meine Damen und Herren - willkommen zur

"Tagesschau".< / seg >
< / p>

< / s r c >
<hyp sys tem ="YOUR SYSTEM NAME" l a n g u a g e =" dsgs ">

<p>
< seg i d =" 0 "> https://www.your_hosting.com/your_url_for_this_segment

< / seg >
< / p>

< / hyp>
< / doc>

< / d a t a s e t >

B Appraise instructions to human evaluators

B.1 Sign-to-text direction

B.1.1 English
Below you see a document with 10 sentences in Swiss-German Sign Language (Deutschschweizer
Gebärdensprache (DSGS)) (left columns) and their corresponding candidate translations in German
(Deutsch) (right columns). Score each candidate sentence translation in the document context. You may
revisit already scored sentences and update their scores at any time by clicking on a source video.

Assess the translation quality on a continuous scale using the quality levels described as follows:

• 0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and source.
Grammar is irrelevant.

• 2: Some Meaning Preserved: The translation preserves some of the meaning of the source but misses
significant parts. The narrative is hard to follow due to fundamental errors. Grammar may be poor.

• 4: Most Meaning Preserved and Few Grammar Mistakes: The translation retains most of the meaning
of the source. It may have some grammar mistakes or minor contextual inconsistencies.
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• 6: Perfect Meaning and Grammar: The meaning of the translation is completely consistent with the
source and the surrounding context. The grammar is also correct.

Please score the overall document translation quality (you can score the whole document only after scoring
all individual sentences first). Assess the translation quality on a continuous scale using the quality levels
described as follows:

• 0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and source.
Grammar is irrelevant.

• 2: Some Meaning Preserved: The translation preserves some of the meaning of the source but misses
significant parts. The narrative is hard to follow due to fundamental errors. Grammar may be poor.

• 4: Most Meaning Preserved and Few Grammar Mistakes: The translation retains most of the meaning
of the source. It may have some grammar mistakes or minor contextual inconsistencies.

• 6: Perfect Meaning and Grammar: The meaning of the translation is completely consistent with the
source and the surrounding context. The grammar is also correct.

B.1.2 German
Unten sehen Sie ein Dokument mit 10 Sätzen in Deutschschweizer Gebärdensprache (DSGS) (linke
Spalten) und die entsprechenden möglichen Übersetzungen auf Deutsch (rechte Spalten). Bewerten Sie
jede mögliche Übersetzung des Satzes im Kontext des Dokuments. Sie können bereits bewertete Sätze
jederzeit durch Anklicken eines Eingabevideos erneut aufrufen und die Bewertung aktualisieren.

Bewerten Sie die Übersetzungsqualität auf einer kontinuierlichen Skala mit Hilfe der nachfolgend
beschriebenen Qualitätsstufen:

• 0: Unsinn/Bedeutung nicht erhalten: Fast alle Informationen zwischen Übersetzung und Eingabev-
ideo sind verloren gegangen. Die Grammatik ist irrelevant.

• 2: Ein Teil der Bedeutung ist erhalten: Die Übersetzung behält einen Teil der Bedeutung der Quelle
bei, lässt aber wichtige Teile aus. Die Erzählung ist aufgrund von grundlegenden Fehlern schwer zu
verstehen. Die Grammatik kann mangelhaft sein.

• 4: Der grösste Teil der Bedeutung ist erhalten und es gibt nur wenige Grammatikfehler: Die
Übersetzung behält den grössten Teil der Bedeutung der Quelle bei. Sie kann einige Grammatikfehler
oder kleinere kontextuelle Unstimmigkeiten aufweisen.

• 6: Perfekte Bedeutung und Grammatik: Die Bedeutung der Übersetzung stimmt vollständig mit der
Quelle und dem umgebenden Kontext (falls zutreffend) überein. Auch die Grammatik ist korrekt.

Bitte bewerten Sie die Übersetzungsqualität des gesamten Dokuments. (Sie können das Dokument erst
bewerten, nachdem Sie zuvor alle Sätze einzeln bewertet haben.) Bewerten Sie die Übersetzungsqualität
auf einer kontinuierlichen Skala mit Hilfe der nachfolgend beschriebenen Qualitätsstufen:

• 0: Unsinn/Bedeutung nicht erhalten: Fast alle Informationen zwischen Übersetzung und Eingabev-
ideo sind verloren gegangen. Die Grammatik ist irrelevant.

• 2: Ein Teil der Bedeutung ist erhalten: Die Übersetzung behält einen Teil der Bedeutung der Quelle
bei, lässt aber wichtige Teile aus. Die Erzählung ist aufgrund von grundlegenden Fehlern schwer zu
verstehen. Die Grammatik kann mangelhaft sein.

• 4: Der grösste Teil der Bedeutung ist erhalten und es gibt nur wenige Grammatikfehler: Die
Übersetzung behält den grössten Teil der Bedeutung der Quelle bei. Sie kann einige Grammatikfehler
oder kleinere kontextuelle Unstimmigkeiten aufweisen.

• 6: Perfekte Bedeutung und Grammatik: Die Bedeutung der Übersetzung stimmt vollständig mit der
Quelle und dem umgebenden Kontext (falls zutreffend) überein. Auch die Grammatik ist korrekt.
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C Feedback from evaluators

Tables 9 and 10 detail for each evaluator the feedback answers and comments regarding the human
evaluation procedure and the Appraise system. All three evaluators submitted a response.

Answer 1 Answer 2 Answer 3

What is your experience in assessing machine translation outputs?

Low: I have done it once or a long
time ago

Moderate: I have done it a few times Low: I have done it once or twice
before, or a long time ago

Please specify how much you agree or disagree with the following statements.

Generally, my experience with the
tool was positive

Agree Agree Agree

Instructions were clear Neutral Strongly agree Strongly agree

Quality levels 0-6 were helpful to
me

Neutral Neutral Agree

Source videos were understandable Strongly agree Agree Strongly Agree

There was too much repetitiveness Strongly agree Neutral Strongly agree

Documents were too long Disagree Disagree Neutral

Segments were too short Disagree Disagree Disagree

In some cases, the context was insuf-
ficient

Neutral Neutral Disagree

I experienced technical issues Neutral Neutral Disagree

I would be willing to do similar
work in the future

Agree Agree Agree

This evaluation campaign featured the Direct Assessment with Scalar Quality Metrics method.
What do you think about this method? On a scale between -3 (negative) and 3 (positive) it was...

difficult/easy +1 +3 +3

stressful/relaxed 0 +3 +2

laborious/effortless +2 +2 -2

slow/fast +2 +2 0

inefficient/efficient +2 +2 +2

boring/exciting -1 +2 0

complicated/simple +1 +2 +3

annoying/enjoyable -1 +2 0

limiting/creative -1 0 0

impractical/practical 0 +2 +3

Table 9: Feedback from evaluators about the human evaluation setup and the Appraise platform.
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Answer 1 Answer 2 Answer 3

Please provide more details related to the statements above that you think can be useful to us.
What was most troublesome? What could we improve?

(original in German) - Ich hätte
ein grösseres Video geschätzt
(ohne dass ich das jedes Mal
aktiv anklicken muss) > Z.B. bei
Klicken auf Play, automatische
Vergrösserung und bei Ende der
Wiedergabe automatisch zurück
auf die Skala. - Die Videoschnitte
waren - v.a. bei einem Modell
(langer Lag!) - sehr schlecht.
Video und Text stimmten deshalb
oft nicht überein. Schwierig für
die Beurteilung! - Es kam oft
vor, dass ganze Dokumente schon
auf einen Blick als "komplett
falsch" ersichtlich waren (Texte
komplett unverständlich). Da wäre
es hilfreich, wenn man ein gesamtes
Dokument als "ROT" beurteilen
könnte, ohne jedes einzelne Video
zu beurteilen.

(translated into English) - I would
have appreciated a larger video
(without having to actively click that
every time) > E.g. when clicking
play, automatic enlargement and at
the end of playback automatically
back to the scale. - The video cuts
were - especially with one model
(long lag!) - very bad. Video and
text therefore often did not match.
Difficult for the evaluation! - It of-
ten happened that whole documents
appeared at a glance as "completely
wrong" (texts completely incompre-
hensible). There it would be helpful
if one could judge a whole document
as "RED" without judging every sin-
gle video.

Some of the film clips were poorly
edited and therefore did not match
the translated text. Certain writ-
ten formulations are not common in
Switzerland. There are some very
German formulations. The German
text was taken over, there was no
real translation.

The large amount of nonsense trans-
lations could lead to the fact that
one does not work concentrated any
more.

What were the main or most common issues with the automatic translations?

(original in German) Es gab wenig
Probleme technischer Art. Nur 1x
kein Zugang zum Dokument. Ab
und zu (aber selten!) eine Meldung,
dass die "Resultate" nicht angenom-
men/gespeichert werden konnten.

(translated into English) There were
few problems of a technical nature.
Only 1x no access to the document.
Now and then (but rarely!) a mes-
sage that the "results" could not be
accepted/saved.

Some of the film clips were poorly
edited and therefore did not match
the translated text.

The large amount of nonsense trans-
lations.

Table 10: Feedback comments from evaluators about the human evaluation setup and the Appraise platform.
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Abstract

Building upon prior WMT shared tasks in doc-
ument alignment and sentence filtering, we
posed the open-ended shared task of finding
the best subset of possible training data from
a collection of Estonian-Lithuanian web data.
Participants could focus on any portion of the
end-to-end data curation pipeline, including
alignment and filtering. We evaluated results
based on downstream machine translation qual-
ity. We release processed Common Crawl data,
along with various intermediate states from a
strong baseline system, which we believe will
enable future research on this topic.

1 Introduction

A machine translation (MT) system is only as good
as the data it is trained on. However, the academic
research community often overlooks the details of
this task, using pre-curated corpora.

To promote research in this area, this shared
task1 focuses on finding pairs of sentences or doc-
uments that are translations of each other based
on a collection of web crawled data. MT models
are trained by the organizers on the data found by
participants, and performance is then judged us-
ing automatic metrics. This shared task builds on
prior shared tasks on document alignment (Buck
and Koehn, 2016a) and sentence filtering (Koehn
et al., 2018, 2019, 2020). However, this task is
intentionally open-ended, and designed to allow
participants to improve on various different parts
of the data curation pipeline.

We chose the Estonian-Lithuanian language pair
for several reasons. The amount of data we ex-
tracted in that language pair was enough to train a
reasonable MT model, while being small enough
that the task was still accessible to academic partici-
pants with limited hardware resources. We avoided
English, as many toolkits are developed/optimized

1http://www2.statmt.org/wmt23/data-task.html

on English data, and results on English may not
generalize well. And finally, we avoided languages
which were closely related, as this could favor
methods which do not generalize well.

To lower the barrier to entry and allow partici-
pants to focus their research and compute resources,
we release intermediate stages of a strong baseline
data curation system. We encourage future work to
build upon resources provided in this shared task.

This paper gives an overview of the task,
presents its results, and provides some analysis.

2 Related work

Parallel data has been required for training ma-
chine translation systems ever since the field tran-
sitioned to statistical machine translation (Brown
et al., 1990). To train that first statistical system,
Brown et al. aligned English-French sentences
from the proceedings of the Canadian Parliament,
often referred to as Hansards, using a very simple
system to segment each side into sentences and
then align them using only sentence length (Brown
et al., 1991). The field of parallel data curation has
come a long way since then, with modern methods
extracting billions of sentence pairs in hundreds of
languages, as opposed to the few million enabled
by Hansards.

Currently, there are two main approaches to par-
allel data curation: (1) document and sentence
alignment, and (2) comparable corpora methods.

Document & Sentence alignment The first ap-
proach is very similar in spirit to that used on Han-
dards: Parallel documents are identified and then
document pairs are aligned at the sentence level
to produce sentence-level translation pairs. These
steps are referred to as document alignment and
sentence alignment, respectively. The web has
become the default source of documents (Resnik,
1998), where businesses, governments, and individ-
uals regularly release documents and translations of
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those documents–for example a user manual that is
published in several languages. A very simple and
computationally inexpensive approach to finding
parallel documents is to locate URLs which differ
in no more than a language code (Resnik and Smith,
2003). However, more accurate (and computation-
ally expensive) methods have also been developed
which look for documents which appear to contain
similar information, for example by translating all
documents into one language and then finding pairs
via TF-IDF similarity (Buck and Koehn, 2016b).
More recent approaches to document alignment
have relied on finding similar vectors after convert-
ing documents into multilingual vectors, created
via combining sentence embeddings (Thompson
and Koehn, 2020) or by embedding entire docu-
ments (Guo et al., 2019). A WMT shared task on
document alignment was held in 2016 (Buck and
Koehn, 2016a).

Once parallel documents have been located, they
are sentence aligned. Sentence alignment consists
of finding a bipartite graph which matches minimal
groups of sentences that are translations of each
other. This is necessary because content may have
been inserted or deleted in the translation process,
and sentences may have been combined or split in
the translation process. Additionally, sentence seg-
mentation errors may cause sentences to be split or
combined. An example of an early sentence align-
ment algorithm is Gale-Church (Gale and Church,
1993), which like the original IBM system uses
only the length of each sentence, making it very
computationally efficient but not particularly accu-
rate. Bleualign (Sennrich and Volk, 2010, 2011)
used an MT system to convert one text into the
language of the other and then performed n-gram
matching, similar to the BLEU MT metric (Pap-
ineni et al., 2002). A more recent sentence aligner
is Vecalign (Thompson and Koehn, 2019), which
uses multilingual sentence embeddings and a dy-
namic programming approximation (Salvador and
Chan, 2007) which makes the algorithm linear with
respect to the number of sentences being aligned.
Widely used datasets created via document and sen-
tence alignment include Paracrawl (Bañón et al.,
2020) and CCAlign (El-Kishky et al., 2020).

Comparable Corpora A recent alternative to
document and sentence alignment is to discard
document information and simply create a collec-
tion of sentences in each language, and then find
translation pairs by looking for sentences which

are nearby by in a multilingual embedding space.
LASER (Artetxe and Schwenk, 2019) was pro-
posed for this task. The authors additionally pro-
posed a margin-based score which gives preference
to sentence pairs which are more similar to one an-
other than other potential matches by at least a mini-
mum margin. Approximate nearest neighbor search
(Johnson et al., 2019) is used to make the search
for sentence pairs tractable. Examples of widely-
used datasets created via the comparable corpora
method include Wikimatrix (Schwenk et al., 2021a)
and CCMatrix (Schwenk et al., 2021b).

2.1 Parallel Corpora Filtering

Once data has been aligned, it is customary—
especially for data coming from the web—to per-
form data filtering to remove low quality translation
pairs before using the data for training, as unfiltered
web-crawled data harms translation performance
(Khayrallah and Koehn, 2018). There have been
three prior shared tasks on bitext filtering at WMT
(Koehn et al., 2018, 2019, 2020).

Popular approaches to data filtering include
LASER margin filtering (Chaudhary et al., 2019),
using an approach similar to the comparable cor-
pora method described above, and dual conditional
cross entropy (Junczys-Dowmunt, 2018), which
trains NMT models on held-out clean data in both
the forward and reverse directions and uses them
to compute cross-entropy scores for the data be-
ing filtered. Sentence pairs with divergent or poor
cross-entropies are down-weighted.

3 Shared Task Definition

This shared task presented the open-ended prob-
lem of finding the best possible subset of aligned
sentence pairs from unaligned documents sourced
from the internet. Participants were evaluated on
downstream machine translation system perfor-
mance.

Parallel data curation from web can be compu-
tationally demanding due to the sheer scale of we-
bcrawled data. For this reason, in addition to our
documents, we also released pre-computed inter-
mediate steps from a baseline, so participants can
choose to focus on one aspect of the task (e.g. sen-
tence filtering.)

For this shared task, the organizers provided:

• Web-crawled data, as unique sentences or
unique documents
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• LASER2 sentence embeddings

• K-nearest neighbors by cosine similarity from
our baseline

• End-to-end scripts for MT training and evalu-
ation

End-to-end scripts enabled participants to supply
a set of sentence ids and train and evaluate a Sock-
eye MT model (Hieber et al., 2022). Alongside
the scripts, we provided a simple baseline based on
1-best cosine similarity.

Participants were allowed to use only pre-trained
models and datasets publicly released with a
research-friendly license on or before May 1, 2023.

3.1 Dataset
All of our inputs were derived from the 2023-06
snapshot of Common Crawl. We extracted the
plain text from HTML using the trafilatura li-
brary (Barbaresi, 2021), and ran the first 2,000
characters through the 176-language fasttext lan-
guage id model (Joulin et al., 2016a,b).

We kept all documents classified as Estonian or
Lithuanian, unless their hostnames were included
in the following lists from the blocklist project:2

abuse, basic, crypto, drugs, fraud, gambling, mal-
ware, phishing, piracy, porn, ransomware, redirect,
scam, torrent. No further data filtering was per-
formed.

We split documents into paragraphs at line
breaks, and segmented resulting paragraphs into
sentences using the Media Cloud sentence splitter.3

Each unique sentence was given a Globally
Unique IDentifier (GUID) and tagged with a lan-
guage id based on fastText.

3.1.1 Dataset Statistics
Our dataset includes documents taken from
402,920 hosts. Only 24,319 of these hosts included
documents in both languages. Table 1 includes
overall counts on a per language basis.

3.1.2 Intermediate Outputs From Baselines
We provide participants with intermediate outputs
from our baseline systems as additional resources,
such that prospective participants could be able to
access sentence embedding or sentence pair simi-
larity information without needing computational
resources to create these themselves.

2https://github.com/blocklistproject/Lists
3https://github.com/mediacloud/

sentence-splitter

Estonian Lithuanian

# Hosts 199,813 227,426
# Documents 3,449,211 4,571,947
# Sentences 53,234,425 63,488,253
# Sents w/ LangId 36,870,945 46,969,824

Table 1: Counts of unique hosts, documents, sentences,
and sentences identified as the correct language in our
dataset

We provide outputs of embedding each sentence
with the LASER 2 model (Heffernan et al., 2022).
We also release a smaller version of the embed-
dings, projected down to 128 dimensions via PCA
and converted to float16.

To create baseline sentence pair alignments, we
removed sentences detected as non-Estonian or
non-Lithuanian, and used the FAISS library (John-
son et al., 2019) to index our LASER2 embeddings
for fast retrieval. We applied L2 normalization to
the embeddings, and added them to a flat inner
product index, so that the resulting scores were
equivalent to cosine similarity. We queried each
index with embeddings in the other language, and
returned the top eight results. These raw cosine
similarity scores are shared with participants as a
potential resource, and serve as the basis for our
baseline submissions.

4 Evaluation

We evaluated submissions by using the curated data
to train machine translation systems.

For preprocessing, we split sentences into sub-
words by applying Byte-Pair Encoding (BPE) (Sen-
nrich et al., 2016) using 32,000 merge operations.
The BPE vocabulary is learned jointly for the
source and target language. We apply a minimum
vocabulary frequency of 100 per language.

We use Sockeye (Hieber et al., 2022) to train
Transformer (Vaswani et al., 2017) translation mod-
els with 512 hidden units, 8 attention heads, 6 lay-
ers and feed-forward layers of size 2048. For train-
ing we use an effective batch size of 400k target
tokens. We use 4096 target tokens per GPU, and
gradient accumulation to obtain 400k target tokens
regardless of the number of GPUs.

We use the Adam optimizer (Kingma and Ba,
2014) with β1 = 0.9 and β1 = 0.98, an initial
learning rate of 0.06325, a linear warmup for 4000
updates and an inverse square root learning rate
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# Sents Min Margin Score EMEA EUbookshop Europarl JRC-Acquis average

1.6M 1.048 21.1 23.2 20.3 17.9 20.6
3.2M 1.027 21.9 23.6 20.8 18.5 21.2
4.8M 1.019 21.7 23.6 20.8 18.4 21.1
6.4M 1.013 21.6 23.4 20.8 18.3 21.0
8.0M 0.900 21.3 23.3 20.6 18.1 20.8

Table 2: Comparison of different training data sizes and margin score cutoffs on development set BLEU.

decay. Checkpoints are written every 500 updates
and training is stopped once validation perplexity
does not improve for 12 checkpoints. The check-
point with the lowest validation perplexity is used
as the final checkpoint.

All systems are trained on nodes with 8 V100
GPUs. We use BLEU (Papineni et al., 2002) and
chrF (Popović, 2015) as quality metrics. Evaluation
metrics are computed using Sacrebleu (Post, 2018).

We considered data from four domains for eval-
uation: EMEA,4 EUbookshop,5 Europarl,6 JRC-
Acquis,7 and EUconst.8 All data is released by
OPUS (Tiedemann, 2012). From each domain, we
created a dev, test, and held-out-test set. We use
up to 10,000 lines for each. If less data is avail-
able, it is split between the three sets. We also kept
EUconst as a held-out domain.

5 Systems

We report the results of four different systems: the
baseline, two participant systems, and a contrastive
system.

5.1 Baseline

The naive baseline was designed to give partici-
pants a simple end-to-end system, so they could
focus on any part of the pipeline to improve upon.
While participants were not required to build upon
the baseline, doing so lowered the barrier to entry.

As described in Section 3.1.2, we used the
LASER 2 model to embed all Estonian and Lithua-
nian sentences, indexed them with FAISS, and com-
puted the eight nearest neighbors’ cosine similar-
ities for each sentence in each language. We pro-
vided these cosine similarity scores as an additional
resource for participants.

Our naive baseline was created by taking all sen-
tence pairs whose cosine similarities whose 1-best

4https://opus.nlpl.eu/EMEA.php
5https://opus.nlpl.eu/EUbookshop.php
6https://opus.nlpl.eu/Europarl.php
7https://opus.nlpl.eu/JRC-Acquis.php
8https://opus.nlpl.eu/EUconst.php

neighbor exceeded or matched the threshold of 0.9
in the Estonian→ Lithuanian direction, meaning
that multiple target sentences could be aligned to
the same source.

This naive baseline was designed to be an end-
to-end solution to allow participants to improve
on any of the individual parts (filtering, alignment,
margin scoring, etc).

5.2 Steingrímsson
Steingrímsson (2023b) first perform document
alignment and sentence alignment, and then use
matches from the provided top1-cosine data for
sentences which were not aligned via docu-
ment/sentence alignment.

They perform sentence alignment of all docu-
ment pairs within each web domain and score the
alignments to locate document pairs, similar to
Thompson and Koehn (2020), to find high-quality
document pairs. They use the recently proposed
SentAlign9 (Steingrímsson, 2023a; Steingrímsson
et al., 2023b) sentence aligner, which in turn uses
LaBSE (Feng et al., 2022) sentence embeddings.

They also perform extensive bitext filtering, us-
ing several different language ID tools and the
filtering method proposed in Steingrímsson et al.
(2023a) which uses perplexities of a GPT-2 model
(Radford et al., 2019), LAESR embeddings (Chaud-
hary et al., 2019), NMTScore (Vamvas and Sen-
nrich, 2022) using Prism (Thompson and Post,
2020a,b), and WAScore (Steingrímsson et al.,
2021), as well as Bicleaner AI (Zaragoza-Bernabeu
et al., 2022).

5.3 Nguyen-Hoang et al.
Nguyen-Hoang et al. (2023) focus on using the
phrase based dictionary to distill the high-quality
sentences and making a pipeline to re-ranking the
top-K cosine similarity.

They begin with the released data, and an MGiza-
based (Gao and Vogel, 2008) dictionary. They then
extract sentence pairs using the a top-1 cosine score

9https://github.com/steinst/SentAlign
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BLEU ChrF
Test EMEA EUbooks Europarl JRC-Acquis EMEA EUbooks Europarl JRC-Acquis

Top1_cosine 18.1 20.1 18.4 25.7 49.4 53.0 52.1 55.7

Nguyen-Hoang et al. 18.5 20.4 19.1 25.8 48.9 52.5 52.5 55.5
Steingrímsson 20.4 20.2 18.7 25.4 51.4 52.8 52.0 54.9

MarginScore 3.2M 21.5 22.4 20.2 27.9 52.5 54.7 53.4 57.8

Table 3: Test set BLEU and ChrF scores. Top1_cosine is the baseline, and Marginscore 3.2M is the contrastive
system.

BLEU ChrF
Held-out EMEA EUbooks Europarl JRC-A EUconst EMEA EUbooks Europarl JRC-A EUconst

Top1_cosine 18.7 14.0 18.2 22.9 23.8 49.8 47.6 52.4 54.0 58.5

Nguyen-Hoang et al. 19.3 14.4 19.1 23.5 25.1 49.7 47.4 52.9 54.2 58.3
Steingrímsson 21.0 14.5 18.7 23.1 23.2 52.1 47.6 52.3 53.6 57.8

MarginScore 3.2M 21.9 16.1 20.5 25.4 27.6 52.9 48.9 53.8 56.2 60.9

Table 4: Held-out test BLEU and ChrF scores. Top1_cosine is the baseline, and Marginscore 3.2M is the contrastive
system.

and a threshold. From there, the dictionary is used
to translate the source sentences. These dictionary-
translated sentences are then compared with the
translation from the baseline data. The translation
from the baseline data is filtered based on the edit
distance. Then a NMT model is trained, and the
final threshold is set based on NMT model perfor-
mance.

Nguyen-Hoang et al. (2023) also perform an
analysis on the cosine score threshold, demonstrat-
ing how varying this value impacts both corpus size
and translation quality.

5.4 Contrastive System

The participants in this task both performed data
filtering on top of the the top-1 cosine baseline.

Since no participants experimented with using
margin scoring, which Schwenk et al. (2021b)
found significant for improving the quality of
LASER-based mining, the organizers created a
stronger contrastive system that did so.

We calculated margin scores for our four nearest
neighbors in both directions. We performed com-
petitive linking,10 such that each sentence appeared
only once in our contrastive submission. Although
we computed cosine similarities for the eight near-
est neighbors, no appreciable difference was found
in MT quality by using k=8 instead of k=4 when

10Referred to as the "max strategy" by Schwenk et al.
(2021b).

computing margin scores.
We sorted our data by margin score and com-

pared different data sizes, as shown in Table 2. We
used a minimum margin score of 1.027 and data
size of 3.2 million lines since it scored the highest
on all development sets and had the highest average
score.

6 Results

Table 3 and Table 4 show the BLEU and ChrF re-
sults of the naive top-1 cosine baseline, participant
submissions, and the contrastive margin score sys-
tem. Of the baseline and two participant systems,
we bold the best and systems within 0.1 of the best.
Overall, both participants improved over the naive
baseline. On the held-out test sets, Steingríms-
son had higher BLEU on EMEA and EUbookshop,
while Nguyen-Hoang et al. had higher BLEU on
Europarl, JRC-Acquis, and the held-out domain of
EUconst.

We see that the contrastive margin score sys-
tem outperforms the naive top-1 cosine baseline.
This confirms the finding of Schwenk et al. (2021b)
that margin scoring outperforms raw cosine similar-
ity. The contrastive margin score system also out-
performs the participant submissions that directly
build and improve upon the naive top-1 cosine base-
line.

Data filtering and alignment tend to be compli-
mentary, so the filtering methods proposed by the
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participants would likely improve upon the con-
trastive margin score system if they were applied
on top of it.

7 Conclusion

While data curation is the first step in the train-
ing of any MT (or machine learning) model, this
tends to be a less-published-upon topic in academic
research.

In this shared task, we have released the pro-
cessed webcrawled data, and a baseline system
with intermediate outputs. We hope this task low-
ers the barrier of entry and allow participants to
focus on any aspect of the data curation pipeline
(document alignment, sentence alignment, filtering,
etc.) We have trained and evaluated MT systems
on the datasets curated by participating teams. We
have presented results for two participant submis-
sions, in addition to two more systems built by the
shared task organizers.

We hope this work serves as a building block for
future research on this topic.
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Abstract

In this paper, we describe the constrained MT
systems submitted by Samsung R&D Institute
Philippines to the WMT 2023 General Trans-
lation Task for two directions: en→he and
he→en. Our systems comprise of Transformer-
based sequence-to-sequence models that are
trained with a mix of best practices: compre-
hensive data preprocessing pipelines, synthetic
backtranslated data, and the use of noisy chan-
nel reranking during online decoding. Our
models perform comparably to, and sometimes
outperform, strong baseline unconstrained sys-
tems such as mBART50 M2M and NLLB 200 MoE
despite having significantly fewer parameters
on two public benchmarks: FLORES-200 and
NTREX-128.

1 Introduction

This paper describes Samsung R&D Institute
Philippines’s submission to the WMT 2023 Gen-
eral Translation task. We participate in two trans-
lation directions: en→he and he→en, submitting
two constrained single-direction models based on
the Transformer (Vaswani et al., 2017) sequence-to-
sequence architecture. We employ a number of best
practices, using a comprehensive data preprocess-
ing pipeline to ensure parallel data quality, create
synthetic data through carefully-curated backtrans-
lation, and use reranking methods to select the best
candidate translations.

Our systems achieve strong performance on pub-
lic benchmarks: 44.24 BLEU and 33.77 BLEU
for FLORES-200 and NTREX-128 en→he, re-
spectively, and; 42.42 BLEU and 36.89 BLEU
on FLORES-200 and NTREX-128 he→en, respec-
tively. Our systems outperform mBART50 M2M and
slightly underperform against NLLB 200 MoE de-
spite having significantly less parameters compared
to these unconstrained baselines.

We detail our data preprocessing, model training,
data augmentation, and translation methodology.

Additionally, we illustrate hyperparameter sweep-
ing setups and study the effects of hyperparameters
during online decoding with reranking.

2 Methodology

2.1 Data Preprocessing

Given that a significant portion of the training
dataset is synthetically-aligned, we need to use a
comprehensive data preprocessing pipeline to en-
sure good translation quality. In particular, we use
a combination of heuristic-based, ratio-based, and
embedding-based methods to filter our data.

Heuristic-based The following heuristic-based
filters based on Cruz and Cheng (2021) are used
before applying the others:

• Language Filter – We use use pycld31 to
filter out sentence pairs where one or both
sentences have more than 30% tokens that are
neither English nor Hebrew.

• Named Entity Filter – We use NER models
(Bareket and Tsarfaty, 2021; Yang and Zhang,
2018) to check if both sentences in a pair have
matching entities (if any). Pairs that contain
entities that do not match are removed.

• Numerical Filter – If one sentence in a pair
has a number (ordinal, date, etc.), we also
check the other sentence if a matching number
is present. If a match is not detected, the pair
is removed.

Ratio-based We employ ratio-based filters on
tokenized sentence pairs following Cruz and
Sutawika (2022) and Sutawika and Cruz (2021).
We first tokenize using SacreMoses2 then apply the
following ratio-based filters:

1https://pypi.org/project/pycld2/
2https://github.com/alvations/sacremoses
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Pairs Words (en) Words (he)
Original 72,459,348 701,991,594 566,555,530
Original Filtered 48,278,395 385,975,984 312,639,617
Synthetic en→he 10,000,000 165,595,289 145,849,940
Synthetic en→he Filtered 7,143,725 115,239,312 95,954,020
Synthetic he→en 73,278,018 1,471,827,973 1,056,677,671
Synthetic he→en Filtered 47,372,416 659,409,236 541,376,459

Table 1: Corpus Statistics. “Filtered” refers to the number of pairs / words that remain after the filtering script is
applied to the dataset. Note that “Words” is an approximation gathered by using the wc -l * command on the
plaintext files.

• Length Filter – We remove pairs containing
sentences with more than 140 characters.

• Token Length Filter – We remove pairs that
contain sentences with tokens that are more
than 40 characters long.

• Character to Token Ratio – We remove pairs
where the ratio between character count and
token count in at least one sentence is greater
than 12.

• Pair Token Ratio – We remove pairs where
the ratio of tokens between the source and
target sentences is greater than 4.

• Pair Length Ratio – We remove pairs where
the ratio between the string lengths of the
source and target sentences is greater than 6.

Embedding-based Finally, we experiment with
the use of sentence embedding models to compute
embedding-based similarity between a sentence
pair. We use LaBSE (Feng et al., 2020) models to
embed both the source and target sentences then
compute a cosine similarity score between the two.
The pair must have a similarity score 0.7 ≤ s ≤
0.96 to be kept.

Statistics on the original and filtered corpus can
be found on Table 1.

After preprocessing the parallel data, we learn
a shared BPE (Sennrich et al., 2015b) vocabulary
using SentencePiece3 (Kudo and Richardson, 2018)
with 32,000 units. All models in this paper use the
same shared vocabulary.

2.2 Model Architecture

We experiment with two model sizes for each lan-
guage pair: a Base model with 65M parameters and

3https://github.com/google/sentencepiece

Training Hyperparameters
Parameters 65M and 200M
Vocab Size 32,000
Tied Weights Yes
Dropout 0.3
Attention Dropout 0.1
Weight Decay 0.0
Label Smoothing 0.1
Optimizer Adam
Adam Betas β1=0.90, β2=0.98
Adam ϵ ϵ=1e-6
Learning Rate 7e-4
Warmup Steps 4,000
Total Steps 1,000,000
Batch size 64,000 tokens

Table 2: Hyperparameters used during training. When
reporting model sizes, Base refers to 65M parameters,
while Large refers to 200M.

a Large model with 200M parameters. Both mod-
els use the standard Transformer (Vaswani et al.,
2017) sequence-to-sequence architecture and are
trained using Fairseq (Ott et al., 2019) with the
hyperparameters listed in Table 2.

We parallelize with 8 NVIDIA Tesla P100 GPUs
and initially train for a total of 100K steps for ex-
perimentation. For the submitted systems trained
with backtranslated data, we train for a total of 1M
steps.

2.3 Backtranslation

We use backtranslation (Sennrich et al., 2015a) as
a form of data augmentation to improve our initial
models. We generate synthetic data via combined
top-k and nucleus sampling:

δk∑

i=0

P (ŷ
(T )
i |x; ŷ(T−1)) ∗ δtemp ≤ δp (1)
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Backtranslation Hyperparameters
Top-k (δk) 50
Top-p (δp) 0.93
Temperature (δt) 0.7
Beam 1.0
Length Penalty 1.0

Table 3: Hyperparameters used during backtranslation.

where δk is the top values considered for top-k
sampling, δtemp is the temperature hyperparameter,
and δp is the maximum total probability for nucleus
sampling.

Backtranslation is only performed once using
the provided monolingual data. We produce a total
of 10,000,000 synthetic sentences for the en→he
direction and 73,278,018 synthetic sentences for
the he→en direction. The same data preprocessing
used on the original parallel corpus is then applied
to the synthetic corpus. We produce backtransla-
tions using Large 100K models with the sampling
hyperparameters listed in Table 3.

Statistics on generated synthetic data before and
after filtering can be found on Table 1.

2.4 Noisy Channel Reranking
We further improve translations by using Noisy
Channel Reranking (Yee et al., 2019), which
reranks every candidate translation token ŷ

(T )
i us-

ing Bayes’ Rule, as follows:

P (ŷ
(T )
i |x; ŷ(T−1)) =

P (x|ŷ(T−1))P (ŷ(T−1))

P (x)

(2)

where P (ŷ
(T )
i ) refers to the probability of the ith

candidate token at timestep T given source sen-
tence x and current translated tokens ŷ(T−1).

All probabilities are parameterized as stan-
dard encode-decoder Transformer neural net-
works: the Direct Model fϕD

(x, ŷ(T−1)) mod-
els P (ŷ

(T )
i |x; ŷ(T−1)) or translation between

source to target language; the Channel Model
fϕC

(x|ŷ(T−1)) models P (x|ŷ(T−1)), or the proba-
bility of the target translating back into the pre-
dicted translation, and; the Language Model
fϕL

(ŷ(T−1)) models P (ŷ(T−1)) or the probability
of the translated sentence to exist. P (x) is gener-
ally not modeled since it is constant for all y. This
allows us to leverage a strong language model to
guide the outputs of the direct model, while using

Decoding Hyperparameters
Beam 5
Length Penalty 1.0
k2 5
CM Top-k 500
δch en→he 0.2297
δlm en→he 0.2056
δch he→en 0.2998
δlm he→en 0.2594

Table 4: Hyperparameters used for the final submission
models. The values listed for δch and δlm are the ones
used for the final submission models. For testing with
Large 100K models, we set both δch and δlm to 0.3.
“k2” refers to the number of candidates sampled per
beam while “CM Top-k” refers to the number of most
frequent tokens in the channel model’s vocabulary that
is used as its output vocabulary during decoding to save
space.

a channel model to constrain the preferred outputs
of the language model (which may be unrelated to
the source sentence).

During beam search decoding, we rescore the top
candidates using the following linear combination
of all three models:

P (ŷ
(T )
i |x; ŷ(T−1))

′
=

1

t
log(P (x|ŷ(T−1))

+
1

s
[δchlog(P (x|ŷ(T−1))

+δlmlog(P (ŷ(T−1)))]

(3)

where s and t are source / target debiasing terms,
δch refers to the weight of the channel model, and
δlm refers to the weight of the language model.

For Noisy Channel Reranking, our direct and
channel models use the same size and setup at all
times (i.e. if the direct model is a Large model
trained for 100K steps, then the channel model is
also a Large model trained for 100K steps in the
opposite translation direction).

For the language model, we train one Base-sized
decoder-only Transformer language model for En-
glish and one for Hebrew. We concatenate the
cleaned data from the parallel corpus with the pro-
vided monolingual data for each language to train
the LM. We use the same training setup as with
translation models, except we use a weight decay
of 0.01 and a learning rate of 5e-4.

Hyperparameters used for decoding with Noisy
Channel Reranking can be found in Table 4.
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2.5 Evaluation

We evaluate our models using two metrics: BLEU
(Papineni et al., 2002) and ChrF++ (Popović, 2015),
both scored via SacreBLEU4 (Post, 2018). We
develop our models using both the FLORES 200
(Costa-jussà et al., 2022) and NTREX 128 (Fed-
ermann et al., 2022) datasets, using the validation
sets during training and reporting scores on the test
sets.

To benchmark our models’ performance, we
mainly compare BLEU and ChrF++ against two
(unconstrained) models: mBART 50 M2M (Tang
et al., 2020), a 610M-parameter finetuned version
of mBART for many-to-many translation, and NLLB
200 MoE (Costa-jussà et al., 2022), the full 54.5B-
parameter mixture-of-experts version of NLLB 200
for many-to-many translation.

2.6 Hyperparameter Search

To find the best values for δch and δlm, as well as
to understand how these parameters affect perfor-
mance, we use Bayesian Hyperparameter Search.
We use the Large 1M + BT models and run 1000 it-
erations of search, keeping the length penalty static
at 1.0, and sampling both δch and δlm from a gaus-
sian with minimum of 0.01 and maximum of 0.99.

We perform this for both en→he and he→en
translation directions and use the results for the
final submission model.

3 Results

A summary of our results on benchmarks can be
found on Table 5.

3.1 Benchmarking Results

Our submission systems (Large 1M + BT + NC)
exhibit strong performance on both translation di-
rections. On FLORES-200, we achieve 44.24
BLEU for en→he and 42.42 BLEU for he→en.
The same systems score 33.77 BLEU for en→he
and 36.89 BLEU for he→en on NTREX-128.

We note that these systems perform strongly
when compared against much larger, unconstrained
baseline models. On FLORES-200, we signifi-
cantly outperform mBART 50 M2M on en→he by
+24.75 BLEU and on he→en by +11.92 BLEU
despite having 67% less parameters (200M vs
610M). Notably, our system performs only slightly

4SacreBLEU outputs the following signature
for evaluation: nrefs:1|case:mixed|eff:no|tok:spm-
flores|smooth:exp|version:2.2.1

worse compared to NLLB 200 MoE despite having
96% less parameters compared to the mixture-of-
experts model. On FLORES-200, we perform -2.56
BLEU worse on en→he and -6.58 BLEU worse on
he→en compared to NLLB 200 MoE.

3.2 Hyperparameter Search Results

In order to find optimal hyperparameters for both
δch and δlm, we ran bayesian hyperparameter
search for both at the same time while keeping
length penalty static. We plot the results of the hy-
perparameter search over 1000 iterations in Figure
1.

We observe that performance is optimal when
both hyperparameters are set to 0.2∼0.3, making
performance increasingly worse as both hyperpa-
rameters approach closer to 1. We hypothesize
that this signifies the model capturing the origi-
nal distribution close enough that it does not need
much correction or aid from the accompanying lan-
guage model. Noisy channel reranking, however, is
still empirically shown to be useful in this case as
guidance from the language model produces better
candidates in cases where the direct model may be
searching a too-constrained space.

3.3 Ablations

We explored multiple configurations of our sub-
mission systems in terms of model size, presence
of synthetic data during training, and the use of
reranking methods during online decoding. Our
results show that each step improves performance
directly:

• The initial Base 100K performs at 39.88
BLEU for en→he on FLORES-200.

• Increasing the size to 200M parameters
(Large 100K) improves performance by
+1.38 BLEU.

• Adding backtranslated data (Large 100K +
BT) is by far the most beneficial, improving
performance by +2.06 BLEU.

• We then experiment with longer training times
(1M iterations for Large 1M + BT) to adapt
to the new dataset size, increasing the score
by +0.44 BLEU.

• Finally, using noisy channel reranking (Large
1M + BT + NC) improves the score by +0.48
BLEU.
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FLORES-200 NTREX-128
EN→ HE HE→ EN EN→ HE HE→ EN

Model BLEU ChrF++ BLEU ChrF++ BLEU ChrF++ BLEU ChrF++
Base 100K 39.88 56.34 12.06 29.46 31.47 48.32 29.85 52.53
Base 100K + NC 40.22 56.55 38.75 60.52 32.10 48.93 31.86 54.57
Base 100K + BT 41.50 57.46 38.73 60.80 31.27 47.90 34.09 56.10
Base 100K + BT + NC 41.66 57.59 40.43 62.17 32.05 48.62 35.76 57.65
Large 100K 41.26 57.46 39.07 60.06 32.49 48.95 31.08 53.19
Large 100K + NC 41.46 57.64 40.53 61.49 32.80 49.34 33.12 55.16
Large 100K + BT 43.32 58.62 40.91 61.58 32.90 49.11 35.48 56.04
Large 100K + BT + NC 43.26 58.72 41.92 62.64 33.18 49.42 36.79 57.37
Large 1M + BT 43.76 58.29 41.00 61.16 33.35 49.22 35.83 56.02
Large 1M + BT + NC 44.24 59.36 42.42 62.21 33.77 49.69 36.89 56.92
mBART50 M2M (610M) 19.49 46.7 30.50 55.00 14.80 42.30 27.02 51.21
NLLB 200 MoE (54.5B) 46.80 59.80 49.00 67.40 - - - -

Table 5: Compiled results for all experiments. “BT” refers to the model being trained with backtranslated data in
addition to original filtered data. “NC” refers to the use of Noisy Channel Reranking. Evaluation scores for NLLB
200 MoE are taken from its official published scores for FLORES-200. We fail to report independent NTREX-128
scores for NLLB 200 MoE due to a lack of computational resources.

Figure 1: Bayesian hyperparameter search results for δch and δlm while keeping constant length penalty. The
leftmost column shows BLEU score against both δch and δlm with the best performing model (Large 1M + BT +
NC) plotted in red. The middle and rightmost columns show δch and δlm against BLEU, respectively, with their
respective regression lines (in red) and regression coefficient (m) in the caption.
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Overall, all of our methods improve performance
by a total of 4.36 BLEU for the en→he direction
on FLORES-200.

We note an interesting jump in performance
from Base 100K to Large 1M + BT + NC on the
FLORES-200 he→en direction at +30.36 BLEU.
Base 100K underperforms at 12.06 BLEU, and we
hypothesize that this is due to the model not having
enough capacity to embed information from He-
brew, which causes it to greatly benefit from the
guidance of a language model during noisy channel
reranking.

4 Conclusion

In this paper, we describe our submissions to the
WMT 2023 General Translation Task. We partici-
pate in two constrained tracks: en→he and he→en.

We submit two monodirectional models based
on the Transformer architecture. Both models are
trained using a mix of original and synthetic back-
translated data, filtered and curated using a com-
prehensive data processing pipeline that combines
embedding-based, heuristic-based, and ratio-based
filters. Additionally, we employ noisy channel
reranking to improve translation candidates using
a language model and a channel model trained in
the opposite direction.

On two benchmark datasets, our systems out-
perform mBART50 M2M and perform slightly worse
than NLLB 200 MoE, both unconstrained systems
with significantly more parameters.

Our results show that established best practices
still perform strongly on constrained systems with-
out the need for extraneous data sources as is with
unconstrained systems for the same translation di-
rections.

Limitations

We benchmark on datasets that are publicly avail-
able with permissive licenses for research.

We note that we are unable to study scale prop-
erly for translation models due to a lack of stronger
compute resources. The same constraint also pre-
vents us from training multiple iterations of the
same model with differing random seeds. Our sys-
tems’ true performance may thus be higher or lower
depending on the machine random state at the start
of training time.

Lastly, our models are trained on Hebrew, which
is a language that we do not speak. We are therefore

unable to manually evaluate if the output transla-
tions are correct, natural, or semantically sound.

Ethical Considerations

Our paper replicates best practices in data prepro-
cessing, model training, and online decoding for
translation models. Within our study, we aim to
create experiments that replicate prior work under
comparable experimental conditions to ensure fair-
ness in benchmarking.

Given that we do not speak the target language in
the paper, we report performance in comparison to
other existing models. We do not claim that “strong”
performance in a computational setting correlates
with good translations from a human perspective.

Lastly, while we do not use human annotators
for this paper, the conference (WMT) itself does
for human evaluations on the General Translation
Task. We disclose this fact and note that annota-
tions (and therefore scores) may be different across
many speakers of Hebrew.
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Abstract

In this paper, we describe our NAIST-
NICT submission to the WMT’23 English↔
Japanese general machine translation task. Our
system generates diverse translation candidates
and reranks them using a two-stage reranking
system to find the best translation. First, we
generated 50 candidates each from 18 transla-
tion methods using a variety of techniques to
increase the diversity of the translation candi-
dates. We trained seven models per language
direction using various combinations of hyper-
parameters. From these models we used vari-
ous decoding algorithms, ensembling the mod-
els, and using kNN-MT (Khandelwal et al.,
2021). We processed the 900 translation candi-
dates through a two-stage reranking system to
find the most promising candidate. In the first
step, we compared 50 candidates from each
translation method using DrNMT (Lee et al.,
2021) and returned the candidate with the best
score. We ranked the final 18 candidates using
COMET-MBR (Fernandes et al., 2022) and re-
turned the best score as the system output. We
found that generating diverse translation can-
didates improved translation quality using the
well-designed reranker model.

1 Introduction

We participated in the WMT’23 general machine
translation task for English-to-Japanese (En-Ja) and
Japanese-to-English (Ja-En) translation. Our team
aimed to improve translation performance using
only the provided parallel data. Our system gen-
erates diverse translation candidates and reranks
them using a two-stage reranking system to find
the best translation.

Figure 1 shows an overview of our system. We
trained 7 Transformer (Vaswani et al., 2017) NMT
models per language direction using various combi-
nations of hyperparameters. The translation gener-
ator consists of 9 instances: 7 MT models, the
ensemble model, and a kNN-MT (Khandelwal

Figure 1: Overview of our system. “E18-D4” denotes
“18-layer encoder and 4-layer decoder”, and “do” and
“ado” denote “dropout” and “dropout after applying at-
tention softmax”, respectively.

et al., 2021) system that interpolates tokens from
retrieved examples using the ensemble model. The
generator generates the 50-best translations each
from two decoding methods: beam search and top-
p sampling. This combination allows the generator
to find diverse translation candidates. Next, the 900
candidates (9 generators × 2 decoding methods ×
50 best) are passed to our two-stage reranker to
find the best translation. The first step of rerank-
ing uses DrNMT (Lee et al., 2021) to rerank the
50-best translation candidates to select the 1-best
translation from each of the 18 generator and de-
coding method combinations. DrNMT is trained to
maximize the BLEU (Papineni et al., 2002) score,
whereas we use the second step reranking to find
the highest COMET (Rei et al., 2020) score ex-
pectation from the remaining candidates. The 18
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candidates from the first step are reranked using
COMET-MBR (Fernandes et al., 2022) to select
the best translation that is returned by the system.

Our experiments show that our two-stage
reranker outperforms the BLEU, chrF, and COMET
scores by DrNMT alone, and the BLEU and chrF
scores by COMET-MBR alone in both En-Ja and
Ja-En translation tasks on wmttest2022 (Kocmi
et al., 2022).

2 Preprocessing

For the training data, we used the provided bilin-
gual parallel data, which included JParaCrawl
v3 (Morishita et al., 2020), News Commentary
v18.1, Wiki Titles v3, WikiMatrix, the Japanese-
English Subtitle Corpus (Pryzant et al., 2017),
the Kyoto Free Translation Task Corpus (Neubig,
2011), and the Web Inventory of Transcribed and
Translated Talks (Cettolo et al., 2012). We did not
backtranslate the monolingual data due to resource
constraints for training MT models and a reranker
model.

As the English translation of the Japanese-
English Subtitle Corpus was only available in low-
ercase, we trained a Moses truecaser (Koehn et al.,
2007) using the other corpora to add capitalization
to the subtitle corpus. After truecasing, the first
letter of each sentence was capitalized using de-
truecasing to produce sentence-case English text
that matched the casing in the other corpora.

We cleaned the data by removing duplicate lines
and applying language filtering. Because much of
the training data were crawled from the internet,
we used fasttext (Joulin et al., 2016a,b) to predict
the language of each sentence and removed sen-
tences that were not predicted to be in the correct
language. This helped to reduce noise in the dataset
by removing sentences with garbage tokens.

We tokenized text into subword units using sen-
tencepiece (Kudo and Richardson, 2018). Since
our system generates many candidates using mul-
tiple models, we preliminary measured the gen-
eration speed and selected the number of vocabu-
lary with the fastest decoding. Our initial experi-
ments demonstrated that when the target language
was Japanese, a vocabulary size of 32k resulted
in fewer tokens needing to be generated, which
increased the translation speed. However, when
the target language was English, a vocabulary size
of 16k was faster than an English vocabulary of
32k. Therefore, we trained separate dictionaries

#sentence pairs

No filter 33,875,242
+ deduplicate 29,940,444
++ language filter 29,279,161
+++ length filter 27,880,378

Table 1: Number of sentence pairs in the training data
after each preprocessing step.

Generator: MT model

Architecture Transformer big
Embedding dimension 1,024
FFN inner dimension 8,192
Dropout (do) 0.1
Attention dropout (ado) 0.0
Loss function label smoothed cross entropy

Label smoothing ϵ = 0.1
Optimizer Adam (β1 = 0.9, β2 = 0.98)
Learning rate (LR) 1e-3
LR scheduler inverse square root
Warm-up steps 4,000
Global batch size Roughly 512,000 tokens
Training steps 60,000

Reranker: DrNMT

Architecture XLM-R large
Classifier dropout 0.2
Loss function (Section 3.2.1)
Optimizer Adam (β1 = 0.9, β2 = 0.98)
Learning rate (LR) 5e-5
LR scheduler polynomial decay
Warm-up steps 8,000
Global batch size 512 sentences * 50 hypotheses

Table 2: Hyperparameters of the models we trained.

for English and Japanese, with the English-side
dictionary containing nearly 16k tokens and the
Japanese-side containing nearly 32k tokens. The
character coverage of the tokenizers also varied be-
tween languages. We trained the English tokenizer
with 100% character coverage, whereas character
coverage for Japanese was 99.98%.

After subword segmentation, we removed all
sentences shorter than one token or longer than 250
tokens. We also removed all sentences in which
the number of tokens in one language was more
than double the number of tokens in the translation,
i.e., the ratio of tokens between the source and
target was >2.0. The number of sentence pairs
before/after preprocessing is shown in Table 1.

3 Translation System

3.1 Generator

The generator generates diverse translation candi-
dates from multiple models and multiple decod-
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ing methods. The generator consists of seven MT
models, an ensemble of the seven models, and the
ensemble enhanced with kNN-MT (Khandelwal
et al., 2021) for a total of 9 instances.

3.1.1 MT models
The 7 MT models are trained from the provided
parallel data. Our MT model with the default set-
ting is shown in Table 2. Six of the seven models
vary from the default setting only in dropout and
attention dropout, while the last varies the number
of layers. Our model has two types of dropouts
whose values are varied: “dropout (do)” and “atten-
tion dropout (ado)”. The dropout (do) is applied to
the token embedding layer and the outputs of the
sub-layers within each layer, i.e., the outputs of the
attention layers and feed-forward network. The at-
tention dropout (ado) is applied after softmax to the
attention weights, i.e., before multiplying the val-
ues. Six models are trained with varying dropouts,
one for each combination of do = {0.1, 0.2, 0.3}
and ado = {0.0, 0.1}. In addition to the mod-
els that vary dropout, we trained a deep-shallow
model (Kasai et al., 2021), which has 18 encoder
layers and 4 decoder layers. For each model, we
averaged the parameters of the last 10 checkpoints
(10,000 training steps).

3.1.2 kNN-MT
Datastore construction kNN-MT (Khandelwal
et al., 2021) requires a datastore to be constructed
to store the translation examples to be accessed
during decoding. Let x = (x1, . . . , x|x|) ∈ V |x|X

and y = (y1, . . . , y|y|) ∈ V |y|Y denote a source
sentence and target sentence, respectively, where
|·| is the length of the sequence, and VX and VY are
the vocabularies of the source language and target
language, respectively. The datastore for kNN-
MT consists of translation examples in the form
of key–value pairs, as shown in Figure 2. Each
target token yt from the translation examples is
stored in the datastore with a d-dimensional key (∈
Rd), which is the representation of the translation
context (x,y<t) obtained from the decoder of the
pre-trained NMT model. The datastoreM⊆ Rd×
VY is formally defined as a set of tuples as follows:

M = {(f(x,y<t), yt) | (x,y) ∈ D, 1 ≤ t ≤ |y|},
(1)

where D denotes parallel data and f : V |x|X ×
Vt−1
Y → Rd returns the intermediate representation

of the final decoder layer from the source sentence

Figure 2: Datastore construction.

kNN index

Implementation FAISS

Index IndexIVFPQ
# of entries

Ja (En-Ja) 732,222,393
En (Ja-En) 836,254,078

# of centroids 131,072
# of bits in PQ 8 bits
# of sub-vectors in PQ M = 64
Vector pre-transform OPQ (Ge et al., 2014)

Decoding

# of retrieved tokens k = 64
Temperature of pkNN τ = 100
Weight for pkNN λ = 0.1
# of probed clusters 32

Table 3: Hyperparameters of our kNN indexes and kNN-
MT.

and prefix target tokens. The representation used
as the key vector is the vector that is passed into the
final feed-forward layer (Khandelwal et al., 2021).

In our system, we used the model trained with
the default settings (as seen in Table 2) to obtain
the keys for the datastore.

kNN index To search the k-nearest-neighbor
tokens efficiently, we used FAISS (Johnson
et al., 2019). For the kNN indexes, we used
faiss.IndexIVFPQ which consists of an inverted
file index (IVF) that performs k-means cluster-
ing and product quantization (PQ) (Jégou et al.,
2011) which divides a vector into M sub-vectors
and performs vector quantization in each subspace.
Note that in IVFPQ, the codewords of PQ are
learned from the residual vectors from the cen-
troids of the IVF. Additionaly, we used optimized
PQ (OPQ) (Ge et al., 2014) to reduce the quantiza-
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tion error of PQ. The hyperparameters of our kNN
indexes are summarized in Table 3.

Decoding During decoding, kNN-MT re-
trieves the k-nearest-neighbor key–value pairs
{(ki, vi)}ki=1 ⊆ Rd × VY from the datastore M
using the query vector f(x,y<t) at timestep t.
Next, pkNN is calculated as follows:

pkNN(yt|x,y<t)

∝
k∑

i=1

1yt=vi exp
−∥ki − f(x,y<t)∥22

τ
, (2)

where τ is the temperature parameter for pkNN.
Then, kNN-MT generates the output probability
by computing the linear interpolation between the
kNN and MT probabilities, pkNN and pMT, respec-
tively:

P (yt|x,y<t)

= λpkNN(yt|x,y<t) + (1− λ)pMT(yt|x,y<t).
(3)

kNN-MT with the ensemble model kNN-MT is
typically used with a single model, whereas in our
system, we obtain the output probability for each
token by interpolating between the kNN probability
and the probability from the ensemble model. The
output probability from the ensemble kNN-MT
is formulated by defining pMT in Equation 3 as
follows:

pMT(yt|x,y<t;θ) =
1

|θ|(pMT(yt|x,y<t; θ1)+

. . .+ pMT(yt|x,y<t; θ|θ|), (4)

where θ = {θ1, . . . , θ|θ|} denotes the parameters
of the trained MT models; |θ| = 7 in our system.
The kNN-MT decoding interpolated between the
token distribution of the retrieved translation con-
text tokens and the full ensemble of models. As
such, the weight assigned to the kNN token distri-
bution was kept small so as not to overpower the
information from the ensemble. We used λ = 0.1
and τ = 100 in the kNN-MT decoding shown in
Table 3.

3.1.3 Decoding algorithms
From each model, we output the 50 best hypotheses
generated using beam search with a beam width of
50. For diversity, we generated another 50 hypothe-
ses using top-p sampling with p = 0.7 and a beam
width of 50. We formed an ensemble of models to
produce two more sets of 50 hypothesis sentences
from beam search and top-p sampling.

3.2 Reranker
We use a two-stage reranker consisting of an intra-
system reranker, which selects the best of the 50
hypotheses from each system, and an inter-system
reranker, which selects the best hypothesis from
the 18 remaining candidate translations.

3.2.1 DrNMT
Discriminative reranking for NMT (DrNMT) (Lee
et al., 2021) is a discriminative model that learns
to predict the distributions of the evaluation scores
of a set of translation hypotheses given a source
sentence. DrNMT is similar to a quality estima-
tion model (Zerva et al., 2022), but it is optimized
to distinguish the better translation from hypothe-
ses generated from a single system. In addition,
it cannot be used for comparing inter-systems be-
cause the weights for features are tuned using the
translation hypotheses of the development set. We
used BLEU (Papineni et al., 2002) as the evaluation
metric for this first-stage reranker.

Model The DrNMT model takes as input a
source sentence x ∈ V |x|X concatenated with a hy-

pothesis translation y(j) ∈ V |y
(j)|

Y . The DrNMT
model passes this into XLM-R (Conneau et al.,
2020), which is a multilingual pre-trained encoder.
The hidden state of the [CLS] token then represents
the combination of the source and hypothesis and
is converted into a scalar score by the classification
head of RoBERTa (Liu et al., 2019). We used an
input dimension of 1,024, a hidden dimension of
768, and output dimension of 1. The activation
function for the classification head is tanh.

Objective The objective function minimizes the
KL-divergence between the DrNMT model distri-
bution and the distribution of BLEU scores of the
n-best hypotheses; that is, the objective function
L(θ) is as follows:

L(θ) = KL[pT ∥ pM ]

= −
n∑

j=1

pT

(
y(j),y∗

)
log pM

(
y(j)|x; θ

)
,

(5)

where n denotes the number of translation hypothe-
ses, and pM and pT denote the distributions of the
DrNMT model and BLEU scores, respectively. y∗

denotes the reference translation of x. The BLEU
scores are normalized using min-max scaling and
the distribution of the BLEU scores is emphasized
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using the temperature coefficient T . In this paper,
we use T = 0.5.

Training We trained the DrNMT model using
the 50 best translation hypotheses generated by
the model with the default configuration for each
source sentence over the entire training set, i.e.,
28M source sentences. The model is trained using
early stopping, which selects the checkpoint with
the maximum BLEU score in the validation set.

Tuning The score of the first-stage reranker is a
weighted sum of the DrNMT model score, transla-
tion model score, and length penalty. This combi-
nation of scores is similar to minimum error rate
training (Och, 2003). The weights that maximize
the BLEU score of the validation set were learned
and used.

Implementation We used the implementation
published in FAIRSEQ1. Note that this implemen-
tation uses SACREBLEU (Post, 2018) to compute
the BLEU scores. We modified the published code
of DrNMT to change the SACREBLEU tokeniz-
ers according to the target language because the
published implementation always calls the English
tokenizer.

3.2.2 COMET-MBR
COMET-MBR (Fernandes et al., 2022) performs
minimum Bayes risk (MBR) decoding (Kumar and
Byrne, 2004; Eikema and Aziz, 2020; Müller and
Sennrich, 2021; Eikema and Aziz, 2022) using a
COMET (Rei et al., 2020, 2022) model trained on
direct assessments. A translation ŷMAP ∈ V |y

∗|
Y

is typically generated using maximum-a-posteriori
(MAP) decoding as follows:

ŷMAP = argmax
y∈Y

log p(y|x), (6)

where Y ⊆ ⋃∞
i=1 V iY is the search space of target

sentences. In MBR decoding, instead of finding
the most probable translation, the goal is to find
the translation that minimizes the Bayes risk as
follows:

ŷMBR = argmax
h∈Ȳ

Ey′∼p(y|x)[u(y
′,h)]

︸ ︷︷ ︸
, (7)

≈ 1

m

m∑

j=1

u(y(j),h)

1https://github.com/facebookresearch/fairseq/
tree/main/examples/discriminative_reranking_nmt

where Ȳ ⊆ Y is a set of translation hypotheses
and u : Y × Y → R is the utility function. In
this paper, we used COMET2 (Rei et al., 2020,
2022) as utility function u. Note that we share
the hypotheses Ȳ and the sample set for expecta-
tion estimation {y(1), . . . ,y(m)}, except for h, i.e.,
{y(1), . . . ,y(m)} = Ȳ \ {h}. Thus, given a can-
didate set, the computational complexity of MBR
decoding is in the order of O(m2), which results
in a slower inference speed when m is large.

3.2.3 Two-stage reranking
We applied two-stage reranking with DrNMT and
COMET-MBR, which allowed us to use each
model for the task it was trained to handle best,
to optimize for two metrics and to reduce the infer-
ence speed of reranking.

In the first stage, DrNMT (Lee et al., 2021) is
used to prune the 50 candidates for each candidate
set generated from each of the 18 combinations of
decoding methods and generators. As DrNMT is
trained to rerank the n-best candidates from a sin-
gle model, it is ideally suited to the task of rerank-
ing the candidates generated with the same combi-
nation of model and decoding method, i.e., within
a system. In the second stage, COMET-MBR (Fer-
nandes et al., 2022) is used to select the system
output from the 18 candidate translations selected
by DrNMT.

We use COMET-MBR to rerank the best outputs
of each system because COMET was trained on
translation scores from the output of various mod-
els from previous WMT translation tasks, making
it well suited to inter-system comparisons. Each of
the two stages is trained to optimize a different met-
ric: Stage one uses BLEU, which evaluates surface
forms, whereas stage two uses COMET, which
evaluates semantics. Additionally, the inference
speed of COMET-MBR makes it time-consuming
for large candidate sets, but pruning with DrNMT,
which performs inference in a single forward com-
putation, reduces the computational cost.

4 Experimental Results

We evaluated the translation performance of our
system on wmttest2022 (Kocmi et al., 2022).
We measured the BLEU and chrF scores us-
ing SACREBLEU, and the COMET score using
Unbabel/wmt22-comet-da. The models of our

2https://huggingface.co/Unbabel/
wmt22-comet-da
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En-Ja Ja-En

Method # of cands. BLEU chrF COMET BLEU chrF COMET

1-best of the ensemble 1 25.5 34.0 86.4 23.1 48.0 80.9
DrNMT 50 26.7 34.7 86.6 23.7 48.4 81.1
COMET-MBR 900 26.1 35.4 90.5 22.0 48.0 84.1
DrNMT+COMET-MBR (ours) 900 27.1 35.6 88.4 24.4 49.3 82.4

DrNMT+Oracle-COMET-DA 900 30.5 39.1 90.2 29.0 53.7 85.5

Table 4: Experimental results of our system on wmttest2022. “# of cands.” denotes the number of candidates
generated by the translation generator. The bold scores indicate the best scores in each translation direction.

generator were trained using FAIRSEQ (Ott et al.,
2019). We used KNN-SEQ3 (Deguchi et al., 2023)
for kNN-MT generation built on top of FAIRSEQ.
The first stage of our reranker, DrNMT, was also
built using FAIRSEQ, whereas COMET-MBR was
built using COMET (Rei et al., 2020).

Table 4 shows the results of our system. In
the table, the translation candidates of “1-best of
the ensemble” were generated using the ensemble
model without kNN-MT using beam search decod-
ing. The candidates of “DrNMT” were generated
using the ensemble model and the 50-best trans-
lations were obtained using beam search decod-
ing. As DrNMT uses the log probability of an MT
model for inference, it cannot compare candidates
generated by different MT models or generation
methods. The results show that DrNMT not only
improved the BLEU scores but also the chrF and
COMET scores from the 1-best translation, despite
only being trained to maximize the BLEU score.
“COMET-MBR” reranks all candidates, i.e., 900
translations (= 9 generators× 2 decoding methods
× 50 best candidates). COMET-MBR achieved
the highest COMET scores for both En-Ja and
Ja-En, but the BLEU and chrF scores were not
improved for Ja-En, and the inference speed of
COMET-MBR with 900 translation candidates was
slow. Our primary system used “DrNMT+COMET-
MBR” described in Section 3.2.3. This method
obtained higher scores for all metrics compared
with using DrNMT alone in both translation direc-
tions, in addition to the highest BLEU and chrF
scores overall. To summarize, our results show that
using the rerankers appropriately as intra- and inter-
system rerankers is effective for improving trans-
lation quality. DrNMT+Oracle-COMET-DA is the
oracle performance of the second stage reranker,

3https://github.com/naist-nlp/knn-seq

i.e., the score computed by the largest COMET-
DA score for candidates after reranking the 50-
best of each system using DrNMT (first stage
reranker). Our DrNMT+COMET-MBR scores un-
derperformed the oracle performance, and we leave
its improvement for future work.

In addition, we investigated which hypoth-
esis was selected as the system output in
DrNMT+COMET-MBR. Figure 3 shows the per-
centages of counts selected as the system output.
In the figure, when the system output comes from
multiple hypotheses, i.e., duplicated hypotheses
are selected, each hypothesis is counted as selected.
The results show that the hypotheses generated by
beam search of the ensemble and ensemble+kNN-
MT models were selected as the system outputs
roughly 40% in En-Ja and 50% in Ja-En. Thus,
half of the system outputs were not selected from
hypotheses generated from the ensemble model
using beam search. Therefore, it can be said that
“DrNMT+COMET-MBR” outperformed “DrNMT”
by selecting from the hypotheses generated by var-
ious generators and various decoding methods.

5 Conclusion

In this paper, we described our submission as a joint
team of NAIST and NICT (NAIST-NICT) to the
WMT’23 general MT task. We participated in this
task in the En-Ja and Ja-En translation directions.
We built our system using a diverse translation
generator and two-stage reranker. In future work,
we will investigate qualitatively how translation
diversity contributes to translation quality.

Limitations

A limitation of our system is its reliance on large
computation resources. As our system generates
50 candidates using two decoding methods from

115



0% 10% 20% 30% 40% 50%

Ensemble
+kNN-MT
topp0.7

Ensemble
+kNN-MT

beam

Ensemble
topp0.7

Ensemble
beam

E18-D4
topp0.7

E18-D4
beam

do03.ado01
topp0.7

do03.ado01
beam

do03.ado00
topp0.7

do03.ado00
beam

do02.ado01
topp0.7

do02.ado01
beam

do02.ado00
topp0.7

do02.ado00
beam

do01.ado01
topp0.7

do01.ado01
beam

do01.ado00
topp0.7

do01.ado00
beam wmttest2022.en-ja

wmttest2023.en-ja
wmttest2022.ja-en
wmttest2023.ja-en

Figure 3: Percentages of counts selected as the system
output by COMET-MBR.

each of the nine generators, it requires significant
resources. The beam size of 50 is larger than most
machine translators and requires more computing
power (memory and time).

Note that the reranking approach cannot output
translations of higher quality than those translated
by the generators.

Ethics Statement

Our system did not restrict the training data and
the translator’s outputs. Therefore, similar to other
translation systems, it may generate factually inac-
curate translations.

References
Mauro Cettolo, Christian Girardi, and Marcello Fed-

erico. 2012. WIT3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Annual
Conference of the European Association for Machine
Translation, pages 261–268, Trento, Italy. European
Association for Machine Translation.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Hiroyuki Deguchi, Hayate Hirano, Tomoki Hoshino,
Yuto Nishida, Justin Vasselli, and Taro Watanabe.
2023. knn-seq: Efficient, extensible knn-mt frame-
work. arXiv preprint arXiv:2310.12352.

Bryan Eikema and Wilker Aziz. 2020. Is MAP decoding
all you need? the inadequacy of the mode in neural
machine translation. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4506–4520, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Bryan Eikema and Wilker Aziz. 2022. Sampling-based
approximations to minimum Bayes risk decoding
for neural machine translation. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 10978–10993, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Patrick Fernandes, António Farinhas, Ricardo Rei,
José G. C. de Souza, Perez Ogayo, Graham Neubig,
and Andre Martins. 2022. Quality-aware decoding
for neural machine translation. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1396–1412,
Seattle, United States. Association for Computational
Linguistics.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun.
2014. Optimized product quantization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
36(4):744–755.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid.
2011. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(1):117–128.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

116



Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016b. Bag of tricks for efficient
text classification. arXiv preprint arXiv:1607.01759.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah Smith. 2021. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. In International Conference on Learning
Representations.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. In International Conference
on Learning Representations (ICLR).

Tom Kocmi, Rachel Bawden, Ondřej Bojar, Anton
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Abstract

This paper presents the contributions of Charles
University teams to the WMT23 General
translation task (English to Czech and Czech
to Ukrainian translation directions). Our
main submission, CUNI-GA, is a result of
applying a novel n-best list reranking and
modification method on translation candi-
dates produced by the two other submit-
ted systems, CUNI-Transformer and CUNI-
DocTransformer (document-level translation
only used for the en → cs direction). Our
method uses a genetic algorithm and MBR de-
coding to search for optimal translation under
a given metric (in our case, a weighted com-
bination of ChrF, BLEU, COMET22-DA, and
COMET22-QE-DA). Our submissions are first
in the constrained track and show competitive
performance against top-tier unconstrained sys-
tems across various automatic metrics.

1 Introduction

Our submission for this year’s WMT General trans-
lation task (Kocmi et al., 2023) is based on the pre-
vious submissions of our team (Popel et al., 2019,
2022) and MBR decoding in combination with ge-
netic algorithm (GA). We describe the method in
separate work (Jon and Bojar, 2023). The main
goal of our submission is to find out whether our ap-
proach improves the translation quality perceived
by humans. For this reason, we submitted both
the base system translations and the mutated and
reranked (i.e. GA-processed) translations for the
human evaluation.

As all the parts of the approach are described
in detail in the mentioned papers (as well as all
the related work), we will restrict ourselves to pro-
viding a short overview of the main points in Sec-
tion 2. In Section 3, we describe the datasets, tools
and parameters used to obtain results presented in
Section 4. Finally, we draw conclusions from the
results.

2 Methods

Our submissions make use of two features that
are not typical for current MT systems: document-
level context and translation refinement through a
genetic algorithm.

2.1 Document level translation
We use document-level NMT for the en→ cs di-
rection. The approach is described in Popel et al.
(2019). Since all the training data for this direc-
tion have document boundaries, a document-level
training set is created by extracting all sequences
of consecutive sentences with at most 3000 charac-
ters. The final training set consists of pairs of such
examples, where both sides have the same number
of sentences. Sentences are separated by a special
token. We also use Block backtranslation (Popel,
2018; Popel et al., 2020; Gebauer et al., 2021; Jon
et al., 2022a).

2.2 Genetic algorithm
Our approach (Jon and Bojar, 2023) utilizes MBR
decoding (Goel and Byrne, 2000; Kumar and
Byrne, 2004; Amrhein and Sennrich, 2022; Freitag
et al., 2021; Müller and Sennrich, 2021; Jon et al.,
2022b) in conjunction with the genetic algorithm
(GA) (Fraser, 1957; Bremermann, 1958; Holland,
1975). By merging and mutating translations gen-
erated by an MT system, we aim to find the best
translation under a specific metric. This is a new
strategy for creating translation candidates in NMT.
We illustrate one iteration of the whole process in
Figure 1. The top, yellow part shows the steps that
are the same as in simple reranking. We have an
initial population of candidates, for example, n-best
list produced by an MT model, that is scored by
fitness function, in our case, a sum of MBR decod-
ing scores using an MT evaluation metric and QE
scores. At this point, for reranking, the process
would stop after selecting the best-scoring trans-
lation candidate. In GA, we continue by splitting
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Fitness
function

scores= [0.7,0.4,0.1,0.8]

s1

s2

s3

s4

Selection
s1 x s2 x s4 => s4
s2 x s1 x s3 => s1
s3 x s1 x s2 => s1
s4 x s3 x s1 => s4

parents= [s4,s1,s1,s4]

Crossovercrossover
point, i=1

crossover
point, i=6

children

Mutation

He  went to see them

I  saw my house

I  saw my house

He  went to see them

He  saw my house

I  went to see them

I  saw my see them

He  went to house

He  saw my saw

I  went home to see them

I  saw my see them He

He  went to

I saw my house

I went home to  see

He went to see them

I came to my house

Figure 1: One iteration of the GA algorithm for a population of 4 individuals. The steps with a yellow background
are equivalent to simple reranking, the steps with blue background introduce the operations of the genetic algorithm.
Figure taken from Jon and Bojar (2023)

a well-scoring subset of the candidate sentences
at random points and reattaching them in a differ-
ent order, by a process called cross-over. These
combined candidates are mutated at random places,
meaning some of the tokens are either deleted or
replaced by different tokens from a set of suitable
candidate tokens. Also, new tokens can be added
this way. These modifications result in a new popu-
lation of translation candidates and the whole pro-
cess is repeated from the start. A more detailed
description of our approach is available in Jon and
Bojar (2023).

MBR decoding NMT models generate a proba-
bility distribution over potential translations for a
specified input sentence. The widely used method
to derive the ultimate translation from this distribu-
tion is "maximum-a-posteriori" (MAP) decoding.
However, the computational demands of precise
MAP decoding lead to the adoption of approxima-
tions like beam search, referenced by Koehn et al.
(2003). Recent literature, such as Stahlberg and
Byrne (2019) and Meister et al. (2020), has shed
light on several constraints of MAP and proposed
alternatives.

MBR decoding is one such alternative. It uses

a utility function to select the translation, aiming
to minimize expected loss or risk. Typically, MT
metrics are employed as these utility functions. In
practice, candidate translations produced by the
MT model are used as an approximation of the set
of all possible translations. In such case, if we only
use purely reference-based metrics (like BLEU),
MBR decoding becomes a consensus decoding,
where the chosen candidate is the one closest to all
the others. However, novel MT metrics also take
source sentence into account, so the process is more
complex than a simple search for the most average
translation. The MBR decoding has seen renewed
interest with the introduction of the new generation
of metrics (Amrhein and Sennrich, 2022; Freitag
et al., 2021; Müller and Sennrich, 2021; Jon et al.,
2022b).

3 System description

Our models are based on submissions of our team
from previous years (Popel et al., 2022, 2019).
We resubmit those (CUNI-Transformer and CUNI-
DocTransformer submissions) and we also submit
an additional translation: the outputs of these mod-
els combined, mutated and rescored by the GA
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described in Section 2.2 (CUNI-GA submission).

3.1 Tools and data
All our submissions are constrained, using only
the training data provided by the task organizers,
specifically the CzEng 2.0 (Kocmi et al., 2020)
corpus. We used English to Czech newstest-18
and newstest-22 as validation sets for the genetic
algorithm approach. Due to the computational re-
quirements of our method, we only evaluate the
first 150 sentences of each test set. We didn’t run
any validation experiments for GA in the cs→ uk
language pair, we used the same parameters as for
en → cs. We have only translated the general
translation test set using GA, the test suits trans-
lations for CUNI-GA are copied from the CUNI-
DocTransformer submission.

3.2 Models
We use Transformer models. For the dev set ex-
periments, we use same models as Jon and Bo-
jar (2023) (i.e. transformer-big using Marian-
NMT (Junczys-Dowmunt et al., 2018) with default
hyperparameters). For the final submissions, the
models are the same as in last year’s submissions:
Popel et al. (2022) for cs → uk and Popel et al.
(2019) for en→ cs.

3.3 GA parameters
We refrained from searching for the optimal values
of GA parameters due to the significant computa-
tional demands of our method.

For the results on the validation set, we used
exactly the settings described by Jon and Bojar
(2023), i.e. Transformer model trained on the
CzEng 2.0 (Kocmi et al., 2020) corpus in cs→ en
direction (i.e. the opposite direction to the task).
We used beam search with size 20 to produce a 20-
best list and sampled an additional 20 translations
from the model to create an initial population of 40
candidates, which we copied 50 times to obtain a
population size of 2000.

We used different NMT models (see Section 3.2)
and a different number of initial sentences for the
shared task submissions. For the cs → uk direc-
tion, the starting population consists of the top 35
hypotheses produced by beam search from the two
models described in Popel et al. (2022) (top-10
from the CUNI-Transformer-inca-roman and top-
25 from the CUNI-Transformer model).1 This set

1The CUNI-Transformer-inca-roman uses preprocessing
using romanization and inline casing (Popel et al., 2022).

is replicated 50 times, leading to a total popula-
tion of 1750 candidates. For en → cs we use a
concatenation of n-best lists with beam sizes 4 and
10 from both CUNI-DocTransformer and CUNI-
Transformer (28 candidates in total), also copied 50
times over, resulting in population size of 1400. To
combine document-level and sentence-level trans-
lations, we re-split the translated documents back
into sentences.

To choose parents for the succeeding generation,
we use tournament selection with n = 3. These par-
ents are then merged at a crossover rate of c = 0.1.
The mutation rate, for altering non-empty genes
(i.e. tokens) to other non-empty genes m, is 1/l,
where l denotes the chromosome’s (chromosome
is a sequence of tokens, representation of one trans-
lation candidate) length2 For transitions from an
empty to a non-empty gene (i.e. addition of a word)
and vice versa (i.e. deletion), the rate is m

10 . The
GA runs for 250 and 130 generations for cs→ uk
and en→ cs, respectively.

3.4 Metrics
The translations are evaluated by the following met-
rics: ChrF (Popović, 2015), BLEU (Papineni et al.,
2002), BLEURT (Sellam et al., 2020), multiple ver-
sions of COMET (Rei et al., 2020, 2021, 2022b,a,c)
and UniTE (Wan et al., 2022). We abbreviate some
of the longer metrics’ names further in the text in
order to save space.3

For both BLEU and ChrF, we utilize Sacre-
BLEU (Post, 2018). In all experiments, ChrF uses
a β = 2 setting (ChrF2). We rely on the origi-
nal implementations for COMET,4 BLEURT,5 and
UniTE6 scores.

4 Results

This section presents automatic metric scores on
validation sets and the official test set.

4.1 English to Czech
The first translation direction is English to Czech,
where we submitted the outputs of our older
sentence-level (CUNI-Transformer) and document-
level (CUNI-DocTransformer) systems, as well as

2See Jon and Bojar (2023) for a more detailed description.
3CMT20 (wmt20-comet-da), CMT21 (wmt21-comet-

mqm), CMTH22 (eamt22-cometinho-da), QE20 (wmt20-
comet-qe-da-v2), QE22 (wmt22-cometkiwi-da), BLEURT
(BLEURT-20), UniTE (UniTE-MUP)

4https://github.com/Unbabel/COMET
5https://github.com/google-research/bleurt
6https://github.com/NLP2CT/UniTE
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Method Fitness ChrF BLEU CMT20 CMT21 CMTH22 QE20 BLEURT UniTE % new

baseline - 56.7 30.1 0.5007 0.0399 0.5017 0.2477 0.7078 0.3018 0
Reranking CMT20 57.4 31.2 0.5853 0.0409 0.5390 0.2930 0.7193 0.3413 0
Reranking CMT20+QE20+BLEU 57.5 31.2 0.5983 0.0417 0.5596 0.3620 0.7255 0.3686 0
GA CMT20 56.2 28.4 0.6247 0.0410 0.5382 0.2893 0.7177 0.3366 52
GA CMT20+QE20+BLEU 57.5 29.5 0.6266 0.0429 0.5403 0.4198 0.7174 0.3946 70

Table 1: Comparison of the scores of baseline MT output, reranked output, and GA-modified output. The last
column shows the percentage of finally selected best translations that were not present in the initial population (i.e.
they were newly created by the GA operations). Table from Jon and Bojar (2023).

Model wCMT wQE wBLEU wchrF chrF BLEU CMT20 CMT21 CMTH22 QE20 CMT22 BLEURT UniTE New

Baseline - - - - 56.6 30.1 0.500 0.040 0.504 0.244 0.707 0.301 0.00

CMT20

0.15 0.15 0.35 0.35 57.2 29.8 0.619 0.043 0.542 0.401 0.856 0.715 0.384 0.64
0.1 0.1 0.4 0.4 57.4 30.0 0.616 0.043 0.541 0.403 0.856 0.714 0.385 0.63

0.25 0.25 0.25 0.25 57.4 29.8 0.616 0.043 0.541 0.410 0.857 0.713 0.388 0.64
0.2 0.2 0.3 0.3 57.3 29.6 0.619 0.043 0.540 0.406 0.857 0.715 0.388 0.64
0.4 0.2 0.2 0.2 57.2 30.7 0.629 0.043 0.549 0.388 0.856 0.720 0.384 0.51
0.4 0.3 0.1 0.2 57.4 30.2 0.630 0.043 0.548 0.405 0.857 0.718 0.384 0.65
0.4 0.4 0.1 0.1 57.1 29.0 0.631 0.043 0.542 0.427 0.859 0.716 0.389 0.68
0.5 0.5 0 0 55.2 25.1 0.633 0.043 0.514 0.470 0.856 0.705 0.372 0.86

1 0 0 0 56.8 29.7 0.614 0.041 0.533 0.289 0.844 0.712 0.336 0.51

CMT22

0.15 0.15 0.35 0.35 57.5 32.0 0.601 0.042 0.560 0.332 0.858 0.729 0.388 0.27
0.1 0.1 0.4 0.4 57.7 32.2 0.602 0.042 0.562 0.331 0.858 0.730 0.392 0.28

0.25 0.25 0.25 0.25 57.5 32.0 0.601 0.042 0.560 0.330 0.857 0.729 0.388 0.29
0.2 0.2 0.3 0.3 57.5 32.0 0.601 0.042 0.561 0.331 0.858 0.730 0.394 0.32
0.4 0.2 0.2 0.2 57.2 31.5 0.593 0.042 0.550 0.326 0.857 0.727 0.370 0.25
0.4 0.3 0.1 0.2 57.7 32.1 0.597 0.042 0.555 0.332 0.857 0.728 0.386 0.27
0.4 0.4 0.1 0.1 57.6 32.0 0.606 0.042 0.560 0.334 0.859 0.730 0.393 0.29
0.5 0.5 0 0 57.7 31.7 0.620 0.043 0.562 0.359 0.866 0.731 0.406 0.57

1 0 0 0 56.8 29.8 0.570 0.042 0.528 0.328 0.863 0.714 0.344 0.49

Table 2: Scores of translations on the first 150 sentences of newstest-18 created by GA. The fitness metric is a
weighted sum of COMET, COMET-QE, BLEU and chrF, with weight shown in columns 2 to 5. The first column
shows which version of COMET and COMET-QE was used. Higher is better for all the metrics. The best results for
each metric are bold.

Model wCMT wQE wBLEU wchrF chrF BLEU CMT20 CMT21 CMTH22 QE20 CMT22 BLEURT UniTE New

Baseline - - - 68.3 44.9 0.738 0.045 0.751 0.357 0.876 0.785 0.540 0.00

CMT20

0.15 0.15 0.35 0.35 68.4 43.0 0.777 0.047 0.777 0.464 0.890 0.787 0.607 0.52
0.1 0.1 0.4 0.4 68.6 43.5 0.779 0.047 0.779 0.464 0.891 0.787 0.609 0.51

0.25 0.25 0.25 0.25 68.3 43.0 0.785 0.047 0.783 0.469 0.892 0.789 0.617 0.52
0.2 0.2 0.3 0.3 68.5 43.3 0.780 0.047 0.777 0.465 0.891 0.787 0.610 0.52
0.4 0.2 0.2 0.2 68.6 44.2 0.778 0.047 0.773 0.441 0.887 0.791 0.586 0.33
0.4 0.3 0.1 0.2 68.2 43.0 0.785 0.047 0.777 0.470 0.891 0.789 0.612 0.49
0.4 0.4 0.1 0.1 67.7 42.1 0.787 0.047 0.777 0.485 0.892 0.788 0.614 0.55
0.5 0.5 0 0 65.1 36.4 0.782 0.047 0.747 0.514 0.887 0.771 0.574 0.77

1 0 0 0 67.9 42.1 0.772 0.046 0.760 0.386 0.880 0.785 0.552 0.36

CMT22

0.15 0.15 0.35 0.35 68.8 45.1 0.771 0.047 0.794 0.417 0.890 0.799 0.604 0.25
0.1 0.1 0.4 0.4 68.8 45.1 0.772 0.047 0.795 0.417 0.890 0.798 0.605 0.25

0.25 0.25 0.25 0.25 68.8 44.8 0.774 0.047 0.792 0.418 0.890 0.799 0.603 0.27
0.2 0.2 0.3 0.3 68.9 45.3 0.772 0.047 0.794 0.417 0.890 0.799 0.604 0.25
0.4 0.2 0.2 0.2 68.9 45.1 0.771 0.047 0.794 0.408 0.889 0.795 0.602 0.22
0.4 0.3 0.1 0.2 69.1 45.7 0.772 0.047 0.794 0.410 0.889 0.798 0.607 0.25
0.4 0.4 0.1 0.1 68.8 45.2 0.771 0.047 0.792 0.420 0.890 0.798 0.603 0.25
0.5 0.5 0 0 68.6 43.6 0.782 0.047 0.793 0.431 0.893 0.800 0.612 0.46

1 0 0 0 68.2 43.5 0.762 0.046 0.778 0.401 0.890 0.788 0.576 0.39

Table 3: Scores of translations on the first 150 sentences of newstest-22 created by GA. The fitness metric is a
weighted sum of COMET, COMET-QE, BLEU and chrF, with weight shown in columns 2 to 5. The first column
shows which version of COMET and COMET-QE was used. Higher is better for all the metrics. The best results for
each COMET version are bold.
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a combination and modification of both using our
GA approach.

GA vs. reranking Jon and Bojar (2023) provide
a comparison of the genetic algorithm approach to
a simple reranking using the same objective met-
rics. In that work, a sum of CMT20, QE20 and
BLEU is used as the fitness metric. The results are
copied in Table 1. The baseline translations are
obtained via beam search. The same work also
shows that for UniTE, CMT22, CMT21-MQM
held-out metrics7, GA significantly outperforms
simple reranking with the same objective metric.
However, BLEURT, CMTH22 and chrF seem to
favor reranking only.

For our current work, we ran additional ex-
periments. We use a weighted sum of COMET,
COMET-QE, chrF and BLEU as the objective (fit-
ness) metric. We compare older and newer ver-
sions of both COMET and COMET-QE, repre-
sented by CMT20/QE20 and CMT22/QE22, re-
spectively. Since the objective metrics lose their
relevance for evaluation once we optimize for them,
a set of held-out metrics is selected to better esti-
mate the translation quality. The results for the
first 150 sentences of newstest18 are presented in
Table 2, and the scores for the first 150 sentences
of newstest22 are presented in Table 3.

We vary the weights of the different fitness
metrics to see the effect on the held-out metrics
(columns wCMT, wQE, wBLEU and wchrF). The
last column shows a portion of cases where the fi-
nal selected candidate was not part of the initial
population, the other columns show values of the
respective scores.

We see an interesting difference between
CMT22/QE22 and CMT20/QE20. While optimiz-
ing only for CMT20 or CMT20+QE20 hurts other
scores greatly (for example UniTe and BLEURT),
optimizing solely for CMT22+QE22 does not have
such an adverse effect on other metrics. We hy-
pothesize multiple factors play a role in this. One
of them might be the better robustness of the newer
versions, which are designed to deal better with hal-
lucinations and unexpected target tokens that could
be introduced by the GA. CMT20 and especially
QE20 were previously shown to be partially insen-
sitive to this kind of errors (Guerreiro et al., 2023),

7Means metrics not used as a part of the fitness function.
Note that these metrics are not completely independent, they
can be still linked to the fitness metrics by spurious correla-
tions caused by data and model architecture similarity

but they could be detected by the other metrics,
hence the lower scores.

Final submission Overall, the results suggest the
best choice is to simply average CMT22 and QE22
scores (wCMT = 0.5, wQE = 0.5). We did not
have the complete evaluation at hand by the time
of the submission, so we used weights wCMT =
0.4, wQE = 0.4, wBLEU = 0.1 and wchrF = 0.1
for the submitted test set translation. We use a
completely different NMT system than in the dev
set experiments to create the initial population for
the submission, as described in 3.3.

We show the automatic scores of all the submis-
sions on the test set in Table 4. The CUNI-GA
submission outperforms both the base submissions
CUNI-Transformer and CUNI-DocTransformer
across all metrics. It ranks comparably to the best
unconstrained system using COMET, but lags be-
hind in chrF and BLEU.

We analyzed the percentages of the final submit-
ted translated sentences that were present in some
of the initial n-best lists and the percentage of novel
sentences, created by the GA. We show these re-
sults in Table 5. We see that 21.7% of the final
submitted sentences are new, not contained in any
of the initial n-best lists, but rather created by the
GA mutation and crossover operations.

4.2 Czech to Ukrainian

We also ran the GA on a concatenation of n-best
lists produced by the two cs → uk models, see
Popel et al. (2022) for details on these systems.
We used beam size 10 for the CUNI-Transformer-
inca-roman model and beam size 25 for the CUNI-
Transformer model, resulting in 35 initial candidate
sentences. We did not perform any parameter tun-
ing on the validation set, we used the same param-
eters as for the en → cs submission. We present
the automatic metrics results on the test set in Ta-
ble 6. Our submissions outperform the only other
constrained system and are competitive with the un-
constrained systems, scoring best in COMET and
2nd in chrF and BLEU. For COMET and chrF, GA
outperforms the unmodified baseline translation,
while in BLEU, the baseline scores slightly better.

Again, we show what is the percentage of final
best translations selected for submission contained
in either of the initial n-best lists and the percentage
of new translations, created by GA operations, in
Table 7. 35.1% of the final submitted translations
are novel.
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System COMET
ONLINE-W 91.8

CUNI-GA 90.8
ONLINE-B 89.9
GPT4-5shot 89.4
ONLINE-A 88.4

CUNI-DocTransformer 88.3
GTCOM_Peter 87.7

ONLINE-M 87.4
Lan-BridgeMT 87.3

CUNI-Transformer 87.2
NLLB_Greedy 87.1

ONLINE-Y 87.0
NLLB_MBR_BLEU 86.9

ONLINE-G 85.9
ZengHuiMT 85.4

System chrF
ONLINE-W 76.3
ONLINE-B 70.4

ZengHuiMT 67.5
ONLINE-A 66.3

CUNI-GA 65.9
GTCOM_Peter 65.4

CUNI-DocTransformer 65.1
ONLINE-Y 64.6

CUNI-Transformer 63.9
Lan-BridgeMT 63.8

ONLINE-G 63.7
ONLINE-M 63.2
GPT4-5shot 62.3

NLLB_Greedy 60.0
NLLB_MBR_BLEU 59.1

System BLEU
ONLINE-W 59.4
ONLINE-B 50.1
ONLINE-A 43.4

CUNI-GA 43.3
ZengHuiMT 43.1

CUNI-DocTransformer 42.5
GTCOM_Peter 42.3

CUNI-Transformer 41.4
ONLINE-Y 40.8

Lan-BridgeMT 40.7
ONLINE-G 39.6
ONLINE-M 39.6
GPT4-5shot 37.8

NLLB_Greedy 35.9
NLLB_MBR_BLEU 35.1

Table 4: Results of automatic evaluation on en → cs testset. Unconstrained systems are indicated with a grey
background. Coincidentally, all three en→ cs unconstrained systems are our submissions described in this paper.
CUNI-GA is better than the two baselines according to all three metrics.

doc-4 doc-10 sent-4 sent-10 new

contains 36.3% 42.1% 31.4% 52.8% 21.7%
unique 2% 6.8% 0.7% 17.5%
merge 50.0% 53.5%
u-merge 24.7% 33.3%

Table 5: Percentages of final best scoring in CUNI-GA
English to Czech submission sentences by the initial n-
best list they are contained in (doc-4 denotes document-
level, beam size 4 and so on). The first row shows how
many sentences from the final translation were present
in the respective n-best list, while the last column shows
the percentage of completely new sentences, that were
not present in any of the lists. The second row looks
at the percentages of final sentences that are uniquely
in exactly one of the lists. The last two rows show the
same for merged doc-level and sent-level lists, i.e. we
concatenated both beam sizes for each into one list.

5 Future work

Our setting allows many straightforward modifi-
cations to potentially improve the results of our
method. First of all, MBR decoding works well on
a large, diverse set of initial candidates, obtained
for example by sampling. In our experiments, we
only use short n-best lists produced by beam search.
An additional benefit stemming from the diversity
of the initial candidates is a more dive diverse set
of possible tokens for replacement mutations.

Second, we did not run any search for the param-
eters of the GA process (crossover and mutation
rates, number of generations, population size, se-
lection method), due to the large computational
costs of this approach. We believe a set of better
parameters could be found easily by, for example,
a grid search. Finally, the metrics used for the fit-

ness function are combined by a simple weighted
sum. Multi-criterion genetic algorithms can be ex-
plored for a better approach to combine multiple
evaluation scores for the translations.

Also, reranking and modifying the translations
on a sentence level can introduce inconsistencies
previously mitigated by using document-level MT,
losing the advantages of document-level process-
ing. Deutsch et al. (2023) show that using sentence-
level metrics for whole document-level segments
might be a viable option for avoiding this issue.

6 Conclusion

We confirm that using MBR decoding in combina-
tion with a genetic algorithm can improve scores
in selected evaluation metrics, while creating origi-
nal novel translations. We show that our systems
are competitive in both submitted language pairs,
winning among constrained systems based on auto-
mated evaluation metrics.
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System COMET
CUNI-GA 90.9

GPT4-5shot 90.8
ONLINE-W 89.4

GTCOM_Peter 88.9
ONLINE-B 88.8
ONLINE-A 88.2

CUNI-Transformer 88.0
ONLINE-G 87.7
MUNI-NLP 87.0
ONLINE-Y 86.5

NLLB_Greedy 86.3
NLLB_MBR_BLEU 86.3

Lan-BridgeMT 86.0

System chrF
GPT4-5shot 61.0

CUNI-GA 57.9
GTCOM_Peter 57.6

CUNI-Transformer 57.4
MUNI-NLP 57.0

Lan-BridgeMT 55.7
ONLINE-W 55.0
ONLINE-B 54.7
ONLINE-A 54.4
ONLINE-G 53.7
ONLINE-Y 53.4

NLLB_Greedy 52.5
NLLB_MBR_BLEU 52.3

System BLEU
GPT4-5shot 32.8

CUNI-Transformer 30.2
GTCOM_Peter 29.8

CUNI-GA 29.5
MUNI-NLP 28.3

Lan-BridgeMT 27.5
ONLINE-W 26.8
ONLINE-B 25.7
ONLINE-A 25.4

NLLB_MBR_BLEU 25.1
NLLB_Greedy 24.9

ONLINE-G 24.8
ONLINE-Y 24.2

Table 6: Results of automatic evaluation on cs → uk testset. Unconstrained systems are indicated with a grey
background. CUNI-GA is better than CUNI-Transformer according to COMET and chrF, but worse according to
BLEU.

CT-inca-roman-10 CT-25 new

contains 17% 58.5% 35.1%
unique 6.4% 48%

Table 7: Percentages of final best scoring sentences by
the initial n-best list they are contained in, the mean-
ing of the rows is the same as in Table 5. CT=CUNI-
Transformer.
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Žabokrtský. 2020. Transforming machine transla-
tion: a deep learning system reaches news translation
quality comparable to human professionals. Nature
Communications, 11(4381):1–15.
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Abstract
The SKIM team’s submission used a stan-
dard procedure to build ensemble Transformer
models, including base-model training, back-
translation of base models for data augmen-
tation, and retraining of several final models
using back-translated training data. Each fi-
nal model had its own architecture and con-
figuration, including up to 10.5B parameters,
and substituted self- and cross-sublayers in
the decoder with a cross+self-attention sub-
layer (Peitz et al., 2019). We selected the best
candidate from a large candidate pool, namely
70 translations generated from 13 distinct mod-
els for each sentence, using an MBR reranking
method using COMET and COMET-QE (Fer-
nandes et al., 2022). We also applied data aug-
mentation and selection techniques to the train-
ing data of the Transformer models.

1 Introduction

This paper provides a system description of submis-
sions by our team, called SKIM1, at WMT-2023.
We took part in English to Japanese (En→Ja) and
Japanese to English (Ja→En) General Machine
Translation tracks (Kocmi et al., 2023). We specif-
ically participated in the constrained track, which
places restrictions on the available data and pre-
trained models.

The trial of this year’s submissions is a reranking
part. Our submission system consists of multiple
translation models, followed by a reranking mod-
ule (Kobayashi, 2018) based on COMET (Rei et al.,
2022a) and COMET-QE (Rei et al., 2021). This
reranking approach serves to identify and select
high-quality translations from the hypothesis can-
didate set generated by multiple translation models.
Among the Transformer-based translation models,
we also incorporated a large Transformer model
with 10.5B parameters. We also applied data aug-
mentation techniques based on our previous year’s

1The team name is an anagram of the first letters of the
authors’ last names.
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Figure 1: System overview.

system (Morishita et al., 2022b). We briefly de-
scribe the system overview, including the experi-
mental results that could not be submitted.

2 System Overview

An overview of our submission system is shown
in Figure 1. Following the development process
used for last year’s system (Morishita et al., 2022b),
we used Transformer (Vaswani et al., 2017) as the
model architecture and conducted pre-training and
fine-tuning. In the pre-training phase, we used
both a synthetic dataset created by back transla-
tion (Sennrich et al., 2016) and the provided bi-
text dataset. Here, we refer to the target-to-source
translation model to generate this synthetic dataset
as the initial translation model. Furthermore, we
conducted fine-tuning on the translation models
derived from pre-training using high-quality bitext
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Initial Translation Model

Subword Size 32,000
Architecture Transformer (big) with FFN size

of 4,096
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Gradient Clip 1.0
Batch Size 1,280,000 tokens
Number of Updates 50,000 steps
Averaging Save a checkpoint every 200 steps

and average the last eight
Implementation fairseq (Ott et al., 2019)

Pre-training Configuration

Subword Size 64,000
Architecture (See Table 4)
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3 / 0.1
Gradient Clip 0.1 / 1.0
Batch Size 1,024,000 / 64,000 tokens
Max. Num. of Updates 60,000 / 100,000 (stoped at

64,000)
Averaging Save a checkpoint every 2,000

steps and average the last ten
Implementation fairseq (Ott et al., 2019)

Fine-tuning Configuration

Subword Size Identical to Pre-training Configu-
ration

Architecture (See Table 4)
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Fixed
Warmup Steps N/A
Max Learning Rate 0.00001
Dropout 0.3 / 0.1
Gradient Clip 1.0
Batch Size 16,000 / 14,400 tokens
Number of Updates 400 / 200
Averaging Save a checkpoint every ten steps

and average the last ten
Implementation fairseq (Ott et al., 2019)

Table 1: List of hyper-parameters. We used the ini-
tial translation model for creating synthetic data, pre-
training configuration to construct pre-training models
described in Section 4.2, and fine-tuning configuration
to construct models for submission. Note that we used
slightly different settings for 10.5B models in a few pa-
rameters. We show their settings at the righthand side
of the slash mark (/). We used several different model
configurations for ensembling. See Table 4 for more
details.

datasets (i.e., development data provided by the
organizers). When developing last year’s submis-

Corpus w/o Filtering w/Filtering

JParaCrawl v3.0 25.7 M 25.0 M
WikiMatrix 3.89 M 3.64 M
JESC 2.80 M 2.57 M
Wiki Titles v3 757 K 327 K
KFTT 440 K 371 K
TED Talks 242 K 224 K
NewsCommentary v18 3.8 K 3.7 K

Table 2: Number of sentence pairs in bitext corpus.

sion system, we found that fine-tuning with clean
data enhanced translation quality more effectively
than domain adaptation. Therefore, we used a sim-
ilar fine-tuning approach for this year’s submission
system. By using these datasets, we trained mul-
tiple Transformer-based translation models with
heterogeneous configurations. During the infer-
ence phase, we translated the source sentences us-
ing these translation models individually and se-
lected the final translation results using a subse-
quent reranking process. As reranking, we tried
two methods: one used COMET-QE and the other
used COMET-MBR (Fernandes et al., 2022) ex-
tended to the outputs of multiple models.

3 Dataset Construction

3.1 Provided Data

Bitext Corpus We used all the provided bi-
text corpora: JParaCrawl v3.0 (Morishita et al.,
2022a), News Commentary v18, Wiki Titles v3,
WikiMatrix, Japanese-English Subtitle Corpus
(JESC) (Pryzant et al., 2018), The Kyoto Free
Translation Task (KFTT) Corpus (Neubig, 2011),
and TED Talks (Cettolo et al., 2012). We filtered
out the potentially noisy pairs using the straightfor-
ward parallel corpus filtering methods, just as we
did with last year’s system (Morishita et al., 2022b).
Table 2 shows the size of each dataset with/without
filtering. Compared to the previous year, the orga-
nizers updated the NewsCommentary, resulting in
an increase of 1.8 K sentences.

Monolingual Corpus We also used the follow-
ing provided monolingual data: News Crawl, News
Commentary, and Common Crawl. We back-
translated the monolingual sentences using a target-
to-source model (i.e., an initial translation model)
trained only with the provided bitext dataset, as de-
scribed in Section 3.2, and used them as synthetic
data (Sennrich et al., 2016).
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#sent. pairs #subwords (JA) #subwords (EN)

En→Ja 587 M 12.9 B 15.0 B
Ja→En 681 M 17.2 B 16.7 B

Table 3: Statistics of synthetic data used for pre-training.

3.2 Building Pre-Training Data
Synthetic Data Construction To augment the
training data, we constructed synthetic data by ap-
plying the initial translation model trained with
bitext to the monolingual data. As a preprocessing
step, we truecased2 both the bitext and monolin-
gual data. We then tokenized the data into sub-
words using the Sentencepiece tool (Kudo
and Richardson, 2018) with the unigram language
model option.

We set the vocabulary size to 64,000, the same
as the previous year’s submission. To integrate in-
sights from the method to create vocabulary for re-
cent large-language models (Touvron et al., 2023),
we activated the “byte_fallback” and “split_digits”
options. Through preliminary experiments, we
confirmed that activating these options leads to
enhanced translation performance. As our ini-
tial translation model, we used the identical ini-
tial translation model we used for last year’s sub-
mission system (Morishita et al., 2022b). The de-
tailed hyperparameters are described in the initial
translation model section of Table 1. Finally, we
respectively translated 3.3 B (English) and 1.4B
(Japanese) monolingual sentences.

Data Cleaning For both the provided bitext and
synthetic data, we carried out cleaning based on
a combination of sentence embeddings and hand-
crafted rules.

For both the bitext and synthetic data, we re-
moved the too-long sentences (>500 characters)
and using the langid3 toolkit, removed the sen-
tences that were identified as not being written in
English or Japanese.

For the synthetic data, we further applied a sen-
tence embedding-based filtering approach. We took
advantage of LaBSE (Feng et al., 2022) to embed
the Japanese and English sentences into the same
embedding space. We then scored and ranked the
parallel sentence pairs based on the cosine similar-
ity of their sentence embeddings. We subsequently

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
recaser/truecase.perl

3https://github.com/saffsd/langid.py

filtered out the following items from the synthetic
data:

• Duplicated sentence pairs
• Sentences with over 150 words4 or single words

with over 40 characters
• Sentences where the ratio between the word and

the character count is > 12
• Sentences that contain invalid Unicode charac-

ters
• Sentence pairs where the source/target word ratio

exceeds 4
• sentence pairs where the source/target length ra-

tio exceeds 6
• sentence pairs where the source and target sen-

tences are identical
• sentence pairs where the cosine similarity is

greater than 0.965

Finally, we respectively selected the top 587M
and 681M (approximately) sentences, respectively,
from the translated 1.4 B and 3.3 B monolingual
sentences as the En→Ja and Ja→En synthetic data
for the rank orders. Table 3 shows the statistics of
the synthetic data used for our pre-training.

3.3 Fine-Tuning Data
As mentioned in Section 2, during the development
of last year’s submission system, we found that
fine-tuning the model with clean data was more
effective for improving translation quality than do-
main adaptation. Following this finding, we used
the WMT’20 test set, WMT’20 development set,
WMT’21 test set and WMT’22 test set as clean data
for fine-tuning. The WMT’20 test and development
sets were all used as clean data. However, for the
WMT’21 and WMT’22 test sets, only the oppo-
site language direction data were used (i.e., only
Ja→En data were used as clean data for the En→Ja
models) because these data were used for devel-
opment and evaluation. The clean data included
9,002 sentences for En→Ja and 9,026 sentences
for Ja→En.

4 Primary Translation Module

We trained several Transformer models for the
reranking in the decoding phase. We describe the

4We tokenized the Japanese sentences using MeCab (Kudo,
2006) with the IPA dictionary. Note that this tokenization is
for this cleaning purpose only.

5We found that sentence pairs with high cosine similarities
can be noisy; for example, the source and target sentences
are sometimes identical. Thus, we removed them from the
training data.
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details of the models in this section. Furthermore,
alongside the newly trained models, we reused the
primary translation models from the previous year’s
submission system (Morishita et al., 2022b).

4.1 Model Configuration

We independently trained models with heteroge-
neous model configurations. Our configuration
has several notable characteristics: a cross+self-
attention mechanism and a large number of param-
eters (i.e., 10.5B). In the following sections, we
describe the details of the configurations.

Cross+Self-Attention Mechanism We intro-
duced a cross+self-attention mechanism (Peitz
et al., 2019) to the Transformer decoder. This mech-
anism was expected to reduce the model parameters
and provide faster training while maintaining the
translation performance. In this approach, we elim-
inated the decoder’s cross-attention layer and uni-
fied the self-attention and cross-attention into a sin-
gle attention layer. Specifically, the self-attention
layer within the Transformer decoder simultane-
ously performs the cross-attention calculation by
concatenating the output from the encoder’s final
layer to the query and key matrices.

Suppose Q, K, and V are the query, key, and
value matrices, respectively; Henc is the matrix
form of concatenating all the output vectors of the
encoder’s final layer; Wq, Wk, Wv are the weight
matrices for the query, key, and value, respectively;
and dk denotes the dimension of the key matrix. It
is then formulated as follows:

Attention(Q,K, V,Henc) =

softmax

(
QconcatK

T
concat√

dk

)
V ′

Qconcat = (Q⊕Henc)Wq

Kconcat = (K ⊕Henc)Wk

V ′ = VWv

(1)

where ⊕ means concatenating two matrices in this
equation.

Note that cross+self-attention, as well as stan-
dard self-attention, assume Q, K, and V to be
identical matrices, namely, Q = K = V = Hdec,
where Hdec is the matrix form of concatenating
input vectors of the corresponding decoder layer.

10.5B Model As demonstrated in Kaplan et al.
(2020), the performance of neural models improves
as the number of parameters increases. Moreover,

previous WMT shared tasks systems, such as Chen
et al. (2020), achieved improvements in translation
quality using model scaling. Following this insight,
we attempted to scale up the translation model.
Considering the constraints of GPU memory and
training time, we finally configured the model size
to be 10.5B parameters.

We also applied the position encoding meth-
ods used in last year’s submission system (Mor-
ishita et al., 2022b). Namely, in the encoder, we
employed relative position encoding (Shaw et al.,
2018). In the decoder, we used SHAPE (Kiyono
et al., 2021). We specified the maximum shift size
of SHAPE to be 10.

Previous year’s submission models We also
incorporated the transformer models developed
for the previous year’s submission system as the
primary translation module. We introduced the
bottom-to-top (B2T) connection (Takase et al.,
2023) to these models for training stability and
relative position encodings (Shaw et al., 2018) to
improve their generalization ability to unseen sen-
tence lengths during training. For more details,
please refer to (Morishita et al., 2022b).

4.2 Pre-Training

We trained each translation model shown in Table 4
with the filtered bitext and synthetic data described
in Section 3.2. In this phase, we used the pre-
training configuration shown in Table 1.

Following last year’s submission system (Mor-
ishita et al., 2022b), the bitext was upsampled until
it reached to a ratio of 1:1 with the synthetic data.
Moreover, we used the tagged back-translation
technique (Caswell et al., 2019) by adding a special
token ⟨BT⟩ to the beginning of the source sentences
in the synthetic data.

4.3 Fine-Tuning

The fine-tuning data are detailed in Section 3.3, and
the hyperparameters utilized during training are as
described in Table 1.

4.4 Ensemble

We ensembled the fine-tuned models, except for
the 10.5B model, due to the computational resource
limitations. We included the ensembled model and
individual model outputs as the reranking candi-
dates.

131



Direction Configuration #Params. Cross+self LN pos. Encoder Decoder

attention Layer dmodel dffn #Heads Layer dmodel dffn #Heads

Both NTT-Base 547M Pre. 9 1024 8192 16 9 1024 8192 16
Both ABCI-Base 622M Pre. 9 1024 16384 16 9 1024 4096 16
Both ABCI-EncBig 2.0B Pre. 12 1024 65536 16 9 1024 8192 16
Both ABCI-EncDeep 736M Pre. 18 1024 8192 16 9 1024 8192 16
Both Failab-EncBig 1.7B Pre. 9 1024 61440 16 9 1024 16384 16
Both Failab-DecBig 1.7B Pre. 9 1024 16384 16 9 1024 61440 16

Both NTT-A 408M Post. 6 1024 8192 16 6 1024 8192 16
Both NTT-B 547M Post. 9 1024 8192 16 9 1024 8192 16
Both NTT-C 622M Post. 9 1024 16384 16 9 1024 4096 16
Both NTT-D 698M Post. 9 1024 16384 16 9 1024 8192 16
En-Ja NTT-E 547M Pre. 9 1024 8192 16 9 1024 8192 16
En-Ja NTT-F 509M ✓ Post. 9 1024 8192 16 9 1024 8192 16
En-Ja NTT-G 551M ✓ Post. 10 1024 8192 16 10 1024 8192 16
Both Failab-LM 10.5B ✓ Pre. 16 4096 16384 32 32 4096 16384 32

Table 4: List of model configurations used by the primary translation module. The upper half of the table shows the
models also used in last year’s submission system (Morishita et al., 2022b), and the lower half shows the models
newly trained this year. dmodel and dffn respectively denote sizes of embedding and feedforward layers. LN pos.
means the position of layer normalization. Post. denotes that layer normalization is applied after the residual
connection. Pre. denotes that layer normalization is performed before the residual connection. ABCI-Base and
NTT-Base were each trained with two different seeds.

5 Reranking

To enhance translation quality, we applied a rerank-
ing process to the candidate set of hypotheses trans-
lated by each model described in Section 4. We
conducted a comparative analysis of the various
methods, as presented in the following sections.

5.1 Methods

The reranking approach was used to obtain the final
output ŷ from C, where C represents the candidate
set generated by multiple translation models for a
given source x.

Quality Estimation (QE) This approach in-
volves scoring the candidates using quality esti-
mation methods (e.g., COMET-QE) and selecting
the one with the highest score, as follows:

ŷ = argmax
c∈C

QE (x, c) . (2)

where, QE(·, ·) is a quality estimation function.

Minimum Bayes Risk (MBR) This method uses
reference-based metrics such as COMET, to yield
the best output as follows (Fernandes et al., 2022);

ŷ = argmax
ci∈C

1

|C|

|C|∑

cj=1

RefMetric (ci, cj) . (3)

where RefMetric(·, ·)6 is a reference-based metric.
Note that MBR uses reference-based metrics but
not reference texts. MBR is applied to the output
of a single model in Fernandes et al. (2022). We
extended this method to the outputs from multiple
models.

MBR after QE (QE→MBR) This approach is
a combination of QE and MBR (Fernandes et al.,
2022). We denoted the top-p samples from set C,
according to the score calculated by the quality
estimation function QE(·, ·), as Ctop-p. Then, MBR
was applied for Ctop-p.

5.2 Post Evaluation

We experimented with the performance of the trans-
lation models and the reranking process. Note that
this experiment was conducted after the primary
system was submitted.

5.2.1 Experimental Setup
We used WMT21-COMET-QE7 and
WMT22-CometKiwi (Rei et al., 2022b)8 for the
QE, and WMT22-COMET-DA9 as the refernece-

6Some reference-based metrics, such as COMET, also use
source x as an input.

7https://unbabel-experimental-models.
s3.amazonaws.com/comet/wmt21/
wmt21-comet-qe-mqm.tar.gz

8https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

9https://huggingface.co/Unbabel/
wmt22-comet-da
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Models En→ Ja Ja → En

NT5
single model 8 8
4-models ensemble 1 1
all models ensemble 1 1

NTT
single model 70 40
all models ensemble 10 10

Failab-LM 10 10

Total 100 70

Table 5: Breakdown of candidates for reranking. The
NT5 four-model ensemble consists of ABCI-EncBig,
ABCI-EncDeep, Failab-EncBig, and
Failab-DecBig. The NT5 all-model ensem-
ble consists of NTT-Base (two different seeds),
ABCI-Base (two different seeds), ABCI-EncBig,
ABCI-EncDeep, Failab-EncBig, and
Failab-DecBig. The NTT all-model ensem-
ble consists of NTT-A to NTT-G.

based metric for MBR. WMT22-COMET-DA was
also used as the evaluation metric. The candidate
sets contained 100 hypothesis for En→Ja and 70
for Ja→En. The breakdown of each candidate set
is shown in Table 5.

5.2.2 Reranking Analysis
Table 6 shows the results of the reranking.
Oracle (a) is the upper-bound setting, selecting
the final output by using WMT22-COMET-DA with
reference text (denoted r):

ŷ = argmax
c∈C

WMT22-COMET-DA (c, r) . (4)

Comparing the QE and MBR approaches (f
and g vs. q) showed that MBR achieved
higher performance. As for the QE approach,
WMT21-COMET-QE achieved better performance
than WMT22-CometKiwi in both translation
directions (f vs. g). Therefore, we used
WMT21-COMET-QE for the QE→MBR approach.
The best performance was achieved by the QE →
MBR at smaller p (h, i, j and k) in both translation
directions. Moreover, QE→MBR often achieved
a higher performance than MBR. These results sug-
gest that the poor quality hypothesis in the candi-
dates has a negative impact on MBR reranking.

5.2.3 10.5B Model Analysis
As described in Section 4.1, we trained a large-
scale translation model with 10.5B parameters
(failab-LM). The experimental results showed
that the 10.5B parameters models were inferior to
the best single model. However, when comparing

the loss, we found that the 10.5B parameters mod-
els achieved a lower loss than the other smaller
models. These results might suggest that 10.5B
is overparametrized for sentence-level translation.
For document-level translation, there may be an
opportunity to harness the potential of the large
number of parameters. However, the availability
of document-level parallel corpora for En↔Ja is
limited, highlighting the necessity of expanding the
resources for document-level data.

In studies on large language models (LLMs), sev-
eral papers discuss the scaling laws. For example,
Hoffmann et al. (2022) introduces the optimal num-
ber of tokens with respect to model size, which is
often referred to as the Chinchilla rule in the com-
munity. If we straightforwardly apply this rule to
MT models, the optimal tokens of the 10B parame-
ters MT model are estimated to be 205.1B tokens.
This is much larger than the tokens we used to train
for 10.5B parameter models. Therefore, we posit
that effectively harnessing the 10.5B model may be
possible by increasing both the quantity of training
data and the number of training steps. We could
not investigate this perspective due to the limited
time and computational resources. Thus, we leave
to clarify this perspective for future work.

5.2.4 Effectiveness of applying
cross+self-attntion

In a preliminary experiment, we confirmed
the effectiveness of applying cross+self-attention
by comparing performance with the standard
setup (cascading computation of self- and cross-
attentions) of Transformer encoder-decoder mod-
els. Table 7 shows the results of our preliminary
experiments. As we see, there were no consid-
erable performance degradations when we com-
pared the performance of cross+self-attention mod-
els (NTT-F) with those of standard self-attention
and cross-attention cascading models (NTT-B).

In addition, cross+self-attention models reduce
the computation of cascading self- and cross-
attention into single cross+self-attention. There-
fore, the cross+self-attention models are slightly
faster and require less memory than standard self-
attention and cross-attention cascading models.

6 Submission System

Initially, we planned to submit several versions
of the system, with the highest-scoring system se-
lected as the final version. However, the reranking
process took longer than expected, and we were
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ID Candidates Reranker En→Ja Ja→En
wmt22test wmt23test wmt22test wmt23test

(a) All Oracle 0.9298 0.9136 0.8804 0.8737

(b) Failab-LM - 0.8840 0.8590 0.8127 0.8119
(c) NT5-ensemble - 0.8926 0.8713 0.8269 0.8234
(d) NTT-ensemble - 0.8880 0.8633 0.8215 0.8198
(e) Best Single Model - 0.8937 0.8692 0.8232 0.8198

(f) All WMT21-COMET-QE 0.9085 0.8879 0.8379 0.8345
(g) All WMT22-CometKiwi 0.9049 0.8847 0.8338 0.8329

(h) All QE(Top10%) → MBR 0.9102 0.8905 0.8425 0.8372
(i) All QE(Top20%) → MBR 0.9111 0.8904 0.8437 0.8393
(j) All QE(Top30%) → MBR 0.9111 0.8905 0.8425 0.8394
(k) All QE(Top40%) → MBR 0.9107 0.8903 0.8429 0.8402
(l) All QE(Top50%) → MBR 0.9099 0.8901 0.8431 0.8401
(m) All QE(Top60%) → MBR 0.9096 0.8897 0.8426 0.8401
(n) All QE(Top70%) → MBR 0.9092 0.8897 0.8418 0.8396
(o) All QE(Top80%) → MBR 0.9092 0.8892 0.8411 0.8390
(p) All QE(Top90%) → MBR 0.9088 0.8891 0.8408 0.8389
(q) All MBR 0.9084 0.8890 0.8405 0.8384

Table 6: Post evaluation results. Best Single model (b) represents the highest score achieved by an individual
translation model (not an ensembled model).

Configuration Cross+self #Params. En→Ja
attention wmt22test wmt23test

NTT-B 547M 0.8865 0.8624
NTT-F ✓ 509M 0.8862 0.8612
NTT-G ✓ 551M 0.8862 0.8635

Table 7: Comparison of performance on applying
cross+self-attention compared with the standard setup
(cascading computation of self- and cross-attentions) of
Transformer encoder-decoder models.

unable to submit multiple submissions within the
time limit. Therefore, the system that was actually
submitted system was slightly different from the
one described in this paper, as follows:

• For the En→Ja system, we submitted the re-
sults of the ensembled model of NTT-A to
NTT-G.

• For the Ja→En system, we opted for the
QE(Top 80%) → MBR configuration.

Unlike the post evaluation setting (Section 3.3),
these models were fine-tuned using all of the
WMT’20 test set, the WMT’20 development set,
the WMT’21 test set, and the WMT’22 test set.

7 Conclusion

This paper described our submission system for the
constrained track of the WMT’23 general transla-
tion task. We developed a translation system for
En↔Ja. We perform reranking on the candidates

generated by multiple translation models, which
include a large-scale model with 10.5 billion pa-
rameters. Post evaluation (Section 5.2) confirmed
the limitations of sentence-level translation qual-
ity improvement through model scaling and the
effectiveness of our reranking approach.

Acknowledgments

We thank an anonymous reviewer who provided
feedback. Also, we would like to also appreciate
the member of Tohoku NLP Group for their co-
operation in conducting this research. This work
was mainly done under the NTT-Tohoku Univer-
sity collaborative research agreement. The work of
Jun Suzuki was partly supported by JST Moonshot
R&D Grant Number JPMJMS2011 (fundamental
research).

References
Isaac Caswell, Ciprian Chelba, and David Grangier.

2019. Tagged Back-Translation. In Proceedings
of the Fourth Conference on Machine Translation
(WMT), pages 53–63, Florence, Italy. Association for
Computational Linguistics.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web Inventory of Transcribed
and Translated Talks. In Proceedings of the 16th
Annual Conference of the European Association for
Machine Translation, pages 261–268, Trento, Italy.
European Association for Machine Translation.

Peng-Jen Chen, Ann Lee, Changhan Wang, Naman
134



Goyal, Angela Fan, Mary Williamson, and Jiatao
Gu. 2020. Facebook AI’s WMT20 News Transla-
tion Task Submission. In Proceedings of the Fifth
Conference on Machine Translation, pages 113–125,
Online. Association for Computational Linguistics.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT Sentence Embedding. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 878–891, Dublin,
Ireland. Association for Computational Linguistics.

Patrick Fernandes, António Farinhas, Ricardo Rei,
José G. C. de Souza, Perez Ogayo, Graham Neubig,
and Andre Martins. 2022. Quality-aware decoding
for neural machine translation. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1396–1412,
Seattle, United States. Association for Computational
Linguistics.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and
Laurent Sifre. 2022. Training compute-optimal large
language models. arXiv preprint arXiv:1706.02677.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. CoRR,
abs/2001.08361.

Shun Kiyono, Sosuke Kobayashi, Jun Suzuki, and Ken-
taro Inui. 2021. SHAPE: Shifted Absolute Position
Embedding for Transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3309–3321.

Hayato Kobayashi. 2018. Frustratingly Easy Model En-
semble for Abstractive Summarization. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4165–4176, Brussels, Belgium. Association for Com-
putational Linguistics.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
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Abstract 

This paper describes our approach to 

constructing a neural machine translation 

system for the WMT 2023 general machine 

translation shared task. Our model is based 

on the Transformer architecture's base 

settings. We optimize system performance 

through various strategies. Enhancing our 

model's capabilities involves fine-tuning 

the pretrained model with an extended 

dataset. To further elevate translation 

quality, specialized pre- and post-

processing techniques are deployed. Our 

central focus is on efficient model training, 

aiming for exceptional accuracy through 

the synergy of a compact model and curated 

data. We also performed ensembling 

augmented by N-best ranking, for both 

directions of English to Japanese and 

Japanese to English translation. 

1 Introduction 

In the context of the WMT 2023 general machine 

translation shared task for Japanese to/from 

English, we tackle the inherent challenges posed by 

the diverse linguistic structures of these languages. 

The transformative impact of the Transformer 

model on neural machine translation is undeniable. 

While current trends prioritize larger models and 

extensive datasets, our focus remains on achieving 

efficient translation with modest resources. This 

study underscores our use of a compact model and 

limited computational assets to enhance translation 

quality. 

Built upon the Transformer model's base 

settings, our approach uses pre-trained models 

trained on Japanese-English parallel data 

(Morishita et al., 2019). A previous study involved 

fine-tuning on various datasets, yielding excellent 

translation within specific domains (Kalker et al., 

2021). In this study, we refined our fine-tuning 

dataset and systematically tuned hyperparameters 

to optimize results. Post-fine-tuning, we harnessed 

model ensembling techniques to amalgamate 

multiple model outputs, leading to better 

translation quality. Our study highlights the 

specifics of our system configurations and methods, 

offering a concise overview of our strategies. 

2 Data selection and Preprocessing 

In this section, we elaborate on the process of 

creating our fine-tuning dataset for the Neural 

Machine Translation (NMT) system, with a focus 

on enhancing translation quality for the WMT 

competition. Our approach involved meticulous 

data selection and preprocessing to ensure the 

effectiveness of our system. We describe the details 

behind selecting the base dataset, incorporating 

additional parallel corpora, and performing data 

cleaning to curate a high-quality training dataset. 

 

2.1 Base Dataset Selection 

 

Our foundational dataset for training the initial 

NMT models is derived from the JParacrawl 

Version 3 dataset, which offers a diverse array of 

content spanning various domains. This choice was 

made due to its comprehensive coverage, which 

provides a strong starting point for training the base 

NMT models. 

 

2.2 Augmenting the Dataset 

 

Upon training our base models, we identified an 

opportunity to further enhance translation quality 

by incorporating additional datasets. To achieve 

this, we integrated parallel corpora obtained from 

sources recommended by the WMT competition 

organizers. This augmentation was aimed at 

increasing the diversity of the training data, which 

often contributes to improved translation accuracy. 
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2.3 Data Cleaning 

 

Data cleaning played a pivotal role in refining the 

quality of our training dataset. During this stage, 

we implemented several key steps to ensure the 

integrity of the data: 

 

Language Focus: Given our goal of improving 

Japanese-to-English translation, we focused on 

maintaining language homogeneity within the 

dataset. Therefore, non-Japanese languages, such 

as Korean and Chinese, as well as their 

corresponding English translations, were deleted 

from the dataset.  

 

Sentence Length and Quality: To uphold the 

overall coherence and effectiveness of the NMT 

model, we eliminated sentences that were 

excessively short or of low quality. This step aimed 

to prevent the model from learning suboptimal 

translation patterns and to maintain a high standard 

of translation output. Furthermore, to maintain 

coherence, we curate our training data by excluding 

sentences longer than 250 subwords (see 3.1). 

 

Translation Pair Quality: Translation Pair 

Quality: JParacrawl v3 provides a score for 

translations labeled as “Accuracy”, so we removed 

sentences with lower scores from the dataset. The 

threshold for the score was set at 0.5 for training 

data and 0.75 for the validation dataset. This 

procedure was not applied to the other parallel 

corpora.  

 

Normalize symbolic characters: Normalize 

symbolic characters: Especially for Japanese 

sentences, since the language has more variations 

of symbolic characters like 「」, 『』, and “” 

for quotation marks. We added pre-processing to 

normalize symbolic characters based on rules. We 

decided that emojis were not included in this 

process, as these characters are translated as they 

are. By adding these rule-based translations, the 

final BLEU score increased by +0.1. 

 

2.4 Final Dataset Composition 

 

The outcome of our data selection and 

preprocessing efforts yielded a curated dataset 

(22.2M). We divided the processed data into a 

training dataset and a test dataset (2.5M) to 

evaluate model quality. The training dataset was 

further divided into a train and a validation to 

perform fine-tuning on our NMT models.  

We also developed a fusion dataset by combining 

the processed JParacrawl v3 training data with 

other parallel corpora that were provided by WMT 

2023. The dataset finally contains 49.9M sentences 

(Figure 1, Table 1). 

 
Figure 1 Dataset development 

 

 
 

Table 1 Data selection summary 

Dataset Sentences 

JParaCrawl Ver.3 25.7M 

JParaCrawl Ver.3 (processed) 22.2M 

Other Parallel Corpus 33.8M 

Other Parallel Corpus (processed) 27.7M 

Fusion Corpus  

(JParacrawlVer3 + Other Parallel) 

49.9M 

3 Tokenization 

3.1 SentencePiece Toolkit for Tokenization and 

Detokenization 

 

We use the SentencePiece toolkit (Kudo and 

Richardson, 2018) for tokenization. SentencePiece 

is suited for languages with complex linguistic 

structures and compound words. Its efficacy is 

pronounced in languages with ambiguous word 

boundaries, agglutinative morphology, and 

compound word usage. This enables the extraction 

of subword components from intricate terms, 

enhancing our tokenization precision. It can 

remove meta-symbols from translated output, 

ensuring fluidity and linguistic correctness in the 

final translations. 

 

3.2 Customized Vocabulary 

 

To bridge vocabulary disparities between our base 

model (JParacrawl Version 1) and our Fusion 

Corpus, we train a SentencePiece tokenizer. This 

138



 

 

tokenizer aligns with our data's linguistic nuances, 

enhancing token accuracy. Our SentencePiece 

model employs a vocabulary size of 32,000 tokens.  

4 Model Training 

This section details the training process of our 

translation models using the fairseq toolkit. The 

selection and configuration of models, as well as 

the optimization parameters, are presented. 

Additionally, our model training strategy (Figure 2), 

including the utilization of advanced techniques 

such as mixed-precision training and beam search 

during decoding, is outlined. 

 

4.1 Model Selection and Configuration 

 

From the array of available models, including 

MBART and JParacrawl, our evaluation led us to 

opt for Jparacrawl due to its favorable accuracy-

performance trade-off. Jparacrawl models are 

underpinned by the Transformer architecture 

(Vaswani et al., 2017) with base settings. The 

encoder and decoder feature six layers each, 

embedding sizes of 512, and feed-forward 

embedding sizes of 2048. Eight attention heads are 

employed for both the encoder and decoder. 

Dropout with a probability of 0.3 is applied to 

enhance generalization. The Adam optimizer with 

α = 0.001, β1 = 0.9, and β2 = 0.98 is utilized. A 

square root decay learning rate schedule with a 

linear warmup of 4000 steps is implemented. 

Gradient clipping maintains stability by ensuring 

gradients do not exceed a norm of 1.0. Mini-

batches contain around 5,000 tokens, with gradient 

accumulation of 64 mini-batches per update. 

Training spans 24,000 iterations, with model 

parameter snapshots saved every 200 iterations. 

The final model is an average of the last eight 

snapshots. The use of mixed-precision training 

optimizes performance on modern GPUs. 

 

4.2 Decoding Strategy 

 

During decoding, various beam search sizes (2, 4, 

6, 8) were employed to compare translation results. 

We also compared the best checkpoint and 

averaged checkpoint to obtain various translation 

results. In the training of the Ja to En model, we 

also compared the optimal trade-off between 

translation quality and computational efficiency by 

optimizing the training precision. 

 

4.3 Training Environment 

 

Our model training is executed on Google Cloud 

Platform's compute engine equipped with 4-T4 

GPUs. Mixed precision (float16) training takes 

approximately 12 hours and full precision (float32) 

training takes approximately 30 hours. Although 

the BLEU score is higher for full precision, the 

difference is not so large (+0.6, Table 2). So, we 

decided to use mixed precision for training the 

Fusion Corpus. We used the train-validation-test 

split ratio of 90:5:5. 

 

 
Table 2 En-Ja models summary 

Test 

Dataset 

Model Training 

Precision 

BLEU 

score 

chang

e 

JPC V3  JPC V1 - 38.0 0.0 

JPC V3 KYB Mixed 

(fp16) 

45.3 +7.3 

JPC V3  KYB Full 

(fp32) 

45.9 +7.9 

Fusion JPC V1 - 22.3 0.0 

Fusion KYB Mixed 

(fp16) 

29.8 +7.5 

※JPC: Shorthand for JParacrawl 

*The results used the best checkpoint with beam size 4. Test 

set was based on JPC V3 data. 

 

 

Table 3 Ja-En models summary 

Test 

Dataset 

Model Training 

Precision 

BLEU 

score 

change 

JPC V3  JPC V1 - 19.2  

JPC V3  KYB Full 

(fp32) 

43.8 +24.6 

*The results used the best checkpoint with beam size 4. Test 

set was based on JPC V3 data.  

 

 

Figure 2 Model training system 
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4.4 Performance Evaluation 

 

To assess the efficacy of our trained models, we 

employ validation data from our dataset. The 

sacreBLEU metric (Post, 2018) is employed to 

calculate BLEU scores, offering a quantitative 

evaluation of translation quality. For testing, we  

used a set of 2.5M sentences from JParacrawl v3. 

 

5 Model Ensembling with N-Based 

Reranking  

In this section, we delve into the intricacies of our 

advanced model ensembling approach (Figure 3) 

coupled with N-Based Reranking, a technical 

strategy inspired by Le et al. (2021). Our objective 

is to optimize translation quality through a 

combination of models and a refined reranking 

mechanism. 

 
Figure 3 Model inference system 

 
 

5.1 Model Averaging via Ensembling 

 

Our ensembling technique involves the 

aggregation of multiple trained model files. 

Through model averaging, we synthesize the 

insights and strengths of various models into a 

unified translation framework. This process not 

only enhances the stability of our translation 

outputs but also contributes to an overall 

improvement in translation quality. Moreover, we 

implemented checkpoint averaging by considering 

the last eight checkpoints to create an averaged 

model and employed in-training evaluation to 

identify the best checkpoint model. 

 

5.2 N-Based Reranking Strategy 

 

The crux of N-Based Reranking revolves around 

the calculation of token probabilities and sentence 

perplexities for translations generated by distinct 

checkpoint files of our fine-tuned model. We 

generate 4 alternative translations for each source 

sentence by using different beam search sizes for 

one checkpoint file. We compared 6 checkpoint 

files for the En-Ja side from three different trained 

models, which yielded 24 different translations for 

each source sentence. For the Ja-En side, we use 

two different checkpoints from trained models and 

use the previous study’s model to make 12 

alternative translations for each source sentence. 

This multifold approach introduces diversity into 

our pool of translation candidates, a crucial aspect 

of refining translation quality. 

To identify the optimal translation candidate 

among these alternatives, we employ a GPT-2 

based ranker (Radford et al., 2019). The ranker 

computes perplexity for each alternative translation, 

then chooses the lowest perplexity score as the 

most proper translation. We submitted the best 

translation result from all the alternative 

translations. 

 

6 Post-processing of translation 

We found specific tendencies of mistranslation, 

such as adding double quotation marks, deleting 

part of the quotation marks, or repeating a specific 

word endlessly in our translation results. These 

phenomena are typical problems in machine 

translation tasks, so we added post-processing to 

reduce the mistranslations. 

After the post-processing, we submitted our 

results. Our final submission was scored as shown 

in Table 4 in the automatic evaluation. 

 

Table 4 Submission results 

Submission COMET BLEU chrF 

Ja-En 76.6 17.6 43.9 

En-Ja 80.8 17.8 27.7 

 

7 Discussion and Future Work   

7.1 Discussion 

 

In this study, we participated in the general 

translation task to achieve better translation quality 

with a relatively compact model and dataset. We 

made two different datasets: one is based on 

JparaCrawl version 3 data (JPC V3), and the other 

included additional parallel corpora provided by 

WMT23 (Fusion Corpus). The results of our local 

test suggested that the JPC V3 fine-tuned model 

shows a better BLEU score than the Fusion Corpus 

fine-tuned model. However, we exercised caution 

in interpreting these scores, since the test dataset 
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contains only sentences from Jparacrawl v3 dataset. 

The model trained with same origin data might 

show the result of overfitting to the domain of JPC3 

dataset, even the test and train dataset contains 

different sentences. We then tried to ensemble these 

different models to achieve more robust translation 

results. Additionally, we generated alternative 

translations using different inference parameters 

for each model and then chose the most proper 

translation by using PPL. 

We use GPT-2 to calculate PPL in this study 

since the model’s knowledge of language is 

somewhat better than BERT's (see Appendix for a 

comparison of PPLs). Using a pre-trained large 

model is obviously effective when computational 

resources are limited. We use PPL to select a better 

result from the alternative translations; however, 

PPL is a relative metric of how fluent the sentence 

is or how acceptable the sentence order is for the 

model, so it is not a direct metric of translation 

quality (Kalkar et al., 2022; Wang et al., 2022). 

According to that, we recognize that the method 

that relies on PPL still has some limitations in 

improving the quality of translations. 

Additionally, we added some post-processing to 

reduce specific mistranslations through the model. 

Although we carefully cleaned up noisy symbolic 

characters such as quotation marks from the 

training dataset, the model’s output is still not 

reliable for translating symbolic characters 

properly. We performed some rule-based 

translations to modify symbolic characters. 

 

7.2 Future Work 

Back-Translation / Forward-Translation 

To improve our translation pipeline, we explored 

the integration of back-translation as a potential 

enhancement. Back-translation involves using a 

trained model to translate from the target language 

back to the source language (forward-translation is 

vice versa), effectively creating a synthetic parallel 

dataset. While we attempt to do the back-

translation, we need to consider the quality of the 

synthetic dataset, especially the variety of 

translations. When our synthetic dataset does not 

have enough variation in translation, the model can 

be easily overfit to the specific translation pattern. 

To avoid that, we tried to use a common API for 

translation, like the Google API; however, this 

proved to be a very time-consuming task to obtain 

enough dataset for training (e.g., when one 

response takes 1 sec, it takes more than 55h to 

obtain 200,000 sentences). In this study, we 

attempted to perform back/forward translation, 

however, we were not able to obtain enough 

volume of content with reasonable quality. We 

would like to find a practical method to develop 

datasets with reasonable quality for back or 

forward translation in future work. 

 

8 Conclusion 

In this study, we embarked on an extensive 

exploration of high-efficiency model training 

strategies, leveraging limited computational 

resources alongside a streamlined model 

architecture rooted in the Transformer framework's 

base settings. Our investigation yielded crucial 

insights and techniques that converge to create a 

high-quality translation system. Through our 

experimentation, we identified data cleaning, 

model averaging, ensembling, beam search, 

finetuning, parameter-tuning, and post-processing 

as pivotal techniques, enhancing the quality of our 

compact model and modest dataset.  
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Appendix-1: Perplexity comparison BERT 

vs GPT2 for Japanese 

PPL metric: Lower PPL corresponds to better 

semantic quality. 

 
Example1: BERT gives low score for bad sentences  

Sentence BERT GPT2 

返品は与えられたものではありま

せん! 

[Returns are not allowed!] 

15.9 26.3 

NATOストラップは、時計の下に

ループし、最後に追加のキー

パーを通します。 

[The NATO strap loops under the 

watch and finally passes through 

an additional keeper.] 

9.7 45.6 

この音は、マスターユニットによ

るセカンドロックです。 

[This sound is of the second lock by 

the master unit.] 

12.5 33.4 

 

Example2: BERT gives high score for good sentences 

Sentence BERT GPT2 

国際郵便 - 日本郵便 

[International Mail - Japan Post.] 

49.6 1.9 

大切なことは、毎晩 3つのことを

書き続けることです。 

[The important thing is to keep 

writing three things every night.] 

23.5 8.7 

タングステン重合金は無毒で環境

にも優しいため、子供や大人

がタングステン重合金を扱っ

たり作業したりするのに安全

です。 

[Tungsten heavy alloys are non-toxic 

and environmentally friendly, 

making it safe for children and 

adults to handle or work with 

tungsten heavy alloys.] 

78.2 6.8 
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Abstract
This paper introduces the Dtranx AI translation system, developed for the WMT 2023 Uni-
versal Translation Shared Task. Our team participated in two language directions: English
to Chinese and Chinese to English. Our primary focus was on enhancing the effectiveness
of the Chinese-to-English model through the implementation of bilingual models. Our ap-
proach involved various techniques such as data corpus filtering, model size scaling, sparse
expert models (especially the Transformer model with adapters), large-scale back-translation,
and language model reordering. According to automatic evaluation, our system secured the
first place in the English-to-Chinese category and the second place in the Chinese-to-English
category.

1 Introduction

This year, the Dtranx AI team participated in the WMT2023 Universal Translation Shar-
ing Task and focused on enhancing the performance in the zh-en and en-zh language directions.
For data preprocessing, we employed various methods, including knowledge-based rules, lan-
guage detection, and language modeling, to clean parallel, monolingual, and back-translated
data. Our data primarily comprised large-scale data mining and back-translation. Additionally,
we applied punctuation regularization, byte pair encoding (BPE) Sennrich et al. (2015), and
subword regularization methods Provilkov et al. (2019) for processing the data, which yielded
excellent results across all languages.

In the modeling section, we have made enhancements to Fairseq Ott et al. (2019) by in-
creasing the model’s depth and width. Specifically, we augmented the Transformer model
et al.Vaswani et al. (2017) by significantly increasing the number of layers and widening the
model architecture.This modification allows the model to capture more complex patterns and
dependencies in the data. Additionally, we have embraced the concept introduced by Bapna
et al. Bapna et al. (2019) to expand the Transformer model by incorporating language-specific
adapters, thus bridging the gap between diverse languages. Lastly, we integrated the dense
Transformer model with the sparse Adapter model and leveraged the language model to rerank-
ing the final results, leading to further improvements in system performance.

For both English and Chinese translation tasks, we have developed separate systems.
We have enhanced the model capacity and applied Adapter fine-tuning techniques, while also
incorporating additional proprietary data for system training purposes.During the model infer-
ence phase, we have implemented reordering techniques to select more optimal translations.
Based on automatic evaluation, our system achieved first place in English to Chinese translation
and second place in Chinese to English translation.
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2 Method

2.1 Data
In this section, we will present our primary dataset, which consists of bitext data and

monolingual data sources, along with the preprocessing methods employed to prepare this initial
data. Additionally, we will provide details about the setup utilized for training our baseline
model.

2.1.1 Bitext Data
For the Chinese-English-English-Chinese language pairs, we utilize all bitext data in the

shared task and include additional data sources for English-Chinese conversion. During data
processing, we implemented the following knowledge-based rules for enhancement:

Remove empty sentences.
Eliminate escaped HTML characters.
Standardize different punctuation variations.
Normalize spacing.
Remove sentences with repetition marks, including single characters repeated more than
four times, two characters repeated more than three times, and three characters repeated
more than twice.
Delete sentence pairs with inconsistent punctuation at the end of the original and translated
texts.
Remove sentence pairs with a source/target token ratio exceeding 1:3 (or 3:1).
Delete segments that exceed 150 tokens in length.
Remove sentence pairs with fewer than 5 tokens in the source text or translation.
Convert traditional Chinese characters to simplified Chinese characters.
Delete corpora with an unaligned number of parentheses.
Delete corpora with an unaligned number of Arabic numerals.
Remove corpora with non-native character ratios greater than 0.4.

We employed Moses Koehn et al. (2007) for normalizing spacing and punctuation. We
utilized all accessible data sources to train our model.

Considering the aforementioned concerns regarding corpus quality, we implemented addi-
tional filtering steps to ensure data availability. Initially, we attempted to filter out low-quality
sentence pairs using the word alignment method of fast-align Dyer et al. (2013). We retained
the top 80% of sentence pairs based on the alignment score(a score generated by the word align-
ment model that measures the quality of word alignment between source and target sentences),
encompassing all directions. Subsequently, we trained the Transformer model for all languages
using Fairseq, following a similar approach as outlined in the study conducted by Bei et al. Bei
et al. (2019). The scores were calculated as follows:

Scoresentence = PPL (1)

Scorecombine = λ ∗ Scoresrc + (1− λ) ∗ Scoretgt (2)

Here, we employ PPL as an abbreviation for perplexity, which represents the perplexity
of the sentence language model. The value of λ, on the other hand, is determined empirically
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based on language pairs and ranges from 0.2 to 0.8. For instance, if our source language is
English and the target language is Chinese, we would set λ to 0.7.

Finally, the training data, as presented in Table 1, was carefully curated to serve as the
foundational resource for our model training. This bilingual training dataset consists of 50
million sentence pairs in the Chinese-English (zh-en) language pair,and it can be utilized bidi-
rectionally.

Language Pair Data

zh-en 50M

Table 1: Ultimate bitext training data

Language Pair Data

zh 72M
en 10M

Table 2: Ultimate monolingual data

2.1.2 Monolingual Data
To ensure the quality of our data and to create synthetic parallel texts, we harnessed the

capabilities of a well-trained bilingual model. We compiled high-quality monolingual corpora
in various languages from reputable sources, including news commentaries, europarl, and news
crawls. The monolingual data, after undergoing a rigorous filtering process, is presented in
Table 2.

2.1.3 Tokenizer
We opted for SentencePiece Kudo and Richardson (2018) as the training tool for our sub-

word tagger. To enhance subwording efficiency, we adopted the approach of Tran et al. Tran
et al. (2021) by employing sampled text with a temperature of 5. For the bilingual model, we
utilized a vocabulary of 32,000 words.

In addition, we integrated the subword regularization method Provilkov et al. (2019) Raf-
fel et al. (2020) into the tagged text. This technique was exclusively applied to the source
side, as it has the potential to enhance the model’s robustness by allowing different subword
tokenizations.

2.2 Model Architectures
We have developed a dedicated model for bidirectional translation between Chinese and

English, capitalizing on our proficiency as native Chinese speakers. To enhance the quality of
our training data, we integrated a private corpus comprising approximately 20 million high-
quality sentence pairs spanning various domains, including general text, technology, medicine,
law, finance, and more.

Regarding ”basic fine-tuning,” our approach involves parameter adjustments, including
fine-tuning the learning rate, the number of training epochs, and batch sizes. These adjustments
are made to optimize the model’s adaptation to the specific translation task at hand.

In the realm of back-translation, we harness English and Chinese monolingual corpora.
This approach leverages monolingual text data in both languages, enriching the model’s trans-
lations by back-translating them into English. This technique seamlessly augments the diversity
of our training dataset.
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As for the specifications of our Transformer model, it features 12 encoder layers and 6
decoder layers, each equipped with 8 attention heads. The embedding size is set to 512, and the
width of the feed-forward neural network (FFN) is 4096. Additionally, we have incorporated
techniques like Layer Normalization and residual connections to stabilize the model training
process.

2.2.1 Language Specific Adapter

In essence, a language-specific adapter layer is a dense layer that incorporates residual
connections and nonlinear projections. The hyperparameter ”b” represents the dimension of the
internal dense layer. These adapter layers consist of a multitude of globally shared parameters,
along with several task-specific layers. This unique design allows us to train and optimize
individual models for multiple languages.

Bapna et al. Bapna et al. (2019) demonstrated the improved translation performance
achieved by machine translation models employing adapters. Therefore, following the train-
ing of our bilingual models, we integrated adapter layers into them and subsequently conducted
additional training and fine-tuning on these adapter layers. To be specific, for the Chinese-
English and English-Chinese models, we introduced a language-specific adapter with a dense
layer dimension of 4096.

Regarding the incorporation of adapters in the bilingual models, we seamlessly integrate
the adapter layers into the existing architecture, where they operate alongside the standard lay-
ers. The globally shared parameters refer to the model parameters that are common across
various languages and tasks, which are shared among different adapter layers in the model.

For the fine-tuning of the adapters, we utilized additional bilingual data specific to the
translation tasks. These adapters were fine-tuned with the same data used for training the main
translation model, allowing them to adapt to the particular translation requirements of our task.

2.2.2 Finetune

To enhance the model’s performance, we implemented in-domain fine-tuning, a proven
effective technique in previous news translation tasks. We generated various types of fine-tuned
data using the following approach. According to the studies conducted by Li et al. Li et al.
(2020) and Wang et al.Wang et al. (2021), low-frequency and high-frequency words often per-
tain to domain-specific nouns and other related terms that directly reflect the topic at hand.
However, this year’s shared task has transitioned from the news domain to a more generalized
translation task. Recognizing that previous fine-tuning using news domain data could poten-
tially have a detrimental effect on the model, we adopted the strategy outlined by Li et al. Li
et al. (2020) and Wang et al. Wang et al. (2021), which involves selecting topic-related data
based on a test set. Subsequently, we identified specific data for further fine-tuning and con-
ducted experiments on the 2022 news development set, subsequently applying the refined model
directly to the 2022 test set.We fine-tuned the full model, not just the adapters, to ensure it was
well-suited for the task at hand.

2.2.3 Model Ensemble

Model integration has been widely adopted as a technique in previous WMT sharing tasks.
To mitigate bias towards more recent training data, it is common practice to average multiple
checkpoint parameters of the model. Specifically, during training, we consistently take the
average of the last five checkpoints. In the fine-tuning phase, we fine-tune the hyperparameters
(e.g., num epoch and num average checkpoints) based on the performance on the development
set and directly apply them to the test set of WMT23.
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3 Results

3.1 Experimental setup
Each model was trained on eight NVIDIA A100 GPUs, each equipped with 40 GB of

memory. Additionally, we employed high-volume processing and higher learning rates, as men-
tioned in Ott et al. Ott et al. (2018). The maximum learning rate was set to 0.0005, and we used
10,000 warm-up steps. All dropout probabilities were set to 0.1. To expedite training, we
utilized half-precision floating-point numbers (FP16). In the context of multilingual training,
we incorporated source language labels and target language labels to leverage the distinctions
between languages. Following the approach proposed by Tran et al. Tran et al. (2021), we seg-
mented the data into multiple parts and downsized the data in both the high-resource direction
and in synthetic backtranslation for each training cycle.

3.2 Results
We trained bilingual models for English to Chinese (en-zh) and Chinese to English (zh-

en). In our model, we enhanced the model capacity by introducing specific adapter layers for
each translation direction, addressing the unique linguistic challenges of each language pair.
These adapter layers do not induce sparsity; instead, they add more trainable parameters to
the model. Each model has dedicated adapters for en-zh and zh-en, as they are not shared
between the bilingual models. To refine our training set, we extracted additional relevant corpus
from the raw text in the test set. This extracted data was structured using the language model
and augmented through reverse translation. The results demonstrate the effectiveness of our
systematic approach, and we achieved the highest scores on the COMET evaluation metric.
These outcomes are detailed in Table 3 and Table 4

Team Bleu Chrf Comet

HW-TSC 33.6 57.5 82.8
Yishu 33.4 57.4 82.7

GPT4-5shot 26.8 53.1 81.6
ZengHuiMT 27.0 54.6 79.6

Table 3: Submission results for zh-en in WMT23

Team Bleu Chrf Comet

HW-TSC 58.6 53.8 87.3
Yishu 57.6 53.0 88.1

GPT4-5shot 49.6 46.5 87.1
ZengHuiMT 52.9 47.0 84.3

Table 4: Submission results for en-zh in WMT23

4 Conclusion

In this paper, we present Dtranx AI’s submission to the WMT2023 Universal Translation
Shared Task. For the Chinese-English and English-Chinese language pairs, we adopt a bilingual
model as the fundamental structure and enhance it through various strategies. These include
increasing the model capacity, fine-tuning with Adapters, incorporating private relevant corpus,
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and optimizing the translation output by reordering. Our experimental results demonstrate the
effectiveness of these optimization techniques.
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Abstract 

This paper describes the PROMT 

submissions for the WMT23 Shared 

General Translation Task. This year we 

participated in two directions of the Shared 

Translation Task: English to Russian and 

Russian to English. Our models are trained 

with the MarianNMT toolkit using the 

transformer-big configuration. We use 

BPE for text encoding, both models are 

unconstrained. We achieve competitive 

results according to automatic metrics in 

both directions. 

1 Introduction 

The WMT Shared General Translation Task is an 

annual event where different companies and 

researchers build and test their systems on the test 

sets provided by the organizers. This year we 

decided to participate in two directions: English to 

Russian and Russian to English. We use the 

standard transformer-big configuration for our 

models. The English-Russian model is basically 

the same as last year, whereas the Russian-English 

model is a new one built for WMT23. 

The rest of the paper is organized as follows: in 

Section 2 we describe in detail the systems we 

submitted to the Shared Task. In Section 3 we 

present and discuss the results. We conclude the 

paper in Section 4 with discussion for possible 

future work. 

2 Systems overview 

All of our WMT22 submissions are MarianNMT-

trained (Junczys-Dowmunt et al., 2018) 

transformer-big (Vaswani et al., 2017) systems. 

We use the OpenNMT toolkit (Klein et al., 2017) 

version of byte pair encoding (BPE) (Sennrich et 

al., 2016b) for subword segmentation.  Our BPE 

models are case-insensitive, we use special tokens 

in the source and target sides to process case (see 

Molchanov (2019) for details). 

All of the systems are unconstrained, i.e. we 

use all data provided by the WMT organizers, all 

publicly available data and some private data 

crawled from different web-sources. 

We also augment our training data with two 

types of synthetic data: 1) back-translations 

(Sennrich et al., 2016a) and 2) synthetic data with 

placeholders as described in Pinnis et al. (2017). 

The back-translations are obtained using the 

previous versions of our NMT models which are 

baseline transformers trained with less data (and 

without some up-to-date data like the news 2021 

corpora from statmt.org). We also tag all our 

synthetic data with special tokens at the beginning 

of the source sentences as described in Caswell et 

al. (2019). 

All models are trained with guided alignment 

which is used at translation time to handle named 

entities and document formatting. We obtain 

alignments using the fast-align (Dyer et al., 

2013) tool. 

The data statistics for the Russian-English 

language pair are presented in Table 1. 

The details regarding different directions can 

be found in the next Section. 
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2.1 Data preparation 

There are several stages in our data preparation 

pipeline. These are mostly common filtering 

techniques. The main stages of the pipeline are: 

 Basic filtering 

This includes some simple length-based 

and source-target length ratio-based 

heuristics, removing tags, lines with low 

amount of alphabetic symbols etc. We 

also remove lines which appear to be 

emails or web-addresses and duplicates. 

 Language identification 

The algorithm is a fairly simple 

ensemble of three tools: pycld21, 

langid (Lui and Baldwin, 2012), 

langdetect2. We mainly use pycld2 as 

it is by far the fastest tool of the three. If 

pycld2's output differs from the hint 

language, we perform additional checks 

using the other two libraries, and the 

final language is determined by majority 

vote. For large monolingual corpora we 

use only pycld2. 

 Bicleaner filtering 

We use the bicleaner (Ramírez-Sánchez 

et al., 2020) tool to filter parallel data. 

We discard all sentence pairs with the 

score threshold <= 0.3. 

 Scoring with NMT models 

We finally score all parallel data and 

back-translations with our intermediate 

models. We use a score threshold to 

discard a portion of the data. The exact 

threshold is determined by human 

evaluation. The discarded data includes 

                                                           
1
 https://pypi.org/project/pycld2/ 

2
 https://pypi.org/project/langdetect/ 

non-parallel sentences (i.e. pairs of 

sentences where the source does not 

correspond to the target in part or fully) 

and low-quality synthetic translations. 

 Dual conditional cross-entropy filtering 

This year we use this algorithm again for 

both directions as described in Junczys-

Dowmunt (2018). 

2.2 English-Russian 

The English-Russian system is basically the same 

as last year (Molchanov et al., 2022). It was 

trained in two steps. First, we build the baseline 

model on all available data. Second, we fine-tune 

the model on data of high quality. Specifically, we 

remove the ParaCrawl, UN and OpenSubtitles 

corpora. The training corpus then consists of the 

remains of the human data mixed with the back-

translations of the news corpora (2020, 2021) 

from statmt.org. This approach shows good results 

according to automatic metrics and general 

translation quality. The reason for doing this is 

that we aim for our models to be used mostly for 

translation of news and formal texts like various 

types of documents. 

The system was trained with separate 

vocabularies, the sizes of the BPE models are 24k 

for the source side and 48k for the target side. 

  

 

Russian-English 

#sent #tokens RU 

WMT+OPUS 37.4 690.9 

Private 30.2 542.2 

Total 67.6 1233.1 

Table 1: Statistics for the filtered human parallel data in millions of sentences (#sent) and tokens (#tokens) 

for the English-Russian language pair. WMT stands for the data available for the News Task on the 

statmt.org/wmt22 website; OPUS is the data from the OPUS website apart from the data available for the 

News Task; Private stands for private company data. 
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2.3 Russian-English 

The Russian-English model was built basically on 

the same data and in the same way as the English-

Russian model. The only difference is that we use 

English news and Wikipedia for back-translations. 

The previous version of the Russian-English 

model was also built on the same data, but with 

the transformer-base configuration. 

The first version of the model that we trained 

on this data had shown almost no improvements, 

both in terms of automatic and human evaluation 

(on average the model improved by 0.5 BLEU 

points on our internal test sets compared to 

Model2022 using the transformer-base 

configuration). What is more important is that we 

observed some serious degradations: 

hallucinations and critical mistakes. The examples 

are presented in Table 2. We investigated the 

problem and found out that some of our clients’ 

data was used for training without proper filtering. 

This was part of our private data. We then applied 

the full filtering pipeline to the private data and 

discarded around 20k sentence pairs (roughly 

0.03% of all data) with low quality. Then we 

retrained the model on the filtered data, and this 

fixed all the critical mistakes we had encountered. 

Surprisingly, we also gained additional 1 BLEU 

points on average on our internal test sets 

compared to the first version. All we did was just 

remove 0,03% of bad sentence pairs from the 

training data. The average BLEU score on our test 

sets improved from 36.66 to 38.05 points. 

3 Results and discussion 

The results are presented in Table 3. 

As we can see, we outperform our baselines 

(i.e. previous versions of the models). The gains 

we observe, however, are not that large. 

However, other test sets, such as the TICO-19 

evaluation set
3

 (Anastasopoulos et al., 2020), 

show more substantial improvements. The BLEU 

score on that test set has grown from 33.8 to 35 

points. 

Poor performance on the generaltest2023 set 

can be due to the problems that our submitted 

models have with translation of colloquial 

content. This can be explained by our data 

preparation scheme. As we have already 

mentioned above, we want our models to translate 

formal text better and thus ‘sacrifice’ colloquial 

data. The examples of such mistranslations are 

presented in Table 4. Both examples illustrate 

colloquial slang which our model cannot translate 

properly. In the first example the word ‘please’ is 

substituted by ‘pls’, and thus the model ‘thinks’ it 

is a abbreviation of some kind. In the second 

example the author substitutes the word ‘because’ 

with a slang word ‘becuz’, and the model 

transliterates it. 

We made a thorough investigation into the 

generaltest2023 sets. Thus, we found out that 

there are four major topics for the Russian-

English test set: 1) movie reviews; 2) news of any 

                                                           
3
 https://tico-19.github.io/index.html 

System BLEU chrF COMET 

English-Russian  

Model2022 30.5 55.4 82.3 

Russian-English  

Model2022 32.4 58.0 - 

Model2023 32.8 58.4 80,9 

Table 3: Results for different systems in both 

directions. The submitted systems are marked in 

bold. Model2022 stands for our previous version 

of the Russian-English system which we consider 

the baseline. The English-Russian system remains 

the same. 

 

source Model2022 Model2023 Model2023 fixed 

Перенасадка башмаков и 

колец для колпаков, замена 

вентилей должны 

Overpressure of shoes and 

rings for caps, replacement of 

valves shall 

\\\\\\\{ 1\\\\\\\> ∙\\\\\\{ 

1\\\\\\}\\\\\\{ 

2\\\\\\}\\\\\\\< 3\\\\\\\} 

Re-fitting of shoes and rings 

for caps, replacement of 

valves should 

Прогноз компонентов ВВП 
по использованию 

на 2019 г. несколько 

изменился, что связано 
прежде всего с выходом 

фактических данных 

за II квартал 2019 года. 

The forecast of GDP 
components for use for 2019 

has changed somewhat, 

which is primarily due to the 
release of actual data for the 

second quarter of 2019. 

2019 GDP Components 
Forecast by Usage The Bank 

of Russia's monetary policy is 

based on the following 
principles: 

The forecast of GDP 
components for 2019 slightly 

changed, which is primarily 

due to the release of actual 
data for the second quarter of 

2019. 

Table 2: Examples of degradations for the 2023 Russian-English model. 
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kind; 3) user reviews; 4) abstracts from research 

papers in medical domain. The English-Russian 

test set domains are similar. We estimate that at 

least half of the English-Russian test set is made 

up of Reddit posts and online customer reviews 

which often use internet slang and have spelling 

anomalies of some kind, e.g. "eye wud liek 2 aply 

4 vilage idot", "WhY dO pPl FiNd ThE NeW SeT 

ExPeNsIvE." All these domains except for news 

were actually unexpected by our model. 

4 Conclusions and future work 

In this paper we presented our submissions for the 

WMT23 Shared General Translation Task. We 

show good results in both directions we 

participate. We clearly outperform our baselines in 

both directions. A detailed analysis of the 

translations shows us that we lose quality in 

translation of colloquial speech. We have already 

started to work in this direction. We have 

synthesized data where, e.g., ‘please’ is substituted 

with ‘plz’ and so on. We plan to train our model 

on this synthetic data so that it could deal with 

such colloquial examples. 
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Abstract

This paper describes the development process
of NMT systems that were submitted to the
WMT 2023 General Translation task by the
team of AIST AIRC. We trained constrained
track models for translation between English,
German, and Japanese. Before training the final
models, we first filtered the parallel and mono-
lingual data, then performed iterative back-
translation as well as parallel data distillation
to be used for non-autoregressive model train-
ing. We experimented with training Trans-
former models, Mega models, and custom non-
autoregressive sequence-to-sequence models
with encoder and decoder weights initialised
by a multilingual BERT base. Our primary
submissions contain translations from ensem-
bles of two Mega model checkpoints and our
contrastive submissions are generated by our
non-autoregressive models.

1 Introduction

We describe the machine translation (MT) systems
submitted to the WMT 2023 General Translation
task developed by the team of AIST AIRC. We
experimented with data quality control by care-
fully filtering out noisy examples from parallel and
monolingual data sets before training, and corpora
selection by holding out specific web-crawled data.
We also compared several modelling approaches by
contrasting the well-known Transformer architec-
ture (Vaswani et al., 2017) to several more recent
ones, such as the Mega model (Ma et al., 2023),
as well as our own custom implementation of a
non-autoregressive model with the encoder and de-
coder initialised by BERT checkpoints. During the
shared task submission week another new efficient
architecture was published – the Retentive Network
(RetNet; Sun et al., 2023), which we include in the
paper as an ablation study.

Our main findings are: 1) non-autoregressive
models can reach comparable output quality to the

best autoregressive models while improving infer-
ence latency up to 9x; 2) modern efficient autore-
gressive models like RetNet and Mega not only
slightly outperform the Transformer in latency, but
also in output quality; and 3) models trained on
sentence-level data struggle to translate whole para-
graphs – splitting them into sentences helps a lot,
especially for the non-autoregressive model.

2 Data

We only participated in the constrained track of
the shared task; therefore, we limited our data set
use to only the corpora provided by the shared task
organisers. In specific experimentation configura-
tions, we chose to leave out web-crawled data such
as Paracrawl and WikiMatrix, but eventually kept
them in our final submissions.

All parallel training data and monolingual data
for back-translation were filtered before starting
any training, which has been proven very effective
in previous WMT shared tasks (Pinnis et al., 2017,
2018) and detailed by Rikters (2018). Parallel data
distillation was performed only for training the non-
autoregressive models, while for all autoregressive
models, we used only pure clean parallel data.

For the system development process, we selected
News Test sets from previous older WMT shared
tasks as development data and the most recent ones
as evaluation data. Full statistics of the data we
used are shown in Table 1.

2.1 Data Selection

We initially experimented with excluding the web-
crawled parallel corpora and training models using
only data from other sources, since web-crawled
data are generally considered to be of a lower-
quality tier. The Paracrawl corpora are also several
times the size of all other data combined, and took
longer to finish the filtering process. In addition, to
not overwhelm the full combined training data set
with lower-quality data, we 1) limited the English-
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Corpus / Filtering DE-EN JA-EN

All other
Before 16,752,302 8,076,155

After 13,737,028 7,076,869

Paracrawl
Before 50,000,000 21,891,738

After 44,533,635 21,088,689
Combined 72,007,691 42,319,296

Devel 19,006 2,998
Eval 3,039 3,037

Monolingual
Corpus / Filtering Before After

DE 43,613,631 37,110,981
JA 22,193,545 21,558,123

EN 47,333,840 36,756,542

Table 1: Training data statistics for all other parallel
data without Paracrawl, a subset of Paracrawl, combined
development and evaluation data from the past WMT
shared tasks, and monolingual data. Sentence counts
are listed before and after filtering.

German Paracrawl to 50 million parallel sentences;
and 2) up-scaled all data from other sources to
match the amount of the Paracrawl data after filter-
ing by doubling for English-German and tripling
for English-Japanese.

2.2 Filtering

Even though all training data need not always be
perfect and methods like back-translation and data
distillation intentionally generate somewhat noisy
additional training data, some types of noise are
more harmful than others. Since most training cor-
pora are produced partially or fully automatically,
errors such as misalignments between source and
target sentences or direct copies of source to tar-
get can occur, as well as some amounts of third
language data in seemingly bilingual data sets.

To avoid such problems, we used data cleaning
and pre-processing methods described by Rikters
(2018). The filtering part includes the following
filters: 1) unique parallel sentence filter; 2) equal
source-target filter; 3) multiple sources - one tar-
get and multiple targets - one source filters; 4)
non-alphabetical filters; 5) repeating token filter;
and 6) correct language filter. We also perform
pre-processing consisting of the standard Moses
(Koehn et al., 2007) scripts for punctuation nor-
malisation, cleaning, and Sentencepiece (Kudo and
Richardson, 2018) for splitting into subword units.

The filters were applied to the given parallel sen-
tences, monolingual news sentences before per-
forming back-translation, and both sets of synthetic
parallel sentences resulted from back-translating
the monolingual news.

2.3 Distillation
Since previous research has proven that knowledge
distillation (Hinton et al., 2014) is highly beneficial
for non-autoregressive machine (NAR) translation
models (Kim and Rush, 2016), we chose to skip
training our NAR models during the baseline train-
ing phase. When the baselines were trained, eval-
uated and compared, we used the highest-scoring
baseline models for sentence-level knowledge dis-
tillation of the clean parallel training data.

2.4 Back-translation
Increasing the amount of in-domain training data
with synthetic back-translated corpora (Sennrich
et al., 2016) has become a common practice in
cases with considerable amounts of in-domain
monolingual data. However, since the shared task
recently shifted from ‘news’ to ‘general’ text trans-
lation, the definition of what would be considered
in-domain data became less clear. Furthermore,
for the constrained track the selection of provided
monolingual data from the organisers was limited
to news and web-crawled data while noting that
the ‘general’ test sets may include user generated
(social network), conversational, and e-commerce
data as well. For our experiments we continued
to assume that a significant portion of the test data
would still be from the news domain. Therefore, we
chose to only use the provided monolingual News
crawl, News discussions, and News Commentary
corpora for back-translation.

2.5 Post-processing
In post-processing of the model output we aimed
to mitigate some of the most commonly notica-
ble mistakes that the models were generating. We
mainly noticed two often occurring problems in
output from all models: 1) difficulties in translat-
ing emoji symbols; and 2) occasional repetitions of
words or phrases.

While all English and German alphabet letters
and even Japanese characters are covered in the
large training data corpora, the unicode emoji were
mostly formed and clearly defined only in the
past decade, and new emoji are still added every
year or two with the next release planned for late
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20241. Emoji are also not often present in MT
training data, therefore full emoji coverage is ab-
sent from model vocabularies, which leads to occa-
sional <unk> tokens being generated as output if
emoji were present in the input. In order to keep
using the models without re-training, we replaced
any <unk> tokens in the output using a dictionary
of any emojis appearing in the input.

Furthermore, the occasional hickuping or hallu-
cinating of models on less common input sequences
seems ever present, sometimes generating repeti-
tions of tokens or phrases. We replaced any consec-
utive repeating n-grams with a single n-gram. The
same was applied to repeating n-grams that have
a preposition between them, i.e., the victim of the
victim.

Both post-processing approaches gave BLEU
score improvements of around 0.1 - 0.2.

3 Model Configurations

While it is often possible to train ever larger models
on more data requiring infinitely growing amounts
of compute power which later become costly to
deploy, we decided to approach our selection from
the perspective of limiting environmental impact.
In our pursuit of the final submission, we aimed
to explore several modelling approaches with effi-
cient decoding while still striving to maintain or im-
prove output quality. For this we chose the baseline
Transformer model as our baseline, the recently
introduced Mega model (Ma et al., 2023), a cus-
tom implementation of a non-autoregressive model
with BERT-initialised encoder and decoder, and as
an ablation study trained after the shared task sub-
mission deadline – RetNet (Sun et al., 2023). Each
model was trained on a single machine with four
Nvidia V100 (16GB) GPUs until convergence on
development data (no improvement on validation
loss for 7 checkpoints).

The total trainable parameter counts for the four
models are as follows: Transformer - 73,886,208;
RetNet - 77,930,496; Mega - 63,367,854; BnB -
384,214,027.

3.1 Transformer

We used Marian (Junczys-Dowmunt et al., 2018) to
train transformer architecture (Vaswani et al., 2017)
models with the default transformer-base parameter
configuration of 6 layers, 8 attention heads, model
dimension of 512, feed-forward dimension of 2048,

1https://emojipedia.org/unicode-16.0

and dropout of 0.1. We also used an optimiser delay
of 8 to simulate larger batches, which is is known
to improve final output quality (Bogoychev et al.,
2018).

3.2 Mega

Ma et al. (2023) propose a moving average
equipped gated attention mechanism (MEGA) - a
single-head gated attention mechanism equipped
with exponential moving average to incorporate
inductive bias of position-aware local dependen-
cies into the position-agnostic attention mechanism.
Compared to the Transformer model, MEGA has a
single-head gated attention mechanism instead of
multi-head attention, which enables gains in effi-
ciency while not sacrificing on performance.

For training our Mega models we used the im-
plementation2 provided by the authors, which is
based on FairSeq (Ott et al., 2019).

3.3 BERT-nar-BERT

The BERT-nar-BERT (BnB) model architecture is
similar to BioNART (Asada and Miwa, 2023), com-
posed of a multi-layer Transformer-based encoder
and decoder, in which the embedding layer and
the stack of transformer layers are initialised with
BERT (Devlin et al., 2019). To leverage the expres-
siveness power of existing pre-trained BERT mod-
els, we initialise our encoder and decoder parts with
the pre-trained BERT parameters. An overview of
BnB architecture is shown in Figure 1.

The encoder part of BnB is the same architecture
as the BERT model. We construct latent representa-
tions based on token-level representations from the
encoder hidden state, and modify the decoder part
by leveraging the latent representations and length
classification for non-autoregressive generation.

The decoder part is also based on the BERT
architecture, and we can directly initialise the de-
coder with the pre-trained BERT model. Following
the BERT2BERT model, the cross-attention mech-
anism is adopted, and the encoder hidden represen-
tation of the final layer is used for cross-attention.
Our model differs from the BERT2BERT model in
attention masks to enable NAR decoding. In the
AR decoding, all target tokens are fed into the de-
coder with customised attention masks that prevent
the decoder from seeing the future tokens during
training. Then, in inference, the predicted token is
fed to the decoder autoregressively. In our BnB de-

2https://github.com/facebookresearch/mega
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Figure 1: The S2S BERT-nar-BERT (BnB) architecture.

coder, input representation is constructed without
providing any target tokens. The input representa-
tion is constructed by summing the corresponding
position and type embeddings and the latent em-
bedding from the encoder. The attention masks
are the normal masks that give access to all future
tokens. The resulting decoder output representa-
tions of the final layer are fed to the subsequent
generation layer.

3.4 Ablation Study – Retentive Networks

During the submission week of the WMT general
machine translation task Sun et al. (2023) proposed
a Retentive network (RetNet), with stacked identi-
cal blocks, following a similar layout to the Trans-
former, where each block contains a multi-scale
retention module, and a feed-forward network mod-
ule. Compared to Transformer attention, the reten-
tion part removes softmax and enables recurrent
formulation, which significantly benefits inference.
The authors report significant gains in inference
efficiency while maintaining competitive in output
quality to the Transformer.

For training our RetNet models we used the im-
plementation3 provided by the authors, which is
based on FairSeq (Ott et al., 2019).

4 Results

Tables 3 and 4 list the progression of our different
modelling methods and data selection approaches.
We first started with training the Transformer mod-
els as our baselines using only non-web-crawled
parallel training data and compared it to MEGA
models trained on the same data, while the larger
Paracrawl corpora were still filtering. Initial re-
sults suggested that the Transformer model opti-
mises towards the development data slightly too
much while ending up strongly outperformed by

3https://github.com/microsoft/torchscale

Model GPU CPU Speedup
Transformer 30.08 4.71 1.00x
MEGA 43.67 6.81 1.45x
RetNet 43.42 6.99 1.46x
BnB 278.83 13.23 6.04x

Table 2: Average speedup and inference speed in lines
per second on CPU and GPU on average for the four
WMT 2023 test sets we participated in.

the MEGA model on evaluation data. From there
on, we opted for using MEGA as our main model,
and experimented with adding filtered Paracrawl
data to the training mix, which improved transla-
tion quality for all directions. We then used these
four models (With Paracrawl column in Table 3)
to generate back-translated data and distilled par-
allel training data for BnB. In the final step before
submission, we trained MEGA and BnB models
on clean parallel + back-translated and distilled +
back-translated data respectively. We used ensem-
bles of best and last MEGA model checkpoints to
generate our shared task submissions.

As an ablation study of adding another efficient
model baseline, after the submission week had
ended we trained RetNet models, which were pub-
lished on arXiv along with code on GitHub during
the submission week.

4.1 Automatic Evaluation

According to the unofficial automatic evaluation
results (Kocmi et al., 2023) summarised in Table 6,
our submitted models are on the lower end, outper-
forming only two to three out of the 5-10 partici-
pants and 7 online systems in the respective trans-
lation directions. We manually regenerated the
automatic evaluation scores for translations from
all of our final models, based on the references
released by the organisers.

4.2 Inference Speed

Table 2 compares the inference speed and latency
of our chosen models. While loading the mod-
els into the memory and model-specific data pre-
processing or post-processing steps also take con-
siderable amounts of time, for this comparison we
only started measuring the time after the model had
been loaded and all data processing – completed.
Our BnB model was by far the fastest, outperform-
ing MEGA and Retnet by about 6.4x on the GPU
and the Transformer by about 9.3x. On the CPU
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Without Paracrawl With Paracrawl Back-translated
Direction Transformer MEGA

Devel Eval Devel Eval Devel Eval Devel Eval
EN→DE 32.74 19.46 28.96 25.15 31.42 28.04 31.58 26.91
DE→EN 34.57 22.13 30.55 26.22 34.67 29.21 36.62 27.85
EN→JA 20.01 7.13 16.52 16.07 19.29 21.00 20.89 20.90
JA→EN 15.42 5.98 13.39 12.27 16.82 16.15 17.43 16.12

Table 3: Initial baseline Transformer and Mega model development results using filtered parallel data excluding
Paracrawl, all filtered parallel data, and all filtered parallel data + back-translated data.

MEGA Ensembles RetNet BnB
Direction Back-translated All Filtered Ensemble BT Back-translated Distilled + BT

Devel Eval Devel Eval Devel Eval Devel Eval Devel Eval
EN→DE 32.33 27.52 32.51 28.76 31.92 27.10 31.99 27.25 25.34 22.40
DE→EN 37.56 28.50 35.35 29.62 37.44 28.49 37.17 28.14 28.04 24.23
EN→JA 21.31 21.13 18.98 21.23 21.67 21.87 21.64 21.64 11.45 13.38
JA→EN 18.08 16.81 17.19 16.23 18.10 17.10 18.36 17.26 7.93 8.03

Table 4: MEGA, our BnB model, and RetNet model development results using all filtered data, back-translated
data, and ensembles of trained model checkpoints. A combination of back-translated monolingual data and distilled
parallel data was used to train our BnB model. Highest scores reached before the shared task submission deadline
are marked in bold and after the deadline – underlined.

Direction MEGA BnB RetNet Transformer
EN→DE 26.48 5.58 29.31 26.11

Split 34.30 29.93 34.89 35.57
DE→EN 32.35 15.98 34.04 32.02

Split 37.14 30.10 37.57 39.52
EN→JA 17.28 15.25 17.44 14.76
JA→EN 18.53 6.96 15.34 17.64

Table 5: Final results on GeneralTest2023 after the
shared task submission deadline.

its advantage dropped to about 1.9x and 2.8x re-
spectively. Inference speed differences between
MEGA and RetNet were minimal, while both still
noticabely outperformed the baseline Transformer.

4.3 Post Submission Updates

After the release of the unofficial system rankings
and test set references, we manually re-scored all
of our models trained on the final back-translated
data and noticed that the Transformer and BnB
were generating particularly shorter outputs for the
document-level EN↔DE test sets than expected.
After splitting4 the English and German source files
into sentences, translating them, and combining
back into paragraphs for evaluation, the scores im-
proved by several BLEU points (see Table 5). The

4Text to Sentence Splitter – https://github.com/
mediacloud/sentence-splitter

EN↔JA part did not require any further splitting,
as it was already provided at sentence-level.

5 Conclusion

In this paper we described the development pro-
cess of the AIST AIRC’s NMT systems that were
submitted for the WMT 2023 shared task on gen-
eral domain text translation. We compared Trans-
former models to MEGA, RetNet and BERT-nar-
BERT model architectures in search of efficient
decoding approaches while still improving upon
output quality. We showed that the Transformer
models can be outperformed by MEGA and Ret-
Net in both translation quality, as well as infer-
ence speed, while BnB remained fastest in infer-
ence, but still lowest in quality. We also found that
even though modern models should be able to han-
dle long sequences, splitting the English↔German
document-level data into separate sentences, trans-
lating and recombining them yielded better results.
This should, however, be mitigable by training
dedicated document-level models with appropri-
ate training data.

In total, output from four systems was sub-
mitted to the shared taks by AIRC for the
English↔German and English↔Japanese lan-
guage pairs in both translation directions.
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System BLEU

ONLINE-W 51.8
GPT4-5shot 47.9
ONLINE-A 47.9
ONLINE-B 46.3
ONLINE-G 46.0
ONLINE-Y 43.9

GTCOM_Peter 42.2
Lan-BridgeMT 42.1

ONLINE-M 41.3
ZengHuiMT 40.8

NLLB_Greedy 33.1
AIRC 32.4

NLLB_MBR_BLEU 32.4

System BLEU

ONLINE-W 47.8
ONLINE-A 43.7
GPT4-5shot 43.6
ONLINE-Y 43.6
ONLINE-G 43.2
ONLINE-B 42.7
ONLINE-M 40.5
ZengHuiMT 40.5

Lan-BridgeMT 39.4
NLLB_Greedy 31.1

NLLB_MBR_BLEU 29.6
AIRC 26.5

System BLEU

ONLINE-W 25.9
SKIM 24.8

GPT4-5shot 24.1
ONLINE-B 23.9

NAIST-NICT 23.0
ONLINE-A 23.0

ZengHuiMT 22.6
GTCOM_Peter 22.3

ONLINE-Y 22.3
ANVITA 20.9

Lan-BridgeMT 20.2
ONLINE-G 18.3

KYB 17.6
ONLINE-M 17.2

AIRC 14.9
NLLB_MBR_BLEU 14.7

NLLB_Greedy 14.2

System BLEU

ONLINE-B 25.3
ONLINE-W 24.5
ONLINE-Y 24.5

SKIM 24.3
NAIST-NICT 22.6
ZengHuiMT 22.6
ONLINE-A 21.4
GPT4-5shot 21.3

Lan-BridgeMT 20.5
ONLINE-M 19.8

ANVITA 19.4
KYB 17.8

AIRC 17.6
ONLINE-G 17.2

NLLB_Greedy 11.3
NLLB_MBR_BLEU 9.0

System Chr F
ONLINE-W 72.1
ONLINE-A 70.0
GPT4-5shot 69.8
ONLINE-B 69.1
ONLINE-G 69.1
ONLINE-Y 68.4

ZengHuiMT 67.6
Lan-BridgeMT 66.7
GTCOM_Peter 66.6

ONLINE-M 66.5
NLLB_MBR_BLEU 57.6

NLLB_Greedy 57.3
AIRC 57.2

System Chr F
ONLINE-W 71.8
ONLINE-A 69.7

ZengHuiMT 69.4
GPT4-5shot 69.1
ONLINE-B 69.1
ONLINE-Y 69.1
ONLINE-G 69.0
ONLINE-M 66.9

Lan-BridgeMT 66.1
NLLB_Greedy 56.2

NLLB_MBR_BLEU 55.4
AIRC 52.2

System Chr F
ONLINE-W 51.4
GPT4-5shot 51.2

SKIM 51.1
ONLINE-A 49.6

NAIST-NICT 49.5
ONLINE-Y 49.5

ZengHuiMT 49.5
ONLINE-B 49.3

GTCOM_Peter 48.7
Lan-BridgeMT 47.3

ANVITA 46.7
ONLINE-G 45.5

KYB 43.9
ONLINE-M 43.9

AIRC 40.5
NLLB_MBR_BLEU 39.2

NLLB_Greedy 39.0

System Chr F
ONLINE-B 35.2
ONLINE-Y 34.1
ONLINE-W 33.5

SKIM 33.5
ZengHuiMT 32.9

NAIST-NICT 32.0
ONLINE-A 31.4
GPT4-5shot 31.0

Lan-BridgeMT 30.4
ONLINE-M 29.6

ANVITA 29.3
KYB 27.7

AIRC 27.6
ONLINE-G 27.3

NLLB_Greedy 20.9
NLLB_MBR_BLEU 18.7

System COMET

GPT4-5shot 86.3
ONLINE-W 86.0
ONLINE-B 85.6
ONLINE-A 85.5
ONLINE-Y 84.9
ONLINE-M 84.8
ONLINE-G 84.6

GTCOM_Peter 82.7
NLLB_MBR_BLEU 81.4

ZengHuiMT 81.1
Lan-BridgeMT 80.9
NLLB_Greedy 79.9

AIRC 78.7

System COMET

ONLINE-W 85.5
GPT4-5shot 85.0
ONLINE-B 84.8
ONLINE-Y 84.1
ONLINE-A 83.7
ONLINE-G 82.5
ONLINE-M 81.7

Lan-BridgeMT 80.4
ZengHuiMT 79.4

NLLB_MBR_BLEU 78.0
NLLB_Greedy 77.9

AIRC 72.9

System COMET

SKIM 84.0
GPT4-5shot 83.4
ONLINE-W 82.3

NAIST-NICT 81.9
ONLINE-Y 81.6
ONLINE-B 81.5
ONLINE-A 81.0

GTCOM_Peter 80.2
ANVITA 79.5

Lan-BridgeMT 79.3
ZengHuiMT 79.2
ONLINE-G 77.8
ONLINE-M 77.5

KYB 76.6
NLLB_MBR_BLEU 75.2

AIRC 74.5
NLLB_Greedy 74.3

System COMET

ONLINE-B 88.2
ONLINE-W 87.5
ONLINE-Y 87.3
GPT4-5shot 87.0

SKIM 86.6
NAIST-NICT 86.2
ZengHuiMT 85.3
ONLINE-A 85.2

Lan-BridgeMT 84.5
ONLINE-M 13.3

ANVITA 82.7
KYB 80.8

AIRC 80.7
ONLINE-G 80.4

NLLB_Greedy 79.3
NLLB_MBR_BLEU 77.7

Table 6: Automatic evaluation rankings according to BLEU (nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.2.1),
chrF (nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.2.1), and COMET (Unbabel/wmt22-comet-da). The
order of the tables from left to right is DE→EN, EN→DE, JA→EN, EN→JA.

In future work, we plan to experiment with re-
placing the BERT models in BnB with other more
efficient pre-trained language models which can be
used as encoders/decoders, as well as incorporating
document-level training data and modelling longer
sequences with available data. In terms of data, we
intend to increase vocabulary coverage by adding
all known unicode emoji symbols to the vocabulary
even if they are not present in the training data, as
well as additionally sample paracrawl data where
emoji are present.
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Abstract

The system is trained on officially provided
data only. We have heavily filtered all the
data to remove machine translated text, Rus-
sian text and other noise. We use the Deep-
Norm modification of the transformer architec-
ture in the TorchScale library with 18 encoder
layers and 6 decoder layers. The initial sys-
tems for back-translation uses HFT tokenizer,
the final system uses custom tokenizer derived
from HFT.

1 Introduction

The annual Conference in Machine Translation
(WMT) provides an invaluable platform for re-
searchers to showcase their advancements in this
domain. This paper serves as the submission
from the Natural Language Processing Centre
of Masaryk University (MUNI-NLP) team for
the Czech-Ukrainian Translation Task at WMT23
(Kocmi et al., 2023).

Central to our approach is a commitment to data
quality and we have also done some experiments
with different subword tokenizers. Furthermore,
we recognize the paramount importance of data
filtering, a process that distinguishes signal from
noise. To this end, we employ a rigorous data fil-
tering procedure to eliminate machine-translated
text, Russian content, and other sources of potential
distraction, enabling our model to focus on the gen-
uine linguistic intricacies of Czech and Ukrainian.

In terms of model architecture, we employ the
DeepNorm modification (Wang et al., 2022) of
the transformer architecture. This modified archi-
tecture, integrated within the TorchScale library,
boasts 18 encoder layers and 6 decoder layers.

Our approach further delves into the critical as-
pects of back-translation and tokenization. Initially,
we leverage the HFT (High Frequency Tokens) to-
kenizer for back-translation, harnessing the power
of synthetic data to enhance model robustness. In

the final iteration of our system, we introduce a
custom tokenizer derived from HFT.

2 Data selection and preprocessing

Our system participates in the constrained track,
we use only data allowed for this year. We do not
use any pretrained models, only selected parallel
and monolingual texts.

Many of the provided text are very noisy. We
excluded some of them from training completely.

To mitigate the adverse effects of noisy data on
our translation system, we conduct a comprehen-
sive analysis of the data problems that emerge from
these issues. In subsequent sections of this paper,
we delve into the specific strategies and techniques
we employ to filter out machine-translated text,
Russian content, and other sources of noise. Our
data filtering pipeline is designed to rigorously cu-
rate the training data set, ensuring that our model
is exposed to high-quality, human-generated trans-
lations that align closely with the nuances of the
Czech and Ukrainian languages. Through these
meticulous filtering strategies, we aim to enhance
the overall performance and translation quality of
our system.

2.1 Parallel data

We use only official Task 1 data downloaded by
the mtdata command (Gowda et al., 2021). The
majority of segments comes from the OPUS corpus
(Tiedemann, 2012), the biggest single source is
Facebook-wikimatrix (Schwenk et al., 2019).

OPUS-opensubtitles Sometimes contains wrong
or missing diacritics in Czech part. We re-
moved segments containing meta data like
authors of the subtitles. There are many parts
on the Ukrainian side with Russian language
instead of Ukrainian. We have removed such
segments.
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Source Used segments Original segments Used words
ELRC-acts-ukrainian 130003 130003 2.5M
OPUS-ccmatrix 3916740 3991954 44M
OPUS-opensubtitles 515216 730804 2.7M
OPUS-multiparacrawl 941349 2200276 12M
OPUS-qed 155346 161020 2M
OPUS-tatoeba 2932 2933 11k
OPUS-ted2020 112689 114229 1.6M
Facebook-wikimatrix 824606 848961 9.9M
Total 6602828

Table 1: The sizes of all sources used for the final system. Used words means number of words used in one
language, these are almost same for both languages.

In total, almost 30% of segments were re-
moved from this source.

Facebook-wikimatrix Many segments are not
aligned, they contains similar texts but the
sentences are not translations. We can see
such situations in sentences about different
sport teams, towns and history persons.

We have removed segments with special for-
matting options, lines containing Dostupné
online (available online) and similar strings.

OPUS-wikimedia Removed HTML formatting,
notes in tested parenthesis which are not trans-
lated anyway.

Removed segments containing URL, refer-
ences to online sources.

Removed segments with Czech texts in
Ukrainian part and vice versa.

OPUS-multiccaligned Excluded from process-
ing.

The Czech part contains almost exclusively a
very bad machine translations in domains like:
game playing, health recommendations, porn,
bitcoins, garden.

Only a few good Czech sentences are copied
from Czech Wikipedia.

OPUS-bible Excluded from processing.

It contains very old language with unusual
vocabulary and grammar.

OPUS-elrc-5179 Excluded from processing.

The same text as ELRC-acts with some errors
(missing characters).

OPUS-eubookshop Excluded from processing.

Contains concatenated words on both sides.

Several sources contains duplicated segment, we
keep only the first instance of such duplicates.

The sizes of all parallel sources used for the final
system are listed in the Table 1.

2.2 Monolingual data
Statmt-news-crawl-2021-ces Removed time indi-

cations at the beginning of lines.

LangUk-* There is no punctuation in text.

We have used simple rules to add probable
punctuation marks.

Removed markdown formatting.

We use additional filtering of back-translated
segments. We use filter-acktranslation.py
from (Popel et al., 2022). Unfortunately, there
were still some Russian texts at the early stages
of development and some Czech sentences were
translated into Russian instead of Ukrainian. We
filtered such segments out for the final system.

The sizes of monolingual data are listed in Ta-
ble 2.

3 Tokenization

We use HFT tokenizer (Signoroni and Rychlý,
2022) for all stages. The tokenizer uses special
characters to annotate word boundaries and charac-
ter capitalization, they are listed in Table 3.

An example of tokenized text from the Czech
part of the training data is in Figure 1. All upper-
case letters are transformed to lower-case and the
special characters preserve the original format.
White spaces around punctuation marks are anno-
tated explicitly in the same way as in Sentencepiece
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Figure 1: Example of the tokenization. The first line of each group is the plain text, the second line is the respective
tokenization. The very last line is the modified tokenization used in the final system.

Source Used segments
Leipzig-news 1M
Leipzig-newscrawl 1M
Leipzig-wikipedia 1M
Statmt-news-crawl.ces 11M
LangUk-ubercorpus 22M
LangUk-news 15M
Total UK 41M
Total CS 15M

Table 2: The sizes of all sources used for back-
translation.

Table 3: Special characters in the HFT tokenizations.

(Kudo and Richardson, 2018), but spaces between
words are assumed as default.

For the final system we have made the following
extra changes in tokenization:

• Separate special capitalization symbols from
tokens, they are always separate tokens.

• Split numbers into digits.

An example of this changes is displayed on the
very last line in the Figure 1, the first token is split
into two tokens, the number “3 000” at the end of
the line is tokenized into two tokens in the original
tokenization and into four tokens in the final one.

For the initial systems for translation we use vo-
cabulary size of 32,000 items. The final translations
system use only 12,000 items in the vocabulary on
each side.

These modifications in the final system were mo-
tivated by an experiment on smaller data where
BLEU score increased from 22.4 to 24.9. Separat-
ing individual digits is also an option (disabled by
default) in the Sentencepiece (Kudo and Richard-
son, 2018) tokenizer. We will do a detailed evalua-
tion of this modifications in the future.

4 Model

We use the DeepNorm (Wang et al., 2022) modi-
fication of the transformer (Vaswani et al., 2017)
architecture in the TorchScale library (Ma et al.,
2022). Our early experiments with the number of
encoder and decoder layers shows with the agree-
ment of Wei et al. (2022) that asymmetric configu-
ration with more encoder layer performs better. We
use 18 encoder layers and 6 decoder layers in all
our models.

The first stage of the system in CS-UK direction
is trained only on parallel data (6.6M segments)
for 30 epochs, second stage in UK-CS direction
uses also 15M Czech segments and is trained for
17 epochs. The final system uses parallel data and
back-translated Ukrainian monolingual data (41M
segments). It is trained for only 4 epochs. Check-
points are created every 2000 updates and the final
submission is the average of 8 checkpoints (1 fol-
lowing and 6 preceding) around the top-scoring
checkpoint on development data.

The performance of the individual models are
detailed in Table 4.

Stage direction segments BLEU
ST1 CS-UK 6.6M 31.17
ST2 UK-CS 19M 34.57
final CS-UK 48M 35.87

Table 4: Progress of scores
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5 Results

Our first submission evaluated by OCELoT system
on the test data received very low scores (BLEU
15.6) which don’t correlate to the scores on our
development set. We noticed Russian sentences
instead of Ukrainian in our translations. For the fi-
nal submission, we have done more filtering of
both parallel and monolingual (back-translated)
data as described in Section 2. The same system on
cleaned data received much better scores (BLEU
28.3)

The official scores of our final system on the test
data (Kocmi et al., 2023) are listed in the Table 5.

final first
COMET 87.0
chrF 57.0 41.0
BLEU 28.3 15.6

Table 5: Automatic Scores of the final system and the
first submission.

6 Conclusion

This paper presents the MUNI-NLP submission to
the WMT 2023 General Machine Translation Task.
Our results show that it is very important to clean
the training data, especially foreign languages.

The paper also introduces a novel tokenization
into subwords, a detailed evaluation of it is part of
our future work.
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Abstract

This paper describes Lan-Bridge Translation
systems for the WMT 2023 General Transla-
tion shared task. We participate in 2 direc-
tions: English to and from Chinese. With the
emergence of large-scale models, various in-
dustries have undergone significant transforma-
tions, particularly in the realm of document-
level machine translation. This has introduced
a novel research paradigm that we have em-
braced in our participation in the WMT23 com-
petition. Focusing on advancements in models
such as GPT-3.5, we have undertaken numer-
ous prompt-based experiments. Our objective
is to achieve optimal human evaluation results
for document-level machine translation, result-
ing in our submission of the final outcomes in
the general track.

1 Introduction

Recently, large-scale language models, such as
GPT-3.5 and GPT-4 (gpt), have emerged as power-
ful tools in the field of natural language processing.
These models have showcased their impressive ca-
pabilities in a wide range of tasks, including text
generation, question answering, language transla-
tion, and more. Language models like GPT-3.5 pos-
sess the ability to understand and generate coherent,
contextually relevant text, capturing the nuances
of language usage and producing high-quality out-
puts.

In particular, machine translation is an area
where these language models have shown tremen-
dous promise. Traditional machine translation mod-
els (Yang et al., 2020) used the conventional Trans-
former architecture (Vaswani et al., 2017) since
GPT-3.5 has the potential to revolutionize the trans-
lation process by leveraging its massive size and
language understanding capabilities. With the ad-
vent of large models, the machine translation field
has faced new challenges, and utilizing large mod-
els for machine translation is a novel attempt.By ef-

fectively incorporating prompts and context, GPT-
3.5 can produce translations that exhibit fluency,
accuracy, and adherence to the source text.

This study focuses on experimenting and evaluat-
ing different prompt engineering techniques to fur-
ther enhance the translation performance of GPT-
3.5. By providing more refined and contextually
specific prompts, we aim to observe the model’s
ability to adjust and refine its translations, resulting
in improved translation quality. Additionally, we
explore the impact of temperature adjustments on
the generated translations, allowing us to fine-tune
the level of randomness in the output and achieve
more deterministic and accurate translations.

Furthermore, we investigate both sentence-level
and document-level approaches, examining the ef-
fectiveness of GPT-3.5 in handling translations at
different granularity levels. These approaches aim
to leverage the model’s language understanding
capabilities to not only produce accurate sentence-
level translations but also ensure coherence and
consistency at the overall document level.

By delving into these aspects and evaluating the
performance of GPT-3.5 in the context of the WMT
competition, we aim to contribute to the broader
understanding of the capabilities, strengths, and
limitations of state-of-the-art language models in
the field of machine translation.

The inspiration for this study stems from the
outstanding performance exhibited by these large-
scale language models, especially in addressing
real-world challenges such as major wildfires.
GPT-3.5-4k and GPT-3.5-16k, with their increased
model capacities, have demonstrated remarkable
capabilities in generating high-quality text across
various domains. Motivated by these advance-
ments, our study aims to harness the power of these
models and explore their potential in the specific
domain of machine translation.

By leveraging the robustness and adaptability of
GPT-3.5-4k and GPT-3.5-16k, we conduct rigorous

166



experimentation to thoroughly evaluate their trans-
lation capabilities. We delve into the nuances of
different parameter adjustments, including prompts
and temperature, to optimize and enhance the mod-
els’ performance specifically for translation tasks.
By strategically fine-tuning these parameters, we
aim to unlock hidden potential and push the bound-
aries of their translation capabilities.

Real-world challenges, such as major wildfires,
require timely and accurate translation of critical
information across languages. The effectiveness of
machine translation plays a pivotal role in commu-
nicating vital updates and ensuring efficient infor-
mation dissemination during such situations. By
investigating the translation capabilities of GPT-
3.5-4k and GPT-3.5-16k, we strive to contribute
insights that can improve translation efficiency and
aid in overcoming language barriers in emergency
situations.

With this study, we aim to shed light on the im-
mense potential of large-scale language models,
such as GPT-3.5, in addressing real-world chal-
lenges through machine translation. By harnessing
their capabilities and understanding their perfor-
mance in various scenarios, we hope to pave the
way for more effective and accurate translation sys-
tems that can assist in critical situations.

2 Methods

We have designed three prompt schemes:
P1: Translate this sentence from SRC to TGT,

do not write any explanations
P2: Translation Request - Sentence-by-Sentence

Translation. Language Pair: SRC to TGT. Instruc-
tions: 1. Each sentence of the document will be
provided individually in the "Original Sentence"
section. 2. In the "Translation" section, please
provide the corresponding translation for each sen-
tence, considering the context and aiming for faith-
ful translation while minimizing unaligned transla-
tions. 3. Avoid including any explanations in the
translation. Original Sentence:

P3: Translation Request - Sentence-by-Sentence
Translation. Language Pair: SRC to TGT. Instruc-
tions: 1. Each sentence of the document will be
provided individually in the "Original Sentence"
section. 2. In the "Translation" section, please
provide the corresponding translation for each sen-
tence, considering the context and aiming for faith-
ful translation while minimizing unaligned trans-
lations. 3. Avoid including any explanations in

the translation. 4.Please review the translations for
verifying that they remain faithful to the original
text and provide revised versions accordingly if
necessary. If no revisions are needed, provide the
translations as they are.

In our study, we conducted several experiments
to evaluate the performance of GPT-3.5. The fol-
lowing were the approaches we employed:

• Sentence-to-sentence translation: We used the
prompt "Translate this sentence from SRC to
TGT, do not write any explanations" to evalu-
ate the model’s ability to translate individual
sentences accurately.

• Multi-turn dialogue translation: We explored
the impact of multi-turn conversations on the
performance of GPT-3.5. Using the prompt
P1.

• Multi-turn dialogue translation with detailed
prompt P3. This experiment aims to test
whether GPT-3.5 has the ability to get faith-
ful translations while minimizing unaligned
translations.

• Comparison between GPT-3.5-4k and GPT-
3.5-16k: We performed separate experiments
using both GPT-3.5-4k and GPT-3.5-16k mod-
els to observe any differences in translation
abilities between the two.

• Adjusting temperature parameter: We varied
the temperature parameter (0, 0.3, 0.7) to ex-
amine its impact on the translation quality.
Changing the temperature can control the ran-
domness of the generated translations.

• Incorporating fake CoT prompt P3. This ex-
periment aims to test whether GPT-3.5 has the
ability to automatically reflect and optimize
its translations.

3 Result

We conduct experiments to quantify the impact of
each component in our system. The evaluation
conduct on test set on wmt22 using SacreBLEU
(Post, 2018) and COMET (Stewart et al., 2020).

As shown in Table 1, here are the conclusions
based on your experimental results:

• From the first and second experiment results,
it can be concluded that the performance of
GPT-3.5 in multi-turn dialogue is better than
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language pair Prompt Multi-turn T Model Bleu-A Bleu-B Chrf-A Chrf-B Comet-A Comet-B

zh-en P1 false 0 GPT-3.5-4k 26.6 20.0 57.4 52.5 52.7 43.5

zh-en P1 true 0 GPT-3.5-4k 27.7 20.7 58.4 53.2 55.8 46.7

zh-en P3 true 0 GPT-3.5-16k 23.4 18.0 54.4 50.2 54.9 46.1

en-zh P1 true 0 GPT-3.5-4k 45.7 53.9 41.1 48.5 63.4 71.2

en-zh P2 true 0 GPT-3.5-4k 44.2 51.4 39.9 46.0 62.1 70.6

en-zh P2 true 0.7 GPT-3.5-4k 42.8 49.3 38.4 44.1 61.7 68.7

en-zh P2 true 0.7 GPT-3.5-16k 42.7 49.3 38.3 44.8 63.2 71.1

en-zh P2 true 0.3 GPT-3.5-16k 44.4 51.5 39.9 46.3 63.8 71.2

Table 1: Bleu/Chrf/Comet score on wmt22 test set. The COMET scores are calculated with the model wmt20-
comet-da, the ChrF scores are calculated using all available references and SacreBLEU signature is the default
settings. Scores are multiplied by 100. T represents Temperature

single-turn translation. This indicates that con-
text can help improve the translation quality
of GPT-3.5 by providing additional prompts.

• Comparing the results of the third experiment
with the fourth experiment, it is concluded that
the performance of P2 is worse. This suggests
that GPT-3.5 does not fully understand the
given prompt, which results in difficulty in
generating accurate translations.

• Comparing the results of the fourth, fifth,
and seventh experiments, it is concluded that
lower temperature values yield better trans-
lation results. This indicates that reducing
temperature parameter leads to more deter-
ministic and high-quality translations.

• Comparing the results of the fifth and sixth
experiments, it is concluded that GPT-3.5-16k
performs better in translation than GPT-3.5-
4k.

• Comparing the results of the seventh exper-
iment with previous results, it is concluded
that P3 performs the worst. Additionally, ob-
serving the actual revised results, it can be
noted that GPT-3.5-16k rarely modifies its
translations, indicating that without specific
and clear instructions, it is unable to make
effective modifications to its own translations.

Based on our previous results, we have chosen
GPT-3.5-16k as the final model for our submis-
sion. For the WMT23 en-zh/zh-en track, we set
the temperature to 0 and utilized P1 as the prompt.
Adopting a multi-turn dialogue approach, we sub-
mitted our final results with the systerm name "Lan-
BridgeMT". Figure 1 and Figure 2 show the results

of our systerm. 1 Additionally, for other language
pairs in the general WMT competition, we opted to
submit the results generated by our LanMT (Han
et al., 2022) engine. This decision was made to
assess the engine’s performance and determine its
scoring capabilities directly in the online evaluation
environment.

By taking these approaches, we aim to showcase
the effectiveness of GPT-3.5 and demonstrate the
performance of our LanMT engine in the respective
WMT tracks. These submissions reflect our over-
arching goal of participating in and contributing to
the advancement of machine translation research
and development.

4 Conclusion

In this study, we evaluated the translation perfor-
mance of GPT-3.5 using various experimental ap-
proaches. Our findings indicate that incorporating
multi-turn dialogue prompts improves the transla-
tion quality of GPT-3.5, highlighting the impor-
tance of context in guiding the model’s translations.
Furthermore, we observed that GPT-3.5-16k, com-
pared to GPT-3.5-4k, demonstrates superior trans-
lation capabilities in commit scores, indicating its
enhanced ability to understand and fulfill user in-
structions. However, there are marginal differences
in the other two metrics, BLEU and ChrF. Addition-
ally, we found that lower temperature values result
in improved translation quality, indicating the use-
fulness of controlling randomness in the generated
translations. However, it is important to note that
GPT-3.5 may struggle with understanding ambigu-
ous prompts and lacks the ability to autonomously
adjust and optimize its translations without explicit
instructions. These findings contribute to our under-

1https://github.com/wmt-conference/wmt23-news-
systems
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Figure 1: Score for zh-en translation task

Figure 2: Score for en-zh translation task

standing of the strengths and limitations of GPT-3.5
in translation tasks, emphasizing the need for pre-
cise prompts to achieve optimal translation results.
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Abstract

This paper presents the submission of
Huawei Translate Services Center (HW-TSC)
to the WMT23 general machine transla-
tion (MT) shared task. We participate in
Chinese↔English (zh↔en) language pair. We
use deep Transformer architecture and obtain
the best performance via a Transformer vari-
ant with a larger parameter size. We perform
fine-grained pre-processing and filtering on the
provided large-scale bilingual and monolingual
datasets. The model enhancement strategies
we used includes Regularized Dropout, Bidi-
rectional Training, Data Diversification, For-
ward Translation, Back Translation, Alternated
Training, Curriculum Learning and Transduc-
tive Ensemble Learning. Our submission ob-
tain competitive results in the final evaluation.

1 Introduction

Machine translation (MT) (Brown et al., 1990)
refers to the automatic translation of text from one
language to another, while the WMT23 general MT
shared task focuses on evaluation of general MT
capabilities. Compared with the news shared task
in previous years, the general MT shared task in-
volves multiple domains. The testsets contain data
in news, user generated (social), conversational,
and ecommerce domains.

This paper presents the submission of HW-TSC
to the WMT23 general MT shared task, in which
we participate in zh↔en language pair. Our method
is mainly based on previous works (Wei et al., 2022;
Wu et al., 2022; Yang et al., 2021). We perform
multi-step data cleansing on the provided dataset
and only keep a high-quality subset for training. At
the same time, several model enhancement strate-
gies are tested in a pipeline, including Regularized
Dropout (Wu et al., 2021), Bidirectional Training
(Ding et al., 2021), Data Diversification (Nguyen
et al., 2020), Forward Translation (Abdulmumin,
2021), Back Translation (Sennrich et al., 2016),

Alternated Training (Jiao et al., 2021), Curriculum
Learning (Zhang et al., 2019) and Transductive
Ensemble Learning (Wang et al., 2020b).

Our system report includes four parts. Section
2 focuses on our data processing strategies while
section 3 describes our training details. Section 4
explains our experiment settings and training pro-
cesses and section 5 presents the results.

2 Data

2.1 Data Source
We obtain bilingual and monolingual data from
ParaCrawl v9, News Commentary v18.1, Wiki Ti-
tles v3, UN Parallel Corpus V1.0, CCMT Corpus,
WikiMatrix, News Crawl and Common Crawl data
sources. The amount of data we used is shown in
Table 1. It should be noted that in order to obtain
better performance in the general domain, we mix
the monolingual data from Common Crawl and
News Crawl.

language pairs bitext data monolingual data
zh↔en 25M en: 50M, zh: 50M

Table 1: Bilingual and monolingual used for training.

2.2 Data Pre-processing
Our data processing procedure is precisely the same
as the previous year (Wei et al., 2021), including
deduplication, XML content processing, langid
(Lui and Baldwin, 2012) and fast-align (Dyer et al.,
2013) filtering strategies. As we use the same data
pre-processing strategy as the previous year, we
will not go into details here.

2.3 Data Denoising
Since there may be some semantically dissimilar
sentence pairs in bilingual data, we use LaBSE
(Feng et al., 2022) to calculate the semantic similar-
ity of each bilingual sentence pair, and exclude
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bilingual sentence pairs with a similarity score
lower than 0.7 from our training corpus.

3 System Overview

3.1 Model

We continue using Transformer (Vaswani et al.,
2017) as our neural machine translation (NMT)
(Bahdanau et al., 2015) model architecture. As
we did last year, we only use a 25-6 deep model
architecture (Wang et al., 2019). The parameters of
the model are the same as Transformer big. We just
change the post-layer normalization to the pre-layer
normalization, and set encoder layers to 25.

3.2 Regularized Dropout

Regularized Dropout (R-Drop)1 (Wu et al., 2021)
is a simple yet more effective alternative to regular-
ize the training inconsistency induced by dropout
(Srivastava et al., 2014). Concretely, in each mini-
batch training, each data sample goes through the
forward pass twice, and each pass is processed by
a different sub model by randomly dropping out
some hidden units. R-Drop forces the two distri-
butions for the same data sample outputted by the
two sub models to be consistent with each other,
through minimizing the bidirectional Kullback-
Leibler (KL) divergence (Van Erven and Harremos,
2014) between the two distributions. That is, R-
Drop regularizes the outputs of two sub models ran-
domly sampled from dropout for each data sample
in training. In this way, the inconsistency between
the training and inference stage can be alleviated.

3.3 Bidirectional Training

Many studies have shown that pre-training can
transfer the knowledge and data distribution, hence
improving the model generalization. Bidirectional
training (BiT) (Ding et al., 2021) is a simple and
effective pre-training method for NMT. Bidirec-
tional training is divided into two stages: (1) bidi-
rectionally updates model parameters, and (2) tune
the model. To achieve bidirectional updating, we
only need to reconstruct the training samples from
"src→tgt" to "src→tgt & tgt→src" without any
complicated model modifications. Notably, BiT
does not require additional parameters or training
steps and only uses parallel data.

1https://github.com/dropreg/R-Drop

3.4 Data Diversification

Data Diversification (DD) (Nguyen et al., 2020) is
a data augmentation method to boost NMT perfor-
mance. It diversifies the training data by using the
predictions of multiple forward and backward mod-
els and then merging them with the original dataset
which the final NMT model is trained on. DD is
applicable to all NMT models. It does not require
extra monolingual data, nor does it add more pa-
rameters. To conserve training resources, we only
use one forward model and one backward model to
diversify the training data.

3.5 Forward Translation

Forward translation (FT) (Abdulmumin, 2021),
also known as self-training, is one of the most com-
monly used data augmentation methods. FT has
proven effective for improving NMT performance
by augmenting model training with synthetic paral-
lel data. Generally, FT is performed in three steps:
(1) randomly sample a subset from the large-scale
source monolingual data; (2) use a “teacher” NMT
model to translate the subset data into the target
language to construct the synthetic parallel data;
(3) combine the synthetic and authentic parallel
data to train a “student” NMT model.

3.6 Back Translation

An effective method to improve NMT with tar-
get monolingual data is to augment the parallel
training data with back translation (BT) (Sennrich
et al., 2016; Wei et al., 2023). There are many
works expand the understanding of BT and inves-
tigates a number of methods to generate synthetic
source sentences. Edunov et al. (2018) find that
back translations obtained via sampling or noised
beam outputs are more effective than back transla-
tions generated by beam or greedy search in most
scenarios. Caswell et al. (2019) show that the
main role of such noised beam outputs is not to
diversify the source side, but simply to tell the
model that the given source is synthetic. There-
fore, they propose a simpler alternative strategy:
Tagged BT. This method uses an extra token to
mark back translated source sentences, which gen-
erally outperforms noised BT (Edunov et al., 2018).
For better joint use with FT, we use sampling back
translation (ST) (Edunov et al., 2018).
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3.7 Alternated Training

While synthetic bilingual data have demonstrated
their effectiveness in NMT, adding more synthetic
data often deteriorates translation performance
since the synthetic data inevitably contains noise
and erroneous translations. Alternated training
(AT) (Jiao et al., 2021) introduce authentic data
as guidance to prevent the training of NMT models
from being disturbed by noisy synthetic data. AT
describes the synthetic and authentic data as two
types of different approximations for the distribu-
tion of infinite authentic data, and its basic idea is
to alternate synthetic and authentic data iteratively
during training until the model converges.

3.8 Curriculum Learning

A practical curriculum learning (CL) (Zhang et al.,
2019) method should address two main questions:
how to rank the training examples, and how to mod-
ify the sampling procedure based on this ranking.
For ranking, we choose to estimate the difficulty of
training samples according to their domain feature
(Wang et al., 2020a). The calculation formula of do-
main feature is as follows, where θin represents an
in-domain NMT model, and θout represents a out-
of-domain NMT model. One thing to note is that
we treat domains including news, user-generated
(social), conversational, and e-commerce domains
as in-domain, and others as out-of-domain. Specif-
ically, we use the WMT22 test set to fine-tune a
baseline model, and then use the baseline model
and the fine-tuned model as the out-of-domain
model and the in-domain model respectively.

q(x, y) =
logP (y|x; θin)− logP (y|x; θout)

|y|
(1)

For sampling, we adopt a probabilistic CL strat-
egy that leverages the concept of CL in a nonde-
terministic fashion without discarding the original
standard training practice, such as bucketing and
mini-batching.

3.9 Transductive Ensemble Learning

Ensemble learning (Garmash and Monz, 2016),
which aggregates multiple diverse models for in-
ference, is a common practice to improve the per-
formance of machine learning models. However,
it has been observed that the conventional ensem-
ble methods only bring marginal improvement for
NMT when individual models are strong or there

are a large number of individual models. Trans-
ductive Ensemble Learning (TEL) (Zhang et al.,
2019) studies how to effectively aggregate multiple
NMT models under the transductive setting where
the source sentences of the test set are known. TEL
uses all individual models to translate the source
test set into the target language space and then fine-
tune a strong model on the translated synthetic data,
which significantly boosts strong individual models
and benefits a lot from more individual models.

4 Experiment Settings

We use the open-source fairseq (Ott et al., 2019)
for training, then we use SacreBLEU (Post, 2018)2

and wmt20-comet-da model (Rei et al., 2020) to
measure system performances. The main parame-
ters are as follows: each model is trained using 8
A100 GPUs, batch size is 6144, parameter update
frequency is 2, and learning rate is 5e-4. The num-
ber of warmup steps is 4000, and model is saved
every 1000 steps. The architecture we used is de-
scribed in section 3.1. We adopt dropout, and the
rate varies across different training phases. R-Drop
is used in model training, and we set λ to 5.

5 Results

Regarding zh↔en, we use Regularized Dropout,
Bidirectional Training, Data Diversification, For-
ward Translation, Back Translation, Alternated
Training, Curriculum Learning, and Transductive
Ensemble Learning. The evaluation results of
en→zh and zh→en NMT system on WMT22 gen-
eral test sets are shown in Tables 2.

en→zh zh→en
BLEU COMET BLEU COMET

BiT R-Drop baseline 45.55 50.24 22.30 22.28
+ DD, FT & ST 49.54 59.69 25.67 33.44
+ AT 54.11 63.99 28.58 37.15
+ CL 56.36 68.90 30.58 44.62
+ TEL 56.80 69.06 31.35 45.56

Table 2: BLEU and COMET scores of en→zh and
zh→en NMT system on WMT22 general test set.

We observe that DD, FT & ST can stably bring
3-4 BLEU and 1-9 COMET improvement; AT can
bring 3-5 BLEU and 4 COMET improvement; and
CL can bring 2 BLEU and 5-7 COMET improve-
ment. In addition, TEL can further slightly im-
prove BLEU and COMET scores. Our final en→zh

2https://github.com/mjpost/sacrebleu
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System chrF BLEU COMET

HW-TSC 57.5 33.6 82.8
ONLINE-B 57.5 33.5 82.7
Yishu 57.4 33.4 82.7
GPT4-5shot 53.1 26.8 81.6
Lan-BridgeMT 53.1 27.3 81.2
ONLINE-G 53.9 26.6 80.9
ONLINE-Y 52.3 25.0 80.6
ONLINE-A 53.4 28.3 80.3
ZengHuiMT 54.6 27.0 79.6
ONLINE-W 52.5 26.4 79.3
IOL_Research 52.4 27.2 79.2
ONLINE-M 49.7 23.5 77.7
NLLB_MBR_BLEU 45.8 19.8 76.8
ANVITA 47.1 21.8 76.6
NLLB_Greedy 46.1 20.5 76.4

Table 3: Scores for the WMT23 zh→en translation task:
chrF, BLEU and COMET (Unbabel/wmt22-comet-da).

System chrF BLEU COMET

ONLINE-B 52.9 57.5 88.1
Yishu 53.0 57.6 88.1
HW-TSC 53.8 58.6 87.3
GPT4-5shot 46.5 49.6 87.1
ONLINE-W 47.3 52.1 86.8
Lan-BridgeMT 46.8 50.2 86.6
ONLINE-Y 49.8 54.2 86.5
ONLINE-A 52.8 58.5 86.2
IOL_Research 51.9 56.9 85.3
ZengHuiMT 47.0 52.9 84.3
ONLINE-M 50.6 54.9 84.2
ONLINE-G 49.4 54.1 83.8
NLLB_Greedy 26.3 27.4 75.7
ANVITA 36.9 38.9 75.6
NLLB_MBR_BLEU 21.1 19.1 71.5

Table 4: Scores for the WMT23 en→zh translation task:
chrF, BLEU, COMET (Unbabel/wmt22-comet-da).

and zh→en submissions achieve 56.80 and 31.35
BLEU, 69.06 and 45.56 COMET respectively.

6 Official Automatic Evaluation Results

In our final submission, we add post-processing
for punctuation correction and entity preservation.
WMT (Kocmi et al., 2023) present an automatic
evaluation of the systems submitted to the gen-
eral machine translation task, including the follow-
ing three different automatic metrics: chrF, BLEU
and COMET. We rank the systems according to
COMET scores, and unconstrained systems are in
a grey background in the tables.

7 Conclusion

This paper presents the submission of HW-TSC
to the WMT23 general MT Task. We participate
in zh↔en language pair and perform experiments
with a series of pre-processing and training strate-
gies. The effectiveness of each strategy is demon-
strated. Our experiments show that our model train-
ing strategies are effective. Our submission finally

achieve competitive results in the evaluation.
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Abstract

This paper describes the UvA-MT’s submis-
sion to the WMT 2023 shared task on general
machine translation. We participate in the con-
strained track in two directions: English ↔
Hebrew. In this competition, we show that by
using one model to handle bidirectional tasks,
as a minimal setting of Multilingual Machine
Translation (MMT), it is possible to achieve
comparable results with that of traditional bilin-
gual translation for both directions. By includ-
ing effective strategies, like back-translation,
re-parameterized embedding table, and task-
oriented fine-tuning, we obtained competitive
final results in the automatic evaluation for both
English→ Hebrew and Hebrew→ English di-
rections.

1 Introduction

Multilingual Machine Translation (MMT) (John-
son et al., 2017) has attracted a lot of attention
in recent years because of 1) its high-level effi-
ciency (multiple translation directions within a sin-
gle model) and 2) the potential for knowledge trans-
fer, especially for low-resource or even unseen di-
rections. In MMT systems, only one additional tag
is introduced to indicate the translation direction,
compared to the conventional encoder-decoder ar-
chitecture. In this competition, we explore MMT
with a minimal setting, i.e., using one model for
bidirectional translations simultaneously.

We leverage all the official parallel data and a
substantial portion of the monolingual data gener-
ously provided by the WMT23 organizer, as elab-
orated in Section 2. To elevate the quality of our
parallel data, we implemented a comprehensive
three-step cleaning procedure. Additionally, for
monolingual data, we further trained an n-gram
language model to filter out low-quality sentences,

*Equal contribution.

with the goal of generating synthetic data as elabo-
rated in Section 4.1.

The backbone of our system is based on a stan-
dard transformer (Vaswani et al., 2017). Addition-
ally, we build a re-parameterized embedding table
(Wu and Monz, 2023) (see Section 3.2) to enhance
the representational word similarity between En-
glish and Hebrew, targeting better knowledge trans-
fer for multilingual translation.

The final system involves three stages of training:
1) Pretraining with synthetic data (see Section-
4.1), where we leverage back-translation (Sennrich
et al., 2016) to produce synthetic data, and finally
add them as additional data within new transla-
tion directions in our MMT system to conduct pre-
training. 2) Training without synthetic data (see
Section 4.2), where we discard the additional syn-
thetic data and further train our system using real
bitext only. 3) Fine-tuning with task-related data
(see Section 4.3), where we copy and fine-tune our
system using English→ Hebrew and Hebrew→
English data for each track respectively. We ob-
serve evident improvements for stage 1 and stage 2,
while surprisingly performance drops for stage 3.

We report our results, including the offline eval-
uation and the final online evaluation, in Section 5.
Our constrained system showed comparable perfor-
mance to unconstrained systems, and outperformed
the second-place constrained submission with +10
BLEU.

2 Data

In this section, we provide an overview of our data
sources and the data cleaning procedures applied
to our English-Hebrew translation task. We utilize
both parallel and monolingual data sets provided by
the organizers for training our translation systems.

2.1 Parallel Data

We make use of all the available data from the
constrained track of the shared task for English-
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Hebrew translation. To enhance the quality of our
parallel data, we undergo a thorough preprocess-
ing phase involving three key steps, as outlined
below. All steps in the cleaning step 1 are executed
using the Moses toolkit* (Koehn et al., 2007). Con-
sequently, we reduced the size of the raw bitext
data from 70 million to 34 million sentences after
completing the three steps of the cleaning process:

• Cleaning Step 1

– Deescaping special characters in XML.
– Removing non-printable characters.
– Normalizing punctuation and tokenizing

sentences using Moses.

• Cleaning Step 2

– Filtering out sentences longer than 256 to-
kens.

– Eliminating sentences where over 75% of
the words on both the source and target sides
are identical.

– Removing sentences with a source-to-target
token ratio exceeding 1.5.

– Eliminating duplicate sentences.

• Cleaning Step 3

– Removing off-target sentences using the
FastText Language identification tool
(Joulin et al., 2016).

– Excluding sentences exhibiting one-to-
many or many-to-one mappings, for exam-
ple, a single source sentence having multi-
ple different target sentences.

Furthermore, we sampled 10 million parallel sen-
tences to learn a 32k joint unigram (Kudo, 2018)
model-based subword vocabulary using Senten-
cePiece (Kudo and Richardson, 2018), which we
then utilized across all our models, including the
n-gram KenLM model discussed in the next sec-
tion. However, we encountered a situation where
certain emoji tokens were not included in our vo-
cabulary. As a result, we integrated an additional
post-processing step in Section 4.4 to address this
issue.

2.2 Monolingual Data
To enhance our translation systems further, we in-
corporate monolingual data to produce synthetic

*https://github.com/moses-smt/mosesdecoder/

data through back-translation. For our monolin-
gual data, we primarily rely on the official English
data provided by the organizers. Note that we did
not use any Hebrew monolingual data since it is
limited (only 1 million sentences). We combine
three official English monolingual datasets: News
Discussions 2019, Leipzig News Corpora 2020,
and News Crawl (2007-2022) to construct our raw
monolingual dataset. Following this, we apply the
same Cleaning Step 1 procedure as detailed in the
Parallel Data section to preprocess the monolingual
data, and this results in 373 million sentences.

Considering the low quality of monolingual data,
we additionally filter them by training an n-gram
language model, i.e., KenLM (Heafield, 2011), and
eliminate the sentences below an LM score thresh-
old. The training data of KenLM is all of the test
data in English, including our offline test data Flo-
res, and the official test dataset. We train KenLM
at the subword level, where we use the same uni-
gram model (trained upon original bilingual data)
to split the training data of KenLM. Then, we use
it to score all of the monolingual data. To estab-
lish a filtering threshold, we randomly selected
1,000 sentences and labeled them as positive or
negative based on criteria such as fluency, natural-
ness (e.g., avoiding strings of numbers), and rele-
vance to the domain mentioned for WMT23 test
datasets. Finally, we chose a threshold that could
filter 70% bad cases within the 1,000 sentences,
with the cost of monolingual 30% data, resulting in
around 250M total sentences.

Lastly, considering the limitation of the com-
putational resource, we sample 32M monolingual
sentences (at the same level as the bilingual dataset)
from the filtered dataset.

3 Systems

3.1 Backbone and Baseline

In this section, we outline the foundational architec-
ture and adjustments made to our baseline systems.
Our baseline model leverages English↔ Hebrew
translation directions by incorporating the target
language token at the beginning of the encoder, de-
noted as "2he" and "2en". Our implementations are
grounded in the Transformer architecture (Vaswani
et al., 2017), leveraging the Fairseq toolkit (Ott
et al., 2019).

For our baseline model, we utilize a 12-layer
Transformer architecture (mT-large) with specific
modifications, including pre-norm for both the en-

176



coder and decoder, and layer-norm for embedding.
To enhance stability and performance, we tie the
parameters of encoder embedding, decoder em-
bedding, and decoder output. We also introduce
dropout and attention dropout with a probability of
0.1, along with label smoothing at a rate of 0.1.

Similar to the approach described by Vaswani
et al. (2017), we employ the Adam optimizer
with a learning rate of 5e-4, implementing an in-
verse square root learning rate schedule with 4,000
warmup steps. We set the maximum number of
tokens to 10,240, with gradient accumulation every
21 steps to facilitate large-batch training in Tang
et al. (2021). We train all of our systems with 4
NVIDIA A6000 Gpus, and to expedite the training
process, we conducted all experiments using half-
precision training (FP16). Additionally, we save
checkpoints every 2000 steps and implement early
stopping based on perplexity, with a patience of 5
epochs.

3.2 Re-parameterized Embedding Table

Using a vocabulary that is shared across languages
is common practice in MMT. In addition to its
simple design, shared tokens play an important
role in positive knowledge transfer, assuming that
shared tokens refer to similar meanings across lan-
guages. This point has been demonstrated by pre-
vious works (Pires et al., 2019; Sun et al., 2022;
Stap et al., 2023; Wu and Monz, 2023). To enhance
word-level knowledge transfer, we follow (Wu
and Monz, 2023) to implement a re-parameterized
shared embedding table and equipped it with our
backbone.

We leverage eflomal (Östling and Tiedemann,
2016) to train and extract subword-level alignments
based on all of the bilingual data we used. Then, we
build the priors of word equivalence (word align-
ments) into a graph and leverage GNN (Welling
and Kipf, 2016) to re-parameterize the embedding
table.

More specifically, For two words vi and vj in V ,
we define an alignment probability from vj to vi
in corpus D as corresponding transfer ratios gi,j as
follows:

gi,j =
ci,j∑|V |
k=1 ci,k

, (1)

where ci,j is the number of times both words are
aligned with each other across D. The correspond-
ing bilingual equivalence graph G can be induced

by filling an adjacency matrix using gi,j , G is ap-
plied within graph networks to re-parameterize the
original embedding table as follows:

E′ = ρ(EW1 +GEW2 +B). (2)

To allow the message to pass over multiple hops,
we stack multiple graph networks and calculate
representations recursively as follows:

Eh+1 = ρ(EhW h
1 +GEhW h

2 +Bh), (3)

where h is the layer index, i.e., hop, and E0 is equal
to the original embedding table E. The last layer
representation EH is the final re-parameterized em-
bedding table, for the maximum number of hops
H , which is then used by the system just like any
vanilla embedding table.

4 Experiments

We describe the training process of our system in
three stages.

4.1 Pretraining with Synthetic Data

Back-translation plays an important role in leverag-
ing monolingual data in machine translation. In this
competition, we also apply it to produce synthetic
data and include it in our first-stage training.

Specifically, we first train a base MMT model
(backbone with re-parameterized embedding ta-
bles) using bilingual data. Then, we feed our mono-
lingual English data to produce EN-HE synthetic
bitext. Finally, we merge the original bilingual data
with the synthetic data together to pre-train our
MMT system. We follow Fan et al. (2021) and add
an additional language tag "2syn" to differentiate
between synthetic and original Hebrew data. Note
that, although normally original data (here, it is EN)
is used as target side data after back translation, we
use synthetic data for both directions.

4.2 Training without Synthetic Data

Considering that the synthetic data may differ from
the original bilingual data in terms of data quality,
domain difference, and diversity, in the second-
stage training, we encourage our system to skew
towards the original bilingual distribution. We
achieve this by discarding the synthetic data di-
rectly and continuing training upon the first-stage
system as a kind of full parameter finetuning.
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Strategy Sampled Data Full Data
EN�HE HE�EN EN�HE HE�EN

Bilingual Baseline 24.6 31.1 34.1 46.0
MMT Baseline 24.7 31.6 34.1 45.8
MMT + GM 1-hop 26.2 32.3 34.3 46.2
MMT + GM 2-hop 25.5 32.7 - -

Table 1: Offline evaluation results on sampled and full training data. For sampled data (2M), the backbone is
Transformer Base, while for full data (34M) the backbone is Transformer Large as we describe in Section 3.1. MMT
+ GM means that we equip graph-based re-parameterized embedding tables for our MMT baseline, and hop means
how many graph network layers are involved. The best BLEU scores in each column are written in bold.

Strategy Offline Online
EN�HE HE�EN EN�HE HE�EN

MMT Baseline 34.1 45.8 33.3 50.3
MMT + GM 1-hop 34.3 46.2 33.6 50.7
MMT + GM 1-hop + Stage-1 35.4 46.8 35.0 50.1
MMT + GM 1-hop + Stage-1,2 34.1 47.4 35.0 51.0
MMT + GM 1-hop + Stage-1,2,3 33.3 44.3 33.3 48.0

Table 2: Final results of three stages training. The best BLEU scores in each column are written in bold.

4.3 Finetuning on Task-Specific Data
Lastly, to encourage the system to focus on one
certain language direction, we further fine-tune
direction-specific data on the second-stage system.
Note, the direction-specific data here, i.e., EN→
HE and HE→ EN are both from the original bilin-
gual data. The effectiveness is also demonstrated
by Ding et al. (2021); Zan et al. (2022) for bilin-
gual translation.

In short, in this three-stage training process, we
gradually narrow down the data distribution to fo-
cus on task-specific real data.

4.4 Post-Processing
We noticed that some emoji tokens in the official
test set were not included in our vocabulary. Thus,
we integrated an additional post-processing step to
process them. Specifically, we escaped the emoji
tokens to their Unicode string* before tokenizing
and feeding them to our system to conduct infer-
ence, and then convert the Unicode string back for
generated predictions.

4.5 Offline Evaluation
We used Flores-200 (Costa-jussà et al., 2022) to
evaluate our strategies offline before submissions
and Ntrex-128 (Federmann et al., 2022) as the val-
idation set. We show the results in Table 1. Due
to resource limitations, we sample 2M of bilingual

*For example, the emoji of "Grinning Face with Open
Eyes" will convert to a string "U+1F600".

data to verify whether there is a big performance
gap between MMT and bilingual baseline. Mean-
while, we also chose the best hyperparameter for
our re-parameterized embedding table, i.e., the hop
number, based on the sampled dataset.

As shown in Table 1, on both sampled and full
data, the MMT baseline achieves comparable re-
sults with bilingual counterparts. Especially for
sampled data, it even outperforms 0.5 BLEU for
into-English translation.

The model-equipped 1-hop re-parameterized em-
bedding table demonstrates a notable improvement,
yielding a 1.5 BLEU gain for the out-of-English
direction and a 0.7 BLEU gain for the out-of- and
into-English directions, on 2M datasets. It shows
that the embedding re-parameterized method (Wu
and Monz, 2023) also works for bilingual settings,
which is not explored in the original paper. We did
not observe evident gains for 2-hop compared with
1-hop on sampled data, hence, we only apply the
1-hop graph networks for the full data training. As
shown in the table, the results are consistent with
that of small data, where MMT with 1-hop graph
networks achieve better performance than MMT
baseline.

As above, we chose MMT with the 1-hop setting
as our architecture and conducted our three stages
of training as described in Section 4.
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5 Results

Table-2 shows our offline and online evaluation
results according to each training stage described in
Section 4. We still use Flores-200 to conduct offline
evaluations. The online results are reported by
WMT23 background BLEU evaluations. Stage-1,
-2, and -3 refer to "Pretraining with Synthetic Data",
"Training without Synthetic Data", and "Finetuning
on Task-Specific Data" respectively.

The results of online and offline evaluations are
quite consistent. Both of them achieve best re-
sults when training with stage 1 and stage 2. It
shows that by step-by-step narrowing training data
from mixing with synthetic data to real data distri-
bution, we can further boost our MMT system’s
performance. However, when we further conduct
fine-tuning on direction-specific data, i.e., apply-
ing stage 3, there is an evident performance drop.
It seems that tuning in a specific direction upon
MMT may not be a good practice, at least when
the training data are a subset of that for MMT. We
leave this point for future exploration.

Our final system achieves 35.0 and 51.0 in
EN�HE and HE�EN direction respectively, which
are both in the first place for constrained tracks.

6 Conclusion

In this competition, we show that: 1) It is possible
to achieve comparable results with conventional
bilingual translation by using MMT training fash-
ion to handle two dual translation directions. 2)
Previous embedding re-parameterized method (Wu
and Monz, 2023) also works for bilingual trans-
lation, which is not verified in the original paper.
However, when training data scales up to 30+M
level, the improvements become marginal. 3) By
step-by-step narrowing training data (especially for
stage-1 and stage-2) from mixing with synthetic
data to real data distribution, we successfully boost
the final performance, even in a quite high-resource
scenario (30+M).
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Abstract 

This is LanguageX (ZengHuiMT)’s 
submission to WMT 2023 General 
Machine Translation task for 13 language 
directions. We initially employ an 
encoder-decoder model to train on all 13 
competition translation directions as our 
baseline system. Subsequently, we adopt 
a decoder-only architecture and fine-tune 
a multilingual language model by 
partially sampling data from diverse 
multilingual datasets such as CC100 and 
WuDaoCorpora. This is further refined 
using carefully curated high-quality 
parallel corpora across multiple 
translation directions to enable the model 
to perform translation tasks. As per 
automated evaluation metrics, our model 
ranks first in the translation directions 
from English to Russian, English to 
German, and English to Ukrainian. It 
secures the second position in the 
directions from English to Czech, English 
to Hebrew, Hebrew to English, and 
Ukrainian to English, and ranks third in 
German to English, Japanese to English, 
and Russian to English among all 
participating teams. Our best-performing 
model, covering 13 translation directions, 
stands on par with GPT-4. Among all 13 
translation directions, our multilingual 
model surpasses GPT-4 in bleu scores for 
7 translation directions. 

1 Introduction 

Since 2023, large language models like ChatGPT 
(Brockman et al., 2023) have had a profound 
impact on the field of machine translation, 
characterized by an ever-increasing scale in terms 
of parameters and data requirements. Many 

research institutions and language service 
providers struggle to keep pace with this 
computational arms race. For smaller teams, the 
only viable strategy is to maximize model 
performance under constrained hardware 
resources. We participated in the WMT 2023 
General Machine Translation task, covering 13 
translation directions. Given our limited 
computational power and time constraints, it was 
infeasible to craft dedicated models for each 
translation direction, making a large-scale 
multilingual translation model our optimal choice. 
We utilized Fairseq (Ott et al., 2019) to train our 
baseline multilingual translation model and 
further employed the Hugging Face Transformers 
Toolkit (Wolf et al., 2020) to train a multilingual 
language model. Subsequent fine-tuning with 
task-specific instructions enabled it to perform 
multilingual translation tasks effectively. 

2 Data Filtering and Selection 

We participated in the WMT 2023 General MT 
task, competing in 13 language pairs including 
Chinese to/from English, German to/from 
English (at the document level), Hebrew to/from 
English (in a low-resource setting), Japanese 
to/from English, Russian to/from English, 
Ukrainian to/from English, and English to Czech. 

Given the challenge of concurrently training 
for 13 translation directions, it was imperative for 
us to judiciously regulate the size of parallel 
corpora specific to each direction, as well as the 
parameter count of the multilingual translation 
model. This was crucial to ensure training 
completion within a constrained timeline. For the 
Chinese-English bi-directional translation, our 
primary sources for parallel corpora were the 
CCMT Corpus (which can be found at: 
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http://mteval.cipsc.org.cn:81/agreement/descripti
on), genuine internal translation project data, in 
addition to content extracted and curated from 
websites and e-books. This rigorous process 
resulted in a refined collection of approximately 5 
million parallel sentence pairs. For other 
translation orientations, we used the English 
segments from the derived Chinese-English 
parallel corpus as foundational data. This seed 
data enabled the retrieval of analogous language 
pairs from our comprehensive in-house 
multilingual parallel corpus, with each translation 
direction maintaining a parallel sentence count in 
the ballpark of 5 million. 

Given the need to train a decoder-only 
multilingual model, we primarily utilized public 
datasets such as Book Corpus (Zhu et al., 2015), 
CC100 (Conneau et al., 2020), and 
WuDaoCorpora (Yuan et al., 2021). It was also 
imperative for us to regulate the data volume for 
each language and the parameter count of the 
multilingual model. Table 1 delineates the sources 

and the respective quantities for monolingual data 
across different languages. Owing to the extended 
length of text segments in the WuDaoCorpora  
(Yuan et al., 2021), the number of extracted text 
passages is fewer compared to other languages. 
However, the character count remains substantial. 
 

2.1 Monolingual Data Filtering 

The following rules are used to filter parallel 
corpus. 
• Remove duplicated sentence pairs. 

• Remove the sentence pairs containing special 
characters. 
• Remove the sentence pairs containing html 
addresses or tags. 

2.2 Parallel Data Filtering Using Rules 

The following rules are used to filter parallel 
corpus. 
a. Remove duplicated sentence pairs. 
b. Remove the lines having identical source and 

target sentences. 
c. Remove the sentence pairs containing special 

characters. 
d. Remove the sentence pairs containing html 

addresses or tags. 
e. Remove the sentence pairs with empty source 

or target side. 

2.3 Parallel Data Filtering Using 
Multilingual Language Model 

We used a multilingual model - sentence-
transformers/paraphrase-multilingual-mpnet-

base-v2 (Reimers et al., 2019) that generates 
embeddings for sentences or paragraphs in 
various languages. Using these embeddings, we 
calculated semantic similarity scores for parallel 
sentence pairs. Based on these scores, we filtered 
out low-quality parallel sentence pairs. 

3 System Description 

This section illustrates how the model is trained 
step by step. 

Language Data Source Size in GB Paragraph Count 

Chinese WuDaoCorpora 6.4 3,980,000 

Czech CC100 4.5 29,630,985 

German CC100 5.1 24,958,540 

English BookCorpus 4.3 20,000,000 

English CC100 3.3 20,000,000 

Hebrew CC100 5.4 30,877,445 

Japanese CC100 5.8 30,985,700 

Russian CC100 5.7 13,928,244 

Ukrainian CC100 4.6 16,818,862 

Table 1: Sources and Quantities of Monolingual Data for Each Language. 
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3.1 Data pre-processing 

Data pre-processing of multilingual 
translation model. We utilized the NLLB 
(NLLB Team, 2022) tokenizer from Hugging 
Face as the foundation and incorporated 
additional Chinese tokens to create an enhanced 
tokenizer specifically for Chinese language 
processing. This resulted in a final vocabulary 
size of 266,786 tokens. 

To ensure synchronized training across all 
translation directions and to prevent the model 
from mastering one translation direction at the 
expense of another, we evenly blended the 
multilingual parallel corpora. This involved 
sequentially placing a fixed number of parallel 
sentence pairs from different translation 
directions into the training set, typically set to 100 
pairs per direction. 

To facilitate the simultaneous training of 
multiple translation directions within a single 
large model, we shared the embeddings and 
vocabulary for both source and target languages. 
Furthermore, we prefixed the source part of the 
parallel sentence pairs with specific prompt 
tokens. 

The structure of the parallel sentence pairs is as 
follows: {engine name} engine. Translation from 
{source language} to {target language}: {source 
line} ������ {target line} <eos>. ������ is the delimiter 
used for parallel corpora. 

To better accommodate the German to/from 
English (at the document level) translation task, 
we combined conventional sentence-level 
German to/from English parallel corpora into 
paragraph-level corpora based on a specified 
number of sentences. We then mixed this with the 
regular sentence-level parallel corpora, ensuring 
the resultant model is trained to handle a broader 
range of sequence lengths. 

 
Data pre-processing of multilingual language 
model. We employed the same tokenizer as used 
in the multilingual translation model. 

Due to the vast size of the CC100 dataset 
(Conneau et al., 2020), we performed sampling 
on the data for all languages, with 1,000 lines as 
the sampling unit. Multiple units were extracted 
from various parts of the entire dataset to cover it 
as comprehensively as possible, while keeping 
the individual language data size at around 5GB. 

To mitigate catastrophic forgetting, we 
uniformly mixed the monolingual data of each 

language. This ensured that the training process 
included synchronized training on data from all 
languages, rather than training on one language 
first and then training on another. 

The structure of the supervised finetuning 
prompt for translation task is as follows: {engine 
name} engine. Text in {source language}: 
{source line} Translation of the previous text to 
{target language}: {target line} ����. 

To prevent endless generation and excessive 
translation, the ���� emoji is placed at the end of 
the translation to signify its completion, signaling 
the model to cease generation. 

3.2 Baseline Translation Model Training 

The parallel data prepared in step 3.1 is used to 
train a multilingual translation model using 
transformer (Vaswani et al., 2017) architecture as 
the baseline. Training was conducted using 
Fairseq (Ott et al., 2019) over the entire dataset 
for four epochs. The crucial training parameters 
are as follows: 

--encoder-layers 12 \ 
--encoder-attention-heads 16 \ 
--encoder-embed-dim 1024 \ 
--encoder-ffn-embed-dim 4096 \ 
--decoder-layers 6 \ 
--decoder-attention-heads 16 \ 
--decoder-embed-dim 1024 \ 
--decoder-ffn-embed-dim 4096 \ 
--share-decoder-input-output-embed \ 
--share-all-embeddings \ 
--max-source-positions 1024 \ 
--max-target-positions 1024 \ 
--lr 5e-4 \ 
--lr-scheduler inverse_sqrt \ 
--warmup-updates 4000 \ 

 

Parameter Value 
Trainable parameters 1,091,315,712 
Vocabulary size 266,786 
Max length 1024 
Embedding 
Dimension 

1536 

Decoder layers 24 
Attention heads 16 
Learning rate 5e-5 
Lr scheduler type linear 
Warmup steps 4,000 

Table 1: Parameters for Training Multilingual 
Language Model. 
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3.3 Multilingual Language Model Training 

We utilized DeepSpeed (Rasley et al., 2020) and 
Hugging Face transformers (Vaswani et al., 2017) 
as our training tools and trained the models on the 
uniformly mixed monolingual data and SFT data 

prepared in step 3.1 after applying bf16 precision. 
The specific training parameters are presented in 
Table 2. The entire training process was 
completed using four RTX A6000 GPUs. After 
completing one full pass of the entire dataset, we 

Translation Direction Baseline Translation Model Multilingual Language Model 

en-cs 41.20 43.67 

en-de 40.20 41.00 

en-he 35.00 36.52 

en-ru 31.20 32.07 

en-uk 26.60 28.29 

en-zh 47.30 53.01 

en-ja 17.00 17.60 

de-en 26.70 42.08 

he-en 56.00 57.51 

ja-en 21.20 23.54 

ru-en 30.90 32.15 

uk-en 42.50 44.28 

zh-en 25.2 28.27 

Table 3: BLEU scores on Newstest 2023 for all directions and different training methodologies. 

Translation Direction GPT 4-5shot Multilingual Language Model 

en-cs 38.26 43.67 

en-de 44.08 41.00 

en-he 27.08 36.52 

en-ru 31.09 32.07 

en-uk 25.78 28.29 

en-zh 49.65 53.01 

en-ja 20.55 17.60 

de-en 49.54 42.08 

he-en 52.04 57.51 

ja-en 25.27 23.54 

ru-en 35.31 32.15 

uk-en 44.84 44.28 

zh-en 27.87 28.27 

Table 4: BLEU score comparison between the multilingual model and GPT-4 across all language directions 
on Newstest 2023. 
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terminated the training of the multilingual 
language model. 

3.4 Results 

The BLEU (Papineni et al., 2002) scores on 
Newstest 2023 for all translation directions and 
different training methodologies are presented in 
Table 3. 

Based on the automated assessment metrics, 
our system takes the lead in translation directions 
from English to Russian, English to German, and 
English to Ukrainian. It claims the runner-up spot 
for English to Czech, English to Hebrew, Hebrew 
to English, and Ukrainian to English directions, 
and occupies the third place for the German to 
English, Japanese to English, and Russian to 
English directions among the contenders. 

4 Conclusion 

This paper describes LanguageX (ZengHuiMT)’s 
translation system for the WMT2023 General MT 
task. Initially, we utilize a comprehensive 
encoder-decoder structure to establish our 
baseline system by training across all 13 contest 
translation directions. In the subsequent stages, 
we embrace a solely decoder-focused design and 
harness a multilingual language model, drawing 
samples from multilingual datasets like CC100 
(Conneau et al., 2020) and WuDaoCorpora (Yuan 
et al., 2021). This model is then meticulously fine-
tuned using select high-grade parallel corpora 
from various translation domains, empowering it 
to execute translation task. 

Our best-performing model, covering 13 
translation directions, boasts around 1 billion 
parameters. This is less than one percent of the 
parameter count of mammoth models like GPT-4 
(OpenAI, 2023), which possess hundreds of 
billions of parameters. In translation evaluations 
across all languages, our system stands on par 
with GPT-4 (OpenAI, 2023). Among all 13 
translation directions, our multilingual model 
surpasses GPT-4 (OpenAI, 2023) in bleu 
(Papineni et al., 2002) scores for 7 translation 
directions. 
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Abstract

This paper describes the IOL Research team’s
submission systems for the WMT23 gen-
eral machine translation shared task. We
participated in two language translation di-
rections, including English→Chinese and
Chinese→English. Our final primary submis-
sions belong to constrained systems, which
means for both translation directions we only
use officially provided monolingual and bilin-
gual data to train the translation systems. Our
systems are based on Transformer architecture
with pre-norm or deep-norm, which has been
proven to be helpful for training deeper models.
We employ methods such as back-translation,
data diversification, domain fine-tuning and
model ensemble to build our translation sys-
tems. An important aspect worth mentioning
is our careful data cleaning process and the uti-
lization of a substantial amount of monolingual
data for data augmentation. Compared with the
baseline system, our submissions have a large
improvement in BLEU score.

1 Introduction

This paper describes our submissions to the
WMT23 General Machine Translation shared task.
We participated in two language translations:
English-to-Chinese and Chinese-to-English. For
both tasks, we built our system in a constrained sce-
nario, using only official training data. Our systems
are based on Transformer(Vaswani et al., 2017) ar-
chitecture with pre-norm or deep-norm(Wang et al.,
2022), which has been proven to be helpful for
training deeper models. We used rule-based meth-
ods, language models, and alignment models to
clean bilingual and monolingual data, and then
used back-translation(Sennrich et al., 2016), data
diversification(Nguyen et al., 2020), and model
ensemble(Garmash and Monz, 2016) to leverage
large-scale monolingual data to construct our trans-
lation systems. We also tried domain fine-tuning
and found that this approach still helped in improv-

ing the BLEU(Papineni et al., 2002) scores on the
WMT23 test set.

The design of the subsequent paper is as follows.
We introduce the data source and processing strat-
egy in Section2; Section 3 describes the details
of our training procedure; Section 4 presents the
experimental settings and results.

2 Data

2.1 Data Source
Bilingual corpus We used all provided bilingual
data, including: ParaCrawl v9(Bañón et al., 2020),
News Commentary v18.1, Wiki Titles v3, UN Par-
allel Corpus v1.0(Ziemski et al., 2016), CCMT
Corpus, WikiMatrix(Schwenk et al., 2019), and
Back-translated news.
English monolingual corpus The used English
monolingual data including: News crawl, News
discussions, Europarl v10, News Commentary,
Common Crawl, Leipzig Corpora(Goldhahn et al.,
2012), and English part of other bilingual data for
WMT general task.
Chinese monolingual corpus The used Chinese
monolingual data including: News crawl, News
Commentary, Common Crawl, Leipzig Corpora,
and Extended Common Crawl.

2.2 Data Preprocessing
For bilingual data we first filter out noisy sentences
according to the rules, the filtering rules are as
follows:

• Remove invisible characters.

• Remove sentences containing too more than
300 words or more than 1000 characters or
less than 3 characters.

• Remove English sentences containing words
exceeding than 40 characters.

• Remove Chinese sentences with a low rate of
Chinese characters(less than 0.2).
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• Remove sentences that contain too many punc-
tuation marks.

• Remove sentences that contain repeated sub-
strings, which refers to a string composed of
a single character that repeats more than 10
times, or two or more character that repeat
more than 5 times.

• Remove sentences that contain HTML tags.

• Convert full-width characters to half-width
characters, Traditional Chinese to Simplified
Chinese.

• Remove duplicated sentence pairs.

Then we use fast-align(Dyer et al., 2013) to fil-
ter out sentence pairs with low alignment scores
(less than 13) or low bilingual alignment ratio (less
than 0.6), and use forward and reverse translation
models to calculate the perplexity of sentence pairs,
removing sentence pairs with high perplexity. For
monolingual data we perform filtering using simi-
lar rules to bilingual data. At the same time, The
KenLM(Heafield, 2011)1 tool is used to train an n-
gram language model to filter sentences with high
perplexity scores (more than 10 000). The origi-
nal parallel data totaled about 64 million sentences,
and after cleaning, 46.06 million sentences were
retained. Through data cleaning, we obtained 1.4
billion sentences Chinese monolingual data, and
1.2 billion sentences English monolingual data.

We used the Sentencepiece(Kudo and Richard-
son, 2018) tool to train the unigram model for sub-
word segmentation, and vocabulary sizes for both
Chinese and English were set to 36 000.

3 System Overview

We chose Transformer(Vaswani et al., 2017) as
our base translation model and used both pre-norm
and deep-norm(Wang et al., 2022) variants to help
us train deeper models. To improve the qual-
ity of translation models, we first pre-trained the
translation models from scratch on the synthesized
datasets generated by back-translation, then con-
tinue training on the datasets generated by data di-
versification, and finally used domain data for fine-
tuning. We also iteratively performed two rounds
of data augmentation to improve the quality of the
synthetic data. The final synthetic data is generated
by the model after training on data diversification

1https://github.com/kpu/kenlm

data of the first round. We only used domain fine-
tuning in the final submission. This method we
adopt is a commonly used method in the field of
machine translation and has been proven to be ef-
fective. In the following sections, We show the
specifics of how we use these methods.

3.1 Back-translation

Back-translation(Sennrich et al., 2016) is almost
the most well-known data augmentation method in
the field of machine translation, which can effec-
tively utilize target monolingual data to improve
translation quality, even in high resource situa-
tions. We used top-k sampling strategy to generate
back-translation data with top-k=10, and used the
method in section 2 to filter the generated data.
To further increase the diversity of synthetic data,
we also employed different back-translation mod-
els, such as the R2L model and the L2R model,
and models with different structures to perform the
back-translation method. Since this task is oriented
to a general domain, we only use the cleaned mono-
lingual data to generate synthetic data and do not
select according to the domain. Because our sys-
tems are first pre-trained on back-translation data,
unlike the original approach(Sennrich et al., 2016),
the method back-translation in this paper refers
to using only back-translation data and does not
including the non-augmented corpora.

3.2 Data Diversification

Data diversification(Nguyen et al., 2020) is a
data augmentation method by performing back-
translation and forward-translation multiple times
on the target-side and source-side data of the paral-
lel corpus, respectively. Following this approach,
we used different models to generate synthetic data
by beam search. However, we not only use parallel
data as source language for synthetic data, but also
monolingual data. The ratio between monolingual
and parallel data is 1:1.

3.3 Model Ensemble

Model ensemble can effectively improve the over-
all system performance by combining the strengths
of multiple individual models. The larger the differ-
ence between multiple single models, the larger the
improvement the ensemble model can receive. We
mainly increase the diversity between single mod-
els by using different monolingual data, including
different monolingual data in the back-translation
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stage and different monolingual data in the data
diversification stage.

3.4 Domain Fine-tuning

Although the WMT23 test set contains sentences
from multiple domains and the WMT21 test set
mainly consists of sentences from the news domain,
we found that fine-tuning on the WMT21 test set
can still improve the WMT23 test set. Therefore,
we still attempted to fine-tune our model using
newtest2021 as in-domain data.

4 Experiments

4.1 Experiment Settings

All of our translation models were implemented
based on fairseq(Ott et al., 2019) and trained on 8
NVIDIA A100 GPUs. During training, we used
the Adam(Kingma and Ba, 2014) optimizer with
β1 = 0.9, β2 = 0.98, the learning rate scheduling
strategy of inverse sqrt, the number of warmup
step set to 4000, the maximum learning rate set to
0.0005 and FP16 to accelerate the training process
.

We used a 24-encoder, 6-decoder transformer
with pre-norm as baseline and the embedding size
was set to 1024. It was trained only on a real paral-
lel corpus, with a batch size set at 240,000 tokens.
For the data augmentation models, we increased
the dimension of the embedding size to 1536 and
adjusted the number of the encoder and decoder
layers, using equal encoder and decoder layers, or
deep encoder layers and shallow decoder layers
to increase the model parameter size to approxi-
mately 1 billion. The training process for these
models used a batch size of 640,000 tokens. Main-
taining the diversity of different models is a useful
trick for model ensembles, so we trained multiple
different models by adjusting the number of layers
of different models, using pre-norm or deep-norm,
using different synthetic data, with or without do-
main fine-tuning to improve diversity. Finally, we
trained 4 models from Chinese to English and 5
models from English to Chinese for model ensem-
ble.

4.2 Results

All experiments were evaluated using the sacre-
bleu(Post, 2018) tool to calculate BLEU(Papineni
et al., 2002) scores on the WMT21, FLoRes(Goyal
et al., 2021), and NTREX-128 test sets(Federmann
et al., 2022). We used beam search with beam

size=5 to decode all models and converted punctu-
ation to Chinese characters in English-to-Chinese
direction. Regarding the final results we submit-
ted, we also used regular expressions for n-gram
repetition detection. For translations containing
repeated substrings, we set a repetition penalty of
1.5 to retranslate the source sentences. The results
of Zh→En and En→Zh are shown in Table 1 and
Table 2.

Based on Table 1, we can clearly see that the
use of Back-Translation and Data Diversification
shows significant improvements on multiple test
sets. Compared to the baseline, using both data aug-
mentation methods achieves more than 2 BLEU im-
provements on each test set. More than 0.5 BLEU
improvement is also achieved on each test set with
the model ensemble. In the end, we achieved
BLEU improvements of +4.4, +3.7 and +2.8 on
the three test sets of FLoRes, NTREX-128 and
WMT21 respectively. The inclusion of domain
fine-tuned models can further improve the WMT
23 test set compared to the model ensemble without
domain fine-tuning.

From Table 2, we can see that there is a signifi-
cant improvement using Back-translation on each
test set. After using Data Diversification, only fur-
ther improvement is achieved on the FLoRes test
set, while there is varying degree of decrease on the
other two test sets. Due to the decrease in diversity
caused by fine-tuning multiple models with similar
synthetic data generated by Data Diversification,
and Data Diversification did not lead to a consistent
improvement on the English to Chinese test set, in
the model ensemble stage, 4 out of 5 models were
trained on only Back-translation data. Finally, on
the three test sets of FLoRes, NTREX-128, and
WMT21, we achieve improvements of +6.5, +5.9,
and +3.6 BLEUs compared to the baseline, respec-
tively, with the model ensemble contributing the
largest improvement. Similar to the results from
Chinese to English, further improvements are ob-
tained on the WMT23 test set after adding domain
fine-tuning.

5 Conclusion

In this paper, we described IOL Research’s submis-
sions to the WMT2023 General Translation shared
task. We participated in the English from and to
Chinese translation. Our system aims to leverage
as much monolingual data as possible to improve
the quality of machine translation. Experimental
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System FLoRes NTREX-128 WMT21 WMT23
Baseline 31.4 30.4 27.6 -
+Back-translation 34.2 33.2 28.4 -
+Data Diversification 35.2 33.2 29.7 -
+Ensemble 35.8 34.1 30.4 26.4
+Fine-tuning - - - 27.2

Table 1: Zh→En BLEU scores on FLoRes, NTREX-128, WMT21, and WMT23 test sets. Due to the limited number
of submissions, we only report part results of WMT23.

System FLoRes NTREX-128 WMT21 WMT23
Baseline 41.8 33.5 31.9 -
+Back-translation 44.6 37.4 33.9 -
+Data Diversification 45.2 34.5 32.8 -
+Ensemble 48.3 39.4 35.5 56.3
+Fine-tuning - - - 56.9

Table 2: En→Zh BLEU scores on FLoRes, NTREX-128, WMT21, and WMT23 test sets. Due to the limited number
of submissions, we only report part results of WMT23.

results show that by increasing the scale of monolin-
gual data in the system through data augmentation
and model ensemble, we have achieved substantial
improvements on multiple test sets.
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Abstract
This paper presents the submission by Global
Tone Communication Co., Ltd. and Dalian
Univeristy of Technology for the WMT23
shared general Machine Translation (MT) task
at the Conference on Empirical Methods in
Natural Language Processing (EMNLP). Our
participation spans 8 language pairs, includ-
ing English-Ukrainian, Ukrainian-English,
Czech-Ukrainian, English-Hebrew, Hebrew-
English, English-Czech, German-English, and
Japanese-English. Our systems are designed
without any specific constraints or require-
ments, allowing us to explore a wider range of
possibilities in machine translation. We priori-
tize backtranslation, utilize multilingual trans-
lation models, and employ fine-tuning strate-
gies to enhance performance. Additionally,
we propose a novel data generation method
that leverages human annotation to generate
high-quality training data, resulting in im-
proved system performance. Specifically, we
use a combination of human-generated and
machine-generated data to fine-tune our mod-
els, leading to more accurate translations. The
automatic evaluation results show that our sys-
tem ranks first in terms of BLEU score in
Ukrainian-English, Hebrew-English, English-
Hebrew, and German-English.

1 Introduction

In this study, we utilize fairseq (Ott et al., 2019)
as our development tool and adopt the transformer
(Vaswani et al., 2017) as the primary architecture.
The main ranking index for the submitted systems
is BLEU (Papineni et al., 2002), which we also em-
ployed as the evaluation metric for our translation
system using sacreBLEU1, consistent with our ap-
proach from the previous year.

For data preprocessing, we apply punctuation
normalization, tokenization, and Byte Pair En-
coding (BPE)(Sennrich et al., 2015) across all

∗Corresponding Author
1https://github.com/mjpost/sacrebleu

languages. Additionally, we applied a truecase
model for English, Ukrainian and Czech, tailored
to the specific characteristics of each language. In
terms of tokenization, we utilized polyglot2 for
Ukrainian and Hebrew, and Moses tokenizer.perl
(Koehn et al., 2007) for English and Czech. More-
over, we incorporated knowledge-based rules and
a language model to clean parallel data, monolin-
gual data, and synthetic data.

For the multilingual translation model, we amal-
gamated all languages into a single model and sup-
plemented it with an English to Russian parallel
corpus to enrich the language information.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the translation task
and presents statistics of the dataset. Section 3
describes our baseline systems and the proposed
multilingual translation model. The data selec-
tion method is elaborated in Section 4. Section 5
presents experiments conducted on all translation
directions, covering data filtering, model archi-
tectures, back-translation, joint training strategies,
adaptations of the multilingual model, fine-tuning,
data selection, and ensemble decoding. Section 6
analyzes the results, providing insights into the ef-
ficacy of different techniques. Finally, Section 7
concludes the paper.

2 Task Description

The task at hand focuses on bilingual text trans-
lation, with the provided data detailed in Table
1, which includes both parallel and monolingual
data. For the English-Ukrainian and Ukrainian-
English directions, the primary sources of paral-
lel data are ParaCrawl v9 (Bañón et al., 2020),
WikiMatrix (Schwenk et al., 2019), the Tilde
MODEL corpus (Rozis and Skadin, š, 2017), and
OPUS (Tiedemann, 2012). For the Ukrainian-
Czech direction, the main parallel data comes

2https://github.com/aboSamoor/polyglot
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language number of sentences
en-he parallel data 26.5M
en-uk parallel data 33.8M
cs-uk parallel data 6.5M
en-ru parallel data 165M
en monolingual data 90M
uk monolingual data 14M
cs monolingual data 53M
he monolingual data 5.4M
en-uk development set 1012
en-he development set 1012
cs-uk development set 1012
en-ru development set 2002
en-cs development set 1997

Table 1: Task Description

from WikiMatrix, ELRC, and OPUS. In the case
of Hebrew-English and English-Hebrew, the par-
allel data is primarily sourced from WikiMatrix
and OPUS. For English-Czech, the data sources
include Europarl V10, ParaCrawl V9, Common
Crawl corpus, News Commentary v18.1, CzEng
2.0 (Kocmi et al., 2020), Tilde MODEL corpus,
WikiMatrix, and OPUS. For English-Russian, the
sources are ParaCrawl v9, Common Crawl corpus,
News Commentary v18.1, Yandex Corpus, UN
Parallel Corpus V1.0(Ziemski et al., 2016), Tilde
MODEL corpus, and WikiMatrix. The monolin-
gual data utilized includes: News Crawl (Kocmi
et al., 2022) in English, Ukrainian, and Czech;
Leipzig Corpora (Goldhahn et al., 2012) in He-
brew, Ukrainian, and Czech; News discussions
in English; News Commentary in Czech and En-
glish; and Legal Ukrainian. We used the provided
development set from newstest2019 for English-
Czech, newstest2020 for English-Russian, and the
FLoRes101 (NLLB Team, 2022) dataset for the re-
maining directions.

3 Billingual Baseline Model and
Multilingual Translation Model

Bilingual Baseline Model and Multilingual Trans-
lation Model: To establish a robust baseline for
comparison with our multilingual model, we em-
ployed the transformer_wmt_en_de as our Bilin-
gual baseline model, which consists of 12 en-
coding and 12 decoding layers. The multilin-
gual translation model closely mirrors the GT-
COM2022 (Zong and Bei, 2022) model, but this
year, the focus is on the X to X model. To achieve

superior translation quality, we incorporated Rus-
sian as the primary auxiliary language due to its
high similarity with Ukrainian. We trained a sin-
gle multilingual model that encompasses all direc-
tions. For all languages in the multilingual model,
we applied joint Byte Pair Encoding (BPE) sepa-
rately.

4 Data Selection

We use source test sets to train a text classification
model with RoBERTa (Liu et al., 2019). Specif-
ically, we use the in-domain test set as positive
examples, and another same mount of sentence
pairs from the out-of-domain test set as negative
examples. We fine-tuned RoBERTa on this labeled
dataset to obtain a binary classifier, which can ef-
fectively distinguish between in-domain and out-
of-domain data. We then utilized this classifier to
select domain-specific training data from the gen-
eral training corpus. The selected in-domain train-
ing data was used to fine-tune the multilingual neu-
ral machine translation model.

We also experimented with an alternative data
selection approach based on prompt learning. We
constructed a prompt template and leveraged the
generative power of ChatGLM-6B (Zeng et al.,
2022; Du et al., 2022) to obtain an domain clas-
sifier via p-tuning (Liu et al., 2021). The prompt
template is displayed in Table 2. Specifically,
we extract 1,600 sentences from development set
which belong to news, social, e-commerce or con-
versation domain. We manually select 400 sen-
tences from training set that do not belong to do-
mains above or are of poor quality, considering
them as other domain. We then used these 2,000 la-
beled examples to guide the p-tuning of ChatGLM-
6B. The resulting prompt-based classifier can ef-
fectively differentiate domains of training data.
We consider sentences with predicted labels of
"News", "Social", "E-commerce" and "Conversa-
tion" as in-domain data, and sentences with pre-
dicted labels of "Other" as out-of-domain data.

5 Experiment

This section outlines the step-by-step experiments
we conducted, with the entire workflow depicted
in Figure 1.

• Data Filtering: The data filtering methods
largely replicate those we employed last year,
encompassing human rules, language mod-
els, and repeat cleaning.
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Instructions

Please determine the domain to which the given sentence belongs based on the
following criteria.
1. Sentence Correctness: If the sentence is incomplete, incoherent, or grammatically
incorrect, label it as "Other" domain. If the sentence is complete, fluent, and
grammatically correct, proceed to the next step.
2. Domain Identification: Analyze the content of the sentence to identify the possible
domain it belongs to. Consider the following domains: News, Social, E-commerce,
Conversation, and Other. If the sentence shows clear indications of being from a
specific domain, label it accordingly, otherwise label it as "Other" domain.
Please label the sentence with the appropriate domain:
- If the sentence is from the News domain, label it as "News".
- If the sentence is from the Social domain, label it as "Social".
- If the sentence is from the E-commerce domain, label it as "E-commerce".
- If the sentence is from the Conversation domain, label it as "Conversation".
- If the sentence does not fit any specific domain or is incorrect, label it as "Other".

Sentence Sunday Best: Enter 1880s New York in HBO’s "The Gilded Age"
Domain News

Table 2: Prompt Template. We construct a prompt template <Instructions><Sentence><Label> for ChatGLM-6B
p-tuning. Model is asked to label the <Sentence> with the appropriate domain according to <Instructions>. For
each language pair in Table 1, we extract 1600 English sentences from development set and label them with given
domain. Manually select 400 sentence from the training set that do not belong to specific domain or are of poor
quality, and considered them as other domain. By filling <Sentence> and <Domain> with sentences above and
corresponding domain, labeled samples for p-tuning can be construct.

• Baseline: We constructed our baseline using
the transformer big architecture, which con-
sists of 12 encoder layers and 12 decoder lay-
ers.

• Back-translation: We utilized the best trans-
lation model to translate the target sentence
to the source side, and cleaned synthetic data
with a language model. Here, we trans-
lated each language pair included in the mul-
tilingual translation model. We mixed the
cleaned back-translation data and parallel
sentences and trained the multilingual trans-
lation model.

• Joint training: We repeated the back-
translation step using the best model until no
further improvement was observed.

• Multilingual translation model: We trained
a single model for all directions, with each
direction having joint BPE and a shared vo-
cabulary. The multilingual translation model
comprises 24 encoder layers and 24 decoder
layers, using the transformer big architecture.

• Fine-tuning: We fine-tuned the multilingual
translation model for each direction and bi-

direction separately. For instance, we fine-
tuned uk2cs on the multilingual translation
model and fine-tuned uk2cs and cs2uk on the
multilingual translation model for Ukrainian
to Czech separately.

• Data selection: We use model from section
Data Selection to select domain-specific train-
ing dataset and fine-tune it on the multilin-
gual translation model.

• Ensemble Decoding: We employed the
GMSE Algorithm (Deng et al., 2018) to se-
lect models to achieve optimal performance.

6 Result and Analysis

Table 3, Table 4 and Table 5 show the BLEU
score we evaluated on development set for En-
glish to/from Ukrainian, Czech to Ukrainian, En-
glish to Czech and English to/from Hebrew re-
spectively. As shown in the above table, back-
translation is still the best data augmentation mea-
sure to improve translation quality from the data
aspect. Multilingual translation model also show
solid improvement in all five directions. As Chat-
GLM only supports Chinese and English, we only
perform data selection with prompt learning in
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Figure 1: The work flow of GTCOM machine translation competition systems

model en2uk uk2en
baseline 34.11 40.99
+ back translation 34.64 41.11
multilingual translation model 34.05 40.97
+ back translation 35.01 41.96
+ bilingual fine-tuning 35.02 42.28
+ single fine-tuning 35.07 42.36
ensemble decoding 35.7 42.48

Table 3: The BLEU score between English and
Ukrainian.

model en2cs cs2uk
baseline 28.4 23.73
+ back translation 28.61 25.45
multilingual translation model 28.29 26.05
+ back translation 28.88 27.02
+ bilingual fine-tuning 29 27.43
+ single fine-tuning 29.01 27.41
ensemble decoding 29.31 27.88

Table 4: The BLEU score of Czech to Ukrainian and
English to Czech.

English-sourced language pairs. As shown in Ta-
ble 6, our prompt learning strategy is still able to
improve the BLEU score even after applying all
other approaches. Regarding German to English
and Japanese to English directions, we generate
the task translations using our online system with-
out any specific tuning.

We have noticed a significant improvement, par-
ticularly in the low-resource direction of Czech to
Ukrainian, when we added Russian (which is a lan-
guage closely related to Ukrainian) to the multilin-
gual corpus.

model en2he he2en
baseline 34.71 45.66
+ back translation 34.8 47.06
multilingual translation model 34.52 46.74
+ back translation 35.8 46.92
+ bilingual fine-tuning 36.07 47.05
+ single fine-tuning 35.98 47.01
ensemble decoding 36.38 47.55

Table 5: The BLEU score of Czech to Ukrainian and
English to Czech.

Direction BLEU BLEU w/o DS
en-uk 27.5 26.0
en-cs 42.3 41.1
en-he 37.2 34.6

Table 6: The final online automatic evaluation BLEU
with/without prompt learning in data selection.

7 Conclusion

This paper presents GTCOM and DLUT’s neu-
ral machine translation systems for the WMT23
shared general MT task. We applied three major
techniques to enhance translation quality: back-
translation, a multilingual translation model, and
fine-tuning with data selection. By employing
these techniques, we achieved significant improve-
ments in automatic evaluation metrics, as demon-
strated in Table 7.
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Abstract

RoCS-MT, a Robust Challenge Set for Machine
Translation (MT), is designed to test MT sys-
tems’ ability to translate user-generated con-
tent (UGC) that displays non-standard charac-
teristics, such as spelling errors, devowelling,
acronymisation, etc. RoCS-MT is composed
of English comments from Reddit, selected
for their non-standard nature, which have been
manually normalised and professionally trans-
lated into five languages: French, German,
Czech, Ukrainian and Russian. In the context
of the WMT23 test suite shared task, we anal-
yse the models submitted to the general MT
task for all from-English language pairs, offer-
ing some insights into the types of problems
faced by state-of-the-art MT models when deal-
ing with non-standard UGC texts. We compare
automatic metrics for MT quality, including
quality estimation to see if the same conclu-
sions can be drawn without references. In terms
of robustness, we find that many of the systems
struggle with non-standard variants of words
(e.g. due to phonetically inspired spellings, con-
traction, truncations, etc.), but that this depends
on the system and the amount of training data,
with the best overall systems performing better
across all phenomena. GPT4 is the clear front-
runner. However we caution against drawing
conclusions about generalisation capacity as
it and other systems could be trained on the
source side of RoCS and also on similar data.

1 Introduction

As the quality of state-of-the-art machine transla-
tion (MT) systems is becoming indistinguishable in
certain scenarios and domains from that of human
translators (Kocmi et al., 2022), the task of tackling
the translation non-standard texts is becoming an
increasingly realisable aim. A considerable propor-
tion of texts produced today are done so online in
informal, unedited settings, e.g. on forums such as
Twitter and Reddit, and MT is frequently to make
posts accessible to a global audience. However, it

has been shown that MT still struggles with user-
generated content (UGC) (Gupta et al., 2023), as
the type of language can differ considerably from
the edited texts that have traditionally been used to
train and evaluate MT models.

The RoCS-MT challenge set (Robust Challenge
Set for Machine Translation) is designed to pro-
vide a test bed for the automatic translation of non-
standard UGC phenomena. It contains approxi-
mately 2k sentences from the online forum Red-
dit that have been manually normalised and pro-
fessionally translated into five languages: French,
German, Czech, Ukrainian and Russian. The sen-
tences were selected specifically for the presence
of non-standard phenomena, of which we provide
manual annotations (e.g. spelling errors, devow-
elling, capitalisations, acronymisms, etc.). Inspired
by other datasets such as the French Social Media
Bank (Seddah et al., 2012) and its parallel com-
ponent (Rosales Núñez et al., 2019), our aim is to
provide an evaluation set that is more challenging
than certain previous efforts, such as the commonly
used MTNT dataset (Michel and Neubig, 2018).
We also make different choices from most previous
efforts concerning the guidelines for normalisation
and translation of the source sentences. We choose
to first normalise the source sentences before trans-
lation in order to optimise the quality of the trans-
lation and to reduce the arbitrariness that may be
introduced when transferring non-standard varia-
tion to the target language (e.g. on which characters
to apply spelling errors, how many characters to du-
plicate when elongating words). For normalisation,
we aim to strike a balance between normalisation
as much as possible while making sure that the
normalised text remains natural.1

In this paper, we describe the creation of the chal-
lenge set, and in the context of the WMT23 test
suite shared task, we analyse the models submitted

1E.g. We choose to not normalise the acronym lol ‘laugh-
ing out loud’, as it is rarely/never used in its expanded form.
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to the general MT shared task for the from-English
shared task language pairs: English→{Czech, Ger-
man, Hebrew, Japanese, Russian, Ukrainian, Chi-
nese} (en→{cs, de, he, ja, ru, uk, zh}). Through
automatic and manual analysis of system outputs,
we find that many of the phenomena remain chal-
lenging for most systems (in particular those that
create potential out-of-vocabulary or rare words
such as phonetically inspired spellings, contrac-
tions, devowelling and truncation). However, the
difficulty varies depending on the phenomenon, the
particular instance (notably how frequent the non-
standard word is) and the system, especially with
respect to the quantity of training data. The high-
est performing systems overall generally do better
across the board on all phenomena, whereas the
weaker systems struggle in particular with certain
phenomena. GPT4 has a clear lead over other sys-
tems, correctly translating even some of the most
challenging examples and sometimes (although in-
consistently) reproducing non-standardness in its
outputs. However conclusions are limited given
that the training data is unknown (as is the case of
other unconstrained systems).

We make the challenge set, system outputs, eval-
uation code and guidelines (for the normalisation,
annotation and translation) openly available for re-
search purposes.2

2 Related Work

Several parallel UGC datasets exist across different
language pairs. While some are extracted automati-
cally from crawled data (Ling et al., 2013; Vicente
et al., 2016; Mubarak et al., 2020), a majority are
based on monolingual sentences that are then trans-
lated into the target language (Sluyter-Gäthje et al.,
2018; Michel and Neubig, 2018; Rosales Núñez
et al., 2019; Fujii et al., 2020; McNamee and Duh,
2022). The closest to our RoCS-MT dataset are
(Michel and Neubig, 2018) and (Rosales Núñez
et al., 2019), which were designed to contain chal-
lenging non-standard phenomena, whereas many
of the existing datasets do not apply any such fil-
ter. Like RoCS-MT, the MTNT dataset (Michel
and Neubig, 2018) contains texts from Reddit. To
target non-standard language, they select sentences
that have a low probability using a language model
trained on standard data. In practice, and as shown
by Rosales Núñez et al. (2019), the amount of
non-standard language remains limited with this

2https://github.com/rbawden/RoCS-MT

method. Rosales Núñez et al. (2019) base their
parallel dataset on the French Social Media Bank
dataset (Seddah et al., 2012), which targets non-
standard language by searching for specific non-
standard keywords. They show that this leads to
a higher level of non-standard language, although
the method is by nature more biased towards the
keywords and phenomena used for data selection.
An error analysis of the dataset was conducted in
(Rosales Núñez et al., 2021), showing MT quality
(using BLEU) for different UGC phenomena.

Despite significant effort to describe and classify
UGC phenomena (Michel and Neubig, 2018; San-
guinetti et al., 2020), there is no consensus as to
how texts should be normalised (and indeed trans-
lated). One extreme is to normalise all phenomena
to standard forms, as is often done in lexical nor-
malisation tasks (Han and Baldwin, 2011; van der
Goot et al., 2021), but which in several cases would
lead to unnatural outputs (e.g. if lol and lmao, were
systematically normalised to laughing out loud and
laughing my ass off ). This makes translation diffi-
cult too, as the translations would also be unnatural.
At the other end of the spectrum is the choice to
not normalise source texts and in addition to at-
tempt to translate the phenomena into the target
language, with the disadvantage that some phenom-
ena are language-specific3 and others would result
in arbitrary decisions being made such as to which
characters to apply spelling errors. The current
datasets targeting particularly non-standard phe-
nomena choose to at least in part transfer some phe-
nomena to the target language, whereas we adopt a
higher degree of normalisation (see Section 3.1.1
for more details), producing standard but natural-
sounding translations.

3 Challenge Set Creation

3.1 Data Sourcing and Selection

The source sentences are taken from English posts
on discussion platform Reddit4 using the API.5

We do not target a particular variety of English

3Two examples of this are French verlan, which consists
in inverting syllables in words (e.g. louche→chelou ‘bizarre’)
and English cockney rhyming slang (e.g. loaf meaning head
thanks to its rhyme with the expression loaf of bread). How-
ever, even phenomena that do exist crosslingually do not neces-
sarily apply to the same words (e.g. the use of digits to replace
their homophones as in 2day ‘today’, where the translation
does not necessarily contain a homophone of a digit in the
target language).

4www.reddit.com
5Using the free version of the API (December 2022).
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(e.g. British, American, etc.) and even include
some non-native English,6 although we do not in-
clude code-switched texts. We get an initial pool
of posts by searching for specific keywords from
a manually drawn-up list as in (Sanguinetti et al.,
2020), e.g. ttyl, ppl, gr8, alot. The full list is given
in Appendix A. For each keyword, we crawled
both Reddit-wide and 3 specific subreddits (Casu-
alUK, MadeMeSmile and entertainment) to ensure
a diversity of informal topics7 at 6-month intervals
between 2017 and 2022.

Once we had the initial pool of examples, in
order to reduce the number of posts to manually
review, we applied a very coarse-grained in-house
‘non-standardness’ classifier that we had trained on
a small set of manually annotated tweets according
to 4 labels (standard, mildly non-standard, mod-
erately non-standard and very non-standard), and
look at posts whose title or text was marked as any-
thing other than ‘standard’. From those posts, we
manually select titles and passages from the text
that contain interesting non-standard phenomena,
including sentences not containing the initial key-
word associated with the post. This means that
although our initial search process is biased to our
word list, the effect is diminished by taking addi-
tional non-standard phenomena. We automatically
filter out any 18+ content (using the Reddit meta-
information), and manually filter out any content
that is sexually inappropriate, insulting or deals
with sensitive (potentially triggering) topics such
as suicide or drug addiction.

3.1.1 Sentence Splitting and Normalisation
We start by manually splitting the texts into sen-
tences. In many cases, this corresponds to splitting
on final punctuation (e.g. full stop, exclamation
marks, etc.). However, the non-standard nature of
the texts increases the number of cases where texts
are split in places that are not marked by punctu-
ation or where punctuation or newlines are added
unexpectedly in the middle of what would ordinar-
ily be considered a sentence.

For instance, the sequence I went grocery shop-
ping I’m down to my last dollars soon (...) was
split into the first sentence I went grocery shopping

6We do not have access to any personal information about
the post authors, but we know this because some posters apol-
ogise for their level of English in the posts included.

7The subreddits were chosen to have topics that were in-
formal and could have a reasonable number of posts, although
in reality, the number of non-standard posts found from these
specific subreddits was limited.

and the second sentence beginning with I’m down
to my last dollars soon, despite the lack of a final
punctuation between shopping and I’m.

The first author (a native English speaker) manu-
ally normalised each of the sentences produced by
our manual sentence splitting, seeking help from
people knowledgeable in the topics (e.g. video gam-
ing) where necessary. The complete normalisa-
tion guidelines with examples can be found in the
dedicated Github repository.8 As with any guide-
lines for dealing with complex and evolving non-
standard phenomena, the decisions made are cer-
tainly not bulletproof and are likely to evolve in
future work. Our aim was to reach a compromise
between (i) normalising as much as possible of
the text while (ii) rendering the output natural and
realistic and (iii) not over-normalising such as to
remove the style of the original text. We therefore
normalise words such that the normalised variant
could be spontaneously and naturally used.

3.1.2 Translation
Translation of the English sentences was carried out
by paid professional translators. They had access to
the original posts and both the raw and normalised
versions of each sentence. Translation was carried
out at the sentence level (following the manual seg-
mentation and using as the source the normalised
translation), although the translators had access to
surrounding linguistic context, as well as additional
context and translation notes provided by the first
author during the normalisation step. There were
also several exchanges between the first author and
the translators in order to provide additional con-
text and to answer questions. In order to preserve
author anonymity, translators did not have access to
meta-information about the authors (e.g. their gen-
der). A single translation was produced for each
sentence (we left the choice of speaker gender to
the translators) with the exception of Ukrainian, for
which two translations were produced for sentences
where the speaker gender has an impact.

The target languages were chosen to cover four
of those in the WMT2023 general translation task
(Czech, German, Ukrainian and Russian), as well
as French, which is an important language for
our own research, although we do not analyse the
French portion of the data in this article.

Translation Guidelines Translators were pro-
vided with guidelines (see Appendix B). They were

8https://github.com/rbawden/RoCS-MT
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instructed to translate the normalised versions of
each sentence into the target language, using stan-
dard language but best matching the intention, nat-
uralness and familiarity level of the sentence, sim-
ilar to the guidelines set out in (McNamee and
Duh, 2022). The decision to use standard language
was to avoid the arbitrariness associated with at-
tempting to reproduce non-standard phenomena in
translation, which would make comparisons, par-
ticularly automatic ones, more difficult (e.g. which
characters to alter to reproduce a spelling error,
how many characters to repeat in the case of ex-
pressive repetition, etc.). They were also instructed
to respect the manual segmentation provided,9 to
respect punctuation choices made in the source
where appropriate (e.g. conserving full stops) and
to preserve English words in meta-linguistic dis-
cussions (i.e. where authors are writing specifically
about English words). As in the normalisation
guidelines, abbreviations, acronyms and simplifica-
tions were to be expanded unless the result would
not make a natural sentence that could realistically
be found. However, abbreviations linked to the
names of places and institutions were to be kept
as they were if used as such in the target language
(e.g. French OTAN for English NATO). They were
requested not to use MT systems to help them trans-
late in order not to bias the translations produced.

3.2 Challenge Set Subsets
We create four subsets of the challenge set to test
the impact of sentence segmentation (manual or au-
tomatic using spaCy) and of normalisation (manual
or none, i.e. the original raw text):

• manseg-raw: Manual segmentation with orig-
inal (raw) text

• manseg-norm: Manual segmentation with
manual normalisation

• spacyseg-raw: spaCy segmentation with
original (raw) text

• spacyseg-norm: spaCy segmentation with
manual normalisation10

As shown in Section 3.3, the two different seg-
mentation methods result in different numbers of

9A segment’s translation can contain several sentences but
sentence boundaries cannot be overridden.

10The spaCy segmentation was obtained by concatenating
all normalised sentences from a single text and then automati-
cally splitting.

individual sentences, and automatic segmentation
with spaCy differs depending on whether the text
has been normalised or not. In practice, in this
article, we focus only on the manseg-raw and
manseg-norm subsets, although we also release the
system outputs for the spacyset- subset. We leave
research on these other subsets (i.e. looking at the
impact of sentence segmentation) to future work.

3.3 Dataset Characteristics

Some basic quantitative characteristics of the data
are given Table 1.

Impact of sentence splitting While the num-
ber of sentences is fixed for the manual segmen-
tation, spaCy segmentation is highly dependent
on whether the text has been normalised or not,
likely due to the tool being less well adapted to non-
standard text; when applied to raw text, the result-
ing number of sentences is far lower than manual
segmentation (1660 vs. 1922), whereas the result-
ing number of sentences is more similar to manual
segmentation when applied to the normalised text.

Tokenisation Normalisation impacts the num-
ber of tokens in the texts, as well as the number
of unique tokens. When comparing the two nor-
malised subsets on the one hand and the two raw
subsets on the other (i.e. differing only in the sen-
tence splitting), the number of tokens differs due
to the fact that automatic segmentation tends to
oversplit sentences on punctuation that in the man-
ual segmentation would remain part of a token in
the preceding sentence. The number of unique
tokens inevitably drops after normalising, due to
the homogenisation of non-standard forms (7175
vs. 6612) for manual segmentation.

Normalisation Types We manually annotated
the texts for non-standard phenomena (e.g. spelling
errors, acronyms, devowelling, capitalisation, pro-
noun drop, etc.), with the possibility of there being
several types for a single span of text. Our annota-
tions are at the word-level, with some phenomena
spanning several words (e.g. capitalisation). Ta-
ble 2 provides some statistics for the annotations
occurring in at least 10 sentences, and some exam-
ples are given in Examples 1-4.

(1) btw I wud prefer them rlly quick.
By the way, I would prefer them really quick.
acronym contraction devow.
capitalisation
punct_diff
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Subset Seg. Norm. #sents. #toks. #toks. (unique) Ave. sent. len. #posts #titles #body

manseg-raw Manual × 1922 27971 7175 14.55

391 80 263manseg-norm Manual ✓ 1922 28800 6612 14.98
spacyseg-raw spaCy × 1660 28095 7297 16.92
spacyseg-norm spaCy ✓ 1996 28881 6615 14.47

Table 1: Basic statistics of the four subsets of the test suite. Tokens are defined as whitespace delimited character
sequences. Sentences can either come from post titles or the body of the post.

Annotation #toks #diff toks #sents

punct_diff 2500 136 1259
capitalisation 2122 802 1059
norm_punct 542 46 339
acronymisation 329 100 277
phonetic_distance 566 285 268
spelling_error 345 306 261
spacing 294 111 250
truncation 203 104 169
contraction 161 37 146
devowelling 137 33 122
elongation 139 96 117
pronoun_drop 114 1 110
word_drop 97 2 85
grammar 75 54 73
inflection 78 64 67
lex_choice 65 52 63
article_drop 69 1 63
scrambled 38 36 37
words_to_digits 45 18 37
word_to_symbol 26 12 22
dialectism 24 15 22
double_to_single_character 17 10 17
word_add 16 13 15
digits_to_words 16 13 14
interjection 13 8 10
surrounding_emphasis 12 11 10
word_order 11 11 10
emoticon 10 10 10

Table 2: For each annotation appearing in at least 10
sentences, the number of words, unique words (lower-
cased) and sentences for which it appears.

(2) So any idea s on wot I shud be
So any ideas on what I should be ?

spacing phon._dst. contraction punct.

(3) Dhat kwik beizh fawks jmmpd
That quick beige fox jumped
phon._dst. phon._dst. phon._dst. phon._dst. phon._dst.

(4) Em HOW DARE YOU SWEAR IN
EM: How dare you swear in
caps. caps. caps. caps. caps. caps.
punct_diff

FRONT OF MY SUN
front of my son ?
caps. caps. caps. spelling punct_diff

4 Translation Systems

In this article, we evaluate the systems submitted
to the general translation task at WMT2023. There

are both constrained and unconstrained systems,
the two settings presenting significant differences
in training data that should be taken into account
when comparing systems.

Constrained systems Constrained systems fol-
lowed similar strategies, with many systems do-
ing data filtering/cleaning and data augmentation,
using either bilingual or multilingual models and
reranking. The constrained systems submitted
were AIRC (Rikters and Miwa, 2023), ANVITA,
CUNI-Transformer and CUNI-DocTransformer
(Popel, 2020) (we refer to these system as CUNI-
Trans and CUNI-DocTrans to save space in the
results tables), CUNI-GA (Jon et al., 2023), HW-
TSC (Wu et al., 2023b), IOL_Research (Zhang,
2023), NAIST-NICT (Deguchi et al., 2023), Sam-
sung_Research_Philippines (Cruz, 2023) (hereafter
Samsung_RP), SKIM (Kudo et al., 2023) and UvA-
LTL (Wu et al., 2023a).

Unconstrained systems As in previous years
of the shared task, translations were produced
from anonymised online systems, corresponding
in this addition to ONLINE-{A,B,G,M,W,Y} sub-
missions. This year, translations from GPT4 were
also produced using 5 few-shot examples (GPT4-
5shot).11 Note that caution should be taken when
comparing results from GPT4, given that it is very
possible that source sentences from RoCS-MT are
included in GPT4’s training data. Two systems
based on NLLB (Team et al., 2022) were also sub-
mitted in the context of the metrics shared task:
NLLB_Greedy and NLLB_MBR_BLEU (hereafter
NLLB_MBR), which both rely on the same model
but differ by the decoding strategy, either standard
(greedy) or based on the Minimum Bayes Risk
strategy (Freitag et al., 2022). A number of uncon-
strained systems were also submitted by partici-
pants, namely Lan-BridgeMT (Wu and Hu, 2023),
KYB , GTCOM (Zong, 2023), (Li et al., 2023),
PROMT (Molchanov and Kovalenko, 2023), Yishu

11The prompt used is the sentence-level prompt from
(Hendy et al., 2023), which is also shown in Appendix C.
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(Min et al., 2023) and ZengHuiMT (Zeng, 2023).

5 Evaluation and Analysis

Evaluation of UGC translation is more challeng-
ing than standard text; a correct translation can
either be standard or non-standard in the target lan-
guage, and there may be multiple ways of being
non-standard that may not all be covered by avail-
able references. In our case, we chose to produce
standard reference translations (See Section 3.1.2).
Any system that produces non-standard language
may therefore be underestimated using reference-
based metrics.

We test three different metrics (BLEU, COMET
and COMET-QE) to evaluate the systems’ transla-
tions of RoCS-MT, looking at how coherent they
are between each other, and whether it is possible
to use quality estimation to evaluate MT robustness
in order to remove the need for reference transla-
tions (Section 5.1). We also look at the MT quality
of each system per phenomenon by calculating
COMET scores over subsets of the data. Finally,
we perform a qualitative analysis, manually looking
at how the different systems handle UGC phenom-
ena, and confirming some of the trends using some
simple automatic analyses (Section 5.2).

5.1 Automatic evaluation

BLEU (Papineni et al., 2002), as a surface-level
metric, is intuitively not robust to variation. It is
therefore likely to be particularly ill-adapted to MT
robustness evaluation, since MT systems’ outputs
can display standard or non-standard characteris-
tics. We choose nevertheless to test this here, cal-
culating BLEU scores using the sacreBLEU toolkit
(Post, 2018).12 We compare BLEU to reference-
based COMET (Rei et al., 2020)13 for those lan-
guage pairs for which we have a reference, and to
COMET’s reference-less (quality estimation) ver-
sion, which we refer to as COMET-QE (Rei et al.,
2022).14 We notably aim to test whether it is possi-
ble to use COMET-QE for evaluation rather than
reference-based COMET, which would remove the
dependency on reference translations and make
evaluation possible for a wider range of languages.

Ukrainian has two reference translations for sen-
tences for which the speaker’s gender results in
different translations is ambiguous between male

12case:mixed|eff:no|tok:13a|smooth:exp|v:2.2.1
13We use the default wmt22-comet-da model.
14We use the default wmt22-cometkiwi-da.

and female. While BLEU is designed to handle
multiple references, this is not inbuilt into COMET.
For these sentences, we choose to take the best
COMET score of the two references. For COMET
and COMET-QE, which also use the source sen-
tence, we choose to evaluate system outputs against
both the manseg-norm and manseg-raw source
sentences, regardless of which set was translated
by the system and take the highest score of all the
source-reference combinations. This covers the
case where non-standard (i.e. raw) sentences are
normalised during the translation process.

We provide full results for COMET and COMET-
QE in Table 3 and 4 respectively, and we include
results for BLEU in Table 7 in Appendix D.

How coherent are the metrics? The trends of
the three metrics are similar but not at all system-
atic (in terms of rankings) when evaluating transla-
tions of the normalised data (manseg-norm), with
the same systems getting the highest scores across
language pairs (amongst the best systems being
ONLINE-W, ONLINE-B, GPT4). However, there
are some clear inconsistencies between BLEU and
the two COMET metrics when evaluating non-
standard data (manseg-raw). For example GPT4
is ranked above other systems by COMET and
COMET-QE, whereas the BLEU scores of other
systems (and in particular ONLINE-W and some-
times ONLINE-B) are higher. This indicates that
GPT4 outputs are more surfacically different from
the reference translations, which could be a result
of paraphrasing or non-standard translations rather
than a reflection of MT quality, especially given
the high scores by COMET.

This confirms that BLEU is poorly adapted to
evaluating MT robustness and could even lead to
misleading conclusions, confirming previous con-
clusions drawn by Rosales Núñez et al. (2021)
about the inadequacy of BLEU for the evaluation of
UGC MT. On the other hand, COMET-QE scores
show more similar trends to COMET, suggesting
that it could be possible to use it to evaluate without
having to produce reference translations. We nev-
ertheless add that COMET remains an automatic
metric that does not produce perfect correlation
with human judgments, more research would be
necessary to stress-test the metric for MT robust-
ness evaluation, particularly in terms of evaluating
which of COMET and COMET-QE is better corre-
lated with human judgments.
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Which systems come out on top? The highest
performing systems are the unconstrained online
systems, with GPT4 getting significantly higher
COMET and COMET-QE scores than other sys-
tems when translating non-standard (raw) text for
all languages tested. Other systems that tend to pro-
duce high scores are ONLINE-W and to a lesser
extent ONLINE-B. Apart from these online mod-
els, both NLLB models are the best-scoring ones,
which might come from the fact that they are highly
multilingual and therefore could be more robust
to language variation. The constrained systems,
whilst not the highest performing systems, appear
to get comparable scores to at least some of the
online systems.

Which systems are most robust? This question
is linked to the previous question about MT quality
on non-standard data. To take into account the base
performance of the systems, we look at the differ-
ence in score between each system’s translation of
the non-standard sentences and their normalised
versions (also in the previously mentioned Tables 3
and 4. While there is a general trend that the higher
performing systems also also have a smaller differ-
ence in quality (i.e. they are also more robust), there
are some stand-out systems. GPT4 is the system
with the lowest quality difference between origi-
nal and normalised sentences for all language pairs
tested. The NLLB models also have a low delta be-
tween the two subset, lower than or comparable to
some of the more robust online systems. Similarly
to the previous question, constrained systems are
not the most robust in terms of their score differ-
ence. Notably for en–cs and en–de, the score dif-
ferences are amongst the highest. However, some
of the systems do show peformance in the same
ballpark as some of the online systems.

Automatic analysis by UGC phenomenon In
order to analyse how systems handle different
non-standard phenomena, we evaluate sentences
by annotation types, by calculating COMET and
COMET-QE scores for sentences containing at
least one occurrence of a particular normalisation
annotation. COMET results are given in Table 5
and we include a fuller analysis for COMET-QE
results in Table 8 in Appendix E. Note that we
only include annotation types that appear in at least
50 sentences, and that the ‘all’ column refers to
the scores over all sentences and not just the ones
annotated for UGC phenomena.

Scores are not directly comparable across anno-
tation type. Performance by annotation type is con-
sistent with previous conclusions, with GPT4 get-
ting the highest scores across the board, and online
systems and NLLB also doing well. It is striking
that the systems that have higher scores in general
tend to do better across the board on all annotation
types, whereas the lower-scoring systems struggle
with certain non-standard phenomena. They corre-
spond in particular to phonetic distance, where a
word is spelt differently according to how it is pro-
nounced (e.g. HEERE’Z A QWESHCHUN FER YA
‘Here’s a question for you’), contractions (e.g. wud
‘would’), devowelling (e.g. nvr ‘never’), trunca-
tion (e.g. intro ‘introductory’) and spelling errors.
These are notably phenomena that could well result
in out-of-vocabulary words.

Are certain language pairs more difficult than
others? It is tricky to compare across language
pairs, since scores are not comparable. However,
there are some indications that the en–cs set is more
challenging, given the low scores across multiple
annotation types for all systems other than GPT4.
The fact that GPT4 has high scores for all annota-
tion types listed shows that the lower scores of other
models are not due to quality issues in the reference
translations, and provides an upper bound against
which other systems can be compared, thereby in-
dicating that the systems struggled more.

5.2 Qualitative analysis
Non-standard variants of words Many of the
non-standard phenomena that characterise the texts
(e.g. acronyms, truncations, contractions, devow-
elling) represent a similar difficulty to unknown or
rare tokens in MT. The treatment of these words
differs according to the system used, and inevitably
largely on the training data of the model. Many of
the constrained systems struggle to translate such
words, either copying the words into the translation
or omitting them entirely. The degree to which
the systems succeed in correctly translating these
words appears to depend on how common it is.
For example, tho, phonetically-inspired spelling
of though, was translated successfully by multi-
ple systems, although the devowelled word tmro
‘tomorrow’ proved more difficult.

Markers of expressivity It is common for UGC
texts to have markers of expressivity such as capi-
talisation or repetition of letters. We removed these
markers in our normalised versions and reference
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Systems en-cs en-de en-ru en-uk
norm raw ∆ norm raw ∆ norm raw ∆ norm raw ∆

Unconstrained

GPT4-5shot 0.857 0.825 0.031 0.869 0.837 0.032 0.818 0.793 0.025 0.858 0.838 0.021
ONLINE-A 0.836 0.724 0.112 0.858 0.771 0.087 0.806 0.730 0.076 0.830 0.741 0.090
ONLINE-B 0.844 0.760 0.084 0.867 0.815 0.052 0.812 0.748 0.063 0.856 0.787 0.069
ONLINE-G 0.812 0.699 0.113 0.847 0.763 0.084 0.828 0.773 0.055 0.853 0.803 0.050
ONLINE-M 0.838 0.720 0.118 0.847 0.714 0.133 0.787 0.686 0.102 - - -
ONLINE-W 0.865 0.782 0.082 0.892 0.809 0.083 0.834 0.786 0.048 0.862 0.819 0.043
ONLINE-Y 0.819 0.725 0.095 0.862 0.795 0.067 0.814 0.756 0.058 0.823 0.750 0.073
NLLB_MBR 0.837 0.792 0.045 0.836 0.786 0.049 0.799 0.755 0.045 0.826 0.778 0.049
NLLB_Greedy 0.839 0.791 0.049 0.837 0.783 0.054 0.798 0.753 0.046 0.827 0.775 0.052
Lan-BridgeMT 0.820 0.723 0.097 0.830 0.737 0.094 0.784 0.699 0.084 0.795 0.705 0.090
GTCOM_Peter 0.822 0.725 0.098 - - - - - - 0.807 0.714 0.092
PROMT - - - - - - 0.780 0.685 0.095 - - -
ZengHuiMT 0.811 0.717 0.094 0.833 0.760 0.073 0.772 0.706 0.066 0.786 0.709 0.077

Unconstrained

AIRC - - - 0.779 0.669 0.110 - - - - - -
CUNI-Trans 0.831 0.719 0.112 - - - - - - - - -
CUNI-DocTrans 0.840 0.694 0.146 - - - - - - - - -
CUNI-GA 0.840 0.694 0.146 - - - - - - - - -

Table 3: COMET scores of systems on the manseg-norm and manseg-raw subsets.

Systems en-cs en-de en-he en-ja en-ru en-uk en-zh
norm raw ∆ norm raw ∆ norm raw ∆ norm raw ∆ norm raw ∆ norm raw ∆ norm raw ∆

Unconstrained

GPT4-5shot 0.817 0.800 0.018 0.822 0.805 0.017 0.806 0.793 0.013 0.846 0.838 0.008 0.806 0.789 0.017 0.809 0.797 0.012 0.797 0.786 0.011
ONLINE-A 0.807 0.724 0.083 0.816 0.765 0.050 0.807 0.737 0.070 0.824 0.772 0.052 0.807 0.750 0.058 0.791 0.726 0.065 0.786 0.725 0.061
ONLINE-B 0.814 0.756 0.058 0.821 0.793 0.028 0.812 0.767 0.045 0.848 0.822 0.027 0.808 0.761 0.047 0.805 0.759 0.046 0.805 0.766 0.039
ONLINE-G 0.791 0.705 0.086 0.812 0.766 0.045 0.786 0.720 0.067 0.782 0.700 0.082 0.821 0.784 0.036 0.809 0.775 0.034 0.765 0.704 0.062
ONLINE-M 0.807 0.710 0.096 0.810 0.724 0.086 - - - 0.798 0.711 0.088 0.790 0.702 0.089 - - - 0.762 0.692 0.069
ONLINE-W 0.822 0.765 0.057 0.822 0.780 0.042 - - - 0.822 0.790 0.031 0.819 0.786 0.033 0.812 0.782 0.030 0.802 0.767 0.036
ONLINE-Y 0.799 0.732 0.067 0.822 0.786 0.036 0.808 0.753 0.056 0.842 0.811 0.031 0.814 0.764 0.050 0.787 0.731 0.056 0.796 0.752 0.044
NLLB_MBR 0.802 0.762 0.040 0.801 0.763 0.038 0.796 0.756 0.040 0.721 0.682 0.039 0.794 0.754 0.040 0.784 0.744 0.040 0.617 0.596 0.021
NLLB_Greedy 0.806 0.765 0.041 0.802 0.761 0.041 0.795 0.756 0.039 0.749 0.711 0.038 0.795 0.754 0.041 0.786 0.745 0.041 0.664 0.645 0.019
Lan-BridgeMT 0.799 0.724 0.075 0.805 0.741 0.064 0.797 0.757 0.040 0.827 0.774 0.053 0.796 0.724 0.071 0.769 0.696 0.072 0.803 0.792 0.011
GTCOM_Peter 0.796 0.722 0.074 - - - 0.797 0.719 0.077 - - - - - - 0.774 0.704 0.070 - - -
KYB - - - - - - - - - 0.788 0.691 0.097 - - - - - - - - -
PROMT - - - - - - - - - - - - 0.789 0.710 0.079 - - - - - -
Yishu - - - - - - - - - - - - - - - - - - 0.805 0.766 0.039
ZengHuiMT 0.781 0.713 0.067 0.792 0.748 0.045 0.790 0.734 0.055 0.828 0.791 0.037 0.772 0.724 0.048 0.748 0.696 0.052 0.772 0.711 0.061

Constrained

AIRC - - - 0.763 0.684 0.079 - - - 0.779 0.701 0.078 - - - - - - - - -
ANVITA - - - - - - - - - 0.797 0.716 0.080 - - - - - - 0.630 0.536 0.094
CUNI-Trans 0.798 0.705 0.093 - - - - - - - - - - - - - - - - - -
CUNI-DocTrans 0.803 0.677 0.126 - - - - - - - - - - - - - - - - - -
CUNI-GA 0.803 0.677 0.126 - - - - - - - - - - - - - - - - - -
HW-TSC - - - - - - - - - - - - - - - - - - 0.793 0.740 0.054
IOL_Research - - - - - - - - - - - - - - - - - - 0.770 0.696 0.074
NAIST-NICT - - - - - - - - - 0.830 0.764 0.066 - - - - - - - - -
Samsung_RP - - - - - - 0.797 0.732 0.065 - - - - - - - - - - - -
SKIM - - - - - - - - - 0.837 0.785 0.052 - - - - - - - - -
UvA-LTL - - - - - - 0.799 0.731 0.068 - - - - - - - - - - - -

Table 4: COMET-QE scores of systems on the manseg-norm and manseg-raw subsets.

translations for consistency. However, there are no
guidelines as to how the different systems should
translate them: either preserving the markers in the
translation or normalising as we do in the reference.
What we observe is variable behaviour depending
on both the system and on the specific textual in-
stances. Table 6 shows one of the more extreme
examples of character repetition. Most of the sys-
tems fail to translate the words with character repe-
tition and instead copy them (the case of moooor-
rreeee ‘more’, poollliitte ‘polite’ and Discouuur-
rrse ‘Discourse’). There is greater robustness for
the word neeeeed ‘need’, which is translated cor-

rectly as brauchen by a majority of systems, but
not by AIRC, ONLINE-M and ONLINE-W, which
is interesting since ONLINE-W obtains very high
BLEU scores for en–de. When systems do translate
the words, it tends to be the standard form that is
generated (i.e. without repetition). The only exam-
ple here is GPT4, which translates moooorrreeee
as viiiieeeel ‘viel’, conserving the expressivity of
the source sentence. What is interesting is that this
behaviour is far from consistent for GPT4, with the
other non-standard words in the same example not
undergoing the same treatment. This could suggest
that while the system succeeded in deciphering the
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en-cs

GPT4-5shot 0.785 0.823 0.811 0.815 0.848 0.810 0.816 0.817 0.802 0.809 0.798 0.833 0.819 0.821 0.824 0.795 0.810 0.825
ONLINE-A 0.606 0.663 0.696 0.591 0.599 0.665 0.655 0.721 0.649 0.715 0.567 0.712 0.702 0.698 0.619 0.624 0.676 0.724
ONLINE-B 0.664 0.726 0.733 0.665 0.667 0.717 0.719 0.761 0.695 0.751 0.629 0.756 0.746 0.750 0.698 0.697 0.728 0.760
ONLINE-G 0.591 0.644 0.682 0.572 0.581 0.658 0.636 0.657 0.625 0.680 0.529 0.693 0.677 0.653 0.588 0.608 0.653 0.699
ONLINE-M 0.601 0.661 0.689 0.616 0.586 0.659 0.676 0.693 0.633 0.720 0.574 0.700 0.693 0.695 0.636 0.627 0.671 0.720
ONLINE-W 0.682 0.730 0.754 0.700 0.708 0.748 0.704 0.771 0.702 0.772 0.663 0.763 0.766 0.754 0.717 0.726 0.727 0.782
ONLINE-Y 0.617 0.668 0.703 0.616 0.626 0.678 0.652 0.707 0.660 0.709 0.589 0.728 0.708 0.708 0.635 0.643 0.672 0.725
NLLB_MBR 0.711 0.786 0.778 0.757 0.771 0.787 0.745 0.785 0.754 0.778 0.724 0.794 0.786 0.773 0.757 0.738 0.774 0.792
NLLB_Greedy 0.718 0.770 0.775 0.750 0.781 0.759 0.750 0.789 0.745 0.773 0.721 0.793 0.785 0.766 0.760 0.747 0.765 0.791
Lan-BridgeMT 0.618 0.670 0.701 0.612 0.594 0.674 0.650 0.693 0.651 0.709 0.573 0.730 0.703 0.693 0.632 0.636 0.674 0.723
GTCOM_Peter 0.597 0.675 0.704 0.628 0.619 0.673 0.671 0.689 0.635 0.704 0.577 0.714 0.703 0.691 0.640 0.632 0.666 0.725
ZengHuiMT 0.610 0.674 0.695 0.605 0.593 0.649 0.658 0.723 0.645 0.693 0.576 0.707 0.702 0.692 0.635 0.653 0.690 0.717
CUNI-Trans 0.605 0.655 0.683 0.591 0.612 0.663 0.635 0.670 0.644 0.719 0.563 0.699 0.693 0.677 0.622 0.632 0.669 0.719
CUNI-DocTrans 0.583 0.617 0.660 0.553 0.562 0.660 0.609 0.653 0.610 0.692 0.521 0.669 0.667 0.654 0.589 0.610 0.644 0.694
CUNI-GA 0.583 0.617 0.660 0.553 0.562 0.660 0.609 0.653 0.610 0.692 0.521 0.669 0.667 0.654 0.589 0.610 0.644 0.694

en-de

GPT4-5shot 0.800 0.801 0.824 0.814 0.836 0.810 0.803 0.835 0.797 0.821 0.812 0.834 0.831 0.824 0.823 0.809 0.817 0.837
ONLINE-A 0.670 0.708 0.751 0.660 0.698 0.727 0.726 0.783 0.693 0.765 0.642 0.774 0.759 0.758 0.699 0.728 0.742 0.771
ONLINE-B 0.746 0.768 0.801 0.767 0.778 0.788 0.779 0.823 0.771 0.809 0.734 0.812 0.810 0.800 0.770 0.780 0.802 0.815
ONLINE-G 0.663 0.701 0.743 0.679 0.725 0.725 0.711 0.759 0.708 0.754 0.667 0.760 0.751 0.745 0.711 0.724 0.732 0.763
ONLINE-M 0.592 0.615 0.679 0.591 0.586 0.665 0.650 0.694 0.631 0.714 0.548 0.679 0.686 0.671 0.609 0.630 0.643 0.714
ONLINE-W 0.717 0.725 0.784 0.749 0.762 0.775 0.758 0.808 0.765 0.797 0.718 0.822 0.797 0.802 0.768 0.765 0.787 0.809
ONLINE-Y 0.710 0.746 0.777 0.745 0.762 0.760 0.753 0.797 0.746 0.789 0.703 0.794 0.787 0.784 0.761 0.756 0.750 0.795
NLLB_MBR 0.702 0.749 0.776 0.751 0.756 0.763 0.724 0.786 0.729 0.768 0.718 0.780 0.778 0.767 0.744 0.735 0.755 0.786
NLLB_Greedy 0.699 0.745 0.772 0.748 0.761 0.749 0.732 0.788 0.743 0.765 0.715 0.767 0.776 0.767 0.745 0.742 0.759 0.783
Lan-BridgeMT 0.624 0.652 0.722 0.627 0.629 0.701 0.678 0.726 0.656 0.725 0.602 0.716 0.720 0.705 0.637 0.673 0.678 0.737
ZengHuiMT 0.671 0.698 0.741 0.686 0.694 0.724 0.719 0.765 0.699 0.743 0.649 0.755 0.752 0.741 0.706 0.734 0.726 0.760
AIRC 0.556 0.588 0.646 0.533 0.557 0.625 0.597 0.666 0.595 0.646 0.522 0.631 0.647 0.636 0.557 0.595 0.609 0.669

en-ru

GPT4-5shot 0.751 0.794 0.780 0.788 0.811 0.795 0.766 0.797 0.773 0.781 0.760 0.780 0.787 0.755 0.781 0.758 0.771 0.793
ONLINE-A 0.633 0.687 0.716 0.641 0.689 0.668 0.712 0.751 0.688 0.719 0.609 0.713 0.721 0.709 0.653 0.680 0.703 0.730
ONLINE-B 0.664 0.724 0.732 0.684 0.730 0.709 0.721 0.770 0.712 0.744 0.652 0.740 0.740 0.747 0.705 0.706 0.722 0.748
ONLINE-G 0.689 0.762 0.759 0.730 0.754 0.757 0.749 0.791 0.747 0.767 0.700 0.766 0.765 0.765 0.736 0.743 0.768 0.773
ONLINE-M 0.566 0.636 0.657 0.584 0.583 0.634 0.653 0.691 0.636 0.687 0.555 0.668 0.661 0.657 0.608 0.602 0.640 0.686
ONLINE-W 0.724 0.769 0.770 0.761 0.773 0.759 0.769 0.797 0.753 0.777 0.721 0.784 0.780 0.781 0.763 0.762 0.781 0.786
ONLINE-Y 0.668 0.738 0.742 0.708 0.723 0.714 0.730 0.781 0.727 0.741 0.668 0.747 0.747 0.751 0.724 0.706 0.730 0.756
NLLB_MBR 0.679 0.748 0.743 0.731 0.749 0.763 0.721 0.763 0.718 0.738 0.690 0.737 0.746 0.732 0.717 0.703 0.733 0.755
NLLB_Greedy 0.675 0.738 0.740 0.720 0.745 0.734 0.718 0.758 0.710 0.729 0.695 0.734 0.744 0.733 0.720 0.703 0.723 0.753
Lan-BridgeMT 0.604 0.653 0.679 0.614 0.635 0.659 0.672 0.714 0.636 0.694 0.571 0.699 0.687 0.683 0.623 0.635 0.668 0.699
PROMT 0.574 0.636 0.664 0.590 0.645 0.646 0.635 0.686 0.637 0.677 0.553 0.678 0.667 0.656 0.601 0.620 0.644 0.685
ZengHuiMT 0.623 0.694 0.691 0.615 0.669 0.647 0.687 0.730 0.663 0.683 0.600 0.700 0.696 0.690 0.658 0.657 0.688 0.706

en-uk

GPT4-5shot 0.804 0.838 0.828 0.834 0.834 0.818 0.817 0.836 0.804 0.831 0.809 0.834 0.832 0.835 0.826 0.811 0.819 0.838
ONLINE-A 0.626 0.688 0.725 0.635 0.665 0.679 0.705 0.744 0.680 0.736 0.608 0.728 0.724 0.721 0.656 0.676 0.721 0.741
ONLINE-B 0.701 0.744 0.770 0.723 0.748 0.742 0.766 0.790 0.750 0.788 0.679 0.774 0.779 0.788 0.734 0.744 0.764 0.787
ONLINE-G 0.718 0.788 0.791 0.771 0.773 0.779 0.773 0.807 0.767 0.797 0.736 0.797 0.795 0.795 0.766 0.775 0.808 0.803
ONLINE-W 0.763 0.783 0.802 0.805 0.805 0.789 0.807 0.831 0.808 0.818 0.757 0.805 0.814 0.817 0.787 0.793 0.812 0.819
ONLINE-Y 0.647 0.712 0.737 0.703 0.684 0.706 0.706 0.754 0.685 0.742 0.656 0.749 0.738 0.734 0.710 0.691 0.713 0.750
NLLB_MBR 0.698 0.760 0.763 0.768 0.760 0.765 0.730 0.777 0.743 0.762 0.715 0.759 0.768 0.765 0.742 0.731 0.756 0.778
NLLB_Greedy 0.692 0.740 0.761 0.741 0.758 0.724 0.732 0.767 0.730 0.756 0.703 0.768 0.766 0.762 0.742 0.735 0.757 0.775
Lan-BridgeMT 0.591 0.655 0.685 0.606 0.603 0.657 0.660 0.672 0.632 0.679 0.572 0.689 0.684 0.675 0.620 0.628 0.660 0.705
GTCOM_Peter 0.591 0.670 0.702 0.613 0.645 0.671 0.677 0.706 0.671 0.707 0.580 0.693 0.695 0.685 0.637 0.636 0.658 0.714
ZengHuiMT 0.608 0.684 0.696 0.620 0.639 0.650 0.672 0.712 0.660 0.698 0.600 0.701 0.697 0.696 0.652 0.662 0.687 0.709

Table 5: COMET scores by normalisation annotation type and averaged over all RoCS-MT sentences (‘all’).

non-standard English texts, there is no systematic
notion of generating non-standard translations; it
is possible that an expressive version of viel was
seen far more often in the training data, thus being
a probable translation in this case.

Number of copied words Bearing in mind the
fact that unknown source words are often either
copied or removed, we apply a simple automatic
analysis to judge how often systems copy source
words to diagnose a potential problem with out-
of-vocabulary words. We calculate how often a
sentence’s translation contains words that appear
in both the source and system’s translations (count-
ing occurrences for each sentences and taking the
average). We calculate the difference in the aver-
age number of copied words for themanseg-raw
and manseg-norm subsets (i.e. how much more are

words copied when systems are translating non-
standard data). Results are shown in Table 9 of
Appendix F. Note that a certain number of ‘copied’
words is normal, as certain words are expected to
be identical in source and target texts (e.g. some
named entities, numbers, etc.). There are similar
trends across languages: the same systems tend
to have relatively fewer/more copied words in raw
than norm. GPT4 has the smallest difference in
number of copied words between norm and raw
translations. Unsurprisingly, most other systems
have more copying in raw than in norm, indicat-
ing a problem handling unknown vocabulary and
confirming our previous qualitative analysis.

On a similar note, we also analysed the source-
translation length ratios for both raw and norm sub-
sets. While this could be linked to copying or omit-
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norm/raw Text

Source norm “politics used to be more polite. We need a return to the discourse”
Source raw "politics used to be moooorrreeee poollliitte we neeeeed a return to The Discouuurrrse"
Reference (de) norm „Politik früher höflicher war. Wir brauchen eine Rückkehr zum Diskurs.“

AIRC norm "Politik war früher höflicher. Wir brauchen eine Rückkehr zum Diskurs"
raw "Politiker waren früher moooorrreeee poollliitte wir neeeed eine Rückkehr zu The Discouuurrrse"

GPT4-5shot norm "die Politik früher höflicher war. Wir brauchen eine Rückkehr zur Diskussion"
raw "die Politik früher viiiieeeel höflicher war, wir brauchen eine Rückkehr zur Diskussion"

Lan-BridgeMT norm "die Politik früher höflicher war. Wir brauchen eine Rückkehr zum Diskurs"
raw "die Politik früher moooorrreeee poollliitte war, dass wir eine Rückkehr zu The Discouuurrrse brauchten"

NLLB_MBR norm Politik früher höflicher war
raw "Politik war früher moooorrreeeeeee poollliitte, wir brauchen eine Rückkehr zu The Discouuurrrse"

ONLINE-A norm "Politik früher höflicher war. Wir brauchen eine Rückkehr zum Diskurs"
raw "Politik früher moooorrreeee poollliitte wir brauchten eine Rückkehr zu The Discouuurrrse"

ONLINE-B norm „die Politik früher höflicher war.“ Wir brauchen eine Rückkehr zum Diskurs“
raw „Politik früher mal moooorrreeee poollliitte war, wir brauchen eine Rückkehr zu The Discouuurrrse“

ONLINE-G norm “Politik früher höflicher war. Wir brauchen eine Rückkehr zum Diskurs
raw "Politik früher moooorrreeee poollliitte war, wir brauchen eine Rückkehr zur Discouurrrse"

ONLINE-M norm „Politik früher höflicher war. Wir brauchen eine Rückkehr zum Diskurs“
raw „Politik war früher moooorrreeee poollliitte wir neeeeed a return to The Discouurrrse“

ONLINE-W norm "die Politik früher höflicher war. Wir brauchen eine Rückkehr zum Diskurs"
raw "Politik früher moooorrreeee poollliitte we neeeeed a return to The Discouuurrrse"

ONLINE-Y norm „Politik früher höflicher war. Wir brauchen eine Rückkehr zum Diskurs“
raw „Politik früher moooorrreeee poollliitte war, wir brauchen eine Rückkehr zu The Discouuurrrse“

ZengHuiMT norm "Politik früher höflicher war", war früher höflicher. Wir brauchen eine Rückkehr zum Diskurs“
raw "Politik früher moooorrreeee poollliitte war, wir brauchten eine Rückkehr zu The Discouuurrrse“

Table 6: Example of character repetition linked to a mark of expressivity for en–de.

ting unknown words (as we have seen), it is more
likely to be linked to overgeneration problems,
linked to systems encountering text that is out-of-
domain, which we occasionally observed in the
system outputs. We observed that for all systems,
the length ratio between manseg-raw translations
and their source sentences was greater than those
for manseg-norm. The effect was even greater for
the texts when automatic sentence segmentation
was applied (i.e. for spacyseg- subsets).

6 Conclusion

We have presented a new resource, RoCS-MT, a ro-
bustness challenge set for MT, designed to test MT
systems on non-standard UGC. Our automatic and
manual analysis show that non-standard texts are
still a problem for many of the systems, including
the unconstrained ones, and that certain phenom-
ena such as phonetically inspired spellings pose a
problem in particular. The comparison of COMET
and COMET-QE metrics suggest that it may be pos-
sible to draw similar conclusions from automatic
scoring without using references, although future
work could go into more depth into analysing what
is captured by the different metrics.

Limitations

The current test set is available for five from-
English directions and it would be interesting to
study other language directions, including those

not involving English. The current version of the
challenge set only contains variants for speaker gen-
der for one of the language pairs, and we plan to
add these for the other target languages in a future
version.

Finally, a major limitation is one that is becom-
ing widespread nowadays, which is that many of
the systems trained and even used in research are
trained on an unknown quantity of data for which
the sources are unknown. Without being able to
verify the fact, GPT4 and potentially some of the
other systems are likely to be trained on some of
the source sentences in the challenge set, and future
models may even be trained on the reference trans-
lations we provide, despite it being indicated as a
test set. This is a blocking factor for scientific com-
parison and one that goes beyond this particular
resource.
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A Non-standard keywords for sourcing of
posts

The full list of keywords we searched for using
the Reddit API is as follows: yyy, iii, eee, ppl, btw,
imo, wtf, shes, hes, ima, shud, wud, cud, afaik, bcuz,
hahaaa, dat, wen, wot, woz, bout, bro, gonna, lmao,
ppl, smh, yall, omg, barley, fyi, beleive, seperate,
lol, ttyl, muaha, mwah, air, afaik, fr, fyi, idk, ikr, irl,
jk, nvm, plz, pls, cu, tbh, ur, wth, kk, 2mo, 2moro,
tmrw, fwiw, nvm, thx, b4, ruok, m8, l8r, 2nite, gr8,
lk, wt, w/, peeps, sooo, verry, innit, wasnt, ain’t,
definately, yous, nae, awfull, freind, untill, wierd,
aweful, wether and alot.

The keywords were chosen as they illustrate well
known non-standard phenomena, including:

• spelling errors (e.g. wierd ‘weird’, wether
‘whether’, alot)

• acronymisation (nvm ‘never mind’, fyi ‘for
your information)

• repetition of characters (e.g. hahaaa, eee,
sooo)

• contractions (e.g. cud, gonna, shud))

• dialectisms (e.g. ain’t, yous, nae, innit, yall)

• devowelling (e.g. tmrw ‘tomorrow’, pls
‘please’, jk ‘joke’)

• truncations, including abbrevations (e.g. peeps
‘people’, w/ “with’)

• digit phonetisation (e.g. 2nite ‘tonight’, b4
‘before’, l8r ‘later’, cu ‘see you’, ruok ‘are
you ok’)

• other phonetic spellings (e.g. wot ‘what’, thx
‘thanks’, dat ‘that’)

• missing whitespace (e.g. cu ‘see you’, ruok
‘are you ok’, both examples also correspond-
ing to phonetic spellings)

• missing punctuation (e.g. ur (sometimes)
‘you’re’, wasnt ‘wasn’t’)

• etc.

Although the choice of keywords does create a
certain bias in the types of language retrieved (espe-
cially given that several variants of some keywords
are included), these keywords are used to iden-
tify posts that likely to contain other non-standard
phenomena, so the final selected sentences are not
restricted to those containing these keywords.

B Translation Guidelines

These guidelines are included because there are
some specific constraints as to how the translations
are to be carried out, and some particularities of the
dataset to explain. The sentences to be translated
are found in the excel spreadsheet in the column
“Normalised segment”. However, we also provide
additional information that can help translation (see
below for more information).

Origin of the text The texts to be translated are
from the Reddit online forum (extracted using the
API), taken from a range of different subreddits
(so of different genres of text, e.g. relationship
advice, advice about pets, video gaming strategy,
etc.). They were selected due to their non-standard
nature (spelling mistakes, abbreviations, lack of
punctuation etc.).

Preprocessing of the text The texts have been
manually pseudo-anonymised (usernames and
names other than those representing celebrities and
other well-known public figures are replaced with
new names), split into “sentences” and normalised.
It is the normalised versions of the sentences that
are to be translated.

The sentences have been filtered to remove of-
fensive or sensitive content (hate speech, taking
drugs, suicide, etc.). However, profanities were
kept as they were taken to be illustrative of the so-
ciolect of online language. If however, you do not
feel comfortable with translating something, please
leave it blank and write a comment indicating that
you have not translated it.

Additional context provided to help translation
The text is split into short documents with one or
several sentences per document. In the excel doc-
ument, a sentence’s document is indicated by the
value in the column “Post number”, and the cells
are also coloured such that it is visually easier to
see which sentences belong to the same document
(alternating grey and white). A Reddit post is asso-
ciated with a title and a text with the main content
of the post. The documents can contain either the
title or a subset of the text or even both. The type
of text associated with each sentence is indicated in
the column “Text type”. Titles are marked in bold
to make them visually easier to see. Although the
normalised text may be sufficient to carry out the
translation, we also give access to the additional
information just in case:
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• the title of the post

• the entire body of text associated with the post

• the raw version of the sentence (after pseudo-
anonymisation and segmentation into sen-
tences)

• some translation notes have been added to
provide some context about the posts (e.g. to
give an idea of what is the subject of conversa-
tion, the meaning of some expressions and ab-
breviations, etc. in order to make translation
easier). Very occasionally there are indica-
tions about how to translate (for instance for
meta-linguistic questions where people dis-
cuss particular words, it is best to keep the
English words, e.g. One word I simply can’t
say properly is water. . . → water should be
kept in English in the translation.

Constraints (important) The dataset will be
used to evaluate machine translation systems on
their ability to handle non-standard texts. This
crucially means that: the sentence boundaries that
have been defined must not be modified. It is possi-
ble to translate a sentence using several sentences
if that is what is natural. However, it is not possi-
ble to merge several source sentences to produce
a single translation of both (i.e. one translation
per row). translators should not use machine trans-
lation systems or other computational systems to
aid translation as this could bias the translations to
look like translations produced by Google Trans-
late, DeepL, ChatGPT, etc.

More specific guidelines There are multiple
posts that use slang terms (e.g. gaming or general
online slang such as lol) and it possible that the
correct translation will be an English borrowing. It
is fine to use an English borrowing in this case, if
this is what is generally used online. The punctu-
ation choices should be kept as much as possible,
as appropriate for the target language of transla-
tion (e.g. conserving full stops, exclamation marks,
quotes, etc.). As described above, there are some in-
stances of people talking about English words, and
in this case, the English words should be kept as
is. Another example: One says “Let’s eat granny”
making it seem like someone’s going to eat their
nan. However, the other example says “Lets eat,
granny”, implying a different meaning to the sen-
tence. The phrases “Let’s eat granny” and “Let’s

eat, granny” should be kept in English. These are
indicated in the translation notes.

Use of “non-standard” language:

• Any spelling mistakes that were in the raw
sentence should not be reproduced in the trans-
lation (i.e. the normalised version should be
used as the source sentence to translate).

• Formatting, including things like capitalisa-
tion, should (for the same reasons) follow the
conventions of the normalised translation.

• Abbreviations, acronyms and simplifications
(e.g. in English wdym = what do you mean,
bc = because, rly = really, etc.) should be
expanded, unless the result would not make
a natural sentence that could realistically be
found. An example of a non-natural expansion
would be lol = laughing out loud, since this is
not practically used.

• However, abbreviations linked to the names of
places (e.g. USA, UK, UCL (=University Col-
lege London) should be kept as they are if the
acronym is also commonly used in the target
language. In other cases, the most frequent
equivalent translation should be used. (e.g.
English UN = French ONU, English NATO =
French OTAN).

The overall idea is that the translations should be
natural and not contain the types of non-standard
language that were normalised in the English ver-
sions, although they should match as best possible
the style and familiarity.

Additional questions If you have any doubts
or questions about the meaning of the sentences,
please contact me at rachel.bawden@inria.fr to dis-
cuss things further.

C Prompt used for GPT4-5-shot

The prompt used for the GPT4-shot is the one from
(Hendy et al., 2023), i.e. the following:

Translate this into 1. [target language]:
[shot n source]
1. [shot n reference]
Translate this into 1. [target language]:
[input]
1.

212



D BLEU scores

We provide BLEU scores for language pairs with
reference translations in Table 7. The results
are provided (as with the COMET scores in the
main part of the paper) for the original raw sub-
set (manseg-raw) and for its normalised version
((manseg-norm)) as well as the difference between
the two scores (δ).

E COMET-QE scores by annotation type

We provide in Table 8 COMET-QE scores per an-
notation type for all from-English language pairs
of the shared task.

F Copying analysis

Table 9 shows results for our automatic analysis
of the number of source words that are found in
the output translations. We calculate the number
of such words, averaged over the number of sen-
tences for each of the subsets manseg-raw and
manseg-norm and we calculate the difference be-
tween the two. Positive numbers indicate that more
copied words are found when systems translate the
non-standard output and negative numbers indicate
that more copied words are found when systems
translated the normalised sentences.
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Systems en-cs en-de en-ru en-uk
norm raw ∆ norm raw ∆ norm raw ∆ norm raw ∆

Unconstrained

GPT4-5shot 25.9 22.5 3.4 46.6 40.8 5.8 23.4 19.6 3.9 27.8 25.4 2.4
ONLINE-A 27.1 19.3 7.8 49.0 38.5 10.5 26.1 20.4 5.8 31.3 25.0 6.3
ONLINE-B 28.4 20.9 7.5 47.7 40.7 7.1 25.7 20.6 5.1 39.0 29.6 9.4
ONLINE-G 25.0 17.4 7.6 46.2 35.5 10.7 27.9 22.5 5.4 29.2 25.1 4.0
ONLINE-M 27.8 19.1 8.7 44.5 29.5 15.0 23.6 16.5 7.1 - -
ONLINE-W 30.0 22.9 7.2 66.0 47.1 18.9 29.3 23.7 5.6 31.5 27.4 4.0
ONLINE-Y 25.6 18.8 6.7 48.3 39.3 9.0 24.7 20.1 4.5 30.8 25.1 5.7
NLLB_MBR 25.5 20.8 4.7 41.5 34.1 7.4 22.3 18.2 4.2 26.9 22.3 4.6
NLLB_Greedy 25.4 20.8 4.6 42.0 34.0 8.0 22.1 18.4 3.7 26.2 22.0 4.2
Lan-BridgeMT 26.1 18.7 7.4 41.3 31.2 10.1 22.8 17.4 5.4 25.8 19.9 5.9
GTCOM_Peter 25.3 19.2 6.2 - - - - - - 26.7 21.4 5.3
PROMT - - - - 22.6 16.4 6.2 - -
ZengHuiMT 26.1 20.1 6.0 46.7 39.2 7.5 23.5 19.6 3.8 27.9 23.3 4.6

Constrained

AIRC - - - 35.1 24.4 10.6 - - - -
CUNI-Trans 27.7 19.6 8.1 - - - - - -
CUNI-DocTrans 28.9 18.0 10.9 - - - - - -
CUNI-GA 28.9 18.0 10.9 - - - - - -

Table 7: BLEU scores of systems on the manseg-norm and manseg-raw subsets.
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en-cs

GPT4-5shot 0.773 0.783 0.793 0.804 0.817 0.806 0.780 0.801 0.782 0.794 0.776 0.802 0.798 0.802 0.785 0.782 0.777 0.800
ONLINE-A 0.654 0.671 0.705 0.637 0.625 0.696 0.671 0.722 0.654 0.727 0.589 0.699 0.710 0.717 0.625 0.640 0.689 0.724
ONLINE-B 0.704 0.740 0.741 0.702 0.684 0.744 0.720 0.761 0.710 0.758 0.649 0.747 0.750 0.754 0.687 0.709 0.729 0.756
ONLINE-G 0.638 0.658 0.692 0.619 0.605 0.693 0.648 0.676 0.635 0.696 0.557 0.694 0.690 0.672 0.597 0.631 0.656 0.705
ONLINE-M 0.626 0.661 0.688 0.638 0.595 0.684 0.674 0.695 0.628 0.721 0.582 0.698 0.691 0.693 0.621 0.627 0.688 0.710
ONLINE-W 0.703 0.715 0.749 0.715 0.696 0.761 0.679 0.759 0.706 0.764 0.668 0.753 0.756 0.748 0.695 0.725 0.711 0.765
ONLINE-Y 0.677 0.686 0.719 0.673 0.659 0.719 0.675 0.718 0.669 0.726 0.622 0.725 0.725 0.717 0.645 0.673 0.686 0.732
NLLB_MBR 0.706 0.750 0.753 0.749 0.744 0.760 0.720 0.759 0.719 0.761 0.692 0.768 0.761 0.750 0.706 0.721 0.745 0.762
NLLB_Greedy 0.717 0.749 0.755 0.751 0.745 0.750 0.724 0.758 0.722 0.760 0.692 0.764 0.765 0.750 0.718 0.730 0.736 0.765
Lan-BridgeMT 0.665 0.675 0.708 0.639 0.617 0.700 0.668 0.710 0.657 0.720 0.592 0.729 0.714 0.701 0.635 0.660 0.682 0.724
GTCOM_Peter 0.643 0.660 0.708 0.653 0.631 0.709 0.672 0.686 0.642 0.715 0.599 0.713 0.710 0.702 0.630 0.644 0.680 0.722
ZengHuiMT 0.650 0.663 0.699 0.638 0.612 0.686 0.656 0.716 0.660 0.700 0.590 0.695 0.706 0.702 0.625 0.665 0.682 0.713
CUNI-Trans 0.627 0.644 0.679 0.619 0.621 0.689 0.636 0.667 0.628 0.716 0.566 0.692 0.687 0.666 0.611 0.641 0.678 0.705
CUNI-DocTrans 0.602 0.604 0.647 0.571 0.571 0.683 0.604 0.653 0.599 0.692 0.529 0.648 0.656 0.655 0.583 0.619 0.633 0.677
CUNI-GA 0.602 0.604 0.647 0.571 0.571 0.683 0.604 0.653 0.599 0.692 0.529 0.648 0.656 0.655 0.583 0.619 0.633 0.677

en-de

GPT4-5shot 0.795 0.790 0.800 0.797 0.819 0.804 0.795 0.813 0.785 0.806 0.788 0.798 0.804 0.803 0.796 0.783 0.784 0.805
ONLINE-A 0.720 0.725 0.755 0.692 0.725 0.740 0.735 0.769 0.719 0.769 0.668 0.758 0.762 0.759 0.698 0.737 0.749 0.765
ONLINE-B 0.770 0.767 0.789 0.760 0.772 0.784 0.774 0.797 0.766 0.798 0.729 0.783 0.794 0.787 0.755 0.770 0.786 0.793
ONLINE-G 0.725 0.730 0.758 0.713 0.742 0.756 0.730 0.763 0.731 0.767 0.689 0.761 0.763 0.758 0.712 0.738 0.746 0.766
ONLINE-M 0.658 0.649 0.702 0.646 0.624 0.710 0.676 0.717 0.658 0.737 0.596 0.697 0.707 0.687 0.635 0.671 0.674 0.724
ONLINE-W 0.738 0.725 0.769 0.748 0.753 0.761 0.745 0.789 0.752 0.782 0.715 0.790 0.777 0.776 0.741 0.749 0.759 0.780
ONLINE-Y 0.747 0.752 0.780 0.761 0.759 0.777 0.758 0.796 0.762 0.791 0.720 0.784 0.786 0.779 0.748 0.760 0.766 0.786
NLLB_MBR 0.720 0.729 0.755 0.744 0.732 0.741 0.719 0.772 0.724 0.756 0.701 0.758 0.760 0.751 0.720 0.731 0.745 0.763
NLLB_Greedy 0.721 0.721 0.752 0.744 0.736 0.739 0.730 0.769 0.733 0.763 0.702 0.748 0.759 0.751 0.718 0.731 0.750 0.761
Lan-BridgeMT 0.688 0.680 0.730 0.676 0.673 0.709 0.700 0.746 0.691 0.746 0.636 0.736 0.733 0.722 0.657 0.709 0.714 0.741
ZengHuiMT 0.710 0.700 0.737 0.708 0.700 0.728 0.718 0.763 0.708 0.746 0.662 0.732 0.745 0.739 0.699 0.734 0.716 0.748
AIRC 0.627 0.610 0.664 0.582 0.615 0.645 0.633 0.690 0.622 0.681 0.560 0.662 0.672 0.665 0.582 0.631 0.654 0.684

en-he

GPT4-5shot 0.772 0.791 0.789 0.794 0.816 0.796 0.771 0.798 0.780 0.790 0.760 0.784 0.791 0.792 0.777 0.780 0.770 0.793
ONLINE-A 0.664 0.693 0.726 0.658 0.654 0.697 0.698 0.719 0.692 0.729 0.621 0.725 0.728 0.727 0.649 0.683 0.695 0.737
ONLINE-B 0.715 0.719 0.762 0.712 0.741 0.756 0.732 0.767 0.733 0.766 0.682 0.763 0.765 0.756 0.711 0.734 0.726 0.767
ONLINE-G 0.650 0.655 0.711 0.658 0.662 0.694 0.677 0.702 0.666 0.713 0.634 0.707 0.708 0.701 0.643 0.668 0.677 0.720
ONLINE-Y 0.698 0.701 0.745 0.702 0.695 0.733 0.710 0.754 0.701 0.750 0.660 0.750 0.748 0.738 0.683 0.711 0.725 0.753
NLLB_MBR 0.713 0.714 0.748 0.739 0.730 0.741 0.713 0.740 0.723 0.743 0.690 0.754 0.753 0.733 0.707 0.712 0.727 0.756
NLLB_Greedy 0.712 0.724 0.750 0.738 0.740 0.741 0.718 0.752 0.725 0.746 0.691 0.753 0.753 0.746 0.713 0.730 0.718 0.756
Lan-BridgeMT 0.709 0.721 0.749 0.741 0.733 0.735 0.718 0.750 0.718 0.750 0.686 0.758 0.752 0.733 0.710 0.725 0.716 0.757
GTCOM_Peter 0.651 0.677 0.705 0.639 0.643 0.673 0.676 0.720 0.669 0.719 0.601 0.702 0.708 0.701 0.627 0.657 0.670 0.719
ZengHuiMT 0.677 0.677 0.728 0.670 0.677 0.713 0.696 0.728 0.677 0.718 0.638 0.723 0.729 0.717 0.660 0.685 0.701 0.734
Samsung_RP 0.654 0.673 0.721 0.671 0.653 0.700 0.697 0.734 0.691 0.717 0.616 0.721 0.723 0.690 0.655 0.665 0.690 0.732
UvA-LTL 0.663 0.684 0.721 0.661 0.660 0.696 0.699 0.736 0.691 0.723 0.626 0.730 0.719 0.715 0.656 0.676 0.689 0.731

en-ja

GPT4-5shot 0.824 0.830 0.834 0.837 0.834 0.841 0.815 0.836 0.815 0.836 0.819 0.832 0.835 0.834 0.825 0.829 0.820 0.838
ONLINE-A 0.705 0.749 0.763 0.700 0.703 0.751 0.740 0.790 0.742 0.774 0.685 0.770 0.763 0.767 0.720 0.740 0.748 0.772
ONLINE-B 0.786 0.805 0.816 0.792 0.803 0.810 0.812 0.831 0.810 0.826 0.769 0.819 0.819 0.821 0.792 0.804 0.796 0.822
ONLINE-G 0.633 0.645 0.687 0.611 0.618 0.685 0.636 0.672 0.651 0.681 0.562 0.689 0.683 0.665 0.605 0.625 0.658 0.700
ONLINE-M 0.632 0.657 0.692 0.618 0.601 0.675 0.673 0.708 0.658 0.711 0.596 0.707 0.688 0.689 0.641 0.645 0.674 0.711
ONLINE-W 0.737 0.773 0.779 0.771 0.750 0.775 0.745 0.796 0.761 0.775 0.732 0.788 0.779 0.767 0.757 0.757 0.781 0.790
ONLINE-Y 0.769 0.794 0.806 0.782 0.777 0.793 0.788 0.828 0.799 0.815 0.749 0.804 0.806 0.808 0.788 0.789 0.790 0.811
NLLB_MBR 0.612 0.643 0.670 0.639 0.638 0.676 0.644 0.659 0.619 0.641 0.611 0.678 0.668 0.644 0.619 0.610 0.649 0.682
NLLB_Greedy 0.640 0.673 0.704 0.685 0.673 0.705 0.669 0.694 0.662 0.688 0.640 0.709 0.701 0.679 0.671 0.666 0.668 0.711
Lan-BridgeMT 0.721 0.730 0.766 0.712 0.705 0.747 0.742 0.763 0.737 0.777 0.669 0.779 0.765 0.760 0.710 0.746 0.738 0.774
KYB 0.613 0.634 0.666 0.616 0.593 0.651 0.621 0.710 0.659 0.679 0.572 0.702 0.673 0.670 0.629 0.659 0.670 0.691
ZengHuiMT 0.742 0.772 0.785 0.738 0.741 0.769 0.774 0.807 0.762 0.790 0.720 0.786 0.785 0.781 0.752 0.772 0.770 0.791
AIRC 0.629 0.644 0.677 0.613 0.610 0.663 0.639 0.724 0.664 0.681 0.583 0.702 0.684 0.675 0.631 0.661 0.677 0.701
ANVITA 0.647 0.681 0.707 0.648 0.623 0.664 0.667 0.736 0.671 0.706 0.605 0.734 0.701 0.699 0.644 0.673 0.696 0.716
NAIST-NICT 0.699 0.733 0.749 0.696 0.675 0.722 0.735 0.779 0.728 0.762 0.642 0.762 0.752 0.742 0.702 0.731 0.724 0.764
SKIM 0.719 0.753 0.777 0.734 0.720 0.752 0.757 0.797 0.755 0.782 0.683 0.786 0.778 0.785 0.734 0.761 0.753 0.785

en-ru

GPT4-5shot 0.758 0.786 0.778 0.789 0.801 0.790 0.756 0.785 0.759 0.787 0.765 0.777 0.784 0.760 0.772 0.758 0.767 0.789
ONLINE-A 0.690 0.702 0.740 0.690 0.718 0.706 0.732 0.764 0.708 0.747 0.650 0.735 0.744 0.740 0.683 0.713 0.727 0.750
ONLINE-B 0.717 0.741 0.750 0.725 0.746 0.734 0.724 0.766 0.731 0.764 0.679 0.745 0.758 0.766 0.715 0.736 0.728 0.761
ONLINE-G 0.737 0.772 0.776 0.766 0.767 0.764 0.760 0.796 0.763 0.784 0.723 0.775 0.782 0.780 0.748 0.766 0.774 0.784
ONLINE-M 0.616 0.640 0.676 0.613 0.604 0.660 0.660 0.692 0.645 0.711 0.587 0.674 0.681 0.685 0.625 0.636 0.659 0.702
ONLINE-W 0.758 0.764 0.774 0.778 0.765 0.754 0.762 0.790 0.758 0.784 0.732 0.782 0.785 0.788 0.752 0.769 0.777 0.786
ONLINE-Y 0.695 0.750 0.751 0.727 0.725 0.730 0.735 0.775 0.746 0.761 0.683 0.758 0.759 0.762 0.726 0.723 0.741 0.764
NLLB_MBR 0.702 0.736 0.743 0.734 0.727 0.758 0.713 0.745 0.716 0.745 0.687 0.745 0.751 0.742 0.706 0.716 0.734 0.754
NLLB_Greedy 0.695 0.720 0.744 0.724 0.727 0.736 0.719 0.752 0.710 0.741 0.692 0.741 0.752 0.742 0.707 0.716 0.731 0.754
Lan-BridgeMT 0.670 0.669 0.706 0.658 0.676 0.685 0.693 0.724 0.654 0.728 0.604 0.717 0.717 0.714 0.647 0.676 0.694 0.724
PROMT 0.638 0.658 0.693 0.652 0.670 0.689 0.663 0.705 0.653 0.711 0.594 0.690 0.697 0.689 0.625 0.658 0.671 0.710
ZengHuiMT 0.680 0.706 0.716 0.661 0.692 0.684 0.705 0.743 0.679 0.711 0.630 0.707 0.719 0.714 0.676 0.697 0.701 0.724

en-uk

GPT4-5shot 0.777 0.794 0.789 0.806 0.807 0.794 0.771 0.790 0.772 0.795 0.770 0.792 0.795 0.796 0.784 0.777 0.774 0.797
ONLINE-A 0.656 0.686 0.713 0.655 0.677 0.682 0.688 0.726 0.672 0.727 0.619 0.716 0.715 0.713 0.651 0.674 0.698 0.726
ONLINE-B 0.707 0.731 0.749 0.716 0.732 0.747 0.738 0.759 0.726 0.761 0.672 0.747 0.756 0.763 0.709 0.724 0.733 0.759
ONLINE-G 0.726 0.756 0.768 0.759 0.760 0.765 0.746 0.776 0.750 0.778 0.714 0.769 0.772 0.773 0.740 0.759 0.763 0.775
ONLINE-W 0.748 0.760 0.771 0.779 0.774 0.765 0.755 0.791 0.770 0.783 0.721 0.776 0.780 0.785 0.744 0.763 0.765 0.782
ONLINE-Y 0.666 0.705 0.720 0.695 0.671 0.699 0.695 0.737 0.686 0.729 0.646 0.730 0.724 0.722 0.685 0.689 0.691 0.731
NLLB_MBR 0.697 0.713 0.733 0.729 0.723 0.738 0.698 0.738 0.708 0.734 0.674 0.738 0.739 0.737 0.702 0.708 0.722 0.744
NLLB_Greedy 0.693 0.700 0.734 0.717 0.714 0.719 0.702 0.748 0.714 0.736 0.675 0.751 0.740 0.741 0.707 0.717 0.732 0.745
Lan-BridgeMT 0.632 0.644 0.677 0.618 0.625 0.665 0.660 0.675 0.634 0.683 0.577 0.686 0.682 0.675 0.621 0.638 0.658 0.696
GTCOM_Peter 0.626 0.665 0.691 0.633 0.654 0.676 0.670 0.694 0.657 0.706 0.596 0.685 0.690 0.686 0.637 0.647 0.664 0.704
ZengHuiMT 0.637 0.677 0.687 0.632 0.651 0.671 0.675 0.708 0.658 0.691 0.604 0.687 0.688 0.688 0.639 0.663 0.671 0.696

en-zh

GPT4-5shot 0.770 0.763 0.782 0.780 0.798 0.792 0.763 0.780 0.774 0.781 0.769 0.762 0.784 0.776 0.780 0.760 0.776 0.786
ONLINE-A 0.661 0.697 0.714 0.647 0.669 0.694 0.700 0.744 0.682 0.727 0.621 0.704 0.717 0.710 0.658 0.686 0.703 0.725
ONLINE-B 0.726 0.745 0.756 0.737 0.732 0.753 0.733 0.773 0.737 0.773 0.700 0.757 0.762 0.762 0.727 0.741 0.741 0.766
ONLINE-G 0.633 0.652 0.693 0.639 0.627 0.688 0.664 0.700 0.647 0.704 0.595 0.679 0.697 0.683 0.616 0.648 0.682 0.704
ONLINE-M 0.644 0.650 0.680 0.620 0.617 0.635 0.657 0.718 0.646 0.692 0.591 0.675 0.686 0.690 0.638 0.655 0.663 0.692
ONLINE-W 0.732 0.745 0.756 0.754 0.739 0.751 0.743 0.787 0.746 0.774 0.715 0.755 0.763 0.756 0.733 0.749 0.740 0.767
ONLINE-Y 0.702 0.722 0.745 0.722 0.709 0.742 0.713 0.761 0.724 0.751 0.675 0.734 0.747 0.751 0.708 0.719 0.719 0.752
NLLB_MBR 0.522 0.531 0.587 0.569 0.555 0.565 0.551 0.551 0.503 0.556 0.521 0.585 0.578 0.551 0.521 0.510 0.555 0.596
NLLB_Greedy 0.578 0.593 0.634 0.619 0.604 0.625 0.606 0.632 0.579 0.624 0.568 0.625 0.634 0.610 0.599 0.580 0.613 0.645
Lan-BridgeMT 0.779 0.784 0.785 0.789 0.796 0.802 0.765 0.789 0.765 0.791 0.780 0.779 0.790 0.786 0.781 0.771 0.774 0.792
Yishu 0.726 0.745 0.756 0.737 0.732 0.754 0.733 0.773 0.737 0.773 0.700 0.757 0.762 0.762 0.727 0.741 0.741 0.766
ZengHuiMT 0.645 0.671 0.697 0.664 0.641 0.689 0.674 0.725 0.669 0.715 0.625 0.687 0.706 0.703 0.648 0.677 0.686 0.711
ANVITA 0.509 0.505 0.510 0.519 0.488 0.536 0.544 0.554 0.498 0.531 0.470 0.515 0.524 0.526 0.488 0.500 0.486 0.536
HW-TSC 0.677 0.705 0.729 0.685 0.680 0.717 0.704 0.744 0.709 0.744 0.651 0.722 0.734 0.732 0.685 0.707 0.699 0.740
IOL_Research 0.627 0.655 0.679 0.619 0.613 0.654 0.677 0.692 0.618 0.697 0.573 0.665 0.685 0.667 0.609 0.638 0.657 0.696

Table 8: COMET-QE scores by normalisation annotation type and averaged over all RoCS-MT sentences (‘all’).
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Lang. pair en-cs en-de en-he en-ja en-ru en-uk en-zh

GPT4-5shot 0.14 -0.04 -0.04 -0.06 -0.07 -0.06 -0.04
NLLB_Greedy 0.08 -0.09 0.03 -0.01 -0.03 -0.01 -0.01
NLLB_MBR 0.06 -0.04 0.03 -0.00 -0.02 -0.01 -0.02
ONLINE-W 0.62 0.31 - 0.04 0.12 0.04 0.06
ONLINE-B 0.51 0.07 0.20 0.06 0.15 0.23 0.17
ONLINE-Y 0.54 0.10 0.27 0.01 0.07 0.11 0.25
Yishu - - - - - - 0.17
Lan-BridgeMT 0.69 0.46 0.02 0.44 0.28 0.42 -0.04
Samsung_Research_Philippines - - 0.32 - - - -
HW-TSC - - - - - - 0.18
ONLINE-G 0.77 0.26 0.01 0.74 0.11 0.11 0.54
GTCOM_Peter 0.57 - 0.63 - - 0.34 -
ONLINE-A 0.68 0.34 0.40 0.25 0.23 0.35 0.26
UvA-LTL - - 0.38 - - - -
SKIM - - - 0.33 - - -
ZengHuiMT 0.72 0.32 0.39 0.27 0.33 0.42 0.26
ONLINE-M 0.64 0.74 - 0.49 0.36 - 0.46
AIRC - 0.71 - 0.56 - - -
PROMT - - - - 0.46 - -
CUNI-Trans 0.88 - - - - - -
NAIST-NICT - - - 0.61 - - -
IOL_Research - - - - - - 0.54
CUNI-DocTrans 1.53 - - - - - -
ANVITA - - - 0.62 - - 1.90
CUNI-GA 1.53 - - - - - -
KYB - - - 1.15 - - -

Table 9: The difference in the number of source words present in the MT output between the manseg-raw and
manseg-norm subsets, averaged across all sentences for each system. This indicates how much more (or less) source
words are copied in the raw (unnormalised) sentences with respect to their normalised versions.
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Abstract

Machine Translation Evaluation is critical to
Machine Translation researches, as the evalua-
tion results reflect the effectiveness of training
strategies. As a result, a fair and efficient eval-
uation method is necessary. Many researchers
have raised questions about currently available
evaluation metrics from various perspectives,
and propose suggestions accordingly. How-
ever, to our knowledge, few researchers has ana-
lyzed the difficulty level of source sentence and
its influence on evaluation results. This paper
presents HW-TSC’s submission to the WMT23
MT Test Suites shared task. We propose a sys-
tematic approach for construing challenge sets
from four aspects: word difficulty, length dif-
ficulty, grammar difficulty and model learning
difficulty. We open-source two Multifaceted
Challenge Sets for Zh→En and En→Zh. We
also present results of participants in this year’s
General MT shared task on our test sets.

1 Introduction

Machine Translation (MT) Evaluation is an indis-
pensable part of MT research, helping researchers
verify the effectiveness of proposed training strate-
gies and offering suggestions for future researches.
However, automatic machine evaluation has raised
a lot of concerns during decades of practices. One
research direction is to explore the weakness of
available evaluation metrics (Koehn and Monz,
2006; Callison-Burch et al., 2006; Post, 2018; Chen
et al., 2022). Another direction is to analyze the
soundness of test sets. For example, Freitag et al.
(2020) discuss the impact of reference transla-
tionese on the evaluation results.

However, to our knowledge, few researches
(Ahrenberg, 2018; Isabelle et al., 2017) has been
done to discuss the influence of source sentences
on the evaluation results. With the advancement
of machine translations in recent years, we think
that randomly sampled test sets may not be able to
reflect the true gaps among models, as you can’t

test freshman’s capability with grade-1 quiz. So
we propose a strategy to collect test sentences with
high-level of difficulty. The strategy considers a
sentence’s difficulty level from four dimensions, in-
cluding word difficulty, length difficulty, grammar
difficulty and model learning difficulty.

This paper presents our constructed Multifaceted
Challenge Sets1 for Zh→En and En→Zh language
pairs using the strategy mentioned above. Each
of the test set contains 2,000 sentences. The
source sentences are from the open-sourced En-
glish Wikipedia corpus2 while the translations are
provided by our in-house translators. We report the
results of participants in this year’s General MT
shared task on our test sets and hope to gain some
insight by comparing our results with the official
evaluation results.

2 Challenge Set Construction

2.1 Measuring Difficulty Level of a Test Set

We propose four indexes to measure the difficulty
level of a sentence: word difficulty, length diffi-
culty, grammar difficulty and model learning diffi-
culty.

Word Difficulty Word difficulty is measured
based on the frequency of a word appeared in the
parallel training corpus. In general, the lower the
frequency of a word in the training data, the more
challenging for neural machine translation (NMT)
to translate the word correctly.

We calculate the frequency of all words in the
officially provided parallel data for the General
MT shared task, and select words with frequency
of more than 10 times and less than 99 times as
the low-frequency word list. It should be noted
that although some words fall into this frequency

1The test sets are open-sourced at:
https://github.com/HwTsc/Multifaceted Challenge Set for MT

2https://dumps.Wikipediamedia.org/enWikipedia/, version
20230520 is used
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system BLEU chrF COMET22 RankBLEU RankchrF RankCOMET

GPT4-5SHOT 31.01 59.19 82.75 1 2 1
Lan-BridgeMT 29.81 59.45 82.16 2 1 2
ONLINE-B 29.67 57.60 80.32 3 3 3
ZengHuiMT 28.68 55.66 79.14 4 6 11
Yishu 27.64 54.95 80.14 5 8 5
ONLINE-G 27.15 57.37 80.00 6 4 6
ONLINE-A 27.08 56.25 79.99 7 5 7
ONLINE-Y 25.05 54.54 79.61 8 9 10
IOL Research 24.95 52.53 80.21 9 11 4
HW-TSC 24.90 52.56 79.75 10 10 8
ONLINE-W 23.58 55.18 79.68 11 7 9
ONLINE-M 20.92 51.00 76.50 12 12 13
NLLB Greedy 18.27 45.63 76.35 13 13 14
NLLB MBR BLEU 17.92 45.50 76.86 14 14 12
ANVITA 16.78 40.85 75.43 15 15 15

Table 1: BLEU, chrF and COMET Scores for the Zh→En translation task. Constrained systems are indicated in
bold.

range, they can be divided into high-frequency sub-
words (e.g. newsagent = news + agent), which
certainly does not meet the difficulty requirement.
So we manually check the English and Chinese
word lists and remove words that are consisted of
high-frequency subwords. Finally we use the word
lists to match the Wikipedia corpus to collect test
sentences.

Length Difficulty Extremely Long and short sen-
tences can be challenging for NMT models. In
our daily practice, we find that omission and logic
errors are more frequently seen in extremely long
sentences. Meanwhile, due to the lack of enough
context information, extremely short sentences are
also error-prone.

We calculate the length (the number of English
words/Chinese characters) of each sentence in the
Wikipedia corpus and select 1,000 longest and
shortest sentences respectively. We manually check
semantics of each sentence and finally select 250
extremely long and 250 extremely short sentences
as the test cases. The removed sentences include
those that are incomplete, or contains obvious trans-
lationese (probably back-translation results from
other languages).

Grammar Difficulty Kauchak et al. (2017) pro-
pose measuring the grammar difficulty of a sen-
tence using the frequency of the 3rd level sentence
parse tree. They employ Berkeley Parser to parse
the 5.4M Wikipedia corpus and create 11 frequency

bins.
Inspired by their strategy, we use Berkeley Parser

to parse all sentences in the Wikipedia corpus and
calculate the frequency of each 3rd level parse tree
pattern. We exclude patterns that appear only once,
which are highly possible to be noisy data. Then
we select 1,000 sentences of which their grammar
pattern has the lowest frequency as the candidate
pool. Finally we manually check the semantics of
each candidate and select 500 test sentences.

Model Learning Difficulty Zhao et al. (2019)
observe that the translation quality is related to the
entropy of the source sentence. The higher the
source sentence entropy, the more likely the sen-
tence is under-translated. They propose a formula
to calculate entropy of the source sentence: As-
sume a word s contains K candidate translations,
each of which has a probability pk, the translation
entropy for this word can be calculated by:

E(s) = −
k∑

k=1

pk ∗ log pk (1)

Using this formula, we calculate the entropy of
each sentence in the Wikipedia corpus and select
1,000 sentences with the highest entropy as the
candidate pool. Then we manually check the se-
mantics of each sentence and finally select 500 test
cases.
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system BLEU chrF COMET22 RankBLEU RankchrF RankCOMET

Yishu 48.74 45.18 86.47 1 1 2
ONLINE-B 48.72 45.17 86.47 2 2 2
ONLINE-W 45.99 42.89 86.55 3 3 1
IOL Research 45.28 41.17 85.29 4 4 6
ONLINE-A 44.92 40.72 84.82 5 5 8
HW-TSC 44.29 39.91 85.11 6 7 7
ONLINE-Y 43.72 40.03 84.51 7 6 9
ONLINE-M 41.85 39.24 82.1 8 8 10
GPT4-5shot 41.73 38.61 85.64 9 9 4
LAN-BRIDGEMT 39.89 37.83 85.52 10 10 5
ONLINE-G 39.77 37.09 81.63 11 11 11
ZengHuiMT 35.34 31.6 81.24 12 13 12
ANVITA 35.28 34.02 78.99 13 12 14
NLLB Greedy 30.12 27.98 79 14 14 13
NLLB MBR BLEU 25.84 26.02 76.62 15 15 15

Table 2: BLEU, chrF and COMET Scores for the En→Zh translation task. Constrained systems are indicated in
bold.

2.2 Test Set Composition

Our Zh→En and En→Zh test sets each contains
2,000 sentences, 500 sentences per category. The
source sentences are selected from the open-source
Englisjh Wikipedia corpus (version 20230520)3,
using the strategy we mentioned above. The target
sentences are translated by our in-house transla-
tors, without referring to any machine translation
models. We recruit 10 translators whose average
working experience in the translation field exceed
5 years.

3 Results and Discussions

3.1 Results on the Multifaceted Challenge Set

Table 1 and Table 2 present the Zh→En and
En→Zh results, including sacreBLEU (Post, 2018),
chrF (Popović, 2015), and COMET-22 (Rei et al.,
2022), as well as corresponding ranks. The ranks
are quite different from the official results. How-
ever, as we are unable to keep the domain distribu-
tion of our test set the same as that of the official
test set, we cannot draw a conclusion of whether
the ranking difference is due to different levels of
source sentence difficulty or domain difference.

If the ranking difference is caused by the differ-
ent difficulty levels, we can conclude that systems
that perform well on average test sets may not per-
form as well on challenge sets. So we may need a

3https://dumps.Wikipediamedia.org/enWikipedia/, version
20230520 is used.

set of test sets at different difficulty levels to com-
prehensively evaluate model performance. Or if
the ranking difference is caused by domain issues,
the top-ranked systems on the official test sets may
not be so general as the task name, General MT,
suggests.

We also report COMET results on each subset
(see table 3 and table 4) and try to understand
model performance on each dimension. Accord-
ing to table 3, performances of Zh→En systems
vary greater under the Word and Length dimen-
sions, as the standard deviation scores are greater
than that of other dimensions and the overall result.
The result indicates that incorporating low-frequent
words and extremely long/short sentences into the
test set may better help to significantly differ model
performances. The result is similar for En→Zh
translation. As shown in table 4, the standard de-
viation under the Word dimension is much greater
than that of the overall result and other dimensions.
The standard deviation under the Length category
is second largest, although a little bit lower than
that of the overall result.

3.2 Towards More Sound Evaluation

Automatic evaluation is still the first option for MT
researchers considering its speed and cost. More
reliable evaluation metrics, e.g. COMET (Rei et al.,
2020), BLEURT (Sellam et al., 2020), now provide
more reliable evaluation results that more align
with human evaluations. Meanwhile, we believe
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System Vocab Grammar Length Learning overall
ANVITA 72.32 77.72 73.52 78.33 75.43

GPT4-5SHOT 80.84 82.65 83.81 83.67 82.75
HW-TSC 77.66 80.69 79.02 81.59 79.75

IOL Research 77.94 80.39 80.81 81.65 80.21
Lan-BridgeMT 80.31 82.05 83.24 83.02 82.16
NLLB Greedy 73.41 78.33 74.81 78.84 76.35

NLLB MBR BLEU 73.59 78.41 76.05 79.4 76.86
ONLINE-A 77.97 80.12 80.9 80.92 79.99
ONLINE-B 78.4 80.53 80.98 81.32 80.32
ONLINE-G 78.03 80.46 81.09 80.39 80
ONLINE-M 73.7 77.52 76.18 78.56 76.5
ONLINE-W 77.4 80.36 79.71 81.26 79.68
ONLINE-Y 77.21 80.43 80.07 80.7 79.61

Yishu 78.49 80.58 80.1 81.34 80.14
ZengHuiMT 77.6 79.22 80.42 79.29 79.14

Standard Deviation 2.56 1.47 2.97 1.57 2.10

Table 3: COMET22 results of Zh→En systems on each subset and on the overall challenge set, as well as the
standard deviation of all systems’ COMET22 scores under the category.

System Vocab Grammar Length Learning Overall
ANVITA 77.84 79.46 77.95 80.9 79.0

GPT4-5SHOT 83.88 85.78 86.3 86.7 85.6
HW-TSC 83.53 84.99 86.39 85.78 85.1

IOL Research 83.63 85.03 86.87 85.87 85.3
Lan-BridgeMT 84.27 84.94 86.76 86.18 85.5
NLLB Greedy 74.98 79.53 81.18 80.34 79.0

NLLB MBR BLEU 71.62 77.33 79.99 77.59 76.6
ONLINE-A 83.25 84.33 86.22 85.68 84.8
ONLINE-B 85.94 85.58 87.21 87.37 86.5
ONLINE-G 79.43 81.18 83.41 82.68 81.6
ONLINE-M 80.32 82.57 82.05 83.74 82.1
ONLINE-W 85.52 85.99 87.66 87.18 86.6
ONLINE-Y 82.93 84.47 85.3 85.55 84.5

Yishu 85.98 85.56 87.22 87.37 86.5
ZengHuiMT 79.38 81.76 81.19 82.9 81.2

Standard Deviation 4.20 2.76 3.14 2.95 3.19

Table 4: COMET22 results of En→Zh systems on each subset and on the overall challenge set, as well as the
standard deviation of all systems’ COMET22 scores under the category.
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there should be a more systematic approach to con-
struct test sets. In addition to domains, we should
also put difficulty level into consideration. The
randomly sampled test sets represent the average
difficulty level in a certain domain, which can re-
flect the general capability of models. However, to
learn the current weakness of MT and push further
researches, we need challenge sets.

4 Conclusion and Limitations

This paper presents HW-TSC’s submission to the
WMT23 MT Test Suites shared task. We propose
increasing the test set difficulty level to better mea-
sure model performances. We propose a strategy
to collect test sets with high difficulty level: word
difficulty, length difficulty, grammar difficulty and
model learning difficulty. We construct two mul-
tifaceted Challenge Sets for Zh→En and En→Zh
directions using this strategy and report automatic
evaluations of participants in this year’s General
MT shared task on our test sets.

However, due to time constraints, we do not per-
form human evaluations on the test results, which
we believe will offer more insights on the perfor-
mance of our challenge sets. For future researches,
we will conduct direct assessment (DA) and error
annotations to explore the performance of each par-
ticipants on the challenge sets and compare the
result with the official test sets. In addition, we will
construct relatively simple test sets in the same do-
main, and compare the results with these challenge
sets, hoping to gain more insights on the role of
source sentence difficulty level.
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. Lan-BridgeMT ONLINE-B ZenghuiMT Yishu ONLINE-G ONLINE-A ONLINE-Y IOL Research HW-TSC ONLINE-W ONLINE-M NLLB Greedy NLLB MBR BLEU ANVITA
GPT4-5SHOT 1.2 1.3 2.3 3.4 3.9 3.9 6.0 6.1 6.1 7.4 10.1 12.7 13.1 14.2
Lan-BridgeMT 0.0 0.1 1.1 2.2 2.7 2.7 4.8 4.9 4.9 6.2 8.9 11.5 11.9 13.0

ONLINE-B 0.0 1.0 2.0 2.5 2.6 4.6 4.7 4.8 6.1 8.8 11.4 11.8 12.9
ZenghuiMT 0.0 1.0 1.5 1.6 3.6 3.7 3.8 5.1 7.8 10.4 10.8 11.9

Yishu 0.0 0.5 0.6 2.6 2.7 2.7 4.1 6.7 9.4 9.7 10.9
ONLINE-G 0.0 0.1 2.1 2.2 2.3 3.6 6.2 8.9 9.2 10.4
ONLINE-A 0.0 2.0 2.1 2.2 3.5 6.2 8.8 9.2 10.3
ONLINE-Y 0.0 0.1 0.2 1.5 4.1 6.8 7.1 8.3

IOL Research 0.0 0.1 1.4 4.0 6.7 7.0 8.2
HW-TSC 0.0 1.3 4.0 6.6 7.0 8.1

ONLINE-W 0.0 2.7 5.3 5.7 6.8
ONLINE-M 0.0 2.7 3.0 4.1

NLLB Greedy 0.0 0.3 1.5
NLLB MBR BLEU 0.0 1.1

ANVITA 0.0

height

Table 5: statistical significance testing of the BLEU score difference for each system pair for Zh→En. Score
difference is in gray if the p-value is above 0.05

GPT45SHOT ONLINE-B ONLINE-G ONLINE-A ZenghuiMT ONLINE-W Yishu ONLINE-Y HWTSC IOL Research ONLINE-M NLLB Greedy NLLB MBR BLEU ANVITA
Lan-BridgeMT 0.3 1.9 2.1 3.2 3.8 4.3 4.5 4.9 6.9 6.9 8.5 13.8 14.0 18.6
GPT4-5SHOT 0.0 1.6 1.8 2.9 3.5 4.0 4.2 4.7 6.6 6.7 8.2 13.6 13.7 18.3

ONLINE-B 0.0 0.2 1.4 1.9 2.4 2.7 3.1 5.0 5.1 6.6 12.0 12.1 16.8
ONLINE-G 0.0 1.1 1.7 2.2 2.4 2.8 4.8 4.8 6.4 11.7 11.9 16.5
ONLINE-A 0.0 0.6 1.1 1.3 1.7 3.7 3.7 5.3 10.6 10.8 15.4
ZenghuiMT 0.0 0.5 0.7 1.1 3.1 3.1 4.7 10.0 10.2 14.8
ONLINE-W 0.0 0.2 0.6 2.6 2.7 4.2 9.6 9.7 14.3

Yishu 0.0 0.4 2.4 2.4 4.0 9.3 9.5 14.1
ONLINE-Y 0.0 2.0 2.0 3.5 8.9 9.0 13.7

HW-TSC 0.0 0.0 1.6 6.9 7.1 11.7
IOL Research 0.0 1.5 6.9 7.0 11.7
ONLINE-M 0.0 5.4 5.5 10.2

NLLB Greedy 0.0 0.1 4.8
NLLB MBR BLEU 0.0 4.7

ANVITA 0.0

height

Table 6: statistical significance testing of the chrF score difference for each system pair for Zh→En. Score difference
is in gray if the p-value is above 0.05

Lan-BridgeMT ONLINE-B IOL Research Yishu ONLINE-G ONLINE-A HW-TSC ONLINE-W ONLINE-Y ZenghuiMT NLLB MBR BLEU ONLINE-M NLLB Greedy ANVITA
GPT4-5SHOT 0.6 2.4 2.5 2.6 2.8 2.8 3.0 3.1 3.1 3.6 5.9 6.3 6.4 7.3
Lan-BridgeMT 0.0 1.8 2.0 2.0 2.2 2.2 2.4 2.5 2.6 3.0 5.3 5.7 5.8 6.7

ONLINE-B 0.0 0.1 0.2 0.3 0.3 0.6 0.6 0.7 1.2 3.5 3.8 4.0 4.9
IOL Research 0.0 0.1 0.2 0.2 0.5 0.5 0.6 1.1 3.3 3.7 3.9 4.8

Yishu 0.0 0.1 0.2 0.4 0.5 0.5 1.0 3.3 3.6 3.8 4.7
ONLINE-G 0.0 0.0 0.3 0.3 0.4 0.9 3.1 3.5 3.7 4.6
ONLINE-A 0.0 0.2 0.3 0.4 0.8 3.1 3.5 3.6 4.6

HW-TSC 0.0 0.1 0.1 0.6 2.9 3.3 3.4 4.3
ONLINE-W 0.0 0.1 0.5 2.8 3.2 3.3 4.3
ONLINE-Y 0.0 0.5 2.8 3.1 3.3 4.2
ZenghuiMT 0.0 2.3 2.6 2.8 3.7

NLLB MBR BLEU 0.0 0.4 0.5 1.4
ONLINE-M 0.0 0.2 1.1

NLLB Greedy 0.0 0.9
ANVITA 0.0

height

Table 7: statistical significance testing of the COMET score difference for each system pair for Zh→En. Score
difference is in gray if the p-value is above 0.05

ONLINE-B ONLINE-W IOL-Research ONLINE-A HW-TSC ONLINE-Y ONLINE-M GPT4-5shot LAN-BRIDGEMT ONLINE-G ZenghuiMT ANVITA NLLB Greedy NLLB MBR BLEU
yishu 0.0 2.8 3.5 3.8 4.5 5.0 6.9 7.0 8.9 9.0 13.4 13.5 18.6 22.9

ONLINE-B 0.0 2.7 3.4 3.8 4.4 5.0 6.9 7.0 8.8 9.0 13.4 13.4 18.6 22.9
ONLINE-W 0.0 0.7 1.1 1.7 2.3 4.1 4.3 6.1 6.2 10.7 10.7 15.9 20.2

IOL-Research 0.0 0.4 1.0 1.6 3.4 3.6 5.4 5.5 9.9 10.0 15.2 19.4
ONLINE-A 0.0 0.6 1.2 3.1 3.2 5.0 5.2 9.6 9.6 14.8 19.1

HW-TSC 0.0 0.6 2.4 2.6 4.4 4.5 9.0 9.0 14.2 18.5
ONLINE-Y 0.0 1.9 2.0 3.8 4.0 8.4 8.4 13.6 17.9
ONLINE-M 0.0 0.1 2.0 2.1 6.5 6.6 11.7 16.0
GPT4-5shot 0.0 1.8 2.0 6.4 6.5 11.6 15.9

LAN-BRIDGEMT 0.0 0.1 4.6 4.6 9.8 14.1
ONLINE-G 0.0 4.4 4.5 9.7 13.9
ZenghuiMT 0.0 0.1 5.2 9.5

ANVITA 0.0 5.2 9.4
NLLB Greedy 0.0 4.3

NLLB MBR BLEU 0.0

height

Table 8: statistical significance testing of the BLEU score difference for each system pair for En→Zh. Score
difference is in gray if the p-value is above 0.05
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ONLINE-B ONLINE-W IOL-Research ONLINE-A ONLINE-Y HW-TSC ONLINE-M GPT4-5shot LAN-BRIDGEMT ONLINE-G ANVITA ZenghuiMT NLLB Greedy NLLB MBR BLEU
yishu 0.0 2.3 4.0 4.5 5.2 5.3 5.9 6.6 7.4 8.1 11.2 13.6 17.2 19.2

ONLINE-B 0.0 2.3 4.0 4.5 5.1 5.3 5.9 6.6 7.3 8.1 11.2 13.6 17.2 19.2
ONLINE-W 0.0 1.7 2.2 2.9 3.0 3.7 4.3 5.1 5.8 8.9 11.3 14.9 16.9

IOL-Research 0.0 0.5 1.1 1.3 1.9 2.6 3.3 4.1 7.2 9.6 13.2 15.2
ONLINE-A 0.0 0.7 0.8 1.5 2.1 2.9 3.6 6.7 9.1 12.7 14.7
ONLINE-Y 0.0 0.1 0.8 1.4 2.2 2.9 6.0 8.4 12.1 14.0

HW-TSC 0.0 0.7 1.3 2.1 2.8 5.9 8.3 11.9 13.9
ONLINE-M 0.0 0.6 1.4 2.2 5.2 7.6 11.3 13.2
GPT4-5shot 0.0 0.8 1.5 4.6 7.0 10.6 12.6

LAN-BRIDGEMT 0.0 0.7 3.8 6.2 9.9 11.8
ONLINE-G 0.0 3.1 5.5 9.1 11.1

ANVITA 0.0 2.4 6.0 8.0
ZenghuiMT 0.0 3.6 5.6

NLLB Greedy 0.0 2.0
NLLB MBR BLEU 0.0

height

Table 9: statistical significance testing of the chrF score difference for each system pair for En→Zh. Score difference
is in gray if the p-value is above 0.05

ONLINE-B ONLINE-W IOL-Research ONLINE-A HW-TSC ONLINE-Y ONLINE-M GPT4-5shot LAN-BRIDGEMT ONLINE-G ZenghuiMT ANVITA NLLB Greedy NLLB MBR BLEU
yishu 0.1 0.1 0.9 1.0 1.3 1.4 1.7 2.0 4.5 4.9 5.3 7.6 7.6 9.9

ONLINE-B 0.0 0.0 0.8 1.0 1.2 1.4 1.7 2.0 4.4 4.8 5.2 7.5 7.5 9.8
ONLINE-W 0.0 0.8 1.0 1.2 1.4 1.7 2.0 4.4 4.8 5.2 7.5 7.5 9.8

IOL-Research 0.0 0.1 0.3 0.5 0.8 1.1 3.5 4.0 4.4 6.6 6.7 9.0
ONLINE-A 0.0 0.2 0.4 0.7 1.0 3.4 3.9 4.3 6.5 6.5 8.9

HW-TSC 0.0 0.2 0.5 0.8 3.2 3.7 4.1 6.3 6.3 8.7
ONLINE-Y 0.0 0.3 0.6 3.0 3.5 3.9 6.1 6.1 8.5
ONLINE-M 0.0 0.3 2.7 3.2 3.6 5.8 5.8 8.2
GPT4-5shot 0.0 2.4 2.9 3.3 5.5 5.5 7.9

LAN-BRIDGEMT 0.0 0.5 0.9 3.1 3.1 5.5
ONLINE-G 0.0 0.4 2.6 2.6 5.0
ZenghuiMT 0.0 2.2 2.3 4.6

ANVITA 0.0 0.0 2.4
NLLB Greedy 0.0 2.4

NLLB MBR BLEU 0.0

height

Table 10: statistical significance testing of the COMET score difference for each system pair for En→Zh. Score
difference is in gray if the p-value is above 0.05
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Abstract

This paper offers a fine-grained analysis of the
machine translation outputs in the context of
the Shared Task at the 8th Conference of Ma-
chine Translation (WMT23). Building on the
foundation of previous test suite efforts, our
analysis includes Large Language Models and
an updated test set featuring new linguistic phe-
nomena. To our knowledge, this is the first
fine-grained linguistic analysis for the GPT-4
(5-shot) translation outputs. Our evaluation
spans German–English, English–German, and
English–Russian language directions. Some
of the phenomena with the lowest accuracies
for German–English are idioms and resulta-
tive predicates. For English–German, these
include mediopassive voice, and noun forma-
tion(er). As for English–Russian, these in-
cluded idioms and semantic roles. GPT-4 (5-
shot) performs equally or comparably to the
best systems in German–English and English-
–German but falls in the second significance
cluster for English–Russian.

1 Introduction

Over the past few years, we have witnessed sub-
stantial advancements in Machine Translation (MT)
alongside the rapid expansion of Large Language
Models (LLMs). These developments have brought
translation quality up to par with human capabili-
ties. However, these seemingly perfect translations
might contain fine-grained linguistic errors that go
unnoticed or get overlooked entirely in automated
evaluation. A more structured approach to identi-
fying linguistic issues in the outputs involves the
use of test suites or challenge sets to systemati-
cally evaluate the system’s performance on spe-
cific tasks. The current study focuses on providing
a fine-grained evaluation of the translation profi-
ciency of the latest generation of Neural Machine
Translation (NMT) against the latest generation of
LLMs, exemplified by ChatGPT 4.5. One of the
objectives is therefore to assess whether ChatGPT,

as an LLM, excels NMT in managing specific lin-
guistic phenomena. Although our focus lies on
ChatGPT, we are aware that there might be other
LLMS participating in the sub-task.

In this context, we are presenting the results of
the test suites analyzing state-of-the-art systems
in terms of numerous linguistically motivated phe-
nomena. These test suites1 were applied to the MT
systems submitted for evaluation at the 8th Con-
ference on Machine Translation (WMT23; Kocmi
et al., 2023) across multiple language directions:
German–English, English–German, and English–
Russian.

This paper is structured as follows: Section 2
goes through related work, whereas Section 3 ex-
plains how the test suite was created and applied.
Section 4 outlines the setup of this year’s experi-
ment, whose results are detailed in Section 5. Sec-
tion 6 concludes the paper with an outlook to future
research.

2 Related Work

The origins of test suites can be traced back to
the early days of machine translation in the 1990s
(King and Falkedal, 1990; Way, 1991; Heid and
Hildenbrand, 1991). Several researchers have
adopted the use of test suites to achieve their goals.
For instance, Guillou and Hardmeier (2016) em-
ployed test suites to evaluate pronoun translation.
Other studies (e.g. Isabelle et al., 2017; Burchardt
et al., 2017) compared different MT technologies,
while Avramidis et al. (2018) explored their appli-
cability in Quality Estimation methods.

The Machine Translation test suite track has
played a significant role in this context, leading
to the creation of test suites focusing on specific
translation-related phenomena. For example, the
work by Weller-di Marco and Fraser (2022) ad-
dressed the translation of morphologically complex

1https://github.com/DFKI-NLP/mt-testsuite
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words from German into English. Additionally, Se-
menov and Bojar’s research delved into document-
level translation quality assessment. These test
suites, however, focus on one or at most a few
phenomena per test suite, including the works by
Cinkova and Bojar (2018), Bojar et al. (2018), Bur-
lot et al. (2018), Guillou et al. (2018), Rios et al.
(2018), Popović (2019), Raganato et al. (2019),
Rysová et al. (2019), Vojtěchová et al. (2019),
Kocmi et al. (2020), Scherrer et al. (2020), Zouhar
et al. (2020). Test suites, in conjunction with hu-
man evaluation, are also instrumental in assessing
the quality of machine translation metrics (Freitag
et al., 2021; Avramidis and Macketanz, 2022). Our
approach enables a comprehensive analysis that
spans over a hundred linguistic phenomena across
three language pairs (Macketanz et al., 2022a).
It incorporates semi-automated human evaluation,
combining efficiency with in-depth analysis. Due
to our participation in past shared tasks since 2018
(Macketanz et al., 2018b), we are able to analyze
the development of machine translation systems
over the years.

With the growing interest surrounding LLMs,
researchers have been increasingly focused on eval-
uating ChatGPT’s performance in MT. For instance,
the paper by Jiao et al. (2023) concludes that
ChatGPT performs competitively with commercial
translation products on high-resource European lan-
guages. A comprehensive evaluation across 18
languages of GPT models versus best-performing
WMT-22 systems including human evaluations
by Hendy et al. (2023) supports the previous find-
ing. Other research explores these differences in
terms of the literalness of translations produced
by standard NMT and ChatGPT-3 (Raunak et al.,
2023). Castilho et al. (2023) have tested ChatGPT
for handling context-related linguistic phenomena
such as coreference, terminology, etc. to show that
it performed even better than other MT engines.
This current paper also places a specific focus on
evaluating ChatGPT’s performance compared to
other systems in the shared task.

3 Method

3.1 Test suite description

This paper focuses on three language pairs:
German–English, English–German, and English–
Russian. The test suite is built around specific
linguistic categories, further divided into more de-
tailed linguistic phenomena. While these categories

Test set Test sentences Categories Phenomena

De–En ∼5,500 14 106
En–De ∼4,785 13 110
En–Ru ∼1232 12 51

Table 1: Metadata of the language pairs in the test suite.

and phenomena are specific to each language pair
or direction, they may overlap across different di-
rections. Although the logic of the test suite does
not follow a particular linguistic theory, the catego-
rization is based on linguistic research, established
contrastive grammars, and findings from transla-
tion studies. The test suite was designed to cover a
wide range of potential translation challenges, and
its categories and phenomena were internally re-
viewed for objectivity by linguists and professional
translators.

Table 1 provides an overview of the number of
test sentences, categories, and phenomena for each
language pair. Notably, our English–Russian test
set has more than doubled compared to last year,
from 350 sentences (Macketanz et al., 2022b) to
1232. The new categories and phenomena have
been added to the English–German direction as
well.

To allow the evaluation of test sentences to oper-
ate semi-automatically, we have written rules that
determine translation correctness. These rules in-
clude hand-crafted regular expressions and prede-
fined translation outputs, applied using an internal
evaluation tool (Macketanz et al., 2018a). Figure 1
illustrates the workflow of the preparation and ap-
plication of our test suite.

3.2 Application of the test suite
The details regarding the development and applica-
tion of our test suite are available in prior publica-
tions within the test suite track.(Macketanz et al.,
2018c, 2021, 2022b; Avramidis et al., 2019, 2020).
In this paper, we present an overview of the com-
plete system. As shown in Figure 1, the building
of the test suite follows steps a to c. Once test sen-
tences are input to MT systems (step d), the test
suite is applied, and automatic evaluation begins.
This is done using predefined rules (step e). These
rules are made of regular expressions and fixed
strings, indicating correct and incorrect translations
based on previous MT system outputs. Regular
expressions are designed to evaluate translation ac-
curacy for specific phenomena, possibly excluding
unrelated errors. Sentences are flagged with warn-
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Er las gerne Novellen.

1. He liked to read novellas.
2. He liked to read novels.

regex: (+) novellas  (-) novels

1. He liked to read novellas.
2. He liked to read novels. 
3. He liked to read short stories. 
4. He liked reading novellas. 
5. He liked to read a novel. 
                      ...

1. ✓ 
2. ✗
3. ?
4. ✓
5. ?
  ...

⇨ ⇨

 
produce paradigms apply 

regex
⟲

check

 

a.

b.

c.

d. e. f.

1. ✓ 
2. ✗
3. ✓
4. ✓
5. ✗
  ...

 

write regular expressions

fetch sample translations

⇨

fetch more translations

Figure 1: Example of the preparation and application of the test suite for one test sentence

ings when they cannot be automatically sorted as
correct or incorrect. Human linguist annotators
review and adjust the rules, while sentences with
critical language errors unrelated to the phenomena
are deemed incorrect.

Subsequently, the translation accuracy specific
to the phenomenon is calculated by dividing the
number of correctly translated test sentences for
that phenomenon by the total number of test sen-
tences for that same phenomenon:

accuracy =
correct translations
sum of test items

Since the goal is to ensure a fair comparison among
systems, only the test items that do not have any
warnings are included in the calculation. If a test
item has at least one unresolved warning, we ex-
clude it from the calculation. Such an approach
reduces the total number of test items, which was
crucial this year, as there were many problematic
outputs.

We begin by identifying the highest-scoring sys-
tem in each language direction and then compare it
to other systems. To do so, we confirm the signif-
icance of the comparison with a one-tailed Z-test
with α = 0.95. Systems that do not significantly
differ from the top-performing system are grouped
into the first performance cluster, which is indi-
cated with boldface in the respective rows of the
tables.

Average scores are computed using three distinct
methods to account for variations in the number
of test items within each category or phenomenon.
The micro-average method aggregates the contribu-
tions of all test items to calculate average percent-
ages. Category macro-average computes the per-
centages independently for each category and then

averages them, treating all categories equally. Sim-
ilarly, the phenomenon macro-average computes
percentages independently for each phenomenon
and then averages them, treating all phenomena
equally.

3.3 Addition of new phenomena

This year, we added some new phenomena and
made an effort to make the new test items more
challenging for the systems. For instance:

• Some test items are now spanned across multi-
ple sentences. Previously, the coreference cat-
egory had only one sentence test items e.g., Su-
san dropped the plate, and it shattered loudly.
This year, some new test items divided into
two sentences had been added e.g., The cat
climbed up a tree. It was afraid.

• There was an effort to include sentences that
vary in their length, ambiguity as well syntax
complexity. For example, He was also seen
wearing harem-style trousers as he tapped his
feet along with his new track as well as

• to add phenomena that require inventive ap-
proach and cultural knowledge e.g., ono-
matopoeia.

4 Experiment Setup

In this paper, we present the evaluation of 37 sys-
tems with our test suite. The systems were submit-
ted to the news translation task of the Eighth Con-
ference on Machine Translation (WMT23; Kocmi
et al., 2023): 13 systems for German–English, 12
systems for English–German, and 12 systems for
English–Russian.
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This year is the third time that the English–
German systems are being evaluated with our test
suite and the second time for the English–Russian
systems. Every year, manual work is involved upon
receiving the system translations as there are usu-
ally a number of translation outputs that are not
yet covered by the existing rules in the database
(the warnings). At the beginning of the evaluation
process this year, there were on average 10.7 % of
warnings for German–English, 15.6 % for English–
German, and 70.6 % for English–Russian. The
English–Russian test has grown significantly since
last year and in comparison with the other sets had
more new items that had not been evaluated before.
It was also expected that English–German would
have a higher amount of warnings than German–
English as there were some new categories added
to the English–German test suite.

One annotator with extensive linguistic knowl-
edge of the three languages conducted the man-
ual evaluation of the warnings; problematic cases
were discussed with several translation experts to
exclude subjectivity. The manual evaluation took
around three and a half weeks and involved around
55 person-hours. After the manual evaluation, there
were on average 7 % of warnings left for German–
English, 6.8 % for English–German, and 6.9 % for
English–Russian.

As mentioned above, test sentences with at least
one warning by one system were excluded from the
analysis to achieve a fair comparison between the
systems under inspection. As this year, we saw a lot
of problematic outputs that could not be properly
evaluated, this report deals with a significantly less
number of test items than in the previous years.
We suspect that some of these can be explained
by possible models’ hallucinations: a number of
the MT outputs this year had some parts of the
sentences repeated twice or parts of the test items
were not translated at all or seemed out of place
altogether. To illustrate, one unevaluated output
was from the phenomenon intransitive-perfect “Ich
bin gerannt" (“I ran" or“I was running") that in the
submission of Lan-Bridge (Wu and Hu, 2023) was
rendered “I’m a manager".

As a result, our analysis was conducted on 3234
(58.9 %) test sentences for German–English, 3109
(64.8 %) test sentences for English–German, and
909 (73.8 %) test sentences for English–Russian.

5 Results

All result tables can be found in the Appendix.

5.1 System comparison

For German–English, ChatGPT 4.5 produced mi-
cro and macro scores of 92.5 % and 91.6 % re-
spectively, which puts ChatGPT 4.5 into the cluster
of top-performing systems. The highest micro av-
erages ranging from 95.9-93 % were achieved by
the systems Online-W, Online-A, and Online-Y.
In terms of the macro average, Online-W, Online-
A, and Online-B demonstrated the highest scores,
ranging from 91.8 % to 92.7 %. The system with
the lowest performance on the micro average this
year was Lan-Bridge with 81.2 %, while the sys-
tem with the lowest macro average was AIRC with
74.3 %.

For the English–German direction, ChatGPT
4.5 leads with a micro average of 97.8 %, followed
closely by Online-Y at 97.4 % and Online-B at
97.2 %. ChatGPT 4.5, on the macro average, dis-
plays the highest score 92.9 %, followed by Online-
W with 92.6 % and Online-B with 92 %. The sys-
tem AIRC achieved the lowest scores: 87.1 % for
micro and 71 % for macro. On average, systems
get micro average of 95.4 % and macro average
86.7 %.

For English–Russian, only Online-G and
Online-W stand out with the highest scores. Online-
G achieves a micro average of 86.9 % and a
macro average of 86.3 %, while Online-W achieves
86.8 % and 85.5 % respectively. ChatGPT doesn’t
end up in the top-performing cluster and ChatGPT
gets the same micro average as Online-B 81.7 %.
Online-B achieves 81.3 % on macro average and
outperforms ChatGPT by 3.4 %. LanguageX and
Lan-Bridge as the two systems with the lowest
scores achieve micro scores of 65-65.7 % and
macro of 61.1 %. Several factors, such as limited
training data and substantial structural differences
between the languages, contribute to the translation
challenges for this language pair, compared to the
relatively similar English–German pair.

5.2 Category-level analysis

In German–English, a few models achieve 100 %
in categories such as composition, named entity &
terminology, and negation. This might be attributed
to the fact that these categories have well-defined
rules that the models have mastered. Categories
like ambiguity and false friends still show varied
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results, indicating their complexity. ChatGPT 4.5
excels in many categories, scoring 91.0 % in am-
biguity and 95.5 % in ldd & interrogatives. Punc-
tuation is the most difficult category for ChatGPT
4.5 achieving 76 % accuracy. One possible expla-
nation is that GPT translations frequently include
punctuation and other content not present in the
original text (Hendy et al., 2023).

For English–German, the categories
with the highest scores are negation, verb
tense/aspect/mood, and function word. ChatGPT
4.5 performs well in function word (97.6 %) and
ldd & interrogatives, although NLLBG still
outperforms ChatGPT in ldd & interrogatives.
ChatGPT and NMT models can improve in
categories like subordination and verb valency,
where scores are often below 90 %.

For English–Russian, the category with the
highest average score (89.4 %) is punctuation. Cat-
egories like verb semantics and lexical Morphology
pose significant challenges. The categories with
the lowest accuracy are ambiguity with 51.8 %, fol-
lowed by coordination & ellipsis. However, Chat-
GPT 4.5 achieves the lowest results in the category
false friends with 61.5 % accuracy. ChatGPT per-
forms best in function word (93.1 %) and verb
tense/aspect/mood (85.9 %). The most challenging
phenomenon for ChatGPT is verb semantics with
a score of 47.1 %.

5.3 Phenomenon-level analysis

For German–English, the phenomenon macro-
average for ChatGPT is 91.5 % with over 40 phe-
nomena reaching a 100 % accuracy. There are no
phenomena that reach 100 % accuracy across all
models but some of the easier phenomena for most
models include phrasal verb, sluicing, polar ques-
tion, ditransitive future I, passive voice and other.
The phenomena with the lowest accuracies are id-
ioms, modal negated - pluperfect, and resultative
predicates. In terms of idioms, ChatGPT performs
better than most systems with 57.9 % accuracy.

Table 2 contains example outputs from two dif-
ferent phenomena for German–English. The first
example comes from the phenomenon extended
adjective construction, a frequent construction in
German grammar, where the adjective is modified
prepositional phrases or attributes. This structure
tends to complicate the syntactic structure, making
MT more challenging. The first translation is in-
correct as it doesn’t accurately convey the meaning

Extended Adjective Construction
Auf der anderen Straßenseite stand
ein laut weinendes Kind.
On the other side of the street was a noisy child. fail
A child was crying loudly across the street. pass
Across the street stood a loud crying child. fail
Resultative Predicate
Es regnete die Stühle nass.
It rained wet the chairs. fail
It rained and the chairs got wet. pass
It had a wet effect on the chairs. fail

Table 2: Examples of German–English linguistic phe-
nomena with passing and failing MT outputs.

of the original sentence. The second translation
accurately conveys the meaning of the original sen-
tence and uses correct English grammar. The third
translation is also inaccurate due to the wrong word
order and the incorrect use of an adjective instead
of an adverb.

The second example contains a resultative pred-
icate. The first translation is incorrect because it
does not follow the correct word order in English.
The word-to-word translation of the German sen-
tence is taken too directly, resulting in an awkward
and non-sensical English sentence. The second
translation is correct. It accurately conveys the
meaning of the original German sentence and uses
a natural English construction to do so. The third
translation is also incorrect as “having a wet ef-
fect" is not typically used to describe things that
are “wet" or that “get wet".

For English–German, the phenomenon-level
macro average is similarly high as for the other
language direction with 93 %. The phenomena for
which all systems reach near 100 % accuracy in-
clude inversion, multiple connectors, pied-piping,
prepositional mwe, substitution, adverbial clause
and others. Most of the phenomena achieve high
accuracies over 85 %, with some exceptions in-
cluding stripping, topicalization, verb semantics,
mediopassive voice, and noun formation(er).

Table 3 contains translation examples from
English–German. The first example contains a
functional shift. Functional shift, or conversion,
is when a word switches from one word class, or
part of speech without changing its form Cannon
(1985). In the first output, we can observe a cor-
rect structural change with the use of a common
German prepositional phrase. In the second output,
however, the word “wassappieren” is not a valid
German word, resulting in an incomprehensible
translation. Similarly, the third translation is also
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Functional Shift
You can whatsapp me on this number.
Sie können mich per Whatsapp
unter dieser Nummer erreichen. pass
Sie können mich auf dieser Nummer
wassappieren. fail
Du kannst mich auf dieser Nummer aufpassen. fail
Semantic Roles
The bike accident broke Sarah’s arm.
Der Fahrradunfall brach Sarah den Arm. fail
Bei dem Fahrradunfall brach sich Sarah den Arm. pass

Table 3: Examples of English–German linguistic phe-
nomena with passing and failing MT outputs.

not a valid German sentence, it introduces a differ-
ent verb, “aufpassen”, which means “to look after”
and doesn’t fit the original meaning of the sentence.
The second example deals with the problem of
semantic roles also known as thematic relations.
English has a broad range of semantic roles in the
subject position and while German also allows for
non-agentive semantic roles to be expressed as sub-
jects, it may be more restrictive than English. In the
incorrect translation, the accident itself is depicted
as the direct agent of the action, which is unusual
for German. According to the accurate translation,
which follows the typical German sentence form,
“Sarah’s arm broke as a result of the accident”.

For English–Russian, the phenomenon level
macro-average accuracy lies at 77 %. In this year’s
submission, the following phenomena reached 97-
100 % accuracy: prepositional mwe, contact clause,
object clause. The two phenomena reaching the
lowest accuracies were idioms and semantic roles
with less than 40 % averages. The low accuracy
for idioms and semantic roles are not surprising as
t expressions still cause translation errors across
all language pairs. ChatGPT 4.5 performs as the
fourth-best system in all the averages, showing the
lowest result for semantic roles as well.

Table 4 covers translation examples in English–
Russian. For instance, the translation of a prob-
lematic English compound “skin-deep” into Rus-
sian. The first translation “Он отрицaет, что ра-
сизм — это просто глубинка” means in Russian
“He denies that racism is just a small rural town.”
“Глубинка” does have the same root as the word
“deep” in Russian but has a completely different
meaning, which makes this translation incorrect.
The second structure is correct as it uses the adjec-
tive “поверхностен” or “superficial”. The third
translation is also incorrect as it means “He denies
that racism is only about skin color” and states

Compound
He denies that racism is just skin-deep.
Он отрицает, что
расизм — это просто глубинка. fail
Он отрицает, что
расизм поверхностен. pass
Он отрицает, что расизм
сводится только к цвету кожи. fail
Idiom
When things look black,
there’s always a silver lining.
Когда все выглядит мрачно,
всегда есть луч надежды. pass
Когда все выглядит черным,
всегда есть серебряная подкладка. fail
Когда все выглядит черным,
всегда есть худ без добра. fail

Table 4: Examples of English–Russian linguistic phe-
nomena with passing and failing MT outputs.

that the issue of racism is related to skin color,
which was not present in the test item. The sec-
ond example comes from the phenomenon idiom.
This example includes a very common English non-
literal expression “silver lining” meaning that there
might be a positive aspect to a situation that may
initially appear depressing or hopeless. The first
translation correctly interprets the English idiom
using a popular expression in Russian, “луч на-
дежды” (ray of hope), reflecting the idea that even
in bad times, there is always hope for something
positive. The second translation renders the idiom
literally. The Russian phrase “серебряная под-
кладка”(silver underlay) is not commonly used
and does not accurately express the original mean-
ing. In the third translation, an appropriate Russian
proverb “There is no bad without good” is used
to convey the meaning, but there’s an error in the
Russian expression: instead of “худа” , there is a
non-existent word “худ” , making this translation
incorrect.

5.4 Comparison with previous years
The progress of the systems’ accuracy for partic-
ular categories through the last years can be seen
in Table 8 for German–English (since 2018), Ta-
ble 9 for English–German (since 2021) and Ta-
ble 10 for English–Russian (since 2022). The cal-
culation has been done based on the common test
items without warnings over the years. Compared
to last year, the micro- and macro-average scores
for the German-English systems included in the
comparison have either shown very small improve-
ment or remained the same. For English–German,
3 systems (Online-G, Y, and W) showed an im-
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provement, which in some categories sums up to
several percentage points. In English–Russian, 5
out of the 7 the systems (Online-A, G, W, Y, and
PROMT) showed an improvement which averages
to 1-5 %. Whereas we have little information about
the development behind the online systems, we can
assume that English–Russian is still in active de-
velopment, English–German has undergone minor
improvements, whereas there seems to have been
no development for German-English.

Interestingly enough, the Lan-Bridge perfor-
mance has gotten worse both in micro and macro
averages compared to last year. The drop in perfor-
mance is important in light of Lan-Bridge’s own
system description. Their approach in the WMT23
competition has been shaped by the shift towards
large-scale models and lies on prompt-based ex-
periments. To understand the specific reasons for
Lan-Bridge’s drop in performance, a detailed anal-
ysis of their models, data, experiment designs, and
evaluation metrics would be necessary.

6 Conclusions and Outlook

This paper presents a fine-grained, linguistically
motivated test suite to evaluate machine translation
outputs. The test suite was applied to evaluate
and compare the outputs of 37 machine translation
systems in three different language pairs: German–
English, English–German, and English–Russian.

While the evaluation showed high scores for all
language pairs, there was a clear drop in accuracy
when dealing with structurally different languages,
such as English and Russian. For this language
pair, ChatGPT’s performance falls in the second
significance cluster. Although we didn’t observe a
systematic significant difference between ChatGPT
4.5 and other systems, it is important to highlight
that ChatGPT 4.5 shows competitive results in the
context of our evaluation. This indicates that Chat-
GPT 4.5, a general model, remains competitive
in MT and sometimes performs better than some
specialized NMT systems. Nevertheless, many lin-
guistic nuances still pose difficulties for these mod-
els, demonstrating the continuous need for study
and improvement in the field of MT. In terms of
linguistic coverage, the current test suite stands
out as one of the most extensive available. The
semi-automated approach offers a more effective,
while still fine-grained analysis in comparison to a
typical human evaluation. When paired with other
automated metrics or MQM analysis, this method

can be seen as a valuable addition offering deeper
insights into translation quality. The test suite ap-
proach is also highly versatile, allowing for the
analysis of various tasks performed by LLMs in
different contexts.

Limitations

The current test suite, evolving since 2016, was
originally designed to evaluate weaker MT sys-
tems and focused on simpler linguistic phenomena.
While we’ve introduced complexity with multi-
sentence test items and more intricate sentences,
it could be done only for a handful of phenom-
ena and sentences. There are other limitations to
consider. Firstly, this analysis is mostly limited to
a sentence-level analysis. Secondly, all phenom-
ena and categories are treated equally, although
they may vary in their complexity. As mentioned
earlier, the current evaluation rules prioritize accu-
racy in translating specific linguistic phenomena,
sometimes at the expense of overall natural flu-
ency, resulting in technically correct but less fluent
outputs. To address some of these limitations, we
consider including a linguistic acceptability score
and an inter-annotator agreement score in future
evaluations.
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Silvie Cinkova and Ondřej Bojar. 2018. Testsuite on
Czech–English Grammatical Contrasts. In Proceed-
ings of the Third Conference on Machine Translation,
pages 565–575, Belgium, Brussels. Association for
Computational Linguistics.

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi kiu Lo,
Craig Stewart, George Foster, Alon Lavie, and Ondrej
Bojar. 2021. Results of the WMT21 Metrics Shared
Task: Evaluating Metrics with Expert-based Human
Evaluations on TED and News Domain. In Proceed-
ings of the Sixth Conference on Machine Translation,
pages 733–774, Online.

Liane Guillou and Christian Hardmeier. 2016.
PROTEST: A test suite for evaluating pronouns in
machine translation. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 636–643, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Liane Guillou, Christian Hardmeier, Ekaterina
Lapshinova-Koltunski, and Sharid Loáiciga. 2018.
A Pronoun Test Suite Evaluation of the English–
German MT Systems at WMT 2018. In Proceedings
of the Third Conference on Machine Translation,
pages 576–583, Belgium, Brussels. Association for
Computational Linguistics.

Ulrich Heid and Elke Hildenbrand. 1991. Some prac-
tical experience with the use of test suites for the
evaluation of SYSTRAN. In the Proceedings of the
Evaluators’ Forum, Les Rasses. Citeseer.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf,
Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Hassan
Awadalla. 2023. How good are gpt models at ma-
chine translation? a comprehensive evaluation.

Pierre Isabelle, Colin Cherry, and George Foster. 2017.
A challenge set approach to evaluating machine trans-
lation. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2486–2496, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Wenxiang Jiao, Wenxuan Wang, Jen tse Huang, Xing
Wang, and Zhaopeng Tu. 2023. Is chatgpt a good
translator? yes with gpt-4 as the engine.

Margaret King and Kirsten Falkedal. 1990. Using test
suites in evaluation of machine translation systems.
In Proceedings of the 13th conference on Computa-
tional Linguistics, volume 2, pages 211–216, Mor-
ristown, NJ, USA. Association for Computational
Linguistics.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
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cie Poláková, and Ondřej Bojar. 2019. A Test Suite
and Manual Evaluation of Document-Level NMT at
WMT19. In Proceedings of the Fourth Conference on
Machine Translation (Volume 2: Shared Task Papers,
Day 1), pages 455–463, Florence, Italy. Association
for Computational Linguistics.

Yves Scherrer, Alessandro Raganato, and Jörg Tiede-
mann. 2020. The MUCOW word sense disambigua-
tion test suite at WMT 2020. In Proceedings of the
Fifth Conference on Machine Translation, pages 365–
370, Online. Association for Computational Linguis-
tics.
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Abstract

This paper summarizes the results of our test
suite evaluation on 12 machine translation
systems submitted at the Shared Task of
the 8th Conference of Machine Translation
(WMT23) for English-German (en-de)
language pair. Our test suite covers five
specific domains (entertainment, environ-
ment, health, science, legal) and spans five
distinct writing styles (descriptive, judgments,
narrative, reporting, technical-writing).
We present our analysis through automatic
evaluation methods, conducted with a focus
on domain-specific and writing style-specific
evaluations. Our test-suite is available at
https://github.com/wmt-conference/
wmt23-testsuites/tree/main/
submissions/en-de/IIITHYD_TestSuite

1 Introduction

Neural Machine Translation has made significant
strides and has achieved a level of quality that
proves valuable in numerous everyday scenarios.
Nonetheless, various assessment methods for Ma-
chine Translation suggest that there is still ample
room for enhancement. One such evaluation ap-
proach, geared towards identifying translation de-
ficiencies in a more systematic manner, involves
the utilization of test suites or challenge sets. Un-
like conventional evaluations that draw test sets
from random everyday texts, test suites comprise
sentences that are carefully curated or selected to
assess the MT systems’ competence in translating
specific linguistic phenomena. In this context, we
present the results obtained from applying these
test suites, analyzing the performance of state-of-
the-art systems concerning numerous linguistically-
driven phenomena. These test suites were admin-
istered to 12 MT systems submitted during the
8th Conference of Machine Translation (WMT23)
(Kocmi et al., 2023) for English–German language
pair.

We have developed a comprehensive test suite
that encompasses five distinct domains (entertain-
ment, environment, health, science, legal) and
spans five different writing styles (descriptive, judg-
ments, narrative, reporting, technical writing). The
primary objective of the test suite is not to gauge
a system’s overall translation performance, as this
aspect is already evaluated through manual assess-
ment and various additional metrics within the pri-
mary shared task. Instead, the test suite focuses
on assessing the translational proficiency across
diverse domains and writing styles.

2 Test suite details

Table 1 illustrates the distribution of sentences per
domain and per writing style, with a total of 2268
sentences.

2.1 Sentence Selection

In order to ensure diversity and robustness in our
test suite, we collected English sentences from
a wide array of sources, including BBC NEWS,
Children’s Stories, Textbooks, Journals, and Legal
Datasets. These sentences were then categorized
into clusters based on several criteria, such as the
count of Noun Phrases (NP), Verb Phrases (VP),
Named Entities (NE), Subordinate Clauses (SC),
Discourse Markers (DM), Punctuation (P), and Sen-
tence Length (SL).

Within each domain, we chose to include 70%
of the sentences from each cluster in our dataset,
thereby augmenting the diversity and comprehen-
siveness of our test suite.

2.2 Evaluation

Our automatic evaluation process for the 12 sys-
tems is conducted in three phases. The first phase
assesses the overall test suite, the second phase
focuses on specific domains, and the third phase
examines various writing styles. In addition to
these automatic evaluations, we conducted manual
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Writing Style Domain Total
Entertainment Environment Health Science Legal

Descriptive 27 39 33 427
Judgements 348 449
Narrative 38 33 61 492
Reporting 427 374 399 458 552
Technical-writing 10 21 348
Total 99 348 132 1658 31 2268

Table 1: Test-suite statistics (Count of sentences in each domain per writing-style)

MT systems COMETKIWI
ONLINE-B 0.847 (1)
ONLINE-Y 0.847 (1)
ONLINE-W 0.846 (3)
ONLINE-A 0.845 (4)
GPT4-5shot (Hendy et al., 2023) 0.842 (5)
ONLINE-G 0.841 (6)
ONLINE-M 0.839 (7)
Lan-BridgeMT (Wu and Hu, 2023) 0.833 (8)
NLLB_Greedy (NLLB Team et al., 2022) 0.831 (9)
NLLB_MBR_BLE 0.831 (9)
ZengHuiMT (Zeng, 2023) 0.815 (11)
AIRC (Rikters and Miwa, 2023) 0.809 (12)

Table 2: System-wise ranking based on COMETKIWI
scores. Top five systems are highlighted in bold. Ranks
are mentioned in brackets

analyses with the assistance of professional Ger-
man speakers who aided us in identifying the errors
made by the systems, providing valuable insights
into their translation quality.

2.3 Experiment Setup

In this paper, we present the evaluation of 12 sy-
sems with our test suite. The systems are part of the
news translation task of the Eighth Conference on
Machine Translation (WMT23). We cover the sys-
tem outputs for English-German (en-de) language
pair.

2.4 Automatic Evaluation

To evaluate the performance of the 12 submit-
ted MT systems, we utilize COMETKIWI (Rei
et al., 2022) scores, which offer quality estima-
tion scores derived from the source sentence and
MT output. Using these scores, we determine
the system rankings, as outlined in Table 2. We
chose COMETKIWI because it performed best
among the other reference-free metrics in the re-
cent WMT22 Metrics Shared Task (Freitag et al.,
2022).

2.4.1 Domain-wise Evaluation
We have calculated COMETKIWI scores for each
domain and presented them in Figure 1.

From this figure, we can deduce that ONLINE-B,
ONLINE-Y, ONLINE-W, and ONLINE-A exhibit
a high degree of consistency in their performance
across all five domains.

However, it is worth noting that GPT4-5shot dis-
played subpar performance when applied to legal
data, while NLLB_Greedy demonstrated compara-
tively lower performance in the context of environ-
mental data.

Another important evident observation is that the
machine translation (MT) systems exhibit a similar
trend in both the health and science domains. This
similarity may be attributed to the interconnected
nature of these domains.

Notably, both ZengHuiMT and AIRC displayed
consistently poor performance across all domains.

2.4.2 Writing-Style-wise Evaluation
We have computed COMETKIWI scores for sen-
tence belonging to various writing styles and visu-
alized the results in Figure 2.

ONLINE-W excels in narrative writing style
sentences, but its performance declines signifi-
cantly for technical writing style. In contrast,
NLLB_Greedy performs poorly across descriptive,
reporting, and technical writing styles.

Both ZengHuiMT and AIRC exhibit subpar per-
formance across all the writing-styles. Addition-
ally, GPT4-5Shot experiences a decline in its per-
formance when it comes to judgments.

ONLINE-G, on the other hand, demonstrates bet-
ter performance in technical writing and reporting
styles.

Indeed, based on COMETKIWI scores, it is clear
that both ONLINE-B and ONLINE-Y consistently
outperformed other MT systems across a diverse ar-
ray of writing styles and domains. This consistent
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Figure 1: COMETKIWI scores of the systems with respect to domains
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Figure 2: COMETKIWI scores of the systems with respect to writing-styles249



superiority in performance suggests that these two
MT systems are more robust and versatile, mak-
ing them strong contenders for a wide range of
translation tasks and scenarios.

2.5 Manual Assessments

These manual assessments are carried out vol-
untarily by professional German speakers who
hold graduate-level qualifications and possess good
knowledge in the domains covered by our test suite.

2.5.1 Gender-Neutral Pronouns
Machine translation (MT) systems often ascribe
gender (sein/ihr ∼ his/her) to gender-neutral pro-
nouns (it) in English. For instance, in the sen-
tence ’Its age is not too dissimilar,’ ONLINE-B,
ONLINE-M, ONLINE-G, ONLINE-A, ONLINE-
W, Lan-BridgeMT, GPT4-5shot, and ZengHuiMT
tended to assign the masculine gender ’Sein,’ while
the remaining systems ONLINE-Y, NLLB_Greedy,
NLLB_MBR_BLEU, and AIRC preferred the femi-
nine gender ’Ihr.’ However, it’s worth noting that in
German, ’Sein’ is typically used for neutral gender,
thus introducing an intriguing linguistic nuance.

2.5.2 Repetition
Another intriguing factor is the phenomenon
of Repetition, which is evident in cases like
ZengHuiMT, where the translation includes addi-
tional information.

English source: a) Doing that amount is enough
to reduce the risk of developing heart disease and
stroke by 17% and cancer by 7%, the findings sug-
gest.
b) While all living elements — the birds, animals
and plants, forests, fisheries etc.— are biotic el-
ements, abiotic elements include air, water, land
etc.

Translation by ZengHuiMT: a) Die Ergebnisse
deuten darauf hin, dass diese Menge ausreicht, um
das Risiko für Herzerkrankungen und Schlagan-
fälle um 17 % und für Krebs um 7 % zu senken, so
die Ergebnisse.
b) Während alle lebenden Elemente - Vögel, Tiere
und Pflanzen, Wälder, Fischerei usw. - sind. Sie
sind biotische Elemente, abiotische Elemente um-
fassen Luft, Wasser, Land usw.

Comment: a) The German translation is clear
but includes an unnecessary repetition of so die
Ergebnisse (the findings suggest) at the end.
b) Introduces an unnecessary repetition with Sie
sind biotische Elemente.

2.5.3 Retention
Retention is another aspect that MT evaluation
must consider. When it comes to challenging or
complex words, retaining them might be permis-
sible. However, for common or simpler words,
retention should be heavily penalized.

Consider an example, "These issues rarely
have simple, single-discipline solutions that can
be identified in one-off events or meetings."
where ONLINE-B, ONLINE-M, GPT4-5shot, Lan-
BridgeMT and AIRC MT systems retained the
word meetings instead of translating it to treffen.
This highlights the importance of addressing word
retention in MT evaluation.

Manual assessments are indeed valuable for iden-
tifying gaps in machine translation quality. How-
ever, they come with significant drawbacks, includ-
ing the need for extensive, non-reproducible human
effort, time consumption, and high costs. There-
fore, in addition to diverse test sets, it is crucial to
develop robust automatic evaluation metrics capa-
ble of detecting and quantifying translation flaws
efficiently and consistently.

3 Conclusion

This paper provides a comprehensive overview of
our evaluation of 12 machine translation systems
designed for the English-German language pair,
all of which were submitted to the Shared Task
during the 8th Conference on Machine Translation
(WMT23). Our evaluation comprises a robust and
diverse test-suite covering five distinct domains
and encompassing five diverse writing styles. We
conduct our analysis through a combination of au-
tomated assessments and manual evaluations, with
a particular focus on domain-specific and writing
style-specific performance. Based on our automatic
evaluation, it is evident that both ONLINE-B and
ONLINE-Y consistently surpassed other MT sys-
tems in performance across a diverse array of writ-
ing styles and domains.
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Abstract

As part of the WMT-2023 “Test suites” shared
task, in this paper we summarize the results of
two test suites evaluations: MuST-SHEWMT23

and INES. By focusing on the en-de and de-en
language pairs, we rely on these newly cre-
ated test suites to investigate systems’ ability
to translate feminine and masculine gender and
produce gender-inclusive translations. Further-
more we discuss metrics associated with our
test suites and validate them by means of hu-
man evaluations. Our results indicate that sys-
tems achieve reasonable and comparable per-
formance in correctly translating both feminine
and masculine gender forms for naturalistic
gender phenomena. Instead, the generation of
inclusive language forms in translation emerges
as a challenging task for all the evaluated MT
models, indicating room for future improve-
ments and research on the topic.

We make MuST-SHEWMT23 and INES freely
available, respectively at:

https://mt.fbk.eu/must-she/

https://mt.fbk.eu/ines/

1 Introduction

As Machine Translation (MT) has made strides in
generic performance, there is an increasing recog-
nition of the need to scrutinize finer, more nuanced
aspects that defy assessment through traditional
metrics computed on generic test sets. It is within
this context that the WMT Test Suites shared task
emerges, aiming to provide a dedicated evaluation
framework to delve into specific dimensions of MT
output with a laser focus. In particular, those repre-
senting well-known challenges within the current
MT landscape.

In light of the above, our contribution is dedi-
cated to the critical themes of gender bias and in-
clusivity in translation (Savoldi et al., 2021). Given
the large-scale deployment of MT, such aspects
are not only relevant from a technical perspective,

where gender-related errors negatively impact the
accuracy of automatic translation. Rather, biased
and non-inclusive systems can pose the concrete
risk of under/misrepresenting gender minorities
by over-producing masculine forms, while rein-
forcing binary gendered expectations and stereo-
types (Blodgett et al., 2020; Lardelli and Gromann,
2022).

Accordingly, in this paper we present the FBK
participation in the Test Suites shared task by
conducting evaluations on two newly-created test
suites:

1. MuST-SHEWMT23 for en-de, created as a
English→German extension of the already ex-
isting multilingual MuST-SHE corpus (Ben-
tivogli et al., 2020). This dataset is designed
to allow for fine-grained analysis of (binary)
gender bias in MT.

2. INES for de-en, designed to assess the ability
of MT systems to generate inclusive language
forms over non-inclusive ones when translat-
ing from German into English.

The MuST-SHEWMT23 and INES datasets, as
well as their corresponding metrics and evaluations,
are respectively discussed in Section 2 and 3. In
the evaluations presented in this paper, we obtained
translations of our test suites by systems that are
part of the standard General Translation Task of the
Eighth Conference on Machine Translation (WMT-
2023). In particular, we evaluated 11 systems for
MuST-SHEWMT23 en-de and 13 systems for INES
de-en.

2 MuST-SHEWMT23: en-de Evaluation

MuST-SHEWMT23 is a test suite designed to evalu-
ate the ability of MT systems to correctly trans-
late gender. It is composed of 200 segments
that require the translation of at least one En-
glish gender-neutral word into the corresponding
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Form Category 1: Ambiguous first-person references Speaker

Fem. SRC The other hat that I’ve worn in my work is as an activist... She
REFDe Der andere Hut, den ich bei meiner Arbeit getragen habe, ist der<den> Ak-

tivistin<Aktivist>...

Masc. SRC I mean, I’m a journalist. He
REFDe Ich meine, ich bin Journalist <Journalistin>.

Category 2: Unambiguous references disambiguated by gender info

Fem. SRC A college classmate wrote me a couple weeks ago and she said ... He
REFDe Eine<Ein> Kommilitonin<Kommiliton> hat mir vor ein paar Wochen geschrieben und

gesagt...

Masc. SRC I decided to pay a visit to the manager [...] and he pointed ... She
REFDe Also entschied ich mich den<die>Filialleiter<Filialleiterin> zu besuchen [...]

Table 1: MuST-SHE annotated segments organized per category. For each gender-neutral word referring to a human
entity in the English source sentence (SRC), the reference translation (REF) shows the corresponding gender-marked
(Fem./Masc.) forms, annotated with their wrong <gender-swapped> forms. The last column of the table provides
information about the speaker’s gender.

masculine or feminine target word(s) in German.
The test suite is created as an extension of MuST-
SHE, a multilingual, natural benchmark built on
TED talks data (Bentivogli et al., 2020), which
allows for a fine-grained analysis of gender bias
in MT and ST. The original MuST-SHE corpus
comprises ∼3,000 (audio, transcript, translation)
triplets annotated with qualitatively differentiated
gender-related phenomena for thee language pairs:
English→ French/Italian/Spanish. Here, we intro-
duce a newly created English→ German textual
portion (transcript, translation) of the MuST-SHE
corpus.

2.1 MuST-SHEWMT23 Dataset

Phenomena of Interest. Following the MuST-
SHE original design, MuST-SHEWMT23 is in-
tended to evaluate the translation of a source En-
glish neutral word into its corresponding target
gender-marked one(s) in the context of human ref-
erents, e.g. en: the good friend, de: der/die gute
Freund/in.

To allow revealing a potential gap across the gen-
eration of feminine/masculine gender forms, the
corpus includes a balanced number of feminine (F)
and masculine (M) translation phenomena. Also,
the corpus features two categories of phenomena,
which differ in the presence/lack of a gender cue
to disambiguate the translation. Namely, i) CAT1:
consisting of first-person singular references (i.e.
to the speaker), which are to be translated accord-
ing to the speaker’s linguistic expression of gender,
e.g., I am a good friend. Then, ii) CAT2 consist-
ing of references to any participant, which are be

translated according to explicit gender information
available in the sentence, like lexically gendered
words (sister, Mr), or pronouns (He/she is a good
friend). These categories allow differentiating sys-
tems’ behaviour across ambiguos vs. unambiguos
cases.

Dataset creation. In order to create MuST-
SHEWMT23 we collected a pool of English-
German candidate segments by exploiting the same
TED-based data sources used to create the other
MuST-SHE datasets, namely: the Dev and Com-
mon Test sets of the MuST-C corpus, and other
parallel sentences extracted from additional TED
talks. Then, to target those segments that repre-
sented our phenomena of interest, we followed the
same automatic procedure used for the original
MuST-SHE benchmark, which was aimed to quan-
titatively and qualitatively maximize the extraction
of an assorted variety of gender-marked phenom-
ena. Regular expressions were employed to trans-
form German gender-agreement rules into search
patterns to be applied to our pool of candidate sen-
tences. Also, to specifically match a differentiated
range of gender-marked lexical items, we also com-
piled two series of 50 human-referring adjectives
in English and German.

Once the automatic step was concluded, the pool
of retrieved sentence pairs underwent a manual in-
spection to: i) remove any noise and keep only
pairs containing at least one gender phenomenon;
ii) ensure that the final (transcript, translation)
pairs were not affected by misalignments result-
ing from the automatic procedure used to create
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MuST-C and the new TED Talks data. Also, we
examined the remaining pairs to verify that those
to be included in MuST-SHE featured a a balanced
distribution of categories, F/M forms, and speakers.
Accordingly, since the MuST-C corpus presents a
well-known gender imbalance1, we excluded all of
the extracted masculine segments that exceeded the
feminine counterpart. Across categories, instead,
we were not able to ensure a balanced distribution,
as fewer instances from CAT1 could be identified.2

The resulting dataset – whose statistics are given
in Table 2 – was then manually enriched with dif-
ferent types of information. For each segment, the
annotation includes: category (1 and 2), gender
form (F and M), and speaker’s gender informa-
tion.3 Also, for each target gender-marked word
in MuST-SHEWMT23, we created a correspond-
ing gender-swapped counterpart in the opposite
gender form. As shown in Table 1, these word
forms were paired and annotated in the reference
translations. As we will describe in more detail in
the upcoming Section 2.2, such annotated target
gender-marked words are key features of MuST-
SHE, which enable gender-sensitive, fine-grained
analyses focusing solely on the correct generation
of target gender-marked words.

The manual selection of appropriate sentences
and their annotation was carried out by two an-
notators, both students proficient in the German
language and with a background in Applied Lin-
guistics.4 Each annotator worked on half of the
corpus independently and then revised the work
done by the other. Finally, all the differences found
were reconciled to get to the final corpus.

CAT1 CAT2
Fem. 23 77

Masc. 23 77

Tot. 200

Table 2: MuST-SHEWMT23 sentence-level statistics.

1As reported in MuST-Speakers, ∼70% of the speakers in
MuST-C are referred to by He pronouns.

2This is most likely due to the gendered features of the
German language, which – unlike es, fr, and it – does not
carry gender markings on verbs (e.g., I went → de: Ich bin
gegangen vs it: Sono andata/o) nor adjective in the nominative
case (e.g., I am good → de: Ich bin gut vs. es: Soy buena/o.

3Such an information is migrated from the MuST-Speakers
resource (Gaido et al., 2020), where gender information for
each speaker in MuST-C has been labeled based on the per-
sonal pronouns the speakers used to describe themselves in
their publicly available personal TED section.

4Their work was carried out as part of an internship at
FBK.

2.2 MuST-SHEWMT23 Evaluation
Following the original MuST-SHE evaluation pro-
tocol described in Gaido et al. (2020), MuST-
SHEWMT23 evaluation allows to focus on the gen-
der realization of the target gender-marked forms,
which are annotated in the reference translations to-
gether with their wrong, gender-swapped form (see
Table 1). The evaluation is carried out in two steps,
and by matching the annotated (correct/wrong)
gender-marked words against the MT output. Ac-
cordingly, we first calculate the Term Coverage as
the proportion of gender-marked words annotated
in MuST-SHE (either in the correct or wrong form)
that are actually generated by the system, on which
the accuracy of gender realization is therefore mea-
surable. Then, we define Gender Accuracy as the
proportion of correct gender realizations among the
words on which it is measurable. This evaluation
method5 has several advantages. On one side, term
coverage unveils the precise amount of words on
which systems’ gender realization is measurable.
On the other, gender accuracy directly informs
about systems’ performance on gender translation
and related gender bias: scores below 50% indi-
cate that the system produces the wrong gender
more often than the correct one, thus signalling a
particularly strong biased behaviour.

2.3 MuST-SHEWMT23 Results
In Table 3 we present the MuST-SHEWMT23 re-
sults for the 11 en-de systems that were submit-
ted to the WMT-2023 standard General Transla-
tion Task. Starting from coverage results, the
scores range between 67.34% (AIRC) and 77.07%
(ONLINE-G), with only 3 systems under 70%.
Hence, overall all models produce a good amount
of gender-marked words that can be evaluated with
regards to the accuracy of their gender realiza-
tion. Moving onto the overall accuracy scores
(All-Acc), we can see that – while there is still
room for improvement – all of the evaluated MT
systems are reasonably good at translating gender,
with ONLINE-M emerging as the best model, able
to correctly translate gender in 80% of the gener-
ated instances. If we go more fine-grained into
results disaggregated across gender forms (F and
M) and categories (1 and 2), however, we can un-
veil subtle differences. Indeed, for unambiguous

5The evaluation script is publicly available at: https:
//github.com/hlt-mt/FBK-fairseq/blob/master/exa
mples/speech_to_text/scripts/gender/mustshe_gend
er_accuracy.py.
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All-Cov All-Acc 1F-Acc 1M-Acc 2F-Acc 2M-Acc
ONLINE-M 75.07 80.07 50.00 84.00 86.08 80.00
ONLINE-Y 73.35 79.65 30.43 96.15 86.96 78.51
NLLB_MBR_BLEU 71.92 79.43 36.00 92.31 87.27 78.51
ONLINE-W 67.91 79.32 23.81 90.91 86.11 80.87
ONLINE-G 77.07 78.87 16.00 95.15 87.39 79.69
ONLINE-B 72.20 78.64 14.28 100.00 83.92 81.25
ONLINE-A 74.78 78.00 25.00 92.30 84.34 79.36
GPT4-5shot 69.63 77.94 10.53 95.83 83.33 80.17
ZenhHuiMT 73.07 77.35 19.23 95.65 84.82 79.37
Lan-BridgeMT 71.92 75.79 16.67 92.31 83.19 77.05
AIRC 67.34 73.98 10.53 87.50 81.25 74.56

Table 3: MuST-SHEWMT23 results for en-de. Systema are ranked based on overall Gender Accuracy (All-Acc).

gender translation from CAT2, systems perform
basically on par across gender forms, with actually
slightly higher results for feminine translation. In-
stead, results on CAT1 unveil a huge gender gap,
with systems achieving almost perfect results for
masculine translation, whereas feminine accuracy
can be as low as 10.53%. In fact, the best ranked
systems ONLINE-M generates the correct feminine
form in 50% of the cases, namely at a random rate.

Overall, results on MuST-SHEWMT23 show that
the evaluated MT systems are reasonably good
at translating gender under realistic conditions,
achieving comparable results across feminine and
masculine gender translation. However, for am-
biguous cases where the input sentence does not
inform about the gender form to be used in trans-
lation, we confirm a strong skew where all sys-
tems favour masculine generation almost by default.
This finding calls for further research endeavours
and evaluation initiatives to counter gender bias in
MT and measure future advances.

3 INES: de-en Evaluation

The INclusive Evaluation Suite (INES) is a
test set designed to assess MT systems ability
to produce gender-inclusive translations for the
German→English language pair. By design, each
German source sentence in INES includes an ex-
pression that can be rendered by means of either an
inclusive (IN) or non-inclusive (N-IN) expression
in the English target language.

Overall, INES comprises 162 manually curated
German sentences, which are annotated with their
corresponding (IN/N-IN) English expressions. As
such, it allows to evaluate to what extent MT sys-
tems favor the generation of non-inclusive solutions
over alternative, valid inclusive translation in their
output.

3.1 INES Dataset
Here, we first describe the phenomena of interest
included in INES. Then, we proceed by describing
its creation methodology.

Phenomena of interest. Despite its compara-
tively restricted gender grammar, English has tradi-
tionally relied on the use of marked forms that treat
the masculine gender as the conceptually generic,
default human prototype, i.e. as masculine gener-
ics (Silveira, 1980; Bailey et al., 2022). Exemplary
cases of such a phenomenon are man-derivates
(e.g., man-made, freshman) and the use of mas-
culine personal pronouns for generic referents (e.g.,
“each student must submit his form”). Besides,
expressions such as “man and wife” have been
identified as depicting skewed representation of
genders and gender roles (Stahlberg et al., 2007).
Toward the adoption of fairer language for all gen-
ders, alternative and inclusive solutions are increas-
ingly promoted by institutions (Höglund and Flink-
feldt, 2023) and recommended in writing (APA,
2020). These include the use of unmarked forms
(e.g. human-made, first-year student) and neutral
pronouns (e.g. “each student must submit their
form”) for generic and under-specified referents,
as well as more symmetrical formulations that cast
men and women in the same role (e.g. “husband
and wife”).

On this basis, INES represents translation phe-
nomena where, given a source German sentence,
systems are confronted with the generation of a
corresponding inclusive or non-inclusive solution.
As shown by the examples in Table 4, the German
sentences can entail the use of either i) a generic
masculine form, e.g. Der Polizist, or ii) a term that
does not convey gender, e.g. Die Menschheit. Re-
gardless of the source German term, the expected
ideal behaviour of the MT system always entails
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German src English pair

a. Der Polizist half der alten Dame, die Straße sicher zu überqueren. police officer, policeman
b. Die Menschheit hat das Potenzial, die Welt zu einem besseren Ort zu machen. humankind, mankind
c. Die fachmännische Arbeit des Teams führte zum erfolgreichen Abschluss des Projekts. skillful, workmanlike
d. Die geschickte Arbeit des Teams führte zum erfolgreichen Abschluss des Projekts. skillful, workmanlike

Table 4: INES source German example sentences with their corresponding annotated English IN and N-IN terms.

the generation of inclusive target words.

Dataset Creation. Since the focus of the INES
test suite is to evaluate the ability of MT systems to
generate inclusive English translations, we started
by compiling a list of well-established pairs of En-
glish IN/N-IN terms and expressions. This list
was created based on existing collections of paired
terms (Vanmassenhove et al., 2021; Amrhein et al.,
2023) and integrated with few additional terms re-
trieved from other inclusive language guidelines
from international institutions6 and universities.78

As a result, we obtained 48 IN/N-IN English pairs,
which are shown in Table 5.

Starting from this list, we created the source
German sentences that compose INES following a
two-step semi-automatic procedure.

In the first step, for each English IN/N-IN term
of the pairs, GPT9 was prompted to generate 3
German sentences containing such term translated
into German, for a total of 6 sentences for each
English pair.

In the second step, the initial pool of 288 syn-
thetic sentences was manually revised by a linguist
proficient in German.10 The revision was aimed to
i) correct generation errors and ii) select a balanced
amount of German sentences for each phenomenon
of interest. To this purpose:

• when all the 6 German sentences generated
for the two (IN/N-IN) terms of the English
pair contained only gender-marked terms (e.g.
police officer –> Der Polizist / policeman –>
Der Polizist) or only gender-neutral terms (e.g.
humankind –> Die Menschheit / mankind –>
Die Menschheit), only 3 sentences out of 6
were kept (see examples a. and b. in Table 4);

6https://www.europarl.europa.eu/cmsdata/15178
0/GNL_Guidelines_EN.pdf

7https://writingcenter.unc.edu/tips-and-tools
/gender-inclusive-language/.

8https://www.gsws.pitt.edu/resources/faculty-r
esources/gender-inclusive-non-sexist-language-g
uidelines-and-resources.

9gpt-3.5-turbo.
10One of the authors of the paper.

IN vs N-IN for job titles

anchor anchorman
anchors anchormen

bartender barman
bartenders barmen

business person businessman
business persons businessmen

chairpeople chairmen
chairperson chairman
firefighter fireman
firefighters firemen

flight attendant steward
flight attendants stewards

mail carrier postman
mail carriers postmen

member of congress congressman
members of congress congressmen

police officer policeman
police officers policemen

principal headmaster
principals headmasters

salesperson salesman
salespersons salesmen
spokesperson spokesman
spokespeople spokesmen

supervisor foreman
supervisors foremen

weather reporter weatherman
weather reporters weathermen

IN vs N-IN for generic man

average person average man
average people average men

best people for the job best men for the job
best person for the job best man for the job

human-made man-made
humankind mankind

husband and wife man and wife
intermediaries middlemen
intermediary middleman

skillful workmanlike
laypeople laymen
layperson layman
workforce manpower

first-year student freshman
first-year students freshmen

IN vs N-IN pronouns

their his
theirs his
them him

themself himself
they he

Table 5: INES pairs of English Inclusive (IN) vs non-
inclusive (N-IN) expressions.

• on the contrary, when the 6 German sen-
tences generated for the two (IN/N-IN) En-
glish terms included both gender-marked and
gender-neutral forms (e.g. firefighters –>
Feuerwehrleute / firemen –> Feuerwehrmän-
ner), they were all kept, so as to have a richer
representation of the phenomenon of interest
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in the source (see c. and d. in Table 4).

Unfortunately, we found only very few instances
of double German realizations, and thus at the end
of the manual revision, we remained with 162 Ger-
man sentences: 21 with an inclusive source term,
and 141 with a non-inclusive masculine generic
in the source. All the 162 manually-curated Ger-
man source sentences are included in INES, and
provided with their corresponding English IN/N-IN
term pair so as to allow for focused evaluations.

3.2 INES Evaluation

To evaluate systems against INES, we can leverage
the annotated pairs of English IN/N-IN expressions
and match them against the MT generated output.
Accordingly, we can perform our evaluation by
adopting the same evaluation protocol and metrics
defined for MuST-SHE in 2.2. Namely, by i) first
computing Term Coverage as the proportion of
IN/N-IN generated by a system, and then ii) calcu-
lating Inclusivity Accuracy as the proportion of
IN generated expressions, among all of the gener-
ated ones. As a result, all the out of coverage words
(OOC) are necessarily left unevaluated.

While prior manual assessments of the terms
left unevaluated by such an automatic method have
been able to confirm the robustness and validity
of the accuracy results in the context of binary
gender translation (Savoldi et al., 2022b), here we
hypothesise a potential limit for evaluating inclu-
sivity in English outputs. Our hypothesis lies on
the fact that English, a notional gender language
(McConnell-Ginet, 2013), has a restricted reper-
toire of gender-marked – potentially N-IN – words,
whereas most English nouns simply do not con-
vey any gender distinctions (e.g., doctor, secretary,
president). In other words, there might be many
potential inclusive alternatives and synonyms (e.g.
presenter and host for <anchor>) for a single N-IN
term (e.g. <anchorman>). Thus, whereas OOC
words in the context of binary gender present the
same distribution assessed automatically in terms
of accuracy, this metric might be stringent for inclu-
sivity in English, and overly penalize the generation
of alternative terms that differ from those annotated
in INES.

In light of the above, we also propose the Inclu-
sivity Index metric, defined as:

Inclusivity Index = 1− nN-IN

N
(1)

where nN-IN is the number of non-inclusive
terms annotated in INES that are generated by a
system, and N is the size of INES (i.e. total number
of sentences to be evaluated).

In what follows, we thus carry out both Inclusiv-
ity Accuracy and Inclusivity Index evaluations,11

and assess which one better correlates with human
judgments.

3.3 INES Results
In this section (Table 6), we present the results
obtained on INES by the 13 de-en systems that
were submitted to the WMT-2023 standard Gen-
eral Translation Task. Such results are computed
and discussed for Inclusivity Accuracy (Table 6a)
and Inclusivity Index (Table 6b). Then, based on
a manual analysis, we compare such automatic re-
sults against the systems ranking obtained with
human evaluations (Table 6c).

Automatic Evaluation Results. Table 6a
presents coverage and accuracy-based results.
Based on such scores, the INES dataset emerges
as quite a challenging test suite for current de-en
systems. In fact, with the sole exception of the
GPT4-5SHOT – which emerges as the best per-
forming system (but see also Sec. 5) – all systems
obtain scores that are below 50%, thus suggesting
that they generate undesirable N-IN forms in more
than half of the (measurable) cases. The lowest
accuracy is obtained by NLLB_MBR_BLEU,
amounting to 29.41% only.

Moving onto the Inclusivity Index results in Ta-
ble 6b, from a bird’s eye view we can immediately
unveil some differences. On the one hand, GPT4-
5SHOT and NLLB_MBR_BLEU still emerge as,
respectively, the best and worst performing systems.
On the other hand, however, there are discrepancies
in the overall ranking. For instance, AIRC results
as the system that generates the second-best level
of inclusive translation according to the Inclusivity
Index metrics, whereas it was ranked 7th in terms
of accuracy.

Manual Evaluation Results. To verify which of
the two automatic metrics yields more reliable re-
sults, we proceed with a manual analysis of all MT
output sentences that defied the automatic evalua-
tion procedure. Namely, we performed a human
evaluation of all OOC terms to determine whether

11Evaluation script available at: https://github.com/h
lt-mt/FBK-fairseq/blob/master/examples/speech_t
o_text/scripts/gender/INES_eval.py.
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Cov Acc (↑)

GPT4-5shot 64.81 65.71
ONLINE-W 75.31 48.36
ONLINE-Y 74.07 45.83
ZenhHuiMT 73.46 44.54
ONLINE-A 74.69 42.98
ONLINE-B 70.99 41.74
AIRC 53.70 37.93
Lan-BridgeMT 68.52 36.94
ONLINE-M 70.37 36.84
ONLINE-G 74.07 35.00
GTCOM_Peter 74.69 33.06
NLLB_Greedy 74.07 31.67
NLLB_MBR_BLEU 73.46 29.41

(a) Coverage and Accuracy results

In.Idx. (↑)

GPT4-5shot 77.78
AIRC 66.67
ONLINE-W 61.11
ONLINE-Y 59.88
ZenhHuiMT 59.26
ONLINE-B 58.64
ONLINE-A 57.41
Lan-BridgeMT 56.79
ONLINE-M 55.56
ONLINE-G 51.85
GTCOM_Peter 50.00
NLLB_Greedy 49.38
NLLB_MBR_BLEU 48.15

(b) Inclusivity Index results

Human (↑)

GPT4-5shot 76.73
ONLINE-W 60.25
AIRC 59.03
ONLINE-Y 58.13
ZenhHuiMT 56.60
ONLINE-B 56.25
ONLINE-A 55.28
ONLINE-M 52.53
Lan-BridgeMT 52.26
ONLINE-G 48.45
NLLB_MBR_BLEU 46.25
GTCOM_Peter 48.13
NLLB_Greedy 44.03

(c) Human judgment – Official ranking

Table 6: INES evaluation results (percentage). Per each metric, systems are ranked based on their performance.

Figure 1: INES manual analysis results for out-of-coverage (OOC) terms.

Metric Pearson (r) Kendall (τ ) Spearman (ρ)

Acc 0.9601 0.8205 0.9285
In.Idx. 0.9738 0.9231 0.9835

Table 7: Correlation Coefficients with Human Judgment

the generated expression entailed i) an inclusive
expression (OOC-in), which simply differed from
the IN term annotated in INES but was completely
acceptable; ii) a non-inclusive expression (OOC-
not-in) different from the N-IN term annotated in
INES; and finally iii) a translation error (OOC-
error), which was not possible to judge in terms of
inclusivity.12 The results of such an analysis across
all systems are reported in Figure 1. Such results
show that, of all the OOC terms, the vast majority

12We underscore that such an analysis only concerns the
terms representing the phenomena of our interest, whereas the
overall judgement of the whole sentence is not accounted for.

is represented by inclusive terms (e.g., <business
person>/<busissnessman>→ entrepeneur). Errors,
instead, are quite rare, just like non-inclusive OOC
terms, which all correspond to the INES annotated
N-IN term, but in a different number (e.g., <fresh-
men>→ freshman).

In light of the above, our initial hypothesis – out-
lined in Sec. 3.2 – is thus reinforced: we do not
find the same inclusivity distribution between eval-
uated cases in terms of accuracy (see Table 6a) and
the OCC instances left unevaluated. Having now
collected a complete evaluation of all the sentences,
we leverage such information to obtain our offi-
cial system ranking, which is shown in Table 6c.
Results are computed as the proportion of inclu-
sive (IN + OOC-in) terms generated by a system
among all the terms that could be assessed (i.e.
OOC-errors are not measurable, hence excluded).
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Correlation between Automatic and Human
evaluation. On this basis, and to finally verify
our hypothesis, in Table 7 we report the correla-
tion coefficients between the automatic metrics and
human judgements. Accordingly, while both the
Inclusivity Accuracy and Index show a satisfac-
tory correlation with human judgements, the lat-
ter consistently emerges as a more reliable indi-
cator of inclusivity. As such, Inclusivity Index is
confirmed as the most suited measure to quantify
gender-inclusive translation into English.

To conclude, our results in Tables 6 consistently
indicate that current MT systems still struggle with
the generation of inclusive translations. Within this
landscape, GPT4-5SHOT consistently results as
the model achieving the highest level of inclusivity,
whereas all other models generate a∼40% or more
of non-inclusive translations in their output. This
finding highlights that, while on the (binary) gender
bias side (Section 2.3) MT systems still struggle
with specific and particularly challenging ambigu-
ous cases, the limitations of most of them on the
gender inclusion side are evident and the problem
emerges as an urgent topic for future research.

4 Related work

The last few years have witnessed and increas-
ing attention toward (binary) gender bias in NLP
(Sun et al., 2019; Stanczak and Augenstein, 2021;
Savoldi et al., 2022a). Concurrently, emerging re-
search has highlighted the importance of reshaping
gender in NLP technologies in a more inclusive
manner (Dev et al., 2021), also through the rep-
resentation of non-binary identities in language
(Lauscher et al., 2022; Ovalle et al., 2023). Founda-
tional works in this area have included several ap-
plications, such as coreference resolution systems
(Cao and Daumé III, 2020; Brandl et al., 2022) and
fair rewriters (Vanmassenhove et al., 2021; Am-
rhein et al., 2023).

In MT, the research agenda has mainly focused
on the improvement of masculine/feminine gen-
der translation into grammatical gender languages
(Savoldi et al., 2021). Along this line, different
strategies have been devised to improve gender
translation and mitigate masculine bias (Costa-
jussà and de Jorge, 2020; Gaido et al., 2021;
Choubey et al., 2021; Saunders et al., 2022). To
test these methods and inspect systems’ behaviour,
several template-based datasets have been made
available – such as WinoMT (Stanovsky et al.,

2019) or SimpleGEN (Renduchintala and Williams,
2022) – which are especially intended to target oc-
cupational stereotyping. Instead, natural datasets
such as the Arabic Parallel Gender Corpus (Alhafni
et al., 2022) and GATE (Rarrick et al., 2023) allow
for evaluation of gender bias under more naturalis-
tic conditions. Among such type corpora, MuST-
SHE (Bentivogli et al., 2020) represents the only
multilingual, natural test set designed to evaluate
gender bias for both MT and ST. Already avail-
able for English→French/Italian/Spanish, here
we have contributed to its expansion for the
English→German language pair.

As far as the topic of inclusivity and neutral
language translation is concerned, research in MT
is quite in its infancy. A notable exception is
the work by Saunders et al. (2020), who created
parallel test and fine-tuning data to develop MT
systems able to generate non-binary translations
for English→German/Spanish. However, their tar-
get sentences are artificial – created by replac-
ing gendered morphemes and articles with syn-
thetic placeholders – thus serving only as a proof-
of-concept. Piergentili et al. (2023), instead, are
the first to advocate for the use of target gender-
neutral rephrasings and synonyms as a viable
paradigm toward more inclusive MT when gen-
der is unknown or simply irrelevant. Cho et al.
(2019) and Ghosh and Caliskan (2023) investigate
the preservation of gender-neutral pronouns for
Korean/Bengali→English. Their results, however,
show that current MT systems still face serious
difficulties on relying on the inclusive, neutral pro-
noun they in translation. Along this line of work,
INES – to the best of our knowledge – represents
the first test suite designed to asses the use of neu-
tral, inclusive forms beside pronouns for translating
into English.

5 Conclusion

This paper summarizes the results of our WMT-
2023 Test Suites evaluations, which focus on gen-
der bias and inclusivity in translation. To this aim,
we have introduced the en-de expansion of the
multilingual MuST-SHE test set (Bentivogli et al.,
2020) and the newly created INES dataset for de-
en. The former is designed to assess gender bias
and translation across a qualitatively differentiated
selection of feminine/masculine gender phenom-
ena. INES, instead, measures systems’ ability to
generate inclusive English translations that do not
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rely on the use of masculine generics. Results on
MuST-SHEWMT23 show that the evaluated MT
systems are reasonably good at translating gender
under realistic conditions, achieving comparable
results across feminine and masculine gender trans-
lation. However, for ambiguous cases where the
input sentence does not inform about the gender
form to be used in translation, we confirm a strong
skew where all systems tend to generate masculine
forms almost by default. Results on INES, instead,
indicate that providing inclusive translations still
represents a quite challenging task for current MT
systems, in spite of the increasingly widespread
use and preference for inclusive language forms in
English.

As a final remark, we acknowledge that the phe-
nomena subject to our analysis (gender bias and
gender inclusion) are not yet part of the repertoire
of phenomena for which MT systems are currently
designed. These systems are indeed primarily built
with the goal of maximising translation quality in
general rather than aspects of the problem, specifi-
cally fairness, for which sensitivity is still limited.
All in all, however, this experience has allowed us
to shed light on these issues, raise the awareness of
the MT community and, hopefully, favour future
developments.

Limitations

Naturally, this work comes with some limitations.
First, both test suites are limited in size and num-
ber of language pairs considered. Despite their
restricted size, however, both test suites provide
a first glimpse into understanding and monitor-
ing systems’ behaviour with respect to gender and
inclusivity. Additionally, rather than a limitation
per se, both INES and MuST-SHEWMT23 are de-
signed based on the specific linguistic features of
the source and target language taken into account.
As such, results in our evaluations intentionally do
not aspire to scale and generalize to any language
direction. Indeed, such linguistic specificity is also
openly accounted for in the introduction of the new
Inclusivity Index metric, which considers the mor-
phology of English for a better-suited evaluation of
gender inclusivity in MT. We also note that such a
metric results as the best one for evaluating inclu-
sivity under the given experimental conditions of
this paper, where all the scrutinized systems (those
submitted to the WMT General Translation task)
are expected to feature generally good overall trans-

lation quality and to make few translation errors.
As such, future work might be needed to further
validate the stability of the Inclusivity Index metric
under less optimal conditions and for different tar-
get languages, possibly proposing tailored metrics
for each case. Finally, to generate the initial pool of
sentences in INES we relied on the GPT (gpt-3.5-
turbo) closed-source model. This has holds two
types of implications. On the one hand, the use of
proprietary models such as GPT has reproducibil-
ity consequences, since this model is regularly up-
dated, thus potentially yielding future results that
differ from those reported in this paper. On the
other hand, relying on – even though only partially
and post-edited – artificially generated data for test-
ing models, might lead to contamination issues. In-
deed, in Sec. 3.2 (Table 6) the GPT4-5SHOT model
resulted as the most promising one, achieving the
best results for inclusive translation. However, it
remains to further verified whether our specific ex-
perimental settings and INES benchmark – where
we use GPT-derived test data – have advantaged
the performance of GPT4-5SHOT.

Ethics Statement

By addressing bias and inclusivity in MT, this
work presents an inherent ethical component. It
builds from concerns toward the societal impact
of widespread translation technologies that reflect
and propagate male-grounded and exclusionary lan-
guage. Still, our work is not without risks either
and thus warrants some ethical considerations. In
particular, MuST-SHEWMT23 only focuses on tra-
ditional binary feminine/masculine gender forms.
Also, INES investigates neutral, inclusive language
in the context of generic, unknown referents and
based on inclusive solutions encouraged by institu-
tional guidelines. As such, we do not account for
other non-binary solutions (e.g., neopronouns and
neomorphemes) that are emerging from grassroots
efforts. It should be stressed that the gendered
and inclusive strategies incorporated in this MT
work are not prescriptively intended. Rather, they
are orthogonal to other attempts and non-binary
expressions for inclusive language (technologies)
(Lauscher et al., 2023; Ginel and Theroine, 2022).
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Abstract

We have explored the effect of in domain
knowledge during parallel sentence filtering
from in domain corpora. Models built with sen-
tences mined from in domain corpora without
domain knowledge performed poorly, whereas
model performance improved by more than
2.3 BLEU points on average with further do-
main centric filtering. We have used Large Lan-
guage Models for selecting similar and domain
aligned sentences. Our experiments show the
importance of inclusion of domain knowledge
in sentence selection methodologies even if the
initial comparable corpora are in domain.

1 Introduction

This paper describes FJWU’s submission to the
biomedical translation task. This year the focus
of our research was domain specific parallel cor-
pus mining from Wikipedia using Large Language
Models, we explored the potential of the mined
sentences using two sentence selection schemes.
Neural Machine Translation (NMT) (Kalchbrenner
and Blunsom, 2013; Sutskever et al., 2014; Bah-
danau et al., 2015; Cho et al., 2014) has witnessed
great success over the years (Vaswani et al., 2017;
Zhang and Zong, 2020). NMT systems train on par-
allel corpora to produce translations that capture
language intricacies and context with enormous
precision as compared to the previous counterpart
Statistical Machine Translation (SMT) systems.

Machine translation in the biomedical domain is
becoming increasingly important due to the critical
nature of medical scientific texts. The majority of
these texts are published in English, and the goal of
Biomedical Machine Translation is to make them
accessible in multiple languages. However, this is
a complex undertaking due to the extensive nature
of this field and the vast and diverse vocabulary it
encompasses. This vocabulary includes specialized
terms and non-lexical forms (such as dates and
biomedical entities) that pose unique challenges.

Consequently, the quality of machine translation
output fluctuates depending on the availability of
biomedical resources tailored to each target lan-
guage.

Availability of parallel corpora in reasonable
amounts has greatly enhanced the performance of
NMT systems, especially for the high-resource lan-
guages (Bojar et al., 2018). However, its efficacy
remains sub optimal for low-resource languages
and domain-specific contexts (Zoph et al., 2016;
Koehn and Knowles, 2017; Lample et al., 2018;
Chu and Wang, 2020). Performance of NMT sys-
tem degrades as soon as the application domain
deviates from training domain. Domain adaptation
(Freitag and Al-Onaizan, 2016), transfer learning
(Zoph et al., 2016; Khan et al., 2018; Abdul Rauf
et al., 2020), model fusion (Gulcehre et al., 2015),
back translation (Sennrich et al., 2015; Ul Haq
et al., 2020), fine-tuning (Dakwale and Monz, 2017;
Huck et al., 2018), data augmentation (Fadaee et al.,
2017), data selective training (Van Der Wees et al.,
2017; Knowles and Koehn, 2018), decoding strate-
gies (Park et al., 2020), zero-shot translation (John-
son et al., 2017) are some of the techniques used
to address this issue. We will be focusing on do-
main adaptation using data augmentation and fine
tuning.

For this years submission we explore the poten-
tial of Large-scale Language Models for extract-
ing parallel sentences from Wikipedia1. French-
English parallel articles are scraped as detailed
in Section 4. For learning sentence embeddings
of scraped bilingual data, rather than training en-
coders from scratch, we leverage the potential of
LLM in parallel sentence extraction from our bilin-
gual scraped articles. We used LEALLA-Large, a
lightweight system developed by (Mao and Nak-
agawa, 2023) to compute the language-agnostic
low-dimensional sentence embeddings for each

1An online multilingual encyclopedia https://en.
wikipedia.org/wiki/Main_Page
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sentence in the English and French parallel arti-
cles. Potential parallel sentences are filtered based
on the similarity scores. These sentence are then
further domain filtered by comparing the closeness
with Medline Titles embeddings computed using
Transformers MiniLM. Our experiments show the
importance of inclusion of domain knowledge in
sentence selection methodologies even if the ini-
tial comparable corpora are in domain. Our main
contributions include:

• Presenting a methodology for domain inclu-
sion in sentence retrieval tasks by using capa-
bilities of Large Language Models

• Highlighting the importance of inculcation
of in domain knowledge in sentence retrieval
tasks even when the data source is in domain

• Release of the mined parallel corpora to the
research community2

The paper is structured as follows: Section 2
presents a brief overview of background and re-
lated work, Section 3,4 elaborates the data collec-
tion pipeline, Section 5 outline the NMT experi-
ments and results, followed by the conclusion of
this study.

2 Related Work

Recent work on parallel sentence extraction has fo-
cused on lightweight end-to-end word-level and
sentence-level embedding methods (Guo et al.,
2018; Artetxe and Schwenk, 2018; Yang et al.,
2019a). These embedding-based approaches have
gained success (Grégoire and Langlais, 2017;
Bouamor and Sajjad, 2018; Schwenk, 2018) as
these systems outperformed the large-distributed
computationally intensive systems (Uszkoreit et al.,
2010; Abdul-Rauf and Schwenk, 2009) used to
mine parallel documents. Bilingual sentence em-
beddings, learned from dual-encoder models, have
also been used effectively for parallel corpus min-
ing (Guo et al., 2018). Cross-lingual embeddings
encode bilingual texts into a single unified vector
space allowing nearest-neighbor search can be used
to find potential translation candidates. These em-
bedding approaches produce noisy matches that re-
quire a re-scoring step in order to obtain a clean par-
allel sentence retrieval as addressed by (Yang et al.,

2https://github.com/sabdul111/
Biomedical-Parallel-Corpus

2019a) who explored using a bi-directional dual
encoder with additive margin softmax (Wang et al.,
2018) which results in state-of-the-art performance
for sentence filtering. Multilingual sentence em-
bedding approaches (Artetxe and Schwenk, 2018;
Chidambaram et al., 2018) also show promising
results.

Since language-specific models often demand
extensive amounts of labeled data for training
and can be limited by their language-specific
parameters, language-agnostic sentence embed-
ding(Artetxe and Schwenk, 2019; Yang et al.,
2019b; Reimers and Gurevych, 2020; Feng et al.,
2020; Mao et al., 2022) align multiple languages in
a shared embedding space, facilitating parallel sen-
tence alignment that extracts parallel sentences for
training translation systems. Among them, LaBSE
(Feng et al., 2020) achieved state-of-the-art perfor-
mance on various bi-text retrieval. The problem
of inference speed and computation overhead of
large language models was addressed by (Mao and
Nakagawa, 2023) who proposed Learning Leight-
Weight Language-agnostic Sentence Embeddings
(LEALLA) with Knowledge Distillation (Kim and
Rush, 2016). They reported significant reduction
in computation overhead and inference speed by
providing language-agnostic low-dimensional sen-
tence embeddings. We also use LEALLA in the
second phase of our pipeline for parallel sentence
alignemnent.

3 Wikipedia as a potential resource for
biomedical data

Our primary objective was to collect a compre-
hensive dataset from the biomedical domain, we
explored Wikipedia’s key biological categories and
selected those having a substantial volume of arti-
cles. A brief overview of the selected subdomains
is given below:

1. Biodbs 3 refers to biological databases and
contains links of a variety of biological
databases.

2. Genome Reference Consortium is an inter-
national collaboration dedicated to creating
and maintaining the most accurate and up-to-
date Human Genome 4 reference sequence.

3https://en.wikipedia.org/wiki/List_of_
biological_databases

4https://en.wikipedia.org/wiki/Human_genome
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Domain Scraped URLs Scraped Articles Parallel Articles Unique Articles
French English French English

Biodbs 39.4K 77.3K 39.3K 68.7K 39.3K 1.2K
Human Genome 25.9K 59.1K 25.9K 49K 25.9K 25.9K
Health BioMed 42.8K 122.5K 42.8K 92.5K 42.8K 14.7K
NCBI 64.2K 133.8K 64K 133.6K 64K 51.2K
Pubmed 62.9K 134.5K 62.9K 117.4K 62.9K 22.4K
Total 235.2K 527.2K 234.9K 461.2K 234.9K 115.4K

Table 1: Scraped Data per subdomain

3. National Institute of Biomedical Imaging
and Bio engineering plays a central role in
advancing biomedical engineering research
and provides a wealth of data and resources in
the domain of Health Biomedical Engineering
5.

4. The National Center for Biotechnology In-
formation (NCBI) 6 is a U.S. government
agency that provides an extensive collection
of biomedical and genomic resources.

5. PubMed 7 is a widely used online database
maintained by the National Library of
Medicine (NLM) which provides access to
a vast collection of biomedical literature.

4 Parallel Corpus Mining

This section presents an overview of our parallel
data creation pipeline. Wikipedia has been exten-
sively used as a data resource for corpus devel-
opment (Chu et al., 2014; Tufiş et al., 2013; Ste-
fanescu et al., 2012; Karimi et al., 2018; Aghae-
brahimian, 2018; Schwenk et al., 2019). We also
used Wikipedia’s inter language links to mine po-
tential parallel sentences by exploring the potential
of Large language models for filtering the closet
candidates. Our data preparation pipeline involves
three main steps; 1) Domain specific web scraping,
2) Candidate sentence scoring and filtering and 3)
Domain adapted filtering.

Parallel article scrapping To extract the bilin-
gual data we used Wikipedia’s Interwiki8 (also
known as inter language links) property (Adafre

5https://en.wikipedia.org/wiki/Biomedical_
engineering#Hospital_and_medical_devices

6https://en.wikipedia.org/wiki/National_
Center_for_Biotechnology_Information

7https://en.wikipedia.org/wiki/PubMed
8The Interwiki property links the articles across various

language editions of Wikipedia.

and De Rijke, 2006; Otero and López, 2010; Chu
et al., 2014; Aghaebrahimian, 2018). English
Wikipedia has consistently held the distinction of
possessing the highest article count among all lan-
guage editions of Wikipedia. As of August 2023,
there are 6,696,0719 articles in English containing
over 4.3 billion words.

We maximized recall in our article selection pro-
cedure by choosing English as the base language
since it provided wider coverage of topics. Thus,
for each unique English article, the corresponding
French article (if found) was scrapped. We named
the scrapped articles using the title of the English
version, distinguishing them with .en for English
and .fr for French files. At this stage, we had to re-
trieve the parallel articles since many of the English
articles did not have the corresponding French arti-
cles (see Table 1). For parallel article retrieval, we
compiled a list of all French articles and used this
list to retrieve parallel English articles which re-
sulted in our parallel French-English articles. The
subdomains (see section § 3) had many overlapping
articles which were removed and unique articles
from each subdomain were selected.
Table 1 shows the amount of URLs, articles, paral-
lel articles and the corresponding unique articles.
At this stage we have unique parallel articles from
each subdomain.

Parallel sentence filtering We used a
lightweight pre-trained large language model
LEALLA-Large (Mao and Nakagawa, 2023)
which computes sentence embedding of 256
dimensions by distilling knowledge from LaBSE
(Feng et al., 2020). It can be used to mine potential
parallel sentences by finding the nearest neighbour
of each source sentence in the target side according
to cosine similarity, and filtering those below a
threshold.

9https://en.wikipedia.org/wiki/Wikipedia:
Size_of_Wikipedia
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Domain Parallel Sentences
Threshold 90 Threshold 85 Threshold 80

Biodbs 1,188 3,240 4,944
Human Genome 25,975 19,849 62,499
Health BioMed 14,677 41,555 66,008
NCBI 65,591 198,692 328,621
Pubmed 16,853 46,273 72,741
Total 124,284 309,609 534,813

Table 2: Parallel Sentences from the unique articles based on similarity threshold computed using LEALLA.

Parallel Sentences BioFiltered Parallel Sentences
Threshold 20 Threshold 10 Threshold 0

Threshold 90 3,602 16,861 47,964
Threshold 85 15,286 64,888 169,215
Threshold 80 23,727 101,845 275,063

Total 42,615 183,594 492,242

Table 3: Bio-Filtered: Parallel sentences from Table 2 selected based on their proximity with Medline titles using
MiniLM.

LEALLA Embedding vector is computed for
each sentence in the French and English article.
Thus for each French(source) sentence we have
N potential matching sentences, where N is the
number of sentences in English(target) article. The
dot-product is then used to compute the similar-
ity between each source and N target candidate
sentences. The top 10 candidate sentences are re-
trieved for each sentence. At this stage we have a
sorted list of potential parallel sentences from each
subdomain.

It is important to note that these are potential bio
med domain sentences since these are mined from
in-domain articles. We focus on both precision and
recall at this stage. Our sentence retrieval is recall
oriented, given that English articles were roughly
double the French articles, thus using French sen-
tence as prompt to retrieve the matching English
sentences promised a wider search space. For final
parallel corpus creations we selected the sentences
on similarity threshold. We report three thresh-
olds (thresholds 80, 85, and 90) to retrieve parallel
sentences from the retrieved top-10 sentence pairs.
We are working on lower threshold sentences. A
higher threshold indicates a greater degree of par-
allelism between the sentences. Table 2 shows the
number of parallel sentences retrieved using differ-
ent thresholds for each subdomain. We call these
LLMfilter sentences for reference.

In domain filtering We did a second level selec-
tion from the LLMfilter parallel sentences extracted
in the previous step. Even though these sentences
come from bio-medical articles and are in-domain

but our hypothesis is that there will be many
sentences that may categorize as general domain.
Our second filter is to ensure collection of purely
biomedical sentences. For this we select Medline
titles (Jimeno Yepes et al., 2017) as biomedical
representative dataset since titles contain the main
domain terminologies. An embedding was gener-
ated for Medline Titles using sentence transformers
paraphrase-multilingual-MiniLM-L12-v210

which was then used to remove the out-domain
sentences, striving to retain an optimal amount of
in-domain sentences (pertaining to the biomedical
domain). Dot product of each sentence with the
Medline titles embedding was used to compute
the similarity score(ranging from -1 to 1). We
selected thresholds 20, 10, and 0 which correspond
to 0.2, 0.1, and 0.0 respectively in the similarity
score. Table 3 shows the number of sentences per
threshold, we call these Biofilter sentences for
reference.

Post-processing involved the removal of excep-
tionally short sentences, special characters, and sen-
tences in languages other than the intended source
and target languages. Duplicated and identical sen-
tences were also removed from both English and
French sides.

5 Translation performance on retrieved
sentences

We used Transformer base (Vaswani et al., 2017)
architecture provided by Fairseq (Ott et al., 2019)

10https://huggingface.co/sentence-
transformers/paraphrase-multilingual-MiniLM-L12-v2
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WMT20 testset
Model Fine-tuning Model
Name LLMfilter Name Biofilter

B1 - 19.52
S1 B1 =>t90 18.12 SB1 20.29
S2 B1 =>t85 18.41 SB2 20.29
S3 B1 =>t80 18.54 SB3 20.58
S4 B1 =>t90-t85-t80 18.78 SB4 21.11

B2 - 38.71
L5 B2 =>t90 19.69 LB1 21.81
L6 B2 =>t85 20.57 LB2 21.88
L7 B2 =>t80 20.62 LB3 22.07
L8 B2 =>t90-t85-t80 20.36 LB4 22.43

Table 4: BLEU scores on fine tuned datasets. B1 and B2 denote the baselines. B1 is trained on the biomedical texts
provided by the WMT’23 organizers, while B2 is a big model trained on general domain and biomed data.

as transformer_iwslt_en_de. The ReLU activa-
tion function was used in all encoder and decoder
layers. We optimize with Adam (Kingma and Ba,
2015), set up with a maximum learning rate of
0.0005 and an inverse square root decay schedule,
as well as 4000 warmup updates.

All corpora were segmented into subword units
using Sentence Piece (Kudo and Richardson, 2018)
with a vocabulary of 32K units. We share the de-
coder input and output embedding matrices. Mod-
els are trained with mixed precision and a batch
size of 4096 tokens on a single GPU. Systems were
trained until convergence based on the BLEU score
on the development sets. Evaluation was performed
using SacreBleu (Post, 2018). Scores are chosen
based on the best score on the development set
(Medline 18, 19), and the corresponding scores for
that checkpoint are reported on Medline 20 test set.

For fine-tuned systems, the process starts with
models trained to convergence, based on BLEU
score on dev sets. Training then resumes using a se-
lected portion of the training corpus using the same
parameters and criterion as for the base systems.

Baseline We trained a smaller model B1 on the
biomedical texts provided by the WMT’23 or-
ganizers: Edp, Medline abstracts and titles (Ji-
meno Yepes et al., 2017), Scielo (Neves et al., 2016)
and the Ufal Medical corpus11 consisting of Cesta,
Ecdc, Emea (OpenSubtitles), PatTR Medical and
Subtitles. We used a bigger model B2 by (Xu et al.,
2021) trained on WMT14 general domain corpus
and WMT and supplementary biomed data includ-
ing B1 data.

11https://ufal.mff.cuni.cz/ufal_medical_corpus

5.1 Results and Discussion

Table 4 presents the results using the two data selec-
tion methods. LLMfilter column shows the BLEU
scores on Medline 20 testset for sentences filtered
based on the sentence similarity score, whereas
Biofilter are the sentences which were selected
from the LLMfilter based on their closeness with
the Biomedical Medline titles. Both filters used
LLMs for computing similarity as detailed in sec-
tion 4.

B1 represents a smaller baseline model trained
on all biomed data provided by WMT organizers
having a BLEU score of 19.52. This was further
fine-tuned using each threshold dataset i.e. thresh-
old 90, 85, and 80 (represented by t90, t85, and t80
respectively in 4), and finally with a concatenation
of the 3 thresholds. Concatenation refers to the
union of t90, t85, and t80. We did this to upsample
the higher quality corpora (i.e. t90) to analyze the
impact on MT. Evidently, none of the LLMfilter
sentences improved the initial bio med baseline.
The Biofilter sentences on the other hand helped
improve the scores even when a small amount is
added e.g. for t90 and the scores improved con-
sistently with the increase in the number of sen-
tences with SB4 yielding an increase of 1.59 BLEU
points from the baseline. For the larger baseline
B2, though none of the filtering schemes help im-
prove the initial high score but still the supremacy
of Biofilter sentences over LLMfilter is evident.

Arguably, both LLMfilter and Biofilter contain
in-domain sentences as these have been selected
from biomedical articles. The models built using
the same thresholds for the two schemes have a
difference of more than 2 BLEU points on average

267



with Biofilter systems being superior. Our results
demonstrate the importance of inculcation of in-
domain knowledge in sentence retrieval tasks even
if the data source is in-domain as there are many
sentences that do not pertain specifically to the
domain and affect the results of domain-centered
translation.

6 Conclusion

In this study, we explored the potential of large lan-
guage models for parallel sentence extraction from
domain-adapted bilingual corpus extracted from
Wikipedia. On our dataset, we experimented with
two data selection schemes and assessed the NMT
performance for the biomedical domain. Our find-
ings demonstrate that merely web-mining from in-
domain corpus is not sufficient to improve domain-
specific NMT performance but there is also a need
for further filtering out out-domain sentences to
improve the domain-specific NMT systems. Lever-
aging large language models to extract in-domain
parallel sentences resulted in improved NMT per-
formance by outperforming the baseline with 2
BLEU points.
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Abstract
This paper presents the domain adaptation
methods adopted by Huawei Translation Ser-
vice Center (HW-TSC) to train the neural
machine translation (NMT) system on the
English↔German (en↔de) WMT23 biomedi-
cal translation task. Our NMT system is built
on deep Transformer with larger parameter
sizes. Based on the biomedical NMT sys-
tem trained last year, we leverage Curriculum
Learning, Data Diversification, Forward trans-
lation, Back translation, and Transductive En-
semble Learning to further improve system per-
formance. Overall, we believe our submission
can achieve highly competitive result in the
official final evaluation.

1 Introduction

Machine translation (MT) (Lopez, 2008) refers to
the automatic translation of text from one language
to another. The WMT23 biomedical translation
task aims to evaluate the performance of MT sys-
tems in the biomedical domain. Due to the lack of
sufficient in-domain data, domain adaptation (Chu
and Wang, 2018; Wu et al., 2023) has naturally
become the main research direction of this task.

This paper presents the domain adaptation meth-
ods adopted by HW-TSC to train the NMT (Bah-
danau et al., 2015) system on en↔de language pair
of the WMT23 biomedical translation task. Our
method is mainly based on previous works (Wei
et al., 2022, 2021; Yang et al., 2021). We try to
train a domain classifier to select biomedical data
from general data, then perform multi-step data
cleaning on the selected in-domain data and keep
only a high-quality subset for training. Based on
the biomedical NMT system trained last year, we
leverage Curriculum Learning (Zhang et al., 2019),
Data Diversification (Nguyen et al., 2020), Forward
Translation (Abdulmumin, 2021), Back Translation
(Sennrich et al., 2016), and Transductive Ensemble
Learning (Wang et al., 2020b) to further improve
system performance.

Our system report includes four parts. Section
2 focuses on our data processing strategies while
section 3 describes our training details. Section 4
explains our experiment settings and training pro-
cesses, and section 5 presents the results.

2 Data

2.1 Data Volume

We obtain bilingual and monolingual data from var-
ious data sources, except medical database. Then,
we use biomedical data and general data to train
a domain classifier based on fasttext (Joulin et al.,
2016) to select biomedical data from general data.
Table 1 lists the final size of the training data.

language pairs bitext data monolingual data
en↔de 11.6M en: 12.3M, de: 10.1M

Table 1: Bilingual and monolingual used for training.

2.2 Data Pre-processing

Our data processing procedure is basically the same
as our method last year (Wu et al., 2022), includ-
ing deduplication, XML content processing, langid
(Lui and Baldwin, 2012) and fast-align (Dyer et al.,
2013) filtering strategies, etc. As we use the same
data pre-processing strategy as last year’s, we will
not go into details here.

2.3 Data Denoising

Since there may be some semantically dissimilar
sentence pairs in bilingual data, we use LaBSE
(Feng et al., 2022) to calculate the semantic similar-
ity of each bilingual sentence pair, and exclude
bilingual sentence pairs with a similarity score
lower than 0.7 from the training corpus.
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3 System Overview

3.1 Model

We continue using Transformer (Vaswani et al.,
2017) as our neural machine translation (NMT)
model architecture. As we did last year, we use a
25-6 deep model architecture. The parameters of
the model are the same as Transformer-big. We just
change the post-layer normalization to the pre-layer
normalization, and set encoder layers to 25.

3.2 Curriculum Learning

A practical curriculum learning (CL) (Zhang et al.,
2019) method should address two main questions:
how to rank the training examples, and how to mod-
ify the sampling procedure based on this ranking.
For ranking, we choose to estimate the difficulty of
training samples according to their domain feature
(Wang et al., 2020a). The calculation formula of
domain feature is as follows, where θin represents
an in-domain NMT model, and θout represents an
out-of-domain NMT model.

q(x, y) =
logP (y|x; θin)− logP (y|x; θout)

|y|
(1)

For sampling, we adopt a probabilistic CL strat-
egy1 that takes advantage of the spirit of CL in
a nondeterministic fashion without discarding the
good practice of original standard training, like
bucketing and mini-batching.

3.3 Data Diversification

Data Diversification (DD) (Nguyen et al., 2020)
is a data augmentation method to boost NMT per-
formance. It diversifies the training data by using
the predictions of multiple forward and backward
models and then merging them with the original
dataset on which the final NMT model is trained.
DD is applicable to all NMT models. It does not re-
quire extra monolingual data, nor does it add more
computations or parameters. To conserve training
resources, we only use one forward model and one
backward model when performing DD.

3.4 Forward Translation

Forward translation (FT) (Abdulmumin, 2021),
also known as self-training, is one of the most com-
monly used data augmentation methods. FT has

1https://github.com/kevinduh/sockeye-recipes/
tree/master/egs/curriculum

proven effective for improving NMT performance
by augmenting model training with synthetic paral-
lel data. Generally, FT is performed in three steps:
(1) randomly sample a subset from the large-scale
source-side monolingual data; (2) use a “teacher”
NMT model to translate the subset data into the
target language to construct the synthetic parallel
data; (3) combine the synthetic and authentic paral-
lel data to train a “student” NMT model.

3.5 Back Translation

An effective method to improve NMT with target
monolingual data is back translation (BT) (Sen-
nrich et al., 2016; Wei et al., 2023). There are many
works broaden the understanding of BT and inves-
tigates a number of methods to generate synthetic
source sentences. Edunov et al. (2018) find that
back translations obtained via sampling or noised
beam outputs are more effective than back transla-
tions generated by beam or greedy search in most
scenarios. Caswell et al. (2019) show that the
main role of such noised beam outputs is not to
diversify the source side, but simply to tell the
model that the given source is synthetic. Therefore,
they propose a simpler alternative strategy: Tagged
BT. This method uses an extra token to mark back
translated source sentences, which generally out-
performs noised BT. For better joint use with FT,
we use sampling back translation (ST).

3.6 Transductive Ensemble Learning

Ensemble learning (Garmash and Monz, 2016),
which aggregates multiple diverse models for in-
ference, is a common practice to improve the per-
formance of machine learning models. However,
it has been observed that the conventional ensem-
ble methods only bring marginal improvement for
NMT when individual models are strong or there
are a large number of individual models. Trans-
ductive Ensemble Learning (TEL) (Zhang et al.,
2019) studies how to effectively aggregate multiple
NMT models under the transductive setting where
the source sentences of the test set are known. TEL
uses all individual models to translate the source
test set into the target language space and then fine-
tune a strong model on the translated synthetic data,
which significantly boosts strong individual models
and benefits a lot from more individual models.
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4 Experiment Settings

We use the open-source fairseq (Ott et al., 2019) for
training, then we use SacreBLEU (Post, 2018) and
multi-eval tool 2 to measure system performances.
The main parameters are as follows: each model
is trained using 8 A100 GPUs, batch size is 6144,
parameter update frequency is 1, and learning rate
is 5e-4. The number of warmup steps is 4000, and
model is saved every 1000 steps. The architec-
ture we used is described in section 3.1. We adopt
dropout (Srivastava et al., 2014), and the rate varies
across different training phases. When the training
data is higher than tens of millions, the dropout
ratio is set to 0.1, otherwise it is set to 0.3.

5 Results

Regarding en↔de, we use Curriculum Learning
(CL), Data Diversification (DD), Forward Transla-
tion (ft), Back Translation (BT), and Transductive
Ensemble Learning (TEL). The evaluation results
of en→de and de→en NMT system on WMT22
biomedical test set are shown in Tables 2.

We see that CL can stably bring 3 SacreBLEU
and multi-eval improvement, while DD, FT & ST
and TEL can further slightly improve SacreBLEU
and multi-eval. Our final en→de and de→en sub-
missions achieve 40.48 and 48.75 SacreBLEU,
41.22 and 49.91 multi-eval respectively.

en→de de→en
SacreBLEU multi-eval SacreBLEU multi-eval

last year’s baseline 37.11 37.80 44.45 45.50
+ CL 40.11 40.89 47.77 48.89
+ DD, FT & ST 40.23 41.00 48.60 49.76
+ TEL 40.48 41.22 48.75 49.91

Table 2: BLEU scores of en→de and de→en NMT
system on WMT22 biomedical test set.

6 Conclusion

This paper presents the submission of HW-TSC
to the WMT23 biomedical translation task. We
participate in en↔de language pair and perform a
series of domain adaptation experiments based on
the biomedical NMT system trained last year. The
effectiveness of each domain adaptation method is
demonstrated. Our experiments show that domain
adaptation methods are effective for model training.

2https://github.com/moses-smt/mosesdecoder/
tree/master/scripts/generic/mteval-v14.pl
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Abstract

In the context of this biomedical shared task,
we have implemented data filters to enhance
the selection of relevant training data for fine-
tuning from the available training data sources.
Specifically, we have employed textometric
analysis to detect repetitive segments within
the test set, which we have then used for re-
fining the training data used to fine-tune the
mBart-50 baseline model. Through this ap-
proach, we aim to achieve several objectives:
developing a practical fine-tuning strategy for
training biomedical in-domain fr<>en models,
defining criteria for filtering in-domain training
data, and comparing model predictions, fine-
tuning data in accordance with the test set to
gain a deeper insight into the functioning of
Neural Machine Translation (NMT) systems.

1 Introduction

The objective of our contribution to the biomedical
shared task this year is to gain deeper insights into
the NMT training pipeline, assess the factors influ-
encing performance, and evaluate the robustness of
the training system.
Our training strategy was to build tailor-made fine-
tuning data with regard to the test data. We calcu-
lated repeated segments (Salem, 1986) in the test
data and used a selection of them to extract the cor-
responding data set from the available training data
(as outlined in Section 2.1.1). In order to highlight
the "reproducibility", we consistently adhered to
the same pipeline with minimum settings presented
in Section 2.
While our experience encountered various techni-
cal obstacles that likely affected our system’s per-
formance, these challenges prompted us to priori-
tize explainability and comparability. This became
especially important when the system produced ir-
relevant results and hallucinations. We elaborated
on this in Sections 3 and 4. The remaining sections
of the paper are organized as follows: Section 2

outlines our filtering pipeline, Section 3 delves into
our results, and Section 4 provides a discussion of
these results. Section 5 explores related research
and outlines future work.

2 Optimizing Fine-Tuning Data Selection
and Pipeline

For this shared task, we exclusively fine-tuned
the "mBart-50 large" baseline model (Tang et al.,
2020) over 3-epoch, 5-epoch, and 10-epoch train-
ing cycles. Our approach prioritized reproducibility
and involved a clear distinction between a "hori-
zontal" dimension (facilitating inter-system analy-
sis, especially in comparison with e-translation1)
and a "vertical" dimension (examining differ-
ences in training strategies within the same sys-
tem). The fine-tuned setting was established
with the following parameters set as a minimum:
"num_train_epochs", "train_file", "validation_file",
"test_file", "per_device_train_batch_size"2.

2.1 Raw Training Data

As recommended by the WMT biomedical shared
task, we employed the corpora listed in Table 1.
The entire corpus, intended for fine-tuning, com-
prises over 90M words in English and more than
100M in French. It is from these corpora that we ex-
tracted the filtered aligned sentences in both source
and target languages.

2.1.1 Segmental Proximity Analysis for
Training Data Filtering

Our training data filtering strategy is rooted in the
theoretical principles of segmental proximity anal-
ysis. Repeated segments are sequences that are
automatically identified as being repeated within

1https://commission.europa.eu/resources-
partners/etranslation_fr

2Because of hardware constraints, we had to significantly
reduce the batch dimension to 4
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Corpus Lines Words
PubMed abstract 13,033 2,429,484 (en)

3,051,103 (fr)
UFAL 2,693,509 89,191,554 (en)

100,024,568 (fr)
Edp 821 92,309 (en)

110,977 (fr)
Khresmoi 1,500 28,454 (en)

33,189 (fr)
Scielo3 9,393 213,684 (en)

9,501 262,377 (fr)

Table 1: Raw corpora used

UFAL (en) 30848
UFAL (fr) 16791
Pubmed abstract (fr) 8393
Pubmed abstract (en) 3566
Edp (fr) 54
Edp (en) 10
Khresmoi (fr) 19
Khresmoi (en) 1

Table 2: Matches in raw training corpus

the same text or across different texts.4

The computation of repeated segments (Salem,
1986) is a useful tool in corpus analysis. The com-
puted inventory of repeated segments is of undeni-
able interest for discourse analysis (Sousa, 2014;
Gledhill et al., 2017). This tool facilitates the ex-
amination of various discourse phenomena, encom-
passing the circulation of formulaic expressions,
discourse routines, lexico-grammatical patterns,
and more. On a cognitive level, the analysis of
repeated segments can offer a substantial contri-
bution to the study of knowledge pattern dissemi-
nation in specialized discourse. For these reasons,
the computation of repeated segments holds sub-
stantial value in text profiling, especially in the
context of training data selection. Our working
hypothesis posits that discerning semantic prox-
imity within a vast dataset can be accomplished
through a deliberate selection of repeated segments
guided by specific formal criteria, including factors
such as frequency and segment length. The method
relies on the assumption that related texts share
common discourse properties, including phraseol-
ogy, terminology, and structural patterns. These

4Consortium HN CORpus, Langues et Interactions -
Huma-Num: https://corli.huma-num.fr/en/glossaire/repeated-
segments/

elements can be effectively "captured" through re-
peated segments computation and unveiled through
segmental proximity analysis (Salem, 1986; Lebart
et al., 1997).

The concept of segmental proximity has been
thoroughly explored in the work of (Salem, 2006),
where the statistical properties of this phenomenon
were demonstrated. In this study, Salem (ibid.:1)
"considers measures of similarity based on the com-
putation of the frequencies of identical sequences
of words among the texts to be compared".

In order to identify common sequences within
the two sections of a comparable monolingual cor-
pus, it was first necessary to compile a list of seg-
ments containing a minimum of four words that
were repeated in both parts of the corpus. All seg-
ments found exclusively in one part of the corpus
were removed from consideration. The sequences
that remained were then selected based on their
length and their presence in each of the comparable
parts of the corpus. By prioritizing relatively longer
sequences, we were able to exclude many shorter
and more frequent sequences, many of which con-
sisted of common combinations of function words
such as "of the" or "by means of."

According to the findings presented in Salem
(Salem, 2006), the analysis of lexical distances and
proximity indices computed on individual forms
(such as the Jaccard index and Chi-square distance)
did not reveal any significant affinity between the
two sections of the comparable corpus under study.
However, when calculations were based on the
identification of repeated segments, it became ev-
ident that the two parts shared a relatively high
number of extended sequences. This methodology
enables the study of a range of phenomena related
to the circulation of textual units that surpass indi-
vidual vocabulary items.

Following this line of research, we compiled
a systematic inventory of all repeated segments
with a length of at least four words, such "acute
respiratory syndrome coronavirus", "followed by
maintenance therapy", etc. in each test set (English
and French), which consisted of texts provided by
WMT. We used iTrameur (https://itrameur.clillac-
arp.univ-paris-diderot.fr) to facilitate this process.
We then selected repeated segments with a total
frequency of 10 or more. This curated inventory
was used for the profiling and filtering of available
medical text datasets (training data). We then se-
lected repeated segments having a total frequency
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of 10 or more and used this inventory for pro-
filing and filtering of available medical text sets
(training data). This process allowed us to build a
dataset that shared common discourse properties
and demonstrated semantic similarity with the test
set.

2.2 Extraction of Aligned Sentences
Containing Filtered Segments

By employing a list of repeated 4-word segments,
we implemented a procedure to extract aligned
sentences containing these filtered segments (Al-
gorithm 1). To achieve this, we concatenated
every delimiter (D) one by one ( ,;”˜ &|#@=‘-
.?!%*$()[]_:+«»§/) of iTrameur5 and every word
(g) of each 4-word repeated segment (G) of source
language (S, which can be either English or
French) to form a regular expression-like pattern
GD. We used this pattern to match aligned sen-
tences that contain the segment in both source (Sn,
n is the index of matched sentence in raw training
corpus of source language) and target (Tn) lan-
guages. The extraction result is reported in Table2.
The extracted sentences are used to fine-tune the
baseline model of mBart50.

Data: segment G, delimiter D and aligned
sentences S and T

Result: aligned sentences Sn and Tn

containing G
1 for g in G do
2 GD← concatenate(g,D)
3 if GD in Sn then
4 extract Tn

5 end
6 end
Algorithm 1: Filtering and extraction algo-
rithm

3 Results

In the absence of formal evaluation scores, our ap-
proach was largely based on textometric browsing
techniques (Zimina, 2005) and qualitative analysis
of our submitted translations. These translations
were produced using a 3-epoch and 5-epoch train-
ing for the en-fr corpus, and a 3-epoch training for
the fr-en corpus.

For example, Figure 1 shows a parallel section
map generated by iTrameur, which helps visualize

5https://itrameur.clillac-arp.univ-paris-diderot.fr

en-fr Number Frequency
train set (en) 60 482.144.115
test data (en) 41 98
fr-en Number Frequency
train set (fr) 70 176.229.164
test data (fr) 41 109

Table 3: The occurrence of 4-word sequences used for
training in the train set corpus and test data (en, fr)

Texts in French Number Frequency
mBart50 (3-epoch) 2 9
mBart50 (5-epoch) 2 4
Texts in English Number Frequency
mBart50 (3-epoch) 0 0

Table 4: The presence of 4-word sequences (en, fr) in
translations generated by our systems

the alignment of parallel sections from two fr-en
translations generated by mBart-50 baseline and
mBart-50 5-epoch. The map highlights the pres-
ence or absence of the token "violence" in both
translations. In the contexts displayed below the
map, occurrences of repeated segments are under-
lined. We employ this tool to compare the transla-
tion outputs of various systems.

In accordance with our training strategy, which
is based on segmental proximity analysis (as de-
scribed in Section 2.1.1), we expected the test data
and the test set to have a substantial number of long
sequences in common, assuming that many of the
long sequences used for training would be shared.
To confirm this, we examined the presence of the
136 four-word sequences (repeated segments) used
in training within the test data. The results align
with our research strategy, as shown in Table 3):
68% (41 sequences) of the English sequences are
found in the en-fr test data and 59% (41 sequences)
of the French sequences are present in the fr-en test
data.

Continuing along this line of investigation, we
examined our submitted translations, yet the analy-
sis revealed that our translated texts had very little
overlap with the repeated segments employed in
training, as demonstrated in Table 4.

In the following paragraphs, we narrow our fo-
cus to two sequences taken from the repeated seg-
ments used for training. These examples help il-
lustrate the challenges encountered by our systems
and highlight the complexities involved in drawing
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Figure 1: Parallel section map generated by iTrameur.

significant conclusions from a qualitative analysis
of our translations.

With 13 occurrences in the fr-en test data, the se-
quence "violence envers les femmes" presents an in-
triguing case of terminology. A closer examination
of the raw training corpus reveals that several other
expressions are commonly employed in French to
express the same concept, such as "violence faite
aux femmes" and "violence contre les femmes",
among others. In English, we note a reduced de-
gree of variation, primarily using "violence against
women" and, to a lesser extent, "violence directed
against women", which is not as prevalent as the
former. According to the European Institute for
Gender Equality (EIGE), an EU agency, the most
accurate translation is "violence against women".6.
However, in the translations generated by the 3-
epoch training, this accurate translation is absent,
and the proposed translations ("the women’s do-
mestic violence" and "gender-based violence") do
not correspond to the same concepts. The medical
term "blood flow" appears 10 times in the en-fr
test data and is part of one of the repeated seg-
ments used for training, specifically "blood flow in
dogs." It is also a frequent component in complex
noun phrases, including "the dermal blood flow,"

6https://eige.europa.eu/publications-
resources/thesaurus/terms

"regional blood flow," or "auricular dermal blood
flow" (with 8 occurrences). Both the 3-epoch and
5-epoch systems encounter challenges when trans-
lating this repeated segment and the complex noun
phrases. Firstly, there’s a high degree of termino-
logical variation in the French texts ("écoulement
sanguin", "débit sanguin", "flux sanguin", "circu-
lation sanguine"), given the limited occurrences
of the term in English. Additionally, we observe
instances of hallucinations and incomplete outputs
in the 3-epoch system. The 5-epoch system, on the
other hand, omits one element in the translation of
the complex noun phrase, even though the 3-epoch
system accurately translated it.

In a specific case, "regional blood flow," the 5-
epoch system incorrectly deduced the semantic re-
lationship between the head and a modifier, yield-
ing "l’écoulement régional du sang" instead of the
correct "l’écoulement sanguin régional", which the
3-epoch system produced.

4 Discussion

4.1 Errors and Inconsistencies Arising From
Variations in the Train Set

In general, the output exhibits numerous errors and
inconsistencies primarily arising from terminologi-
cal variations within the train set and the inherent
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heterogeneity of the selected training data. For
instance, the terms "gender-based violence" and
"violence against women" are both employed in
comparable contexts within the train set, as illus-
trated by segments like "Many women who expe-
rience gender-based violence may never seek any
formal help..." and "Violence against women is a
global phenomenon" (source: PubMed abstracts,
train set: en).

4.2 Hallucinations with mBart-50

Analyzing the translations generated by mBart-50
at different epochs (5 and 10) proves to be an in-
teresting area of research. According to Lee et al.
(2018), hallucinations occur when the model pro-
duces significantly different and inadequate outputs
when the source is subjected to specific noise mod-
els. Therefore, we can suggest that there may be
instances where the model ceases to translate the
source text and instead generates an output com-
posed solely of a continuous sequence of tokens
from the present invention. This could be seen as
an alternative form of hallucination in epoch 10.
Moreover, in epoch 10, there are also examples
of incomplete translations produced by the system.
Based on our analysis, we observed that these er-
rors tend to be resolved during the training process.
Consequently, in mBart-50 (5-epoch) fr-en, there
are no "X" tokens present, in contrast to the base-
line model translation. This result is highlighted by
the calculation of generalized co-occurrence net-
works conducted using iTrameur. Figures 2 and 3
depict co-occurrence networks that represent the
most characteristic lexical attractions in the fr-en
translations produced by two models: mBart-50
baseline and mBart-50 5-epoch. The numbers on
the edges represent the strength of lexical attrac-
tion: Specificity Index > 9 (Co-frequency > 1).7

Co-occurrence networks serve as a monitoring tool
for tracking changes across various training stages.

5 Related Research and Future Work

Corpus filtering is discussed in many previous and
recent works for training data preparation with dif-
ferent approaches : perplexity threshold of text seg-
ments(Moore and Lewis, 2010), metric evaluations
of raw NMT models’ outputs (Duh et al., 2013),
acceptability of filtering evaluated by mulitlingual
BERT classifier(Zhang et al., 2020), etc. Our ap-

7For specific details regarding the computation of Speci-
ficity Index, refer to (Lebart et al., 1997).

proach aims at data relevance between a given test
set and in-domain training data.

5.1 Robustness of NMT Models
An essential aspect to consider is that the system
generates tokens regardless of whether it possesses
the relevant information for translation. However,
this raises the need for potential trigger warnings in
situations where the system lacks adequate data for
accurate translation. This suggests an avenue for
developing a confidence index that reflects the sys-
tem’s efforts when generating output. We consider
to explore various parameters based on sentence
level and on a token level to build such a confi-
dence index, e.g. the scores used by certain large
language models to assess the confidence of each
token’s projection or beam search and the number
of competitors for each token to gauge the com-
plexity of a text for translation.
Another aspect to consider is the model’s
over/underfitting. By plotting our training and test
data features in Figure 4, we find out that the model
is indeed overfitted from depth 4. That explains par-
tially why the model under-performed and helps us
to choose a better data fitting strategy in the future.

5.2 Fine-tuning of mBart-50 and Other
Multilingual Systems

For the moment, we only tried to fine-tune mBart-
50 as a multilingual large language model, whereas
other systems have been developed since, some of
them with many more parameters. We may try to
replicate or fine-tune experiments with more classi-
cal systems such as SYSTRAN Model Studio Ad-
vanced (https://u-paris.fr/plateforme-paptan), but
also other different multi-lingual large language
models such as mT5 (Xue et al., 2020) or Bloom
(Scao et al., 2022), a 176-billion parameter lan-
guage model, in spite of its carbon footprint (at
least 24.7 tons of carbon just for the dynamic power
consumption) (Luccioni et al., 2022).

Finally, it is worth noting that our fine-tuning
efforts were primarily centered around mBart-50,
a multilingual large language model. However,
since our experiments, various other systems have
emerged, some with significantly more parame-
ters. It might be advantageous for us to replicate
or fine-tune experiments with more conventional
systems based on translation models, such as the
SYSTRAN Model Studio Advanced (available at
Université Paris Cité: https://u-paris.fr/plateforme-
paptan), and explore different multilingual large
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Figure 2: Co-occurrence networks for the baseline.

Figure 3: Co-occurrence networks for the 5-epoch system.

Figure 4: Model’s accuracy prediction by training and
test data features classification

language models like mT5 (Xue et al., 2020) or
Bloom (Scao et al., 2022). Notably, Bloom is a
huge 176-billion-parameter language model of ma-
jor interest, despite its substantial carbon footprint,
which amounts to at least 24.7 tons of carbon emis-
sions solely for dynamic power consumption (Luc-
cioni et al., 2022).

6 Conclusion

In this paper, we have described the transla-
tion systems used for the submissions in the
WMT23 biomedical task6 (our data are available
at: https://github.com/lichaozhu/WMT23). Nev-
ertheless, due to certain hardware constraints, we
were unable to pinpoint the exact reasons for the
model’s underperformance.

We also considered our previous participation
in the biomedical task. Since 2021, we have rec-
ognized that having scores provided in advance
and reference texts used for score computation can
significantly facilitate our work. These resources
enable a more critical evaluation of the translations
we generate.

To address the absence of reference translations
and evaluation results, translations can undergo
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spot checks. In our work, these checks involved the
use of qualitative examples to assess the model’s
successes and failures. Additionally, textomet-
ric browsing helped to unveil distinctive features
within multiple machine translation outputs.
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Abstract

This paper describes MaxLab - Information Sci-
ences Institute (MAX-ISI) Translation systems
for the WMT23 shared task. We participated
in the discourse-level literary translation task -
constrained track. In our methodology, we con-
duct a comparative analysis between the con-
ventional Transformer model and the recently
introduced MEGA model, which exhibits en-
hanced capabilities in modeling long-range se-
quences compared to the traditional Transform-
ers. To explore whether language models can
more effectively harness document-level con-
text using paragraph-level data, we took the
approach of aggregating sentences into para-
graphs from the original literary dataset pro-
vided by the organizers. This paragraph-level
data was utilized in both the Transformer and
MEGA models. To ensure a fair comparison
across all systems, we employed a sentence-
alignment strategy to reverse our translation
results from the paragraph-level back to the
sentence-level alignment. Finally, our evalua-
tion process encompasses sentence-level met-
rics such as BLEU, as well as two document-
level metrics: d-BLEU and BlonDe.

1 Introduction

This paper introduces our submissions to the
WMT23 Shared Task: Discourse-Level Literary
Translation (Zh-En), Constrained Track. Our
submission comprises three translation systems:
a primary system employing a paragraph-level
transformer, a first contrastive system utilizing a
sentence-level transformer, and a paragraph-level
Mega model as the second contrastive system.

Until very recently, the predominant focus of
context-aware Neural Machine Translation (NMT)
research has been on parallel datasets that align
at the sentence level, such as IWSLT17 (Cettolo
et al., 2017) and OPUS (Tiedemann, 2012). More

∗Equal contribution.

recent research endeavors have concentrated on lit-
erary translation, which is typically more intricate
and requires the models to be able to capture long-
range context for high-quality translations. For
example, Thai et al. (2022) introduced the first mul-
tilingual paragraph-aligned dataset PAR3, sourced
from public-domain non-English literary works.

We use Transformer as the baseline model. In
order to assess whether a more advanced model
can excel in modeling long-range sequences using
literary data, which contains richer contextual in-
formation, we also include the MEGA (Ma et al.,
2023) model for comparison. The foundational
model architectures we employ are introduced in
Section 2.

In Section 3, we provide an extensive expla-
nation of our systems. Within this section, Sec-
tion 3.1 outlines the data pre-processing step. In
this phase, we construct both sentence-level data,
which comprises the filtered original data, as well
as paragraph-level data. It’s worth noting that align-
ing sentences in literary translation is not always
feasible due to the possibility of sentence merging
or truncation during the translation process. At
the paragraph level, language models can adeptly
exploit document-level context, resulting in a re-
duction of translation errors at the discourse level,
as corroborated by human evaluations (Karpinska
and Iyyer, 2023). Building on these encouraging
findings, we created a dataset aligned at the para-
graph level by aggregating multiple sentences from
the provided literary dataset. Then, we propose
three systems and evaluate those systems with both
sentence-level and document-level metrics.

Section 4 presents the results that culminate in
our final submissions. Additionally, we discussed
challenges we encountered regarding discourse-
level translation in Section 5.
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2 Model Architectures

We select the following two model architectures for
our systems, taking into account their strong per-
formance in the context of context-aware machine
translation.

Transformer The Transformer architecture, as
introduced by Vaswani et al. (2017), utilizes an
encoder-decoder framework, leveraging a self-
attention mechanism. This mechanism enables
each position within a given sequence to interact
with every other position, facilitating the compu-
tation of a comprehensive representation for the
entire sequence.

In all our experiments, we employ the Trans-
former base version which consists of 6 encoder
layers, 6 decoder layers, a model dimension of 512,
and a FFN hidden dimension of 2048.

MEGA The recently unveiled MEGA (Moving
Average Equipped Gated Attention) (Ma et al.,
2023), addresses two longstanding limitations of
the conventional Transformer model, which have
impeded its performance on tasks involving long
sequences. These limitations pertain to a weak
inductive bias and a quadratic computational com-
plexity.

MEGA employs a multi-dimensional, damped
exponential moving average (Hunter, 1986) (EMA)
in conjunction with a single-head gated attention
mechanism to preserve inductive biases. Impor-
tantly, MEGA can replace the attention mechanism
within the Transformer framework. Additionally,
MEGA is of comparable size to the Transformer.

In total, the Transformer architecture is around
75M parameters; the MEGA architecture is around
77M parameters.

3 System Overview

3.1 Data Preprocessing

We first perform the following filtering steps on the
training data:

• Remove translators’ notes.

• Merge dialogues with tags "#<#" and "#>#"
into one instance.

• Combine blank lines with their following line.

We construct sent-level and paragraph-level
datasets separately.

Sentence-level dataset is constructed using the
sentence alignment information, which is thought-
fully provided.

Paragraph-level dataset Considering the critical
role played by context, particularly in literary trans-
lation, we further construct a paragraph-aligned
corpus. This corpus is established based on the sen-
tence alignment, allowing us to leverage context
more effectively in our translations.

Data for each language pair is then encoded
and vectorized with byte-pair encoding (Sennrich
et al., 2016) using the SentencePiece (Kudo and
Richardson, 2018) framework. We use separate
vocabularies of size 32K for each language Zh and
En.

Full corpus statistics are in Table 1.

Subset Sent-level Paragraph-level
Train 1742150 290315
Valid1 711 154
Valid2 810 148

Table 1: Instance counts across train and valid subsets.

3.2 System Architectures

Transformer-256 Our primary system employs
a Transformer-base model at the paragraph level.
Prior to tokenization, we structured the data into
paragraphs, each with a maximum length of 256
characters on the source side (Zh). The model is
subsequently trained and utilized for decoding on
the paragraph-aligned corpus mentioned above.

Transformer-Sent In contrast, we conduct train-
ing for the transformer-base model using the
sentence-level corpus.

MEGA-256 We adopted our proposed paragraph-
aligned data as it demonstrates competitive efficacy
in comparison to conventional Transformers across
established benchmarks, including the LRA dataset,
all while maintaining a significantly leaner parame-
ter configuration.

3.3 Training

We train all models on the fairseq framework (Ott
et al., 2019). All models were trained on 4 NVIDIA
A40 GPUs. Following Vaswani et al. (2017); Fer-
nandes et al. (2021), we use the Adam optimizer
with β1 = 0.9 and β2 = 0.98, a linear decay learn-
ing rate scheduler with an initial value of 10−4,
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System Subset BLEU d-BLEU BlonDe
all pron. entity tense d.m.

Transformer-Sent
VALID1 26.40 26.40 37.87 74.40 36.95 69.98 67.22
VALID2 16.40 16.10 29.89 67.34 49.05 70.76 52.78

Transformer-256
VALID1 21.90 26.20 40.92 84.17 40.47 78.72 72.71
VALID2 13.60 16.30 33.50 79.72 46.44 81.57 68.80

MEGA-Sent
VALID1 25.00 25.00 37.03 73.55 36.32 68.81 66.55
VALID2 16.20 15.80 29.54 67.18 47.30 69.95 54.21

MEGA-256
VALID1 22.40 23.90 39.74 81.14 40.47 77.29 71.47
VALID2 13.20 15.80 32.90 77.37 48.17 81.13 66.80

Table 2: Automatic metric results on the valid1 and valid2 sets. All reported BlonDe scores are F1s; pron. stands for
pronoun, d.m. stands for discourse marker.

System Sent-Level Doc-Level Human Annotator
BLEU chrF COMET TER d-BLEU Average

Transformer-256 34.1 53.3 78.24 62.4 45.1 73.59
Transformer-Sent 34.5 54.7 79.14 62.7 44.9 %

MEGA-256 33.1 52.4 77.84 63.6 44.4 %

Table 3: Automatic metric results of our submissions on the test set and the average score by different annotators on
one sampled document. (Wang et al., 2023).

and increasing to 5e−4 during a warm-up phase of
4000, and a dropout of 0.2. We run inference on
the validation set and save the checkpoint with the
best BLEU score.

3.4 Post-processing

Since the final submission requires that each line
must be aligned with the corresponding input line
in the output files, we add this post-processing step
to reverse our paragraph-level translation result to
sentence-level alignment. We will discuss this fur-
ther in the conclusion part.

Sentence-Alignment

1. Use the translated results at the sentence level
as a reference

2. Calculated the similarity between each sen-
tence in the translated paragraph and the M
nearest sentences in the sentence-level trans-
lation

3. Align each sentence to the most similar one
using Jaccard similarity on N-gram overlap as
the similarity metric

3.5 Evaluation
To evaluate the discourse-level translation ability
of three systems, we compute three metrics:

BLEU (Papineni et al., 2002) sentence-level
BLEU is the most commonly used metric to evalu-
ate the quality of machine-generated translations.
We report the standard BLEU score calculated us-
ing sacreBLEU (Post, 2018)1 in our systems.

d-BLEU (Liu et al., 2020) document-level sacre-
BLEU is computed by matching n-grams in the
whole document. Note that all evaluations are case-
sensitive

BlonDe (Jiang et al., 2022) is introduced as a
document-level automatic metric that calculates the
similarity-based F1 measure of discourse-related
spans across four categories (pronoun, entity, tense
and discourse marker).

4 Results

The results of our experiments are presented in Ta-
ble 2. We evaluate our models on the provided
two validation sets and list model performances

1The sacreBLEU signature is BLEU+case.mixed+lang.src-
tgt+numrefs.1+smooth.exp+{test-set}+tok.13a.
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on three automatic metrics, i.e., BLEU, d-BLEU,
and BlonDe. Given that BLEU scores compare
n-grams on a sentence-level basis, we extend our
evaluation to encompass d-BLEU and BlonDe met-
rics, providing a comprehensive assessment of the
models’ proficiency in discourse-level translation.
The results of the test set are presented in Table 3.

Transformer vs. MEGA As per the outcomes
presented in Table 2, Transformer models slightly
surpass MEGA models in both sentence-level and
paragraph-level translations. While MEGA demon-
strates superior capabilities in long-range sequence
modeling, its limited enhancement may be at-
tributed to the fact that current data are not lengthy
and doesn’t capture sufficient useful context (Jin
et al., 2023). Furthermore, the discrepancy in
BLEU scores is more pronounced than the vari-
ation in BlonDe scores.

Sent-level vs. Paragraph-level Based on the re-
sults presented in Table 2, there is a discrepancy
between BLEU and BlonDe evaluations. Specifi-
cally, it is observed that sentence-level translation
exhibits a better performance in terms of the BLEU
metric, whereas paragraph-level models demon-
strate a substantial improvement when assessed
using the BlonDe metric.

As delving into the four distinct categories
in BlonDe, a consistent trend of enhancement
emerges across each category with the adoption
of paragraph-level translation. Particularly, marked
improvements are observed within the pronoun and
tense categories. This can be attributed to the inher-
ent reliance of pronouns and tenses on contextual
information. These empirical results demonstrate
that paragraph-level data provides more useful con-
textual signals than sentence-level data.

5 Discussion

Limitation of sentence alignment Literary texts
often rely on context that spans beyond individual
sentences, making strict sentence alignment im-
practical. As evidenced in our results, paragraph-
level translation excels in preserving contextual in-
formation, like pronouns and tenses. However, the
insistence on maintaining sentence-level alignment
imposes constraints on model selection, hindering
flexibility and adaptability.

Limitation of evaluation metrics The current
evaluation metrics are not capable enough of mea-
suring document-level machine translation. The

most commonly used metric, BLEU, and its vari-
ant, d-BLEU, may struggle to fully capture the
context awareness and coherence that is crucial at
the document level translation.

6 Conclusion

This paper describes the submission to the WMT23
literary translation shared task - constrained track.
We compare traditional Transformer models to the
newer MEGA model, integrating paragraph-level
data into both. Transformer models outperform
MEGA in both sentence and paragraph translation
on this literary dataset. We observe a discrepancy
between BLEU and BlonDe evaluations, with the
latter favoring paragraph-level translation. These
results emphasize the challenges of document-level
translation and the importance of more context-
aware evaluation metrics.
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Abstract

This paper describes the MAKE-NMT-Viz’s
submission to the WMT 2023 Literary task.
As a primary submission, we fine-tune the
mBART50 model using Train, Valid1, and
Test1 as part of the GuoFeng corpus (Wang
et al., 2023b).We followed similar training pa-
rameters to (Lee et al., 2022) when fine-tuning
mBART50. For our contrastive1 submission,
we used a context-aware NMT system based on
the concatenation method (Lupo et al., 2022).
The training was performed in two steps: (i) a
traditional sentence-level transformer (Vaswani
et al., 2017) was trained for 10 epochs using
GeneralData, Test2, and Valid2; (ii) second, we
fine-tuned such Transformer using document-
level data, with 3-sentence concatenation as
context, for 4 epochs using Train, Test1, and
Valid1 data. We then compared the three trans-
lation outputs from an interdisciplinary per-
spective, investigating some of the effects of
sentence- vs. document-based training. Com-
puter scientists, translators and corpus linguists
discussed the remaining linguistic issues for
this discourse-level literary translation.

1 Introduction

In order to analyse literary translations, we have
gathered an interdisciplinary team of translators,
linguists and computational scientists. We used
this opportunity to explore neural machine trans-
lation of literary texts as a test set for test suites
and unsolved issues for MMT literary translations,
especially for the Chinese-English language pair.
While the topic of literary machine translation has
gained momentum in the last years, there have still
been few attempts to customize systems to liter-

ary data, although this idea is also drawing atten-
tion (Kenny and Winters, forthcoming). Indeed,
research has been carried out on this subject, no-
tably on Catalan (Toral and Way, 2018), but also
on Slovenian (Kuzman et al., 2019), German and
Russian (Matusov, 2019), and on French (Besacier
and Schwartz, 2015), where research suggests that
MT systems can be further fine-tuned on specific
genres and individual translator styles (Hansen and
Esperança-Rodier, V.2023).

Of course, these very attempts bring about many
issues concerning textual ownership, copyright,
translator status and livelihood, possibly lowered
quality, cognitive friction, etc. (Taivalkoski-Shilov,
2019). It is therefore important to include these
ethical aspects into the research and clarify its ob-
jectives: for instance, whether MT should serve as
a reading aid (Oliver González, 2017), or as a post-
editing tool that may decrease the effort needed
to translate (Kolb, 2020) and constrain creativity
(Guerberof-Arenas and Toral, 2022).

Part research has also focused on evaluating the
use of existing tools for literary texts. In the context
of Chinese to English, attention has been paid to
some of the specific shortcomings of MT systems,
such as the translation of adjectival possessive pro-
nouns (Jiang and Yu, 2017), or theme-rheme pro-
gressions (Jiang and Niu, 2022). Such limitations
can indeed have a drastic impact on readers’ accep-
tance, which Shih (2016) explores in the context of
online folktales, confirming that the text’s function
plays a large role in this respect.

Lastly, Thai et al. (2022) have also pointed the
incompatibility of MT metrics, document-level or
otherwise, for literary texts, concluding that “hu-
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man expert evaluation is currently the only way to
judge the quality of literary MT”.

The rest of the paper is organised as follows:
Section 2 details our approaches to the task and the
training data of our experiments, Section 3 presents
the results and Section 4 discusses them.

2 Data and Tools Used

This section details the toolkits we used and our
training data for the three submissions authorised
for the task. We first used part of the training data
proposed by the organisers (Wang et al., 2023a)
to observe the translations from mBART50 from
Chinese into English before fine-tuning mBART
(primary submission). We then used a fine-tuned
context-aware concatenation-based Transformer
trained at document level (contrastive1 submission)
and a traditional sentence-level Transformer (con-
trastive2 submission).

2.1 Primary model: mBART50 fine-tuning

As a primary submission, we used GuoFeng corpus
(Wang et al., 2023a) to fine-tune the mBART50
model with Chinese-English data, using the Train
set for training, Test1 as test set, and Valid1 as vali-
dation set. We followed similar training parameters
to (Lee et al., 2022) when fine-tuning mBART50.
As (Lee et al., 2022), we trained for 3 epochs, using
gelu as an activation function, with a learning rate
of 0.05, dropout of 0.1 and a batch size of 16 (we
parallelised two A100 GPUs with batch size 8 per
device). We decoded using a beam search of size 5.

2.2 Contrastive models

We submit two contrastive models, the first is a
context-aware model (contrastive1) built on the sec-
ond system, a sentence-level model (contrastive2).

For our contrastive1 submission, we used a
context-aware NMT system based on the concate-
nation method (Lupo et al., 2023). The training
was performed in two steps: (i) a sentence-level
transformer (Vaswani et al., 2017) was trained for
10 epochs1 using General Data as train set, Test2
as test set, and Valid2 as validation set ; (ii) second,
we fine-tuned at document-level using 3-sentence
concatenation for 4 epochs2 using Train as train
set, Valid1 as validation set and Test1 as test set.
During the fine-tuning, we used ReLU as an activa-
tion function, with an inverse square root learning

1We used only 10 epochs because of time constraints
2We used only 4 epochs because of time constraints

rate decay, dropout of 0.1, and a batch size of 64.
We decoded using a beam search of size 4. For our
contrastive2, we used the model trained at step (i)
(sentence-level). The training parameters were an
inverse square root learning rate decay, a dropout
of 0.1, and a batch size of 64. We decoded using a
beam search of size 4.

2.3 Evaluation Metrics
To evaluate our models, we use the BLEU score
metric (Papineni et al., 2002) as implemented in
the Moses package.

We performed a human annotation of errors in
the translation obtained by our primary submission.
109 segments were selected and annotated by three
evaluators that are Chinese native speakers. To
measure the inter-annotator agreement, we used
Fleiss’ kappa (Fleiss et al., 1971). The score is
calculated to measure the inter-rater reliability of
the annotations as the following equation

κ =
Po − Pe

1− Pe

where Po − Pe measures the real concordance
of annotations that are not achieved above chance,
while 1− Pe measures the achievable concordance
of annotations above chance. In our case, we com-
puted errors by type as well as error types by seg-
ment (6 types and 109 segments, cf4.3.2).

3 Experiments and Results

We provide a human analysis of the primary model
by discussing the improvements observed with the
mBART fine-tuning with respect to the baseline.
Additionally, we report the BLEU scores of our
three systems.

3.1 Baseline of primary model: mBART50
During the training phase of the competition,
with the standard HuggingFace implementation of
mBART50, we observed the following issues when
we translated Test1 from Chinese to English, which
was part of the data provided for training by the
organisers:

• hallucinations

• discrepancy between the Chinese input and
the English translations

• tense concord

• co-referentiality issues for pronouns
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Most textual discrepancies between the sizes of the
sentences in the two languages were fixed by the
fine-tuning as well as hallucinations and Chinese
characters in the English translations. We neverthe-
less noticed a certain number of Chinese characters
in the mBART50 translations, which decreased af-
ter our fine-tuning, and we only found 18 examples
for all the 16,742 sentences, mostly for the fantasy
genre, when referring to named entities or specific
attributes of the universe (Skills: Blade Technique,
Wing Protection, ).

3.2 Fine-tuning with Literary Data

In this section, we analyse the outputs qualitatively.
This analysis consists of an initial description of
the baseline and fine-tuned outputs, followed by a
deeper examination of the syntactic and semantic
functions of the produced outputs by both models.

Instances of hallucinations were observed in the
outputs of our baseline model. The hallucinated
elements are present in the source text, so they are
not elements which are not present in the source
text. According to Lee et al. (2018), hallucinations
can be defined as the model producing a vastly
different and inadequate output when the source
is perturbed under a specific noise model. Thus,
we may suggest that there exist other instances
where the model ceases translation of the source
text and proceeds with generating output punctu-
ated solely by a sequence of continuous commas
(„„„„,), which may represent an alternative mani-
festation of hallucination. Interestingly, it is note-
worthy that the fine-tuned outputs did not exhibit
any instances of hallucination. However, it should
be mentioned that few Chinese tokens were ob-
served in the fine-tuned outputs. In the Chinese
source text, the equivalent of the word “business-
men” is placed at the left periphery of the sentence,
having a pragmatic effect that involves topic intro-
duction or re-introduction, based on the context.
Both the baseline and fine-tuned models take the
left dislocated element to the right periphery of
the sentence, thereby inducing an alternation in the
sentence’s intended meaning. As we observed, the
baseline models chunk the sentences and use com-
mas instead of employing coordinations, relative
clauses, or more complex structures. In this ex-
ample, the baseline model produces “Ten minutes
later. consciousness is exhausted. scattered” by
separating each chunk or even token with a period.
In contrast, the fine-tuned model generates “Ten

minutes later, his consciousness was exhausted and
dissipated.”, using coordination to form a united
sentence. This represents another instance of the
fine-tuned model’s proficient manipulation of struc-
tures, wherein it employs a relative clause "which"
to interconnect the sentences. Ex: “Wang lived
in the 413 bedrooms of the West school district,
Lins lived in the 413 bedrooms of the East school
district.” Fine-tuned: 09primary: “Wang Yicheng
stayed in 413, which was in the West campus. Lin
Sisi stayed in 413, which was in the East campus.”
Furthermore, the choice of tense seems to be differ-
ent in the two models: As for the fine-tuned model,
a preference for the past tense becomes evident.
Conversely, as for the baseline model, an over-use
of the present tense is observed in its outputs. We
may also add that baseline models tend to favour
the indicative mood, which indicates assertion, as
seen in an example like “What’s wrong with the
game?”. On the other hand, fine-tuned models have
been trained to produce sentences in moods that ex-
hibit a reduced level of assertiveness, as evidenced
by constructions like “Could there be a problem
with the game?”.

3.3 BLEU scores

In this section, we report the results of our primary,
constrastive1, and contrastive2 in terms of BLEU
score computed using Test1 and Test2 datasets at
the end of the full training process of each model.
The official results of the competition on test3 were
not computed as the reference translations were not
provided (at the time of writing this article).

Model Test1 Test2

primary 22.31 –
contrastive1

(document-level) 19.03 17.58
contrastive2

(sentence-level) 22.31 18.22

Table 1: BLEU score for primary, contrastive1 and con-
trastive2 systems.

Table 1 shows that our primary system achieves
the same BLEU score as contrastive23, the
sentence-level transformer implementation. We no-
tice that the document-level system (contrastive1)
is not better than the sentence-level model. This

3Primary and contrastive2 scores on Test1 are identical
due to coincidence.
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might be explained by the few epochs used for
training.

4 Discussion

4.1 Lexical Complexity

To appreciate the relative complexity of the terms
used in the translations we first qualitatively com-
pared the translations and contrastive2 seemed to
be more elaborate, so we tested this impression
with more quantitative means. We investigated the
vocabulary growth curves of the three translations
using the functions available from the languageR
package (Baayen and Shafaei-Bajestan, 2019) to
find out that the number of different types progress
on the same rhythm for the different translations.
In this type of representation, the horizontal axis
corresponds to the expansion of the translation cor-
pus (number of tokens) and the vertical axis cor-
responds to the number of types. The first lower
series of curves corresponds to the number of ha-
paxes. As can be seen in Figure 1, the progression
is very similar for the different translations we pro-
duced, while the mBART fine-tuning translation
(primary) seems to be more verbose as the transla-
tion contains pore tokens than the two contrastive
translations. The difference between our different
models is clearly not lexical.

4.2 Challenging Literary Aspects of the Test
Set

The first challenge was the size of the testing data,
which resorted to different text genres, but was
30 times bigger than other challenge datasets like
for the biomedical task in 2021. An additional
difficulty was the paucity of metadata for the 14
genres or for chapter attributions (22 announced
and 12 found).

4.3 Translation Quality analysis based on
Error Annotation

4.3.1 Quality overview
In total, 109 sample segments were randomly se-
lected from the twelve translated texts generated by
the fine-tuned mBART50 model. Based on these
sample segments, each translated text was assigned
an overall grade individually by three annotators on
a scale of 1 to 10, with 1-3 denoting “Very Poor”,
4-6 denoting “Poor”, 7-8 denoting “Moderate”, and
9-10 denoting “Good”. The annotators are native
Chinese speakers with near native level of English

competence. They work in the domain of trans-
lation training and linguistics with an advanced
proficiency of Chinese-English translation. The
three grades given by the annotators for each text
were then averaged to obtain a relative ranking of
each translation. Overall, the twelve translations
achieved an average score of 5 out of 10 in gen-
eral, with a standard deviation of 0.87. Specifically,
seven subgenres were identified among the twelve
texts, namely: fantasy (4 texts), ancient romance
(2 texts), military (1 text), thriller (1 text), mod-
ern romance (2 texts), sci-fi (1 text), and online
games (1 text). All the sub-genres are typical in
contemporary web novels. Notably, there is not a
clear cut between different sub-genres and this cat-
egorisation is for analytical purposes only. Among
the identified subgenres, the ranking from high to
low quality is as follows: thriller (6.0 out of 10),
fantasy (5.7), online games (5.4), sci-fi (5.0), an-
cient romance (4.7), modern romance (4.6), and
military (3.8). While subgenre types might be a
factor in influencing the quality of the translation
given their language styles (e.g., the proportion of
conversational segments, terminologies, formality,
etc.), this line of discussion requires further evi-
dence. Among the sample segments, the quality
and language style of individual source text seem
to play a more vital role in the overall quality of the
translations. Several prominent error types linking
to the stylistic features of the texts were identified,
as detailed below.

4.3.2 Error typology
To obtain a more detailed insight into the quality
of these translations, the sample segments were
annotated based on the error typology introduced
by (Hansen and Esperança-Rodier, V.2023). The
original typology was further categorized for the
Chinese - English language pair and inter-rater val-
idation purposes. Specifically, six level-one error
types were identified:

• semantic errors (SEM): errors that directly
affect the meaning of the text, involving issues
like omission, addition, or wrong translation
of content/nuance of content;

• logical, structural and cohesion errors (LSC):
errors related to the logical flow and coher-
ence of the text, affecting how different parts
relate to each other;

• grammatical errors (GRM): errors related to
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Figure 1: Vocabulary growth curves of our three translations (primary, contrastive1, contrastive2). The lower series
of curves corresponds to the hapaxes for primary, ontrastive1 and contrastive2.

the rules of language such as gender, number,
tense, and person etc.;

• stylistic errors (STY): errors regarding the
style, tone, and appropriateness of the lan-
guage used;

• stuttering (STU): words repeated for no appar-
ent reason by the MT system;

• non-translation (NTR): source term left un-
translated in the target.

Each level one error type contains specific level
two and sometimes level three error types. The
complete error typology tailored for this task can
be found in the appendix.

We use Fleiss’ kappa to measure the Level 1
error type inter-rater agreement, and the overall
Fleiss’ kappa score is 0.288, which can be inter-
preted as "Moderate agreement" according to (Lan-
dis and Koch, 1977)’s classifications. . Fleiss’
kappa of Level 1 subgenre annotations is presented
in Table 2.

Among all annotated segments, 30.58% seg-
ments are considered error-free. 47.71% of them
belong to the SEM error type, with the remainder
of 11.31% on STY, 4.89% on LSC, and 3.98% on
GRM.

4.3.3 Prominent Error Types
Understanding the text in its original language is
the basis for literary translation, which requires
multi-faceted considerations pinned by context, lit-
erary style and cultural nuance. The fine-tuned sys-

Subgenre Score ↑
Modern Military 0.534
Science Fiction 0.344
Ancient Romance 0.321
Fantasy 0.283
Modern Romance 0.283
Thriller 0.152
Online Game 0.143

Table 2: Fleiss’ kappa of subgenres. κ = 1 is perfect
concordance, κ = 0 is no concordance between annota-
tors.

tem attempts to address the greater-than-sentence-
level textual features. However, human annotation
results have shown that it continues to struggle with
contextual analysis, which leads to prominent er-
rors such as non-translation, mistranslation and in-
consistent translation or reference of proper nouns
and terms, mistranslation of idioms, etc.

Transliteration is the main way of addressing the
character names from Chinese into English (in this
case, standard Pinyin is used). Surprisingly, the
system failed to maintain consistency of reference
to name entities, for example, “宋扶” (song fu) was
translated as “Song Fu”, “Song Fudge” and “Song
Yidao” at places. The character “宋扶” is also
mentioned as “宋师弟” or “宋师兄”, which were
translated literally (see examples in table 3, hand-
annotated in bold). Given the nature of fantasy
(xianxia) novels, “师兄” (senior brother) or “师弟”
(junior brother) is a common way of addressing
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王 子 法 一 脸 惊 讶
道：“师兄此话怎
讲？”

"What do you mean,
senior brother?"
Prince Charming
asked in surprise.

郑 金 龙 笑 眯 眯
道：“师弟，你是在
跟我装糊涂吗？宋
师弟的死，你们不
准备给师门一个交
代？”

"Junior brother, are
you playing dumb?”
Zheng Jin Long said
with a smile.“You
don’t want to give
your sect an account
for Junior brother
Song’s death?"

王子法面容一肃，
沉声道：“宋师兄
差点坏我蓝玉门好
事，宋扶该死！再
给我们一次机会，
我 们 还 是 会 这 样
做！”

"Senior Brother
Song almost ruined
our Lanyu Sect’s
business. Song Fudge
deserves to die! Give
us another chance, and
we’ll still do this!" the
prince said solemnly.

Table 3: Examples for illustration

people under the same sect. Literal translation in
this particular context might reduce textual cohe-
sion and such inconsistent reference might confuse
target language readers given the numerous consec-
utive mentions of “brother” in the text. The same
issue was observed in the document-level model
(contrastive1) result too.

It is difficult for the system to identify a named
entity if the name itself or part of the name can
be used as a proper noun. For example, “王子法”
(wang zi fa) was mistranslated as “Prince Charm-
ing”, which was because the system misidentified
the first two Chinese characters “王子” (wang zi,
literal meaning: prince) as a named entity.

Other inconsistency regarding proper nouns lies
in the formality of presentation, i.e., case error,
meaning translation going against previous choices
regarding the capitalization of series-specific terms.
In fantasy novels, sect names and martial arts tech-
niques are prominent terms. However, the capital-
ization of these terms was not always consistent.

It is challenging for the current system to capture
ideas or emotions in culturally specific expressions.
For example, the idiom “天下没有不散的宴席”
is translated as “there is no such thing as a banquet
in the world”. As a literal translation, it omitted the
important part of the idiom “不散的” (literal mean-
ing: non-separable / never-ending), which leads

to the failure of conveying its figurative meaning
“All good things must come to an end”. On the
contrary, it did well in translating “哑巴吃黄连”
(literal meaning: a mute person eats bitter mel-
ons) as “speechless”. The discrepancy between
the translation quality of idioms shows that more
culture-specific training data is needed to improve
the accuracy and idiomaticity of literary machine
translation.

4.4 Sentence- vs. Document-based Training
Strategies

An important aspect of the competition was the
choice to use full chapters with contextualised suc-
cessive sentences instead of (more) limited contexts
usually retained for translation competitions. This
resulted in a much bigger dataset than for more
standard competitions (in the vicinity of 400 sen-
tences for biomedical tasks). We submitted 2 mod-
els based on a similar architecture: Contrastive1
and Contrastive2.

We used as Contrastive2 a context-agnostic
sentence-level transformer model as in (Vaswani
et al., 2017) trained on 10 epochs.

We used as Contrastive1 an on-context trans-
former model with the exact same architecture as
Contrastive2 but that adopts sliding windows of 3
concatenated sentences pre-trained on 10 epochs
to the sentence-level and trained on 4 epochs with
concatenated sentences.

Concatenation of 3to3 implies that the source
sentence is concatenated to the two previous sen-
tences using end-of-sentence tokens between each
of them. A sliding windows is when sliding-KtoK
model encodes the source windows sentences xiK
using the end to sentence tokens <eos> and a spe-
cial token <S> used to mark sentence boundaries
in the concatenation then decode the translation yiK

xiK = xi−K+1<S>xi−K+2<S>...<S>xi<eos>

yiK = yi−K+1<S>yi−K+2<S>...<S>yi<eos>

Another Contrastive model was trained, but un-
fortunately too late for the submission, based on
(Lupo et al., 2022) it has the same specificity
than Contrastive1 with a context discount of 0.01.
Context-discount means that the loss function is
defined as :

LCD(x
j
K , yjK) = CD · Lcontext + Lcurrent

After the submission period, we continued train-
ing our contrastive systems. After 55 epochs
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of sentence-level pre-training and 14 epochs of
document-level training, the system achieved a
BLEU score of 21.46 on Test1 test set.

5 Further Research

5.1 Related Research

This subsection discusses related papers.
For fine-tuning mBART, we replicated the pa-

rameters tested by (Lee et al., 2022), namely re-
training for three epochs. With the same param-
eter, (Namdarzadeh et al., 2023) have fine-tuned
Persian→English and Persian→French with a sin-
gle short story but nevertheless observed dramatic
improvement for Persian→French translations in
terms of elimination of hallucinations, English
words and morpho-syntactic correction. We have
not tried other multilingual Large Language Mod-
els such as mBERT (Wu and Dredze, 2019) (based
on BERT), mT5 (Xue et al., 2020), XLM-R (Con-
neau et al., 2019) based on RobertA or the more re-
cent (and bigger) Bloom model (Scao et al., 2022).

For concatenation Transformer, we used some
parameters tested by (Lupo et al., 2022) that trans-
lated English→German and English→Russian to
observe dramatic improvement on Contrapro set
(Müller et al., 2018) and English→Russian set
(Voita et al., 2019) although with only a slight im-
provement in BLEU score.

5.2 Future Research

This first collaboration between several universities
and backgrounds has discussed English input and
was an opportunity to discuss the findings of the
competition on literary data and also our insights
into the fine-tuning of mBART50 with literary data.
We aim to replicate this analysis on Farsi data, as
Farsi is one of the 50 languages of mBART50. As
is often the case in competitions, we did not train
as much as we expected. For the fine-tuning of
mBART, we managed to train for three epochs,
which is what we found in previous studies (Lee
et al., 2022), but for two other submissions, we
were training from scratch and could only manage
to train for 10 epochs for constrastive2 (sentence-
level) and fine-tune for 4 epochs for contrastive1
(document-level). This impacted our results. Eval-
uating our BLEU score on Test1, we got 22.31
BLEU score for both primary and contrastive2
meanwhile 19.03 BLEU score for constrative1.

6 Conclusion

This paper presented the MAKE-NMTViz system
description for the WMT2023 Literary Shared Task.
We participated in the Chinese-to-English task with
a model trained at sentence level and at document
level. We only used the data provided by the organ-
isers but also analysed the translations produced
with mBART50 before our submissions. As we
did not receive scores from the organisers of the
task, we mostly focused on the qualitative analysis
of our translations. We resorted to a typology of
translation errors and highlighted prominent error
types that remained in our translations.

Limitations

During this translation task, we met one limi-
tation with respect to the document-level trans-
lation system. In this case, we did not adapt
the system to process in Chinese→English lan-
guage pair. We employed the same setup de-
scribed in previous works, where the system was
trained for English→Russian, English→German
and English→French languages.
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A Error Typology

• Semantic Errors: Addition (including Over-
translation); Undertranslation (including

Omission)；Mistranslation (including Oppo-
site Meaning, Nonsense, and Shift in Mean-
ing); Hallucination; Literal Translation.

• Logical, Structural and Cohesion Errors: Ref-
erential Cohesion; Relational Cohesion; Func-
tion Words; Logic; Coherence with Previous
Volumes; Loss.

• Grammatical Errors: Gender; Number; Tense;
Person.

• Stylistic Errors: Language Style; Regis-
ter; Unfitting Paraphrase; Case; Punctuation;
Adaptation; Dialogues.

• Stuttering.

• Non-translation.
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Abstract

This paper details the submission from the
DUTNLP Lab for the WMT23 Discourse-Level
Literary Translation in Chinese to English trans-
lation direction under unconstrained conditions.
Our primary system aims to harness a large lan-
guage model with various prompt strategies, al-
lowing for a comprehensive exploration of the
potential capabilities of large language mod-
els in discourse-level neural machine transla-
tion. Moreover, we apply detailed data prepro-
cessing methods to filter bilingual data, which
proves to be beneficial. Additionally, we assess
a widely used discourse-level machine trans-
lation model, G-transformer, using different
training strategies. In our experimental results,
the method employing large language models
achieves a BLEU score of 28.16, whereas the
fine-tuned method scores 25.26. These find-
ings indicate that selecting appropriate prompt
strategies based on large language models can
significantly enhance translation performance
compared to traditional model training meth-
ods.

1 Introduction

The DUTNLP Lab is actively participating in
WMT23 Discourse-Level Literary Translation, fo-
cusing on Chinese to English translation direction.
As observed, prompting large language models
(LLMs) has led to outstanding performance across
a range of natural language processing (NLP)
tasks (Chowdhery et al., 2022; Goyal et al., 2023;
Chung et al., 2022). So our research involves ex-
perimenting with various prompts and in-context
learning strategies, utilizing large language models.
Additionally, we conduct experiments to explore
the impact of sentence length and data preprocess-
ing methods on translation results.

Our research is primarily anchored in the gpt-
3.5-turbo model (Brown et al., 2020), renowned
for its outstanding language generation capabilities

∗Corresponding authors

spanning various domains, from writing to conver-
sations. This model excels at producing natural and
fluent text with simple prompts, making it accessi-
ble even to individuals without extensive technical
knowledge.

Intriguingly, for crafting effective prompts to
stimulate the machine translation capability of the
large model, we take inspiration from gpt-3.5-turbo.
We actively interact with it to derive prompts that
can boost translation performance, resulting in the
identification of three candidate translation prompt
templates. Our evaluation of these prompts in the
discourse-level translation task indicates their over-
all effectiveness, with minor performance varia-
tions.

Recognizing the substantial impact of data qual-
ity on translation performance, we employ cleaner
development corpora for our main experiments.
When utilizing large pre-trained models, we con-
duct a data filtering process through off-the-shelf
tools and manual rule-based approaches. Further
details will be seen in Session 2.

Given the inherent randomness and flexibility in
translations generated by large models, aligning the
output with the source text can be challenging. To
tackle this challenge, we develop scripts to identify
segments with alignment errors and subsequently
apply manual corrections for rectification.

To sum up, our contributions can be outlined as
follows:

• We have carefully crafted a prompt that
has led to a notable performance of 28.16
BLEU (Papineni et al., 2002) on our dataset.
This accomplishment suggests a significant
improvement over standard document-level
machine translation models, including the G-
transformer model (Bao et al., 2021), trained
with various strategies.

• We have conducted a series of meticulously
controlled experiments to systematically in-
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Figure 1: Prompts advised by gpt-3.5-turbo for machine translation.

vestigate the impact of different prompt strate-
gies, batch sentence quantities, and tokenizer
methods on the performance of the gpt-3.5-
turbo model when apply to the Chinese-to-
English discourse-level translation task.

This paper is structured as follows: Section 2 de-
scribes the data pre-processing strategies, followed
by the details of our method in Section 3. Section 4
presents the experimental results and analysis, and
we draw conclusions in Section 5.

2 Data Processing

Contrary to the conventional fine-tuning ap-
proach on large language models, our method uti-
lizes a large pre-trained language model combined
with prompts. In other words, Our primary experi-
ment do not require further model training. There-
fore, we conduct experiments using only a small
portion of the development dataset.

Since the data quality significantly impacts our
final translation performance, we adopt both tradi-
tional data processing methods and manual rules
for filtering. The pre-processing strategies are as
follows:

• Extract the discourse-level data from the text
data with HTML tags and filter out duplicated
sentence pairs.

• Filter out sentences containing illegal and in-
visible characters, like certain emoji symbols,
as they may cause alignment issues.

• Normalize punctuation using Moses
scripts (Koehn et al., 2007) for English and

Translation Prompt
TP1 Translate the following sentences "[In-

sert text here]" from [SRC] to [TGT].
TP2 These sentences "[Insert text here]" are

in [SRC] and can be translated to [TGT]
as follows:

TP3 Please provide translations of these sen-
tences "[Insert text here]" into [TGT].

Table 1: Candidate translation prompt.

Chinese. Chinese text is separately segmented
by Jieba tool.

• For Chinese, convert full-width format to half-
width format and traditional Chinese charac-
ters to simplified ones.

3 Method

To unlock the full potential of large language
models, we introduce an innovative approach by
seeking guidance from gpt-3.5-turbo for the cre-
ation of effective machine translation prompts (Jiao
et al., 2023). Specifically, we pose the following
query: ’Provide ten concise prompts or templates
that can prompt translation.’

The obtained results are shown in Figure 1.
Upon observation, we note that the generated
prompts are reasonable and similar. Consequently,
we consolidate them into three sets of candidate
templates, as illustrated in Table 1, where [SRC]
and [TGT] represent the source and target language
of translation.
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In previous studies concerning discourse-level
machine translation, it is evident that factors such
as varying discourse lengths (Wang and Cho, 2019;
Raffel et al., 2019) and different segmentation gran-
ularities (Koehn, 2005; Sennrich et al., 2016) can
significantly impact translation performance. Con-
sequently, we design a series of comparative ex-
periments to investigate these aspects. Specifically,
we segment the document texts into sizes of k and
analyze the effects of different text lengths on ma-
chine translation performance in our experimental
results.

During the segmentation of document text, our
goal is to achieve an equitable distribution of text
segments and prevent a situation where only a few
isolated sentences remain at the end of a document.
To address this, we devise a text segmentation al-
gorithm that preserves the data while also ensuring
that the number of text portions between segments
is as uniformly distributed as possible. The aim is
to minimize variance in sentence counts, as illus-
trated below.

The main strategy is as follows: for a docu-
ment containing n lines of text, it undergoes slicing
based on a specified size of m lines, where the
quotient is denoted as p and the remainder as q. If
there is a remainder (q ̸= 0), it indicates the need
to slice the text into n/p + 1 segments. This re-
sults in a new quotient, k, and a new remainder, t.
Consequently, the last t segments are allocated a
line count of k + 1, while the rest of the segments
maintain a line count of k.

In traditional machine translation experiments, it
is well-recognized that varying segmentation gran-
ularities can significantly influence translation qual-
ity, particularly in languages like Chinese where
clear word boundaries are often absent (Zhao et al.,
2013). Therefore, we conduct additional experi-
ments to assess the impact of segmentation gran-
ularity on translation performance. Our experi-
ments involve three different segmentation granu-
larities for model input in both Chinese and English
datasets: unsegmented, Chinese segmented using
the ’Jieba’ tool, and Chinese-English segmented
using the ’MOSS’ tool.

Finally, we compare the performance of our sys-
tem with commonly used document-level machine
translation models. Detailed findings will be pre-
sented in the subsequent section.

Translation Prompt BLEU
TP1 27.92
TP2 27.19
TP3 27.54

Table 2: The results of three candidate translation
prompts.

Split the document into k segments BLEU
k=5 27.73

k=10 27.92
k=15 27.94
k=20 28.08
k=25 27.88
k=30 N/A

Table 3: The results of TP1 with different segment
lengths.

4 Results

4.1 Score Analysis

In the discourse-level translation task, we eval-
uate the performance of three different candidate
prompts, as shown in Table 2. Considering these
candidate prompts, TP1 yields the highest BLEU
score. Therefore, in the subsequent comparative
experiments, we consistently employ TP1 as the
foundational prompt.

We initially include additional theme informa-
tion in TP1 based on a suggestion from gpt-3.5-
turbo. The theme is related to novels, and we use
it to translate the provided sentences from Chinese
to English. Surprisingly, the resulting BLEU score
is only 27.02, which is even worse than the three
base candidate prompts. Consequently, we decide
to remove this additional theme information.

For text fragment segmentation, we do experi-
ment with different values of k, including 5, 10, 15,
20, 25, and 30. However, when we set k = 30, we
encounter errors due to the input being too lengthy
for the model to handle. Therefore, we obtain re-
sults for the five groups, as shown in Table 3.

We observe that, with the same prompt, varying
the length of text segments indeed has an impact
on translation performance. When the number of
sentences reaches 30 and the token count exceeds
4,096, the system can no longer perform translation.
Conversely, when the text length is relatively short
(k = 5), the model cannot gather enough informa-

298



Word segmentation granularity BLEU
unsegmented 27.88
segmented with jieba 28.16
segmented with moss 27.53

Table 4: The results of TP1 with different Word segmen-
tation granularity.

tion, leading to the lowest translation performance.
Conversely, overly long text segments (k = 25)
also weaken performance of the model, potentially
introducing noise. Therefore, we choose k = 20 as
the base for our experiments.

As shown in Table 4, the granularity of text sig-
nificantly affects the performance of machine trans-
lation. Experimental results demonstrate that un-
segmented Chinese and English texts are impacted
due to the lack of alignment between words, result-
ing in a slight reduction in translation effectiveness.
However, the ’MOSS’ segmentation granularity
leads to the worst result. We infer that the word
segmentation results are too dispersed, making it
challenging for the large language model to pre-
cisely integrate contextual information for word
translation.

Before the widespread use of effective prompts
for large-scale models, fine-tuning on pre-trained
language models is a common approach to en-
hance translation performance in specific do-
mains. Therefore, for the comparison experi-
ments, we select a state-of-the-art (SOTA) model
designed for document-level machine translation.
G-transformer is a straightforward extension of the
standard Transformer architecture (Vaswani et al.,
2017), using group tags for attention guiding, and
introducing locality assumption as an inductive bias
to reduce the hypothesis space of the attention from
target to source. And we train the G-transformer
model using the training corpus provided in the
task. This training process involved random initial-
ization, fine-tuning initialization, and fine-tuning
on mBART (Liu et al., 2020). The results of these
experiments are presented in Table 5.

Comparing the experimental results, it becomes
evident that conducting targeted fine-tuning ex-
periments on large language models can enhance
machine translation performance. However, it is
important to note that this approach falls signifi-
cantly short of the effectiveness achieved by using
prompts on large language models.

Training strategies BLEU
exp_randinit 21.21
exp_finetune 24.46
exp_mBART 25.26

Table 5: The results of G-transformer with different
training modes.

4.2 Discourse Analysis

In the context of a document translation (S, T),
Lyu et al. (2021) argues that translation consistency
should be maintained at the target end if a lexical
word w occurs multiple times (two or more times)
at the source end.

Due to constraints on time and resources, we
conduct manual discourse-level analysis on a lim-
ited amount of text. Specific operations are as
follows: First, we use a co-reference identifica-
tion tool (Gardner et al., 2018) to identify all co-
reference chains in the target-side documents. We
perform data cleaning to extract multiple entity
co-reference chains and then compare whether the
entity words in the co-reference chains maintain
translation consistency.

An example is provided in Table 6. Given that
the three candidate prompts exhibit similar dis-
course characteristics, we choose the large lan-
guage model gpt-3.5-turbo with prompt TP1 as
an example for our analysis. We also introduce the
model fine-tuned on the large model mBART for
comparison.

Upon observing the result, we notice that even
excellent models like ChatGPT may face chal-
lenges in addressing certain issues of discourse con-
sistency and coherence. This could be attributed to
the extensive training data and the challenge of en-
suring coverage of test datasets. On the other hand,
fine-tuning strategies, owing to their training on
domain-specific data, result in more targeted trans-
lations and facilitate the maintenance of translation
consistency. This underscores a demand for higher
quality document-level translation and could poten-
tially indicate a direction: the need to capture more
contextual dependencies.

5 Conclusion

We have presented our experimental study on
gpt-3.5-turbo for machine translation, covering
translation prompts and robustness. Through care-
ful observation and analysis of the experimental
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Source Reference Num Large model with
prompt TP1

Num Finetune on
mBART model

Num

佑哥 Brother Assist 12 You Ge 12 You Ge 12

落落 Luo Luo 13
Lulu 6

Luo Luo 13Luo Luo 5
Luoluo 2

七月 July 12
July 7

July 13
Qiyue 6

烈烈 Lie Lie 19
Lielie 15

Lie Lie 14
Lie Lie 4

榜 list 6
board 4

list 5
list 4

无誓之剑 Oathless Sword 12
Wu Shi Zhi Jian 9

Oathless Sword 10
Oathless Sword 2

韩家公子 Yang Master Han 16
Han Jia Gongzi 2

Yang Master Han 16
Han’s young master 14

Table 6: The analysis of discourse phenomenon on different translation models.

results, we have noted that the utilization of the
large language model with prompts achieves a sig-
nificant improvement, nearly 3 points higher than
the baseline. It even surpasses the currently widely
used mBART+fine-tune approach for discourse-
level machine translation. We also attempt to en-
hance translation performance by incorporating in-
context information, but this lead to a negative im-
pact. Our future work may include investigating the
impact of historical context on translation results
and iterative refinement of translation. Simultane-
ously, we will focus on the recognition and trans-
lation of discourse phenomena for large language
models.
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Abstract

This paper introduces HW-TSC’s submission
to the WMT23 Discourse-Level Literary Trans-
lation shared task. We use standard sentence-
level transformer as a baseline, and perform
domain adaptation and discourse modeling
to enhance discourse-level capabilities. Re-
garding domain adaptation, we employ Back-
Translation, Forward-Translation and Data Di-
versification. For discourse modeling, we apply
strategies such as Multi-resolutional Document-
to-Document Translation and TrAining Data
Augmentation.

1 Introduction

Transformer architectures (Vaswani et al., 2017)
have achieved outstanding performance on
sentence-level machine translation tasks, but
still have some shortcomings when it comes to
discourse-level machine translation. Particularly,
for machine translation scenarios that are highly
discourse-dependent, such as novel translation and
conversation translation, the performance is unsat-
isfactory.

This paper presents the submission of HW-TSC
to the WMT23 Discourse-Level Literary Transla-
tion shared task. We utilize an effective data clean-
ing pipeline summarized in our previous works
(Wei et al., 2022; Wu et al., 2022; Yang et al., 2021)
to process the training data. We employ Regular-
ized Dropout, Forward Translation, Back Transla-
tion, Data Diversification to train a strong baseline.
On top of the baseline, we apply strategies includ-
ing Multi-resolutional doc2doc Translation (MR-
doc2doc), TrAining Data Augmentation (TADA)
to enhance discourse-level translation capabilities.

The general translation model does not work
well in novel translation. We found that the biggest
factor affecting the quality of translation is do-
main adaptation; however, domain adaptation can-
not solve the consistency of named entity such as

names, addresses, and zero pronoun in novel trans-
lation. The consistency needs to be optimized by
using strategies such as MR-doc2doc and TADA.

2 Data

2.1 Data Source

We use the same training data as that for the gen-
eral MT shared task to train a sentence-level base-
line. Then We use GuoFeng Webnovel Corpus1

(Wang et al., 2023) and web-crawled novel data for
domain adaptation and discourse-level capability
enhancement. The data size is shown in Table 1.

Bilingual Source Target
General MT 25M 50M 50M

GuoFeng Webnovel Corpus 1.9M - -
web-crawled novel data 10M 100M 400M

Table 1: Bilingual and monolingual data used for train-
ing.

2.2 Data Pre-processing

The data preprocessing pipeline follows our pre-
vious work (Wei et al., 2021), including dedupli-
cation, XML content processing, langid (Lui and
Baldwin, 2012) and fast-align (Dyer et al., 2013) fil-
tering strategies, etc. We will not repeat the details
here.

3 System Overview

3.1 Sentence-level baseline

We directly employ the model we trained for the
general MT shared task as the sentence-level base-
line in this task. The following is the strategy we
use to train the sentence-level baseline.

1http://www2.statmt.org/wmt23/
literary-translation-task.html
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3.1.1 Regularized Dropout
Regularized Dropout (R-Drop) (Wu et al., 2021)
improves performance over standard dropout, es-
pecially for recurrent neural networks on tasks
with long input sequences. It ensures more con-
sistent regularization while maintaining model un-
certainty estimates. The consistent masking also
improves training efficiency compared to standard
dropout. Overall, Regularized Dropout is an en-
hanced dropout technique that often outperforms
standard dropout.

3.1.2 Data Diversification
Data Diversification (DD) (Nguyen et al., 2020)
is a simple but effective strategy to boost neu-
ral machine translation (NMT) (Bahdanau et al.,
2015) performance. It diversifies the training data
by using the predictions of multiple forward and
backward models and then merging them with the
original dataset on which the final NMT model is
trained. This method is more effective than knowl-
edge distillation and dual learning.

3.1.3 Forward Translation
Forward translation (FT) (Abdulmumin, 2021) uses
source-side monolingual data to improve model
performance. The general procedure of FT involves
three steps: (1) randomly sampling a subset from
large-scale source monolingual data; (2) using a
"teacher" NMT model to translate the subset into
the target language, thereby constructing synthetic
parallel data; and (3) combining the synthetic and
authentic parallel data to train a "student" NMT
model.

3.1.4 Back Translation
Augmenting parallel training data with back-
translation (BT) (Sennrich et al., 2016; Wei et al.,
2023) has been shown effective for improving
NMT using target monolingual data. Numerous
works have expanded the understanding of BT and
investigated various approaches to generate syn-
thetic source sentences. Edunov et al. found that
back-translations obtained via sampling or noised
beam outputs tend to be more effective than those
via beam or greedy search in most scenarios. For
optimal joint use with FT, we employ sampling
back-translation (ST) (Edunov et al., 2018).

3.1.5 Alternated Training
While synthetic bilingual data has been shown ef-
fective for NMT, adding more synthetic data may

deteriorate performance as synthetic data inevitably
contains noise and errors. To address this issue, al-
ternated training (AT) (Jiao et al., 2021) introduces
authentic data as guidance to prevent model train-
ing from being disturbed by noisy synthetic data.
AT views synthetic and authentic data as two types
of different approximations for the authentic data
distribution. The key idea is to iteratively alter-
nate between synthetic and authentic data during
training until convergence. Authentic data provides
guidance to overcome noise in synthetic data. By
alternating data types, AT ensures the usage of
a large amount of synthetic data while prevents
model deterioration from noisy data.

3.1.6 Curriculum Learning
A practical curriculum learning (CL) (Zhang et al.,
2019) approach for NMT should address two key
issues: ranking training examples by difficulty, and
modifying the sampling procedure based on rank-
ing. For ranking, we estimate example difficulty
using domain features (Wang et al., 2020). The
domain feature is calculated as:

q(x, y) =
logP (y|x; θin)− logP (y|x; θout)

|y|
(1)

Where θin is an in-domain NMT model, while
θout is an out-of-domain model. The novel domain
is treated as in-domain.

We fine-tune the model on the valid set to get the
teacher model and select top 40% of the highest
scoring data for finetuning.

3.2 Domain Adaptation

We found that the translation style of novel transla-
tion and general domain translation is completely
different, so domain adaptation is very important.
So we finetune the sentence-level baseline model
with bilingual/monolingual novel data. For web-
crawled novel data, we use 100M Chinese mono-
lingual data and 400M English monolingual data to
construct FT and ST corpus respectively, and use
GuoFeng Webnovel Corpus bilingual 1.9M, web-
crawled novel data bilingual 10M, finally mix the
four parts data together and shuffle them.

3.3 Discourse Modeling

Although the translation quality has improved
with domain adaptation, it still unable to solve
document-level translation problems such as NE
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consistency and zero pronoun translation. MR-
doc2doc and TADA need to be used to solve the
problem. It is expected to further improve the abil-
ity of discourse-level translation on the basis of
section 3.2. We employ monolingual and bilingual
novel data, and reconstruct them according to the
method of discourse-level translation.

3.3.1 Multi-resolutional doc2doc

Multi-resolutional doc2doc (MR-doc2doc) (Sun
et al., 2020) is a document-level neural machine
translation approach that operates on different gran-
ularities of the document. It utilizes both sentence-
level and document-level information during trans-
lation to improve context modeling and overall
translation quality. Specifically, we split each doc-
ument averagely into kparts multiple times and col-
lect all the sequences together. For example, a doc-
ument containing eight sentences will be split into
two four-sentences segments, four two-sentences
segments, and eight single sentence segments. Fi-
nally, fifteen sequences are all gathered and fed
into sequence-to-sequence training. In this way,
the model can acquire the ability to translate long
documents since it is assisted by easier, shorter sen-
tences and paragraphs. By doing so, the model can
acquire discourse-level translation capabilities.

3.3.2 TrAining Data Augmentation

The key idea of TrAining Data Augmentation
(Ailem et al., 2021) is to use tags to mark words or
phrases that needs to be constrained in the source
sentence during translation. When the model en-
counters a tagged token in the source, it is biased
towards directly copying the expected lexical con-
straint following the tagged source word into the
target output. This allows enforcing lexical con-
straints without changing the core NMT architec-
ture, simply by using tags in the source. The model
learns this copy behavior during training when ex-
posed to tagged source sentences and the expected
lexical constraints in the target. Thus, the approach
can easily guide NMT to satisfy terminology con-
straints by just tagging the source sentence appro-
priately. It provides a simple and efficient way to
constrain NMT output lexicons by merely adding
tags on the source side. We use this method to en-
sure consistent translation of named entities (such
as person names, location names, etc.) at both
inference and training phases.

4 Experiments

4.1 Experiment Settings
We use SacreBLEU (Post, 2018) to measure system
performances. The main parameters are as follows:
the model is transformer-big with 25 encoder layers
and 6 decoder layers. It trained using 8 A100 GPUs,
batch size is 8192, parameter update frequency is 1,
and learning rate is 5e-4. The number of warmup
steps is 4000, and the model is saved every 1000
steps. We adopt dropout, and the rate varies across
different training phases. R-Drop is used in model
training, and we set λ to 5. We use fairseq (Ott
et al., 2019) for training.

4.2 Testing Datasets
4.2.1 Simple Set
Simple Set2 (Wang et al., 2023) contains unseen
chapters in the same web novels as the training
data.

4.2.2 Difficult Set
Difficult Set3 (Wang et al., 2023) contains chapters
in different web novels from the training data.

5 Results

As shown in Table 2, each step is fine-tuned based
on the model from the previous step. In the Do-
main Adaptation stage (ST, ST & FT & AT & DD,
CL), we observe significant s-BLEU improvement,
while d-bleu is also improved. In the Discourse
Modeling stage, MR-doc2doc can improve both
s-bleu and d-bleu. TADA works well on NE consis-
tency, but does not significantly improve d-BLEU
and leads to a slight decrease in s-bleu.

As shown in Table 3, We extracted 75 NEs by
W2NER (Li et al., 2022) from the test set, which
occurred 1241 times in total. We count the word
frequency of consecutive and identical NEs as an
indicator to evaluate the consistency. We found that
the TADA strategy can bring significant improve-
ments in NE consistency.

6 Conclusion

It was believed that algorithm enhancement can
make the model handle long inputs so that
discourse-level translation would be improved.
However, it can only achieve slight improvement.

2http://www2.statmt.org/wmt23/
literary-translation-task.html

3http://www2.statmt.org/wmt23/
literary-translation-task.html
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Simple Diffcult
s-BLEU d-BLEU s-BLEU d-BLEU

sentence-level baseline + R-Drop 26.63 15.87 23.47 12.97
+ ST 29.36 22.63 26.02 17.74
+ ST & FT & AT & DD 29.49 26.52 25.97 21.54
+ CL 30.96 26.52 27.4 21.92
+ MR-doc2doc 30.71 26.99 27.27 22.16
+ TADA 30.58 27.27 27.12 22.48

Table 2: BLEU scores of zh→en NMT system on
WMT23 web fiction test set.

models NE consistency accuracy
sentence-level baseline 43.3%

MR-doc2doc 67.0%
TADA 71.8 %

Table 3: NE consistency accuracy of zh→en NMT sys-
tem on WMT23 web fiction test set.

It is more important to achieve domain adaptation
first for the sentence-level model. The discourse-
level translation strategy can get the best perfor-
mance based on domain adaptation.
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Abstract

This paper introduces the overall situation of
the Natural Language Processing Laboratory of
Tianjin University participating in the WMT23
machine translation evaluation task from Chi-
nese to English. For this evaluation, the base
model used is a Transformer based on a Mix-
ture of Experts (MOE) model. During the
model’s construction and training, a basic dense
model based on Transformer is first trained
on the training set. Then, this model is used
to initialize the MOE-based translation model,
which is further trained on the training cor-
pus. Since the training dataset provided for
this translation task is relatively small, to bet-
ter utilize sparse models to enhance translation,
we employed a data augmentation technique for
alignment. Experimental results show that this
method can effectively improve neural machine
translation performance.

1 Introduction

Machine translation, as a core branch of natural
language processing, has experienced significant
development and received widespread attention in
the past few years. Propelled by deep learning
and neural networks, architectures like the Trans-
former(Vaswani et al., 2017) and its derivative mod-
els, such as BERT (Devlin et al., 2019) and GPT
(Brown et al., 2020), have become mainstream
methods for achieving efficient machine translation.
These models, by learning underlying representa-
tions of language, are able to capture complex re-
lationships and rich semantic information between
texts.

Although neural machine translation with dense
models has a promising future, it still faces many
challenges. One of the main issues with the stan-
dard Transformer-based dense multilingual neural
machine translation model is the model’s capacity
bottleneck(Zhu et al., 2021; Fedus et al., 2022b;

∗Corresponding author.

Cheng et al., 2021). While increasing the model’s
depth and breadth can effectively enhance its ca-
pacity, it severely reduces the model’s execution
efficiency and increases the hardware requirements
for training the model. This often results in the
need for large GPU devices, limiting the model’s
applications. Therefore, in recent years, multilin-
gual neural machine translation based on Mixture-
of-Experts (MOE) (Fedus et al., 2022a) has been
proposed. Compared to dense models, MOE-based
multilingual machine translation activates only a
portion of the network parameters during model
training and inference (Lepikhin et al., 2021), giv-
ing it excellent computational efficiency. Under the
same hardware conditions, it can achieve greater
model capacity (compared to dense models, ca-
pacity can be increased by several tens of times)
(Shazeer et al., 2017) and shorter computation time.
Therefore, in this translation task evaluation, our
basic model framework is based on the MOE Trans-
former. Furthermore, when there is limited avail-
able data, overfitting can easily occur (Wang et al.,
2022; Pan et al., 2021). Combining the knowl-
edge of multiple experts can often provide more
accurate predictions than a single model. During
model training, by allocating experts to focus on
different input subsets, MOE can help alleviate the
overfitting issue (Szymanski and Lemmon, 1993).

In this paper, we primarily focus on the WMT23
Chinese to English machine translation task. To
enhance the model’s capacity while maintaining a
high computational efficiency, we employ a neu-
ral machine translation model based on the MOE
Transformer framework. This model can effec-
tively expand the model parameters. Moreover,
since it’s a domain-specific translation task with
limited translation data corpus, we employed a
strategy to initialize MOE using dense models ef-
fectively. The rest of this paper is organized as
follows. In Section 2, we will present the mod-
els and methods we designed. Section 3 primarily
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showcases the experimental results and discusses
and analyzes the outcomes. Section 4 concludes
the paper and provides an outlook.

2 Method Description

To evaluate machine translation from Chinese to
English, we need to construct a machine translation
model. Therefore, in section 2.1, we first introduce
the model’s design and initialization strategy. In
section 2.2, we primarily discuss the data alignment
augmentation method, aiming to further utilize the
data to enhance the model’s performance. Finally,
we introduce the model’s training strategy.

2.1 Model Design

Compared to the MOE model, dense models per-
form better in bilingual settings (Costa-jussà et al.,
2022). Given that the WMT23 machine translation
evaluation task has relatively limited corpora, in
order to enhance the model’s performance, we first
pretrain a dense model. Then, we use this dense
model to initialize the MOE model. The framework
of the model is illustrated in the Figure 1.

We first employ a 6x6 Transformer-based
encoder-decoder framework to train the dense
model. We can then use the parameters of this
pretrained model to initialize the MOE-based trans-
lation model. The difference between the dense
model and the MoE model lies in the fact that some
FFN layers are replaced with MoE layers (Lin et al.,
2020), while the rest of the structure remains identi-
cal. Therefore, we can directly initialize the embed-
ding, Self-Attention, and Cross-Attention using the
dense model. As for the MoE layer, it has a routing
module and multiple FFN layers of the same size.
We take the FFN layer parameters from the corre-
sponding layer in the dense model (Komatsuzaki
et al., 2023), add noise to increase the diversity of
the initializing parameters, and then use these noisy
FFN layer parameters to initialize each FFN in the
MoE layer one by one. For the routing module, we
initialize it randomly.

Specifically, our model in this paper adopts three
stages. First, we train a basic multilingual neural
machine translation model using the Transformer
model. Upon successfully training the multilingual
machine translation model, we select all of its pa-
rameters to initialize the MoE model. We need
to create multiple expert sub-networks, and each
expert sub-network will replicate the parameters of
the corresponding FFN layer.

Next, we use the MoE model for self-supervised
learning. Self-supervised learning is an unsuper-
vised learning method that generates its own labels.
For the machine translation task, one method of
self-supervised learning is to use the original lan-
guage text as input and then predict its translation.
We mask 35% of the input text at random on a
per-line basis. Ultimately, we compare the pre-
dicted text with the original text, compute the loss,
and then update the model parameters. Finally,
we use the MoE model, which has undergone self-
supervised learning, to initialize a new MoE ma-
chine translation model. The expert sub-networks
of the new model will replicate the parameters of
the self-supervised learning model (Koishekenov
et al., 2023). We then continue to train the new
model until it meets our performance criteria.

2.2 Training Strategy

We preprocess all the data, removing special char-
acters and standardizing punctuation marks. We
uniformly apply SentencePiece (spm) (Kudo and
Richardson, 2018) tokenization and construct a uni-
fied vocabulary with a size of 32,000. Additionally,
we use the fairseq tool (Ott et al., 2019) for binariza-
tion. During training and decoding, the vocabulary
is shared. We chose the Transformer as the founda-
tional architecture and made improvements upon it
to train bilingual models, multilingual dense mod-
els, and multilingual MOE models. We uniformly
divided the data into training and validation sets.
Since there is no test set, the final results are eval-
uated on the validation set. The model employs
Adam (Kingma and Ba, 2015) as the optimizer to
update model parameters. Every 30k steps, the
model’s performance is evaluated using the valida-
tion set. We use Polynomial Decay to dynamically
adjust the learning rate, with the basic idea being to
gradually decrease the learning rate as training pro-
gresses. For the dense model, it is trained for 100k
steps. For the self-supervised model, we initialize
the MOE model parameters using the dense model.
We set the number of experts to 32, frequency to 4,
expert capacity size to 1.0, and train for 50k steps.
For the MOE model, we initialize the MOE model
parameters using the self-supervised model. We set
the number of experts to 32, frequency to 4, expert
capacity size to 1.0, and train for 70k steps. During
decoding, we adopt the beam search strategy, and
the evaluation metric used is sacrebleu (Post, 2018)
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Figure 1: Taking the encoder as an example, the initialization process from the pretrained dense model to MOE is
described. The process for the decoder is the same.

3 Experimental Results and Analysis

We first introduce the parameter settings of our
trained models, and then analyze the experimental
results.

3.1 Setting
The model is improved upon fairseq (MoE ver-
sion) 1. The training precision is uniformly set to
fp16. Both the encoder and decoder are set to 6
layers with 8 attention heads each. The word em-
bedding size is 512, and the hidden layer size is
1024. The loss function used is the cross-entropy
function, and the optimizer is Adam, with beta1 set
to 0.9 and beta2 set to 0.98. During the pretraining
phase, the learning rate is set to 2e-4. A polynomial
learning rate scheduling strategy is employed to op-
timize the learning rate, with warmup set to 4000.
Dropout is set to 0.1. Each batch has a maximum
of 4096 tokens, and gradients are updated every 4
accumulated batches.

3.2 Experimental Results
For this evaluation task, we did not compare our
system with the current state-of-the-art NMT sys-
tems. The reason is that the organizers fixed the

1https://github.com/facebookresearch/fairseq/tree/moe

Model Dense-MOE Dense
Test1 21.59 19.08
Test2 17.89 15.48

Table 1: Evaluation Results for Dense-MOE and Dense.

training data and system configurations to ensure
a fair comparison among all participants.We use
the Test1 and Test2 provided by the organizers as
evaluation targets.

In the experiments, we used sacrebleu as the eval-
uation metric. From Table 1, we can first observe
that the method we employed in this paper achieved
better performance compared to the dense model.
After training, the dense model has already learned
the basic patterns of the dataset. Using these param-
eters to initialize the MOE model allows the MOE
model to start from a more optimal initial state,
thereby converging quickly. Using the parameters
of the dense model as initial values ensures that the
MOE model has already grasped the basic features
of the data at the onset of training. This provides a
stable starting point for the MOE model, reducing
the risks of instability and overfitting during train-
ing. Each expert in the MOE model can specifically
handle certain distinct patterns or features in the

309



data. By utilizing the pretrained dense model pa-
rameters, each expert in the MOE model can more
rapidly identify its area of expertise, leading to a
more efficient decomposition of model tasks. Even
on the same dataset, due to its structural character-
istics, the MOE model can capture more complex
patterns in the data. With the initialization from
the dense model’s parameters, the MOE model can
further optimize on this foundation, enhancing the
model’s expressive capability.

4 Conclusion

This paper introduces the main techniques and
methods used for the WMT23 Chinese to English
neural machine translation evaluation task. We
employ a multilingual neural machine translation
model based on the MOE Transformer framework.
This model effectively achieves a vast and effi-
cient parameterization. Moreover, given that it’s a
domain-specific translation task with limited trans-
lation data corpus, we utilized an effective strat-
egy of initializing the MOE model using a dense
model. This ensures that the MOE model has al-
ready grasped the fundamental features of the data
at the start of training, providing a stable founda-
tion for the MOE model and reducing the risks
of instability and overfitting during training. Ex-
perimental results demonstrate that these methods
can significantly improve the translation quality of
neural machine translation.
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Abstract
Currently, there is no usable machine transla-
tion system for Nko 1, a language spoken by
tens of millions of people across multiple West
African countries, which holds significant cul-
tural and educational value. To address this
issue, we present a set of tools, resources, and
baseline results aimed towards the development
of usable machine translation systems for Nko
and other languages that do not currently have
sufficiently large parallel text corpora available.
(1) Fria∥el: A novel collaborative parallel text
curation software that incorporates quality con-
trol through copyedit-based workflows. (2) Ex-
pansion of the FLoRes-200 and NLLB-Seed
corpora with 2,009 and 6,193 high-quality Nko
translations in parallel with 204 and 40 other
languages. (3) nicolingua-0005: A collection
of trilingual and bilingual corpora with 130,850
parallel segments and monolingual corpora con-
taining over 3 million Nko words. (4) Baseline
bilingual and multilingual neural machine trans-
lation results with the best model scoring 30.83
English-Nko chrF++ on FLoRes-devtest.

1 Introduction

The Manding languages, including Bambara,
Maninka, Mandinka, Dyula, and several others,
are generally mutually intelligible and spoken by
over 40 million people across West African coun-
tries including Mali, Guinea, Ivory Coast, Gambia,
Burkina Faso, Sierra Leone, Senegal, Liberia, and
Guinea-Bissau. Nko, which means ‘I say’ in all
Manding languages, was developed as both the
Manding literary standard language and a writ-
ing system by Soulemana Kanté in 1949 for the
purpose of sustaining the strong oral tradition of
Manding languages (Niane, 1974; Conde, 2017;
Eberhard et al., 2023).2 Nko thus serves a role

∗moussa@cs.stanford.edu
1Also spelled N’Ko, but speakers prefer the name Nko.
2ISO-639 code: nqo; ISO-15924 code: Nkoo.

for the Manding languages somewhat akin to Mod-
ern Standard Arabic for Arabic languages. It ade-
quately transcribes their essential features such as
vowel length, nasalization, and tone (Oyler, 2002;
Conde, 2017; Donaldson, 2017) and enables the
development of a shared literature.

Since its invention, the use of Nko has been
growing. It is taught by literacy promotion associ-
ations, and used in newspapers, social media, and
electronic communication (RFI, 2016; Rosenberg,
2011; Donaldson, 2019; Diane, 2022). Given that
students learn best in their native language (Soh
et al., 2021), Nko is particularly valuable for ele-
mentary native language education. Unfortunately,
Nko and more generally West African languages
remain marginalized in West African academic in-
stitutions (Kotey, 1975; Bryant, 2020). As a result,
and despite the efforts of its courageous commu-
nity, few academic resources are available in Nko.

Amongst numerous other benefits, computer-
assisted translation could be used to facilitate the
translation of academic content between Nko and
other languages and facilitate projects such as Nko
Wikipedia, which currently contains less than two
thousand articles, in contrast with French and En-
glish Wikipedia with over 2 and 6 million articles
respectively (Wikimedia, 2023). Unfortunately, to
date, there isn’t any usable machine translation
(MT) system for Nko, in part due to the unavailabil-
ity of large text corpora required by state-of-the-art
neural machine translation (NMT) algorithms.

Nko is a representative case study of the broader
issues that interfere with the goal of universal ma-
chine translation. Thousands of languages still
don’t have available or usable MT systems, mainly
due to the unavailability of high-quality parallel
text corpora. Recent corpora curation efforts have
also resulted in sub-standard data quality for some
languages. Some issues reported by (NLLB Team
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et al., 2022) and others that we address in this work
(see Section 3.3, and 3.6) could have been avoided
with the use of an adequate parallel text corpus
curation system, which did not previously exist.

This work aims to bootstrap the development of
MT systems for Nko and, in the process, to con-
tribute open-sourced resources and tools applicable
to other languages. Our main contributions include:

Novel Parallel Text Curation Software. Our
first contribution is Fria∥el (pronounced Friallel), a
cloud-based collaborative parallel text curation soft-
ware that helps human translators orchestrate copy-
editing processes resulting in high-quality corpora.
Fria∥el is presented in Section 2.

Extension of FLoRes-200 and NLLB-SEED.
Our second contribution is the extension of
FLoRes-200 and a multilingually aligned version
of the NLLB-SEED (NLLB Team et al., 2022) cor-
pora with high-quality Nko translations performed
by Nko native speaker experts. Both FLoRes-200
and NLLB-SEED match our educational objective
fairly well. Both are built over sentences drawn
from Wikipedia, with NLLB-SEED, in particular,
covering various fields of human knowledge and
activity. They are therefore more diverse than other
common parallel texts, such as religious texts.

Language Resource from the Nko Community.
Our third contribution is the nicolingua-0005 cor-
pus, a collection of mono-, bi-, and trilingual cor-
pora curated from data files donated by Baba Ma-
madi Diané, Solo Farabado Cissé, Djibrila Diané,
Nafadji Sory Condé, and Kalo Mory Diané.

Baseline Machine Translation Results. Our
fourth and last contribution consists of baseline
NMT experiments from English, French, and Bam-
bara transcribed in Latin script to Nko and vice
versa. We present bilingual and multilingual
transformer-based NMT systems (Vaswani et al.,
2017) built using the fairseq toolkit (Ott et al.,
2019). At present, results remain quite modest,
with the best eng_Latn→ nqo_Nkoo system scor-
ing 30.83 chrF++ on FLoRes-devtest.

All presented software and tools have been pub-
licly released to facilitate further progress on ma-
chine translation for Nko and other languages.3

3Corpora and software on https://github.com/:
common-parallel-corpora/friallel
common-parallel-corpora/common-parallel-corpora
mdoumbouya/nicolingua-0005-nqo-nmt-resources
mdoumbouya/nko-nmt-wmt-2023

2 Fria∥el: Collaborative Parallel Corpus
Curation System

Recent efforts on collecting multilingual parallel
corpora involved sets of data file exchange between
various translation teams (Federmann et al., 2022).
This process is error-prone as it doesn’t allow the
systematic tracking of individual corpus entries
through a curation quality process. Other recent
similar efforts such as NLLB-SEED (NLLB Team
et al., 2022), unnecessarily resulted in bi-text data
rather than the intended multi-text because the ref-
erence files ended up being modified and re-ordered
by various translation teams (see Section 3.3). Ade-
quate software could have helped avoid such issues.

We propose Fria∥el, a collaborative system de-
signed to help distributed translation teams produce
large multilingually aligned high-quality parallel
text corpora. The system design particularly em-
phasizes suitability for use in various contexts, sup-
porting web and mobile device usage and use in an
offline mode. Its design goals include: itemized cu-
ration, automatic work organization, collaborative
copyediting, and localization to translators’ pre-
ferred user-interface language and preferred source
languages to translate from (Figure 1).

2.1 Previous Tools and Multilingual Parallel
Corpora Creation Processes

Masakhane Similarly to (Nekoto et al., 2020),
this work is an effort towards African language
technology development. Our work is participatory
in the sense that we are a diverse team of computer
scientists, linguists, and native speakers of Nko and
other West African languages. We expect that our
approach, and the parallel text curation software we
release with this paper, Fria∥el, will be valuable for
MT technology development for other languages.

ParaText ParaText (SIL International & United
Bible Societies, 2023) is specialized software for
Bible translation projects. Its features include team
management, task assignments, notes, collabora-
tive document editing, multilingual dictionaries,
and various biblical resources. It also allows a
side-by-side comparison of biblical passages from
various sources or in various languages. Paratext
is not suited for general-purpose parallel corpus
curation for MT. There is no indication that Para-
Text or any such software was used in the curation
process of recent multilingual parallel corpora such
as NLLB-SEED, FLoRes-200, and NTREX-128.
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Figure 1: Fria∥el’s user interface for a Nko translator simultaneously inspecting multiple parallel variants of the
same segment from the Multitext-NLLB-SEED corpus. All labels are localized to Nko. The source language fields
are also localized to their own language’s writing direction: LTR for Bambara in Latin script and English; and RTL
for Moroccan Arabic and Egyptian Arabic. The translated text is localized to Nko’s writing direction (RTL).

NLLB-SEED and FLoRes-200 The curation pro-
cess of FLoRes-200 involved teams of translators
and reviewers who underwent a vetting process.
The QA team reviewed a 20% subset of data files
with 3000 entries produced by translation teams.
Data files falling below the 90% quality threshold
were returned for rework. NLLB-SEED underwent
a less rigorous quality control process. The cura-
tion process was English-centric. Translators were
required to be proficient in English. Translation
to the majority of languages was also done from
English, with the following exceptions: In NLLB-
SEED, Ligurian, was translated from Italian, In
FLoRes-200, some Arabic languages were trans-
lated from Modern Standard Arabic. As noted by
the authors, there are qualified translators who may
not speak English, and several languages may be
easier to translate from non-English sources.

NTREX-128 NTREX-128 (Federmann et al.,
2022) was curated as follows. The English ref-
erence file was sent to a translation provider that
produced translations. Source-based direct assess-
ment was performed on the translated files by a
different provider using the Appraise platform (Fe-
dermann, 2018) to generate segment-level quality
scores. Segments with a score below a specified
threshold were returned for correction. The trans-
lation process and quality control method of the
translation provider were not specified.

Fria∥el is a collaborative parallel text curation
software system that tracks individual segments
through a translation and copyedit workflow. Each
segment is translated by one translator, and subse-
quently sequentially copyedited by other transla-
tors. Fria∥el allows translators to simultaneously
inspect variants of the source segment in multiple
languages. This results in segments translated and
copyedited in the context of different subsets of
source languages. In addition to the final parallel
corpus, Fria∥el also yields copyedit logs, which
could be valuable in various modeling scenarios.

2.2 Design Goals
Fria∥el was designed with the following goals:

Itemized Curation Each corpus segment is in-
dividually tracked through the curation process in
which it is translated to the target language and sub-
sequently reviewed and copyedited several times.

Automatic Task Assignments Translation and
copyediting tasks are automatically assigned to
translators with fixed lease periods. Uncompleted
tasks are automatically reassigned upon expiration.

Collaborative Copyediting Each segment is
translated once and copyedited two or three times,
following the workflow in Figure 2. Segments for
which the first or second verification results in edits
are copyedited a third time. A given translator can
only perform a task on a given segment once.
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Figure 2: Translation workflow for a multilingual seg-
ment (datum). The initial translation (v1) is approved or
copyedited by two other translators (v2) and (v3). If any
copyediting occurs, a third copyediting task is assigned
to a fourth translator who either approves the current
translation or performs a final copyedit (v4).

Multilingual Sources While performing transla-
tion and copyediting tasks, translators can simul-
taneously inspect segments in several languages
configured according to their preferences.

Machine-Generated Sources Datasets can be
augmented with additional machine-generated vari-
ants of segments such as machine translations,
transliterations, and detransliterations.

Responsive Web Design Fria∥el is a web appli-
cation that automatically adapts the layout of its
component to the user’s screen size. This makes it
usable on desktop and laptop computers as well as
on mobile phones and tablets.

Resilience to Connectivity Disruptions Trans-
lators who temporarily lose their internet connec-
tivity can seamlessly keep working offline on their
currently assigned translation and verification tasks.
Their work is automatically synchronized with the
central database when their connectivity is restored.

Internationalization and Localization Fria∥el
is internationalized (i18n) in that all user-facing
strings are externalized into a translatable resource
file, and the writing direction and text alignment of
translation source and target languages are config-
urable. As a result, the user interface is localized
(L10n) to the translator’s preferred user-interface
language, and to each source language (Figure 1).

2.3 Software Components

This section provides details on Fria∥el’s software
components that collectively realize the design
goals specified in Section 2.2.

2.3.1 Workflow Manager
Both the Workflow and Task Managers are imple-
mented as Firebase cloud functions that are trig-
gered at fixed time intervals. A workflow entity is
inserted for each parallel segment with an initial
active state. The Workflow Manager periodically
inspects workflow entities and (1) creates the next
task if needed, and per the workflow management
rules, (2) moves the workflow to the completed
status if all related tasks have been completed and
there is no need to create additional tasks or (3)
nothing, if the workflow has an uncompleted task.

2.3.2 Task Manager
When triggered, the Task Manager revokes all
expired task assignments and assigns unassigned
translation and copyedit tasks to users according
to their roles. The maximum number of tasks as-
signed to each user is fixed. A given user is never
assigned a task related to a segment on which they
have previously completed a task. The Task Man-
ager also ensures that a copyedit task is only as-
signed to a user with the appropriate verification
skill level (L1, L2, or L3) for the first, second, and
third copyedit rounds. Each translator account is
configured with specific verification skill levels.

2.3.3 Data Model and Storage
Google Firestore, a document-oriented NoSQL
database, is used for data storage. The central appli-
cation database is accessed by data import/export
scripts, the WorkflowManager, the Task Manager,
and the user interface. It contains the following
collections of documents:

datasets: One collection per imported dataset.
Each document represents a multilingual segment
and contains all available translations of the seg-
ment, each annotated with its language and writing
system. See Figure 10.

workflows: Each document represents a priori-
tized workflow entity. The WorkflowManager (Sec-
tion 2.3.1) periodically inspects workflow entities
by priority order and creates task entities as per the
workflow management logic.

annotation-tasks: Each document is a task of
a specific type (translation or copyedit) related to
a specific multilingual segment. Each task has a
status (unassigned, assigned, completed). Tasks are
assigned to translators by the Task Manager.

users: Each document represents a translator
and specifies whether they can be assigned transla-
tion (isActiveTranslator) and copyedit (isActiveV-
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Figure 3: The software uses Firestore’s client library’s
offline mechanism and cached-aside HTTP resources to
be resilient to intermittent internet disruptions.

erifier) tasks. Translator documents also store the
source languages the translator prefers to translate
from, subject to availability in the source corpus.
User documents also specify a verifierLevel, which
indicates the maximum copyediting round the trans-
lator can participate in for a specific segment.

config: Contains language writing direction con-
figuration. Languages are assumed to be left-to-
right unless explicitly marked right-to-left.

2.3.4 User Interface
The user interface is a responsive web application
that is usable on a variety of devices, including
mobile phones, tablets, desktops, and laptops (Fig-
ure 1). It directs authenticated translators to their
workspace where they can perform translation (first
tab) and copyediting (second tab) tasks that are as-
signed to them. The task assignment process is
transparent to translators. One task is displayed at
a time. The prioritized list of tasks assigned to the
current translator is kept in a cache for resilience
to intermittent internet disruptions. The connection
status is indicated by the green circle (top-right).

When performing translation tasks, translators
simultaneously inspect the source segment in sev-
eral languages (top four text fields) and write a
translation in the target language text field (bot-
tom). When the ‘submit’ button (green) is selected,
the translation is recorded and the next task is dis-
played. Translators can also skip the current task
by selecting the ‘skip’ button (orange). When per-
forming copyediting tasks, the bottom text field is
initialized with the latest version of the translated
segment (Figure 2). The translator may leave the
translation intact or copyedit it before submitting.

2.3.5 Offline Mode
The software is a web application designed to be
resilient to intermittent internet disruptions. This
is achieved with Google Firebase’s client library

(Google, 2023), which supports offline read and
write operations by leveraging a client-side eventu-
ally consistent (Burckhardt et al., 2014) LRU cache,
and cached-aside (Pamula et al., 2014) HTTP re-
sources, implemented with two web APIs sup-
ported by the majority of web browsers: CacheStor-
age and ServiceWorker (w3.org, 2022; Mozilla,
2023b,a). After the initial loading of the web ap-
plication in a web browser, a ServiceWorker is
registered to intercept HTTP fetch events. If the
remote web server is reachable, the ServiceWorker
fetches remote HTTP resources (e.g., HTML,
CSS, javascript, image files) and stores them in
a CacheStorage before returning them to the caller;
otherwise, cached resources are served. The entire
process is transparent to the user. See Fig 3.

2.3.6 Translator Copyedit Logs

In addition to the final version of the translated
segments, the data Fria∥el also outputs their initial
translation (v1), and the versions of the same en-
tries after the first, second, and third copyediting
rounds (v2, v3, v4) – see the workflow in Figure 2.
Copyediting logs can be valuable in developing
language and machine translation models.

2.3.7 Data Import and Export

Fria∥el includes the following administrative
Python scripts for importing and exporting paral-
lel corpora and other reports. load_dataset.py
imports a new parallel corpus from its orig-
inal data files. Pre-processing may be re-
quired to adapt to various original dataset for-
mats. create_translation_workflows.py cre-
ates active translation workflows for an im-
ported dataset. system_report.py displays the
number of workflows and tasks by status by
dataset. export_dataset.py exports translations
and translator edits for a curated dataset in a csv
file. Post-processing may be required to adapt to a
desired format. accounting_statements.py gen-
erate completed tasks by user by dataset by month.
This data can be imported into an accounting sys-
tem to generate payroll for translators.

2.4 Qualitative User Study

Nko translators used Fria∥el to translate FLoRes-
200 (dev, devtest) and Multitext-NLLB-SEED to
nqo_Nkoo, and to copyedit each segment two or
three times. The following sections present an anal-
ysis of their responses to a survey questionnaire

316



(Figure 6). Quantitative measures on their copy-
editing logs are also discussed in Section 2.4.6.

2.4.1 Usability
Nko translators praised the simplicity of the user
interface. They appreciated the automatically or-
ganized itemized copyediting-based data curation
process. They highlighted the localization features,
particularly, the fact that the user-interface is avail-
able in Nko and that the presentation was adequate
for both right-to-left and left-to-right source lan-
guages and the target language. They valued the
offline functionality that allowed them to temporar-
ily continue working without an internet connec-
tion. Furthermore, they found the task counters
displayed on the user-interface helpful. They noted
two usability-related limitations: First, it was not
possible to directly go back to a task after submit-
ting it. Second, although the software allowed them
to continue working offline, it did not allow them
to perform the initial authentication while offline.

2.4.2 Translation Process
Nko translators found the fact that source segments
were visible in multiple languages beneficial. They
said that the ability to inspect the same segment
in multiple languages facilitated its translation to
Nko. They also mentioned that the itemized trans-
lation tasks, which presented one segment at a time,
decreased the likelihood of translation mistakes.

An improvement they requested is the addition
of a translation memory including dictionary en-
tries and previously translated expressions.

2.4.3 Copyediting Process
Nko translators found Fria∥el’s multi-pass copy-
editing process effective for finding and correcting
translation mistakes. They mentioned that the fact
that segments were consecutively assigned to differ-
ent translators for copyediting led to higher-quality
translations as it is easy to overlook one’s own
mistakes. Because each translator had a different
translation source language configuration, Nko seg-
ments were translated from and copyedited against
their versions in different sets of languages, which
Nko translators found enriching.

2.4.4 Mistranslations
Types of mistranslations Nko translators noted dur-
ing the copyediting process included typos, omitted
words, grammatical errors, incorrect word sense
translations, incorrect translations of named enti-
ties, and punctuation errors. They noted that word

sense was sometimes hard to disambiguate without
the full context of segments. For instance, the En-
glish word state maps to different Nko words based
on the sense of the word (political community vs.
a particular condition of a person, place, or thing).
They also noted punctuation errors, particularly the
use of the Arabic comma (U+060C) instead of the
Nko comma (U+07F8), and spacing around that
punctuation. Finally, they reported that translators
using different source languages would sometimes
disagree on named entity translations.

2.4.5 Disagreements

Nko translators reported few disagreements on lan-
guage standards. They also reported using existing
English-Nko and French-Nko dictionaries for con-
sistency. During the translation of FLoRes-200,
NLLB-SEED to Nko, translators participated in
weekly team meetings and routinely consulted each
other over video conferences and phone calls. They
deferred the few cases of disagreement and perplex-
ing questions to the most senior translator.

2.4.6 Copyediting Metrics

Table 1 summarizes the size of the translated cor-
pora in segments and Nko words, as well as the
percentage of segments that were edited in each
verification round, and the related edit magnitudes,
computed as edit distances. The number of edited
segments and related edit magnitudes generally de-
creased as copy-editing rounds progressed.

3 Nko Corpora for Machine Translation

This section discusses the extension of FLoRes-200
and NLLB-SEED to Nko, which included the mul-
tilingual alignment of NLLB-SEED, and the use of
Fria∥el to translate those corpora to Nko. This sec-
tion also introduces nicolingua-0005, a collection
of monolingual corpora and bi- and trilingual paral-
lel corpora donated by Nko community members.

3.1 Translation of FLoRes-200 and
NLLB-Seed to Nko

Nko native speaker experts Baba Mamadi Di-
ané, Solo Farabado Cissé, and Djibrila Diané,
used Fria∥el to translate Multitext-NLLB-SEED,
FLoRes-dev, and FLoRes-devtest to Nko. They
worked from Cairo (Egypt), Banankoro (Guinea),
and New York (USA), and with the rest of the team,
participated in weekly video conference meetings.
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seg- v1→ v2 v2→ v3 v3→ v4
corpus ments words edited edit distance edited edit distance edited edit distance

FLoRes-dev 997 27,361 83% 38.75± 1.55 67% 50.48± 2.10 71% 11.74± 0.65
FLoRes-devtest 1,012 29,503 87% 61.74± 1.81 93% 9.69± 0.64 24% 2.79± 0.15
NLLB-SEED 6,193 184,138 48% 45.97± 1.11 35% 38.94± 1.16 35% 11.96± 0.48

Table 1: Percentage of edited Nko segments, and related mean± standard error of edit magnitudes (edit distance)
resulting from the translation of FLoRes-dev, FLoRes-devtest, NLLB-SEED to Nko

3.2 Translation Process

The initial translations of FLoRes-dev, which our
translators performed using spreadsheets, were im-
ported into Fria∥el after our software engineers
completed its development. The copyediting tasks
for FLoRes-dev, and the translation and copyedit-
ing tasks for FLoRes-devtest and Multitext-NLLB-
SEED were entirely performed using Fria∥el. The
system was designed not to allow translators to
copyedit their own translations or previous copyed-
its. This constraint made the proposed translation
workflow impossible given the size of our team of
translators. As a workaround, an additional user
account was created for the two most experienced
translators to allow third copyediting rounds.

Each segment was translated once and copy-
edited two or three times. The resulting curated
Nko data files are summarized in Table 2. The mul-
tilingually aligned NLLB-SEED dataset (Multitext-
NLLB-SEED), FLoRes-dev, and FLoRes-devtest,
all extended with Nko translations along with copy-
edit logs, collectively make up common-parallel-
corpora ver. 2023-06-19 summarized in Table 3.

3.3 Multilingual Alignment of NLLB-SEED

The original NLLB-SEED dataset consists of pair-
wise parallel corpora between English and each
other language but suffers from the complication
that many of the source English sides are slightly
different from each other, variously due to minor
copyediting, and reordered and added entries.

Multitext-NLLB-SEED is a multilingually
aligned version of NLLB-SEED that fixes this
limitation. It was created as follows: A consen-
sus eng_Latn reference file was manually edited
by human comparison of all existing reference
eng_Latn files. The lines of each eng_Latn file
were matched (binary assignment matrix Mi,j) to
the lines of the consensus eng_Latn file by min-
imizing the sum of the edit distances Ei,j be-
tween matched lines (Equation 1). The optimal

Translations

lines words file

6193 184138 SEED/nqo_Nkoo
997 27361 FLoRes/nqo_Nkoo.dev

1012 29503 FLoRes/nqo_Nkoo.devtest

Translator Edits

lines words file

6193 170555 SEED/nqo_Nkoo.v1
6193 177703 SEED/nqo_Nkoo.v2
6193 182843 SEED/nqo_Nkoo.v3
6193 184138 SEED/nqo_Nkoo.v4

997 24455 FLoRes/nqo_Nkoo.dev.v1
997 25656 FLoRes/nqo_Nkoo.dev.v2
997 26541 FLoRes/nqo_Nkoo.dev.v3
997 27361 FLoRes/nqo_Nkoo.dev.v4

1012 25924 FLoRes/nqo_Nkoo.devtest.v1
1012 27771 FLoRes/nqo_Nkoo.devtest.v2
1012 29521 FLoRes/nqo_Nkoo.devtest.v3
1012 29503 FLoRes/nqo_Nkoo.devtest.v4

Table 2: Extensions of FLoRes-200 (dev, devtest) and
Multitext-NLLB-SEED to Nko. The nqo_Nkoo data files
are parallel with 40 other languages in NLLB-SEED,
and 204 other languages in FLoRes-200. FLoRes-test,
which is not publicly available, was not translated.

CPC subset lines langs. tr. edits
langs.

Multitext-NLLB-SEED 6193 41 1
FLoRes-dev 997 205 1
FLoRes-devtest 1012 205 1

Table 3: Summary of common-parallel-corpora version
2023-06-19. All entries are parallel across all languages.
Translator edits are only available for nqo_Nkoo.
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Figure 4: Multitext-NLLB-SEED is a multilingually
aligned version of the original NLLB-SEED dataset.

line matching M∗, obtained using the scipy pack-
age (Virtanen et al., 2020), was used to re-order
each non-English language file to match the order
of the consensus eng_Latn file. Two unmatched
lines from (eng_Latn, kas_Deva) and one from
(eng_Latn, lij_Latn) were discarded.

M∗ = argmin
M

∑

i,j

Mi,jEi,j (1)

The resulting re-ordered non-English language
files and the consensus eng_Latn file constitute the
Multitext-NLLB-SEED corpus, containing 40 par-
allel language files; see Figure 4. Multitext-NLLB-
SEED was loaded in Fria∥el in lieu of the original
NLLB-SEED corpus, enabling translators to inspect
each segment in multiple languages, and resulting
in an expanded multilingually aligned corpus.

3.4 Translation Source Languages

Source languages were configured in Fria∥el
according to the preferences of each transla-
tor. Collectively, they translated from fra_Latn,
eng_Latn, ary_Arab, arz_Arab, and bam_Latn.
Note that fra_Latn is not available in NLLB-SEED.
bam_Nkoo was detransliterated from bam_Latn us-
ing a neural detransliterator (Doumbouya, 2022);
however, translators did not find this source useful
and preferred not to enable it in their configuration.

3.5 Further Notes on Manding languages

Nko was developed as a standardized form of the
Manding languages. The aim was a standardized
language and writing system, which could serve
a similar role to Modern Standard Arabic with re-
spect to various regional Arabic languages. Mand-
ing languages, which include Mandinka and Bam-
bara, are a subgroup of the Mande language family

Figure 5: From October 2022 to June 2023, 8,202 trans-
lations and 22,426 verifications/edits were performed
to produce high-quality translations of FLoRes-200 and
Multitext-NLLB-SEED to Nko.

and are generally mutually intelligible to speak-
ers. Bambara, written in a Latin script, is currently
the best-supported Manding language, available in
Google Translate and in NLLB-SEED. Our Nko
translators are also fluent in Bambara.

3.6 Quality of bam_Latn in NLLB-SEED

Our Nko translators noted the following quality
issues with NLLB-SEED’s bam_Latn data: (1)
The data contains too much French vocabulary not
enough Manding vocabulary. (2) Some entries do
not match their English counterpart at all. (3) Some
entries are entirely in French; examples are shown
in Figure 11. (4) The bam_Latn data completely
lacks tonal marks, which are important in Manding
languages (e.g., many nouns are indistinguishable
without tonal marks, such as bird, belly, inside; the
definite and indefinite inflections of nouns cannot
be distinguished without tonal marks (I saw a per-
son vs. I did not see any person); and nouns that
can be used as a verb and their verb form cannot be
distinguished (get out! vs. to get out). bam_Nkoo,
detransliterated from bam_Latn was included in the
corpus; however, some Nko translators did not find
it useful and preferred to not enable it as a source.

3.7 nicolingua-0005 Corpus

nicolingua-0005 is curated from files donated by
Nko community members for the purpose of de-
veloping machine translation for Nko. It is com-
prised of 3.9 million Nko words with 25K (Nko,
English, French) parallel segments, 59K (Nko, En-
glish) parallel segments, 45K (Nko, French) par-
allel segments, and a monolingual corpus of 3.3
million Nko words. Included datasets were cu-
rated from files provided by Baba Mamadi Diané,
Solo Farabado Cissé, Djibrila Diané, Nafadji Sory
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type languages segments nqo words

trilingual nqo_Nkoo, eng_Latn, fra_Latn 25 848 256 934
bilingual nqo_Nkoo, eng_Latn 59 442 283 279
bilingual nqo_Nkoo, fra_Latn 45 560 129 789
monolingual nqo_Nkoo N/A 3 291 371
total 130 850 3 961 373

Table 4: Summary of nicolingua-0005

Condé, and Kalo Mory Diané. See Table 4 and Ap-
pendix D for more details on the constitution of the
corpus. A datasheet questionnaire based on (Costa-
jussà et al., 2020) is presented in Appendix E.

4 Baseline Machine Translation
Experiments

This section describes Transformer (Vaswani et al.,
2017) based encoder-decoder neural machine trans-
lation models built using the fairseq toolkit (Ott
et al., 2019). Both bilingual and multilingual trans-
lation models are explored. At present, results re-
main quite modest, with the best model achieving
a 30.83 eng_Latn→ nqo_Nkoo chrF++ score on
the CPC/FLoRes-devtest corpus.

Eight models were trained: The bilingual unidi-
rectional models 200.11 and 200.16, the multilin-
gual model 201.16, and its variant that is trained to
also autoencode Nko segments 202.16, and Models
206.19, 207.19, 208.19 and 209.19, which explore
three different ways of specifying language tokens.

4.1 Datasets
common-parallel-corpora (CPC) and nicolingua-
0005, described in Section 3 are used to build base-
line NMT models for the following translation di-
rections: nqo_Nkoo ⇄ eng_Latn, nqo_Nkoo ⇄
fra_Latn, and nqo_Nkoo ⇄ bam_Latn. The sub-
sets of those corpora used to train, validate, and
test the models are specified in Tables 11 and 12.

4.2 Tokenization
Byte-pair encoding (BPE) (Sennrich et al., 2016)
is employed to perform sub-word tokenization. In
each training experiment, the BPE model is trained
on a token corpus constructed by concatenating all
data files containing the languages of interest in the
training set. In all cases, the BPE model is trained
to produce 15K sub-word units.

4.3 Models
Eight models were trained. The first two, 200.11
and 200.16, are unidirectional bilingual nqo_Nkoo
⇄ eng_Latn models. The last six, 201.16, 202.16,

206.19, 207.19, 208.19, and 208.19 are multi-
lingual nqo_Nkoo ⇄ eng_Latn, nqo_Nkoo ⇄
fra_Latn, and nqo_Nkoo ⇄ bam_Latn models.

4.3.1 Bilingual Models
200.11 is the baseline bilingual nqo← eng model.
200.16 differs from 200.11 in terms of model ar-
chitecture and hyper-parameters. 200.16 and the
multilingual models 201.16 and 202.16 have iden-
tical architectures and training hyper-parameters.

Model 200.11 is a Transformer-based (Vaswani
et al., 2017) encoder-decoder sequence-to-
sequence model consisting of 5 encoder and 5
decoder layers, each with a 512-dimensional token
embeddings and 2048-dimensional feed-forward
networks, 2 attention heads per layer, and a layer
normalization module before each layer. Its archi-
tecture and training hyper-parameters are identical
to the baseline system of the AmericasNLP 2021
Shared Task on Open Machine Translation (Mager
et al., 2021), except for the following differences:
(1) encoder and decoder embeddings are not
shared, (2) Subword Regularization (Kudo, 2018)
and BPE-dropout (Provilkov et al., 2020) are not
employed in BPE tokenizer training, (3) larger
batches are employed during training, (4) gradient
clipping is applied during training.

Model 200.16 This model is only different from
200.11 in that it is deeper (6 encoder layers and 6
decoder layers), and that it is trained with a higher
token dropout probability (0.6 instead of 0.4).

4.3.2 Multilingual Models
Our multilingual models are trained on parallel cor-
pora obtained by concatenating all available (nqo
⇄ eng, nqo ⇄ fra, nqo ⇄ bam) bitext and prefix-
ing the source segments with language tokens as
introduced by (Johnson et al., 2017). Similarly to
(Wicks and Duh, 2022), models 206.19, 207.19,
208.19, and 209.19 compare the effect of various
approaches to constructing source-side prefixes.

Model 201.16 is the baseline multilingual model.
It has the same architecture and training hyperpa-
rameters as the bilingual model 200.16, but it is
trained on multilingual data and it employs target
language token prefixes (Table 5).

Model 202.16 employs target language tokens
just like 201.16, but its training set also contains
nqo→ nqo pairs where each side is the same sen-
tence from monolingual Nko corpora in nicolingua-
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model prefix

200.11 (none)
200.16
201.16 <to_tgt_Lang>
202.16
206.19
207.19 <from_src_Lang> <to_tgt_Lang>
208.19 <from> <src_Lang> <to> <tgt_Lang>
209.19 <from_src_Lang_to_tgt_Lang>

Table 5: Specification of source sequence language to-
ken prefixes used in our multilingual translation models.

0005. Consequently, 202.16 performs simultane-
ous multilingual translation and monolingual se-
quence autoencoding. Positive results from such a
strategy were found in (Luong et al., 2016).

Models 20x.19 also perform simultaneous trans-
lation and monolingual sequence auto-encoding.
However, their architecture is different from
202.16, and they explore different language token
prefixing strategies. Compared to 202.16 models,
in 20x.19 models, the encoder and decoder layers
use 8 attention heads instead of 2. Also, the en-
coder’s input embeddings and the decoder’s input
and output embeddings are all shared. Finally, the
source and target token dictionaries are also shared.

Models 20x.19 explore four approaches of
source-side prefix specification (Table 5). As an
example, a source segment to be translated from
English to Nko is prefixed as follows per model:
206.19: “<to_nqo_Nkoo> "
207.19: “<from_eng_Latn> <to_nqo_Nkoo> "
208.19: “<from> <eng_Latn> <to> <nqo_Nkoo> "
209.19: “<from><eng_Latn><to><nqo_Nkoo> "

4.4 Training

During training, dropout is used with the following
probabilities: input token embedding dropout 0.4
(xxx.11) or 0.6 (xxx.16, xxx.19), attention dropout
0.2, ReLU dropout 0.2. The label-smoothed cross-
entropy loss function is used with a smoothing rate
of 0.2. Optimization is performed using Adam with
a weight decay of 0.0001. The inverse squared root
learning rate scheduler is used with an initial rate of
1e-7 and 4000 warm-up updates. Gradient clipping
is employed with a norm threshold of 1. Effective
batches of up to 65,536 tokens are used to train all
models. Gradients are accumulated for 1 batch of
up 65,536 tokens on A100 GPUs and 4 batches of

up to 16384 on Titan XP GPUs before each update.

4.5 Model Selection and Stopping Criteria
Trainings are stopped when BLEU scores on the
validation step do not improve after 20K gradi-
ent updates. Checkpoints with the highest BLEU
scores on the validation set are selected. The av-
erage BLEU score across all supported translation
directions is used for multilingual model selection.

4.6 Evaluation
CPC/FLoRes-dev and CPC/FLoRes-devtest are re-
spectively used as validation and test sets. For each
model, their subsets with languages of interest are
considered (see Tables 12 and 11 ). The chrF++
score, which has been shown to align well with hu-
man assessments, especially for morphologically
rich languages (Popović, 2017), is used as the main
evaluation metric. The Sacre BLEU library (Post,
2018) is used to compute BLEU and chrF++ scores.

4.7 Results
Table 6 shows the test and validation BLEU and
chrF++ scores for each model and supported trans-
lation direction. The best performing model 208.19
scores 26.00 mean chrF++ on the test set.

Layer Count and Regularization: Compared to
200.11, 200.16 with one extra encoder and decoder
layer, and a higher token embedding dropout rate,
scored +0.34 nqo← eng chrF++.

Multilinguality: Compared to 200.16, the multi-
lingual model 201.16, which has the same architec-
ture and training hyperparameters, scored −0.92
nqo← eng chrF++.

Monolingual Autoencoding: Compared to
201.16, 202.16, which performs simultaneous mul-
tilingual translation and monolingual autoencoding,
scored +0.14 nqo← eng chrF++

Attention Heads and Shared Embeddings:
Compared to 202.16, 206.19 which uses 8 atten-
tion heads in the encoder and decoder layers, and
which shares all input and output embeddings and
dictionaries scores +1.59 mean chrF++.

Language Token Prefixing: Compared to
206.19, which only specifies target language tokens
in the source sequence, 207.19, which specifies the
source and target languages as two separate tokens,
scored +0.08 mean chrF++. 209.19, which spec-
ifies the source and target languages as a single
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token, scored +0.06 mean chrF++. 208.19, which
specifies the source and target languages in a four-
token clause scored +0.15 mean chrF++.

5 Discussions

5.1 Fria∥el

Improving Usability: As noted by Nko transla-
tors, the usability of Fria∥el could be improved by:
(1) Allowing translators to review their recently
submitted tasks before the Workflow Manager pro-
ceeds to the next stage of the curation process. (2)
Implementing an offline authentication mechanism.

Adding a Translation Memory: Adding a trans-
lation memory could increase the productivity, ac-
curacy, and consistency of translators. However,
the effect of such a tool on the general quality of
translations, including the diversity of synonyms
and expression styles should not be overlooked.

Extensibility: Alternate copyediting workflows
can be implemented in Fria∥el by extending the
Workflow Manager and Task Manager. The task
presentation user interface can also be adapted to
other text curation tasks, such as syntax annotation.

5.2 Parallel Corpora

Handling Short Sequences: The segments in
nicolingua-0005 are, on average, significantly
shorter than those in FLoRes and NLLB-SEED. De-
spite being short, sequences such as ones from the
Nko-Français dictionary and Unicode CLDR files,
are too valuable to discard. To prevent biasing mod-
els towards shorter sequence lengths, we repeated
the (nqo_Nkoo, eng_Latn) data from CPC/NLLB-
SEED five times in the training set. A more princi-
pled approach should be considered.

Punctuations, Case and Diacritical Marks:
Our models showed sensitivity to minor changes in
Latin case, and punctuation as well as Nko diacriti-
cal marks (see Appendix G). Including augmented
data with lowered case and stripped punctuation
and diacritical marks in source sequences in the
training corpora may help address this issue.

Learning from Translator Edits: Translator ed-
its, as recorded by Fria∥el throughout the copy-edit
process, could be useful for various modeling and
quality estimation tasks. This data could also be
used for an auxiliary copy-edit reconstruction task
that may improve the accuracy of a multitask NMT

Intl. BLEU chrF++

model direction valid test valid test

200.11 nqo← eng 5.40 5.11 28.80 29.73

200.16 nqo← eng 5.85 5.25 29.06 30.07

201.16 nqo→ bam 1.19 1.12 16.73 17.04
201.16 nqo← bam 2.86 3.19 22.07 23.01
201.16 nqo→ eng 3.65 3.78 26.31 26.99
201.16 nqo← eng 6.11 5.71 28.64 29.15
201.16 nqo→ fra 2.33 2.35 22.27 22.61
201.16 nqo← fra 4.50 4.29 25.55 25.89
201.16 mean 3.44 3.41 23.60 24.12

202.16 nqo→ bam 1.14 1.00 16.68 16.82
202.16 nqo← bam 2.83 3.11 22.33 23.11
202.16 nqo→ eng 4.27 4.26 26.86 27.61
202.16 nqo← eng 6.18 5.80 28.63 29.44
202.16 nqo→ fra 2.31 2.74 22.46 22.89
202.16 nqo← fra 4.18 4.51 25.22 25.68
202.16 mean 3.49 3.57 23.70 24.26

206.19 nqo→ bam 1.69 1.50 19.04 19.34
206.19 nqo← bam 3.63 3.43 23.26 23.81
206.19 nqo→ eng 5.22 5.15 28.70 28.85
206.19 nqo← eng 6.79 6.50 29.97 30.66
206.19 nqo→ fra 3.28 3.41 25.26 25.42
206.19 nqo← fra 4.77 5.05 26.59 27.03
206.19 mean 4.23 4.17 25.47 25.85

207.19 nqo→ bam 1.52 1.53 19.09 19.43
207.19 nqo← bam 3.56 3.28 23.10 23.77
207.19 nqo→ eng 5.10 5.05 28.61 28.69
207.19 nqo← eng 6.96 6.21 29.92 30.45
207.19 nqo→ fra 3.26 3.51 25.44 25.98
207.19 nqo← fra 5.23 5.14 26.89 27.25
207.19 mean 4.27 4.12 25.51 25.93

208.19 nqo→ bam 1.44 1.52 18.83 19.08
208.19 nqo← bam 3.32 3.37 23.38 24.00
208.19 nqo→ eng 4.78 5.05 28.64 29.13
208.19 nqo← eng 6.99 6.44 30.05 30.83
208.19 nqo→ fra 3.20 3.61 25.15 25.79
208.19 nqo← fra 5.04 4.78 26.73 27.17
208.19 mean 4.13 4.13 25.46 26.00

209.19 nqo→ bam 1.60 1.47 19.00 19.25
209.19 nqo← bam 3.45 3.43 23.29 23.80
209.19 nqo→ eng 5.07 4.79 28.67 28.82
209.19 nqo← eng 6.96 6.58 30.10 30.78
209.19 nqo→ fra 3.49 3.13 25.39 25.76
209.19 nqo← fra 5.13 4.92 26.56 27.06
209.19 mean 4.28 4.05 25.50 25.91

Table 6: Our bilingual and multilingual models mea-
sured for accuracy on FLoRes-dev (valid) and FLoRes-
devtest (test) using the Intl. BLEU (Sacre BLEU with
Unicode-aware tokenization) and chrF++ metrics.
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model. Finally, translator edit data can be used to
train and align translators on consistency standards.

5.3 Neural Machine Translation
Tokenization: Subword regularization, as dis-
cussed in (Kudo, 2018) and the dropout-based ap-
proach presented by (Provilkov et al., 2020), may
lead to increased translation performance for Nko.

Language Token Prefixes: The choice of source-
side prefixing strategy had a marginal impact on
translation accuracy. Our best model employs a
four-token prefix, consisting of source and tar-
get language tokens joined with the ‘<from>’ and
‘<to>’ tokens. Our results and those of (Wicks
and Duh, 2022), suggest that the specification of
translation directions as source-side prefixes in mul-
tilingual NMT models merits further investigation.

Learning from Monolingual Data: The use of
monolingual Nko data in 202.16 led to marginal
improvements in most translation directions. Addi-
tional unsupervised tasks such as masked language
modeling and denoising should also be explored.

Data Augmentation: Back-translation-based
data augmentation, and the generalized data
augmentation method in (Xia et al., 2019) could
significantly increase NMT performance for Nko.

International BLEU Our BLEU scores are com-
puted with sacreBLEU using international tokeniza-
tion because sacreBLEU’s current default tokenizer
(v13a) is inappropriate for Nko; it doesn’t properly
interpret the Nko Unicode block, particularly its
punctuations, to detect word boundaries.

BLEU vs chrF++ The BLEU scores of our mod-
els are rather low. This was surprising given the
training data size and given Nko translators’ feed-
back on generated translations. This observation
is in line with (Popović, 2017)’s hypothesis that
chrF++ correlates better with human judgment than
BLEU for morphologically rich languages.

6 Conclusion

This work presented Fria∥el, a collaborative par-
allel text curation system with copyediting-based
quality workflows. Fria∥el enabled the exten-
sion of existing multilingual corpora, FLoRes-200
and NLLB-SEED with high-quality Nko transla-
tions. Those, and a new corpus we introduced,
nicolingua-0005, served to build baseline bilin-
gual and multilingual NMT systems for Nko, with

the best model achieving the accuracy of 30.84
eng_Latn→ nqo_Nkoo chrF++. We have released
Fria∥el to facilitate the development and extension
of multilingual parallel corpora to more languages.
We have also released resources and tools to en-
able the reproducibility of our results, and further
progress towards usable MT systems for Nko.
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Appendices

A Fria∥el User Study Feedback
Questionnaire

The feedback questionnaire sent to N’Ko transla-
tors appears in Figure 6.
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Parallel Data Curation Software Feedback

1. Usability of the software
a. Is the software useful? Why?
b. What are your favorite features of the software?
c. What are some improvements that would make the software better?

2. Translation
a. Did the software make the translation effort easier? How?
b. How does the software compare to previous systems you used for translation?
c. What are some difficulties that you encountered when performing translation

tasks?
d. What are some improvements that would make the software better for

translation?
3. Verification

a. Was the software helpful for performing verification tasks? How?
b. How does the software compare to previous systems you used for verification?
c. What are some difficulties that you encountered when performing translation

tasks?
d. What are some improvements that would make the software better for

verification?
4. Mistranslations

a. When performing verifications, what are some frequent types of translation
mistakes you found?

b. Why were these types of mistakes frequent?
c. Did you communicate with other translators about those types of mistakes?

5. Disagreements
a. Were there any disagreements regarding language standards?
b. How were those disagreements resolved?

Figure 6: Survey questions sent to translators after they translated flores-200, nllb-seed, and ntrex-128 to N’Ko
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B Fria∥el Software Engineering
Diagrams

On the next three pages appear:

• Workflow and task management sequence dia-
grams

• Workflow and Task State-Transition Diagrams

• Logical Data Model

• Physical Data Storage Model in Google Fire-
store
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Figure 7: Sequence Diagram: Workflow Manager and Task Manager
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Figure 8: State Transition Diagrams for Tasks and Workflows. A translation workflow entity in the active state is
created for each dataset entry. The workflow manager creates related unassigned tasks as needed, per the rules of
the workflow. The Task Manager assigns tasks to users as appropriate. Uncompleted tasks are moved back to the
unassigned status when not completed within the lease period. The workflow manager moves workflows to the
completed status when all related tasks are completed and there is no need to create additional tasks.

Figure 9: Logical model of entities involved in the curation process of entry#187 of the FLoRes-devtest dataset.
Each entity is stored as a document in the Firestore database. The Workflow Manager created one translation task,
and three verification tasks, each assigned to a different translator. The third verification task was created because at
least one of the previous two resulted in translator edits. Arrows point from referencing to referenced documents.
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Figure 10: Data Storage in Google Firestore. Each corpus is stored as a collection of documents (left), each of which
is identified by its position in the original data files (middle). Each entry contains an array of source translations.
Each translation is labeled with its language and script codes (ISO-639_ISO-15924) (right). The system also uses
the users, config, workflows and annotation-tasks for user, configurations, and data curation workflow management.
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C NLLB-SEED bam_Latn Quality Issues

Examples of quality issues in NLLB-SEED

bam_Latn data file appear on the following page.
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Figure 11: Examples of quality issues in NLLB-SEED bam_Latn data file. (1) Sentence with 60% borrowed French
words. (2) Incorrect translation. (3) a block of sentences entirely in French. Notice that tonal marks are missing
from bam_Latn text.
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D nicolingua-0005 details

This section provides details on the monolingual,
bilingual and trilingual parallel corpora, donated
by Nko community members, collectively making
up the nicolingua-0005 corpus.

D.0.1 Trilingual Corpora
(nqo_Nkoo, eng_Latn, fra_Latn)

baba_mamadi_diane_parallel_002 This corpus
is composed of parallel Quran translations in Nko
(Diane, Baba Mamadi, 2021), English (Interna-
tional, Saheeh, 2022), and French (International
Center, Noor, 2018). The Quran’s translation in
Nko was originally performed by Baba Mamadi
Diane for Islamic education purposes.

kalo_mory_diane_parallel_00{1,2,3} This cor-
pus contains various short phrases collected and
translated by Kalo Mory Diane for the purpose of
machine translation system development.

solo_farabado_cisse_parallel_002 This corpus
contains various short phrases collected and trans-
lated by Solo Farabado Cisse for the purpose of
machine translation system development.

solo_farabado_cisse_parallel_001 Nko local-
ization strings from the Unicode Common Lo-
cale Data Repository (CLDR) (Unicode, 2023a) to
which Solo Farabado Cisse and Baba Mamadi Di-
ane contributed (Unicode, 2023b). Corresponding
CLDR strings in Nko, English, and French were
compiled to make this trilingual parallel corpus.

D.0.2 Bilingual Corpora
(nqo_Nkoo, eng_Latn)

baba_mamadi_diane_parallel_003 This corpus
contains segments manually chunked from the
Quran and translated by Baba Mamadi Diane
specifically for the purpose of creating a corpus us-
able for machine translation system development.

baba_mamadi_diane_parallel_004 This corpus
contains the localization strings of a custom An-
droid build translated by Baba Mamadi Diane.

djibrila_diane_parallel_003 This corpus con-
tains short phrases collected and translated by Djib-
rila Diane. The phrases also include some basic
scientific terminology. The corpus was originally
created for education purposes only.

djibrila_diane_parallel_001 This corpus con-
tains short phrases in various tenses collected and
translated by Djibrila Diane to serve of MT system
development.

djibrila_diane_parallel_002 This corpus con-
tains various short phrases composed and translated
by Djibrila Diane for the purpose of MT system
development.

D.0.3 Bilingual Corpora
(nqo_Nkoo, fra_Latn)

baba_mamadi_diane_parallel_001 Nko-
French dictionary authored by Baba Mamadi
Diane for education purposes. Dictionary entries
in french with multiple forms (e.g. gender) were
automatically expanded using regular expressions.

nafadji_sory_conde_parallel_001 This corpus
contains various short phrases composed and trans-
lated by Nafadji Sory Conde for the purpose of
machine translation system development.

nafadji_sory_conde_parallel_003 This corpus
contains phrases from Camara Laye’s 1953 novel
“L’enfant Noir” (Camara, 1953). The translation
was originally done by Nafadji Sory Conde for the
purpose of expanding available literature in Nko.

nafadji_sory_conde_parallel_002 This corpus
contains various phrases related to Guinean soci-
ety and sociology. It was created by Nafadji Sory
Conde for the purpose of MT system development.

nafadji_sory_conde_parallel_004 This corpus
contains segments extracted from the Guinean con-
stitution. It was originally translated by Nafaji Sory
Conde for education purposes.

D.0.4 Monolingual Corpora (nqo_Nkoo)

nafadji_sory_conde_monolingual_001 This
corpus, composed by Nafadji Sory Conde and
his collaborators, contains extracts of books and
newspapers in Nko. A substantial part of the
corpus was harvested from Kanjamadi.com. This
corpus may overlap with the Maninka Reference
Corpus (Vydrin et al., 2016).

baba_mamadi_diane_monolingual_00{1,2}
These corpora were extracted from various Nko
books and articles in various domains including
history, religion, philosophy, literature and Science.
The corpora were originally composed by Baba
M. Diane for the purpose of auto-completion
algorithm development for Nko.
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lines words file originator description

6236 175382 baba_mamadi_diane_parallel_002.nqo_Nkoo
Baba Mamadi Diane Traductions of the Quran6236 151323 baba_mamadi_diane_parallel_002.eng_Latn

6236 171085 baba_mamadi_diane_parallel_002.fra_Latn
7001 28626 kalo_mory_diane_parallel_001.nqo_Nkoo

Kalo Mory Diane Short Phrases7001 17558 kalo_mory_diane_parallel_001.eng_Latn
7001 21593 kalo_mory_diane_parallel_001.fra_Latn
4001 18864 kalo_mory_diane_parallel_003.nqo_Nkoo

Kalo Mory Diane Short Phrases4001 12891 kalo_mory_diane_parallel_003.eng_Latn
4001 15050 kalo_mory_diane_parallel_003.fra_Latn
3999 17903 kalo_mory_diane_parallel_002.nqo_Nkoo

Kalo Mory Diane Short Phrases3999 12237 kalo_mory_diane_parallel_002.eng_Latn
3999 14495 kalo_mory_diane_parallel_002.fra_Latn
3052 13420 solo_farabado_cisse_parallel_002.nqo_Nkoo

Solo Farabado Cisse Short Phrases3052 9615 solo_farabado_cisse_parallel_002.eng_Latn
3052 11308 solo_farabado_cisse_parallel_002.fra_Latn
1559 2739 solo_farabado_cisse_parallel_001.nqo_Nkoo

Solo Farabado Cisse Unicode CLDR Strings1559 2382 solo_farabado_cisse_parallel_001.eng_Latn
1559 2338 solo_farabado_cisse_parallel_001.fra_Latn

Table 7: nicolingua-0005’s trilingual subsets in Nko (nqo_Nkoo), English (eng_Latn) and French (fra_Latn)

lines words file originator description

21590 154238 baba_mamadi_diane_parallel_003.nqo_Nkoo
Baba Mamadi Diane Segments Chunked from the Quran

21590 133369 baba_mamadi_diane_parallel_003.eng_Latn
36211 119536 baba_mamadi_diane_parallel_004.nqo_Nkoo

Baba Mamadi Diane
Localization Strings for
a Custom Android Build36211 72612 baba_mamadi_diane_parallel_004.eng_Latn

492 4666 djibrila_diane_parallel_003.nqo_Nkoo
Djibrila Diane Various Short Phrases

and Basic Sci. Terms492 4122 djibrila_diane_parallel_003.eng_Latn
1001 3536 djibrila_diane_parallel_001.nqo_Nkoo

Djibrila Diane Short Phrases in Various Tenses
1001 3487 djibrila_diane_parallel_001.eng_Latn
148 1303 djibrila_diane_parallel_002.nqo_Nkoo

Djibrila Diane Various Short Phrases
148 1361 djibrila_diane_parallel_002.eng_Latn

Table 8: nicolingua-0005’s bilingual subsets in Nko (nqo_Nkoo) and English (eng_Latn)

lines words file originator description

37894 40436 baba_mamadi_diane_parallel_001.nqo_Nkoo
Baba Mamadi Diane Nko-Francais Dictionary

37894 41598 baba_mamadi_diane_parallel_001.fra_Latn
3604 39020 nafadji_sory_conde_parallel_001.nqo_Nkoo

Nafadji Sory Conde Various Short Phrases
3604 35037 nafadji_sory_conde_parallel_001.fra_Latn
1141 22379 nafadji_sory_conde_parallel_003.nqo_Nkoo

Nafadji Sory Conde Segment from “L’enfant Noir”
1141 21049 nafadji_sory_conde_parallel_003.fra_Latn
2200 16091 nafadji_sory_conde_parallel_002.nqo_Nkoo

Nafadji Sory Conde Phrases related to Guinean
Society and Sociology2200 15413 nafadji_sory_conde_parallel_002.fra_Latn

721 11863 nafadji_sory_conde_parallel_004.nqo_Nkoo
Nafadji Sory Conde Guinean Constitution

721 11345 nafadji_sory_conde_parallel_004.fra_Latn

Table 9: nicolingua-0005’s bilingual subsets in Nko (nqo_Nkoo) and French (fra_Latn)

lines words file originator description

134000 2017158 nafadji_sory_conde_monolingual_001.nqo_Nkoo Nafadji Sory Conde Various Books and News Papers
44604 853464 baba_mamadi_diane_monolingual_002.nqo_Nkoo Baba Mamadi Diane Various Books and Articles
10195 420749 baba_mamadi_diane_monolingual_001.nqo_Nkoo Baba Mamadi Diane Various Books and Articles

Table 10: nicolingua-0005’s monolingual subsets in Nko (nqo_Nkoo)
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E Datasheet Questionnaire for
nicolingua-0005

E.1 Motivation

E.1.1 Who created the dataset(e.g., which
team, research group) and on behalf of
which entity (e.g. company, institution,
organization)?

nicolingua-0005 was curated by Moussa Doum-
bouya (Stanford University). Its constituent cor-
pora were provided by the following members of
Nko USA Inc: Baba Mamadi Diane, Solo Farabado
Cisse, Djibrila Diane, Nafadji Sory Conde, Kalo
Mory Diane.

E.1.2 Did they fund it themselves? If there is
an associated grant, please provide the
name of the grantor and the grant name
and number.

Nko community members voluntarily composed
the included corpora.

E.1.3 For what purpose was the data set
created? Was there a specific task in
mind? If so, please specify the result
type ( e.g. unit ) to be expected.

Some included corpora were composed specifically
for the development of MT systems while others
were originally created for educational purposes.
See Appendix D for details.

E.1.4 Could any of these uses, or their results,
interfere with human will or
communicate a false reality?

Not to the best of our knowledge.

E.1.5 What is the antiquity of the file?
Provide, please, the current date.

July 19 2023.

E.1.6 Has there been any monetary profit
from the creation of this dataset?

No.

E.2 Composition

E.2.1 Is there any synthetic data in the
dataset? If so, in what percentage?

The corpus doesn’t contain any synthetic data.

E.2.2 Are there multiple types of instances or
is there just one type? Please specify the
type(s), e.g. Raw data, preprocessed,
symbolic.

The corpus contains monolingual and parallel text
corpora.

E.2.3 What do the instances (of each type, if
appropriate) that comprise the data set
represent? (e.g. documents, photos,
people, countries).

The instances represent segments of text in Nko,
English, and French.

E.2.4 How many instances (of each type, if
appropriate) are there in total?

See Tables 4, 7, 8, 9 and 10

E.2.5 Does the dataset contain all possible
instances or is it just a sample of a
larger set? i.e. Is the dataset different
than an original one due to the
preprocessing process? In case this
dataset is a subset of another one, is the
original dataset available?

This dataset is a collection of corpora from various
sources. Some sources were integrally sampled
(e.g. quran), while other sources were composed
by individual translators.

E.2.6 Is there a label or a target associated
with each of the instances? If so, please
provide a description.

The multilingual subsets of the corpora are match-
ing segments of text in multiple languages.

E.2.7 What is the format of the data? e.g.
.json, .xml, .csv .

The files are text files encoded in UTF-8 that have
the following extensions matching the iso standard
code of the language and writing system they con-
tain: .nqo_Nkoo, .eng_Latn, .fra_Latn.

E.2.8 Is any information missing from
individual instances? If so, please
provide a description, explaining why
this information is missing (e.g. because
it was unavailable). This does not
include intentionally removed
information, but might include, e.g.
redacted text.

There is no missing information to report.
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E.2.9 Are there any errors, sources of noise,
or redundancies in the dataset? If so,
please provide a description. Do not
include missing information here.

The sentences were benevolently translated by
various individuals. A minimal quality con-
trol process was adopted during the curation
phase. The data may contain some errors.
The corpus baba_mamadi_diane_parallel_003
was created by sampling Quran phrases from
baba_mamadi_diane_parallel_002. Some parallel
Nko segments may be repeated in the monolingual
Nko corpora.

E.2.10 Is there any verification that
guarantees there is not
institutionalization of unfair biases?
Both regarding the dataset itself and
the potential algorithms that could use
it.

no.

E.2.11 Are there recommended data splits, e.g.
training, development/validation,
testing? If so, please provide a
description of these splits explaining
the rationale behind them.

The corpora are intended to be used to train natural
language processing algorithms.

E.2.12 Is the dataset self-contained, or does it
link to or otherwise rely on external
resources? e.g., websites, tweets, other
datasets. If it links to or relies on
external resources, a) Are there any
guarantees that they will exist, and
remain constant over time? b) Are
there official archival versions of the
complete dataset? i.e. including the
external resources as they existed at
the time the dataset was created. c)
Are there any restrictions (e.g. licenses,
fees) associated with any of the
external resources that might apply to
a future user? Please provide
descriptions of all external resources
and any restrictions associated with
them, as well as links or other access
points, if appropriate.

nicolingua-0005 is self-contained.

E.2.13 Does the dataset contain data that
might be considered confidential? e.g.
data that is protected by legal privilege
or by doctor-patient confidentiality,
data that includes the content of
individuals non-public
communications. If so, please provide
a description.

Not to the best of our knowledge.

E.2.14 Does the dataset contain data that, if
viewed directly, might be offensive,
insulting, threatening, or might
otherwise cause anxiety? If so, please
describe why.

Not to the best of our knowledge. Notes: (1)
nicolingua-0005 contains religious text that some
people may find offensive or threatening. (2) Some
words contained in nicolingua-0005, such as the
name of certain human body parts included in the
Nko-Francais dictionary, may be considered vulgar
or offensive.

E.2.15 Does the dataset relate to people? If so,
please specify a) Whether the dataset
identifies subpopulations or not. b)
Whether the dataset identifies indivual
people or not. c) Whether it contains
information that could vulnerate any
individuals or their rights. c) Any
other verified information on the topic
that can be provided.

The data includes news articles that may reference
specific people and people groups. The data also
includes literature relating to West African people
and people groups and their history.

E.2.16 Does the dataset cover included
languages equally?

No. The sizes of various parallel and monolingual
subsets have been specified in Table 4.

E.2.17 Is there any evidence that the data may
be somehow biased? i.e. towards
gender, ethics, beliefs.

The data includes religious texts, articles, and
books that may reflect various types of biases. The
data may contain biases inherent in historical and
current Manding culture such as work organization
between men and women, young and old people.
Nko doesn’t have masculine vs. feminine noun
classes. Therefore genders are not distinguished in
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Nko nouns and pronouns, which may reduce the
potential for gender-based bias.

E.2.18 Is the data made up of formal text,
informal text or both equitably?

The data mostly contains formal text.

E.2.19 Does the data contain incorrect
language expressions on purpose?
Does it contain slang terms? If that’s
the case, please provide which
instances of the data correspond to
these.

Not to the best of our knowledge. The dataset may
contain unintentional errors.

E.3 Collection Process

E.3.1 Where was the data collected at? Please
include as much detail; i.e. country, city,
community, entity and so on.

Most data was collected in Conakry, Guinea, and
Banakoro, Guinea. Some contributors also worked
in Bamako, Mali (Solo F Cisse, Baba M Diane),
Egypt (Baba M Diane) and USA (Djibrila Diane)
while collecting the datasets.

E.3.2 If the dataset is a sample from a larger
set, what was the sampling strategy? i.e.
deterministic, probabilistic with specific
sampling probabilities.

N/A

E.3.3 Are there any guarantees that the
acquisition of the data did not violate
any law or anyone’s rights?

Not to the best of our knowledge.

E.3.4 Are there any guarantees that prove the
data is reliable?

No.

E.3.5 Did the collection process involve the
participation of individual people? If so,
please report any information available
regarding the following questions: Was
the data collected from people directly?
Did all the involved parts give their
explicit consent? Is there any
mechanism available to revoke this
consent in the future, if desired?

The dataset authors are authors of this paper. They
gave their explicit consent.

E.3.6 Has an analysis of the potential impact
of the dataset and its use on data
subjects been conducted? i.e. a data
protection impact analysis. If so, please
provide a description of this analysis,
including the outcomes, as well as a link
or other access point to any supporting
documentation.

No.

E.3.7 Were any ethical review processes
conducted?

No.

E.3.8 Does the data come from a single source
or is it the result of a combination of
data coming from different sources? In
any case, please provide references.

The data was curated from a combination of differ-
ent sources.

E.3.9 If the same content was to be collected
from a different source, would it be
similar?

Not Applicable.

E.3.10 Please specify any other information
regarding the collection process. i.e.
Who collected the data, whether they
were compensated or not, what
mechanisms were used. Please, only
include if verified.

E.4 Preprocessing/Cleaning/Labelling

E.4.1 Please specify any information
regarding the preprocessing that you
may know (e.g. the person who created
the dataset has somehow explained it)
or be able to find (e.g. there exists and
informational site). Please, only include
if verified. i.e. Was there any
mechanism applied to obtain a neutral
language? Were all instances
preprocessed the same way?

The data was normalized with Unicode normal-
ization form NFC: Canonical Decomposition fol-
lowed by Canonical Composition. Non-Nko
characters were stripped from monolingual Nko
text. Extra punctuations were removed from some
sources. Some entries in Baba Mamadi Diane’s
Nko-Francais dictionary were expanded using reg-
ular expressions so that separate forms of the same
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words (e.g. gendered, plural) were repeated as sep-
arate entries.

E.5 Uses

E.5.1 Has the dataset been used already? If
so, please provide a description.

The data was used to build baseline neural machine
translation algorithms for Nko. See Section 4.

E.5.2 Is there a repository that links to any or
all papers or systems that use this
dataset? If so, please provide a link or
any other access point.

https://github.com/mdoumbouya/
nicolingua-0005-nqo-nmt-resources
https://github.com/mdoumbouya/
nicolingua-0005-nqo-nmt-resources

E.5.3 What (other) tasks could the dataset be
used for? Please include your own
intentions, if any.

Any natural language processing tasks including
language modeling and machine translation.

E.5.4 Are there tasks for which the dataset
should not be used? If so, please provide
a description.

Not to the best of our knowledge.

E.6 Distribution

E.6.1 Please specify the source where you got
the dataset from.

The datasets came from the following individuals:

E.6.2 When was the dataset first released?
July 19 2023.

E.6.3 Are there any restrictions regarding the
distribution and/or usage of this data in
any particular geographic regions?

No.

E.6.4 Is the dataset distributed under a
copyright or other intellectual property
(IP) license? And/or under applicable
terms of use (ToU)? Please cite a
verified source.

The dataset is openly available under the
Attribution-ShareAlike 4.0 International (CC BY-
SA 4.0) license.

E.7 Maintenance
E.7.1 Is there any verified manner of

contacting the creator of the dataset?
The authors of this paper can be contacted via
email.

E.7.2 Specify any limitations there might be
to contributing to the dataset. i.e. Can
anyone contribute to it? Can someone
do it at all?

The dataset is openly available under the
Attribution-ShareAlike 4.0 International (CC BY-
SA 4.0) license.

E.7.3 Has any erratum been notified?
No.

E.7.4 Is there any verified information on
whether the dataset will be updated in
any form in the future? Is someone in
charge of checking if any of the data has
become irrelevant throughout time? If
so, will it be removed or labeled
somehow?

The dataset will be maintained on GitHub. Any
updates will be made available in the same GitHub
repository.

E.7.5 Is there any available log about the
changes performed previously in the
dataset?

Any future modifications will be tracked in
GitHub’s version control.

E.7.6 Could changes to current legislation end
the right-of-use of the dataset?

Not to the best of our knowledge.

E.7.7 Are there any lifelong learning updates,
such as vocabulary enrichment,
automatically developed?

No.
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F Train, Valid and Test Subset Details

Details on the training, validation, and test subset
composition for each model appear on the follow-
ing page.
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TRAIN
lines words file 200 201 202-9

6193 148442 common-parallel-corpora/multitext-nllb-seed/bam_Latn ✓ ✓
6193 136157 cpc/multitext-nllb-seed/eng_Latn ✓ ✓ ✓
6193 184138 cpc/multitext-nllb-seed/nqo_Nkoo ✓ ✓ ✓
6236 151323 nicolingua-0005/baba_mamadi_diane_parallel_002.eng_Latn ✓ ✓ ✓
6236 171085 nicolingua-0005/baba_mamadi_diane_parallel_002.fra_Latn ✓ ✓
6236 175382 nicolingua-0005/baba_mamadi_diane_parallel_002.nqo_Nkoo ✓ ✓ ✓
7001 17558 nicolingua-0005/kalo_mory_diane_parallel_001.eng_Latn ✓ ✓ ✓
7001 21593 nicolingua-0005/kalo_mory_diane_parallel_001.fra_Latn ✓ ✓
7001 28626 nicolingua-0005/kalo_mory_diane_parallel_001.nqo_Nkoo ✓ ✓ ✓
4001 12891 nicolingua-0005/kalo_mory_diane_parallel_003.eng_Latn ✓ ✓ ✓
4001 15050 nicolingua-0005/kalo_mory_diane_parallel_003.fra_Latn ✓ ✓
4001 18864 nicolingua-0005/kalo_mory_diane_parallel_003.nqo_Nkoo ✓ ✓ ✓
3999 12237 nicolingua-0005/kalo_mory_diane_parallel_002.eng_Latn ✓ ✓ ✓
3999 14495 nicolingua-0005/kalo_mory_diane_parallel_002.fra_Latn ✓ ✓
3999 17903 nicolingua-0005/kalo_mory_diane_parallel_002.nqo_Nkoo ✓ ✓ ✓
3052 9615 nicolingua-0005/solo_farabado_cisse_parallel_002.eng_Latn ✓ ✓ ✓
3052 11308 nicolingua-0005/solo_farabado_cisse_parallel_002.fra_Latn ✓ ✓
3052 13420 nicolingua-0005/solo_farabado_cisse_parallel_002.nqo_Nkoo ✓ ✓ ✓
1559 2382 nicolingua-0005/solo_farabado_cisse_parallel_001.eng_Latn ✓ ✓ ✓
1559 2338 nicolingua-0005/solo_farabado_cisse_parallel_001.fra_Latn ✓ ✓
1559 2739 nicolingua-0005/solo_farabado_cisse_parallel_001.nqo_Nkoo ✓ ✓ ✓

21590 133369 nicolingua-0005/baba_mamadi_diane_parallel_003.eng_Latn ✓ ✓ ✓
21590 154238 nicolingua-0005/baba_mamadi_diane_parallel_003.nqo_Nkoo ✓ ✓ ✓
36211 72612 nicolingua-0005/baba_mamadi_diane_parallel_004.eng_Latn ✓ ✓ ✓
36211 119536 nicolingua-0005/baba_mamadi_diane_parallel_004.nqo_Nkoo ✓ ✓ ✓
1001 3487 nicolingua-0005/djibrila_diane_parallel_001.eng_Latn ✓ ✓ ✓
1001 3536 nicolingua-0005/djibrila_diane_parallel_001.nqo_Nkoo ✓ ✓ ✓
148 1361 nicolingua-0005/djibrila_diane_parallel_002.eng_Latn ✓ ✓ ✓
148 1303 nicolingua-0005/djibrila_diane_parallel_002.nqo_Nkoo ✓ ✓ ✓
492 4122 nicolingua-0005/djibrila_diane_parallel_003.eng_Latn ✓ ✓ ✓
492 4666 nicolingua-0005/djibrila_diane_parallel_003.nqo_Nkoo ✓ ✓ ✓

37894 41598 nicolingua-0005/baba_mamadi_diane_parallel_001.fra_Latn ✓ ✓
37894 40436 nicolingua-0005/baba_mamadi_diane_parallel_001.nqo_Nkoo ✓ ✓
3604 35037 nicolingua-0005/nafadji_sory_conde_parallel_001.fra_Latn ✓ ✓
3604 39020 nicolingua-0005/nafadji_sory_conde_parallel_001.nqo_Nkoo ✓ ✓
2200 15413 nicolingua-0005/nafadji_sory_conde_parallel_002.fra_Latn ✓ ✓
2200 16091 nicolingua-0005/nafadji_sory_conde_parallel_002.nqo_Nkoo ✓ ✓
1141 21049 nicolingua-0005/nafadji_sory_conde_parallel_003.fra_Latn ✓ ✓
1141 22379 nicolingua-0005/nafadji_sory_conde_parallel_003.nqo_Nkoo ✓ ✓
721 11345 nicolingua-0005/nafadji_sory_conde_parallel_004.fra_Latn ✓ ✓
721 11863 nicolingua-0005/nafadji_sory_conde_parallel_004.nqo_Nkoo ✓ ✓

134000 2017158 nicolingua-0005/nafadji_sory_conde_monolingual_001.nqo_Nkoo ✓
10195 420749 nicolingua-0005/baba_mamadi_diane_monolingual_001.nqo_Nkoo ✓
44604 853464 nicolingua-0005/baba_mamadi_diane_monolingual_002.nqo_Nkoo ✓

Table 11: Data files included in the training set of each model family

VALID
lines words file 200 201 202-9

997 21565 common-parallel-corpora/flores-200-dev/bam_Latn.dev ✓ ✓
997 20954 common-parallel-corpora/flores-200-dev/eng_Latn.dev ✓ ✓ ✓
997 23957 common-parallel-corpora/flores-200-dev/fra_Latn.dev ✓ ✓
997 27361 common-parallel-corpora/flores-200-dev/nqo_Nkoo.dev ✓ ✓ ✓

TEST
lines words file 200 201 202-9

1012 22565 common-parallel-corpora/flores-200-devtest/bam_Latn.devtest ✓ ✓
1012 21901 common-parallel-corpora/flores-200-devtest/eng_Latn.devtest ✓ ✓ ✓
1012 25319 common-parallel-corpora/flores-200-devtest/fra_Latn.devtest ✓ ✓
1012 29503 common-parallel-corpora/flores-200-devtest/nqo_Nkoo.devtest ✓ ✓ ✓

Table 12: Data files included in the validation and test sets of each model family
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G Examples of Translations

Examples of generations highlighting the sensitiv-
ity our ouf baseline NMT system to punctuation
and case appear on the following page.
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Figure 12: A sentence from the FLoRes-200-devtest corpus translated from English to Nko and back-translated to
English using model 208.19. The three examples highlight the sensitivity of our baseline system to punctuation and
case. Top: original sentence; Middle: removed final period; Bottom: removed initial capitalization and final period.
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Abstract
We describe TTIC’s submission to the WMT
2023 Sign Language Translation shared task
on the Swiss-German Sign Language (DSGS)
to German track. Our approach explores the
advantages of using large-scale self-supervised
pre-training in the task of sign language trans-
lation, over more traditional approaches that
rely heavily on supervision, along with costly
labels such as gloss annotations. The proposed
model consists of a VideoSwin transformer for
image encoding, and a T5 model adapted to
receive VideoSwin features as input instead
of text. On WMT-SLT 22’s development set,
this system achieves 2.03 BLEU score, a 59%
increase over the previous best reported per-
formance. On the official test set, our primary
submission achieves 1.1 BLEU score and 17.0
chrF score. It also achieves the highest human
evaluation score among all the participants.

1 Introduction

Sign language translation (SLT) is the task of trans-
lating a signed language to a written language, typ-
ically the lingua franca of the region the signed lan-
guage is utilized. In recent years, SLT has received
increased attention from the natural language pro-
cessing (NLP) and computer vision (CV) commu-
nities.

The best-performing SLT models primarily rely
on glosses (Zhou et al., 2021; Chen et al., 2022),
a combination of morpheme translations into the
target language along with differentiating phono-
logical features like handshape and location. How-
ever, annotating glosses is expensive (Müller et al.,
2023b), and recent research has begun to move
away from gloss-based translation (Shi et al.,
2022a; Uthus et al., 2023; Lin et al., 2023), particu-
larly in regimes where larger datasets are available.

In this paper, we study large-scale self-
supervision and noisy supervision for Swiss-
German Sign Language (DSGS from the Ger-
man Deutschschweizer Gebärdensprache) to Ger-

man SLT, as part of the WMT-SLT 23 shared
task (Müller et al., 2023a). Given recent find-
ings on self-supervised transformers’ perfomance
on isolated sign recognition and feature extrac-
tion (Sandoval-Castañeda et al., 2023), we utilize
a VideoSwin (Liu et al., 2022) visual feature ex-
tractor with BEVT pre-training (Wang et al., 2022).
Additionally, we use T5 (Raffel et al., 2020) as a
sequence-to-sequence translation model into Ger-
man because of its state-of-the-art performance on
American Sign Language (ASL) to English SLT
with pose input (Uthus et al., 2023). Depending
on the generation algorithm, our model achieves
either the highest BLEU score (Papineni et al.,
2002) or the highest chrF (Popović, 2015) in the
task’s leaderboard. With top-k beam sampling, it
achieves 0.8 BLEU and 17.3 chrF, and with diverse
beam search (Vijayakumar et al., 2016), it achieves
1.1 BLEU and 17.0 chrF.

2 Method

Our model follows the most common gloss-free
translation architecture, composed of a visual en-
coding backbone and a transformer-based model
for sequence modeling. Our visual backbone
is a Video Swin Transformer (VideoSwin) and
our sequence-to-sequence model is a Text-to-Text
Transfer Transformer (T5).

2.1 VideoSwin

VideoSwin is an architecture proposed as an exten-
sion of the shifted-window transformer (Liu et al.,
2021), a hierarchical vision transformer that relies
on windowed self-attention for computational effi-
ciency. We pre-train a VideoSwin using video-only
BEVT pre-training (Wang et al., 2022) on Ope-
nASL (Shi et al., 2022a), using the codebook from
a discrete variational autoencoder (dVAE) (Ramesh
et al., 2021) to produce the labels in the self-
supervision objective. Though OpenASL is orig-
inally a sign language translation dataset, we ig-
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nore the English translations and train exclusively
on the dataset’s videos. Then, we fine-tune on the
gloss-based version (Dafnis et al., 2022; Neidle and
Ballard, 2022) of WLASL2000 (Li et al., 2020) for
supervised isolated sign language recognition.

Given a video with dimensions 16× 224× 224,
that is, 16 frames of height 224 pixels and width
224 pixels, VideoSwin first divides the input into
patches of shape 2 × 4 × 4 and produces a 128-
dimensional vector representation for each patch,
producing a tensor of shape 8×56×56×128. After
the first two windowed self-attention blocks, patch
representations are divided into non-overlapping
groups of four spatially contiguous patches, which
are then projected into a single 256-dimensional
vector each. This is done again after two windowed
self-attention blocks, and once more after eighteen
windowed self-attention blocks. The resulting ten-
sor after these patch merging steps has dimensions
8× 7× 7× 1024.

For translation, we pad the video at the end such
that the number of frames is a multiple of 16, divide
it into non-overlapping segments of 16 contigu-
ous frames, and run each segment independently
through the model. The visual features extracted
from the model are the output of the last windowed
self-attention block from VideoSwin for each video
segment. Then, we concatenate them across the
time dimension, and remove the model’s outputs
that correspond to the padding frames. This is done
both during training and during inference. More
formally:

f1:⌈T/2⌉ = Mv(I1:T ) (1)

where I1:T is a sequence of T image frames, Mv

is our VideoSwin model, and f1:⌈T/2⌉ is the result-
ing sequence of visual features, with dimensions
⌈T/2⌉ × 7× 7× 1024.

2.2 T5
T5 is a standard encoder–decoder text trans-
former (Raffel et al., 2020). Recent research has
found that T5 pre-trained on English and fine-tuned
for ASL to English translation produces state-of-
the-art results using pose input (Uthus et al., 2023).
We use a T5 model pre-trained on the German
Colossal Cleaned Common Crawl (GC4) corpus,
which is a cleaned and pre-processed German-
only corpus based on Common Crawl. We take
pre-trained checkpoints1 from HuggingFace (Wolf
et al., 2020).

1https://huggingface.co/GermanT5

Since our sequence of visual features f1:⌈T/2⌉
has dimensions ⌈T/2⌉ × 7× 7× 1024, we project
these into a single vector per timestep, ⌈T/2⌉ ×
1024. To this end, we use a simple convolutional
layer with kernel size 1 × 7 × 7. We replace the
word embeddings layer from the T5 model with
this convolutional layer. This is the only compo-
nent trained from scratch in our DSGS to German
translation model.

2.3 Training Loss

We use cross-entropy loss for BEVT pre-training,
isolated sign language recognition (ISLR) fine-
tuning, text-to-text pre-training, and features-to-
text translation.

2.4 Inference

We expand on the effect of generation algorithms
in Section 4.5. For our primary submission, our
generation algorithm of choice is diverse beam
search (Vijayakumar et al., 2016), with 5 beams, 5
beam groups, and a diversity penalty of 1.

3 Experimental Setup

3.1 Data

We use both last year’s and this year’s WMT-SLT
datasets. Last year’s training dataset is composed
of data from FocusNews and SRF, both news TV
programs, consisting of 17,207 manually aligned
DSGS–German pairs, for a total of 35 hours. Ger-
man text is obtained from the subtitles that corre-
spond to the original spoken German content, and
DSGS video is obtained from live translators. Man-
ual alignment is necessary to ensure that each trans-
lated sentence in the video is assigned the correct
German sentence. In contrast, this year’s dataset
consists of 231,834 DSGS–German pairs without
any manual alignment, for a total of 437 hours, of
only SRF data. Last year’s SRF data is a subset
of this year’s dataset, with the key difference that
the superset does not contain manually aligned and
verified German translations.

Additionally, we use OpenASL (Shi et al.,
2022a), a dataset consisting of 288 hours of ASL-
English pairs, for the self-supervised pre-training
of our visual encoder. In this pre-training we also
employ the labels produced by the codebook of a
dVAE, which was separately trained on Concep-
tual Captions (Sharma et al., 2018). For the sec-
ond stage of pre-training of our visual encoder,
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we fine-tune the pre-trained model on the gloss-
based version of WLASL2000 (Li et al., 2020), a
14-hour dataset consisting of 19,673 isolated sign
ASL videos and 1535 gloss labels (Neidle and Bal-
lard, 2022).

Lastly, the checkpoint we use for T5 is pre-
trained on the GC4 corpus. GC4 is a German-only
corpus that contains 40.8 billion tokens in total.
This is a subset of Common Crawl where the pri-
mary language is German extracted between 2015
and 2021.

3.2 Training

Our visual backbone is VideoSwin’s base version.
It consists of 88.1 million parameters, and is com-
posed of 2 windowed self-attention blocks with
128 hidden dimensions at stage 1, 2 with 256 hid-
den dimensions at stage 2, 18 with 512 hidden
dimensions at stage 3, and 2 with 1024 dimen-
sions at stage 4. We pre-train it in two stages.
First, we train it for 150 epochs on OpenASL via
video-only BEVT where the labels are produced
by the codebook of a dVAE, with a learning rate
of 0.0005 on a cosine schedule with 10 warmup
epochs and batch size of 128 across 8 GPUs. We
use AdamW (Loshchilov and Hutter, 2019) as the
optimizer, with β1 = 0.9 and β2 = 0.999 and
0.05 weight decay. In the second stage, we train it
on gloss-based WLASL20002 for classification for
120 epochs, this time with a learning rate of 0.0003
on a cosine schedule with 2.5 warmup epochs and
a batch size of 256 across 8 GPUs. Again, we
use AdamW as our optimizer, with β1 = 0.9
and β2 = 0.999 and 0.001 weight decay. Our
VideoSwin backbone is then frozen for the rest of
our model’s training.

For translation, we adapt T5’s efficient-
large (Tay et al., 2022) version using a convolu-
tional layer to project our representations. This
model is composed of 1.09 billion parameters, with
36 self-attention blocks in the encoder and 36 self-
attention blocks in the decoder. To tokenize the
target translations, we use a SentencePiece tok-
enizer trained on the same data as the German-only
T5, with a vocabulary size of 32,128. We train it
in two stages, using both WMT-SLT 22 and WMT-
SLT 23 data. WMT-SLT 23 translations are weakly
supervised labels, since there is no guarantee of

2The original data can be downloaded here: https://
dxli94.github.io/WLASL/ And the gloss-based labels can
be downloaded here: https://dai.cs.rutgers.edu/dai/
s/aboutwlasl

alignment between the video and the correspond-
ing text translations. Therefore, our pipeline uses
it as a large, noisy dataset to train the model which
will be eventually further fine-tuned with WMT-
SLT 22, which has manually verified labels. First,
we train it for 8500 steps on WMT-SLT 23’s dataset,
with a learning rate of 0.001 on a linearly decreas-
ing schedule and a batch size of 64 across 8 GPUs.
We use Adafactor (Shazeer and Stern, 2018) as the
optimizer. For the second stage, we train the model
for 1500 steps on WMT-SLT 22’s dataset, with a
learning rate of 0.0002 on a linearly decreasing
schedule with a batch size of 64 across 8 GPUs.
We also use Adafactor at this stage.

3.3 Evaluation

We evaluate our systems and compare them with
last year’s submissions, since we use the same vali-
dation set, using BLEU-1, BLEU-2, BLEU-3 and
BLEU-4.

4 Experimental Results

Table 1 shows the performance of our model on
WMT-SLT 22’s development set, compared to the
highest reported BLEU-4 scores reported on the
test set by human evaluation (Müller et al., 2022).
We also include MSMUNICH’s model based on
AV-HuBERT (Shi et al., 2022c), since it achieved
the highest BLEU-4 score on the development set.
Our model performs at least 81% better than the
others in all metrics, and 99% better in BLEU-4,
which is the metric used in the challenge’s leader-
board.

We additionally perform several ablations to
quantify the impact of our model’s several mov-
ing parts. Our ablations are performed using T5’s
efficient-base configuration with 619 million pa-
rameters for time efficiency, unless otherwise spec-
ified.

4.1 Visual Backbone

We first evaluate the effect of our choice of vi-
sual backbone and pre-training tasks. We com-
pare our VideoSwin backbone with two other mod-
els. First, we take a standard I3D model (Carreira
and Zisserman, 2017) trained on the ISLR com-
ponent of the BBC-Oxford British Sign Language
dataset (Albanie et al., 2020), called BSL5K (Varol
et al., 2021), since I3D is the most commonly used
backbone for SL translation. Previous literature
suggests that diversity of isolated signs leads to
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Model Backbone Translation Data B1 B2 B3 B4
MSMUNICH (Dey et al., 2022) AV-HuBERT WMT-SLT 22 – – – 1.28
MSMUNICH (Dey et al., 2022) I3D WMT-SLT 22 – – – 0.77
UZH (Müller et al., 2022) OpenPose WMT-SLT 22 – – – 0.59
TTIC (Shi et al., 2022b) I3D WMT-SLT 22 8.36 2.92 1.55 1.02
Ours VideoSwin WMT-SLT 22 + 23 15.19 5.62 3.06 2.03

Table 1: Performance of our model on WMT-SLT 22’s development set compared to WMT-SLT 22’s highest
reported scores. B1, B2, B3, and B4 stand for BLEU-1, BLEU-2, BLEU-3, and BLEU-4, respectively.

better representations for downstream tasks like
translation, and BSL5K is the largest and most
diverse ISLR dataset to our knowledge. We also
include an I3D model trained on WLASL2000 for
comparison. Second, we also include a version of
our pipeline where we replace OpenASL with the
WMT-SLT 23 training data without translations for
self-supervised pre-training. However, we do not
include WLASL2000 fine-tuning for this model,
given the language differences between DSGS and
ASL.

As Table 2 shows, There is significant deteri-
oration from shifting our self-supervised BEVT
VideoSwin backbone to any of the fully supervised
I3Ds. Similarly, despite being pre-trained in a dif-
ferent language, OpenASL pre-training performs
much better than WMT-SLT 23 pre-training, de-
spite being the smaller training set (288 vs. 437
hours). This is likely a product of OpenASL’s
far superior diversity in backgrounds, which are
masked in WMT-SLT 23, topics (social media con-
tent vs. news), and signers (220 vs. 4).

Backbone Data B1 B2 B3 B4
I3D ASL 12.15 2.96 1.31 0.79
I3D BSL 12.79 2.80 1.12 0.59
BEVT DSGS 12.43 3.34 1.72 1.16
BEVT ASL 15.16 5.20 2.75 1.82

Table 2: Impact of visual backbone and training data
on our model’s performance. I3D refers to Inception3D
models and BEVT refers to BEVT VideoSwin models.
We group our pre-training data by language: BSL refers
to BSL5K, DSGS refers to WMT-SLT 23, and ASL
refers to OpenASL (if BEVT) and WLASL2000.

4.2 Translation Pre-Training
We also consider different combinations of our two
DSGS to German translation datasets. In our train-
ing set-up, the model is first trained on WMT-SLT
23’s weakly supervised labels, and then fine-tuned
on WMT-SLT 22’s manually aligned labels. We

compare this to settings where we use either only
WMT-SLT 23 data or only WMT-SLT 22 data. Us-
ing only WMT-SLT 22 data is equivalent to WMT-
SLT 22’s challenge.

From Table 3, we can see that despite the possi-
ble misalignments in WMT-SLT 23, training on a
larger set of translation pairs is superior to using
only WMT-SLT 22 data. However, the best perfor-
mance we obtain comes from first training on the
potentially noisy but large WMT-SLT 23, and then
fine-tuning on WMT-SLT 22 for fewer steps.

W22 W23 B1 B2 B3 B4
✗ ✓ 14.28 4.33 2.27 1.58
✓ ✗ 13.47 4.30 2.19 1.42
✓ ✓ 15.16 5.20 2.75 1.82

Table 3: Impact of weak supervision translation labels
on our model’s performance. W22 refers to training
on WMT-SLT 22 data and W23 refers to training on
WMT-SLT 23 data. Where both are used, the model is
trained on WMT-SLT 23 first and then on WMT-SLT
22.

4.3 Sequence-to-Sequence Model

In addition to T5, we also adapt Whisper (Radford
et al., 2023) for DSGS to German translation and
test it. The intuition behind it is that audio and
video both have a time dimension that corresponds
to seconds, whereas text does not. We adapt it
in a similar fashion to T5, with the addition of
a 4× bicubic interpolation step right before the
convolutional layer. We do so because Whisper
receives input with 50 tokens per second, whereas
our VideoSwin features produce one representation
every two frames, for 12.5 every second, since the
video is at 25 frames per second.

Results in Table 4 suggest that using a text-
to-text model performs significantly better than a
speech-to-text one.
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Model B1 B2 B3 B4
Whisper 15.08 4.26 2.04 1.29
T5 15.16 5.20 2.75 1.82

Table 4: Impact of sequence-to-sequence component of
our model on translation performance.

4.4 Model Size

Next, we consider model size in Table 5. Due to
computational and time constraints, we only eval-
uate T5-efficient-small, T5-efficient-base, and T5-
efficient-large, with 142 million, 619 million, and
1.09 billion parameters respectively. As expected,
larger models correspond to better performance.

Size Params B1 B2 B3 B4
Small 142m 15.43 5.13 2.47 1.52
Base 619m 15.16 5.20 2.75 1.82
Large 1.09b 15.19 5.62 3.06 2.03

Table 5: Impact of model size on our model’s perfor-
mance.

4.5 Decoding Algorithm

Last, we evaluate the effect of different choices of
decoding algorithm on test set performance, using
our best performing model, T5-efficient-large. We
compare the results generated from the following
algorithms: greedy decoding, top-k sampling (Fan
et al., 2018), beam search, top-k beam sampling,
and diverse beam search (Vijayakumar et al., 2016),
with k = 50 and beam width set to 5. Table 6
shows our results from this experiment, revealing
that diverse beam search and top-k beam sampling
represent the most significant improvements from
the greedy decoding baseline. We choose diverse
beam search for our primary submission to the
challenge, as it is the only one that improves both
BLEU and chrF scores from our baseline.

Generation Algorithm B4 chrF
Greedy Decoding 0.9 16.0
Top-k Sampling 0.8 16.3
Beam Search 0.9 17.2
Top-k Beam Sampling 0.8 17.3
Diverse Beam Search 1.1 17.0

Table 6: Impact of generation algorithm for our best
model in WMT-SLT 23’s test set.

5 Conclusion

Our experiments evaluate a hierarchical vision
transformer on the task of sign language translation
for the first time, and demonstrate superior per-
formance over I3D-based translation models. We
also show the benefits of using large datasets and
self-supervised models for sign language transla-
tion, outperforming all previous fully supervised
approaches to this task. Our final model achieves
highest BLEU-4 score, highest chrF score, and
highest human evaluation score among all partic-
ipants of the task. However, translation quality
remains extremely low.
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Abstract

Sign Language Translation (SLT) is a com-
plex task that involves accurately interpreting
sign language gestures and translating them
into spoken or written language and vice versa.
Its primary objective is to facilitate communi-
cation between individuals with hearing diffi-
culties using deep learning systems. Existing
approaches leverage gloss annotations of sign
language gestures to assist the model in captur-
ing the movement and differentiating various
gestures. However, constructing a large-scale
gloss-annotated dataset is expensive and im-
practical to cover multiple languages, and pre-
trained generative models cannot be efficiently
used due to the lack of textual source context
in SLT. To address these challenges, we pro-
pose a gloss-free framework for the WMT23
SLT task. Our system primarily consists of
a visual extractor for extracting video embed-
dings and a generator responsible for producing
the translated text. We also employ an embed-
ding alignment block that is trained to align
the embedding space of the visual extractor
with that of the generator. Despite undergo-
ing extensive training and validation, our sys-
tem consistently falls short of meeting the base-
line performance. Further analysis shows that
our model’s poor projection rate prevents it
from learning diverse visual embeddings. Our
codes and model checkpoints are available at
https://github.com/HKUST-KnowComp/SLT.

1 Introduction

Machine translation has significantly improved
thanks to the development of pre-trained language
models (Mohammadshahi et al., 2022; Huang et al.,
2023). While translation within a single modality
has been extensively studied, translation involving
multiple modalities remains challenging and less
explored (Lin et al., 2023). Sign Language Trans-
lation (SLT), which translates sign gestures into
spoken language, remains an exceedingly complex
task due to two fundamental challenges. Firstly,

sign languages are visual-gestural languages that
rely on manual signs, facial expressions, and body
movements to convey information. This funda-
mental distinction sets them apart from written lan-
guages, which consist of word characters and sym-
bols. Consequently, translation models must be
able to accurately interpret visual signals and ges-
tures and develop a deep understanding of the se-
mantics involved in producing prompt translations.
However, the multimodal nature of sign languages
poses a significant challenge for models, requir-
ing them to learn and generalize these complex
interactions effectively. Moreover, sign languages
are typically represented as exceedingly lengthy
sequences of frames, surpassing the number of to-
kens in a standard sentence (Guo et al., 2018). This
requires translation models to grasp the prolonged
dependencies within the video to accurately cap-
ture the information conveyed through these visual
signals.

To tackle these challenges, methods have been
proposed that utilize pre-training a visual back-
bone based on gloss annotations (Camgöz et al.,
2020). These approaches have demonstrated ex-
ceptional performance in various multimodal trans-
lation tasks. Nevertheless, the acquisition of ex-
tensive gloss annotations comes with significant
cost and practical constraints, making it impracti-
cal to cover a wide range of multilingual translation
directions (Müller et al., 2023).

In this paper, we propose a gloss-free framework
for the SLT task. Our approach combines a pre-
trained visual backbone model (Varol et al., 2021),
which has been trained to recognize sign gestures,
with a GPT2-based language model (Radford et al.,
2019) to generate the translated sentence. To align
the embedding space between both models, we
utilize an embedding alignment block inspired by
ClipCap (Mokady et al., 2021). The final trans-
lation is produced using converted visual embed-
dings and text embeddings (Section 3). Despite
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Pretrained I3D
Feature Extractor

Embedding
Alignment

Block

# of Prefix 

Pretrained
German

GPT2

Schweizer Unternehmen und 
die Folgender Steuerreform 
von Präsident Trump.
(Swiss companies and the 
following tax reform by 
President Trump.)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹𝑝𝑝1 
,𝐹𝐹𝐹𝐹2 … ,𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉 = {𝑇𝑇1,𝑇𝑇2 … ,𝑇𝑇𝑇𝑇}

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺({𝑇𝑇1,𝑇𝑇2 … ,𝑇𝑇𝑇𝑇}) = {𝑆𝑆1, 𝑆𝑆2 … , 𝑆𝑆𝑆𝑆}

{𝑆𝑆1, 𝑆𝑆2 … , 𝑆𝑆𝑆𝑆}

Figure 1: An overview of our framework. We first downsample video data and feed them into the visual feature
extractor to obtain the visual embeddings. The embeddings are then passed into the alignment block to project them
into embedding inputs of the German-GPT2. They are used as the prefix of the GPT2 model to generate the final
translation results.

conducting extensive experiments with our system,
we consistently achieved a BELU score of 0.1 and
a chrF score of 7.6 on the testing set of the SRF
dataset, which is below the baseline performance.
Further analysis reveals that the embedding align-
ment block fails to differentiate between different
embedding inputs from the visual encoder. As a
result, our generation often produces repeated and
nonsensical outputs. We will make all codes and
results publicly available upon acceptance of this
paper.

2 Preliminary

2.1 Task Definition

The objective of the Sign Language Translation
(SLT) task (Fang et al., 2017; Kan et al., 2021) is to
utilize the model’s video understanding ability and
language modeling ability to translate meaningful
gesture sequence into spoken language (Varol et al.,
2021; Hu et al., 2023). Formally, our objective
is to learn a conditional probablity P (S|F r) of
generating a natural spoken language, denoted as
S = {S1, S2..., Sm} with m tokens given the raw
sign language video Fr = {F r

1 , F
r
2 ..., F

r
n} with n

frames.
To better elaborate our proposed model, we

Dataset #raw data #processed data

SRF 771 354901

Table 1: Statistics of the SRF dataset. # raw data refers
to the number of videos, and # processed data is the
amount of data after video slicing.

hereby set some notions for convenience. The
aforementioned S and Fr refer to the translated
spoken language and the sign language video be-
fore preprocessing. We use Fp = {F p

1 , F
p
2 ..., F

p
n}

to denote the preprocessed video frames. In our
proposed model, we endeavor to optimize the align-
ment block to yield better translation results while
parameters in other modules are frozen for training
efficiency.

2.2 Dataset

We use the datasets provided by Müller et al. (2023)
as our primary training and evaluation bench-
marks. Our model is exclusively trained on the
SRF dataset (Jiang et al., 2023b), while the SignSu-
isse dataset (Jiang et al., 2023a) is solely utilized
for zero-shot evaluation purposes. Both datasets
consist of sign language videos accompanied by
their corresponding translation text in German. The
statistical information for the SRF dataset can be
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found in Table 1.
The SRF (Jiang et al., 2023b) dataset comprises

videos from Standard German daily news (Tagess-
chau) and Swiss German weather forecast (Meteo)
episodes broadcast. They are further interpreted
into Swiss German Sign Language by hearing inter-
preters via Swiss National TV. In the SRF dataset
released by Müller et al. (2022), there are a total of
354901 video slices covering episodes from 2014
to 2022.

The SignSuisse (Jiang et al., 2023a) dataset con-
tains 18221 lexical items in Swiss German Sign
Language, French Sign Language of Switzerland,
and Italian Sign Language of Switzerland, repre-
sented as videos with corresponding spoken lan-
guage translations.

The BSL-1k (Albanie et al., 2020) is a large-
scale sign language recognition dataset constructed
based on British Sign Language(BSL) signs. The
authors leverage the observation that signers often
mouth the word they are signing simultaneously,
providing additional visual cues. They use visual
keyword spotting to detect the mouthings and align
them with the subtitles to determine whether and
when a keyword of interest is uttered by a talking
face using visual information. The dataset is then
used to train a strong sign recognition model for
co-articulated signs in BSL and serves as excellent
pretraining for other sign languages and bench-
marks. Thus, in our paper, it is reasonable for us to
use a model pretrained on BSL-1k as our visual fea-
ture extractor and expect it to yield meaningful and
informative video representations for the model to
utilize.

3 Method

This section introduces our proposed framework,
which is depicted in Figure 1. While previous sys-
tems (Dey et al., 2022; Shi et al., 2022; Tarres
et al., 2022) primarily employ an encoder-decoder
paradigm and train their models from scratch to
address this task, we distinguish ourselves by be-
ing the first to utilize a pre-trained language model
for this task, as these language models possess
strong natural language understanding and gen-
eration ability (Wang et al., 2023c, 2022; Fang
et al., 2021b,a, 2023; He et al., 2022; Bai et al.,
2023a,b). Specifically, we leverage the pre-trained
I3D model provided by Varol et al. (2021) as our
visual extractor backbone and employ a German-
GPT2 model (Schweter, 2020) as the generator’s

backbone.

3.1 Video Extractor
We use the Two-Stream Inflated 3D ConvNets
(I3D; Carreira and Zisserman, 2017) that is pre-
trained on the BSL-1k (Albanie et al., 2020) dataset
as our visual extractor backbone. I3D was first pro-
posed by Carreira and Zisserman (2017) aiming to
mitigate the 2D convolution network failure to cap-
ture the temporal information behind the video data.
To overcome this, I3D directly expands the original
2D convolution network, which yields significant
success in 3-dimensional space by expanding extra
dimension to the kernel and pooling layer. When
the kernel and pooling layers are extended to 3D
in I3D, these layers are initialized using the pre-
trained weights from the corresponding 2D image
classification networks. Overall, the I3D model
offers a powerful framework for action recognition
by leveraging the strengths of both image classi-
fication architectures and spatio-temporal feature
extraction in videos. For the SLT task, we ask the
model to transform a 64 frames (Fp) video into a
1024-dimensional tensor (V), denoted as:

Extractor({F p
1 , F

p
2 ..., F

p
n}) = V

3.2 Embedding Alignment Block
Inspired by the success of ClipCap (Mokady et al.,
2021), we then train an embedding alignment block
to project the obtained visual embeddings V into
textual embeddings T for further processing by
German-GPT2. ClipCap was originally designed
by Mokady et al. (2021) to tackle the task of im-
age captioning (Ou et al., 2023). In the paper, the
authors utilized the expressive power of an image
feature extractor and a generative language model.
By adding an alignment layer in between, the rep-
resentation of the visual modality can be projected
to the text modality for the language model to gen-
erate meaningful captions. The extraordinary abil-
ity shown by this innovative architecture makes
it reasonable for us to adopt it in our framework.
We implement the alignment block by stacking
six transformer encoder layers together. Two fully
connected neural networks are also placed before
and after the alignment block to extend the visual
embeddings into a sequential format and densify
the aligned embeddings into prefix embeddings of
German-GPT2, respectively. Formally, this process
can be denoted as:

Alignment(V) = {T1, T2..., Tm}
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BLEU chrF BLEURT

Submission all SS SRF all SS SRF all SS SRF

Baseline 0.09±0.03 0.15±0.06 0.10±0.05 12.4±0.4 12.2±0.5 12.5±0.5 0.072±0.003 0.083±0.005 0.060±0.005

KnowComp 0.07±0.05 0.06±0.02 0.11±0.09 7.6±0.3 8.2±0.4 7.2±0.4 0.083±0.005 0.084±0.007 0.081±0.007

Table 2: The experiment result of our proposed model comparing to the baseline released by the shared task
organizer. Although our model was trained only on SRF, we still shown stronger performance on BLEURT than the
baseline model in domain of SS and all. SS dataset is OOD and all is partially OOD for our model.

3.3 Text Generator
Finally, we leverage a pre-trained German-GPT2
model as the text generator to generate the final
translations by feeding the previously acquired tex-
tual prefix embeddings as the input. The German-
GPT2 is trained on a large German corpus GC4
and can generate fluent german sentences. This
step can be finally denoted as:

Generator({T1, T2..., Tm} = {S1, S2..., Sf}

4 Experiments

4.1 Experiment Setup
We first describe our data preprocessing procedure
and experiment settings.

4.1.1 Data Preprocessing
We first preprocess the raw data by dividing the
video into smaller segments, or video slices, and
match them with their corresponding ground truth
German translations. To address a potential issue
with the video extractor’s encoding capacity, we
adopt a downsampling strategy. Specifically, we se-
lect the first frame from every three frames in each
video slice. Doing so reduces the number of frames
and alleviates encoding challenges. Additionally,
we encounter cases where certain video slices have
fewer than 64 frames. To maintain consistency in
video length, we append pure black frames to the
end of these slices. To ensure compatibility with
the video feature extractor’s training environment,
we resize each video frame to 224 × 224 dimen-
sion. This step guarantees that the model functions
effectively within its designated parameters.

4.1.2 Experiment Setting
To enhance training efficiency, the parameters of
the two backbone models are frozen, while the
parameters of GPT2 are unfrozen after a certain
iteration. This ensures that the randomly initialized
transformer encoder does not compromise the lan-
guage modeling ability of the GPT2 model. In our

experiment, we set the batch size to 4, the learning
rate to 5e-6, and changed the training parameters
at iteration 66000. We employ an Adam (Kingma
and Ba, 2015) as our optimizer and save the model
checkpoint every 1000 iterations. The input and
output lengths of GPT2 were fixed at 20, as we ob-
served that most of the ground truth lengths were
20 or less, making this maximum length setting
cover a significant portion of the training data. We
set the number of heads in the multi-head attention
to 8 and the prefix length for GPT2 to 4. Before
feeding the embedding to the alignment block, the
sequence length for translating the visual embed-
ding was adjusted to 2 × 4, where 4 represents
the GPT2 model’s prefix number. Our model con-
sists of 6 stacked encoder layers forming the align-
ment block. All experiments were conducted on
NVIDIA GeForce GTX 1080 Ti with 11G memory.

4.2 Results

After extensive training and evaluation, our system
achieves a BLEU (Papineni et al., 2002) score of
0.1 and a Chrf (Popovic, 2015) score of 7.6 in this
shared task. These results are obtained from the
official result submission platform. We present our
experimental findings in comparison to the base-
line model provided by the organizers, as shown
in Table 2. Despite training our model solely on
SRF, we outperform the baseline regarding the
BLEURT (Sellam et al., 2020) score in SignSuisee
and a combination of both datasets, which are con-
sidered out-of-domain evaluations for our model.
However, it is important to note that our system
falls significantly below the baselines and systems
from other submissions. One potential explanation
for this discrepancy could be that our system has
not yet reached its optimal state, as the alignment
block is trained from scratch, which could be quite
challenging to converge. We conduct a fine-grained
analysis in the following section to further investi-
gate this hypothesis.
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Original Subtitles Generated Subtitles

Das Parlament muss nun auch die Städte ins Boot
holen.<pad><pad><pad><pad><pad>

Der Schweiz. Sie werden in der Schweiz geboren.
Deutschland......

da fehlte oft das richtige Tim-
ing,<pad><pad><pad><pad><pad>

"Der Stadt Zürich. Zürich. Zürich. Zürich.. die Stadt
Zürich. Zürich.. Zürich"

Am Samstagabend zunächst noch Föhn, dann wird es
feuchter.<pad><pad><pad>

"Der Schweizer Regierungspräsidentin der Schweiz.. 20.
20. 20. 20. 20."

Danke, Andrea.<pad><pad><pad><pad> "Der Film die Welt in den Abgrund. Rom. Deutsch-
land......."

Es liegt an uns, Lösungen zu finden, um dieses Spiel zu
gewinnen.<pad>

""Ich bin auch nicht, weil ich habe das nicht so viel.
West.W.."

Table 3: Examples of our generated subtitles with their corresponding ground truth subtitles. We observe that 4 out
of 5 of our generated sentences generate the same token for the first one and keep generating the same token at the
end of its sentence. We try to analyze the reason for this in the following section.

4.3 Analysis

To analyze the reasons behind the failure of our sys-
tem and its tendency to generate repetitive words
in translations, we conduct a tSNE plot analysis
of the visual embeddings before and after passing
through the embedding alignment block. The re-
sults are presented in Figure 2. Upon examining
the plot, we observe that the orange markers, rep-
resenting the embeddings before alignment, were
scattered, occupying a large area in the plot. In
contrast, the blue crosses, corresponding to the em-
beddings after alignment, are densely concentrated
in the middle of the plot. This stark contrast proves
that the model loses its ability to differentiate be-
tween different visual features after projecting the
embeddings from the I3D embedding space to the
German-GPT2 embedding space. One potential ex-
planation for this is that the embedding alignment
block has not been effectively trained under the
current training protocol. Further investigation is
required to understand the underlying causes and
devise appropriate solutions.

4.4 Case Study

In Table 3, we present several instances of our gen-
eration using the data from the SRF dataset. The
left column displays the ground truth sentences
with a pad token appended at the end. In the right
column, we showcase the generated sentences. No-
tably, 4 out of 5 of these sentences begin with “Der,”
and some consistently produce the same token, par-
ticularly in the final few positions. This further
illustrates the subpar performance of our model.
One possible explanation for this issue is the con-
centration of embeddings after the alignment block,

 
Figure 2: The tSNE comparison plot of the video embed-
dings before and after the embedding alignment block.
We observe that the embeddings of different videos are
dispersely distributed. However, they exhibit a denser
distribution after alignment, which challenges generat-
ing coherent natural language descriptions.

which increases the likelihood of generating similar
tokens. In the future, large-scale pertaining and ap-
propriately leveraging large language models (Ope-
nAI, 2023; Chan et al., 2023; Yu et al., 2023) and
large multimodal foundation models (Zhu et al.,
2023) may also be considered to improve the per-
formance of this task further.

5 Conclusions

In conclusion, this paper presents the KnowComp
system for the WMT23-SLT Sign Language Trans-
lation Shared Task. Our system utilizes two pre-
trained backbone models for visual feature extrac-
tion and translation text generation. However, this
architecture fails, resulting in unsatisfactory perfor-
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mance across all evaluation datasets. Our system’s
performance is significantly below the baseline’s
performance. We have identified a critical weak-
ness in our model through further analysis, includ-
ing embedding t-SNE plots and case studies. The
embedding alignment block unexpectedly densi-
fies all visual embeddings together, leading to the
generator generating repeated tokens. To enhance
our model’s performance in future work, an appro-
priate data augmentation technique (Wang et al.,
2023b,a; Gowda et al., 2022) can be implemented
to help the alignment block distinguish different
input features more efficiently. Also, future works
can focus on whether further increasing the model
capacity could help to mitigate the issue shown
in the analysis section considering the advancing
computation resources.
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Abstract

The effectiveness of a machine translation (MT)
system is intricately linked to the quality of its
training dataset. In an era where websites offer
an extensive repository of translations such as
movie subtitles, stories, and TED Talks, the
fundamental challenge resides in pinpointing
the sentence pairs or documents that represent
accurate translations of each other. This pa-
per presents the results of our submission to
the shared task WMT2023 (Sloto et al., 2023),
which aimed to evaluate parallel data curation
methods for improving the MT system. The
task involved alignment and filtering data to
create high-quality parallel corpora for training
and evaluating the MT models. Our approach
leveraged a combination of dictionary and rule-
based methods to ensure data quality and con-
sistency. We achieved an improvement with
the highest 1.6 BLEU score compared to the
baseline system. Significantly, our approach
showed consistent improvements across all test
sets, suggesting its efficiency.

1 Introduction

Neural Machine Translation (NMT) has revolu-
tionized the field of machine translation by utiliz-
ing deep learning algorithms to learn from large
amounts of data and generate high-accurate transla-
tions (Sennrich et al., 2016; Vaswani et al., 2017).
However, the success of NMT models heavily de-
pends on the quantity and quality of data used
for training. On low-resource language pairs, the
NMT architectures perform poorly (Koehn and
Knowles, 2017; Khayrallah and Koehn, 2018) and
are more sensitive to noisy data than statistical ma-
chine translation (SMT) methods (Belinkov and
Bisk, 2017; Koehn et al., 2018). Therefore, access
to vast cleaned corpus can significantly improve
the performance of NMT models, allowing them
to learn and produce more accurate translations
(Bojar et al., 2017).

Fortunately, very large text sources offer a mas-
sive collection of data for various types of content,
including movie subtitles, stories, and TED Talks.
These resources have not been fully exploited for
NMT training due to the lack of alignment between
the source and target languages. Furthermore, the
parallel data which movie subtitles also could be
noisy with poor accuracy (Khayrallah and Koehn,
2018). To address this challenge, WMT2023 intro-
duced a shared task on Parallel Data Curation for
the Estonian-Lithuanian (et-lt) language pair, fo-
cusing on finding the best possible training data set
within the web-crawled data to train a downstream
NMT model (Sloto et al., 2023).

Among the popular solutions, Thompson and
Koehn (2019) introduced using Vecalign to embed
sentences and compute the cosine similarity of sen-
tence pairs. Following this method, the shared task
provides participants with extensive cosine simi-
larity files and LASER embeddings generated by
the LASER model (Heffernan et al., 2022). Partici-
pants are tasked with identifying the most optimal
parallel data to train the MT models. Although this
approach performs efficiently in many cases, Zhou
et al. (2022) has shown that the cosine similarity
has several limitations. Because the sentence rep-
resentation in vector space could be impacted by
word frequency. To tackle this problem, we build
a pipeline to improve the quality of the parallel
corpus. Our contributions focus on:

• using the phrased base dictionary to distill the
high-quality sentences.

• making the pipeline to re-ranking the top-K
cosine similarity.

• analyzing the influence of cosine similarity
thresholds on corpus size and MT Models.

The related work is presented in section 2. The de-
tail of our method is described in section 3, experi-
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ments and results are shown in section 4. Finally,
the analysis is presented in section 4.5.

2 Related work

The WMT2023 shared task builds upon previ-
ous shared tasks focused on document alignment
(WMT 16) and sentence filtering (WMT 18, 19, 20)
(Buck and Koehn, 2016; Koehn et al., 2018, 2019,
2020). Previously, several researchers proposed a
method to align documents, such as Gomes and
Pereira Lopes (2016) used the phrase table to align
in the search space and then fill in and refine align-
ments. Moreover, Thompson and Koehn (2019)
employed the Vecalign to gain the sentence embed-
dings. Nevertheless, Sentence alignments based on
cosine similarity have some limitations because the
cosine scores could be dense in the range of 0.5
to 1 (Zhou et al., 2022). And with the same query
sentence, the higher score could not determine the
quality of the parallel sentence.

In addition, for the filtering shared task, partici-
pants applied filtering rules to eliminate noisy data,
including removing too long/short sentences, using
language identification for source and target (Ke-
jriwal and Koehn, 2020) or fine-tuning pre-trained
models such as BERT, XLM to re-score sentence
pairs (Yang et al., 2019; Bernier-Colborne and Lo,
2019; Açarçiçek et al., 2020). Besides, Xu and
Koehn (2017) created artificially noisy data by gen-
erating inadequate and nonfluent translations. They
used this noisy data to train a classifier to distin-
guish between high-quality and low-quality sen-
tence pairs within a corpus containing noise.

We found the related ideas from (Lu et al., 2020;
Xu et al., 2020). Both of these approaches only fo-
cus on the alignment rules and adopt the other pre-
trained models. Junczys-Dowmunt (2018) trained
an NMT model to filter data and became standard
for the high-resource case. Nevertheless, when
training an original NMT model with low or noisy
resources, the NMT model could face certain lim-
itations. In our work, we utilize the phrase table
to compute edit distance and extract the superior
sentences. Furthermore, we introduce a pipeline to
re-rank sentences based on their top-K cosine sim-
ilarity scores and extract the best compact corpus
for training purposes. The detail of our method is
presented in section 3.

3 Methodology

3.1 LASER Similarity Scores

The LASER2 similarity scores are produced for the
WMT23 shared task. These files are an intermedi-
ate output from our baseline submission. The laser
embeddings applied L2 normalization and added
them to a flat inner product index, such that the
resulting scores are equivalent to cosine similarity.
And query each index with all L2 normalized em-
beddings in the target sentences and store the top-8
results (locally, per chunk). Finally, the data is
aggregated and meticulously sorted across unique
IDs.

3.2 Building Dictionary

Our proposed method incorporates several innova-
tive techniques to enhance the accuracy and effi-
cacy of the filtering process. Initially, we train a
phrased table based on MGiza++1 (Gao and Vo-
gel, 2008), a widely utilized algorithm for learn-
ing phrase tables from parallel corpora. Given a
source string XI = {x1...xi...xI} and a target
string Y J = {y1...yj ...yJ}. In the context of statis-
tical alignment, the probability of a source sentence
given a target sentence is formulated as follows:

P (XI |Y J) =
J∑

i=1

Pθ(X
I
i , a

J
i |Y J

i ), (1)

Where aJi represents the alignment of the sen-
tence pair. The parameters θ can be estimated using
maximum likelihood estimation (MLE) on a train-
ing corpus to represent the statistical probability
with the best alignment of the sentence pair:

aJ1 = argmax
aJ1

pθ(x
I
i , a

J
i |yJi ), (2)

These steps enable us to establish connections
between words in the source and target languages.
After that, we extract the dictionary from the phrase
base table. This stage helps to remove unnecessary
or redundant words and sentences, streamlining the
dictionary and improving its quality.

3.3 Edit Distance

In this work, we utilized the dictionary to trans-
late source sentences to target sentences called can-
didate strings. To identify sentences where the
source and target are similar, we compute the edit

1https://github.com/moses-smt/mgiza
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distance between a pair of candidate and reference
sentences.

score = σ(CI
i , Y

J
i ), (3)

Here, CI
i is the candidate sentence and Y J

i indi-
cates the target sentence. The σ function employs
the Damerau-Levenshtein distance (Miller et al.,
2010). We set each insertion, deletion, and substi-
tution as one step, but the transposition (swapping)
of two words is computed as 1

2 step. We opted for
option 1

2 in the swapping step due to the limitation
of using a dictionary to translate strings, which
neglects word positions. Finally, we choose the
sentences that have scores greater than or equal to
N
2 , with N being the max length of the candidate

sentence and target sentence.

3.4 Accumulative Filtering

Because the word frequency impacts the cosine
score, we produce a filtering pipeline to improve
the corpus quality and apply it to the larger cor-
pus. The implementation method is described in
Algorithm 1.

Algorithm 1: Accumulative Filtering
Data: The raw parallel corpora:

(XI , Y J) ∈ D, dictionary, and
threshold_values in range {0.7-0.9}

Result: The cleaned data: (Xf , Yf ) ∈ D
/* Initialize the NMT model θ */
t← 0.9;
X,Y ← filter(D, t);
/* Filter data via top1 cosine

score with the threshold of t */
C ′ ← translate(X, dictionary);
/* Translate source using

dictionary */
Xf , Yf ← select(C ′, Y );
/* Select sentences based on

edit-distance score */
θ ← train(Xf , Yf );
/* Loop t with the step as 0,5 */
for t ∈ threshold_values do

X,Y ← filter_topK(D, t, 8);
X ′ ← translate(X, θ);
Xf , Yf ← select(C ′, Y );
θ ← train(Xf , Yf );

end

Figure 1: The statistics of the sentence length of each
test set are used to evaluate the cleaned corpus. We
separate the length of sentences into five levels, with 3-
15 as the total sentences exhibit lengths that fall within
the 3 to 5 range. The 16-35, 36-60, 61-80, 81-100, and
>100 are the 16 to 35, 36 to 60, 61 to 80, 81 to 100, and
greater 100 correspondingly.

4 Experiments

In this section, we describe the experimental setup
for our system, including the data, training tools,
and baseline system.

4.1 Data

In this shared task, the corpus was gathered from a
recent snapshot of CommonCrawl2.

Training Data

From the crawled data, the data is smoothed to
some steps such as extracting plain texts from
HTML documents, using the identifier language
to hold the Estonian and Lithuanian documents,
and removing the unsafe and offensive content.
Besides, each sentence is assigned a distinct, ran-
domly generated unique ID. These identifiers are
uniform within their language datasets but diverge
between two languages. This allows quick access
and operation with data. Table 2 depicts the total
number of collected data.

Testing Data

To assess the quality of the cleaned corpus, we train
NMT models and evaluate them in four test sets,
including EMEA, EU-Bookshop, Europarl, and
JRC-Acquis. The statistics of the sentence length
of each test set are exhibited in Figure 1, with the

2https://commoncrawl.org/blog/jan-feb-2023-crawl-
archive-now-available
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EMEA
BLEU

EU-
Bookshop

BLEU

Europarl
BLEU

JRC-
Acquis
BLEU

EMEA
chrF

EU-
Bookshop

chrF

Europarl
chrF

JRC-
Acquis
chrF

LASER
(Baseline)

18.3 19.1 18.1 24.3 49.7 52.3 51.8 55.2

Dictionary
+Edit-Dist

18.3 19.1 18.5 24.3 49.7 52.3 51.8 54.9

Accummulative Filtering:
Threshold-0.9 18.1 20.0 18.3 25.1 49.6 52.2 51.9 55.1
Threshold-0.85 18.5 20.3 19.1 25.4 49.7 52.7 52.2 55.2
Threshold-0.8* 19.2 20.1 19.2 25.7 49.9 52.8 52.1 55.4
Threshold-0.75 19.0 20.2 18.9 25.9 49.8 52.7 52.0 55.6

Table 1: The evaluation of BLEU scores and chrF scores for the filtering and alignment corpus.

No. Estonian Lithuanian
Num of Sents 53,279,844 63,556,320

Table 2: The statistics of sentences are available in the
corpus for the Estonian-Lithuanian.

total number of sentences in each test set being
10,000.

4.2 Training Tools

We utilize the training scripts3 provided by orga-
nizers to run the evaluation for the Shared Task. To
observe the effect of filtered datasets, we use the
same hyper-parameters for the whole experiment to
compare results equally. In more detail, the Trans-
former architecture (Vaswani et al., 2017) is used in
the training tool with the default 8 heads, 6 layers,
and the model size is 512. Besides, the training
pipeline employs the subword segmentation tool
provided by (Sennrich et al., 2016) for tokenization.
We use the sacreBLEU (Post, 2018) and ChrF++
(Popović, 2015) score to evaluate whole experi-
ments.

4.3 Baseline

Following scripts provided by organizers, we
present briefly how to create a simple baseline.
Firstly, we collect the whole provided cosine sim-
ilarity files. Secondly, we extract sentence align-
ments with the threshold of 0.9 and only select the
top highest similarity scores. And finally, we run
the end-to-end evaluation to produce BLEU scores
from the extracted data.

3https://github.com/awslabs/sockeye/tree/wmt23_data_task

4.4 Our system

In the first place, we obtain the cosine files that
are computed from Laser embeddings. From these
files, We extract the sentence pairs by consider-
ing the highest cosine similarity score, specifically
the top-1 score, and we set a threshold of 0.9. In
the following phase, we remove longer sentences
having 200 tokens and more and utilize the dictio-
nary to perform word-by-word translation of these
source sentences into the target language. After
that, we compute the edit distance and eliminate
poor-quality sentences. Finally, we employ the cu-
mulative filtering algorithm discussed in section 3.4
to acquire the expanded corpus, opting for thresh-
olds of 0.9, 0.85, and 0.8, respectively.

4.5 Results

In this section, we present the results obtained
through a comparative analysis of different meth-
ods within the context of our works. Table 1 il-
lustrates the results attained in the development
system while preparing the submission. The sys-
tem responsible for generating the scores for our
final submission is shown in underline. We con-
sider the reported results as the LASER baseline,
and the outperforming results are indicated in bold.

Our investigation reveals that the LASER base-
line provides a starting point for evaluation and
moderate levels of performance across a range of
metrics. However, the Accumulative Filtering ap-
proach, particularly when applying lower thresh-
old values (0.85, 0.8, and 0.75), showcases signifi-
cant improvements in various metrics. Notably, the
choice of threshold within the Accumulative Fil-
tering method influences performance, with lower
thresholds yielding higher results. These findings
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top1_0.95 top1_0.9 top1_0.85 top1_0.8 top1_0.75 top1_0.7
Corpus size 173,239 1,230,810 4,194,132 12,918,719 27,811,424 32,568,712

BLEU 16.8 23.9 25.1 25.4 25.0 24.4

Table 3: The influence of sentences on the corpus size and BLEU score. The evaluation of the BLEU score is
conducted specifically on the JRC-Acquis test set. Sentence selection is based solely on the cosine score threshold,
with additional criteria involving the removal of excessively short or long sentences.

underscore the importance of threshold selection
and methodological considerations in achieving op-
timal outcomes. Further analysis and task-specific
considerations are required to determine the most
suitable approach for our specific research objec-
tives. We analyze the impact of the cosine similar-
ity score thresholds on the corpus size and quality
of NMT models. The details are described in sec-
tion 4.5.

5 Analysis

In this section, we delve deeply into our approaches
and the scale of our data corpora. Firstly, we
conduct some experiments to find the best thresh-
old when selecting the top-K highest cosine sim-
ilarity score. For every source sentence, our ap-
proach involves selecting a single target sentence
from a set of eight candidates based on the high-
est cosine similarity score provided. Table 3 il-
lustrates the impact of different sentence selection
criteria, denoted by the cosine similarity thresh-
olds (top1_0.95, top1_0.9, top1_0.85, top1_0.8,
top1_0.75, top1_0.7), on both the corpus size and
BLEU score. The corpus size varies significantly
depending on the threshold, ranging from 173,239
sentences to 32,568,712 sentences. Simultaneously,
the BLEU score, evaluated on the JRC-Acquis
test set, fluctuates, with the highest score of 25.4
achieved at the top1_0.8 threshold. These findings
underscore the delicate balance between corpus
size and translation quality, highlighting the im-
portance of threshold selection in the context of
machine translation evaluation.

Secondly, we conduct a statistical analysis to de-
termine the number of sentence pairs that achieve
the highest cosine score but are not considered par-
allel sentences. Table 4 shows the statistics for the
number of sentences that do not have the highest
cosine similarity score but are regarded as parallel
sentences. The table indicates a total of 5,981,148
sentences in cleaned data and 353,642 sentences
are considered re-ranking parallel sentences.

No. Cleaned Data Re-ranking
Num of Sents 5,981,148 353,642

Table 4: Number of sentences that are not in top-1 co-
sine similarity score, but are considered parallel sen-
tences.

6 Conclusion

In conclusion, our study has provided valuable in-
sights into the performance of different methods
employed in our research on WMT2023 parallel
data curation shared tasks. Our findings reveal
that while the LASER baseline and using the dic-
tionary method exhibited moderate and consistent
performance across several metrics, the accumula-
tive filtering approach, particularly when adopting
lower threshold values (0.85, 0.8, and 0.75), demon-
strated notable improvements in various aspects.
Notably, the selection of the threshold played a
pivotal role in influencing performance outcomes.
Furthermore, our analysis also encompassed the
identification of sentence pairs that exhibit parallel
characteristics, even if they may not always pos-
sess the highest cosine similarity scores. In the
future, further investigation and task-specific con-
siderations will be essential in finding the smallest
possible set of training data and achieving the high-
est result.
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tan Hatipoğlu, Chong Hsuan Huang, and Wei Peng.
2020. Filtering noisy parallel corpus using trans-
formers with proxy task learning. In Proceedings of
the Fifth Conference on Machine Translation, pages
940–946, Online. Association for Computational Lin-
guistics.

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion.

Gabriel Bernier-Colborne and Chi-kiu Lo. 2019. NRC
parallel corpus filtering system for WMT 2019. In
Proceedings of the Fourth Conference on Machine

363



Translation (Volume 3: Shared Task Papers, Day
2), pages 252–260, Florence, Italy. Association for
Computational Linguistics.
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Abstract
This paper describes the AST submission to the
WMT23 Shared Task on Parallel Data Curation.
We experiment with two approaches for curat-
ing data from the provided web-scraped texts.
We use sentence alignment to identify docu-
ment alignments in the data and extract parallel
sentence pairs from the aligned documents. All
other sentences, not aligned in that step, are
paired based on cosine similarity before we ap-
ply various different filters. For filtering, we
use language detection, fluency classification,
word alignments, cosine distance as calculated
by multilingual sentence embedding models,
and Bicleaner AI. Our best model outperforms
the baseline by 1.9 BLEU points on average
over the four provided evaluation sets.

1 Introduction

The aim of the Shared Task on Parallel Data Cura-
tion at the Eighth Conference on Machine Transla-
tion (WMT23) is to evaluate parallel data curation
methods (Sloto et al., 2023). The goal is to find the
best machine translation (MT) training data within
a provided pile of web-crawled data.

The language pair chosen for the task is Estonian-
Lithuanian. The provided data is extracted from a
single snapshot of CommonCrawl,1 which accord-
ing to the task organizers should contain enough
training data to train a reasonable Estonian →
Lithuanian MT model, even with limited compute.
As well as providing the data, the organizers release
pre-computed intermediate steps from a baseline,
so participants can choose whether to focus on one
or more aspects of the task. We describe the pro-
vided data and the baseline in Section 3.

In our submission we experiment on two aspects
of parallel data curation. Initially we try to to iden-
tify parallel documents in the two languages. We
then align sentences in the documents using our
own sentence alignment tool, SentAlign2 (Stein-

1https://commoncrawl.org/
2https://github.com/steinst/SentAlign

grímsson, 2023; Steingrímsson et al., 2023b), and
train an MT system on the resulting sentence pairs.
SentAlign is a sentence aligner that uses LaBSE
(Feng et al., 2022) to score all possible alignment
combinations for a document pair, selects the high-
est scoring one, but then re-evaluates the results
by looking at each individual alignment and their
closest neighbours to see if localized scores can
be raised. This is to counteract an effect of dy-
namic programming with cosine similarity, which
often favours many-to-many alignments over 1-
to-1 alignments (see e.g. Thompson and Koehn
(2019). Steingrímsson et al. (2023b) show that this
approach outperforms other aligners on two eval-
uation sets, as well as on a downstream task. The
other aligners include aligners such as the length
based Gale-Church (Gale and Church, 1991), MT-
based Bleualign (Sennrich and Volk, 2010) and Ve-
calign (Thompson and Koehn, 2019) which is the
most similar to SimAlign, using LASER embed-
dings (Artetxe and Schwenk, 2019b) to calculate
cosine similarity of alignment candidates, and a
recursive approximation to reduce the search space,
as opposed to evaluating all possibilities as SentAl-
ign does. We describe our approach to document
alignment in Section 4.1. Subsequently, we try
to identify parallel sentence pairs in all the other
provided data and run a number of different filters
to remove sentence pair candidates that we deem
likely to be detrimental or useless for MT training.
Our filtering approaches are described in Section
4.2

2 Related Work

Khayrallah and Koehn (2018) show that incor-
rect translations, untranslated target text, misalign-
ments, and other noisy segments in a parallel cor-
pus have a detrimental effect on the output qual-
ity of neural machine translation (NMT) systems
trained on that corpus, as measured by using BLEU
(Papineni et al., 2002). They specify five general
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classes of noise commonly found in a German-
English version of the ParaCrawl corpus: mis-
aligned sentences, disfluent text, wrong language,
short segments, and untranslated sentences. They
find this distinction to be useful to give a general
idea of which types of errors seem to have the least
impact on MT systems (short segments, untrans-
lated source sentences and wrong source language)
and which have the most dramatic effect (untrans-
lated target sentence). Misalignments, misordered
words, and wrong language, in source or target
texts, are also shown to be harmful, but not as
harmful.

The Conference on Machine Translation, WMT,
hosted three annual shared tasks on parallel corpus
filtering (Koehn et al., 2018, 2019, 2020), focusing
on filtering noisy web-crawled corpora. Submit-
ted systems include the ones by Chaudhary et al.
(2019) and Artetxe and Schwenk (2019a), who in-
troduce approaches based on cross-lingual sentence
embeddings trained from parallel sentences. Both
papers use cosine similarity and consider the mar-
gin between a given sentence pair and its closest
candidates to normalize the similarity scores.

Bicleaner (Sánchez-Cartagena et al., 2018;
Ramírez-Sánchez et al., 2020) uses a set of hand-
crafted rules to detect flawed sentences and then
proceeds to use a random forest classifier based
on lexical translations and several shallow fea-
tures such as respective length, matching numbers
and punctuation. It also scores sentences based
on fluency using 5-gram language models. The
tool ranked highly on the first two parallel corpus
filtering tasks at WMT. Bicleaner AI (Zaragoza-
Bernabeu et al., 2022) is a fork of Bicleaner us-
ing a neural classifier. It has been shown to give
significant improvements in translation quality as
measured by BLEU when used for filtering training
data for multiple language pairs, as compared to
the previous version of the tool.

In contrast to tools that apply a single method
for parallel corpus filtering, Aulamo et al. (2020)
implement multiple different filters in the OpusFil-
ter toolbox. These include heuristic based filters,
language identification, character-based language
models and word alignment tools. The toolbox can
furthermore be extended with custom filters.

Herold et al. (2022) revisit the noise classes
specified by Khayrallah and Koehn (2018) to in-
vestigate how accurately two strong filtering ap-
proaches, cross entropy (Rossenbach et al., 2018)

and LASER (Artetxe and Schwenk, 2019b) can
filter out different noise classes. They find that for
a common language pair, German→English, most
types of noise can be detected with over 90% ac-
curacy, although misalignments and poor synthetic
translation can only be detected with an accuracy
of less than 70%. For a less common language pair,
Khmer–English, the performance of the filtering
system degraded significantly and the accuracy of
identifying noise was lowered by 8–19%, depend-
ing on the type of noise, indicating that results can
vary dramatically depending on the languages.

3 Data and Baseline

The provided data is retrieved from the 2023-06
snapshot of Common Crawl. The organizers have
extracted plain text from HTML documents and
used the Fasttext (Joulin et al., 2017) language iden-
tification model to remove documents not classified
as Estonian or Lithuanian by the model, based on
the first 2,000 characters of the document. Unsafe
and offensive content has been removed. Docu-
ments from host names in the following lists in
the blocklist project3 where removed: abuse, basic,
crypto, drugs, fraud, gambling, malware, phishing,
piracy, porn, ransomware, redirect, scam, torrent.
Documents were split into paragraphs based on line
breaks, and then into sentences using Mediacloud
Sentence Splitter.4 Each sentence was assigned a
unique sentence id and classified using the Fasttext
language identification model. The data is provided
in TSV format.

The task organizers provide LASER2 sentence
embeddings (Heffernan et al., 2022) for all sen-
tences in the correct language, as classified by the
Fasttext model. They index the embeddings and
query each index to retrieve the top-8 results for
each sentence, based on cosine similarity. We use
these results as a starting point for our filtering ap-
proaches, as described in Section 4.2. The baseline
simply takes top-1, i.e. the highest scoring sentence
pair for each sentence, provided the score exceeds
a threshold of 0.9. This results in a set of 2,654,090
parallel pairs for training a baseline model.

A script for training the baseline model using
Sockeye (Hieber et al., 2022) was provided. We
use the script and Sockeye for training all models
on a single Nvidia GeForce RTX 3090 GPU card.

3https://github.com/blocklistproject/Lists
4https://github.com/mediacloud/

sentence-splitter
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4 System Architecture

In this section we describe our approaches to the
parallel data curation problem. First, we try to
identify parallel documents in the two languages
and align them on the sentence level. Second, we
use the provided sentence pair candidates, eight for
each sentence in each language, and filter using a
number of different approaches to remove possi-
bly detrimental pairs from our training set. The
sentence pairs from the aligned documents and the
filtered sentence pairs are combined to compile our
final dataset.

4.1 Document identification by Sentence
Alignment

Bilingual document alignment is a matching task
that considers documents in two languages and es-
timates the likelihood of the documents being a
translation of each other. In the Bilingual Docu-
ment Alignment Shared Task at WMT 2016 (Buck
and Koehn, 2016), the submitted systems used a va-
riety of approaches. Some of these include Gomes
and Pereira Lopes (2016), who used a phrase ta-
ble from a phrase-based statistical machine trans-
lation (SMT) system to compute coverage scores.
Dara and Lin (2016) use MT to find corresponding
documents based on n-gram matches, assisted by
document length ratio, and Mahata et al. (2016)
use text matching based on sentence alignment and
word dictionaries. Thompson and Koehn (2020)
present a document alignment method that uses in-
formation on sentence order both when generating
candidates and when re-scoring the candidates. For
re-scoring the candidate pairs they perform sen-
tence alignment and score the alignment based on
semantic similarity of the resulting sentence pairs.

In this paper, we use sentence alignment and
average cosine distance as measured by LaBSE
(Feng et al., 2022) to determine whether documents
can be aligned. The provided dataset contains sen-
tences scraped from the web, information on the
web domain and an order of sentences within doc-
uments on the websites. We recreate documents,
most likely to have a corresponding translation in
the other language, using this information. In order
to reduce the need for compute we only consider
texts from the same domain to be possible candi-
dates for document alignment.

Our approach is the following:

1. We start by collecting a list of all web domains
common to both languages.

2. From these domains, we recreate all docu-
ments that contain more than five sentences.
The recreated documents have one sentence
in each line.

3. Using SentAlign, for each domain we align
the recreated documents in Estonian to all the
recreated documents in Lithuanian, and vice
versa. SentAlign outputs all aligned sentence
pairs, as well as the LaBSE score for the pair.

4. If more than half of the sentences in either
language does not get an alignment, the docu-
ment pair is discarded.

5. If the average LaBSE score for all sentence
alignments for a given document pair is be-
low a threshold of 0.6, the document pair is
discarded.

6. We calculate an alignment ratio using Equa-
tion 1:

1

2

(
etaligned
ettotal

+
ltaligned
lttotal

)
(1)

Where etaligned is the number of Estonian sen-
tences that obtain an alignment to a Lithuanian
sentence, and ettotal is the total number of Es-
tonian sentences in the document. ltaligned
and lttotal are the corresponding numbers for
Lithuanian.

From a pool of documents for each web do-
main, a greedy algorithm selects the docu-
ment pair with the highest alignment ratio,
and if multiple pairs have the highest ratio,
one of those with the highest average LaBSE
score. The selected documents are then re-
moved from the pool and the process repeated
until all acceptable pairs have been collected
for that domain.

The sentence alignment approach to identify-
ing aligned documents in (Thompson and Koehn,
2020) uses Vecalign (Thompson and Koehn, 2019)
and LASER embeddings to perform sentence align-
ment and judge sentence similarity. While we use
a different aligner and embeddings, our approach
follows the same general strategy, with the main
difference being that language identification is part
of their scoring function while we simply require
over half the sentences in each document to ob-
tain an alignment. We can do this as the provided
data set we work with has been selected based on
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language identification, so we can assume the sen-
tences we work with are generally in the correct
language.

Our process results in 4,372 document pairs, con-
taining 160,787 sentence pairs after deduplication.
We remove all sentence pairs that have less than
three tokens in either language, disregarding all
numbers and other non-alphabetical symbols. Fur-
thermore, we remove all sentence pairs that obtain
a LaBSE score lower than 0.4. While we do not
have any statistics on what the ideal LaBSE thresh-
old should be for this language pair, Steingrímsson
et al. (2023a) show that for Icelandic-English over
half the sentence pairs are acceptable when the
LaBSE score exceeds 0.4, and we base our thresh-
old on that. Our approach results in a set of 120,756
sentence pairs obtained from parallel documents,
with 114,301 of those used for training after we
have removed sentences that may overlap with test
and development datasets.

4.2 Filtering Sentence Pair Candidates
Having extracted sentence pairs from aligned doc-
uments, we have yet to consider most of the data
in the provided dataset. We experiment with vari-
ous filtering filtering approaches and as a starting
point we simply use the sentence pair candidates
provided by the tasks organizers, eight Lithuanian
sentences for each Estonian sentence and eight Es-
tonian sentences for each Lithuanian sentence, as
described in Section 3. To extract the best sen-
tence pairs, we apply a number of diverse filtering
approaches to these sentence pair candidates.

We start by filtering the sets of Estonian and
Lithuanian sentences separately:

1. To start with, we have 142,516,521 sentences
in Estonian and 210,914,146 sentences in
Lithuanian. We deduplicate these sets, giv-
ing us 53,228,455 Estonian sentences and
63,536,939 Lithuanian sentences.

2. Although the Fasttext language detection
model has been applied to the data, it still con-
tains sentences that are in different languages.
In order to remove these we run two additional
language detection tools, lingua5 and langde-
tect (Shuyo, 2010). From both of these tools
we acquire a language classification for each
sentence. We then remove all sentences that
do not obtain the expected classification by

5https://pemistahl.github.io/lingua-py

at least two of the three classifiers that have
been applied. This leaves us with 33,500,758
Estonian sentences and 43,173,412 lithuanian
sentences.

3. In order to remove sentences that may be dis-
fluent we use two pre-trained GPT-2 (Radford
et al., 2019) models, one for each language,6

to classify the sentences. For that we use the
approach described in (Steingrímsson et al.,
2023a): We collect two sets of sentences for
each language, one containing sentences that
are presumably fluent and the other one con-
taining sentences that are likely to be disfluent.
To train the classifiers, we selected 15,000 sen-
tences randomly for each language from the
Leipzig Corpora Collection (Goldhahn et al.,
2012) for the fluent examples and 15,000 ran-
dom sentences from the provided data we
had already discarded in the previous step.
The classifier uses the GPT-2 model to calcu-
late perplexity for the sentences, and chooses
potential thresholds as the average between
two adjacent perplexity values. It then uses a
maximization function to decide on a thresh-
old that yields the most accurate prediction
based on the training set. After classifying
the remaining sentences, and removing the ap-
proximately 120 thousand sentences included
in the document alignment data previously
acquired, we are left with 31,298,451 Esto-
nian sentences and 29,498,886 Lithuanian sen-
tences.

Next, we consider the provided sentence pair
candidates as calculated using LASER2. We have
two candidate lists, one with eight candidates for
each Estonian sentence and another with eight can-
didates for each Lithuanian sentence. We remove
all pairs containing sentences not in our filtered
sentence lists. We then take an intersection of the
resulting sets. The intersection thus only contains
sentence pairs where the Lithuanian sentence is one
of the top 8 candidates for the Estonian sentence,
and vice versa. This gives us a list of 36,250,870
sentence pairs, 35,720,955 after we have excluded
all pairs containing sentences that overlap with sen-
tences in the evaluation or development data sets.
It should be noted that at this stage some sentences

6Lithuanian model: https://huggingface.co/
DeividasM/gpt2_lithuanian_small; Estonian model:
https://huggingface.co/tartuNLP/gpt-4-est-base
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are found in multiple sentence pairs. We proceed
to filter this set of sentence pairs:

4. For each Estonian sentence we select only
the Lithuanian sentence that gives the high-
est LASER2 score, and for each Lithuanian
sentence we likewise select only the Estonian
sentence with the highest score. This reduces
the candidate list to 24,735,722 sentence pairs.

5. The sentences comprising the pairs are tok-
enized. We then run fast-align (Dyer et al.,
2013) to obtain word alignments for each sen-
tence pair. These word alignments are used to
calculate a word alignment score, WAScore,
a word alignment-based score devised to mea-
sure word-level parallelism, introduced in Ste-
ingrímsson et al. (2021). Steingrímsson et al.
(2023a) show that when WAScore is low, very
few sentences are good mutual translations.
We remove all sentence pairs that have a WA-
Score lower than 0.15, indicating that 40% or
fewer tokens in either sentence obtained an
alignment on average. After that our candi-
date list contains 21,387,140 sentence pairs.

6. We calculate a LaBSE score for all the pairs.
If the LaBSE score is higher than 0.9, we ac-
cept the sentence pair for our final training set
without further processing. These are 891,313
sentence pairs. We also set a minimum thresh-
old of 0.6, as suggested by Feng et al. (2022).
This gives us 13,289,869 sentence pairs to
processed further, and the rest is discarded.

7. Next, we train Bicleaner AI (Zaragoza-
Bernabeu et al., 2022) to classify the Estonian-
Lithuanian language pair. For training Bi-
cleaner we need monolingual corpora and
parallel corpora. For monolingual data we
collected 5 million sentences in each lan-
guage from the Leipzig Corpora Collection
and used 100 thousand parallel pairs randomly
selected from the set of sentence pairs ex-
tracted from the document alignment step
described in Section 4.1. Our Bicleaner AI
model gives low scores and we accept sen-
tence pairs with scores over the threshold of
0.05. We run the model on all unfiltered sen-
tences, removing over 20 million and leaving
us with 14,988,586 sentence pairs, as shown
in Table 1.7 We later take an intersection of

7Our model is available at Github: https://github.com/

this set and the set obtained by applying other
filters, as shown in Table 2.

8. Finally, we use the LASER2 scores, LaBSE
scores, WAScore and NMTScore (Vamvas
and Sennrich, 2022) with a classifier to pre-
dict whether a sentence pair contains a mutual
translation. NMTScore is based on translation
cross-likelihood, the likelihood that a transla-
tion of segment A into some language, could
also be a translation of segment B into the
same language. We used OPUS-MT models
to translate the segments. We use a logistic re-
gression (Cox, 1958) classifier trained on the
same data as the GPT-2 classifiers described
above. The classifier accepts as valid mutual
translations, 2,967,348 sentence pairs out of
the 13,289,869 marked for further processing
in (6). When these are added to the set of pre-
viously accepted sentences from the aligned
documents and the ones having very high
LaBSE scores, we have 3,902,740 in our final
training set, before applying the Bicleaner AI
filter, as shown in Table 2.

5 Results

In addition to the baseline models described in
Section 3, we trained eleven MT models using
data sets at different stages of the compilation pro-
cess and evaluated on the provided test sets, using
BLEU8 and chrF9. Table 1 shows the results after
each filtering step until the logistic regression fil-
ter, and Table 2 shows the final sets after filtering
and an ablation study on the effects of combining
the sets acquired using different approaches. Our
best model (K) was trained on a combination of
sentence pairs from the aligned document pairs
(G), sentence pairs with a LaBSE score over 0.9
(H) and the sentence pairs accepted by our logistic
regression filter (I).10

steinst/BicleanerAI-models
8Sacrebleu signature: BLEU+nrefs.1+case.mixed+eff.no

+tok.3a+smooth.exp+version.2.3.1
9Sacrebleu signature: chrF2+nrefs.1+case.mixed+eff.yes

+nc.6+nw.0+space:no+version.2.3.1
10We submitted dataset L to the shared task, which has

somewhat lower scores than dataset K and was the dataset
that was used to train our second best model. This was due
to an error in our training script used for selecting a dataset
to submit. The script did not remove sentences overlapping
with evaluation data, giving us incorrect results. This error
has been rectified in all results given in this paper and when
we talk about our best model we are always referring to the
model trained on dataset K.
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Bleu ChrF
Data Filters No. sent. EMEA EUB EP JRC EMEA EUB EP JRC
A. Unfiltered 35,720,955 16.2 14.8 15.1 18.2 45.0 43.3 45.9 45.8
B. A ∩ Bicleaner AI 14,988,586 18.7 17.4 17.3 21.8 49.2 48.0 49.5 50.2
C. A ∩ Best LASER2 24,735,722 15.1 15.1 14.7 18.2 45.9 45.3 46.3 48.3
D. C ∩WAScore filter 21,387,140 19.4 18.9 17.3 23.9 49.3 48.7 49.0 52.0
E. D ∩ LaBSE > 0.6 13,958,582 19.9 19.0 18.3 23.3 50.3 50.6 50.3 52.4
F. B ∩ E 7,193,830 20.5 19.4 18.5 24.2 51.2 51.6 51.4 53.5

Table 1: Scores for the models trained on datasets compiled by applying different filters. We evaluate on the four
provided test sets, with data from EMEA, EUBookshop (EUB), Europarl (EP) and JRC-Acquis. The table shows
the number of sentences, BLEU and ChrF scores after different filters have been applied.

Bleu ChrF
Data Filters No. sent. EMEA EUB EP JRC EMEA EUB EP JRC
Baseline 2,654,090 18.2 19.1 17.8 24.3 49.5 52.2 51.5 54.8
G. Aligned Docs 114,301 8.0 10.9 9.3 16.2 33.8 41.6 40.3 44.5
H. LaBSE > 0.9 868,039 18.9 17.2 16.3 22.6 50.1 50.3 49.9 52.6
I. Logistic Regression 2,925,549 15.4 14.1 13.7 18.2 45.7 46.2 46.5 48.0
J. H ∪ I 3,788,511 20.2 19.5 18.3 24.8 51.2 52.1 51.7 54.4
K. G ∪ H ∪ I 3,902,740 20.4 20.7 19.1 26.6 51.4 53.3 52.2 56.1
L. K ∩ B 2,684,931 20.4 19.7 18.4 25.1 51.4 52.5 51.8 54.9

Table 2: Datasets created using different approaches and an ablation study for investigating the effect of each dataset
on MT quality as measured by BLEU and ChrF. The logistic regression dataset is created by applying our logistic
regression classifier on dataset E in Table 1. We evaluate on the four provided test sets.

Our best model outperforms the baseline by ap-
proximately 1.9 BLEU on average. We find that the
sentence pairs from the aligned documents, only
114,301 pairs, improve the BLEU on average by 1.0
BLEU. This indicates that these sentence pairs are
useful and that identifying document alignments in
web-scraped data is worth the effort. We also find
that the sentence pairs having high LaBSE scores,
over 0.9, give much better results on their own than
over three times more sentence pairs with LaBSE
scores in the range 0.6 to 0.9, even though they
have been filtered further using additional methods.
As shown in Table 2, combining these two sets
raises the scores substantially. Furthermore, while
the Bicleaner AI model we trained seemed to give
decent results in earlier stages, using it to filter the
dataset we acquired using other approaches actu-
ally decreased the scores. This indicates that the
Bicleaner AI model is rejecting too many useful
sentence pairs. It could be useful to try to investi-
gate further which of these rejected sentences are
useful for MT training and which are truly detri-
mental, but we leave that for future work.

6 Conclusions and Future Work

Our alignment and filtering approach resulted in
an improvement over the baseline in terms of
BLEU score for the four evaluation sets. We identi-
fied 4,372 document pairs in the provided dataset,
which we aligned on sentence level and used the
resulting data set for training. We then combined
a number of filtering approaches for determining
which sentence pair candidates from a provided
candidate list would be likely to be useful, these
included an ensemble approach for language de-
tection, using three different tools, a GPT-2 based
classifier to determine whether sentences are fluent
or disfluent, a logistic regression classifier based
on word alignment scores and two sentence em-
bedding based scores, LaBSE and LASER2, and
finally a Bicleaner AI classifier.

Working in a similar vein, many different paths
could be taken for future work on this problem. Ste-
ingrímsson et al. (2023a) show that it can be ben-
eficial to inspect how different filters suit a given
translation direction. A filtering method giving an
optimal results for langa →langb is not necessarily
the optimal filtering approach for langb →langa.
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In this work we did not try to evaluate the filtering
approaches with regards to translation direction.
For translating only from Estonian to Lithuanian,
removing incoherent and ungrammatical Estonian
sentences may not be as important as removing
such sentences in Lithuanian, as it is more impor-
tant that the target language data contains coherent
and well written examples. Different levels of filter-
ing for the different languages could thus be useful
in order to add more useful examples.

The aim of our filters is to remove sentences
likely to be detrimental in MT training. While
we do know about some of the qualities that re-
duce translation quality, as discussed in Section
2, more fine-grained classifications may be useful.
For example, we could designate different levels of
misalignments, which include partial alignments
defined as sentence pairs where a part of one or
both sentences is not represented in the other sen-
tence. Steingrímsson et al. (2023c) argue that ex-
tracting mutual translations from such pairs, while
discarding the extraneous data, may improve the
quality of MT models trained on the data, and show
that for one parallel corpus. If that holds in general,
it could be useful when working with web-scraped
data to identify when misalignments become detri-
mental and when they can be useful, as well as
helping to come up with effective ways to refine
such sentence pairs.

Table 2 shows that the datasets compiled from
the aligned documents and the one comprising sen-
tence pairs with very high LaBSE scores are very
useful as additional training data. We presume that
this is an indication of these sets containing higher-
quality data. While not suitable for the shared task,
it would be an interesting experiment to use a cur-
riculum learning approach for training models on
web-scraped corpora such as the one we are using
by training a model first on a large set of possibly
useful sentences and then fine-tuning the model on
the higher-quality data.

Finally, it should be noted that the training times
for these models varied considerably. While our
best model reached the optimal checkpoint in ap-
proximately 20 hours and the second best in 12
hours, the models trained on the larger datasets
listed in Table 1 took between 50 and 80 hours of
training, using the same settings, while still result-
ing in lower quality models. It shows that careful
curation of training data for MT is not only impor-
tant for improving model quality in terms of better

translations, it also allows for much faster training
resulting in a lower carbon footprint.
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Abstract

Despite the known limitations, most machine
translation systems today still operate on the
sentence-level. One reason for this is, that
most parallel training data is only sentence-
level aligned, without document-level meta in-
formation available. In this work, we set out to
build context-aware translation systems utiliz-
ing document-level monolingual data instead.
This can be achieved by combining any ex-
isting sentence-level translation model with a
document-level language model. We improve
existing approaches by leveraging recent ad-
vancements in model combination. Addition-
ally, we propose novel weighting techniques
that make the system combination more flexi-
ble and significantly reduce computational over-
head. In a comprehensive evaluation on four di-
verse translation tasks, we show that our exten-
sions improve document-targeted scores sub-
stantially and are also computationally more
efficient. However, we also find that in most
scenarios, back-translation gives even better re-
sults, at the cost of having to re-train the trans-
lation system. Finally, we explore language
model fusion in the light of recent advance-
ments in large language models. Our findings
suggest that there might be strong potential in
utilizing large language models via model com-
bination.

1 Introduction

Machine translation (MT), the automatic transla-
tion of text from one language to another, has seen
significant advancements in recent years, primarily
driven by neural machine translation (NMT) mod-
els (Bahdanau et al., 2015; Vaswani et al., 2017).
These models have demonstrated remarkable ca-
pabilities in capturing complex linguistic patterns
and producing high-quality translations (Wu et al.,
2016; Hassan et al., 2018). Nevertheless, most
models to-date operate on sentence-level, i.e. trans-
late sentences independently without the context
of the surrounding document. Without access to

such context, it is impossible for these MT systems
to account for discourse-level phenomena such as
resolution of ambiguous words and coherence. Un-
surprisingly, automatic translations are perceived
as much worse, when they are evaluated on entire
documents rather than just at the sentence-level
(Läubli et al., 2018, 2020; Maruf et al., 2022).

An obvious solution to this problem is to uti-
lize context-aware MT models (Tiedemann and
Scherrer, 2017). While document-level NMT mod-
els have been thoroughly studied in recent years,
sentence-level MT remains the standard despite its
inherent limitations. One of the main reasons for
this is that most of the document-level approaches
rely on parallel training data with document-level
metadata. Most releases of large parallel training
corpora lack this information and remain purely
sentence-level (Bañón et al., 2020; Schwenk et al.,
2021). In contrast, large amounts of document-
level monolingual data are readily available for
almost all domains and languages.

In this work, we strive to build a context-aware
MT system that does not rely on any parallel
document-level training data. Instead, we use
monolingual documents to train a document-level
language model (LM), which we fuse with an ex-
isting sentence-level MT model during translation.
While existing work on LM fusion shows that the
fused model is able to incorporate document-level
context (Jean and Cho, 2020; Sugiyama and Yoshi-
naga, 2021), these approaches can be improved.
Our work aims to do so in two main directions.

First, we acknowledge that NMT models im-
plicitly learn the language modeling task during
training. Recently, Herold et al. (2023) showed
that estimating and neutralizing this internal LM
can improve translation quality for sentence-level
MT. We adapt their approach to document-level
LM fusion and demonstrate that this also improves
discourse modeling.

Second, the contribution of the fused MT model,
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the document-level LM and the internal LM must
be balanced by a set of fusion scales. Existing work
defines the fusion scales as static hyperparameters
which are tuned on a validation set via an exten-
sive grid search (Gülçehre et al., 2015; Jean and
Cho, 2020; Sugiyama and Yoshinaga, 2021). In
our work, we provide two simple alternatives to
grid search which allow for automatically tuned
context-dependent fusion scales. Our approaches
eliminate the need for expensive tuning and further
improve discourse-modelling.

The contributions of this work are as follows:

1. We propose multiple extensions to the existing
approaches on document-level LM fusion for
MT.

2. We compare our methods against two strong
baselines: Back-translation, the to-date most
popular way to utilize monolingual data for
MT, and a task-specific LM re-ranking base-
line for pronoun disambiguation. The compar-
ison takes place over four diverse translation
tasks in terms of general translation quality
as well as specific context-dependant phenom-
ena.

3. We present first results on fusing a large lan-
guage model (LLM) with a sentence-level MT
system.

2 Related Works

Most works on document-level NMT rely on paral-
lel document-level data for system training.

Tiedemann and Scherrer (2017) propose to con-
catenate adjacent sentences on source and target
side and input this into the NMT model which has
the exact same architecture as the vanilla sentence-
level transformer (Vaswani et al., 2017). Later,
many works have proposed modifications to the
architecture to better accommodate the additional
context (Jean et al., 2017; Bawden et al., 2018;
Zhang et al., 2018; Voita et al., 2018; Kuang and
Xiong, 2018; Miculicich et al., 2018; Maruf and
Haffari, 2018). However, it has been shown that the
simple concatenation approach performs as good,
if not better than these more complicated variants
(Lopes et al., 2020; Sun et al., 2022).

Maybe the biggest challenge for document-level
NMT is that most of the parallel MT training data
is not document-level (Esplà-Gomis et al., 2019;
Schwenk et al., 2021). Recently there has been

some effort to restore document-level meta infor-
mation from existing sentence-level corpora but
this is a very time consuming and error-prone pro-
cess (Ghussin et al., 2023). Therefore, approaches
to document-level NMT have been proposed that
utilize document-level monolingual data, of which
typically large amounts are readily available.

One direction is to back-translate the document-
level monolingual data to create synthetic paral-
lel document-level data. The reverse system used
for back-translation can be either sentence-level
(Junczys-Dowmunt, 2019; Saleh et al., 2019; Post
and Junczys-Dowmunt, 2023) or document-level
(Sugiyama and Yoshinaga, 2019; Huo et al., 2020).
A downside of this approach is that the final MT
system has to be re-trained to incorporate the new
synthetic data.

Another line of work uses document-level lan-
guage models in combination with sentence-level
translation models. Gülçehre et al. (2015) were
the first to propose a log-linear combination of
sentence-level language and NMT models, coining
the term ‘shallow fusion’. Recently, it was shown
that the shallow fusion approach for sentence-
level NMT can be improved by compensating for
the implicitly learned internal language model of
the NMT system (Herold et al., 2023). Regard-
ing the integration of a document-level LM, ear-
lier approaches simply use the LM for re-ranking
the hypothesis of the sentence-level NMT model
(Stahlberg et al., 2019; Yu et al., 2020). Several
works have proposed to employ a log-linear com-
bination between sentence-level NMT system and
document-level LM (Garcia et al., 2019; Jean and
Cho, 2020; Sugiyama and Yoshinaga, 2020). Both
Jean and Cho (2020) and Sugiyama and Yoshinaga
(2020) propose to also include the probabilities of
the LM without context information in order to mit-
igate the influence of the current sentence on the
LM probabilities. While our approach also uses the
output of a sentence-level LM, it is conceptually
different from the previous works in that we want
to mitigate the influence of the internal LM from
the NMT model, resulting in a different final formu-
lation. To further improve LM incorporation, Jean
and Cho (2020) propose to use subword-dependent
fusion scales instead of a single scale per model.

Apart from back-translation and LM integration
there exist some other ways to utilize additional
monolingual document-level data for MT. Voita
et al. (2019) train a document-level automatic post
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editing system on the monolingual data and use it
to improve the hypotheses from a sentence-level
NMT system in a two-pass approach. Several
works utilize the additional data in a multi-task
learning approach (Junczys-Dowmunt, 2019) or for
pre-training (Zhu et al., 2020; Chen et al., 2021b;
Liu et al., 2020; Chen et al., 2021a).

Very recently, LLMs have shown their potential
for the task of document-level NMT (Wang et al.,
2023). However, it is unclear how much parallel
training samples were seen during the large scale
pre-training on trillions of tokens.

3 Document-level Language Model
Fusion

The sentence-level MT model translates a source
sentence F into a target sentence E := eI0 of sub-
words ei. In the document-level LM fusion ap-
proach, we additionally provide the k previous
target-side sentences E−1

−k as context1.

3.1 Internal Language Model Neutralization

As the translation model already implicitly learns
probabilities that are source-independent, directly
fusing the MT model and the document-level LM
overvalues the source-agnostic probabilities. There-
fore, we estimate the internal LM of the MT model
and in total combine three models during genera-
tion:

• the existing sentence-level MT model
pTM(ei) := pTM(ei |ei−1

0 , F ),

• the LM pLM(ei) := pLM(ei | ei−1
0 , E−1

−k)
trained on monolingual documents with ac-
cess to the previous target sentences E−1

−k ,

• and a second LM pILM(ei) := pILM(ei |ei−1
0 )

which estimates the internal LM probabili-
ties implicitly learned by the MT model. We
train this LM separately on the target-side of
the MT training data, as we found that this
approach works best for document-level MT
when compared to other approaches presented
by Herold et al. (2023). This comparison can
be found in Appendix A.3.

We multiply the model output probabilities and nor-
malize them. The resulting probability distribution

1 At the beginning of the document we only provide as
many sentences as available.

is now conditioned on both the source sentence F
and the target-side context E−1

−k :

p(ei) := p(ei |ei−1
0 , F, E−1

−k)

:=
pλ0

TM(ei) · pλ1
LM(ei) · p−λ2

ILM (ei)∑
e′ p

λ0
TM(e′) · pλ1

LM(e′) · p−λ2
ILM (e′)

. (1)

Each model is weighted with a scalar λ0, λ1, λ2 ≥
0, the internal LM is included with a negative
exponent. We tune these fusion scales on the
validation set for BLEU via a grid search over
λ0, λ1, λ2 ∈ {0, 0.1, . . . , 1}.

Existing work on document-level LM fusion
uses a similar formulation as our approach, but
instead of neutralizing the internal LM of the MT
model, it accounts for the sentence-level probabili-
ties pLM(ei |ei−1

0 ) of the document-level LM (Jean
and Cho, 2020; Sugiyama and Yoshinaga, 2021).
In the particular case where there are no previous
sentences available, this approach simply falls back
to using only the sentence-level MT model prob-
abilities. Our approach on the contrary can also
leverage the gains obtained from sentence-level
LM fusion and is theoretically more expressive.

3.2 Context-dependent Fusion Scales

Choosing appropriate fusion scales λ0, λ1, λ2 in
Equation 1 is crucial. Conventionally, the scales
are tuned via grid search. This is problematic in
three aspects:

1. Grid search is expensive. Testing e.g. ten pos-
sible values for each of the three model scales
already requires translating the validation set
1000 times.

2. The tuning process depends on the tuning data,
its domain and the tuning objective. E.g.,
the scales that optimize document-targeted
metrics differ from the ones that maximize
sentence-level translation quality (Sugiyama
and Yoshinaga, 2021).

3. Fusion scales obtained by a hyperparameter
grid search must be constant. Document-level
context however is not uniformly useful for
all predicted subwords.

In the following, we propose two simple alterna-
tives to obtaining fusion scales with grid search
that overcome the aforementioned issues.
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3.2.1 On-the-fly Fusion Scales
During decoding, the next subword ei is chosen
to maximize the fused probability (Equation 1).
We propose to also choose the fusion scales in a
similar fashion and define them to maximize the
fused model scores:

(λ0, λ1, λ2) :=

argmax
(λ0,λ1,λ2)

pλ0
TM(ei) · pλ1

LM(ei) · p−λ2
ILM (ei)∑

e′ p
λ0
TM(e′) · pλ1

LM(e′) · p−λ2
ILM (e′)

. (2)

Our model maximizes over the discrete set
λ0, λ1, λ2 ∈ {0, 0.1, . . . , 1}. This approach ob-
viates the need for separate scale tuning entirely
and only has a small overhead during generation.

3.2.2 Automatically Learned Fusion Scales
Alternatively, we propose to learn the fusion scales
automatically using a small amount of training
examples (F,E,E−1

−k) with document-level con-
text, similarly to Jean and Cho (2020). We obtain
the training data by back-translating the monolin-
gual data (see Section 5). Automatic learning al-
lows us to implement subword-dependent fusion
scales: We introduce a set of learnable parameters
λ0(e), λ1(e), λ2(e) for each subword e from the
target vocabulary and learn them automatically by
optimizing the cross-entropy loss

(λ0, λ1, λ2) := argmax
λ : V→R3

∑

(F,E,E−1
−k)

∑

i

log
p
λ0(ei)
TM (ei) · pλ1(ei)

LM (ei) · p−λ2(ei)
ILM (ei)∑

e′ p
λ0(e′)
TM (e′) · pλ1(e′)

LM (e′) · p−λ2(e′)
ILM (e′)

.

(3)

Scale learning uses the same optimization parame-
ters as the MT model was originally trained with.
The scale parameters are initialized with a small
variance around zero while all other parameters are
frozen.

4 Document-level Language Model
Pronoun Re-ranking

Besides consistency, the main problem of
discourse-modelling are ambiguities. E.g. trans-
lating the English pronoun ‘it’ to German requires
access to the noun that it refers to, which might
only be found in a preceding sentence (Müller et al.,
2019).

We propose an approach specific to the En→De
language pair that directly targets the pronoun

translation problem by re-ranking sentence-level
hypotheses using a document-level LM. We first
translate each sentence independently using the
sentence-level MT model. Each sentence-level
translation is expanded to a set of candidates by
replacing the pronouns with all alternatives (‘er’,
‘sie’, ‘es’). All candidate translations are then
scored in context of the preceding sentences using
a document-level LM, and we select the pronoun
for which the LM score is highest.

This approach is very much tailored to the spe-
cific pronoun translation problem for this specific
language pair. While it is theoretically possible to
extend this approach to cover more cases, this will
require extensive human effort and is probably not
feasible in most scenarios. However, we include it
here, because it serves as a reasonable baseline for
this popular pronoun translation benchmark.

5 Document-level Back-translation

The to-date most popular way of utilizing mono-
lingual data for MT is to create synthetic parallel
training data via back-translation (Sennrich et al.,
2016). We train a sentence-level backwards MT
system on the parallel data and use it to translate
the document-level monolingual data back into the
source language. The sentence-level translations
are concatenated to obtain synthetic parallel docu-
ments (Junczys-Dowmunt, 2019; Saleh et al., 2019;
Sugiyama and Yoshinaga, 2019; Huo et al., 2020;
Post and Junczys-Dowmunt, 2023).

To train the final systems we combine the au-
thentic sentence-level parallel and the synthetic
document-level data. Combining both data sources
is not straightforward, because of their varying
size and the difference between sentence/document-
level context. Therefore, we first oversample the
data accordingly to have roughly the same number
of sentences in both parts. Secondly, we turn the
authentic sentence-level parallel data into ‘pseudo-
documents’ by concatenating them in a random
order (Junczys-Dowmunt, 2019; Jean et al., 2019).
This ensures that all training data has the same con-
text size. We found this procedure to perform best
when incorporating synthetic document-level data.
For a detailed comparison, see Appendix A.5.

6 Experiments

6.1 Tasks
We evaluate our approaches on four different tasks
of varying data conditions and domains. Three
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tasks are on publicly available data and a fourth
task is based on a large scale internal dataset in the
e-Commerce domain. All tasks include (sentence-
level) parallel training data and document-level
monolingual data from the same domain. The exact
data conditions are provided in Appendix A.1.

The News En→De data consists of news articles
while the TED En→It task consists of scientific
talks. Both are low resource with less than 1M train-
ing samples in total. The Subtitles En→De data
consists of subtitles from various TV shows and
is medium size. Finally, the e-Commerce En→De
task is about translating item descriptions from e-
Commerce listings and the training data is large
scale with more than 100M examples.

While the parallel training data for the three aca-
demic tasks does provide document-level metadata,
our approaches do not make use of this informa-
tion and we assume that the parallel training data
is sentence-level for most experiments. We only
make use of this information to provide a direct
comparison against the setting where document-
level parallel data is assumed to be available. As
ParaCrawl, like most other large-scale web-crawled
parallel datasets, is not a document-level corpus,
we can not conduct these experiments for the e-
Commerce task.

We preprocess each corpus with byte-pair encod-
ings (Sennrich et al., 2016) using the SentencePiece
toolkit (Kudo, 2018) learned on the parallel dataset
with a shared vocabulary of 32k subwords (13.6k
for TED). For the e-Commerce task we additionally
use inline casing (Berard et al., 2019; Etchegoyhen
and Gete, 2020).

6.2 Settings

We train transformer MT models in the ‘base’ con-
figuration (Vaswani et al., 2017), implemented in
Fairseq (Ott et al., 2019). For the LMs we use a
similar architecture but without the encoder. Our
document-level models use the same architecture as
the sentence-level models, we simply include con-
text sentences by concatenating the previous two
source and target sentences to all training examples,
separated by a reserved symbol (Tiedemann and
Scherrer, 2017).

Details on the optimization algorithm are given
in Appendix A.1. The final model is selected based
on the validation set perplexity. We then perform
beam search with beam size 12 and length normal-
ization. Document-level decoding uses the ‘last

sentence’ search strategy as described in Herold
and Ney (2023b).

The document-level LMs are trained on a combi-
nation of target-side of the sentence-level parallel
and document-level monolingual data. Regardless
of the task, we train the LMs for 300k update steps
with batch size 90k, 10 % dropout, and 10 % label
smoothing.

For the LM fusion experiments with non-static
fusion scales, we restrict the search space to only
consider scale combinations where λ0 = 1 and
λ1 = λ2. A direction comparison is given in Ap-
pendix A.4. For back-translation, we use beam
search with beam size 4 and increase the training
time proportionally to the new data size.

6.3 Evaluation

Document-level evaluation is challenging, as in-
tersentential context usually is only relevant for a
small fraction of words. Further, conventional met-
rics like BLEU (Papineni et al., 2002) or COMET

(Rei et al., 2020) do not appropriately measure how
well document-level context is considered for those
words where context does matter (Läubli et al.,
2018, 2020; Maruf et al., 2022). However, we
still report BLEU using Sacrebleu (Post, 2018) and
COMET2 on the task-specific in-domain test sets to
evaluate the general MT quality.

To better evaluate the improvements from the
document-level approaches, we focus on selected
sentences for which document-level context is
known to be important. Here, we report on two
test sets focusing on ambiguities. The En→De pro-
nouns test set released by Müller et al. (2018) was
curated from OpenSubtitles shows and contains
12k examples. Most examples require previous
sentences as context to properly translate the En-
glish pronoun ‘it’ with German ‘er’, ‘sie’ or ‘es’.
Further, the gender-referring professions test sets
released as contextual part of MT-GenEval (Currey
et al., 2022) are available for various target lan-
guages and focus on a wider range of ambiguous
words, e.g. whether ‘the teacher’ should be trans-
lated with ‘die Lehrerin’ or ‘der Lehrer’ in German.
Again, context from the previous sentences is re-
quired to determine the correct translation. We use
these test sets for En→De and En→It which both
comprise approx. 1.1k examples that were created
by translating Wikipedia articles.

Computing BLEU and COMET on these chal-

2 Using the wmt22-comet-da model (Rei et al., 2020)
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lenge test sets better reflects how well a MT system
handles document-level context. An even more
specific metric can be obtained by focusing only on
the ambiguous words. Previous work commonly
reports an accuracy metric that is based on con-
trastive scoring, which is computed by comparing
the model probabilities of the reference against a
set of contrastive examples (Müller et al., 2018).
This metric however can be misleading, as it not
based on the generated translation but rather just on
scoring. MT systems with high contrastive scores
often perform poorly when their generated hypothe-
sis is evaluated (Post and Junczys-Dowmunt, 2023).
Instead, we focus on translation-based document-
targeted metrics.

On the pronouns test set, we compute a pronoun
F1-score as proposed by Herold and Ney (2023a).
This metric directly compares the pronouns of the
hypothesis and the reference and is based on the
BLONDE metric (Jiang et al., 2022). On the pro-
fessions test set, we report the translation-based
accuracy metric suggested by their curators (Cur-
rey et al., 2022). Further, for the Subtitles system
we also report a formality F1-score on its test set
as proposed by Herold and Ney (2023a).

6.4 Results

We evaluate our approaches to utilize monolingual
document-level data on the four MT tasks. We ap-
ply them in two settings where a) we assume that all
parallel data is purely sentence-level, and b) also
the parallel data is document-level.

In an effort to compare to previous work, we
re-implement LM fusion with static scales with-
out subtracting the internal LM which was inde-
pendently proposed by Jean and Cho (2020) and
Sugiyama and Yoshinaga (2021). These works sub-
tract the intersentential probabilities of the external
LM instead. Further, we also re-implement the
non-static scales predicted with a ‘merging mod-
ule’ learned on parallel document-level data as pro-
posed by Jean and Cho (2020).

We first evaluate our approaches on conventional
metrics to measure their general MT performance.
Then, we focus on the document-targeted challenge
sets to quantify how well they utilize document-
level context.

6.4.1 Conventional Metrics
We start by evaluating on the in-domain test sets
of the four MT tasks using the conventional MT
metrics. Here, we do not expect to see much im-
provements coming from the document-level con-
text. The results are presented in Table 1.

Adding monolingual data gives the largest im-
provements on News and small improvements on
the e-Commerce task. On these two tasks, the
monolingual data is in-domain and the improve-
ments are likely because of the domain. On Subti-
tles and TED we do not see any improvements as
Subtitles already has a large amount of in-domain
parallel data and the TED monolingual data is
slightly out-of-domain. We verified the domain
effect by training sentence-level LMs on equal
amounts of data from the target-side of the par-
allel and monolingual corpora and comparing their
perplexities on the test sets. Details are provided in
Appendix A.2.

None of the presented approaches significantly
decreases translation performance in terms of con-
ventional metrics. The only exception is the back-
translation which when added to the Subtitles and
TED document-level baseline performs worse in
BLEU. In COMET however, this decrease is less
prevalent.

6.4.2 Document-targeted Metrics
The results on the document-targeted test sets are
shown in Table 2. First we discuss the scenario
without access to document-level parallel training
data.

LM fusion. Adding monolingual documents
to the sentence-level baseline with the exist-
ing approaches from Jean and Cho (2020) and
Sugiyama and Yoshinaga (2021) improves scores
only marginally by on average +0.5 % absolute
F1 score on the pronouns test set and no improve-
ments on the professions set. In comparison, our
approach on LM fusion with the neutralization of
the internal LM performs better: E.g., the vari-
ant with on-the-fly scales on average improves the
pronoun F1 score by +2.4 % and the professions ac-

3 External baseline by Herold and Ney (2023b)
4 External baseline by Huo et al. (2020)
5 Re-implementation of LM fusion with neutralization of

the intersentential LM probabilities instead of the internal
LM, as introduced by Jean and Cho (2020) and Sugiyama and
Yoshinaga (2021)

6 Re-implementation of the ‘merging module’ approach by
Jean and Cho (2020). This approach uses parallel document-
level data for scale learning.
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Data
Method

News Subtitles TED e-Commerce
parallel mono. BLEU COMET BLEU COMET BLEU COMET BLEU COMET

sent.

-
baseline (prev. work) 32.83 - 37.34 - 34.23 - - -
baseline (ours) 32.7 82.8 37.3 87.9 34.8 86.1 36.4 89.2

doc.

(Jean, 2020; Sugiyama, 2021)5 33.1 83.2 37.2 87.8 34.6 86.2 37.1 89.6
(Jean, 2020)6 32.9 83.0 37.3 87.9 34.5 86.2 36.6 89.2
LM: static 34.8 84.2 37.2 87.8 34.9 86.2 37.3 89.6
LM: on-the-fly 34.7 83.9 37.2 87.9 34.9 86.2 36.8 89.7
LM: auto. learned 34.4 83.8 37.4 87.8 34.7 86.2 36.8 89.0
LM: re-rank pronouns 32.6 82.7 36.9 87.8 n.a. 36.4 89.2
back-translation 37.1 85.2 37.2 87.6 35.1 86.6 36.2 89.3
+ LM: static 37.4 85.6 37.6 87.7 35.2 86.6 35.0 88.9
+ LM: on-the-fly 37.2 85.4 37.1 87.6 34.8 86.6 35.9 89.4
+ LM: auto. learned 37.2 85.3 37.3 87.6 34.9 86.6 36.2 89.5

doc.

- baseline 32.5 82.9 39.5 88.2 35.4 86.5

n.a.
doc.

LM: static 35.1 84.3 38.9 88.2 35.2 86.7
LM: on-the-fly 34.5 84.1 39.0 88.0 35.1 86.7
LM: auto. learned 34.8 84.1 39.3 88.2 35.2 86.6
LM: re-rank pronouns 32.3 82.8 39.1 88.1 n.a.
back-translation 37.2 85.3 37.5 87.8 34.6 86.5

Table 1: Utilizing document-level monolingual data using different methods, reporting on the in-domain test sets of
each task. BLEU and COMET are given in percentage. Best results for each column are highlighted.

Data
Method

News Subtitles TED e-Commerce
parallel mono. pron. proff. pron. proff. form. proff. pron. proff.

sent.

-
baseline (prev. work) 45.33 - 41.13 - 59.43 - - -
baseline (ours) 45.1 65.9 41.7 65.3 57.2 65.4 42.6 63.7

doc.

(Jean, 2020; Sugiyama, 2021)5 46.0 65.0 42.3 65.8 58.1 65.1 42.7 64.0
(Jean, 2020)6 45.1 64.7 41.9 65.8 57.7 65.4 42.5 63.5
LM: static 45.5 65.5 42.5 66.3 58.4 65.4 42.8 64.4
LM: on-the-fly 48.0 65.5 44.2 65.9 58.9 66.4 44.4 66.2
LM: auto. learned 46.7 64.9 42.8 65.5 58.6 65.6 44.0 65.2
LM: re-rank pronouns 48.0 66.1 57.5 65.5 57.2 n.a. 54.5 64.0
back-translation 48.7 80.5 52.3 67.0 58.5 65.1 42.9 67.1
+ LM: static 48.5 80.6 53.1 68.3 53.8 65.4 42.6 66.0
+ LM: on-the-fly 48.9 81.3 52.8 67.3 60.4 65.4 46.3 70.5
+ LM: auto. learned 48.9 80.5 52.0 67.6 59.9 65.4 46.2 65.7

doc.

- baseline 55.9 71.2 67.2 70.8 61.9 67.2

n.a.
doc.

LM: static 55.3 70.8 67.5 71.1 61.5 66.8
LM: on-the-fly 55.8 72.3 67.8 71.9 61.4 67.6
LM: auto. learned 55.7 71.5 67.4 71.0 61.6 67.6
LM: re-rank pronouns 50.9 71.5 62.6 70.8 61.9 n.a.
back-translation 52.1 79.4 62.8 67.3 62.0 65.7

Table 2: Document-targeted evaluation of the different approaches utilizing document-level monolingual data. We
report the pronoun F1 score (Herold and Ney, 2023a), gender-referring professions accuracy (Currey et al., 2022)
and the formality F1 score on the Subtitles test set (Herold and Ney, 2023a), all given in percentage. Best results for
each column are highlighted.
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curacy by +0.9 %. Compared to static scales, both
on-the-fly and automatically learned scales yield
small improvements and further do not involve the
expensive grid search.

LM re-ranking pronouns. Our LM re-ranking
approach was specifically tailored towards the pro-
nouns test set. We see most improvements on
this test set, while the document-targeted metrics
on the other test sets remain mostly unchanged.
For both the Subtitles and the e-Commerce task,
LM re-ranking is the best approach of utilizing
document-level monolingual data for this specific
test set in the absence of document-level parallel
data. On News however, the gains are less preva-
lent: Our analysis finds that even though the LM
in this case can predict the pronouns correctly, the
general translation quality of the baseline on this
test set is low and therefore this model often fails to
generate any pronouns at all. This again highlights
the discrepancy between scoring- and generation-
based metrics.

Back-translation. In a direct comparison to LM
fusion, back-translation outperforms LM fusion
despite our improvements over the existing work.
Back-translation on average improves the pronouns
F1 score by +4.8 % and the professions accu-
racy by +4.9 % over the sentence-level baseline.
This may also highlight the importance of source-
side document-level context as the LM based ap-
proaches do not have access to this. Still, both back-
translation and LM fusion can be combined and this
yields further improvements: The best performing
approach not relying on document-level parallel
data is to use both document-level back-translation
and then LM fusion with on-the-fly scales, this
method achieves on average +6.2 % F1 score on
the pronouns and +6.0 % professions accuracy.

Parallel document-level data. The three base-
lines trained on parallel document-level data per-
form much better than the sentence-level base-
line: The document-level baselines score on av-
erage +18.0 % better on the pronouns F1 score
and +4.2 % better on the professions accuracy than
their sentence-level counterparts. In addition, the
systems trained on parallel documents also per-
form better than the sentence-level systems with
additional monolingual documents in almost all
cases. This concludes that on these three tasks,
having access to parallel document-level data is
much more effective than utilizing monolingual
document-level data, even though our monolingual

Method
contrastive pronoun acc.

News Subtitles e-Comm.
sentence-level baseline 49.0 46.4 46.1
(Jean, 2020; Sugiyama, 2021)5 53.4 48.8 47.4
(Jean, 2020)6 49.2 46.8 45.5
LM: static 55.2 49.5 48.5
LM: on-the-fly 55.9 53.4 51.3
LM: auto. learned 53.0 50.1 50.5
LM: re-rank pronouns 65.7 73.9 64.8
back-translation 56.5 57.9 47.3
+ LM: static 57.7 61.6 47.5
+ LM: on-the-fly 57.9 61.1 54.3
+ LM: auto. learned 56.7 59.0 54.1

document-level baseline 67.9 84.0 n.a.

Table 3: Scoring-based, contrastive accuracies on the
pronouns test set (Müller et al., 2018) for the three
En→De tasks, reported in percent.

corpora are much larger than the parallel ones.
Further including monolingual document-level

data to the document-level baselines does not gen-
erally give additional improvements. In particular,
LM pronoun re-ranking decreases performance in
this setting as the MT model itself is already bet-
ter at predicting the correct pronoun than the LM
trained on the document-level monolingual data.

Contrastive scores. Previous work on document-
level MT commonly evaluates document-level MT
systems using contrastive scoring (e.g., Jean and
Cho, 2020; Sugiyama and Yoshinaga, 2021). As a
direct comparison, we report the contrastive accura-
cies on the pronouns test set in Table 3. The trend
is often similar to the translation-based metrics
in Table 2, however scoring-based improvements
are much more pronounced. Our experiments also
show that strong contrastive accuracies do not nec-
essarily lead to improvements on the generated
hypothesis. For example, on the News task, the
contrastive scores of the LM pronoun re-ranking
approach and the document-level baseline are simi-
lar but their translation-based scores differ strongly
(c.f. Table 2).

6.4.3 Computational Cost

We have shown that both the on-the-fly scales and
the automatically learned scales improve document-
targeted scores over static scores obtained via grid
search. Another downside of grid search is that the
tuning process is quite expensive. In Table 4, we
illustrate that a grid search with 113 parameters (as
is used in this work) on a single GPU can easily
take multiple days. The on-the-fly scales do not
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Method
Time

Preparation Search
LM: static 7187 min 5.4 min
LM: on-the-fly 0 min 6.5 min
LM: auto. learned 8.3 min 5.4 min

Table 4: Total time necessary to tune different fusion
scale variants on a single GPU, as well as the time
spent during translation. We measure the time used to
translate the News validation set.

LM
perplexity contrastive acc.

news e-comm. pron. proff.
NewsCrawl 17.0 44.5 62.8 63.4
LLaMA 9.2 11.8 80.0 62.3

Table 5: Comparing the small in-domain LM trained on
NewsCrawl against the LLM LLaMA.

require any preparation time as they are obtained
entirely during search, in which the overhead is
small. The automatically scales on the other hand
can be learned in just a few minutes and do not
have any overhead in decoding.

6.4.4 Large Language Model Integration
Recently, large language models (LLMs) which
are trained on large corpora and long context sizes
received a lot of attention (e.g., Brown et al., 2020;
Touvron et al., 2023). In particular, they have
also been able to perform document-level MT
(Zhang et al., 2023; Hendy et al., 2023; Karpin-
ska and Iyyer, 2023; Wang et al., 2023). This raises
the natural question whether LLMs can improve
document-level LM fusion.

We experiment on the News task and com-
pare our own small LM with 35M parameters
trained on 2.2B tokens from the in-domain German
NewsCrawl corpus against the 13B parameter ver-
sion of LLaMA (Touvron et al., 2023), which was
trained on a total of 1000B tokens. LLaMA’s train-
ing data includes various domains and languages.
Only a small fraction of its data is German. The
small LM provides two sentences context while
we query the LLM with 200 tokens context. We
re-train our MT model and the small LM using the
LLaMA tokenizer. This leads to slightly worse per-
formance compared to our previous experiments as
the LLaMA tokenization was learned on general-
domain English data. For decoding we use a beam
size of 4.

Table 5 shows the perplexities of both LMs and
their contrastive scores on the document-targeted

LM Fusion news e-Commerce
LM Scales BLEU COMET BLEU COMET

(none) - 31.2 81.3 13.6 70.5

NewsCrawl
static 33.2 83.0 14.4 72.5

on-the-fly 33.2 82.8 14.3 72.2

LLaMA
static 34.6 84.2 16.5 75.0

on-the-fly 33.4 83.9 13.7 72.9

Table 6: Comparing fusion with a small LM and a LLM
on general test sets.

test sets7. Both LMs use the same vocabulary and
thus their perplexities are comparable. Because it
is in general unclear whether test sets are or are not
included in LLM training data, we also include the
e-Commerce test set which was translated by our-
selves for the purpose of cross-validation. On both
test sets, the LLM perplexities are much better than
the ones of the small in-domain LM. LLaMA’s con-
trastive scores are also much better on the pronouns
test set.

Table 6 shows the performance of LM fusion
with the two LMs in BLEU and COMET. Both
LMs notably improve translation, but the LLM
translation quality is best. Fusion with LLaMA
yields +3.4 % absolute improvements on the in-
domain test set. Improvements on the e-Commerce
test set are similar, indicating that the gains are
not an effect of data leakage of the test set into the
training data. While the on-the-fly scales and the
static scales perform similarly for the small LM,
on-the-fly scales do not perform as well for the
LLM.

The improvements measured on the in-domain
test sets are likely not because of document-level
context but rather due to the increased amount of
data. Therefore, we continue our evaluation with
the document-targeted scores. Table 8 depicts the
results. On these metrics, the LLM outperforms
the small LM by an even larger margin. In general,
the improvements are correlated to their contrastive
scores (c.f. Table 5).

6.5 Extended Analysis on Automatically
Learned Fusion Scales

In our experiments we use the validation set of the
News task to find the best working methods. We
share some insights in the following.

How are the automatically learned scales dis-
tributed? Figure 1 shows the distribution of the au-

7 The professions test set was released without target-side
context, which we therefore created ourselves by translating
the source-side context with a commercial MT system.
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Fusion Scales Learning
λ

valid set doc.-targeted
Scales Crit. Train Set BLEU COMET pron. proff.
none - - 0.0 24.5 80.9 45.1 65.9

subword-
agnostic

grid search valid set 0.40 25.4 81.8 46.5 65.1

CE
valid set 0.34 25.5 81.7 46.4 65.0
synthetic 0.46 25.3 81.6 47.1 65.2

subword-
dependent CE

valid set - 26.6 81.8 46.1 65.0
synthetic - 25.4 81.6 46.9 65.4

Table 7: Automatically learning subword-dependent and -agnostic fusion scales on the News task. We employ the
restriction λ0 := 1 , λ := λ1 = λ2.

LM Fusion document-targeted
LM Scales pron. proff. form.

(none) - 44.5 65.7 33.4

NewsCrawl
static 46.3 66.3 34.7

on-the-fly 47.4 66.7 34.3

LLaMA
static 51.6 66.9 36.1

on-the-fly 48.2 68.9 35.2

Table 8: Fusion with a small LM against a LLM, re-
porting the translation-based scores on the document-
targeted test sets.

tomatically learned scales for the News task. The
learned LM scale of subwords that continue an-
other subword are in general higher than the ones
that begin a new word. This is intuitive as contin-
uing a subword is an LM task while beginning a
new word requires information about the source
sentence.

How much data is needed for automatically
learning scales? The static fusion scales are usu-
ally tuned on a small validation set via grid search.
Table 7 shows that it is also possible to use au-
tomatic differentiation to learn static scales only
on the validation set. The automatically learned
subword-agnostic scales have similar values as
the ones tuned via grid search and therefore also
their translation performance is similar. Learning
subword-dependent scales automatically on the val-
idation set on the other hand improves performance
on this set, but does not generalize which indicates
overfitting.

7 Conclusions

This work presents multiple extensions to
document-level LM fusion, a technique of utiliz-
ing document-level monolingual data for context-
aware MT. In comparison to existing work, our ex-
tensions significantly improve discourse-modeling

0.0 0.2 0.4 0.6 0.8 1.0
fusion scale λ(e)

0

1000

2000

3000

fre
qu

en
cy

_er, _sie, _es

_Lehrer in

target subword beginning new word
target subword continuing word

Figure 1: Distribution of the automatically learned LM
fusion scales for different target-side subwords on the
News task. Subwords for which document-level con-
text is often necessary, such as the German pronouns
‘_er’, ‘_sie’, ‘_es’, and the suffix ‘in’ marking female
professions, have learned higher scales than nouns like
‘_Lehrer’.

across four MT tasks and furthermore are com-
putationally more efficient. We conduct eval-
uations against two baselines: document-level
back-translation and a task-specific LM re-ranking
method. Despite our extensions, back-translation
in general still outperforms document-level LM
fusion. Nevertheless back-translation can be effec-
tively combined with LM fusion, further improv-
ing translation performance. On very specific test
sets, the LM re-ranking performs best. However,
our experiments also show that systems trained on
document-level parallel data outperform the best
systems trained with monolingual documents only.

Finally, this work is the first to explore document-
level LM fusion with LLMs. First findings demon-
strate that fusion with an LLM outperforms a small
LM trained on in-domain data and open the path
for future investigations.
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Limitations

The experiments in this work were limited to four
MT tasks, from which two are low-resource and
three are translating from English into German.
Apart from the experiments with the LLM, we
did not conduct any experiments on a large-scale
dataset of multi-domain monolingual documents.
The LLM in our experiments only has 7B parame-
ters, while much larger LLMs exist (e.g., Touvron
et al., 2023).

Further, our work focuses only on one specific
architecture for document-level MT and uses only
two sentences target-side context. Various other ar-
chitectures exist and may entail different properties.
This work further does not investigate the behavior
of larger translation models.

Another limitation lies in the evaluation of
document-level MT models. The document-level
targeted metrics we used are all reference-based
and limited to the translation of pronouns, gender-
referring professions or salutation forms. Other dis-
course phenomena like e.g. cohesion exist (Maruf
et al., 2022) but were not studied in our work. It is
unclear how well automated metrics actually cor-
relate with the actual document-level translation
quality (Currey et al., 2022), and this work did not
perform any qualitative analysis.
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A Appendix

A.1 Model Training

Data. The News En→De task comprises 330k
parallel sentences from NewsCommentary v148,
which we combine with document-level monolin-
gual data from NewsCrawl9 (70M sentences10).
Our Subtitles En→De data consists of a total
of 39M monolingual movie show subtitles from
OpenSubtitles, from which a subset of 22.5M sen-
tences has been aligned to English sentences and
forms our parallel training data (Lison et al., 2018).
For TED En→It we use 230k parallel sentences
from scientific TED talks released as part of the
IWSLT17 multilingual task (Cettolo et al., 2017)
which we combine with 2.2M sentences of talks
from the European parliament (Koehn, 2005). Fi-
nally, the e-Commerce En→De task is about trans-
lating item descriptions from e-Commerce listings.
We use 326M parallel sentences of out-of-domain
parallel training data from the ParaCrawl v9 corpus
(Esplà-Gomis et al., 2019) which we combine with
128k parallel sentences in-domain data. The mono-
lingual data was sampled from item descriptions
and is entirely in-domain (119M sentences).

The sizes of our training corpora are shown in
Table 10.

On each task, we use a validation set for select-
ing the best checkpoint, tuning the fusion scales
and for finding which method works best. For the
final comparison in Table 1 we then report on an
unseen test set of the same domain.

The News validation set is newstest2015,
and newstest2018 as test set. For Subtitles,
our validation and test sets were sampled from
the training corpus. The precise document IDs
for the validation set are: 1995/254, 1997/165,
2000/313, 2002/461, 2005/441, 2007/781,
2010/273, 2012/757, 2015/1488, 2017/525 for
the validation set; and for our test set: 1997/310,
2002/40, 2007/189, 2012/1085, 2017/644. The test
set is the same as used in Huo et al. (2020). For
TED, we concatenate dev2010 and tst2010 and
use tst2017.mltlng as test set. For e-Commerce,
we create the validation and test set ourselves by
translating English e-Commerce item descriptions
into German: Our validation set comprises 85
documents (2882 sentences) and the test set 100

8 https://data.statmt.org/news-commentary/v14/
9 https://data.statmt.org/news-crawl/

10 To reduce training time, our back-translation experiments
on this task utilize only the first 2M sentences.
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Data
News Subtitles TED e-Commerce

test pron. proff. test pron. proff. test proff. test pron. proff.
parallel data 129.7 125.7 168.6 26.6 36.0 103.2 47.6 114.8 61.7 44.2 52.6
monolingual data 97.1 94.9 161.3 27.8 36.6 117.4 75.4 116.1 50.8 48.7 57.5

Table 9: Perplexities of sentence-level LMs trained on equal amount of target-side data.

Task Data docs sents words

News
parallel 8.5k 330k 7.4M
mono. 3M 70M 1.0B

Subtitles
parallel 30k 22.5M 136M
mono. 47k 39M 223M

TED
parallel 1.9k 230k 3.7M
mono. 6k 2.2M 54.6M

e-Commerce
parallel n.a. 326M 9.6B
mono. 1.5M 119M 3.1B

Table 10: Training data statistics.

documents (2520 sentences).
As the pronouns test set (Müller et al., 2018)

was extracted from the OpenSubtitles corpus, we
remove these sentences from the Subtitles training
data. The professions test set (Currey et al., 2022)
was curated from Wikipedia articles and is not part
of our training corpora.

Models. We train the News, Subtitles and TED
models with a shared embedding and projection
matrix. Th resulting MT models for News and Sub-
titles have 60M parameters, 51M parameters for
TED and 90M for e-Commerce. For model train-
ing we use eight Tesla V100-SXM2-32GB GPUs.
Training the baselines takes approximately 7h for
News, 21h for Subtitles, 5h for TED, and 30h for e-
commerce. Due to resource constraints, we report
only a single run for each experiment.

Optimization. For optimization we use Adam
(Kingma and Ba, 2015) and a batch size of 22k sub-
words. The low-resource MT models (News, TED)
are trained for 100k update steps with 30 % dropout,
20 % label smoothing and weight decay, while the
high-resource models (Subtitles, e-Commerce) are
trained for 300k updates with 10 % dropout, 10 %
label smoothing and no weight decay.

A.2 Domain Effects

In an effort to estimate how well the domain of
the training data matches the test sets, we train
LMs on the target-side part of the parallel and the
monolingual training data. Within each task, the
LMs are trained with the same parameters and the
same vocabulary. We then report the perplexities

Approach
valid set doc.-targeted

BLEU COMET pron. proff.
baseline 24.5 80.9 45.1 65.9
LM fusion 24.8 81.2 45.0 65.8
+ (Jean, 2020; Sugiyama, 2021)5 24.9 81.2 46.0 65.0
+ ILM: separate 25.8 82.1 47.3 65.2
+ ILM: h = 0 25.5 82.0 43.8 64.7
+ ILM: mini self-att. 25.8 82.1 44.6 65.1

Table 11: Document-level LM fusion (a) without sub-
tracting any LM, (b) subtracting the sentence-level
probabilities of the external LM (Jean and Cho, 2020;
Sugiyama and Yoshinaga, 2021), and (c) subtracting dif-
ferent approximations of the internal LM (ILM) learned
by the MT model, reported on the News task.

on the task-specific test sets and the document-
targeted challenge sets in Table 9.

For News, the monolingual data is more in-
domain for all test sets. Similarly the domain of
the e-Commerce monolingual data is closer to the
task-specific test set. For Subtitles, the domains
of parallel and monolingual data are more or less
equal and on TED, the monolingual data is slightly
out-of-domain.

This domain effect explains the improvements
in BLEU and COMET on the task-specific test sets
that we reported in Table 1 on News and on e-
Commerce.

A.3 Comparing Internal Language Model
Estimations

Herold et al. (2023) propose several ways of ap-
proximating the internal LM learned implicitly by
the MT model in the context of sentence-level MT.
We evaluate three of their approaches for document-
level LM fusion and compare them against the
existing document-level LM fusion approach that
subtracts the sentence-level probabilities of the ex-
ternal LM (Jean and Cho, 2020; Sugiyama and
Yoshinaga, 2021). Table 11 shows the results: Sub-
tracting the internal LM substantially improves LM
fusion over existing work. Estimating it by training
a separate LM on the same data as the MT model
works best.
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Fusion Scales valid set doc.-targeted
Approach Restriction BLEU COMET pron. proff.

none - 24.5 80.9 45.1 65.9

static
- 25.8 82.1 47.3 65.2

λ0=1, λ1=λ2 25.4 81.8 46.5 65.1

on-the-fly
- 22.3 78.3 43.4 69.3

λ0=1, λ1=λ2 25.6 81.8 48.0 65.5
auto. - 24.8 80.7 44.7 69.4

learned λ0=1, λ1=λ2 25.3 81.5 46.7 64.9

Table 12: LM fusion with an imposed restriction on the
search space of the fusion scales λ0, λ1, λ2, reported on
the News task.

Data valid set doc.-targeted
parallel mono. BLEU COMET pron. proff.

sent. - 24.5 80.9 45.1 65.9
sent. sent. 27.0 83.2 46.7 65.7
sent. doc. 26.9 82.4 47.8 80.7

pseudo-doc. doc. 27.1 83.0 48.7 80.5

Table 13: Effect of back-translation on the News task.

A.4 Fusion Scale Restrictions
The three LM fusion scales λ0, λ1, λ2 in Equation 1
balance the contribution of the MT model and the
two LMs. In our experiments the optimal scales
usually lie at λ0 ≈ 1 and λ1 ≈ λ2. This is plausible
as the internal LM (λ2) should neutralize the exter-
nal LM (λ1) to the same degree. For the non-static
fusion scales however, we find that searching over
the three-dimensional search space of independent
λ0, λ1, λ2 finds unintuitive scale combinations and
that this causes bad performance. Therefore in our
experiments we restrict the search space of fusion
scales to the one-dimensional slice where λ0 = 1
and λ1 = λ2. Table 12 gives a direct comparison.

A.5 Document-level Back-translation
In Table 13 we compare back-translation using
document-level data against sentence-level back-
translation.

Sentence- and document-level back-translation
gives the same performance improvements in
BLEU and COMET, however only back-translation
on document-level improves the document-targeted
metrics. For document-level back-translation we
find that creating pseudo-documents from the paral-
lel data is necessary to achieve the same BLEU and
COMET scores as sentence-level back-translation.
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Abstract

Large language models (LLMs) implicitly learn
to perform a range of language tasks, including
machine translation (MT). Previous studies ex-
plore aspects of LLMs’ MT capabilities. How-
ever, there exist a wide variety of languages for
which recent LLM MT performance has never
before been evaluated. Without published ex-
perimental evidence on the matter, it is difficult
for speakers of the world’s diverse languages
to know how and whether they can use LLMs
for their languages. We present the first exper-
imental evidence for an expansive set of 204
languages, along with MT cost analysis, using
the FLORES-200 benchmark. Trends reveal
that GPT models approach or exceed traditional
MT model performance for some high-resource
languages (HRLs) but consistently lag for low-
resource languages (LRLs), under-performing
traditional MT for 84.1% of languages we cov-
ered. Our analysis reveals that a language’s
resource level is the most important feature in
determining ChatGPT’s relative ability to trans-
late it, and suggests that ChatGPT is especially
disadvantaged for LRLs and African languages.

1 Introduction

Despite the majority of the world’s languages be-
ing low-resource, current MT systems still perform
poorly on them or do not include them at all. Some
commercial systems like Google Translate1 sup-
port a number of LRLs, but many systems do not
support any, and in either case the majority of LRLs
are largely neglected in language technologies.

In recent years, generative LLMs have shown
increasingly impressive translation abilities (Rad-
ford et al., 2019; Brown et al., 2020). Even more
recently, LLM tools like ChatGPT have become
popular and accessible to end users. This marks
an important shift, since a majority of LLM users
are now consumers rather than researchers. The

1https://translate.google.com

prospect of LLM translation is exciting, since theo-
retically, generative LLMs could support more lan-
guages than commercial systems like Google’s.2

But only beginning steps have been made to test
this hypothesis. While some studies outlined in §4
have evaluated MT with recent LLMs, evaluation is
still lacking for many languages. This brings up im-
portant questions, such as: Can end users in need
of MT for a variety of languages use ChatGPT?
Are ChatGPT and other LLMs reliable translators?
For which languages are they reliable? Initially we
hypothesize that LLMs translate HRLs better than
LRLs. But due to limited information about the
training data and methods for powerful LLMs like
ChatGPT (GPT-3.5 and variants) and GPT-4, hy-
potheses like this must be experimentally verified.

We significantly expand experimental verifica-
tion for such hypotheses by testing ChatGPT’s per-
formance on the FLORES-200 benchmark (NLLB
Team et al., 2022), containing 204 language vari-
eties. We emphasize that, rather than optimizing
LLM MT for a few languages, we focus on helping
end users of various language communities know
how and when to use LLM MT. We expect that
our contributions may benefit both direct end users,
such as LRL speakers in need of translation, and
indirect users, such as researchers of LRL transla-
tion considering ChatGPT to enhance specialized
MT systems. In summary, we contribute:

1. MT scores on 203 languages for ChatGPT and
comparisons with GPT-4, Google Translate,
and NLLB (NLLB Team et al., 2022)

2. Evidence that LLMs are competitive with tra-
ditional MT models for many HRLs but lag
for LRLs (with baselines outperforming Chat-
GPT on 84.1% of languages evaluated)

3. Evidence that few-shot prompts offer
2Google Translate currently supports only 133 languages

with systems deemed high enough quality for deployment.
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marginal benefits for LLM translation

4. A decision tree analysis of language features’
correlation with LLM effectiveness in MT,
suggesting ChatGPT is especially disadvan-
taged for LRLs and African languages

5. A cost comparison across MT systems

Our experiments are motivated by the interests
of LLM users speaking a variety of languages. In
addition to evaluating a large language set (§3), we
chose to analyse language features (§3.4), to draw
generalizations for even more LRL speakers. We
compare MT costs because they impact end users
(§3.7). We keep ChatGPT central to our analyses
because of its current popularity among consumers.

2 Methodology

We used data for 204 language varieties from
FLORES-200 (NLLB Team et al., 2022). We used
the 1012 devtest sentences for our main experi-
ments and the 997 dev sentences for follow-up ex-
periments. We queried the OpenAI API3 to trans-
late our test set from English into the target lan-
guages. We explored ENG→X translation only
because the FLORES-200 English data was taken
from Wikipedia. Thus OpenAI’s GPT models were
likely trained on those exact English sentences,
making fair X→ENG evaluation infeasible.

2.1 Experimental setup
We evaluated ChatGPT’s (gpt-3.5-turbo) MT for
our full language set. We compared with NLLB-
MOE (NLLB Team et al., 2022) as our baseline,
as it is the current state-of-the-art open-source MT
model that covers such a wide variety of languages.
NLLB is a discriminative transformer trained on su-
pervised bi-text data (the traditional MT paradigm).
We obtained scores for NLLB outputs of ENG→X
translation into 201 of the language varieties in our
set (as reported by NLLB Team et al. (2022)).

We used both zero- and five-shot prompts for
ChatGPT MT. (See §2.3.) Previous studies (Hendy
et al., 2023; Gao et al., 2023; Moslem et al., 2023;
Brown et al., 2020; Zhu et al., 2023) suggest that
few-shot prompts produce slightly (albeit not con-
sistently) better translations. But zero-shot prompts
are more convenient and affordable for users.

We also compare with results for subsets of our
selected languages from two other MT engines.

3https://platform.openai.com

Google Translate API was an important baseline for
our analysis because it is popular among end users.
We also included it to represent commercial MT
systems in our study. Because Google’s API does
not support all 204 of the FLORES-200 languages,
we obtained results only for the 115 non-English
languages it supports.

Lastly, we obtained MT results from GPT-4,
since it is a popular LLM and has been shown
to outperform ChatGPT on MT (Jiao et al., 2023;
Wang et al., 2023). Because the cost of GPT-
4 use exceeds that of ChatGPT by 1900%, our
resources did not permit its evaluation on all
203 non-English languages. Instead we selected
a 20-language subset by picking approximately
every 10th language, with languages sorted by
chrF++ differentials between ChatGPT and NLLB
(chrfGPT−chrfNLLB). We chose this criterion in
order to have 20 languages with a range of relative
ChatGPT performance and a variety of resource
levels. We used only five-shot prompts for GPT-4.

2.2 Implementation details

We conducted all LLM experiments with
gpt-3.5-turbo (ChatGPT) and gpt-4-0613
(GPT-4). We used top_p 1, temperature 0.3,
context_length −1, and max_tokens4 500.

To evaluate the outputs, we used:5

spBLEU: BLEU (Papineni et al., 2002) is standard
in MT evaluation. We find spBLEU scores (Goyal
et al., 2022) via sacreBLEU (Post, 2018) with the
SPM-200 tokenizer (NLLB Team et al., 2022).
chrF2++: We use sacreBLEU’s implementation of
chrF++ (Popović, 2017). We adopt it as our main
metric, as it overcomes some of BLEU’s weak-
nesses, and refer to it as chrF for brevity.

2.3 Zero- and few-shot prompts

Previous works (Gao et al., 2023; Jiao et al., 2023)
investigated LLM prompting to optimize MT per-
formance. We adopt Gao et al. (2023)’s recom-
mended prompts for both zero- and few-shot MT
(Table 1). We are interested in multiple n-shot
prompt settings because, as mentioned in §2.1, they

4Although some languages had higher token counts than
others (see §3.4), we found that adjusting max_tokens had
a minimal effect on MT performance. We thus decided to
maintain the same value of max_tokens across all languages
for experimental consistency.

5We excluded learned MT metrics like COMET (Rei et al.,
2020) and BLEURT (Sellam et al., 2020), since they do not
support many LRLs.
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Shot Prompt
zero This is an English to [TGT] translation, please provide

the [TGT] translation for this sentence. Do not provide
any explanations or text apart from the translation.
[SRC]: [src-sentence]
[TGT]:

five This is an English to [TGT] translation, please provide
the [TGT] translation for these sentences:
[SRC]: [src-sentence] [TGT]: [tgt-sentence]
[SRC]: [src-sentence] [TGT]: [tgt-sentence]
[SRC]: [src-sentence] [TGT]: [tgt-sentence]
[SRC]: [src-sentence] [TGT]: [tgt-sentence]
[SRC]: [src-sentence] [TGT]: [tgt-sentence]
Please provide the translation for the following sentence.
Do not provide any explanations or text apart from the
translation.
[SRC]: [src-sentence]
[TGT]:

Table 1: Prompts used for zero- and five-shot settings

present different benefits to LLM users. We ex-
plored zero-shot (no in-context example), one-shot
(1 example), and five-shot (5 examples). We em-
ployed both zero- and five-shot prompts in our main
experiments over 203 languages, and we analyzed
all three n-shot settings for a subset of languages
on FLORES-200 dev sets.

The languages in FLORES-200 represent 22 lan-
guage families. To experiment with multiple n-shot
settings, we selected one language from each of the
12 families containing at least two members in the
set. We chose four HRLs (≥1M Wikipedia pages6),
four LRLs (25K-1M pages), and four extremely
LRLs (≤25K pages). These languages also employ
a variety of scripts. See Table 2.

Language Code Family Script Wiki. #
French fra Indo-European Latn 12.7M
Chinese zho Sino-Tibetan Hans 7.48M
Turkish tur Turkic Latn 2.48M
Finnish fin Uralic Latn 1.46M
Tamil tam Dravidian Taml 496K
Tagalog tgl Austronesian Latn 239K
Kiswahili swh Niger-Congo Latn 167K
Amharic amh Afroasiatic Ethi 46.2K
Santali sat Austroasiatic Olck 20.0K
Lao lao Kra-Dai Laoo 14.0K
Papiamento pap Creole Latn 6.84K
Luo luo Nilo-Saharan Latn 0

Table 2: Diverse subset of languages experiments with
few-shot settings. Wiki. # is the number of Wikipedia
pages in the language.

6Throughout the paper we use the "Total pages"
count from https://en.wikipedia.org/wiki/List_of_
Wikipedias, accessed 7 August 2023, as a proxy for the re-
source level of a language.

avg. avg.
#langs. chrF BLEU

ChatGPT (0-shot) 203 32.3 16.7
ChatGPT (5-shot) 203 33.1 17.3
GPT-4 20 44.6 24.6
NLLB 201 45.3 27.1
Google 115 52.2 34.6

Table 3: Languages evaluated, average chrF, and aver-
age BLEU for each MT system. Best scores are bold.

3 Results and Analysis

3.1 Traditional MT generally beats LLMs

Table 3 shows the number of languages we eval-
uated for each MT system, as noted in §2.1, with
average chrF and BLEU scores across those lan-
guages. The best performing model on average
was (1) Google, then (2) NLLB, (3) GPT-4, and
(4) ChatGPT. Unabridged results are in Table 11 in
Appendix A. Supplementary materials can also be
browsed on our repository.7 (Also see the interac-
tive score visualizer on our Zeno browser.8)

Table 4 shows chrF for the 20 languages eval-
uated on both LLM systems. Of the 11 lan-
guages evaluated on all four systems, Google per-
formed best for 9 of them. Notably, GPT-4 sur-
passed NLLB in five languages and Google in one9

(Mesopotamian Arabic, acm_Arab).
On the 20 languages for which we tested it, GPT-

4 improved over ChatGPT by 6.5 chrF on aver-
age. The standard deviation of performance differ-
ence with NLLB (chrFGPT −chrFNLLB) was 8.6
for GPT-4, compared with ChatGPT’s 12.7 for the
same languages, suggesting a more consistent ad-
vantage across language directions. GPT-4 offered
larger improvements for LRLs, whereas HRL per-
formance plateaued between the LLMs. Previous
studies have found GPT-4 improving multilingual
capabilities over ChatGPT on a range of tasks (Xu
et al., 2023; Zhang et al., 2023; OpenAI, 2023).
This may account for its superior MT performance.

Google Translate outperformed all other systems
in chrF on 100 of the 115 languages for which we
evaluated it, with an average improvement of 2.0
chrF points over the next best system for each lan-
guage. (See Appendix A for unabridged results.)

7https://github.com/cmu-llab/gpt_mt_benchmark
8https://hub.zenoml.com/project/cabreraalex/

GPT%20MT%20Benchmark
9Our language identification analysis in §3.6 and manual

inspection suggest that GPT models only output one Arabic
variety: Modern Standard Arabic (MSA). It seems the LLMs’
high performance on some Arabic varieties is due simply to
incidental high token overlap with MSA targets.

394



Lang. GPT-4 ChatGPT Google NLLB
ssw_Latn 24.1 6.7 - 43.3
sna_Latn 29.2 16.3 44.4 43.4
ckb_Arab 33.1 24.8 47.7 47.2
mag_Deva 44.6 39.9 - 58.5
ibo_Latn 27.7 16.3 43.5 41.4
hau_Latn 40.3 22.4 53.2 53.5
pbt_Arab 26.7 21.1 - 39.4
tam_Taml 42.7 34.5 55.8 53.7
kat_Geor 41.4 33.5 51.4 48.1
gle_Latn 53.0 47.5 60.1 58.0
kmr_Latn 34.3 27.4 40.0 39.3
war_Latn 54.0 49.5 - 57.4
ajp_Arab 48.4 47.5 - 51.3
lim_Latn 45.1 42.7 - 47.9
ukr_Cyrl 56.3 55.4 58.6 56.3
fra_Latn 71.7 71.3 72.7 69.7
lvs_Latn 57.3 55.2 - 54.8
ron_Latn 65.3 64.2 65.0 61.3
tpi_Latn 49.5 39.2 - 41.6
acm_Arab 46.5 46.1 - 31.9

Table 4: chrF (↑) scores across models for all languages
we used to evaluate GPT-4. Best scores are bold. Chat-
GPT scores here are 5-shot, to compare with GPT-4.

Google’s was the best performing MT system over-
all, though NLLB has broader language coverage.

NLLB outperformed ChatGPT in chrF on 169
(84.1%) of the 201 languages for which we ob-
tained scores for both, with NLLB scoring an aver-
age of 11.9 chrF points higher than the better n-shot
ChatGPT setting for each language. This trend is
corroborated by Zhu et al. (2023). Table 5 has both
BLEU and chrF scores from both systems for the
five languages with the most negative chrF deltas
(chrFGPT − chrFNLLB) on top, followed by the
five languages with the highest positive deltas on
bottom. For many of the subsequent sections of this
paper we focus on comparing ChatGPT and NLLB,
since we evaluted them on the most languages.

ChatGPT NLLB
Lang. BLEU chrF BLEU chrF
srp_Cyrl 1.36 3.26 43.4 59.7
kon_Latn 0.94 8.50 18.9 45.3
tso_Latn 2.92 15.0 26.7 50.0
kac_Latn 0.04 2.95 14.3 37.5
nso_Latn 3.69 16.7 26.5 50.8

jpn_Jpan 28.4 32.9 20.1 27.9
nno_Latn 37.1 58.7 33.4 53.6
zho_Hans 36.3 31.0 26.6 22.8
zho_Hant 26.0 24.4 12.4 14.0
acm_Arab 28.2 44.7 11.8 31.9

Table 5: Lowest (top) and highest (bottom) chrF dif-
ferences between zero-shot ChatGPT and NLLB. Best
scores for each metric in bold (with BLEU blue).

3.2 ChatGPT under-performs for LRL

Using NLLB Team et al.’s (2022) resource cate-
gorization, we find that ChatGPT performs worse
on LRLs than HRLs, corroborating findings of pre-
vious works (Jiao et al., 2023; Zhu et al., 2023).
There is a strong positive correlation between Chat-
GPT and NLLB chrF scores, but the correlation
is higher for HRLs (ρ=0.85) than LRLs (ρ=0.78),
indicating that ChatGPT struggles to keep up with
NLLB for LRLs.

Figure 1 shows scatter plots where dots rep-
resent languages, with ChatGPT’s (positive or
negative) relative improvement over NLLB chrF
( chrfGPT−chrfNLLB

chrfNLLB
) on the y-axis. When lan-

guages are grouped by family or script, some trends
are apparent (in part because we ordered groups
by descending average scores). For example, Chat-
GPT fairs better with Uralic and Indo-European
languages and clearly worse with Niger-Congo
and Nilo-Saharan languages. However, the clear-
est natural correlation appears when languages are
grouped by resource level, approximated by num-
ber of Wikipedia pages (Figure 1, bottom). Note
the relative improvement (y-axis) is typically nega-
tive since ChatGPT rarely outperformed NLLB.

In the five-shot setting, ChatGPT outperformed
NLLB on 47% of the HRLs designated by NLLB
Team et al. (2022), but only on 6% of the LRLs.
These findings contrast with what is commonly
observed in multilingual MT models (Liu et al.,
2020; Fan et al., 2020; Siddhant et al., 2022; Bapna
et al., 2022; NLLB Team et al., 2022), where LRLs
benefit the most. This highlights the need to in-
vestigate how decoder-only models may catch up
with encoder-decoder models in low-resource ap-
plications. It underscores the importance of MT-
specialized models when larger multitask models
cannot overcome low-resource challenges.

3.3 Few-shot prompts offer marginal
improvement

Our main experiments suggested that n-shot set-
ting had only a modest effect on MT performance.
We conducted a more concentrated study of n-shot
prompts using dev sets for the 12 languages in Ta-
ble 2. Results in Table 6 show five-shot prompts
performing best. For some LRLs, this was simply a
result of ChatGPT’s failure to model the language.
In Santali’s case, for example, zero-shot ChatGPT
was unable to produce the Ol Chiki script at all. In
the five-shot setting, it was able to imitate the script
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Figure 1: ChatGPT relative improvement over NLLB chrF, with languages organized by family, script, and number
of Wikipedia pages. Red stars represent averages per group. In the bottom plot, languages are grouped into quartiles
of equal size (with dotted lines at the Q1, median, and Q3). More expansive visualizations with language labels for
each value can be found in Appendix C.

characters from the context, but without any coher-
ence or accuracy. Excepting Santali as an outlier,
five-shot settings offered generally marginal im-
provements over zero-shot (the most cost-effective
of the settings), with an average improvement of
only 1.41 chrF across all 12 languages (0.31 if
we exclude Santali). Zero-shot prompts actually
produced the best chrF score for six of the 12 lan-
guages. The one-shot setting performed worst. We
noted this trend of few-shot contexts offering only
meager and inconsistent improvements throughout
our experiments, with five-shot MT improving on
zero-shot by only 0.88 average chrF across all 203
language directions. (See Appendix A.)

3.4 Importance of language features

We were interested in which language features de-
termined LLMs’ effectiveness compared to tradi-
tional MT. Analyzing this may reveal trends helpful
to end users deciding which MT system to use, es-
pecially if their language is not represented here
but shares some of the features we consider. In
this section we focus on comparing ChatGPT and
NLLB, since we evaluated the most languages with

0-shot 1-shot 5-shot
BLEU chrF BLEU chrF BLEU chrF

fra 55.4 71.3 50.4 70.3 55.4 71.2
zho 30.0 29.9 28.2 30.8 30.7 31.1
fin 34.6 56.6 31.7 56.3 34.6 56.7
tur 38.2 58.6 34.8 57.6 38.3 58.6
tgl 35.9 60.2 35.2 59.6 36.1 60.1
tam 13.8 35.3 11.7 34.3 11.9 34.6
swh 39.7 60.6 36.0 59.5 40.0 60.5
amh 3.4 10.1 3.2 9.6 3.9 10.6
pap 26.6 51.5 29.3 54.1 34.8 56.1
lao 4.8 21.6 4.4 20.8 5.3 22.1
luo 0.8 7.6 0.2 4.6 0.2 5.2
sat 0.0 0.3 2.2 11.3 3.0 13.8

Table 6: Three n-shot settings for 12 diverse languages

them. We focus on zero-shot ChatGPT, as it is the
most common and convenient setting for end users.

We encoded each of the 203 languages in our set
as a feature vector. In these language feature vec-
tors we included four numerical features: num-
ber of Wikipedia pages in the language (wiki_ct),
size of the language’s bi-text corpus in the Oscar
MT database10 (oscar_ct) (Abadji et al., 2022),
percentage of ASCII characters11 in the FLORES-

10https://oscar-project.org
11Percentage of characters with an encoding between 0 and
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200 dev set for the language (ascii_percentage),
and average number of tokens per dev set sen-
tence in FLORES-200 with ChatGPT’s tokenizer
(token_ct). We also included two categorical
features: language family (family) and script
the language was written in (script); and one
binary feature: the FLORES resource designa-
tion of the language—with 1 for high-resource and
0 for low-resource (hi/lo). Before analysis, we
one-hot encoded the two categorical features into
48 binary features like family_Niger-Congo and
script_Latn.

We selected token_ct as a feature because we
observed languages in low-resource scripts having
many tokens. For example, ChatGPT’s tokenizer
encodes multiple tokens for every character in Ol
Chiki script. This tendency for GPT models with
low-resource scripts has been noted in previous
studies (Ahia et al., 2023).

We fit a decision tree with these feature vectors
to regress on ChatGPT’s relative improvement over
NLLB in chrF ( chrfGPT−chrfNLLB

chrfNLLB
), for each of the

201 languages with NLLB scores. When we used
max_depth 3, the tree in Figure 2 was learned. Lan-
guages are delimited first by wiki_ct; then LRLs
are separated into Niger-Congo languages and oth-
ers, while HRLs are delimited by token_ct. The
only group where ChatGPT beat NLLB is of lan-
guages with more than 58,344 Wikipedia pages,
fewer than 86 tokens per average sentence, and less
than 15.5% ASCII characters. This group contains
some East Asian HRLs. The group where Chat-
GPT was least advantaged contains Niger-Congo
languages with fewer than 3,707 Wikipedia pages.

We also fit a random forest regressor with the
same features and labels to find feature importance
values. Only ten features had importance ≥ 0.01,
shown in Table 7. The most important feature by
far was wiki_ct. (This feature correlates strongly
with ChatGPT’s relative improvement, ρ = 0.68.)
family_Niger-Congo was much more important
than any other family feature. No script feature
had an importance exceeding 0.01. In general, fea-
tures for resource level and tokenization were more
important than family or script.

ChatGPT has a blind spot not only for Niger-
Congo languages, but for African languages in gen-
eral. Figure 1 shows ChatGPT is least advantaged
for the two exclusively African families, Niger-
Congo and Nilo-Saharan; and the two exclusively

128, inclusive, using the Python built-in ord function

feature importance
wiki_ct 0.514
token_ct 0.157
ascii_percentage 0.104
family_Niger-Congo 0.054
oscar_ct 0.040
family_Afroasiatic 0.025
family_Indo-European 0.025
family_Sino-Tibetan 0.022
family_Creole 0.012
family_Nilo-Saharan 0.011

Table 7: Ten most important language features to predict
ChatGPT’s effectiveness relative to NLLB

African scripts, Tifinagh (Tfng) and Ge’ez (Ethi).

3.5 Impact of script

Prior research suggests that ChatGPT output qual-
ity is sensitive to language script (Bang et al., 2023).
Our own analysis in §3.4 actually suggests that
script is the least important language feature in pre-
dicting ChatGPT’s MT effectiveness. However, dif-
ferences in performance are clear when comparing
scripts used for the same language. Table 8 shows
one script typically outperforming the other, by an
average of 14.3 chrF points for zero-shot. Five-
shot contexts narrowed the gap slightly to 12.0. Al-
though transliteration is a deterministic process for
many languages, these performance gaps suggest
that ChatGPT has not implicitly learned it as part of
a translation task. We hypothesize that ChatGPT’s
observed sensitivity to script in earlier studies may
be particular to the languages and tasks evaluated.

BLEU chrF
Lang. 0-shot 5-shot 0-shot 5-shot
ace_Arab 1.27 2.26 8.41 9.75
ace_Latn 4.98 4.35 19.82 17.96
arb_Arab 37.60 37.85 53.79 53.81
arb_Latn 5.33 8.38 22.79 26.92
bjn_Arab 1.96 3.05 10.43 13.24
bjn_Latn 10.96 12.29 35.92 37.98
kas_Arab 3.99 3.30 15.51 14.33
kas_Deva 2.31 2.68 12.91 13.91
knc_Arab 0.51 1.06 5.26 4.67
knc_Latn 2.61 0.91 13.38 8.11
min_Arab 1.56 3.49 10.06 14.88
min_Latn 11.51 13.07 36.99 38.43
taq_Latn 0.82 0.28 8.18 6.24
taq_Tfng 0.62 1.37 5.23 8.31
zho_Hans 36.33 36.51 31.03 31.89
zho_Hant 29.30 30.38 24.82 26.02

Table 8: ChatGPT performance on languages with mul-
tiple scripts. Each better scoring script is bold.

397



Figure 2: Decision tree predicting ChatGPT relative improvement over NLLB chrF, from language features.

3.6 LLMs often get the language wrong

LLMs’ performing worse than NLLB may be due
in large part to their translating into the wrong lan-
guage. Using FLORES-200’s dev data, we trained
a logistic regression language identifier for 100
epochs. Language identification accuracies for four
of the models we evaluated are in Table 9. Zero-
shot ChatGPT only translated on target 72% of
the time. This expectedly improved with five-shot
prompts, and GPT-4 performed even better, still
just shy of NLLB. LLMs’ tendency to translate off
target is corroborated by Zhu et al. (2023).

model lang. ID acc.
ChatGPT (0-shot) 72%
ChatGPT (5-shot) 83%
GPT-4 (5-shot) 90%
NLLB 91%

Table 9: Proportion of the time each model translated
into the correct target language

3.7 Cost comparison

Our results suggest that GPT-4 is a better translator
than ChatGPT. However in considering the needs
of MT end users, it would be remiss not to consider
the respective costs of the systems evaluated. GPT-
4’s high cost (roughly 2000% that of ChatGPT’s)
prohibited us from evaluating it on all FLORES-
200 languages. In general, using few-shot prompts
for LLMs is more costly than zero-shot prompts,
since users are charged for both input and output
tokens. And for this same reason, some languages
are more costly than others in LLM MT. Previous
work has found that Google Translate has associ-
ated costs comparable to those of five-shot Chat-
GPT (Neubig and He, 2023). NLLB is the least
expensive system we evaluated.

We estimated cost values for each MT system
and language: the expense, in USD, of translating
the full FLORES-200 devtest English set into the
language. We estimated GPT model costs using
the prompts employed in our experiments, the tikto-
ken tokenizer12 used by both models, and inference
prices posted by OpenAI.13 Conveniently, Google
Translate costs nothing for the first 500K input
characters. But since frequent MT users may have
already expended this allowance, we calculated
costs from their rates beyond the first 500K.14 As
the NLLB-MOE model (54.5B parameters) is diffi-
cult to run on standard computing devices, NLLB
Team et al. (2022) also provided a version with only
3.3B parameters that achieves similar performance.
Since users commonly opt for the smaller model,
and since the performance difference does not im-
pact our estimates significantly, we estimated the
costs to run the 3.3B-parameter NLLB model us-
ing a single GPU on Google Colab. Details of our
estimation method are in Appendix B.1. Table 10
contains the average cost for each system across
the languages we evaluated with it.

model cost
NLLB $0.09
ChatGPT (0-shot) $0.35
ChatGPT (5-shot) $1.32
Google $2.66
GPT-4 (5-shot) $25.93

Table 10: Estimated cost in USD to translate FLORES-
200 devtest ENG→X with each system, averaged across
all languages we evaluated with each

Figure 3 displays chrF scores for the 11 lan-
guages on which we evaluated all four MT sys-

12https://github.com/openai/tiktoken
13https://openai.com/pricing
14https://cloud.google.com/translate/pricing
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Figure 3: chrF scores for the 11 languages on which we
evaluted all MT systems (top), followed by the same
scores divided by the estimated cost of each system for
each language (bottom)

tems (top), and the same scores divided by the
approximate cost of each model (bottom). Bars for
GPT-4 drop significantly in the bottom chart be-
cause of its high cost. Note from the top chart that
Google Translate scores the best, but the bottom
chart shows that NLLB has the best scores for its
price. Zero-shot ChatGPT also tops five-shot in
the bottom chart, suggesting that while few-shot
prompts provide modest score improvements, they
may not be worth the extra cost. See Appendix B
for fuller visualizations with all 203 languages.

4 Related Work

We are not the first researchers to explore LLM
MT. However, most existing studies do not provide
benchmarks for a large number or languages. Wang
et al. (2023) studied GPT model discourse MT, but
only for four languages. Gao et al. (2023) studied
prompt engineering for GPT model MT, a helpful
precursor to our work, but only for three languages.
Moslem et al. (2023) probed the abilities of GPT
models for adaptive and domain-appropriate MT
and term extraction, only including six languages
in five directions. Jiao et al. (2023) produced MT
benchmarks for ChatGPT and GPT-4, but only for
five languages, none of them LRLs.15 They cor-
roborated our findings that GPT models lag behind
traditional MT models, but that GPT-4 outperforms
ChatGPT. Hendy et al. (2023) explored 18 lan-
guage pairs in a similar study, including four LRLs,
but they focused more on MT performance across
text domains, in-context learning, and reasoning

15In this section, we define LRLs as languages having fewer
than 1M Wikipedia pages.

than on multilingual benchmarks.
In all the heretofore mentioned works combined,

researchers explored only 18 languages, including
five LRLs. This few-language approach does not
address the needs of LLM users seeking to trans-
late any languages other than the small few repre-
sented. In a work most comparable to our own, Zhu
et al. (2023) attempted to address this issue. They
provided benchmarks comparing LLMs and tradi-
tional MT models across 102 languages, including
68 LRLs. Their results corroborate our own conclu-
sions that LLMs lag behind traditional MT models,
especially for LRLs. However, their analysis fo-
cuses primarily on few-shot learning and prompt
engineering, including some topics somewhat re-
moved from end user needs (such as the viability
of nonsensical prompts in few-shot settings). Our
work differs from existing studies in our focus on
end users. We include more languages than any ex-
isting work (204 languages, including 168 LRLs),
to address the needs of various LRL communities.
Our analysis suggests which language features pre-
dict LLM effectiveness, to help end users make
hypotheses even about languages not represented
in our study. We evaluate monetary costs, since
they are a concern for LLM users.

5 Conclusion

We provide benchmarks for LLM ENG→X MT
performance across 203 languages, with compar-
isons to state-of-the-art commercial and open-
source MT models. For many HRLs, LLMs like
ChatGPT perform competitively with these tra-
ditional models. But for LRLs, traditional MT
remains dominant, despite LLMs’ increased pa-
rameter size. Our decision-tree analysis reveals
language features that predict ChatGPT’s transla-
tion effectiveness relative to NLLB, finding that
ChatGPT is especially disadvantaged for LRLs
and African languages, and that the number of
Wikipedia pages a language has is a strong pre-
dictor of ChatGPT’s effectiveness in it. We present
evidence that few-shot learning offers generally
marginal improvements for ENG→X MT, which
may not justify its additional cost. We provide MT
users with scores and cost estimates for four LLM
and traditional MT systems, to help them determine
which to use for their languages.

Future work may include more translation
directions (X→ENG and non-English-centric),
document-level MT, and human evaluation of LLM
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outputs to reveal trends along fluency and accuracy
dimensions. We open-source software and outputs
of the models we evaluated on our repository.

Limitations

We acknowledge limitations of using ChatGPT
models for research. Since they are closed-source
models, there is much we do not know about their
architectural and training details, which can impact
our understanding of their capabilities and biases.
For instance, OpenAI’s implementation of mecha-
nisms to prevent the generation of harmful or toxic
content may inadvertently impact the quality of the
model’s output. This can be a concern when eval-
uating the reliability and accuracy of the results.
OpenAI continuously updates and deprecates mod-
els behind the ChatGPT API, so our assessment
may not be immaculate for future versions. Future
work may mitigate these concerns by evaluating
white-box LLMs, such as BLOOM (Scao et al.,
2022) or MPT (Team, 2023), or LLMs not tuned
for instruction, like GPT-3 (Brown et al., 2020).

While FLORES-200 is large and diverse, it is
likely not representative of the vast array of lan-
guages worldwide. Some low-resource sets within
FLORES-200 may contain noisy or corrupted data,
potentially affecting the validity of the automatic
metrics we employ in our reporting of scores. Ad-
ditionally, FLORES-200 sets were translated from
English Wikipedia. We avoided any X→ENG
translation directions, since it is likely that GPT
models were trained on English Wikipedia. How-
ever, the semantic proximity of the other language
sets to the original English source could potentially
provide an advantage to these models in generat-
ing them. We also acknowledge the absence of
non-English-centric translation directions from this
study; we leave this for future work.

Lastly, the unavailability of semantic MT eval-
uation techniques like COMET (Rei et al., 2020)
or BLEURT (Sellam et al., 2020) for LRLs hin-
ders our ability to conduct comprehensive seman-
tic evaluations and may leave some aspects of the
translation quality unexplored. Future researchers
may gain additional insights by evaluating LLM
COMET scores for the target languages in which
they are available. Human evaluation (which we
leave for future work) may also reveal much in
this area. These limitations surrounding model
transparency, representative data, and evaluation
should be taken into account when interpreting the

findings of this work. Future studies may benefit
from addressing these challenges to enhance the
robustness and reliability of MT conclusions.

Ethics Statement

The new prominence of LLMs in language tech-
nologies has numerous ethical implications. This
study makes it apparent that even powerful LLMs
like ChatGPT have significant limitations, such
as an inability to translate a large number of low-
resource languages. It also suggests that although
these LLMs are trained on large and diverse data
sets, they still have implicit biases, such as a clear
disadvantage in MT for African languages. We
hope to stress the importance of acknowledging
and publicizing the limits and biases of these LLMs.
This is especially relevant because a majority of
LLM users may not be familiar or experienced with
artificial intelligence (AI) engineering practices,
and the commercial entities providing LLMs often
have a monetary incentive to deliberately downplay
the models’ limitations. This can lead to unethi-
cal exploitation of users, who may attempt to use
LLMs in applications where their limitations and
biases can cause harm. Part of our goal in this
work is to bring these discussions to the forefront
of AI research. Ethical considerations like these
should be a top concern for AI researchers, es-
pecially when many recent AI advancements are
piloted by powerful commercial corporations.

We hope also to acknowledge some of the ethical
considerations involved in our own research. As we
strive to develop improved open-source and acces-
sible translation systems, it is essential to acknowl-
edge that some language communities may have
reservations about having their languages trans-
lated. Another crucial point is that utilizing the
FLORES-200 test set in this research may inadver-
tently contribute to its incorporation into OpenAI’s
training data. OpenAI’s current position is that API
requests are not used for training (Schade, 2023),
but if this position were altered or disregarded, it
could compromise the reliability of this test set
for future GPT iterations. (This is a consideration
for many commercial LLMs, though we only used
OpenAI’s in the current work.) This scenario has
a potential negative impact on the MT community,
since many researchers depend on FLORES-200
and other MT benchmarks for large, diverse, high-
quality data to conduct system comparisons.
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A Unabridged Result Table

In Table 11 we report full results for 203 target lan-
guages in ENG→X translation directions, across
four MT systems: two LLMs (ChatGPT and GPT-4,
with two n-shot settings for ChatGPT), one open-
source encoder-decoder MT model (NLLB), and
one commercial system (Google). We order in
them in increasing order of performance, with zero-
shot ChatGPT performing the worst and Google
performing the best overall. We obtained scores
for 203 target languages with ChatGPT, 201 with
NLLB, 115 with Google Translate, and 20 with
GPT-4. Our scores are spBLEU (Goyal et al., 2022)
using the SPM-200 tokenizer (NLLB Team et al.,
2022) and chrF2++ (Popović, 2017). All results
are also available on our repository, and interactive
visualizations and histograms can be browsed on
our Zeno browser.

B Unabridged Bar Charts and Cost
Estimation

See Figures 4 and 5 for chrF and BLEU scores
across all MT systems and languages. Google
Translate and NLLB are generally the best perform-
ers in both metrics, though GPT-4 and ChatGPT are
occasionally best. An “x” indicates where we did
not evaluate one of the systems for a language. Fig-
ures 6 and 7 display chrF and BLEU scores divided
by the estimated cost of each MT system. The
cost value is measured as the amount in USD that
it would cost to translate the entire FLORES-200
devtest set for each language.

These visualizations are also available on our
repository. (Also see our Zeno browser for interac-
tive visualizations of our results.) We also include
cost estimates and scores divided thereby for all
languages and MT systems in Table 14. We ex-
clude cost estimates by language for NLLB and
Google because there is very little variation be-
tween languages. Our estimated cost of translat-
ing FLORES-200 devtest ENG→ is approximately
$0.09 for every target language. And the respective
estimate for Google Translate is roughly $2.66 re-
gardless of the target language, since Google’s API
only charges for input characters.

B.1 Details about estimating NLLB cost
To estimate the cost of running NLLB’s 3.3B-
parameter model for translation, we used one
GPU from Google Colab to translate the full
FLORES-200 devtest set from English into six

languages representing six high- and low-resource
scripts–Burmese (mya_Mymr), Simplified Chinese
(zho_Hans), Standard Arabic (arb_Arab), Hindi
(hin_Deva), Armenian (hye_Armn), and French
(fra_Latn)–and measured the time for each. We
assumed that runtime t is determined by an equa-
tion with unknown coefficients x1, x2, and x3:

t = x1ninput + x2noutput + x3 (1)

where ninput represents the number of input to-
kens and noutput is the number of output tokens.
In this case, x1 represents the rate at which the
encoder processes input tokens, x2 represents the
rate at which the decoder undergoes inference, and
x3 is the amount of time to perform all other com-
putations, independent of the number of tokens.
We estimated x1, x2, and x3 via a least-squares
solution to the linear system defined by the six
languages for which we obtained runtime t:




ninput noutput(mya) 1
ninput noutput(zho) 1
ninput noutput(arb) 1
ninput noutput(hin) 1
ninput noutput(hye) 1
ninput noutput(fra) 1






x1
x2
x3


 =




tmya
tzho
tarb
thin
thye
tfra




where ninput is the number of tokens in the En-
glish devtest set, and noutput for each language is
the number of tokens in the NLLB-MOE model
output provided by NLLB Team et al. (2022). (We
used the same tokenizer that we had used for GPT
model cost estimation, for simplicity.) After es-
timating x1, x2, and x3, we used them in Equa-
tion 1 to estimate t values for all 201 languages
for which we obtained NLLB MT scores. We then
used Google Colab’s estimated rate of $0.35/hour
for use of one GPU to estimate costs for each lan-
guage.

C Visualizations Comparing ChatGPT
and NLLB

See Figures 8 and 9. They are also posted on our
repository. (Also see our Zeno browser for interac-
tive visualizations of our results.)

D Estimating Wikipedia Page Counts

As mentioned in §2.3, we used the "Total pages"
count from https://en.wikipedia.org/wiki/
List_of_Wikipedias, accessed 7 August 2023,
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as a proxy for the resource level of a language
(refered to as wiki_ct in §3.4). We had to make
some decisions regarding macrolanguage and mi-
crolanguage matches when making these estimates.
Many of the languages in FLORES-200 (NLLB
Team et al., 2022) are in fact microlanguages of a
macrolangauge not included in the dataset. In some
cases this microlanguage was did not have a listed
Wikipedia page count, so we used the macrolan-
guage page count instead. Table 12 lists all the
languages for which we used the Wikipedia page
count of a macrolanguage (with a different ISO
639-3 code), based on our best judgment. In every
case this was because the FLORES-200 microlan-
guage was not listed.

There were also cases where we decided to list
zero for a microlanguage’s wiki_ct, even if its
macrolanguage was listed with a nonzero number
of pages. This was in cases where we could reason-
ably assume that the macrolanguage’s Wikipedia
pages were likely (either all or predominantly) in
another microlanguage or dialect. We list the lan-
guages that we considered in this manner in Ta-
ble 13.

We also made some decisions regarding
wiki_ct assignment based on the script of a lan-
guage. We recorded zero Wikipedia pages for
kas_Deva and 13,210 for kas_Arab (all of the
Kashmiri pages) because a majority of Kashmiri
pages seem to be in Perso-Arabic script. (There
may be a few in Devanagari, but we simplify by as-
suming none are.) We also recorded zero pages
for mni_Beng because, although Wikipedia has
pages in Meitei, they appear to be in the Meitei
Mtei script, not Bengali Beng. Lastly, we as-
signed Wikipedia’s count for ‘Classical Chinese’
(zh-classical) to zho_Hant and its count for
‘Chinese’ to zho_Hans (though it is possible that
some of the ‘Chinese’ pages may be in the Tradi-
tional Chinese (Hant) script).

In all other cases, if a language did not have a
listed number of Wikipedia pages, we took this to
mean it had zero.
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Table 11: BLEU and chrF results on ENG→X directions. “0-shot" and “5-shot" are ChatGPT with zero- and
five-shot settings, respectively. “NLLB" is the NLLB-MOE model, and “Google" is Google Translate. We used
five-shot settings only for GPT-4. Models are listed in order of their effectiveness in MT (with zero-shot ChatGPT
performing the worst and Google Translate performing the best).

Language spBLEU200 chrF2++
0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4 NLLB Google

ace_Arab 1.3 2.3 – 5.5 – 8.4 9.8 – 17.4 –
ace_Latn 5.0 4.3 – 11.6 – 19.8 18.0 – 37.1 –
acm_Arab 28.2 29.6 29.5 11.8 – 44.7 46.1 46.5 31.9 –
acq_Arab 30.9 31.9 – 26.9 – 47.5 48.1 – 42.2 –
aeb_Arab 24.2 24.7 – 19.9 – 41.0 41.3 – 38.2 –
afr_Latn 47.2 46.7 – 44.4 48.7 67.0 66.7 – 64.3 67.8
ajp_Arab 31.5 32.2 32.2 36.3 – 47.1 47.5 48.4 51.3 –
aka_Latn 3.2 3.1 – 11.7 – 13.3 13.8 – 34.5 –
als_Latn 33.6 34.2 – 39.4 – 56.0 56.3 – 58.3 –
amh_Ethi 3.5 3.7 – 31.6 34.1 10.0 10.6 – 39.4 42.0
apc_Arab 30.4 30.9 – 36.7 – 45.5 45.8 – 50.6 –
arb_Arab 37.6 37.9 – 43.0 48.6 53.8 53.8 – 57.1 62.6
arb_Latn 5.3 8.4 – – 7.9 22.8 26.9 – – 35.4
ars_Arab 35.9 37.2 – 36.7 – 52.4 53.1 – 50.5 –
ary_Arab 19.3 19.6 – 23.3 – 36.3 36.7 – 38.9 –
arz_Arab 26.2 26.6 – 32.1 – 42.3 42.7 – 46.8 –
asm_Beng 8.2 10.6 – 22.5 23.2 23.2 26.1 – 35.9 37.4
ast_Latn 31.3 32.3 – 34.5 – 53.8 54.5 – 56.8 –
awa_Deva 15.6 16.6 – 27.6 – 35.4 36.3 – 47.1 –
ayr_Latn 0.2 0.1 – 7.6 7.2 4.7 3.8 – 29.7 31.5
azb_Arab 3.5 3.6 – 5.4 – 17.9 18.5 – 23.5 –
azj_Latn 16.6 17.7 – 24.6 – 38.4 40.3 – 42.9 –
bak_Cyrl 5.5 5.7 – 30.3 – 20.1 20.7 – 47.3 –
bam_Latn 0.5 0.7 – 9.3 9.5 6.1 6.9 – 30.5 32.6
ban_Latn 10.9 9.0 – 19.4 – 30.7 27.4 – 44.6 –
bel_Cyrl 19.5 20.5 – 27.3 30.1 38.3 39.1 – 42.0 44.4
bem_Latn 1.6 1.1 – 13.6 – 10.3 9.1 – 37.9 –
ben_Beng 21.8 22.1 – 36.0 37.6 38.5 39.0 – 50.0 51.4
bho_Deva 11.9 12.5 – 23.6 21.0 29.7 30.7 – 42.8 40.0
bjn_Arab 2.0 3.0 – 5.8 – 10.4 13.2 – 17.1 –
bjn_Latn 11.0 12.3 – 21.9 – 35.9 38.0 – 48.2 –
bod_Tibt 0.2 0.4 – 8.5 – 12.7 14.7 – 29.7 –
bos_Latn 40.0 40.6 – 40.7 44.0 59.9 60.1 – 58.8 61.8
bug_Latn 5.2 2.7 – 9.1 – 23.3 16.4 – 33.7 –
bul_Cyrl 44.1 44.4 – 50.0 53.1 61.6 61.9 – 64.8 67.9
cat_Latn 47.8 47.9 – 48.9 51.1 65.4 65.3 – 65.0 67.2
ceb_Latn 28.0 29.1 – 34.5 40.2 51.0 52.9 – 57.3 62.2
ces_Latn 40.8 40.8 – 42.4 46.0 57.6 57.4 – 57.4 60.3
cjk_Latn 0.2 0.1 – 4.0 – 4.4 4.5 – 24.3 –
ckb_Arab 4.7 6.5 11.2 26.8 25.8 19.7 24.8 33.1 47.2 47.7
crh_Latn 6.0 6.8 – 27.4 – 27.8 29.0 – 47.0 –
cym_Latn 48.0 48.5 – 58.4 63.6 64.7 64.9 – 70.8 74.5
dan_Latn 52.3 52.5 – 50.0 55.3 69.7 69.7 – 66.4 70.3
deu_Latn 47.7 47.9 – 46.6 51.2 65.4 65.4 – 62.8 66.5
dik_Latn 0.2 0.1 – 6.1 – 4.6 4.4 – 24.2 –
dyu_Latn 0.5 0.1 – 2.7 – 4.5 4.3 – 17.7 –
dzo_Tibt 0.1 0.7 – 13.3 – 7.7 15.9 – 34.7 –
ell_Grek 35.8 35.8 – 38.7 40.1 51.6 51.6 – 52.0 53.6
epo_Latn 37.9 38.5 – 42.8 40.4 58.5 58.8 – 61.4 60.1
est_Latn 35.3 35.8 – 36.5 41.4 56.8 56.9 – 56.1 59.9
eus_Latn 19.1 19.5 – 29.0 33.9 44.2 43.9 – 50.0 54.5
ewe_Latn 0.6 0.7 – 17.2 17.0 6.0 6.1 – 39.0 39.9
fao_Latn 18.1 19.2 – 31.6 – 40.5 41.5 – 49.8 –
fij_Latn 5.5 4.8 – 23.6 – 22.9 21.3 – 46.7 –
fin_Latn 35.8 36.1 – 36.6 39.2 56.2 56.4 – 55.3 58.0
fon_Latn 0.2 0.2 – 6.4 – 3.9 4.1 – 21.5 –
fra_Latn 56.4 56.6 57.3 56.2 59.7 71.1 71.3 71.7 69.7 72.7
fur_Latn 18.5 19.8 – 39.6 – 40.6 42.5 – 56.8 –
fuv_Latn 1.2 0.4 – 6.0 – 8.5 5.8 – 23.9 –
gaz_Latn 0.6 0.4 – 12.6 14.6 8.0 7.3 – 37.5 40.3
gla_Latn 15.5 16.3 – 28.7 32.2 38.9 39.0 – 50.2 52.7

Continued on next page
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Table 11 – continued from previous page
Language spBLEU200 chrF2++

0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4 NLLB Google
gle_Latn 25.8 26.3 32.8 41.4 44.1 47.1 47.5 53.0 58.0 60.1
glg_Latn 39.4 40.0 – 40.1 41.9 61.3 61.5 – 59.8 61.5
grn_Latn 0.7 0.6 – 16.4 15.3 6.3 5.7 – 36.6 36.4
guj_Gujr 18.9 19.4 – 37.2 39.2 37.4 37.1 – 53.3 55.2
hat_Latn 24.5 24.8 – 30.5 31.8 47.0 47.2 – 51.9 53.4
hau_Latn 6.2 6.3 15.7 31.4 30.6 22.2 22.4 40.3 53.5 53.2
heb_Hebr 35.3 35.4 – 46.8 48.8 51.2 50.7 – 59.8 61.2
hin_Deva 29.2 29.4 – 40.6 43.0 48.7 48.6 – 57.3 59.3
hne_Deva 14.1 15.5 – 33.7 – 34.0 36.1 – 54.3 –
hrv_Latn 37.8 38.2 – 38.9 42.5 57.0 57.2 – 57.2 60.2
hun_Latn 34.8 34.9 – 38.1 40.9 54.6 54.5 – 55.5 58.1
hye_Armn 14.3 14.8 – 40.2 42.7 33.2 33.5 – 53.2 56.3
ibo_Latn 3.2 4.0 9.8 20.6 22.2 14.7 16.3 27.7 41.4 43.5
ilo_Latn 11.4 12.6 – 29.0 31.0 33.6 35.6 – 53.3 56.0
ind_Latn 48.8 48.7 – 49.2 55.0 68.5 68.5 – 68.7 72.6
isl_Latn 26.0 26.0 – 33.9 40.8 44.8 45.0 – 50.0 55.8
ita_Latn 37.6 37.7 – 38.3 40.0 59.4 59.5 – 57.3 59.1
jav_Latn 16.9 18.9 – 30.3 30.3 41.2 42.7 – 54.8 55.1
jpn_Jpan 30.5 31.3 – 20.1 35.3 33.1 33.7 – 27.9 37.1
kab_Latn 1.3 1.5 – 16.9 – 11.9 12.9 – 35.6 –
kac_Latn 0.0 0.1 – 14.3 – 2.9 4.8 – 37.5 –
kam_Latn 1.3 1.1 – 6.1 – 8.9 9.0 – 25.9 –
kan_Knda 18.6 19.4 – 39.6 41.9 37.9 38.2 – 53.4 55.7
kas_Arab 4.0 3.3 – 18.2 – 15.5 14.3 – 34.2 –
kas_Deva 2.3 2.7 – 4.7 – 12.9 13.9 – 17.1 –
kat_Geor 15.2 15.7 23.2 34.6 37.5 32.5 33.5 41.4 48.1 51.4
kaz_Cyrl 12.9 13.4 – 34.0 38.7 33.9 33.4 – 51.8 56.0
kbp_Latn 0.4 1.4 – 11.3 – 4.0 9.4 – 28.3 –
kea_Latn 13.0 18.7 – 22.5 – 37.6 43.0 – 42.8 –
khk_Cyrl 8.0 8.5 – 27.1 33.1 26.1 26.6 – 43.9 49.8
khm_Khmr 5.7 6.0 – 23.0 27.4 21.5 21.1 – 36.4 40.3
kik_Latn 0.8 2.0 – 15.4 – 8.8 11.6 – 37.1 –
kin_Latn 3.4 3.1 – 27.2 34.3 18.7 18.0 – 49.7 56.1
kir_Cyrl 8.4 8.9 – 27.4 30.5 25.8 26.6 – 44.5 48.2
kmb_Latn 0.4 0.4 – 4.5 – 4.9 6.1 – 24.9 –
kmr_Latn 8.3 9.4 14.3 19.6 20.0 25.3 27.4 34.3 39.3 40.0
knc_Arab 0.5 1.1 – 6.5 – 5.3 4.7 – 9.8 –
knc_Latn 2.6 0.9 – 8.2 – 13.4 8.1 – 27.4 –
kon_Latn 0.9 1.3 – 18.9 – 8.5 10.5 – 45.3 –
kor_Hang 25.6 25.9 – 26.7 30.0 34.4 34.9 – 36.0 38.6
lao_Laoo 2.9 4.0 – 29.6 29.6 18.5 21.5 – 46.2 44.0
lij_Latn 7.6 10.3 – 37.2 – 32.8 35.2 – 53.8 –
lim_Latn 15.1 19.8 21.0 25.8 – 40.2 42.7 45.1 47.9 –
lin_Latn 2.6 2.5 – 21.9 21.4 14.8 14.7 – 48.0 48.4
lit_Latn 30.0 30.6 – 35.4 41.7 51.5 51.8 – 54.7 59.4
lmo_Latn 6.7 8.3 – 10.5 – 29.9 30.6 – 34.9 –
ltg_Latn 5.3 5.4 – 36.4 – 29.2 29.1 – 53.6 –
ltz_Latn 25.4 27.5 – 36.7 35.3 48.7 48.9 – 56.0 55.6
lua_Latn 1.0 1.1 – 9.8 – 8.1 9.3 – 35.2 –
lug_Latn 1.6 1.3 – 14.0 14.4 11.6 10.6 – 39.8 41.3
luo_Latn 0.8 0.1 – 15.2 – 7.0 5.0 – 38.5 –
lus_Latn 4.6 4.7 – 15.1 – 17.6 17.8 – 38.0 –
lvs_Latn 33.0 33.5 36.7 35.4 – 55.1 55.2 57.3 54.8 –
mag_Deva 18.6 19.4 24.8 39.4 – 39.1 39.9 44.6 58.5 –
mai_Deva 10.2 12.1 – 27.1 19.6 28.9 31.2 – 46.7 40.6
mal_Mlym 14.6 14.9 – 38.3 43.2 32.3 32.0 – 51.6 56.2
mar_Deva 14.5 14.7 – 30.3 33.4 34.3 34.6 – 48.0 51.0
min_Arab 1.6 3.5 – – – 10.1 14.9 – – –
min_Latn 11.5 13.1 – 28.7 – 37.0 38.4 – 52.4 –
mkd_Cyrl 36.0 36.5 – 42.6 46.5 57.0 57.3 – 60.6 63.7
mlt_Latn 29.9 30.3 – 50.3 59.7 49.4 49.8 – 66.0 71.6
mni_Beng 1.8 2.0 – 27.5 0.1 11.4 10.5 – 38.7 0.6
mos_Latn 0.2 0.2 – 6.8 – 3.9 4.3 – 24.3 –
mri_Latn 15.1 14.5 – 20.7 18.3 34.8 34.0 – 44.2 42.4
mya_Mymr 2.1 2.8 – 17.7 24.5 19.8 20.6 – 32.0 40.4
nld_Latn 36.3 36.5 – 35.6 38.0 56.5 56.7 – 54.9 57.3

Continued on next page
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Table 11 – continued from previous page
Language spBLEU200 chrF2++

0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4 NLLB Google
nno_Latn 37.1 38.3 – 33.4 25.6 58.7 59.4 – 53.6 50.7
nob_Latn 40.2 39.8 – 38.4 – 60.5 60.2 – 58.6 –
npi_Deva 19.0 19.6 – 28.7 – 39.5 39.3 – 45.5 –
nso_Latn 3.7 4.6 – 26.5 29.8 16.7 19.0 – 50.8 54.0
nus_Latn 0.1 0.5 – 14.4 – 3.0 5.5 – 29.0 –
nya_Latn 4.9 5.5 – 17.7 21.1 20.6 22.6 – 44.0 48.0
oci_Latn 30.4 33.3 – 41.0 – 55.1 57.0 – 58.8 –
ory_Orya 11.6 12.6 – 30.2 38.9 27.5 29.8 – 45.7 53.4
pag_Latn 5.7 8.3 – 20.2 – 22.6 26.7 – 46.3 –
pan_Guru 21.0 21.5 – 36.4 39.7 37.4 37.6 – 49.0 51.9
pap_Latn 25.4 33.2 – 42.2 – 51.6 56.5 – 60.2 –
pbt_Arab 5.1 5.8 9.2 22.9 – 19.7 21.1 26.7 39.4 –
pes_Arab 29.4 30.4 – 36.1 39.8 48.6 48.8 – 51.3 54.3
plt_Latn 8.2 8.3 – 25.3 25.9 31.4 30.9 – 50.0 51.2
pol_Latn 32.1 32.6 – 32.5 36.3 49.7 50.0 – 48.9 52.1
por_Latn 56.4 56.9 – 52.9 58.6 71.4 71.7 – 67.9 72.3
prs_Arab 25.7 27.5 – 33.8 – 44.8 47.4 – 53.6 –
quy_Latn 0.7 0.6 – 5.8 8.2 9.3 9.5 – 26.9 34.0
ron_Latn 46.2 46.9 49.0 44.7 50.0 64.0 64.2 65.3 61.3 65.0
run_Latn 3.1 2.3 – 19.6 – 16.6 14.7 – 42.5 –
rus_Cyrl 38.9 38.9 – 41.0 43.9 56.6 56.5 – 56.3 58.7
sag_Latn 0.1 0.1 – 10.5 – 4.6 5.1 – 35.7 –
san_Deva 4.7 5.4 – 8.0 10.0 21.8 22.6 – 26.1 30.3
sat_Olck 0.0 1.9 – 18.5 – 0.2 14.4 – 26.3 –
scn_Latn 11.2 13.0 – 24.4 – 35.9 37.2 – 46.8 –
shn_Mymr 0.5 1.3 – 15.1 – 7.6 16.6 – 34.4 –
sin_Sinh 6.1 6.9 – 36.0 40.4 19.5 20.1 – 43.8 51.2
slk_Latn 38.6 38.4 – 42.9 48.4 56.8 57.0 – 59.0 63.1
slv_Latn 35.7 36.0 – 38.1 42.4 55.5 55.7 – 56.2 59.6
smo_Latn 6.3 8.0 – 26.9 – 22.8 26.3 – 50.0 –
sna_Latn 3.2 3.4 8.4 19.7 20.8 15.3 16.3 29.2 43.4 44.4
snd_Arab 9.1 10.5 – 31.9 32.6 22.5 24.9 – 48.1 48.7
som_Latn 8.1 8.1 – 18.4 18.9 29.4 29.7 – 43.0 43.7
sot_Latn 5.7 5.4 – 20.7 22.5 20.7 20.9 – 46.1 47.8
spa_Latn 33.8 33.9 – 33.1 35.0 56.5 56.7 – 53.8 55.5
srd_Latn 16.3 18.5 – 35.8 – 42.1 43.8 – 55.6 –
srp_Cyrl 37.5 37.9 – 43.4 48.1 56.5 57.2 – 59.7 63.4
ssw_Latn 1.9 0.5 5.8 19.9 – 10.6 6.7 24.1 43.3 –
sun_Latn 13.9 14.5 – 21.6 24.4 39.0 38.6 – 44.7 48.7
swe_Latn 52.5 52.2 – 50.1 54.2 68.5 68.4 – 65.9 69.4
swh_Latn 38.0 38.6 – 36.8 44.6 60.1 60.3 – 58.6 64.4
szl_Latn 12.8 15.1 – 38.4 – 35.5 36.7 – 53.7 –
tam_Taml 13.6 13.4 20.9 36.6 38.7 33.8 34.5 42.7 53.7 55.8
taq_Latn 0.8 0.3 – 4.9 – 8.2 6.2 – 23.1 –
taq_Tfng 0.6 1.4 – 5.6 – 5.2 8.3 – 16.7 –
tat_Cyrl 6.7 7.3 – 30.4 30.4 21.5 23.6 – 46.8 48.2
tel_Telu 17.4 18.0 – 41.6 44.7 34.4 35.6 – 55.9 58.2
tgk_Cyrl 10.8 11.7 – 35.3 35.6 29.3 30.4 – 51.2 51.8
tgl_Latn 35.0 35.0 – 38.3 39.8 60.8 60.6 – 60.5 61.8
tha_Thai 33.5 33.6 – 35.1 45.2 43.1 43.2 – 42.7 49.7
tir_Ethi 1.6 1.9 – 17.8 17.6 5.8 6.7 – 25.8 26.3
tpi_Latn 14.0 15.8 22.7 17.8 – 37.1 39.2 49.5 41.6 –
tsn_Latn 3.8 4.2 – 25.6 – 17.0 18.6 – 48.5 –
tso_Latn 2.8 3.0 – 26.7 26.1 15.0 16.0 – 50.0 50.9
tuk_Latn 6.2 7.7 – 22.6 35.8 25.2 25.9 – 42.1 52.7
tum_Latn 3.6 2.9 – 13.3 – 16.5 14.8 – 35.2 –
tur_Latn 38.5 38.5 – 41.5 46.4 57.9 57.8 – 58.3 62.4
twi_Latn 3.0 3.0 – 15.2 17.4 13.4 14.2 – 37.9 40.9
tzm_Tfng 1.1 2.2 – 21.0 – 8.3 11.7 – 32.3 –
uig_Arab 6.5 8.5 – 30.5 40.2 20.5 24.7 – 45.3 54.3
ukr_Cyrl 37.4 37.4 39.2 40.1 42.8 55.0 55.4 56.3 56.3 58.6
umb_Latn 0.4 0.1 – 4.1 – 5.3 4.9 – 26.6 –
urd_Arab 21.9 22.2 – 30.5 32.7 41.7 41.8 – 48.9 50.0
uzn_Latn 17.4 18.8 – 30.0 37.8 39.9 40.9 – 50.6 56.4
vec_Latn 15.7 17.5 – 28.2 – 41.0 42.8 – 51.6 –
vie_Latn 40.7 40.7 – 43.3 – 58.5 57.9 – 59.5 –
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Table 11 – continued from previous page
Language spBLEU200 chrF2++

0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4 NLLB Google
war_Latn 24.3 25.0 28.4 35.0 – 49.3 49.5 54.0 57.4 –
wol_Latn 2.1 1.2 – 9.6 – 10.6 8.3 – 29.7 –
xho_Latn 5.3 6.0 – 25.4 29.5 21.9 23.3 – 48.6 52.2
ydd_Hebr 10.6 18.7 – 18.4 16.8 31.0 38.1 – 38.6 37.7
yor_Latn 2.5 3.3 – 10.5 4.9 11.4 13.7 – 25.5 20.0
yue_Hant 26.4 33.8 – 16.6 – 22.3 27.2 – 17.9 –
zho_Hans 36.3 36.5 – 26.6 43.6 31.0 31.9 – 22.8 37.8
zho_Hant 29.3 30.4 – 12.4 – 24.8 26.0 – 14.0 –
zsm_Latn 41.4 41.3 – 45.5 47.5 64.5 64.3 – 66.5 68.0
zul_Latn 6.7 7.3 – 31.4 32.0 25.2 26.3 – 53.3 53.9
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Figure 4: chrF scores across all MT systems and languages
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Figure 5: BLEU scores across all MT systems and languages
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Figure 6: chrF scores divided by the estimated cost of each MT system, across all MT systems and languages
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Figure 7: BLEU scores divided by the estimated cost of each MT system, across all MT systems and languages
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Figure 8: ChatGPT relative improvement over NLLB chrF (color scale), with languages organized by family, script,
and number of Wikipedia pages (divided in quartiles). Hexagons (one per language) are displayed in descending
order across rows, with the highest ChatGPT relative improvement over NLLB chrF2++ at the top left, and the
lowest at the bottom right. Group hexagons at the bottom of each plot display the average color for each group and
are organized in like manner.
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Figure 9: Alternative visualizations to those in Figure 8. Groups and languages are organized the same here: from
top left to bottom right in descending order of the ChatGPT relative improvement over NLLB (using averages for
the groups). 414



FLORES lang. substitution for wiki_ct
arb Used macrolanguage ‘Arabic’ (ara) because ‘Standard Arabic’ (arb) not present
bho Used macrolanguage ‘Bihari’ (bih) because ‘Bhojpuri’ (bho) not present
dik Used macrolanguage ‘Dinka’ (din) because ‘Southwestern Dinka’ (dik) not present
fuv Used macrolanguage ‘Fula’ (ful) because "Nigerian Fulfulde" (fuv) not present
knc Used macrolanguage ‘Kanuri’ (kau) because ‘Central Kanuri’ (knc) not present
lvs Used macrolanguage ‘Latvian’ (lav) because ‘Standard Latvian’ (lvs) not present
plt Used macrolanguage ‘Malagasy’ (mlg) because ‘Plateau Malagasy’ (plt) not present
khk Used macrolanguage ‘Mongolian’ (mon) because ‘Halh Mongolian’ (khk) not present
gaz Used macrolanguage ‘Oromo’ (orm) because ‘West Central Oromo’ (gaz) not present
pes Used macrolanguage ‘Persian’ (fas) because ‘Western Persian’ (pes) not present
pbt Used macrolanguage ‘Pashto’ (pus) because ‘Southern Pashto’ (pbt) not present
quy Used macrolanguage ‘Quechua’ (que) because ‘Ayuacucho Quechua’ (quy) not present
als Used macrolanguage ‘Albanian’ (sqi) because ‘Tosk Albanian’ (als) not present
uzn Used macrolanguage ‘Uzbek’ (uzb) because ‘Northern Uzbek’ (uzn) not present
ydd Used macrolanguage ‘Yiddish’ (yid) because ‘Eastern Yiddish’ (ydd) not present
zsm Used macrolangauge ‘Malay’ (msa) because ‘Standard Malay’ (zsm) not present

Table 12: FLORES-200 languages for which we used the Wikipedia page count associated with a macrolanguage of
another ISO 639-3 code

FLORES
lang. reason for assigning wiki_ct = 0
acm Macrolanguage ‘Arabic’ (ara) appears to be in ‘Standard Arabic’ (arb), not ‘Mesopotamian Arabic’ (acm)
acq Macrolanguage ‘Arabic’ (ara) appears to be in ‘Standard Arabic’ (arb), not ‘Tai’izzi Arabic’ (acq)
aeb Macrolanguage ‘Arabic’ (ara) appears to be in ‘Standard Arabic’ (arb), not ‘Tunisian Arabic’ (aeb)
ajp Macrolanguage ‘Arabic’ (ara) appears to be in ‘Standard Arabic’ (arb), not ‘South Levantine Arabic’ (ajp)
apc Macrolanguage ‘Arabic’ (ara) appears to be in ‘Standard Arabic’ (arb), not ‘North Levantine Arabic’ (apc)
ars Macrolanguage ‘Arabic’ (ara) appears to be in ‘Standard Arabic’ (arb), not ‘Najdi Arabic’ (ars)
mag Macrolanguage ‘Bihari’ (bih) appears to be in ‘Bhojpuri’ (bho), not ‘Magahi’ (mag)
prs Macrolanguage ‘Persian’ (fas) appears to be in ‘Western Persian’ (pes), not ‘Dari’ (prs)

Table 13: FLORES-200 languages for which we used assigned wiki_ct to be zero, despite the existence of
Wikipedia pages in a corresponding macrolanguage

Table 14: Estimated costs in USD to translate the FLORES-200 devtest set ENG→X for each targe language and
MT system, along with BLEU and chrF scores divided by the cost estimates, where applicable. The cost is roughly
$0.09 for NLLB and $2.66 for Google Translate for all target languages.

Lang. spBLEU200/cost chrF2++/cost cost estimate (USD$)
0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4

ace_Arab 0.9 0.9 – 5.1 – 6.3 4.0 – 16.0 – 0.3 1.5 29.0
ace_Latn 4.0 2.2 – 10.7 – 15.8 9.1 – 34.2 – 0.3 1.0 18.9
acm_Arab 22.4 13.9 1.2 10.8 – 35.6 21.6 1.8 29.3 – 0.3 1.1 24.3
acq_Arab 24.6 14.9 – 24.8 – 37.7 22.4 – 38.9 – 0.3 1.1 24.6
aeb_Arab 19.3 11.6 – 18.3 – 32.7 19.4 – 35.2 – 0.3 1.1 24.1
afr_Latn 39.5 25.8 – 41.0 13.3 56.2 36.8 – 59.4 18.5 0.2 0.8 17.1
ajp_Arab 25.0 15.3 1.3 33.4 – 37.4 22.5 2.0 47.3 – 0.3 1.1 23.7
aka_Latn 2.3 1.4 – 10.8 – 9.5 6.1 – 31.8 – 0.4 1.2 22.9
als_Latn 27.6 17.5 – 36.3 – 46.0 28.9 – 53.8 – 0.2 0.9 20.3
amh_Ethi 2.3 1.1 – 28.8 9.3 6.4 3.2 – 35.9 11.5 0.6 2.4 50.8
apc_Arab 24.2 14.7 – 33.8 – 36.2 21.8 – 46.6 – 0.3 1.1 23.6
arb_Arab 29.9 17.6 – 39.6 13.3 42.7 25.0 – 52.6 17.1 0.3 1.1 24.8
arb_Latn 4.2 4.2 – – 2.1 18.1 13.4 – – 9.7 0.3 1.0 21.5
ars_Arab 28.5 17.3 – 33.8 – 41.7 24.7 – 46.5 – 0.3 1.2 24.8
ary_Arab 15.3 9.2 – 21.5 – 28.8 17.2 – 35.8 – 0.3 1.1 24.4
arz_Arab 20.9 12.5 – 29.6 – 33.7 20.0 – 43.1 – 0.3 1.1 24.3
asm_Beng 5.7 3.6 – 20.6 6.4 16.1 8.8 – 32.9 10.2 0.4 2.0 42.6
ast_Latn 26.4 18.1 – 31.9 – 45.3 30.6 – 52.5 – 0.2 0.8 16.5
awa_Deva 11.5 6.4 – 25.3 – 26.1 14.0 – 43.2 – 0.4 1.6 34.6
ayr_Latn 0.1 0.0 – 7.0 2.0 2.8 1.5 – 27.4 8.6 0.7 1.5 19.9
azb_Arab 2.7 1.6 – 5.0 – 13.6 8.1 – 21.6 – 0.3 1.3 26.4
azj_Latn 13.4 8.7 – 22.7 – 31.1 19.7 – 39.6 – 0.2 1.0 22.5
bak_Cyrl 4.0 2.2 – 27.9 – 14.8 8.2 – 43.5 – 0.4 1.5 31.8
bam_Latn 0.3 0.3 – 8.6 2.6 3.7 2.8 – 28.1 8.9 0.6 1.4 22.1
ban_Latn 9.0 4.8 – 17.9 – 25.4 14.6 – 41.2 – 0.2 0.9 17.7
bel_Cyrl 15.3 9.1 – 25.1 8.2 30.0 17.3 – 38.7 12.1 0.3 1.3 27.4
bem_Latn 1.1 0.5 – 12.5 – 7.3 4.1 – 35.0 – 0.4 1.2 20.1
ben_Beng 15.4 7.7 – 33.0 10.3 27.2 13.6 – 45.8 14.0 0.4 1.9 40.6
bho_Deva 8.8 4.8 – 21.7 5.7 21.9 11.9 – 39.3 10.9 0.4 1.6 34.2
bjn_Arab 1.5 1.3 – 5.3 – 7.7 5.5 – 15.7 – 0.4 1.4 29.0
bjn_Latn 9.2 6.8 – 20.2 – 30.2 21.0 – 44.5 – 0.2 0.8 17.2
bod_Tibt 0.1 0.1 – 7.7 – 6.4 3.3 – 26.9 – 1.0 3.4 71.3
bos_Latn 33.3 21.9 – 37.6 12.0 49.9 32.4 – 54.3 16.9 0.2 0.9 18.2
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Table 14 – continued from previous page
Lang. spBLEU200/cost chrF2++/cost cost estimate (USD$)

0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4
bug_Latn 4.3 1.4 – 8.4 – 19.2 8.4 – 31.1 – 0.2 1.0 18.7
bul_Cyrl 35.4 21.6 – 46.1 14.5 49.5 30.2 – 59.7 18.5 0.2 1.1 22.5
cat_Latn 40.0 26.4 – 45.2 14.0 54.8 36.0 – 60.0 18.3 0.2 0.8 17.2
ceb_Latn 23.1 15.5 – 31.8 11.0 42.1 28.2 – 52.9 17.0 0.2 0.9 18.5
ces_Latn 33.7 21.3 – 39.1 12.6 47.5 30.0 – 53.0 16.5 0.2 0.9 19.5
cjk_Latn 0.1 0.1 – 3.7 – 2.8 2.0 – 22.4 – 0.6 1.3 18.7
ckb_Arab 3.5 2.5 0.3 24.6 7.0 14.5 9.4 0.9 43.3 13.0 0.4 1.6 35.1
crh_Latn 4.9 3.6 – 25.3 – 23.0 15.2 – 43.4 – 0.2 0.9 19.5
cym_Latn 39.6 25.2 – 53.9 17.4 53.3 33.8 – 65.3 20.4 0.2 0.9 19.7
dan_Latn 44.0 29.3 – 46.2 15.1 58.7 38.9 – 61.3 19.2 0.2 0.8 16.8
deu_Latn 40.2 26.9 – 43.0 14.0 55.1 36.7 – 58.0 18.2 0.2 0.8 16.5
dik_Latn 0.1 0.1 – 5.6 – 2.8 1.8 – 22.3 – 0.6 1.5 20.3
dyu_Latn 0.3 0.1 – 2.5 – 2.7 1.8 – 16.3 – 0.7 1.4 19.2
dzo_Tibt 0.0 0.1 – 12.0 – 2.8 3.5 – 31.4 – 1.8 3.6 76.8
ell_Grek 26.1 13.3 – 35.5 10.9 37.7 19.2 – 47.7 14.6 0.4 1.7 36.8
epo_Latn 31.5 20.8 – 39.5 11.0 48.7 31.7 – 56.7 16.4 0.2 0.9 18.1
est_Latn 29.4 19.3 – 33.7 11.3 47.3 30.7 – 51.8 16.4 0.2 0.9 18.2
eus_Latn 15.9 10.5 – 26.8 9.3 36.8 23.6 – 46.2 14.9 0.2 0.9 18.2
ewe_Latn 0.4 0.3 – 15.8 4.6 3.7 2.4 – 35.9 10.9 0.6 1.6 23.1
fao_Latn 15.0 10.1 – 29.2 – 33.4 21.8 – 45.9 – 0.2 0.9 19.3
fij_Latn 4.3 2.4 – 21.8 – 17.8 10.5 – 43.1 – 0.3 1.0 19.8
fin_Latn 29.6 19.1 – 33.8 10.7 46.6 29.9 – 51.0 15.8 0.2 0.9 18.9
fon_Latn 0.1 0.1 – 5.9 – 2.3 1.4 – 19.8 – 0.7 1.9 28.4
fra_Latn 47.5 31.7 3.3 51.9 16.3 60.0 39.9 4.1 64.4 19.9 0.2 0.8 16.6
fur_Latn 15.4 10.7 – 36.6 – 33.8 23.0 – 52.4 – 0.2 0.9 18.0
fuv_Latn 0.9 0.2 – 5.5 – 6.2 2.6 – 22.0 – 0.4 1.2 18.0
gaz_Latn 0.4 0.2 – 11.6 4.0 5.5 3.3 – 34.6 11.0 0.5 1.2 20.7
gla_Latn 12.5 8.1 – 26.5 8.8 31.5 19.5 – 46.3 14.4 0.2 1.0 21.2
gle_Latn 21.1 13.3 1.5 38.2 12.0 38.5 24.1 2.4 53.5 16.4 0.2 1.0 20.7
glg_Latn 33.3 22.6 – 37.0 11.5 51.8 34.7 – 55.2 16.8 0.2 0.8 16.4
grn_Latn 0.5 0.2 – 15.1 4.2 4.1 2.4 – 33.8 9.9 0.5 1.3 19.8
guj_Gujr 12.5 5.8 – 33.9 10.7 24.7 11.1 – 48.6 15.1 0.5 2.4 51.2
hat_Latn 20.5 13.6 – 28.2 8.7 39.3 25.8 – 47.9 14.6 0.2 0.8 17.4
hau_Latn 4.9 3.2 0.8 29.0 8.4 17.6 11.5 2.0 49.4 14.5 0.3 0.9 18.9
heb_Hebr 27.2 15.3 – 43.0 13.3 39.4 21.9 – 55.0 16.7 0.3 1.3 28.3
hin_Deva 21.5 11.3 – 37.3 11.8 35.8 18.7 – 52.6 16.2 0.4 1.6 34.6
hne_Deva 10.4 6.0 – 30.9 – 25.0 14.0 – 49.8 – 0.4 1.6 34.1
hrv_Latn 31.5 20.7 – 35.9 11.6 47.5 30.9 – 52.8 16.5 0.2 0.8 18.0
hun_Latn 28.6 18.1 – 35.1 11.2 44.9 28.3 – 51.2 15.9 0.2 0.9 19.7
hye_Armn 8.6 3.7 – 36.5 11.7 19.9 8.5 – 48.4 15.4 0.7 2.9 63.9
ibo_Latn 2.4 1.9 0.4 19.0 6.1 11.0 7.8 1.2 38.2 11.9 0.3 1.1 21.9
ilo_Latn 9.3 6.5 – 26.8 8.5 27.3 18.5 – 49.2 15.3 0.2 0.9 19.2
ind_Latn 41.1 27.5 – 45.4 15.0 57.8 38.6 – 63.5 19.8 0.2 0.8 16.3
isl_Latn 21.3 13.5 – 31.3 11.2 36.8 23.4 – 46.1 15.3 0.2 0.9 19.7
ita_Latn 31.7 21.0 – 35.4 10.9 50.1 33.2 – 52.9 16.1 0.2 0.8 16.8
jav_Latn 14.1 10.3 – 28.0 8.3 34.4 23.4 – 50.6 15.0 0.2 0.8 17.3
jpn_Jpan 24.9 16.0 – 18.5 9.7 27.1 17.2 – 25.7 10.1 0.2 1.0 20.4
kab_Latn 1.0 0.7 – 15.6 – 9.1 6.2 – 32.8 – 0.3 1.1 21.5
kac_Latn 0.0 0.0 – 13.2 – 1.6 1.9 – 34.6 – 0.8 1.5 21.1
kam_Latn 0.9 0.5 – 5.6 – 6.4 4.1 – 23.9 – 0.4 1.2 19.9
kan_Knda 11.8 5.3 – 36.0 11.5 24.1 10.5 – 48.6 15.2 0.6 2.6 58.0
kas_Arab 2.9 1.2 – 16.7 – 11.3 5.4 – 31.4 – 0.4 1.7 33.8
kas_Deva 1.7 1.0 – 4.3 – 9.3 5.4 – 15.7 – 0.4 1.6 34.1
kat_Geor 9.3 4.0 0.4 31.5 10.2 19.8 8.6 0.6 43.8 14.1 0.6 2.9 62.7
kaz_Cyrl 9.8 5.7 – 31.3 10.6 25.9 14.1 – 47.6 15.3 0.3 1.4 29.1
kbp_Latn 0.2 0.5 – 10.4 – 2.3 3.3 – 26.0 – 0.7 1.9 34.3
kea_Latn 11.0 10.3 – 20.8 – 31.6 23.6 – 39.5 – 0.2 0.8 17.3
khk_Cyrl 6.1 3.6 – 24.9 9.1 19.9 11.3 – 40.4 13.6 0.3 1.4 28.9
khm_Khmr 3.5 1.7 – 21.0 7.5 13.3 5.8 – 33.2 11.0 0.6 2.6 57.2
kik_Latn 0.5 0.8 – 14.2 – 6.0 4.6 – 34.2 – 0.5 1.5 26.1
kin_Latn 2.6 1.5 – 25.1 9.4 14.6 9.0 – 45.8 15.3 0.3 1.0 19.6
kir_Cyrl 6.4 3.9 – 25.2 8.3 19.6 11.5 – 41.0 13.2 0.3 1.3 27.5
kmb_Latn 0.3 0.2 – 4.2 – 3.2 2.7 – 23.0 – 0.5 1.3 19.7
kmr_Latn 6.6 4.8 0.7 18.1 5.5 20.2 14.0 1.6 36.3 10.9 0.3 1.0 20.1
knc_Arab 0.4 0.4 – 6.0 – 3.9 1.8 – 9.0 – 0.3 1.6 28.2
knc_Latn 2.1 0.4 – 7.6 – 10.6 3.6 – 25.3 – 0.3 1.2 21.1
kon_Latn 0.7 0.6 – 17.4 – 5.9 5.0 – 41.8 – 0.4 1.1 18.8
kor_Hang 20.9 13.1 – 24.6 8.2 28.1 17.6 – 33.2 10.5 0.2 1.0 21.0
lao_Laoo 1.6 1.0 – 26.9 8.1 10.2 5.5 – 42.0 12.0 0.8 2.9 62.0
lij_Latn 6.3 5.5 – 34.3 – 27.4 18.8 – 49.6 – 0.2 0.9 18.8
lim_Latn 12.6 10.8 1.1 23.8 – 33.6 23.2 2.4 44.2 – 0.2 0.8 17.8
lin_Latn 2.0 1.3 – 20.2 5.9 11.2 7.4 – 44.3 13.2 0.3 1.0 18.2
lit_Latn 24.6 15.8 – 32.7 11.4 42.2 26.7 – 50.5 16.2 0.2 0.9 20.0
lmo_Latn 5.6 4.4 – 9.7 – 25.0 16.1 – 32.2 – 0.2 0.9 19.1
ltg_Latn 4.4 2.8 – 33.6 – 23.9 15.0 – 49.4 – 0.2 0.9 20.0
ltz_Latn 21.1 14.6 – 33.9 9.7 40.4 25.9 – 51.7 15.2 0.2 0.9 18.8
lua_Latn 0.7 0.5 – 9.0 – 5.7 4.4 – 32.5 – 0.4 1.1 18.6
lug_Latn 1.2 0.6 – 12.9 3.9 8.6 5.1 – 36.7 11.3 0.4 1.1 18.7
luo_Latn 0.5 0.1 – 14.0 – 5.0 2.2 – 35.5 – 0.4 1.2 17.9
lus_Latn 3.5 2.4 – 13.9 – 13.5 9.0 – 35.1 – 0.3 1.0 18.8
lvs_Latn 27.0 16.9 1.7 32.7 – 45.1 27.9 2.6 50.5 – 0.2 1.0 20.7
mag_Deva 13.7 7.5 0.7 36.2 – 28.8 15.4 1.3 53.7 – 0.4 1.6 34.3
mai_Deva 7.5 4.6 – 24.9 5.4 21.3 11.9 – 42.9 11.1 0.4 1.6 35.3
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Table 14 – continued from previous page
Lang. spBLEU200/cost chrF2++/cost cost estimate (USD$)

0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4
mal_Mlym 9.1 4.0 – 34.9 11.8 20.1 8.7 – 47.0 15.4 0.6 2.7 58.5
mar_Deva 10.5 5.5 – 27.8 9.1 24.8 12.9 – 44.0 13.9 0.4 1.7 36.3
min_Arab 1.2 1.4 – – – 7.6 6.2 – – – 0.3 1.4 30.1
min_Latn 9.7 7.1 – 26.5 – 31.1 21.0 – 48.4 – 0.2 0.8 17.6
mkd_Cyrl 28.9 17.5 – 39.3 12.7 45.6 27.5 – 55.8 17.4 0.2 1.1 23.2
mlt_Latn 24.2 15.1 – 46.4 16.3 40.0 24.9 – 60.8 19.6 0.2 1.0 21.3
mni_Beng 1.3 0.6 – 25.1 0.0 8.0 3.3 – 35.4 0.2 0.4 2.2 45.8
mos_Latn 0.1 0.1 – 6.3 – 2.3 1.8 – 22.4 – 0.7 1.4 20.5
mri_Latn 12.0 7.2 – 19.1 5.0 27.8 16.9 – 40.8 11.6 0.3 1.0 21.0
mya_Mymr 1.2 0.6 – 16.1 6.7 10.9 4.7 – 29.1 11.0 0.8 3.4 73.8
nld_Latn 30.5 20.4 – 32.9 10.4 47.6 31.7 – 50.7 15.7 0.2 0.8 16.6
nno_Latn 31.3 21.4 – 30.8 7.0 49.4 33.1 – 49.5 13.8 0.2 0.8 16.8
nob_Latn 33.9 22.4 – 35.5 – 51.0 33.9 – 54.1 – 0.2 0.8 16.4
npi_Deva 13.9 7.5 – 26.4 – 29.0 15.0 – 41.8 – 0.4 1.6 34.7
nso_Latn 2.8 2.3 – 24.4 8.1 12.5 9.3 – 46.8 14.8 0.3 1.0 19.9
nus_Latn 0.1 0.2 – 13.2 – 1.8 1.9 – 26.6 – 0.7 1.9 30.3
nya_Latn 3.8 2.8 – 16.3 5.8 16.1 11.5 – 40.6 13.1 0.3 1.0 19.4
oci_Latn 25.4 18.1 – 37.9 – 46.1 31.0 – 54.3 – 0.2 0.8 17.9
ory_Orya 6.5 2.8 – 27.3 10.6 15.4 6.6 – 41.4 14.6 0.8 3.5 78.3
pag_Latn 4.6 4.6 – 18.6 – 18.2 14.7 – 42.7 – 0.2 0.8 16.3
pan_Guru 13.9 6.3 – 33.2 10.9 24.8 11.1 – 44.7 14.2 0.5 2.4 52.3
pap_Latn 21.4 18.2 – 39.0 – 43.5 31.0 – 55.6 – 0.2 0.8 17.4
pbt_Arab 3.8 2.4 0.3 21.1 – 14.8 8.9 0.9 36.2 – 0.3 1.4 29.1
pes_Arab 23.1 13.7 – 33.2 10.9 38.0 22.0 – 47.2 14.8 0.3 1.2 26.1
plt_Latn 6.6 4.2 – 23.3 7.1 25.4 15.6 – 46.1 14.0 0.2 1.0 20.3
pol_Latn 26.7 17.5 – 30.0 9.9 41.3 26.8 – 45.1 14.2 0.2 0.9 18.4
por_Latn 47.8 32.4 – 48.9 16.0 60.5 40.8 – 62.7 19.8 0.2 0.8 15.9
prs_Arab 20.2 12.6 – 31.1 – 35.1 21.6 – 49.3 – 0.3 1.2 25.4
quy_Latn 0.5 0.3 – 5.4 2.2 6.5 4.4 – 24.8 9.3 0.4 1.2 19.4
ron_Latn 38.6 25.3 2.6 41.3 13.7 53.3 34.6 3.4 56.6 17.8 0.2 0.9 18.1
run_Latn 2.4 1.2 – 18.1 – 12.8 7.2 – 39.2 – 0.3 1.0 19.7
rus_Cyrl 31.6 19.4 – 37.8 12.0 46.0 28.2 – 51.9 16.1 0.2 1.0 21.5
sag_Latn 0.1 0.0 – 9.7 – 2.8 2.1 – 32.9 – 0.6 1.4 19.3
san_Deva 3.5 2.0 – 7.3 2.7 16.1 8.5 – 24.0 8.3 0.4 1.7 35.7
sat_Olck 0.0 0.4 – 16.8 – 0.1 3.1 – 23.8 – 1.1 3.6 80.2
scn_Latn 9.3 6.9 – 22.5 – 29.9 19.7 – 43.2 – 0.2 0.9 18.9
shn_Mymr 0.3 0.3 – 13.6 – 4.1 3.2 – 31.0 – 0.8 4.1 93.0
sin_Sinh 3.7 1.9 – 32.8 11.0 11.9 5.5 – 39.9 14.0 0.6 2.7 57.0
slk_Latn 31.8 20.0 – 39.6 13.2 46.8 29.7 – 54.4 17.2 0.2 0.9 19.6
slv_Latn 29.7 19.3 – 35.2 11.6 46.2 30.0 – 51.9 16.3 0.2 0.9 18.2
smo_Latn 4.8 3.9 – 24.8 – 17.5 13.0 – 46.1 – 0.3 1.0 20.5
sna_Latn 2.4 1.7 0.4 18.2 5.7 11.5 8.0 1.4 40.0 12.1 0.3 1.0 20.3
snd_Arab 6.7 4.3 – 29.3 8.9 16.5 10.2 – 44.2 13.3 0.4 1.4 30.2
som_Latn 6.6 4.1 – 17.0 5.2 24.0 15.2 – 39.7 11.9 0.2 1.0 20.1
sot_Latn 4.5 2.7 – 19.1 6.1 16.1 10.4 – 42.5 13.1 0.3 1.0 20.1
spa_Latn 28.6 19.2 – 30.6 9.6 47.9 32.1 – 49.7 15.2 0.2 0.8 16.3
srd_Latn 13.6 9.8 – 33.0 – 35.0 23.2 – 51.3 – 0.2 0.9 18.8
srp_Cyrl 29.9 17.9 – 40.0 13.1 45.1 27.0 – 55.0 17.3 0.3 1.1 24.0
ssw_Latn 1.3 0.2 0.3 18.4 – 7.5 2.9 1.1 40.0 – 0.4 1.3 21.1
sun_Latn 11.6 7.9 – 19.9 6.7 32.5 20.9 – 41.3 13.3 0.2 0.8 17.8
swe_Latn 44.2 29.3 – 46.3 14.8 57.7 38.5 – 60.9 19.0 0.2 0.8 16.5
swh_Latn 31.5 20.5 – 34.0 12.2 49.8 32.1 – 54.1 17.6 0.2 0.9 18.6
szl_Latn 10.6 7.8 – 35.4 – 29.4 19.0 – 49.5 – 0.2 0.9 19.9
tam_Taml 8.8 4.0 0.4 33.4 10.6 22.0 10.3 0.8 49.0 15.3 0.5 2.4 51.2
taq_Latn 0.6 0.1 – 4.5 – 5.8 2.7 – 21.3 – 0.4 1.3 20.1
taq_Tfng 0.2 0.3 – 5.1 – 1.8 2.0 – 15.1 – 1.9 3.2 65.1
tat_Cyrl 5.0 3.1 – 28.0 8.3 16.1 9.9 – 43.1 13.2 0.3 1.4 28.8
tel_Telu 11.1 5.1 – 37.9 12.2 21.9 10.1 – 50.9 15.9 0.6 2.5 54.8
tgk_Cyrl 8.2 5.0 – 32.5 9.7 22.3 13.1 – 47.1 14.1 0.3 1.3 28.1
tgl_Latn 29.1 18.4 – 35.3 10.9 50.5 31.9 – 55.8 16.9 0.2 0.9 19.2
tha_Thai 25.4 13.5 – 32.3 12.4 32.7 17.4 – 39.2 13.6 0.3 1.5 32.3
tir_Ethi 1.0 0.6 – 16.2 4.8 3.6 2.0 – 23.5 7.2 0.6 2.4 51.9
tpi_Latn 11.5 8.3 1.1 16.4 – 30.5 20.6 2.5 38.4 – 0.2 0.9 18.9
tsn_Latn 2.9 2.0 – 23.6 – 12.8 9.0 – 44.7 – 0.3 1.1 20.4
tso_Latn 2.1 1.5 – 24.6 7.1 11.3 7.7 – 46.1 13.9 0.3 1.1 20.4
tuk_Latn 5.0 3.9 – 20.8 9.8 20.5 12.9 – 38.8 14.4 0.2 1.0 21.2
tum_Latn 2.8 1.3 – 12.3 – 12.8 6.9 – 32.5 – 0.3 1.1 22.2
tur_Latn 32.0 20.6 – 38.3 12.7 48.1 31.0 – 53.8 17.1 0.2 0.9 18.4
twi_Latn 2.1 1.4 – 14.0 4.7 9.5 6.5 – 34.9 11.2 0.4 1.2 21.8
tzm_Tfng 0.6 0.5 – 19.0 – 4.3 2.8 – 29.3 – 0.9 3.1 64.7
uig_Arab 4.7 3.1 – 28.0 11.0 14.8 9.1 – 41.5 14.8 0.4 1.7 37.0
ukr_Cyrl 29.6 17.5 1.5 36.9 11.7 43.6 25.9 2.2 51.9 16.0 0.3 1.1 24.4
umb_Latn 0.2 0.1 – 3.8 – 3.6 2.1 – 24.5 – 0.5 1.3 19.1
urd_Arab 16.5 8.9 – 28.0 8.9 31.3 16.8 – 44.9 13.7 0.3 1.5 32.2
uzn_Latn 14.3 9.7 – 27.7 10.3 32.7 21.1 – 46.7 15.4 0.2 0.9 19.8
vec_Latn 13.2 9.6 – 26.0 – 34.4 23.6 – 47.6 – 0.2 0.8 17.2
vie_Latn 33.1 20.4 – 39.9 – 47.6 28.9 – 54.9 – 0.2 1.0 21.4
war_Latn 20.0 13.3 1.4 32.3 – 40.7 26.3 2.7 53.0 – 0.2 0.9 18.7
wol_Latn 1.6 0.6 – 8.9 – 7.9 4.0 – 27.4 – 0.3 1.1 18.5
xho_Latn 4.2 3.1 – 23.4 8.1 17.4 12.0 – 44.8 14.3 0.3 0.9 19.2
ydd_Hebr 7.3 6.6 – 16.8 4.6 21.4 13.5 – 35.3 10.3 0.4 1.8 39.1
yor_Latn 1.9 1.5 – 9.7 1.3 8.7 6.1 – 23.5 5.5 0.3 1.2 24.3
yue_Hant 21.7 17.7 – 15.3 – 18.4 14.2 – 16.5 – 0.2 0.9 19.4

Continued on next page
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Table 14 – continued from previous page
Lang. spBLEU200/cost chrF2++/cost cost estimate (USD$)

0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4 NLLB Google 0-shot 5-shot GPT-4
zho_Hans 30.4 19.7 – 24.6 11.9 25.9 17.2 – 21.1 10.3 0.2 0.9 18.1
zho_Hant 24.1 15.8 – 11.5 – 20.5 13.5 – 12.9 – 0.2 0.9 19.7
zsm_Latn 34.8 23.1 – 42.0 13.0 54.2 35.9 – 61.4 18.6 0.2 0.8 16.7
zul_Latn 5.4 3.7 – 29.0 8.8 20.1 13.3 – 49.2 14.7 0.3 1.0 20.1
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Abstract

Large language models (LLMs) are competi-
tive with the state of the art on a wide range
of sentence-level translation datasets. However,
their ability to translate paragraphs and docu-
ments remains unexplored because evaluation
in these settings is costly and difficult. We show
through a rigorous human evaluation that ask-
ing the GPT-3.5 (text-davinci-003) LLM to
translate an entire literary paragraph (e.g., from
a novel) at once results in higher-quality transla-
tions than standard sentence-by-sentence trans-
lation across 18 linguistically-diverse language
pairs (e.g., translating into and out of Japanese,
Polish, and English). Our evaluation, which
took approximately 350 hours of effort for an-
notation and analysis, is conducted by hiring
translators fluent in both the source and target
language and asking them to provide both span-
level error annotations as well as preference
judgments of which system’s translations are
better. We observe that discourse-level LLM
translators commit fewer mistranslations, gram-
mar errors, and stylistic inconsistencies than
sentence-level approaches. With that said, crit-
ical errors still abound, including occasional
content omissions, and a human translator’s in-
tervention remains necessary to ensure that the
author’s voice remains intact. We publicly re-
lease our dataset and error annotations to spur
future research on the evaluation of document-
level literary translation.1

1 Introduction

Large language models (LLMs) such as ChatGPT
(OpenAI, 2022) demonstrate remarkable perfor-
mance as stand-alone translation systems, rival-
ing and sometimes surpassing commercial models
on sentence-level benchmarks (Vilar et al., 2022;
Hendy et al., 2023; Jiao et al., 2023). Further-
more, LLMs are increasingly being deployed for
document-level translation (Book Maker, 2023;

1https://github.com/marzenakrp/
LiteraryTranslation
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Figure 1: A plot of the total number of errors annotated
in sentence-level (SENT) and paragraph-level (PARA)
translations produced by GPT-3.5 across 18 different
language pairs. In all cases, PARA produces fewer er-
rors than SENT, which demonstrates that GPT-3.5 takes
advantage of discourse context during translation.

Pawlak, 2023), a scenario for which there are cur-
rently no reliable automatic evaluation methods. In
this paper, we hire human translators to conduct a
rigorous fine-grained evaluation of GPT-3.5’s abil-
ity to translate paragraph-level texts from literary
works across 18 different language pairs. Our re-
sults (Figure 1) demonstrate that GPT-3.52 effec-
tively leverages discourse-level context to produce
higher-quality translations than when translating
sentences in isolation.

Why literary texts? Translating works of liter-
ature poses unique challenges due to the intricate
nature of creative work and the importance of cap-
turing the author’s voice and contextual nuances.
Translators thus apply a wide range of transla-

2We completed our annotations on translations from the
text-davinci-003 checkpoint obtained prior to the API re-
lease of ChatGPT and GPT-4. Nevertheless, we include a
preliminary analysis of GPT-4’s translations in §F.
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  (...)
「あー、あと煙草の５番を一つ」
“Oh, and a one (pack) of cigarettes, number five.”
「かしこまりました」
 “Right away.” (lit. (I) understood)
 すばやくマルボロライトメンソールを抜き取り、レジでスキャンする。
  (I) take out (a pack of) Marlboro Menthol Lights quickly, and scan it at the
register.
「年齢確認のタッチをお願いします」
“Please confirm your age on the touch screen.”  (lit.  “Age confirmation touch,
please.”)
画面をタッチしながら、男性の目線がファーストフードが並んだショーケ
ースにすっと移ったのを見て、指の動きを止める。
As (he) touches the screen, (I) see that the man's gaze shifted to the showcase with
the fast food, (and) (I) stop moving my finger(s).

―Japanese Source (from Convenience Store Woman by Sayaka Murata)

  (...)
“Ah, and one pack of cigarettes, number five.”
“Understood.”
Quickly remove the Marlboro Light Menthol and scan it at the
register.
“Please confirm your age with a touch.”
The man's gaze shifted quickly to the showcase where the fast food
was lined up while he was touching the screen, and he stopped his
finger movement. 

                                                       ―GPT 3.5 SENT (English)

sentence-level

paragraph-level

  (...)
“Ah, and one pack of cigarettes, number five.”
“Right away.”
I quickly pulled out a Marlboro Light Menthol and scanned it at
the register.
“Please touch the screen for age verification.”
His gaze shifted to the showcase with the fast food as he touched the
screen, and I stopped my finger’s movement. 
                                                                ―GPT 3.5 PARA (English)

Figure 2: An example of paragraph-level (PARA) and sentence-level (SENT) translations of the same Japanese
paragraph into English. Sentence-level translation results in a range of erroneous translations, from worse word
choice (“understood” vs “right away”) to incorrect pronouns (“he” vs “I”); these errors are corrected by PARA.

tion techniques (Chesterman, 1997; Molina and
Hurtado Albir, 2004), from simple shifts in gram-
matical categories to more complex stylistic or
content-based rearrangements that often cross sen-
tence boundaries. Translators may also merge or
split sentences and paragraphs, which renders the
traditional sentence-level pipeline insufficient for
capturing the full scope of the original text (Toral
and Way, 2015; Taivalkoski-Shilov, 2019b; Post
and Junczys-Dowmunt, 2023; Jiang et al., 2023).3

Taken together, these properties make literary texts
a good testbed for document-level machine transla-
tion (Thai et al., 2022); in our work, we focus on
the paragraph4 as a minimal discourse-level unit.

Why human evaluation? The absence of rigor-
ous document-level evaluations of LLM translators
is striking but also somewhat understandable given
the unreliability of automatic metrics (Thai et al.,
2022) and the difficulty of properly conducting hu-
man evaluations (Castilho, 2021). Furthermore,
evaluations of LLM translators are especially dif-
ficult due to data contamination (Aiyappa et al.,
2023; Chang et al., 2023), as it is unclear whether
the models are pretrained on existing benchmarks
(e.g., from WMT). We fill this gap by first col-
lecting paragraphs from recently-published literary
translations. Then, we provide human translators
with two candidate machine translations of a given
source paragraph and ask them to (1) mark error
spans and categorize them based on a predefined

3At least 55% of the reference target paragraphs used
in our study split or merge sentences from the source text
(measured with an automatic sentence tokenizer).

4We broadly define a paragraph as a distinct passage
within the novel, focusing on a single theme.

schema inspired by MQM (Lommel et al., 2014b;
Freitag et al., 2021), (2) make preference judg-
ments of which of the two translations is of higher
quality, and (3) provide free-form justifications of
their preference judgments. In total, we collect
such annotations on 720 pairs of translated para-
graphs across 18 different language pairs (using
three diverse target languages of English, Japanese,
and Polish), which we then leverage for a fine-
grained analysis of the behavior of different LLM
translation methods.

LLMs produce better translations when pro-
vided with paragraph-level context: Our evalu-
ations reveal that using GPT-3.5 to translate com-
plete paragraphs via few-shot prompting (PARA)
yields translations of significantly higher quality
than both the sentence-by-sentence GPT-3.5 meth-
ods (SENT, PARA_SENT) as well as Google Trans-
late. Our detailed analysis of annotated translation
errors and free-form comments shows that PARA

exhibit increased coherence, better preservation of
literary style, and improved handling of context-
dependent expressions (see Figure 2). That said,
PARA makes many critical mistranslations and
other errors across different language pairs, which
shows that LLM-based translators still have signifi-
cant room to improve, particularly when translating
contextually-rich literary texts.

2 Background

Before describing our dataset and evaluation, we
first contextualize our work within the recent body
of research on translation via large language mod-
els. We also survey the broader body of document-
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level5 MT research in §A.

Translation with large language models: LLM-
based translation is attractive because a single
model, without training or fine-tuning on large par-
allel corpora, can produce high-quality translations
across many language pairs.6 Recent work explores
LLMs’ capabilities in this space (Wang et al., 2023)
spanning paragraph-level post-editing with LLMs
(Thai et al., 2022), translating sentence-level inputs
(Vilar et al., 2022; Jiao et al., 2023), analyzing hal-
lucinations in LLM-generated translations (Guer-
reiro et al., 2023), and employing LLMs to eval-
uate machine translation (Kocmi and Federmann,
2023). Simple sentence-level English prompt tem-
plates have been found effective for paragraph
translations (Zhang et al., 2023), and automatically-
generated dictionaries can assist LLM-based trans-
lation (Ghazvininejad et al., 2023; Lu et al., 2023)
along with selecting high-quality demonstrations
(Vilar et al., 2022). To the best of our knowledge,
the only prior work other than ours that evalu-
ates LLMs for paragraph-level translation is Hendy
et al. (2023), who conduct automatic evaluation of
context-aware sentence-by-sentence translation; in
contrast, we perform a fine-grained human evalua-
tion of paragraph-level translation.

3 Data & methods

Our work differs from existing research on trans-
lating with large language models in two key ways:
we focus on translating literary text at the para-
graph level. In this section, we describe and moti-
vate the paragraph-level translation dataset used
in our study, which covers 18 unique language
pairs (three target languages) and is sourced from
recently-published novels. Then, we outline the
different ways in which we leverage GPT-3.5 to
translate these paragraphs at both the sentence and
paragraph levels.

3.1 Dataset collection
Literary texts (e.g., novels or short stories) pose
unique challenges for translators due to their com-
plex nature. Translators must interpret and honor
the author’s voice with no objective reality to mea-
sure against, which can result in several equally

5Note that the term “document-level” has been used in
MT research to denote both multi-sentence passages as well
as complete documents.

6That said, parallel data is almost certainly included in
LLM pretraining data, at least for high-resource languages
(Briakou et al., 2023).

valid translations (Sager, 1998). For machine trans-
lation systems, these challenges exacerbate the
need for discourse-level context (Thai et al., 2022):
an author’s intended meaning or style is often un-
clear from just a single sentence.

Selecting paragraphs from novels: How good
are machines at translating literary paragraphs? To
answer this question, we extract 20 paragraphs (di-
alogues and narrative texts) each from 18 recently-
published translations of novels, and we manually
align these paragraphs with corresponding para-
graphs in the source novel7 (see Table 8 in §B).
Almost all of the translations were published af-
ter 2021 (see Table 7 in §B), which is important
to avoid data contamination with LLM pretrain-
ing data (Aiyappa et al., 2023; Chang et al., 2023).
In sum, we obtain 360 aligned source-target para-
graphs, which we use for all of the experiments
described in the rest of the paper.

Data memorization issue: In order to investigate
the extent to which text-davinci-003 may have
memorized the novels in our dataset, we employ
the prompts from (Chang et al., 2023) and assess
the model’s ability to produce masked characters’
names. For this purpose we select 171 translation
paragraphs, which contained character’s names, re-
sulting in an average of 8 out of 20 paragraphs used
per book. In nearly all instances, the model was un-
able to accurately produce the correct names, with
three exceptions. Two of these were names of well-
known historical figures, "Napoleon Bonaparte"
and "Simonides of Ceos." A closer examination
revealed that these names could likely be inferred
from the context, rather than being a result of the
model’s memorization. In the third instance the
model produced the correct name but in diminutive
instead of augmentative form (“Kasia” instead of
“Kaśka”).8

Additionally, we tested text-davinci-003
with a randomly selected subset of paragraphs from
our dataset. In these cases, the model was unable
to generate accurate completions.

7We purchase the source ebook and its corresponding
translation before extracting aligned paragraphs.

8Kasia/Kaśka" are both forms of “Katarzyna,” the second
most common female name in Poland as of January 2023. This
raises a question of whether the model’s response was due
to memorization or an educated guess based on the name’s
popularity (https://www.statista.com/statistics/
1089014/poland-most-popular-female-names/).
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Paragraph length: All paragraphs consist of at
least two sentences, and the majority of them are
between four to nine sentences long (mean=7.45,
std=4.14).9 As automatic sentence tokenizers are
not always reliable for all of the languages consid-
ered in our study, we manually perform sentence
tokenization to enable a direct comparison of sen-
tence and paragraph-level translation systems. For
more details about the dataset statistics, including
token and sentence counts, see §B, which also in-
cludes data on sentence numbers obtained using a
sentence tokenizer.

Source and target languages: As source lan-
guages, we select eight languages that belong to
different language families, have varied morpho-
logical traits, and employ different writing systems:
English (en), Polish (pl), Russian (ru), Czech (cs),
French (fr), German (de), Japanese (ja), and Chi-
nese (zh). As target languages, we select English,
Japanese, and Polish, as they also vary greatly in
their morphology, grammar, and writing systems.
The detailed rationale can be found in §B.

3.2 Translation with large language models

In this paper, we focus on translating the liter-
ary paragraphs in our dataset using large language
models. More specifically, we use the GPT-3.5
text-davinci-003 checkpoint, which has been
further tuned to follow instructions based on hu-
man feedback (Ouyang et al., 2022). Hendy et al.
(2023) demonstrate that GPT-3.5 produces transla-
tions of reasonable quality, though their focus was
mainly at the sentence level. Since many LLMs,
including GPT-3.5, are only accessible via black-
box APIs, we adapt the model for translation via
in-context learning (Brown et al., 2020).

Demonstration examples: We use few-shot
prompting, in which a model is provided with a
prompt consisting of five demonstrations. We man-
ually curate the five demonstrations from literary
texts for each of the 18 language pairs, resulting
in 90 total demonstration examples. These demon-
strations are sourced from novels that are not part
of our translation dataset, resulting in potential dif-
ferences in topic and style (see Table 9 in the §B
for details). We further ensure that each set of

9A paragraph with fewer sentences is not necessarily
short: for example, in the German novel “An Inventory of
Losses,” sentences can be as long as 70 to 80 words, with the
longest reaching 117 words. The distribution of sentences in
paragraphs is provided in Figure 7 in §B.

five demonstrations includes both dialogues and
narrative texts.

Prompting for translation: We consider the fol-
lowing three prompting strategies for GPT-3.5 that
allow us to compare the model’s abilities to trans-
late with and without discourse-level context (see
Table 1 for templates and §C for the exact prompts):

• GPT-3.5 sentence-level translation without
context (SENT): Each sentence of the para-
graph is translated in isolation of the others.
To maintain consistency, we provide the same
five sentence-level examples10 in each prompt
for the given source-target language pair.11

• GPT-3.5 sentence-level translation with
context (PARA_SENT): Each sentence of the
paragraph is translated in context. The model
is provided with the entire source paragraph
as input, where the sentence to be translated is
wrapped in <translate> and </translate>
tags, in addition to a partially-translated tar-
get paragraph. The demonstrations are also
presented with the same tags. For each demon-
stration in the prompt, a sentence in a different
position was chosen (e.g., from the beginning,
middle, and end of the paragraph).

• GPT-3.5 paragraph-level translation
(PARA): The entire source paragraph is
passed into the model, and the output target
paragraph is generated conditioned on this
input (i.e., without any sentence tokenization).
Demonstrations in the prompt are also para-
graphs12 of translations from the respective
source language into the target language in
question.13

10Sentence-level demonstrations for SENT are sampled
from the demonstrations for paragraph-level translation.

11To ensure consistent quotation mark usage and enable a
fair comparison with paragraph-level translations, quotation
marks in sentence-level translations were manually adjusted.

12The examples for PARA and PARA_SENT configurations
are necessarily lengthier. Due to the GPT-3.5 maximum con-
text size, it is not always possible to include all five examples
within the prompt. Consequently, around 10% of the data was
translated using four or fewer examples.

13Initially, we experimented with GPT-3 by translating
between two non-English languages using English as a pivot,
as it is the primary language of the model. The model had
access to the source text and its English translation. After
manual evaluation and comparison to translations without
a pivot language, we found no significant benefit in using
English as the pivot. Consequently, we directly translated
paragraphs into the target language. Refer to §H for details
and results of this preliminary study.
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SENT Demonstration Template

Original text in [SRC LANG]:

source sentence

Translation into [TRG LANG]:

target sentence

PARA_SENT Demonstration Template

Original text in [SRC LANG]:

source sentence 1
<translate> source sentence 2 </translate>
source sentence 3

Translation into [TRG LANG]:

target sentence 1
<translated> target sentence 2 </translated>

PARA Demonstration Template

Original text in [SRC LANG]:

source paragraph

Translation into [TRG LANG]:

target paragraph

Table 1: Prompt templates for SENT, PARA_SENT, and
PARA. The source text to translate and expected target
outputs are underlined.

Using Google Translate (GTR) as a baseline:
In order to compare commercial-grade translation
systems to LLM translators, we also translate all
paragraphs in our dataset using Google Translate.14

We opt for an off-the-shelf commercial system
instead of a state-of-the-art system from, for in-
stance, WMT competitions for two primary rea-
sons. First, our experiments focus on literary trans-
lations. Given that WMT systems are predomi-
nantly evaluated on the news domain, it is uncer-
tain which system would perform best, and some
language pairs may not even be supported. Sec-
ond, our main research question revolves around
LLMs’ ability to incorporate contextual informa-
tion, rather than merely comparing their perfor-
mance with state-of-the-art translation systems. We
employ GTR as a reasonably robust baseline to as-
sess the extent to which context can enhance MT
quality, rather than asserting that LLMs outperform
all traditional MT systems.

4 Evaluating document-level literary
translation

How do we compare the translation quality of the
systems described above? Automatic metrics such
as BLEURT and COMET are untested on document-
level inputs as well as literary texts, and as such
we do not consider them reliable, although we do

14All paragraphs were translated in January 2023 using
the GoogleTranslate API. The system was provided entire
paragraphs, which it likely partitioned and translated sentence-
by-sentence.

Source Text: Une autre photo, signée du même
photographe...

grammar mistranslation untranslated

inconsistency register format

Any omissions or additions?

Error Annotation

Translation 1: 
Inny zdjęcie, podpisane przez tego samego fotografa...

Which translation is better?

Why is it better? I prefer T1 to T2 as it doesn't...

Translation 2: 
Inne zdjęcie, podpisane tym samym fotografem...

Read the source text.

Mark and categorize
span-level errors

Binary choice
(yes/no)

Binary choice
(translation 1 vs 2)

Binary choice
(confident vs unsure)

Justify preference

Was it significantly better?

Figure 3: A description of the annotation process for a
pair of candidate translations given a source paragraph.
Note that our hired translators go through this pipeline
for three different pairs per source paragraph, comparing
PARA with SENT, PARA_SENT, and GTR.

report them in §G.15 Human evaluation is equally
problematic, as direct assessments of translation
quality (e.g., “rate the quality of this translation
from 0-100”) suffer from calibration issues that
are exacerbated with longer texts (Karpinska et al.,
2021). Thus, we opt for a human evaluation in-
spired by Multidimensional Quality Metrics (Lom-
mel et al., 2014b, MQM), in which annotators
mark and classify error spans within the transla-
tion. Specifically, for each of the 18 language pairs
studied in this work, we hire translators to iden-
tify all span-level errors in two competing trans-
lations. For each evaluated pair, the annotators
were also asked to choose the better translation and
provide a free-form rationale. For each source para-
graph, the translators make three binary judgments
of which translation is higher quality: SENT vs
PARA, PARA_SENT vs PARA, and GTR vs PARA.

Recruiting annotators: As our task is complex
and requires fluency in both the source and target
language, we hire translators to provide the anno-
tations. We recruit 13 translators via the Upwork
freelancing platform,16 each of whom is a native
speaker of English, Polish, or Japanese.17 One

15Automatic metrics developed specifically for document-
level MT are also insufficient as they either work best with
one-to-one sentence level alignments (Vernikos et al., 2022;
Hendy et al., 2023) or are available only for English (Jiang
et al., 2022).

16https://www.upwork.com/
17The annotators for Czech-Polish and Russian-English

were both native speakers of the respective source languages
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translator, hired directly, was a bilingual speaker
of English and Polish with advanced knowledge of
German; as such, she performed the pl-en, de-en,
and de-pl evaluations. Evaluation of ja-pl, pl-ja,
and pl-en texts was done by the first author in a col-
laboration with native speakers of Polish/Japanese
to avoid any potential bias. Each translator was
paid $2 per evaluated pair of candidate translations,
with an additional $5 bonus to cover the time spent
familiarizing themselves with the instructions. We
asked them to compare three pairs of system trans-
lations (PARA vs. SENT, PARA vs. PARA_SENT,
PARA vs. GTR) for 10 paragraphs per language
pair18; as such, 180 total source paragraphs were
used in our evaluations. Altogether, we paid ap-
proximately $12 per hour, with a total cost of $955.

Annotation task: First, we tasked the hired trans-
lators19 with annotating a subset of MQM transla-
tion errors identified through a pilot analysis and
annotation of the system’s outputs. Specifically, we
ask them to highlight spans within the candidate
translations that contain errors belonging to any of
the following error categories:

• mistranslation: 20 accuracy errors that occur
when the wrong target word or phrase is cho-
sen to represent content from the source text.
In addition to canonical mistranslations, we
also include overly literal translation errors
that occur when systems nonsensically trans-
late word-by-word into the target language.

• grammar: grammatical errors, such as er-
rors in conjugation, declension, or wrong
prepositions.

• untranslated: words or phrases that should
have been translated into the target language

and highly proficient in their respective target languages. They
collaborated with native speakers of the target languages, who
possessed a basic understanding of the source language, to
complete their annotations.

18These paragraphs were randomly sampled from the 360
paragraphs. The entire set of 360 paragraphs was used for the
automatic evaluation described in §G.

19They were presented with guidelines in their native lan-
guage. The annotation task was performed using the Label-
Studio annotation tool (Tkachenko et al., 2020-2022). See
Figure 11 for the screenshot of the interface.

20We note that mistranslations in literary text are often not
as grave as, for instance, in news articles. Human translators
hold poetic license, which allows them to change some details
to make the text more enjoyable for the reader. Is changing
“bonito” into “tuna” incorrect? Or can it be perceived as a way
to accommodate an English-speaking readership that is likely
more familiar with the latter?

but were either left in the source language or
just transliterated into the target language.

• inconsistency: use of different terms to refer
to the same entity, or different words where
the same word should be used for stylistic
reasons (e.g., “Kasia” and “Kate,” “coat” and
“jacket,” or “bad” and “awful” ).

• register: a clear violation in the use of for-
mal and informal language within the same
text, only annotated in Japanese.21

• format: incorrect usage of punctuation (e.g.,
"." instead of "。").

After the span-level annotation is complete, we
then ask the translators to further identify if any
of the candidate translations contains significant
content additions or omissions in relation to the
source text.22 Finally, they are asked to choose the
better translation and provide a justification for
their choice in two to five sentences. We instruct
them to additionally mark whether their chosen
translation is significantly superior, or if the deci-
sion was difficult because both translations are of
roughly comparable quality (see Figure 3 and §D
for details).

5 Results

In this section, we compare our different literary
translation methodologies using both automatic
metrics and aggregate statistics from the human
evaluations. Overall, we observe that the PARA con-
figuration outperforms competing methods across
all evaluations and language pairs. These results
demonstrate that GPT-3.5 effectively leverages
paragraph-level context to produce better transla-
tions than sentence-level methods, and also that the
less efficient sentence-by-sentence translation with
context is (PARA_SENT) is unnecessary to achieve
high translation quality.

5.1 Human evaluation also favors PARA

Figure 5 contains human preference results com-
paring PARA to SENT, PARA to PARA_SENT, and

21We only annotate cases where the level of formality
changes abruptly within the same paragraph. It is possible that
a given character would be more likely to use formal language
but an informal language is being employed. As long as this
is consistent we do not consider it an error as this cannot be
fully determined from the paragraph context.

22Note that this task was simplified to a binary choice –
either there were serious omissions/additions or not. We did
not ask the annotators to further annotate them due to the time
restrictions.
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Figure 4: The distribution of translator preference judg-
ments between sentence-level translation (SENT) and
paragraph-level translation (PARA). PARA is preferred
(i.e., more votes) in every language pair except de-ja,
fr-en and de-en.

PARA to GTR, aggregated across all 18 language
pairs studied in this paper (i.e., 180 votes per sys-
tem comparison). Table 11 breaks down these re-
sults for each language pair, and we observe the
same trends for the vast majority of pairs. Overall,
the translators significantly favored PARA transla-
tions over the alternatives (p<.001, binomial test).
Table 2 contains specific information about gram-
mar and mistranslation errors split across the three
target languages (see Table 16 and Table 17 for
details), which we refer to in the discussion below.

PARA is clearly better than SENT: PARA is pre-
ferred by translators over SENT at a rate of 71.67%
(p<.001, 95% CI [0.645, 0.781]). Additionally,
when translators preferred PARA, they were usually
confident in the decision (i.e., it was clearly better
than SENT); even if we exclude all “unsure” votes,
the preference for PARA translations remains sig-
nificant at 79.44% (p<.001, 95% CI [0.705, 0.866]).
The only language pair in which SENT is favored
over PARA is de-ja (see Figure 4).23 Overall, SENT

produces 31% more mistranslations, 48.6% more
grammar errors, 15 times more inconsistencies, and
3.5 times more register errors (Table 2).

PARA is clearly better than GTR: PARA transla-
tions are overwhelmingly preferred over those from
Google Translate (GTR), with an 83.33% prefer-
ence rate (p<.001, 95% CI [0.771, 0.885]). In the

23This could be because the German novel An Inventory
of Losses in our dataset contains the longest sentences of any
book (45 tokens per sentence), and thus the intra-sentence
context is likely more informative than in other books.

Figure 5: The number of votes for SENT vs PARA,
PARA_SENT vs PARA, and GTR vs PARA along with
rater confidence (confident or unsure). PARA is pre-
ferred to all competing methods. All differences are
statistically significant at p<.001 (binomial test).

fr-ja, pl-ja, zh-ja, and cs-pl language pairs, PARA

received all of the ten votes over GTR. Overall,
GTR translations result in 58.18% more mistransla-
tions, 35.24% more grammatical errors, over seven
as many inconsistency errors, and ten times more
register errors (see Table 2). §E contains more
fine-grained comparisons of these two systems.

PARA is slightly preferred over PARA_SENT:
Our evaluations show that PARA is better than
PARA_SENT, but the gap is smaller than it is for
the other two methods. PARA is still preferred at
a 66.67% rate (p<.001, 95% CI [0.593, 0.735]).
Both PARA and PARA_SENT produce a compara-
ble number of mistranslations (483 vs 462), gram-
mar errors (105 vs 113), and inconsistencies (2
vs 3) (see Table 2). While PARA_SENT leaves
around 22% more words untranslated, it appears
to leverage the contexts and even occasionally se-
lects better equivalents in the target language, as
evidenced by translator comments. One major is-
sue with PARA_SENT is that it occasionally repeats
sentences, whereas PARA never does so.

6 Analyzing translation errors

The aggregate statistics from the previous section
confirm that PARA-level translation via GPT-3.5
is the strongest literary translator of the methods
that we study. Translations produced by PARA

are favored by both automatic metrics and human
translators, and it makes fewer errors than compet-
ing methods. In this section, we dive deeper into
specific types of errors that are made within each
high-level category (e.g., grammar, mistranslation),
and we present examples of errors associated with
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TYPE TRG LANG PARA SENT PARA_SENT GTR

MISTRANSLATION EN 88 109 82 155
JA 224 295 223 334
PL 171 229 157 275
TOTAL 483 633 462 764

GRAMMAR EN 5 20 9 18
JA 43 49 38 65
PL 57 87 66 59
TOTAL 105 156 113 142

INCONSISTENCY EN 0 5 0 1
JA 1 7 2 7
PL 1 19 1 7
TOTAL 2 31 3 15

UNTRANSLATED EN 13 5 14 6
JA 23 30 33 24
PL 23 16 25 4
TOTAL 59 51 72 34

REGISTER EN 0 0 0 0
JA 7 25 13 71
PL 0 0 0 0
TOTAL 7 25 13 71

FORMAT EN 0 n/a n/a 1
JA 0 n/a n/a 117
PL 0 n/a n/a 8
TOTAL 0 n/a n/a 126

Table 2: Total counts of all of the types of mistakes
made by each of the four systems from our annotation.
Overall, models with access to paragraph-level context
commit fewer translation errors.

lack of context understanding made by SENT and
GTR that are fixed by PARA.

6.1 Language-specific grammatical errors
We analyze the types of grammatical errors that
are made by the studied translation methods in all
three target languages.24 In summary, although
GPT-3.5 is primarily trained on English, it is com-
petitive with GTR at Polish and Japanese grammar
proficiency. In fact, PARA generates the fewest
grammatical errors of any system, with a total of
97 for both languages, in contrast to 136 errors
made by SENT, 101 errors by PARA_SENT, and
122 errors by GTR (see Table 2). That said, none of
these systems delivers translations devoid of gram-
matical inaccuracies, even for English.

English: Perhaps not surprisingly, translations
into English contain fewer grammatical mistakes
than Japanese or Polish (see Table 2). The most
prominent mistakes in English are incorrect articles,
which is most frequent with SENT and GTR. This
is to be expected, as the choice between the definite
and indefinite article in English depends heavily
on the context. Other mistakes include wrong or
omitted prepositions, wrong parts of speech, and
incorrect word order (see Table 17).

24There are some differences in the paragraph lengths be-
tween the three target languages that should be taken into
consideration when analyzing raw numbers. However, the
general tendencies remain intact.

Figure 6: Quantification of mistranslations resulting
from missing or misinterpreted paragraph-level context
in PARA, SENT, PARA_SENT, and GTR systems, or-
ganized by the target language (Japanese, Polish, and
English).

Japanese: Translations into Japanese contain
considerably more mistakes. Most notably, the
systems struggle with the correct choice of particle:
PARA and SENT produce twice as many mistakes
in this regard than PARA_SENT and GTR (see Ta-
ble 17). Other mistakes include incorrect tense,
verb finite form within the sentence, or incorrect
word order, the latter of which is much more fre-
quent in GTR than any of the GPT-3.5 translations.

Polish: GPT-3.5 exhibits more difficulty with
Polish grammar than English or Japanese across
all prompting strategies (see Table 2). It frequently
generates incorrect gender, case, or prepositions
(see Table 17). We also observe instances in which
GPT-3.5 alters the gender of a noun, such as pro-
ducing grilla, a non-existent feminine form, in
place of the masculine grill, while accurately mod-
ifying all adjectives and verbs to match the novel
feminine noun.25

6.2 Context-related errors

We manually classify all annotated mistransla-
tions (2,324 instances) into subcategories, several
of which include instances where the absence of
discourse-level context is clearly a contributing fac-
tor (see Table 16 for detailed classification).26 We
also further analyze all translations in terms of
content-related issues. Overall, we observe that
context is indeed incorporated into the translations

25It is worth noting that grilla can also be also the genitive
form of the masculine noun grill; however, the agreement
of surrounding verbs and adjectives with the feminine noun
suggests that the system likely treated the word as feminine.

26The initial classification was conducted on the first ver-
sion of the dataset. After incorporating small corrections, we
identified 18 more mistranslations that were not part of this
analysis.
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TYPE SOURCE GPT-3.5 SENT TRANSLATION GPT-3.5 PARA TRANSLATION COMMENT
P

R
O

N
O

U
N

S Романы, как известно, печатались
на разной бумаге [paper]. И гореть
она [she] может по-разному.

—RUSSIAN SOURCE (from Manaraga)

Romany, jak wiadomo, drukowano
na różnym papierze [paper]. I może
ona [she] tęsknić na różne sposoby.

—GPT-3.5 SENT (POLISH)

Jak wiadomo, powieści drukowano
na różnym papierze [paper]. I może
on [he] palić się na różne sposoby.

—GPT-3.5 PARA (POLISH)

“Paper” is a feminine noun in Russian and referred to as “she,” whereas
it is a masculine noun in Polish and should be referred to as “he,” as in
PARA. The absence of context in SENT leads to an incorrect translation.

C
U

LT
U

R
A

L
N

U
A

N
C

E
S 「気が付かなくてすみません」

「いやいや、(...). 古倉さんは毎
日勤務 なのに手を抜かないから
ねー！」
[lit. Ms. Furukura works every day]

—JAPANESE SOURCE (from Convenience Store Woman)

“I’m sorry I didn’t notice.”
“No, no, (...). Furukura-san works
hard every day without taking any
shortcuts!”

—GPT-3.5 SENT (ENGLISH)

“I’m sorry I didn’t notice.”
“No, no, (...). You work every day,
but you never slack off!”

—GPT-3.5 PARA (ENGLISH)

“Furukura-san” or “Miss Furukura” in the last source sentence is used
instead of the second-person “you” as per Japanese convention. Trans-
lating this sentence without context into English results in a confusing
translation (SENT) that implies that the speaker refers to some other
“Furukura” rather than their listener. PARA correctly translates “Furukura”
as “you.”

E
L

L
IP

S
IS „Ne, ted’ uděláš nádobí!“ [(you) will do

the dishes!]
„Neudělám!“ [(I) won’t do!]
„Uděláš!“ [(You) will do!]

—CZECH SOURCE (from Crows)

— Nie, teraz zrobisz zmywanie!
[(you) will do the washing]
— Nie zrobię! [(I) won’t do!]
— Zrobisz to! [(You) will do it!]

—GPT-3.5 SENT (POLISH)

— Nie, teraz umyjesz naczynia
[(You) will wash the dishes]!
— Nie umyję [(I) won’t wash]!
— Umyjesz [(You) will wash]!

—GPT-3.5 PARA (POLISH)

Czech uses the same collocation as English, “do the dishes,” which is
invalid in Polish. Hence, the ellipses in the last two sentences in the
source text require a broader context to be translated correctly. PARA

does it properly, translating both as “wash,” while SENT unsurprisingly
fails to choose the correct collocation.

S
U

B
JE

C
T

E
L

L
IP

S
IS When we were done, the lipstick went

back into some mother’s Fendi handbag.
We watched her apply it, unaware.

—ENGLISH SOURCE (from A Children’s Bible)

Gdy skończyliśmy, szminka wróciła
do jakiejś torebki Fendi należącej
do matki. Patrzyliśmy, jak to robi,
nieświadomi [unaware (we)] tego.

—GPT-3.5 SENT (POLISH)

Kiedy skończyliśmy, szminka
wróciła do torebki Fendi jakiejś
matki. Patrzyliśmy, jak ją nakłada,
nieświadoma [unaware (she)]
naszych działań.

—GPT-3.5 PARA (POLISH)

Only from the broader context we can deduce that “unaware” refers to
the mother, not the “we” (referring to children) watching her. PARA

correctly attributes the state of being “unaware” to the mother, which is
exhibited by its usage of the singular feminine form of the adjective. In
contrast, SENT mistranslates it using the plural masculine form of the
adjective “unaware,” which implies that it refers to “we” rather than the
“mother.”

C
O

N
S

IS
T

E
N

C
Y Alles zu vergessen, ist gewiss schlimm

[bad]. Noch schlimmer [worse] ist,
nichts zu vergessen (. . . ).

—GERMAN SOURCE (from An Inventory of Losses)

すべてを忘れることは確かに悲
惨な[tragic]ことです。さらに悪
い[worse]のは、何も忘れないこ
とです。

—GPT-3.5 SENT (JAPANESE)

すべてを忘れることは確か
に悪い[bad]ことです。もっと悪
い[worse]ことは、何も忘れない
ことです。

—GPT-3.5 PARA (JAPANESE)

The German source translates into English as “To forget everything is
bad, certainly. Worse still is to forget nothing.” It is arguably important
for the translation to repeat the same word which is an equivalent of the
German “schlimm” (“bad”). PARA does it well, translating both as悪
い, or “bad,” while SENT uses two different words, “tragic” and “bad”
which results in inconsistent translation.

P
O

LY
S

E
M

Y Все прошло хорошо. Книга прочи-
тана идеально – не быстро и не
медленно, минимум дыма. Класси-
ка. Я был в форме [in shape].

—RUSSIAN SOURCE (from Maranaga)

Wszystko poszło dobrze. Książka
została przeczytana idealnie – nie
szybko i nie wolno, minimalna ilość
dymu. Klasyka. Byłem w mundurze
[in uniform].

—GPT-3.5 SENT (POLISH)

Wszystko poszło dobrze. Książka
przeczytana idealnie – nie szybko i
nie wolno, minimalna ilość dymu.
Klasyka. Byłem w formie [in
shape].

—GPT-3.5 PARA (POLISH)

The ambiguity stems here from multiple meanings of the Russian noun
форма , which can mean either “shape” or “uniform.” Since one can be
“in shape” as well as “in a uniform”, only from the context it becomes
clear which meaning was intended by the author. PARA translates it
correctly as “shape” while SENT mistranslates it as “uniform.”

A
P

P
R

O
P

R
IA

T
E

N
E

S
S 「あー、あと煙草の５番を一つ」

「かしこまりました」 [lit. (I) un-
derstood]

—JAPANESE SOURCE (from Convenience Store Woman)

“Ah, and one pack of cigarettes,
number five."
"Understood."

—GPT-3.5 SENT (ENGLISH)

“Ah, and one pack of cigarettes,
number five.”
“Right away.”

—GPT-3.5 PARA (ENGLISH)

This conversation is between a clerk and a customer. The Japanese
expressionかしこまりました is an honorific that literally means “un-
derstood.” However, when choosing the best equivalent, the translator
needs to consider the situation at hand to best reflect its meaning in the
target language. “Understood” in SENT is technically correct, but it is
an unfortunate word choice for the clerk to employ. On the other hand,
“right away” in PARA fits much better in the context of this conversation.

Table 3: Examples of different context-related issues observed in SENT translations, which are fixed in the
corresponding PARA translations. Phrases that exemplify these issues are highlighted in purple, and English glosses
are provided in [square brackets].

for both PARA and PARA_SENT outputs, which
results in fewer context-dependent issues (see Fig-
ure 6). More specifically, we observe that PARA

produces translations that leverage the context re-
sulting in mostly correct translations of pronouns,
ellipsis, cultural nuances, and polysemous words
and phrases; Table 3 contains specific examples
and discussion of each. PARA is also more con-
sistent and appropriate in vocabulary usage than
SENT. All cases are further analyzed in §E.2.

7 Conclusion

In this paper, we demonstrate that LLMs leverage
paragraph-level context to produce translations that
are more coherent and enjoyable than sentence-by-
sentence translation while containing fewer mis-
translations and grammatical issues. Our evalu-

ations reveal that professional translators prefer
paragraph-level translations over both sentence-
level translations produced by the same language
model, and also to those generated by an off-
the-shelf commercial system (GTR). We release
our dataset and error annotations to help facilitate
the development of new evaluation methodologies
and automatic metrics for document-level machine
translation. Finally, a full-length novel extends far
beyond the confines of paragraph-level translation.
In future work, we will focus on integrating individ-
ual paragraphs into cohesive chapters, which can
then be expanded to encompass the entire novel.

8 Limitations

So far, we have shown that GPT-3.5 leverages
paragraph-level context to produce translations that
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are better than those produced by sentence-level
counterparts (SENT vs PARA). However, there are
still many issues with PARA’s translations. From
the annotations and translators’ comments, we ob-
serve that PARA suffers from occasional omissions
of content from the source paragraph to a greater
extent than SENT and GTR (see §D). Moreover,
PARA still makes a sizeable number of mistrans-
lations and grammatical errors, though fewer than
SENT or GTR. These issues seem to be only par-
tially mitigated by employing GPT-4 (see §F).
Finally, it is important to acknowledge that the
languages covered in the current study are either
mid or high-resource. Performance might be much
worse when translating from or into a low-resource
language such as Zulu or Armenian.27

Ethical considerations

Translating with LLMs: The rise of large lan-
guage models has also brought many ethical con-
cerns to the forefront of NLP research (Blodgett
et al., 2020; Bender et al., 2021). LLMs encode bi-
ases and exhibit toxicity, and these behaviors can be
exacerbated by unconstrained prompting (Gehman
et al., 2020; Costa-jussà et al., 2022). Further ethi-
cal concerns arise in the context of machine trans-
lation, particularly literary translation, where mul-
tiple stakeholders – the author, the translator, and
the audience – are involved (Taivalkoski-Shilov,
2019a). Low-quality output can influence the per-
ception of the author’s work, impair the reader’s lin-
guistic abilities, and hinder the transfer of ideas to
the target language, while overrelying on machine
translation can possibly threaten the role of human
translators (Drugan, 2013; Ning and Domínguez,
2016; Taivalkoski-Shilov, 2019a). On the other
hand, machine translation employed responsibly
as an auxiliary tool holds the potential to alleviate
the translator’s cognitive burden (O'Brien, 2012)
and make the author’s work accessible to a broader
audience more swiftly (Besacier, 2014). Contrary
to the predictions in Eloundou et al. (2023), we do
not view large language models as a substitute for
human translators, but rather as a means to assist
translators in their work.

Human Evaluation: The experiments involving
human translators were reviewed by the IRB, and
all involved translators gave their written consent

27For instance, our initial experiments with translations
into low-resource languages show that GPT-3.5 (ChatGPT)
suffers from repetition when translating into Hausa.

to disclose their annotations, comments, and pref-
erence choices. In recognizing contributions, our
acknowledgments only include the names of those
translators who explicitly gave their consent to be
acknowledged by their full name in this publica-
tion.

Data Copyrights: We use and make public only
about 2% of the text from each of the original
novels. This number was determined after con-
sulting domain experts at the HathiTrust (https:
//www.hathitrust.org/) and qualifies as fair use
(up to 10% of a text can generally be considered
fair use).
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Appendix

A Background

In this section of the appendix, we survey the exist-
ing approaches to document-level machine transla-
tion, which do not involve prompting LLMs.

Existing approaches to document-level transla-
tion: Before the rise of neural machine transla-
tion, several attempts were made to incorporate
discourse-level phenomena into statistical machine
translation systems (Hardmeier, 2012; Carpuat and
Simard, 2012; Hardmeier et al., 2013; Ding et al.,
2014). Neural MT systems condition sentence-
by-sentence translation on discourse-level context
via concatenation models (Tiedemann and Scher-
rer, 2017; Jean et al., 2017; Agrawal et al., 2018;
Junczys-Dowmunt, 2019; Lopes et al., 2020), hi-
erarchical models (Miculicich et al., 2018; Tan
et al., 2019; Chen et al., 2020; Zheng et al., 2020),
multi-pass models (Mansimov et al., 2021), dy-
namic context models (Kang et al., 2020), multi-
source models (Zhang et al., 2018; Feng et al.,
2022), and transfer learning approaches (Zhang
et al., 2022). Despite sometimes obtaining clear
gains from discourse-level context (Voita et al.,
2019), the machine translation community has not
made much progress on this problem, particularly
for non-English language pairs, due largely to the
scarcity of parallel document-level corpora (Zhang
et al., 2022). This problem has been partially ad-
dressed by introducing a pivot language (Cohn and
Lapata, 2007; Utiyama and Isahara, 2007), but this
approach can also lead to substantial information
loss.

B Dataset

In this section of the appendix, we first discuss
the rationale for the source and target language
selection. Then we provide more details on the
selection of the paragraphs. Finally, we provide
details about the number of tokens and sentences
in the source text and different translations.

Target language selection: We select English,
Japanese, and Polish as the target languages of our
study, as these languages differ considerably in
many linguistic aspects. English is an analytic lan-
guage that is widely spoken and extensively studied
in the field of natural language processing, and it
serves as the primary pretraining language of most

large language models, including GPT-3.5.28 In
contrast, both Japanese and Polish are compara-
tively under-explored. Japanese is an agglutinative
language that employs three distinct writing sys-
tems: Kanji, Hiragana, and Katakana. As a high-
context language, the translation of Japanese texts
necessitates a profound comprehension of context
and cultural nuances, rendering it a compelling
choice for testing the limits of LLMs’ translation
capabilities. Polish, on the other hand, is a fusional
language characterized by a rich morphological sys-
tem. Its complex word forms, grammatical gender,
conjugation, and declension make it an apt choice
for testing the accuracy and robustness of LLMs.29

Source language selection: As source languages,
we select English (es), Polish (pl), Russian (ru),
Czech (cs), French (fr), German (de), Japanese
(ja), and Chinese (zh). These languages belong to a
diverse array of language families – Indo-European
(Romance, Germanic, Slavic), Sino-Tibetan, and
Japonic – each with distinctive morphological traits
– fusional, agglutinative, and analytic. Moreover,
they employ a variety of writing systems such as
the Latin alphabet, the Cyrillic alphabet, Hanzi, and
Kanji/Hiragana/Katakana (see Table 4 for details).
Finally, we carefully select source-target language
pairs to ensure that our study encompasses both
linguistically similar and dissimilar languages. For
example, we paired cs-pl, as these languages are
characterized by only 10% lexical distance30 and
have similar syntactic structures (Jágrová and Av-
gustinova, 2023). Conversely, we also include ja-pl,
as the two languages have very little lexical over-
lap, vastly different grammars, and utilize distinct
writing systems.

Choosing paragraphs: The selection of a par-
ticular paragraph was semi-random, with certain
considerations in mind during the sampling process.
We prioritized the following criteria: (1) for each

28As of 2020, the reported distribution of languages
featured in the present study within the GPT-3 training
data was as follows: English – 92.647% (1st), French –
1.818% (2nd), German – 1.469% (3rd), Russian – 0.188%
(9th), Polish – 0.155% (11th), Japanese – 0.111% (15th),
Chinese – 0.099% (17th), Czech – 0.071% (18th) (see
https://github.com/openai/gpt-3/blob/master/
dataset_statistics/languages_by_word_count.csv).
The current GPT-3.5 text-davinci-003 model is reported
to incorporate data up to June 2021 and it is unclear what
texts or languages were added to the original training data
https://platform.openai.com/docs/models/gpt-3-5.

29The first author is fluent in all three target languages.
30i.e., the percentage of non-cognates in the language pair.
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source language we sample paragraphs so that there
is a combination of dialogue and narrative texts; (2)
the paragraph should be reasonably intelligible to
a human translator without additional context; and
(3) alignment between the source paragraph and
human translation should be feasible, meaning no
major content rearrangement across paragraphs.

Nonetheless, meeting all these requirements was
not always possible. For instance, the source text
of Convenience Store Woman (ja) is mostly written
in the first-person narrative. Since Japanese does
not encode the speaker‘s gender in the verb forms,
it is often impossible to determine whether the nar-
rator is a male or a female. In cases where it was
impossible to determine the gender of the character
we instructed translators to accept either option,
provided that the translation remained consistent
within the given paragraph (i.e., the gender did not
change within the paragraph).

Dataset statistics: The dataset used for this study
contains 360 source paragraphs with their corre-
sponding human translations.31 We further report
the following statistics: (1) the number of sentences
in the source text, as per manual sentence tokeniza-
tion, along with the number of tokens in the sources
and text and each translation (Table 5), (2) the num-
ber of sentences in the source text, human trans-
lation, and each machine translation as tokenized
with SPACY (Table 6), and (3) the distribution of
sentences in paragraphs (Figure 7).

Figure 7: Distribution of sentences in the sampled para-
graphs. The paragraphs were sentencized manually.

C Prompting for Translation

D Human Evaluation

In this section, we provide some further details
about the human evaluation with a focus on the
error annotation. First, discuss the issue of subjec-
tivity in error annotation. Next, we explain some
choices we had to make when annotating “incon-
sistency” and “format” errors. Finally, we present
some details about the translators hired for the eval-
uation task.

Error annotation: Annotating and classifying
errors in translations is inherently subjective (Lom-
mel et al., 2014a; Han, 2020). For instance, trans-
lating French “corsage” (“bodice”) as a “blouse”
can be seen as either a mistranslation or a permissi-
ble deviation from the original text; this is, in fact,
how the “corsage” was translated by the human
translator in our data.

Furthermore, sometimes there are multiple ways
of annotating errors (Thomson et al., 2023). Con-
sider the following example:

(1) We had to hide the running, though, in case our haste
betrayed us, so truer to say we slipped out quietly.
When one of my parents appeared, my technique
was: pretend to catch sight of someone in the next
room. Move in a natural manner toward this
figment of my imagination, making a purposeful
face.

—ENGLISH SOURCE (from A Children’s Bible)

The translation of the last sentence in (1) into
Polish as an imperative can be considered a mis-
translation. We would hypothesis that the system
misinterpreted the source as an imperative form.
However, using the infinitive form of the verb in
the translation is less clear and raises questions
about whether it is a mistranslation or a grammat-
ical error. The distinction between the two lies in
the point at which the mistake was made. If the
original sentence was understood correctly but the
resulting translation was ungrammatical, then it
is a grammatical error. On the other hand, if the
use of the infinitive form resulted from interpret-
ing “move” as an infinitive, it may be considered a
mistranslation as well.

Inconsistency: For marking the “inconsistency”
errors we decided to the take minimal approach.
For instance, is the same person is referred to in the
translation as both “Piotr” and “Peter” we would

31See Table 7 for the list of novels included in the dataset
and Table 8 for examples of aligned paragraphs.
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LANGUAGE LANGUAGE FAMILY MORPHOLOGICAL FEATURES WRITING SYSTEM

ENGLISH Indo-European (Germanic) Analytic Latin Alphabet
GERMAN Indo-European (Germanic) Fusional Latin Alphabet
FRENCH Indo-European (Romance) Fusional Latin Alphabet
POLISH Indo-European (Slavic) Fusional Latin Alphabet
CZECH Indo-European (Slavic) Fusional Latin Alphabet
RUSSIAN Indo-European (Slavic) Fusional Cyrillic
JAPANESE Japonic Agglutinative Kanji / Hiragana / Katakana
CHINESE Sino-Tibetan Analytic Hanzi

Table 4: Details on languages included for the current study.

LANG #SENT SRC HUM PARA SENT PARA_SENT GTR

cs-pl 163 2,154 2,027 2,122 2,123 2,259 2,065
de-pl 153 3,172 2,997 2,785 2,899 2,835 2,764
ru-pl 170 2,350 2,471 2,467 2,463 2,458 2,375
ja-pl 111 2,627 1,855 1,782 1,907 1,830 1,800
en-pl 127 1,702 1,526 1,444 1,513 1,483 1,462
fr-pl 119 3,253 2,789 2,641 2,673 2,654 2,543
de-ja 75 3,530 5,329 4,807 5,116 4,652 4,703
en-ja 176 1,959 2,617 2,538 2,653 2,617 2,634
zh-ja 194 2,998 4,124 3,861 4,249 3,957 3,978
ru-ja 193 2,539 4,753 3,982 4,348 4,088 3,921
fr-ja 195 2,510 3,426 3,110 3,355 3,106 2,958
pl-ja 188 1,953 2,944 3,083 3,418 3,199 2,972
ja-en 111 2,622 2,293 2,062 2,322 2,257 2,140
pl-en 148 2,696 3,430 3,234 3,290 3,273 3,213
ru-en 117 1,693 2,008 2,029 2,056 2,028 2,019
fr-en 120 3,253 3,123 3,067 3,150 3,064 3,098
de-en 153 3,172 3,346 3,361 3,413 3,325 3,314
zh-en 127 2,235 2,002 2,427 2,396 2,351 2,360

Total 2,640 46,418 53,060 50,802 53,344 51,436 50,319

Table 5: Number of sentences in the source text sentencized manually (#SENT) along with the number of tokens in
the human reference (HUM) and different machine translations (PARA, SENT, PARA_SENT, GTR). All translations
were tokenized using SPACY32 with the large model for each of the three target languages (Polish, Japanese, and
English). All source texts were tokenized with STANZA (Qi et al., 2020) as SPACY does not include models for all
target languages.

Figure 8: An example of prompt for SENT translations with one demonstration and a text to translate.
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LANG SOURCE TARGET PARA SENT PARA_SENT GTR

cs-pl 168 177 167 169 181 168
de-en 155 182 166 167 164 155
de-ja 69 133 135 121 117 132
de-pl 155 170 166 167 169 157
en-ja 169 168 166 161 169 169
en-pl 131 127 130 132 130 131
fr-en 122 138 126 122 124 123
fr-ja 193 199 207 220 185 201
fr-pl 122 125 125 125 126 123
ja-en 101 120 116 116 116 111
ja-pl 101 127 117 115 118 108
pl-en 148 156 149 145 151 145
pl-ja 189 153 174 196 178 191
ru-en 123 119 121 124 121 123
ru-ja 144 155 158 161 164 196
ru-pl 168 172 170 171 172 172
zh-en 127 130 146 141 140 135
zh-ja 195 234 225 229 215 202

TOTAL 2,580 2,785 2,764 2,782 2,740 2,742

Table 6: Number of sentences in the source text and each translation. The data was sentencized with SPACY. As
evident from the data and manual inspection of translations the translations may result in a very different number
of sentences as a result of splits and merges. We observe that about 55% of the data potentially lacks one-to-one
correspondence.

Figure 9: An example of prompt for PARA_SENT translations with one demonstration and a text to translate.

mark only the one that is less frequent. If “Piotr”
appears once in the paragraph, while “Peter” is
used twice, “Piotr” would be annotated as being
inconsistent. The same strategy was applied for
“register” errors, such as when both polite and ca-
sual forms were acceptable, but the translation used
them randomly.

Format: We did not label “format” errors for
the SENT and PARA_SENT translations, as we

manually corrected the quotation marks during
post-processing of the translations. This man-
ual correction was done to ensure that SENT and
PARA_SENT could be compared to PARA without
relying too heavily on simple heuristic (i.e., incor-
rect usage of the quotation marks).

Translators: The translators in this study were
hired on a freelancing platform, Upwork. We in-
terviewed all translators prior to the task to assure
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LANGUAGE YEAR PUBLISHED
BOOK TITLE AUTHOR TRANSLATOR(S)

SOURCE TARGET TRANSLATION ORIGINAL

A Children’s Bible Lydia Millet Aga Zano en pl 2022 2020
What Can You See From Here Mariana Leky Agnieszka Walczy de pl 2021 2017
The Years Annie Ernaux Krzysztof Jarosz & fr pl 2022 2008

Magdalena Budzińska
Manaraga Wladimir Sorokin Agnieszka Lubomira Piotrowska ru pl 2018 2017
Crows Petra Dvorakova Mirosław Śmigielski cs pl 2020 2020
Convenience Store Woman Sayaka Murata Dariusz Latoś ja pl 2019 2016

Sixteen Horses Greg Buchanan Fuji Yoshiko en ja 2022 2021
An Inventory of Losses Judith Schalansky Naoko Hosoi de ja 2022 2018
Dear Reader Paul Fournel Kei Takahashi fr ja 2022 2011
The Shooting Party Anton Chekhov Takuya Hara ru ja 2022 1884
Sword of Destiny Andrzej Sapkowski Yasuko Kawano pl ja 2022 1992
Bare burial Fang Fang Shin’ichi Watanabe zh ja 2022 2016

What Can You See From Here Mariana Leky Tess Lewis de en 2021 2017
The Years Annie Ernaux Alison L. Strayer fr en 2017 2008
The Story of a Life Konstantin Paustovsky Douglas Smith ru en 2022 1956
The Books of Jacob Olga Yokarczuk Jennifer Croft pl en 2022 2014
Convenience Store Woman Sayaka Murata Ginny Tapley Takemori ja en 2018 2016
Cocoon Zhang Yueran Jeremy Tiang zh en 2022 2018

Table 7: Details of the translated novels used in our study. In cases where the same novel is used for multiple target
languages (e.g., “The Years”), identical source paragraphs are extracted to enable comparisons across language
pairs. These novels exhibit distinct differences beyond just their source languages. For instance, “What Can You
See From Here” presents a philosophical exploration of life and death, while “Sword of Destiny” is a fantasy story
part of “The Witcher” saga.

Figure 10: An example of prompt for PARA translations with one demonstration and a text to translate.

that they were qualified to evaluate the translations.
All translators were highly proficient in the source
language and most of them were native speakers
of the target language with some being bilingual.33

33We consider a translator bilingual only if they were
raised using both languages; i.e. both can be consider their
native languages (e.g., ru-pl translator was raised in Poland
while speaking Russian at home). In the broader sense of this
word, all of the translators are bilingual with some of them
being trilingual. For the cases where the hired translator was
not a native speaker of the target language, the annotations
were verified by a native speaker of the target language in

Only one translator reported familiarity with the
book, which translation she evaluated. All transla-
tors were instructed to evaluate each paragraph in
isolation without relying on any prior knowledge
about the book and to allow for all possible inter-
pretations based on the given part of the source text.
They were asked to evaluate five translations first
and received feedback on their work before moving
forward. Details about the translators are reported

consultation with the translator.
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Book Lang Pair Source Target

An Inventory of Losses de-ja Natürlich hatte ich schon davor andere bemerkenswerte Begräb-
nisstätten besucht: die Toteninsel San Michele etwa, wie sie mit
hohen, roten Backsteinmauern aus dem blaugrünen Wasser der
Lagune von Venedig emporragt gleich einer uneinnehmbaren Fes-
tung, oder das grelle Jahrmarktstreiben des Hollywood Forever
Cemetery am alljährlich von der mexikanischen Bevölkerung be-
gangenen Día de los Muertos mit den orange-gelb geschmückten
Gräbern und den von der fortgeschrittenen Verwesung auf ewig
zum Grinsen verdammten Totenschädeln aus bunt gefärbtem Zucker
und Pappmaché. Doch keine hat mich so berührt wie der Friedhof
jener Fischersiedlung, in dessen eigentümlichem Grundriss — einer
Art Kompromiss aus Kreis und Quadrat ich nichts anderes als ein
Sinnbild der ungeheuerlichen Utopie zu erkennen glaubte, die ich
dort verwirklicht sah: mit dem Tod vor Augen zu leben. Lange Zeit
war ich überzeugt, an diesem Ort, dessen dänischer Name »kleine
Insel« oder »vom Wasser umgeben« bedeutet, sei man dem Leben
näher, gerade weil seine Bewohner die Toten wortwörtlich in ihre
Mitte geholt hatten, anstatt sie wie sonst in unseren Breitengraden
üblich — aus dem Innersten der Gemeinden vor die Stadttore zu
verbannen, auch wenn der urbane Raum sich die Gräberstätten
durch sein ungehemmtes Anwachsen oft nur wenig später wieder
einverleibt hat.

もちろんそれ以前にもいくつか特筆すべき墓所を訪れた
ことはあった。たとえばヴェネツィアの干潟の青緑色の水
中から、赤煉瓦の高い壁に囲まれて難攻不落の要塞のよう
にそびえたつ死者の島、サン・ミシェル。あるいはメキシ
コ系住民が毎年にぎやかに死者の日を祝う、ハリウッド・
フォーエバー墓地。墓はオレンジと黄色の花で飾られ、
カラフルな砂糖菓子や張り子細工の頭蓋骨は、腐敗が進ん
で永遠の笑顔を浮かべているようだ。けれども、この漁師
町の墓地ほどに私の心を動かす墓所はなかった。まるで円
と四角の間の妥協のようなその独特の輪郭に、私はまさに
ユートピアの象徴を見たように思った。死を目の前にしつ
つ生きるというユートピアが、そこに実現されていた。長
いこと私は確信していた。デンマーク語で「小さな島」と
か「水に囲まれた」という意味の名前を持つこの場所に住
む人々は、同じくらいの緯度の国々で通常行われているよ
うに、共同体の内部から市門の外へと死者たちを追放する
代わりに、死者たちを文字通り町の中心に迎え入れた。だ
からこそ、より生に近いのだと。もっとも都市空間もまた
人口膨張のために、ほどなくして墓地をふたたび内部へと
取り込まざるを得なくなるのだけれど。

A Children’s Bible en-pl The lady urinated.
“Oh, poor old thing, she has a nervous bladder!” exclaimed some-
one’s chubby mother. “Is that a Persian rug?”
Whose mother was it? Unclear. No one would cop to it, of course.
We canceled the performance.
“Admit it, that was your mother,” said a kid named Rafe to a kid
named Sukey, when the parents had filed out. Some of their goblets,
highball glasses, and beer bottles were completely empty. Drained.
Those parents were in a hurry, then.
“No way,” said Sukey firmly, and shook her head.
“Then who is your mother? The one with the big ass? Or the one
with the clubfoot?”
“Neither,” said Sukey. “So fuck you.”

Dama się posikała.
– Och, biedactwo, ma wrażliwy pęcherz! – wykrzyknęła czyjaś
pulchna matka. – Zaraz, to perski dywan?
Czyją matką była? Nie wiadomo. Oczywiście nikt nie chciał się
przyznać. Odwołaliśmy przedstawienie.
– No dawaj, to twoja – powiedział chłopiec imieniem Rafe do
dziewczynki imieniem Sukey, kiedy rodzice sobie poszli. Zostawili
po sobie kieliszki, wysokie szklanki i butelki po piwie. Niektóre
były zupełnie puste. Do ostatniej kropelki.
Tym z rodziców się zatem spieszyło.
– W życiu – odparła Sukey stanowczo i pokręciła głową.
– To która? Ta z wielkim dupskiem? Czy ze szpotawą stopą?
– Ani jedna, ani druga. Spierdalaj.

Table 8: Examples of aligned reference source and target paragraphs from our dataset, including both a narrative
(An Inventory of Losses) and a dialogue (A Children’s Biblie). Our PARA approach takes as input the entire source
paragraph and outputs a paragraph-level translation.

YEAR PUBLISHED
LANG PAIR TITLE AUTHOR TRANSLATOR(S)

TRANSLATION ORIGINAL

ja-pl Norwegian Wood Haruki Murakami Dorota Marczewska & 1987 2006
Anna Zielińska-Elliott

de-pl The Trial Franz Kafka Jakub Ekier 1925 2008
fr-pl Les Miserables Victor Hugo Krystyna Byczewska 1862 1966
fr-pl The Little Prince Antoine de Saint-Exupéry Jan Szwykowski 1862 1967
en-pl The Valley of Fear Arthur Conan Doyle Tadeusz Evert 1915 1927
ru-pl War and Peace Leo Tolstoy Andrzej Stawar 1869 1958
cs-pl War with Newts Karel Čapek Jadwiga Bułakowska 1936 1949
pl-ja Solaris Stanisław Lem Mitsuyoshi Numano 1961 2004
ru-ja Anna Karenina Leo Tolstoy Hakuyō Nakamura 1878 2004
de-ja Der Steppenwolf Hermann Hesse Fujio Nagano 1927 2000
fr-ja Around the World in 80 Days Jules Verne Yū Takano 1873 2009
en-ja Animal Farm George Orwell Eitarō Sayama 1945 1998
zh-ja Medicine Lu Xun Kōbai Inoue 1919 1919
zh-ja The True Story of Ah Q Lu Xun Kōbai Inoue 1921 1923
zh-ja Diary of a Madman Lu Xun Kōbai Inoue 1921 1923
ru-en Confession Leo Tolstoy Peter Carson 1882 2013
zh-en The Day the Sun Died Yan Lianke Carlos Rojas 2015 2018
ja-en Kokoro Natsume Sōseki Edwin McClelan 1914 1957
ja-en Kokoro Natsume Sōseki Meredith McKinney 1914 2010
de-en Venus in Furs Ritter von Leopold Sacher-Masoch Fernanda Savage 1870 unclear
fr-en The Debacle Émile Zola Leonard Tancock 1870 1972

Table 9: List of novels employed in the prompts.

438



Figure 11: The annotation interface used for the error annotation task.

LANG PAIR NATIVE LANG BOOK FAMILIARITY GENDER

zh-en Chinese ✗ Male
ja-en English ✗ Male
de-en Polish/English ✗ Female
fr-en English ✗ Female
ru-en Russian ✗ Female
pl-en Polish/English ✗ Female
en-ja Japanese ✗ Female
fr-ja Japanese ✗ Male
de-ja Japanese ✗ Female
pl-ja Polish (author) ✗ Female
ru-ja Japanese ✗ Male
zh-ja Japanese ✗ Male
de-pl Polish/English ✗ Female
en-pl Polish (author) ✗ Female
ru-pl Polish/Russian ✗ Female
cs-pl Czech ✗ Male
ja-pl Polish (author) ✗ Female
fr-pl Polish ✓ Female

Table 10: Details about the translators hired for the
current annotation study. We note whether the translator
was familiar with the source text prior to the evaluation
task (Book Familiarity).

in Table 10.34

E Results

In this section of the appendix, we provide more
detailed analysis of the results of the human evalu-

34Three language pairs (pl-ja, en-pl, ja-pl) were annotated
by the first author of this paper.

ation. We start with providing more details about
the GTR vs PARA evaluation. Next, we include an
in-depth discussion of the context-related errors in
SENT which were corrected in the PARA transla-
tions. Finally, we include some comments from the
translators. In the next section (§F), we also pro-
vide more information about the issues still present
in the PARA translations along with the preliminary
analysis of paragraph-level translation by GPT-4.

E.1 PARA is clearly better than GTR

PARA translations are overwhelmingly preferred
over those from Google Translate (GTR), with an
82.8% preference rate (p<.001, 95% CI [0.765,
0.880]). Even after removing the “unsure” votes,
the preference for PARA remains significant at
88.0% (p<.001, 95% CI [0.812, 0.930]). In the
fr-ja, pl-ja, zh-ja, and cs-pl language pairs, PARA

received all of the ten votes over GTR. Part of
this advantage may be attributed to GTR some-
times using English as a pivot language, which
can result in information loss. Our Czech trans-
lator observed that mistakes in GTR translations
suggest the text was first translated into English.35

35For the cs-pl language pair, we separately annotated
mistranslations arising from pivot translation. These errors
accounted for over 50% of all mistranslations in that lan-
guage pair. The elimination of the need for parallel data may
therefore be beneficial for translating between lower-resource
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Overall, GTR translations result in 57.7% more
mistranslations, 37.3% more grammatical errors,
over twice as many inconsistency errors, and ten
times more register errors (see Table 2). Addition-
ally, GTR produced 125 format errors while PARA

produced perfect outputs in this regard. Finally,
it is worth noting that GTR left fewer words un-
translated, though this is inflated by the fact that in
one German text, the word “Bauer” (“farmer”) was
untranslated 14 times in the PARA translation.

E.2 Context-related errors

Here we present examples of context-related is-
sues present in SENT while correctly translated by
PARA.36

Pronouns: Unsurprisingly, the absence of dis-
course context results in the incorrect translation
of pronouns. Consider the following example, with
English glosses of important words provided in
[brackets]:

(2) И ветер [wind] то начинал шуметь в голых
деревьях, то замолкал, так же как и я при-
слушиваясь к течению ночи. Но он [he] не
уходил, он [he] был здесь.

—RUSSIAN SOURCE (from The Story of a Life)

a. The wind would start to rustle in the bare trees
and then fall silent, just as I listened to the flow
of the night. But he didn’t leave, he was here.

—GPT-3.5 SENT (ENGLISH)

b. The wind would start to rustle in the bare trees,
then die down, just like me, listening to the flow
of the night. But it didn’t go away, it was still
here.

—GPT-3.5 PARA (ENGLISH)

In Russian, nouns have grammatical gender.
“Wind” in the first sentence of the source text is
a masculine noun, so it is later referred to as “he”
in (2). Without access to the context, the SENT

model incorrectly translates it as “he” into English
(2a), while the PARA translation correctly modifies
the pronoun to “it” (2b).

When translating from Russian into Polish, an-
other language with grammatical gender, we ob-
serve issues when the gender of Russian and Polish
nouns differs. Consider the following example:

(3) Романы, как известно, печатались на разной
бумаге [paper]. И гореть она [she] может по-
разному.

—RUSSIAN SOURCE (from Manaraga)

languages where sufficient parallel data is often unavailable
necessitating the pivot translation.

36Note that PARA also suffers from context-related issues.
However, at a much lesser extent than SENT.

a. Romany, jak wiadomo, drukowano na różnym
papierze [paper]. I może ona [she] tęsknić na
różne sposoby.

—GPT-3.5 SENT (POLISH)

b. Jak wiadomo, powieści drukowano na różnym
papierze [paper]. I może on [he] palić się na
różne sposoby.

—GPT-3.5 PARA (POLISH)

Although both Russian and Polish nouns possess
grammatical gender, “Paper” in (3) is feminine in
Russian and referred to as “she,” whereas it is a
masculine noun in Polish and should be referred to
as “he,” as in (3b). The absence of context in SENT

leads to an incorrect translation in (3a).

Cultural nuances: Assigning appropriate pro-
nouns without context becomes even more chal-
lenging when translating from languages like
Japanese, in which speakers frequently refer to the
listener (or themselves) in the third person rather
than using second-person personal pronouns such
as “you” in English. Consider the following exam-
ple:

(4) 「気が付かなくてすみません」
「いやいや、(...)。 古倉さんは毎日勤務 なの
に手を抜かないからねー！」
[lit. Ms./Mrs./Mr. Furukura works every day]

—JAPANESE SOURCE (from Convenience Store Woman)

a. “I’m sorry I didn’t notice.”
“No, no, (...). Furukura-san works hard every
day without taking any shortcuts!”

—GPT-3.5 SENT (ENGLISH)

b. “I’m sorry I didn’t notice.”
“No, no, (...). You work every day, but you never
slack off!”

—GPT-3.5 PARA (ENGLISH)

From the context of this conversation, a Japanese
listener can easily infer that “Furukura-san” or
“Miss Furukura”37 in the last source sentence (4) is
used instead of the second-person “you” as per
Japanese convention. Translating this sentence
without context into English, a language in which
third-person reference is not common,38 results
in a confusing translation (4a) that implies that
the speaker refers to some other “Furukura” rather
than their listener. However, when translating the
sentence in context, the model correctly changes
“Furukura” into “you” (4b), which makes it clear
whom the speaker refers to in English.

37Note that the gender of neither character is apparent from
the fragment alone.

38While third-person reference can be used in English, it is
only used in rare circumstances e.g. when addressing children.
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LANGUAGE PAIR SENT PARA PARA_SENT PARA GTR PARA

Russian - English 0 10 5 5 4 6
Chinese - English 1 9 3 7 3 7
Polish - English 4 6 4 6 1 9
French - English 5 5 4 6 2 8
Japanese - English 1 9 2 8 1 9
German - English 5 5 3 7 4 6

TOTAL 16 44 21 39 15 45

PERCENTAGE 26.67% 73.33% 35.00% 65.00% 25.00% 75.00%

German - Japanese 6 4 3 7 1 9
Russian - Japanese 4 6 4 6 2 8
French - Japanese 2 8 1 9 0 10
Polish - Japanese 2 8 4 6 0 10
English - Japanese 3 7 2 8 1 9
Chinese - Japanese 4 6 4 6 0 10

TOTAL 21 39 18 42 4 56

PERCENTAGE 35.00% 65.00% 30.00% 70.00% 6.67% 93.33%

English - Polish 0 10 3 7 4 6
Japanese - Polish 3 7 5 5 1 9
French - Polish 4 6 4 6 2 8
Czech - Polish 3 7 2 8 0 10
Russian - Polish 1 9 4 6 3 7
German - Polish 3 7 3 7 1 9

TOTAL 14 46 21 39 11 49

PERCENTAGE 23.33% 76.67% 35.00% 65.00% 18.33% 81.67%

TOTAL 51 129 60 120 30 150

PERCENTAGE 28.33% 71.67% 33.33% 66.67% 16.67% 83.33%

Table 11: The number of votes for SENT vs PARA, PARA_SENT vs PARA, and GTR vs PARA in human evaluation
by the language pair. The winning counts are highlighted in purple.

Ellipsis: Another example where context helps is
the translation of elliptical constructions. Consider
the following example:

(5) „Ne, ted’ uděláš nádobí!“ [(you) will do the dishes!]
„Neudělám!“ [(I) won’t do!]
„Uděláš!“ [(You) will do!]

—CZECH SOURCE (from Crows)

a. — Nie, teraz zrobisz zmywanie! [(you) will do
the washing]
— Nie zrobię! [(I) won’t do!]
— Zrobisz to! [(You) will do it!]

—GPT-3.5 SENT (POLISH)

b. — Nie, teraz umyjesz naczynia [(You) will wash
the dishes]!
— Nie umyję [(I) won’t wash]!
— Umyjesz [(You) will wash]!

—GPT-3.5 PARA (POLISH)

Czech uses the same collocation as English, “do
the dishes” (5), which is invalid in Polish. Hence,
the ellipses in the last two sentences in (5) require
broader context to be translated correctly. PARA

does it properly, translating both as “wash” (5b),
while SENT unsurprisingly fails to choose the cor-
rect collocation (5a).

Subject ellipsis: Similarly, context may be
needed to attribute a state or an action to the correct
character due to the subject ellipsis. This is an ob-
vious issue for languages like Japanese, which tend
to omit the subject of the sentence and do not en-
code any relevant information in the verb form, but
it can also arise in English. Consider the following
example:

(6) When we were done, the lipstick went back into
some mother’s Fendi handbag. We watched her
apply it, unaware.

—ENGLISH SOURCE (from A Children’s Bible)

a. Gdy skończyliśmy, szminka wróciła do jakiejś
torebki Fendi należącej do matki. Patrzyliśmy,
jak to robi, nieświadomi [unaware (we)] tego.

—GPT-3.5 SENT (POLISH)

b. Kiedy skończyliśmy, szminka wróciła do tore-
bki Fendi jakiejś matki. Patrzyliśmy, jak ją
nakłada, nieświadoma [unaware (she)] naszych
działań.

—GPT-3.5 PARA (POLISH)

From the second sentence alone it is not clear
who is “unaware” (6) – the mother or the “we” (re-
ferring to children) watching her. Only from the
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broader context can we confidently deduce that it
is in fact the mother, not the children, who is “un-
aware.” PARA (6b) correctly attributes the state
of being “unaware” to the mother, which is exhib-
ited by its usage of the singular feminine form of
the adjective. In contrast, SENT (6a) mistranslates
it using the plural masculine form of the adjec-
tive “unaware,” which implies that it refers to “we”
rather than the “mother.”

Consistency: Context is sometimes critical for
preserving the overall consistency of the text. The
simplest cases include referring to the same entity
– a place or a person – in the same way. More
interesting cases pertain to style and can enhance
the reader’s experience. Consider the following
example:

(7) Alles zu vergessen, ist gewiss schlimm [bad]. Noch
schlimmer [worse] ist, nichts zu vergessen (...).

—GERMAN SOURCE (from An Inventory of Losses)

a. すべてを忘れることは確かに悲惨
な[tragic]ことです。さらに悪い[worse]の
は、何も忘れないことです。

—GPT-3.5 SENT (JAPANESE)

b. すべてを忘れることは確かに悪い[bad]こ
とです。もっと悪い[worse]ことは、何も
忘れないことです。

—GPT-3.5 PARA (JAPANESE)

The German source in (7) translates into English
as “To forget everything is bad, certainly. Worse
still is to forget nothing.”39 It is arguably important
for the translation to repeat the same word which
is an equivalent of the German “schlimm” (“bad”).
PARA does it well, translating both as悪い “warui,”
or “bad” (7b), in the exact same way as the human
Japanese translator. SENT, on the other hand, uses
two different words, “tragic” and “bad” (7a), which
while technically correct omits the intentional rep-
etition that is meant to introduce an unexpected
conclusion.

Polysemy: The absence of context makes it dif-
ficult to interpret words or expressions that have
multiple meanings in the source language. Con-
sider the following example:

(8) Все прошло хорошо. Книга прочитана иде-
ально – не быстро и не медленно, минимум
дыма. Классика. Я был в форме [in shape].

—RUSSIAN SOURCE (from Maranaga)

a. Wszystko poszło dobrze. Książka została
przeczytana idealnie – nie szybko i nie wolno,
minimalna ilość dymu. Klasyka. Byłem w
mundurze [in uniform].

39Excerpt taken from the official English translation by
Jakie Smith (2020).

—GPT-3.5 SENT (POLISH)

b. Wszystko poszło dobrze. Książka przeczytana
idealnie – nie szybko i nie wolno, minimalna
ilość dymu. Klasyka. Byłem w formie [in
shape].

—GPT-3.5 PARA (POLISH)

The ambiguity stems here from multiple mean-
ings of the Russian noun форма “forma” (8),
which can mean either “shape” or “uniform.” Since
one can be “in shape” as well as “in a uniform”, it
is unclear from the sentence alone which meaning
was intended by the author. From the preceding
context, it is clear that “everything went well” for
the narrator, who mastered the art of “book’n’grill,”
a unique form of expression exclusive to this fic-
tional world. Based on this, we can infer that in
this instance, the term “forma” signifies “shape,” as
in (8b), rather than “uniform,” as in (8a).

Appropriateness: Finally, context may help to
choose the more appropriate equivalent for the
given situation. Consider the following example:

(9) 「あー、あと煙草の５番を一つ」
「かしこまりました」 [lit. (I) understood]

—JAPANESE SOURCE (from Convenience Store Woman)

a. "Ah, and one pack of cigarettes, number five."
"Understood."

—GPT-3.5 SENT (ENGLISH)

b. “Ah, and one pack of cigarettes, number five.”
“Right away.”

—GPT-3.5 PARA (ENGLISH)

The conversation above is between a clerk and
a customer. The Japanese expressionかしこまり
ました “kashikomarimashita” (9) is an honorific
that literally means “understood.” However, when
choosing the best equivalent, the translator needs
to consider the situation at hand to best reflect its
meaning in the target language. “Understood” in
SENT (9a) is technically correct, but it is an unfor-
tunate word choice for the clerk to employ. On the
other hand, “right away” in PARA (9b) fits much
better in the context of this conversation. Had this
been a series of commands (e.g., in a military con-
text) “understood” would be the more favorable
option.

E.3 What do translators think about PARA?
To wrap up this section, we provide a qualitative
analysis of the free-form comments written by
translators to justify their preference judgments.
Overall, the translators praise PARA for its more
skillful use of rhetoric devices, and surpas[ing]
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SENT as a literary rendition. They also mention
that PARA uses more of a poetic license but this
makes it stylistically much smoother than SENT.
Furthermore, translators state that PARA clearly
better reflects the content and style of the original
when compared to GTR, and that it stays consistent
within the paragraph. Inevitably, translations are
not flawless, and there are instances where both
compared systems fall short, as highlighted by one
of the translators when assessing PARA against
SENT: Nightmare, a mistake upon mistake (...)
Despite all these mistakes, I can understand the
[PARA] translation better but they are equally mis-
erable.

F Limitations

In this section of the appendix, we delve deeper
into the unresolved issues in the PARA translations.
First, we discuss the omissions present in the trans-
lations. Next, we highlight some mistranslations
that persist in the PARA translations. To conclude,
we briefly discuss our initial experiments utilizing
GPT-4 for paragraph-level translation.

Omissions: One thing we ought to discuss is the
omission issue. Upon examining translations and
annotator feedback, we observe that PARA occa-
sionally omits details, which are crucial to the story-
line. Preliminary investigation indicates that PARA

translations are more prone to omissions compared
to SENT and GTR. Although PARA_SENT appears
to mitigate this problem to some extent, it still
results in a higher number of omissions than the
sentence-level approach while at the same time in-
troducing some repetition issues (see Table 12).40

Mistranslations: Moreover, PARA still makes a
sizeable number of mistranslations and grammat-
ical errors, though fewer than SENT or GTR. We
observe that PARA occasionally merges sentences
with two distinctive subjects attributing all states
and/or actions to one of them. Very rarely, we
also find cases where context possibly confuses the
model, resulting in an incorrect translation. The
following example illustrates this issue:

40Note that although ask the annotators to report both omis-
sions and additions, based on their comments and our analysis
of the translations, we conclude that omissions are the predom-
inant issue. In version two of our data (currently on https://
github.com/marzenakrp/LiteraryTranslation), we fur-
ther annotate any repetition as a separate type of error (i.e.
error with ‘repetition’ label) rather than counting it as an ad-
dition. This annotations resulted in eight repetition errors in
PARA_SENT translations.

(10) Le bois du bureau amplifie les battements de mon
cœur. Le vieux mobilier Art déco conduit bien les
émotions et les fatigues. Ruhlman ? Leleu ? Il [he]
en a tant vu.

—FRENCH SOURCE (from Dear Reader)

a. 机の木材が私の心臓の鼓動を増幅してい
る。古いアール・デコ家具は感情や疲労
をうまく導いてくれる。ルールマン？レ
ルー？彼ら [they]はそんなに多くを見てき
た。

—GPT-3.5 PARA (JAPANESE)

In the French text, the narrator wonders whether
the brand of the desk was Ruhlman or Leleu, with
both proper nouns possibly referring to a person.
In the last sentence, the French text uses “il” or
“he” (10), as a desk is a masculine noun in French
(“le bureau”). PARA, on the other hand, appears
to be confused by the two preceding names and
incorrectly translates the singular pronoun as彼ら,
or “they.”

Furthermore, we observe (very few) cases where
the paragraph-level translation disregards the con-
text. Most representative of this class of errors
is when the model struggles to translate from
Japanese in cases where the subject is omitted. The
following example illustrates this issue:

(11) ミホ [Miho] は、今では結婚して地元に中古
の一戸建てを買っていて、そこに友達がよく
集まっている。明日もアルバイトなので億劫
に思う時もあるが、コンビニ以外の世界との
唯一の接点であり、同い年の「普通の三十代
女性」と交流する貴重な機会なので、ミホの
[Miho’s] 誘いにはなるべく応じるようにして
いる。

—JAPANESE SOURCE (from Convenience Store Woman)

a. Miho [Miho] wyszła za mąż i kupiła stary, jed-
norodzinny dom w swoim rodzinnym mieście.
Przychodzą tam często jej znajomi. Mimo że
Miho ma [Miho has] jutro pracę w konbini,
zazwyczaj chętnie odpowiada [(she) responds]
na jej [her] zaproszenia, bo to jedyna okazja,
by spotkać się z innymi kobietami w jej [her]
wieku.

—GPT-3.5 PARA (POLISH)

b. Miho is now married and has bought an old
house in her hometown, where her friends of-
ten gather. Though she often finds it a chore to
work tomorrow, it is her only connection to the
world outside the convenience store, and a valu-
able opportunity to interact with other “normal
thirty-something women” her age, so she tries
to accept Miho’s invitations as often as possible.

—GPT-3.5 PARA (ENGLISH)

Both Polish (11a) and English (11b) translations
of the same source text (11) share a common is-
sue. The narrator begins the paragraph by talk-
ing about Miho and then proceeds to describe her
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Language Pair PARA SENT PARA_SENT GTR

Russian-English 0 0 1 0
Chinese-English 1 0 1 0
Polish-English 0 0 0 0
French-English 1 0 2 0
Japanese-English 2 1 2 3
German-English 0 0 0 0
German-Japanese 8 2 6 8
Russian-Japanese 10 4 6 4
French-Japanese 3 1 4 4
Polish-Japanese 4 1 3 0
English-Japanese 2 2 1 0
Chinese-Japanese 2 0 0 1
English-Polish 0 1 2 0
Japanese-Polish 0 0 1 1
French-Polish 2 2 1 1
Czech-Polish 1 2 1 0
Russian-Polish 1 1 1 0
German-Polish 0 0 0 0

Total 37 17 32 22

Table 12: Count of omissions reported by the translators for each translation method.

own (the narrator’s) feelings about the situation, al-
though the gender of the narrator is never revealed
in the Japanese text. The second sentence should be
written from a first-person perspective, particularly
since it directly references Miho towards the end
(blue text). However, both the Polish and English
translations produced by PARA are confused by
this: by using the third-person’s perspective (“she,”
“her”), both translations incorrectly imply that Miho
is the subject of the second sentence. SENT and
GTR translate this passage accurately, albeit with
some clumsy phrasing.

GPT-4 does not magically solve all of these is-
sues! Our preliminary experiments indicate that
GPT-4 (OpenAI, 2023) sometimes generates better
paragraph-level translations than those of GPT-3.5.
For instance, it seems to have a better grasp of the
inverted word order in German, though no broader
conclusions should be made without further testing.
Nevertheless, it does not resolve all of the issues
discussed in our paper. Mistranslations and gram-
matical errors are still abundant across many lan-
guage pairs. GPT-4 produces the following transla-
tion when fed the previous example paragraph (11)

as input; note that all of the issues still remain:41

(12) Miho is now married and has bought a used single-
family home in her hometown where her friends
often gather. Although she sometimes finds it a drag
to work a part-time job the next day, she makes
an effort to respond to Miho’s invitations because
it’s a valuable opportunity to interact with “normal”
women in their thirties like herself, apart from her
convenience store job.

—GPT-4 PARA (ENGLISH)

PARA translations hold the potential to captivate
readers, especially if LLMs continue to improve at
their current pace. Indeed, some of our translators
mentioned that they genuinely enjoyed the task,
though integrating these paragraphs into a coherent
novel still poses a considerable challenge. With
all that said, literary translation involves more than
just overall “correctness” or mere entertainment
value. A translation that is perfectly “correct” and
enjoyable might still fail to convey the author’s in-
tentions or meaning skillfully hidden behind a sim-
ple phrase. Our fr-en translator shares her thoughts
on this matter:

41Although the given paragraph is already comprehensible
for a human reader, we also attempt to enhance the transla-
tion by incorporating three additional preceding paragraphs
for context. Intriguingly, when provided with this extended
context, both GPT-3.5 and GPT-4 generated accurate transla-
tions.
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SYSTEM COMET BLEURT BERTSCORE COMET-QE

PARA 0.785 0.485 0.840 0.038
SENT 0.779 0.469 0.839 -0.052
PARA_SENT 0.780 0.480 0.838 -0.062
GTR 0.735 0.443 0.832 -0.156

Table 13: Results of automatic evaluation. A higher
number indicates better scores.

Both translations [SENT and PARA] translate the
words without the feeling; the original author’s
voice is lost.

—FRENCH TO ENGLISH TRANSLATOR

G Automatic Evaluation

In this section of the appendix, we present the re-
sults of automatic evaluation. First, we discuss the
scores assigned to the translations by automatic
metrics.42 Then we provide the statistical analysis.
Finally, we present the correlation of each metric
with human judgments for the 180 paragraphs used
in the human evaluation.

Automatic metrics favor PARA: We assess
the translation from all four systems using the
reference-based COMET (Rei et al., 2022), BLEURT

(Sellam et al., 2020), and BERTSCORE (Zhang
et al., 2020) metrics, as well as the reference-free
COMET-QE (Rei et al., 2021)43 metric. Although
these metrics were not explicitly designed for eval-
uating paragraph-level outputs and their results
should be interpreted with caution, they prove more
reliable than string-based metrics like BLEU, es-
pecially for literary translations (Thai et al., 2022;
Karpinska et al., 2022; Gehrmann et al., 2022).
Table 13 shows the effectiveness of the PARA trans-
lation method: a statistical analysis with linear
mixed-effects models (Baayen et al., 2008) demon-
strates that PARA significantly outperforms SENT

and GTR based on COMET, BLEURT, and COMET-
QE scores (p<.001), and surpasses GTR based on
the BERTSCORE results (p<.001). We discuss the
details of this statistical analysis in the next section.

Statistical Analysis: We employ the linear-
mixed effect models (Baayen et al., 2008) to an-
alyze the scores produced by automatic metrics.

42This analysis is done on the entire dataset excluding only
the paragraphs which were too long as per each metric’s token
limit.

43We use the newest wmt22-comet-da checkpoints
for COMET, Bleurt-20 checkpoints for BLEURT,
wmt20-comet-qe-da checkpoints for COMET-QE,
and the HuggingFace implementation which employs
roberta-large for BERTSCORE.

METRIC ACC τ ACC (conf ) τ (conf )

COMET 67.41% 0.348 72.78% 0.456
COMET-QE 64.44% 0.289 70.64% 0.413
BLEURT 61.30% 0.226 66.36% 0.327
BARTSCORE 58.52% 0.170 63.91% 0.278

Table 14: Correlation of automatic metrics with human
judgments from our human evaluation. We evaluate
the metrics performance on all human judgments as
well as on the subset of judgments where the translator
indicated that the chosen translation was visibly better
(conf ). We report both the percentage of agreement
(ACC) and Kendall’s Tau (τ ). Data reported on v1 of
the dataset.

We fitted the model in R using the lme4 package
(Bates et al., 2015); the p-values were obtained
with the LmerTest package (Kuznetsova et al.,
2017). Linear-mixed effects models contain both
fixed-effects and random-effects (random intercept
and/or slope). The fixed effect here is the transla-
tion setup (PARA, SENT, PARA_SENT, GTR) with
the source paragraph being coded as the random
effect (random intercept). We inspect the residual
plots to ensure that the variance across the fitted
range is relatively constant. The results from the
fitted model are presented in Table 18 (BLEURT),
Table 20 (COMET), Table 22 (COMET-QE), and
Table 24 (BERTSCORE).44

We further perform a post hoc analysis using the
emmeans package (Lenth, 2023) to obtain p-values
for the pairwise comparison. The results of the post
hoc analysis are presented in Table 19 (BLEURT),
Table 21 (COMET), Table 23 (COMET-QE), and
Table 25 (BERTSCORE).

Correlation with Human Judgements: We in-
vestigate the correlation of automatic metrics with
human judgments in our evaluation. We consider
(1) all the judgments, as well as (2) a subset of
all judgments where the annotator stated that they
were sure that one translation is clearly better than
the other. We compute both accuracy (i.e., the
percentage of cases where the metric agrees with
human judgment), and a correlation coefficient
Kendall’s Tau which is defined as follows:

τ =
Concordant − Discordant
Concordant + Discordant

44It should be noted that, while significant, the analysis is
underpowered. It is possible that analyzing more examples
would provide a more reliable analysis.
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SOURCE TARGET PARA PARA_PIVOT

Czech Polish 11 9

German Japanese 13 7

German Polish 12 8

French Japanese 9 11

French Polish 11 9

Japanese Polish 10 10

Polish Japanese 3 17

Russian Japanese 10 10

Russian Polish 8 12

Chinese Japanese 9 11

TOTAL 96 104

Table 15: The results of pairwise comparison for the
paragraph-level translations with (PARA_PIVOT) and
without (PARA) English as a pivot language.

Table 14 shows the correlation of automatic met-
rics with the human judgments obtained in this
study. COMET exhibits the highest agreement with
human judgments both in terms of the accuracy
(64.04% for all data, 72.78% for confident votes
only) and Kendall’s Tau (0.341 for all data, 0.456
for confident votes only).

H Pivot Pilot

In this section of the appendix, we discuss the re-
sults of the preliminary study where we translated
the paragraphs using English as a pivot language.
Table 15 shows the results of this pilot study. The
evaluation was done by the first author on all 20
passages for every language pair that did not in-
clude translation from or into English, as these do
not require any pivoting.45 A total number of 200
pairs was evaluated employing simple preference
judgments.

During the PARA_PIVOT translation process, the
model utilized both the source text and its corre-
sponding English translation (text-davinci-003,
top-p=1.0, temp=0.3). This approach has the po-
tential to mitigate the limitations associated with
pivoting translations, where some information may
be lost. For example, both Czech and Polish encode
the gender information in the past tense form of the

45The author is fluent in English, Japanese, and Polish with
a limited proficiency in other source languages.

verb. English does not, so this information is lost
and will most likely result in an erroneous trans-
lation. Indeed, we notice that adding the source
text helps the model to overcome this shortcom-
ing, however, we do not observe a clear gain from
using English as a pivot language. Consider the
following example:

(13) Tat’ka mě zase zmlátil. Byl hrozně naštvanej, pro-
tože mamka řvala. On mě vždycky mlátí, když ona
řve. Že prej jsem pořádně neudělala nádobí. Ale
já vím, že jsem je udělala dobře. I ten hrnec jsem
vydrhla pořádně. A ještě jsem to všechno utřela před
koupáním. Ale možná jsem nevyždímala hadr.

—CZECH SOURCE (from Crows)

a. Tata mnie znowu zbił. Był wściekły, bo mama
krzyczała. On zawsze mnie bije, kiedy ona krzy-
czy. Że niby nie umyłam dobrze naczyń. Ale
ja wiem, że umyłam je dobrze. I garnek też
dokładnie wypolerowałam. I jeszcze wszys-
tko wytrzepałam przed kąpielą. Ale może nie
wyciśniłam ręcznika.

—GPT-3.5 PARA (POLISH)

b. Tata mnie znów uderzył. Był wściekły, bo
mama krzyczała. On zawsze mnie bije, kiedy
ona krzyczy. Że niby nie umyłam dobrze
naczyń. Ale ja wiem, że umyłam je do-
brze. Nawet garnek dokładnie wytrzepałam.
I jeszcze wszystko przed kąpielą wytrzepałam.
Ale może nie wyżągnęłam mopa.

—GPT-3.5 PARA_PIVOT (POLISH)

In each instance, the emphasized verbs could po-
tentially be mistranslated when translated through
English as the pivot language, as the speaker’s gen-
der information would be lost. For instance, the
past tense verb “washed” remains unchanged in En-
glish regardless of the gender of the speaker, with
such details encoded only in the source (Czech)
and target (Polish) languages. In this case, all
verbs have been translated accurately with respect
to grammatical gender, implying that incorporat-
ing the source language into the pivot pipeline
does indeed improve the translation. However,
PARA_PIVOT still selects less suitable verbs (high-
lighted in red) resulting in slightly more errors in
this particular paragraph.

The only pair where pivoting seems to help is
pl-ja. While it is unclear why this happens, it is
possible that this outcome is due to the specifics
of the Polish novel employed for the translation.
Sword of Destiny by Andrzej Sapkowski uses a very
distinct language with many archaic expressions. It
is possible that translating into English, a language
the GPT models were trained on, helps the model
deal with these difficult phrases.

Since we do not observe any apparent gains from
performing the translation via English as a pivot
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language (p=0.62, 95% [0.448, 0.591]) and doing
so reduces the number of examples one can fit into
the prompt, we continue our experiments with a
direct translation.
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TYPE DESCRIPTION TRG LANG PARA SENT PARA_SENT GTR

CONTEXT (SENTENCE)
A mistranslation that results most likely from lack of “understanding” the
sentence-level context (e.g., translating “guide” as “doradca,” or “adviser”
instead of “przewodnik,” or “guide”). This can include translating a word or a
phrase into one that is semantically related but does not convey the intended
meaning, or translation which appear to be an outcome of translating a word
semantically related to the source word, instead of the source word itself.

Japanese 114 118 107 158
Polish 64 67 49 82
English 30 36 44 59

CONTEXT (PARAGRAPH)
A mistranslation that results from lack of a beyond-sentence context. This
include issues such as polysemy, employment of correct pronouns, or
translating elliptical expressions.

Japanese 6 36 6 38
Polish 13 51 15 59
English 2 25 0 48

MINOR ISSUE
A minor issue which does not significantly affect the text and can be disputable,
such as translating “barked” as “howl.”

Japanese 34 25 26 16
Polish 33 26 16 13
English 18 11 12 9

SURFACE SIMILARITY

A translation by word which is similar to the correct translation on the surface
level, but has a different meaning (e.g., “Wilczak,” a Polish surname, instead of
“wilczarz,” a “wolfhound”).

Japanese 8 6 7 2
Polish 14 13 16 5
English 5 5 6 2

WORD-BY-WORD
A translation of longer phrase which is overly literal resulting in confusing and
incorrect translation.

Japanese 15 52 34 84
Polish 17 23 18 33
English 7 13 5 20

UNRELATED WORD
A translation with unrelated word such as “klnie” (“swear”) instead of “zapuka”
(“knock”) where no apparent semantic relation could be found.

Japanese 3 2 5 4
Polish 5 14 10 12
English 1 3 1 2

SUBJECT CHANGED

Change of subject. In the case of PARA, it occurs mostly due to merging two
sentences with two distinctive subjects where all states and/or actions are then
assigned to one of them.

Japanese 5 2 2 0
Polish 6 0 5 3
English 7 2 5 1

FACTUALITY
A translation that results in change in factuality, such as translating affirmative
sentence as negation or translating word by its antonym.

Japanese 4 11 5 7
Polish 0 2 1 3
English 1 2 1 1

NON-WORD

A translation by a non-existent (made up) word. Some examples include
skillfully constructed words like火炎棒 which was generated instead of a
“torch.” While this word does not exist in Japanese (or Chinese) it follows the
compositionality rules of these languages and is fully intelligible to a native
speaker (火炎 “fire” and棒 “stick.”)

Japanese 1 2 2 0
Polish 6 8 9 3
English 0 0 0 0

MOOD

Change in the grammatical mood with regard to the source text. Note that the
sentence here is still grammatically correct but does not reflect the meaning
intended by the author.

Japanese 4 9 1 3
Polish 1 3 4 2
English 0 0 0 0

UNNECESSARY TRANSLATION
A translation of text which should be left untranslated such as some proper
names.

Japanese 0 0 0 0
Polish 0 3 0 2
English 1 1 1 1

LANGUAGE MISMATCH
A translation into a language different than the target language (e.g., Chinese
instead of Japanese). Note that leaving the word in the source language
classifies as an “untranslated” error.

Japanese 2 3 3 2
Polish 2 0 2 0
English 0 0 0 0

NUMBER/TIME

A translation which changes number or time expression, such as translating
1h15min as 1h30min. Note that these rarely affect the overall meaning of the
text. We have not observe cases where this would be a critical issue.

Japanese 3 2 4 3
Polish 0 0 0 0
English 5 2 1 3

PIVOT TRANSLATION (Czech)
A mistranslation that stems from pivoting on English (annotated for cs-pl
language pair).

Polish 0 0 0 43

OTHER Other issues which do not fit into any of the above.
Japanese 24 26 27 17
Polish 9 14 10 13
English 10 4 5 4

TOTAL (Japanese) 223 294 229 334

TOTAL (Polish) 170 224 155 273

TOTAL (English) 87 104 81 150

TOTAL (All) 480 622 465 757

Table 16: Classification of mistranslation errors for each system grouped by the target language. The manual
classification was performed on the v1 of the annotated dataset.
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TRG LANG TYPE SUBTYPE PARA SENTS PARA_SENTS GTR

JAPANESE

PARTICLE wrong or missing 21 22 13 12
ADJECTIVE wrong continuative 0 2 3 0

other 0 0 2 0
VERB tense 3 7 1 14

mood 2 1 4 5
finite/non-finite 5 2 1 3
other 2 5 6 0

ORDER wrong order 1 6 1 16
OTHER 8 5 6 13

TOTAL 42 50 37 63

POLISH

ADJECTIVE gender 7 14 8 4
case 2 1 1 0
other 1 1 1 1

NOUN case 9 13 9 1
other 3 3 3 2

PRONOUN omitted or wrong 5 8 3 2
case or gender 1 6 4 5

VERB aspect 1 5 1 12
person or gender 2 8 5 2
conjugation 1 0 7 3
other 2 4 1 13

PREPOSITION omitted or wrong 14 15 15 4
NUMERAL case or gender 2 1 0 1
ORDER wrong order 2 4 2 4
OTHER 3 3 4 5

TOTAL 55 86 64 59

ENGLISH

ARTICLE omitted or wrong 1 9 2 8
PREPOSITION omitted or wrong 3 7 3 5
OTHER 1 4 4 5

TOTAL 5 20 9 18

Table 17: Categorization of grammar errors in each translation configuration, grouped by the target language. The
manual classification was performed on the v1 of the annotated dataset.

BLEURT

Predictors Estimates CI p-value

(Intercept) 0.48 0.47–0.50 <0.001
PARA_SENT -0.00 -0.01–0.00 0.130
SENT -0.02 -0.02–(-0.01) <0.001
GTR -0.04 -0.05–(-0.04) <0.001

Table 18: Results of linear-mixed effects models analysis for BLEURT scores.
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BLEURT

Contrast Estimate SE df t-ratio p-value

PARA - PARA_SENT 0.00477 0.00315 1074 1.515 0.780
PARA - SENT 0.01641 0.00315 1074 5.215 <0.001
PARA - GTR 0.04155 0.00315 1074 13.205 <0.001
PARA_SENT - SENT 0.01164 0.00315 1074 3.700 0.001
PARA_SENT - GTR 0.03678 0.00315 1074 11.690 <0.001
SENT - GTR 0.02514 0.00315 1074 7.990 <0.001

Table 19: Result of post hoc analysis with emmeans package for BLEURT.

COMET

Predictors Estimates CI p-value

(Intercept) 0.79 0.77–0.80 <0.001
PARA_SENT -0.01 -0.01–(-0.00) 0.019
SENT -0.01 -0.01–(-0.00) 0.004
GTR -0.05 -0.05–(-0.05) <0.001

Table 20: Results of linear-mixed effects models analysis for COMET scores.

COMET

Contrast Estimate SE df t-ratio p-value

PARA - PARA_SENT 0.00563 0.00239 1074 2.356 0.112
PARA - SENT 0.00691 0.00239 1074 2.893 0.023
PARA - GTR 0.04998 0.00239 1074 20.928 <.001
PARA_SENT - SENT 0.00128 0.00239 1074 0.536 1.000
PARA_SENT - GTR 0.04435 0.00239 1074 18.571 <.001
SENT - GTR 0.04307 0.00239 1074 18.035 <.001

Table 21: Result of post hoc analysis with emmeans package for COMET.

COMET-QE

Predictors Estimates CI p-value

(Intercept) -0.04 -0.06 – -0.01 0.004
PARA_SENT -0.01 -0.03 – -0.00 0.026
SENT -0.02 -0.04 – -0.01 <0.001
GTR -0.12 -0.13 – -0.11 <0.001

Table 22: Results of linear-mixed effects models analysis for COMET-QE scores.
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COMET-QE

Contrast Estimate SE df t-ratio p-value

PARA - PARA_SENT 0.01464 0.00655 1074 2.235 0.154
PARA - SENT 0.02376 0.00655 1074 3.628 0.002
PARA - GTR 0.11848 0.00655 1074 18.092 <.001
PARA_SENT - SENT 0.00912 0.00655 1074 1.392 0.9844
PARA_SENT - GTR 0.10384 0.00655 1074 15.857 <.001
SENT - GTR 0.09472 0.00655 1074 14.464 <.001

Table 23: Result of post hoc analysis with emmeans package for COMET-QE.

BERTSCORE

Predictors Estimates CI p-value

(Intercept) 0.84 0.83–0.85 <0.001
PARA_SENT -0.00 -0.00–0.00 0.037
SENT -0.00 -0.00–0.00 0.522
GTR -0.01 -0.01–0.01 <0.001

Table 24: Results of linear-mixed effects models analysis for BERTSCORE scores.

BERTSCORE

Contrast Estimate SE df t-ratio p-value

PARA - PARA_SENT 0.002422 0.00116 1074 2.082 0.225
PARA - SENT 0.000745 0.00116 1074 0.640 1.000
PARA - GTR 0.007508 0.00116 1074 6.454 <0.001
PARA_SENT - SENT -0.001678 0.00116 1074 -1.442 0.897
PARA_SENT - GTR 0.005086 0.00116 1074 4.372 <0.001
SENT - GTR 0.006763 0.00116 1074 5.814 <0.001

Table 25: Result of post hoc analysis with emmeans package for BERTSCORE.
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Abstract

A major impediment to the transition to context-
aware machine translation is the absence of
good evaluation metrics and test sets. Sen-
tences that require context to be translated cor-
rectly are rare in test sets, reducing the utility of
standard corpus-level metrics such as COMET
or BLEU. On the other hand, datasets that anno-
tate such sentences are also rare, small in scale,
and available for only a few languages. To
address this, we modernize, generalize, and ex-
tend previous annotation pipelines to produce
CTXPRO, a tool that identifies subsets of paral-
lel documents containing sentences that require
context to correctly translate five phenomena:
gender, formality, and animacy for pronouns,
verb phrase ellipsis, and ambiguous noun inflec-
tions. The input to the pipeline is a set of hand-
crafted, per-language, linguistically-informed
rules that select contextual sentence pairs using
coreference, part-of-speech, and morphologi-
cal features provided by state-of-the-art tools.
We apply this pipeline to seven languages pairs
(EN into and out-of DE, ES, FR, IT, PL, PT, and
RU) and two datasets (OpenSubtitles and WMT
test sets), and validate its performance using
both overlap with previous work and its ability
to discriminate a contextual MT system from
a sentence-based one. We release the CTXPRO
pipeline and data as open source.1

1 Introduction

Neural machine translation (NMT) systems can
produce high-quality, fluent output which are
nearly indistinguishable from human translations,
when evaluated at the sentence level. This human-
level parity has been shown to disappear, however,
when evaluated in context (Läubli et al., 2018;
Toral et al., 2018). This is unsurprising, because
sentences are nearly always written by humans in
some contextual setting, and are translated by trans-
lators in the same fashion. Dismissing this context

1https://github.com/rewicks/ctxpro
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Müller et al. ✓ de
Lopes et al. ✓ fr
Voita et al. ✓ ✓ ✓ ✓ ru
Nadejde et al. * de, es, fr, hi, it, ja

Currey et al. † ar, fr, de, hi, it, pt,
ru, es

This work ✓ ✓ ✓ ✓ ✓ de, fr, ru, pl, pt, it, es

Table 1: This work expands evaluation set coverage
to new document phenomena and languages. (*) Note
that Nadejde et al. (2022) does not include contextual
information. (†) Currey et al. (2022) focuses on natural,
rather than grammatical, gender.

may create ambiguities that do not exist in the doc-
ument as a whole, and in some cases, may make it
impossible to correctly interpret the sentence.

Translation to another language must address
ambiguities where the semantic or grammatical
granularity of two sentences is imbalanced or mis-
matched. Probably the most widely-known of
these is grammatical gender, i.e., when translat-
ing referential pronouns from a grammatically non-
gendered language to a gendered one. For example,
when translating from English to French, the pro-
noun it must be translated to il or elle depending
on the grammatical gender of the antecedent noun,
which may not be available in the same sentence.

The obvious path forward in addressing these
issues is to move to contextual machine translation,
in which sentences are no longer translated in iso-
lation but with their source-side context. Recent
work has shown that transformers (Vaswani et al.,
2017) are capable of handling longer sequences and
improving performance on context-based evalua-
tion (Sun et al., 2022; Post and Junczys-Dowmunt,
2023). However, general contextual translation has
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English Target

AUXILIARY
I just figured you need to know. And now
you do.

(fr) Je pensais que tu méritais de savoir.
Et maintenant tu sais.

I can’t lose my voice. You won’t. (pl) Nie mogę stracić głosu. Nie stracisz.

INFLECTION Mostly work with the Knicks right now.
And other athletes.

(ru) В основном работаю с “Никс”. И
с другими спортсменами.

GENDER
You think migraines are a sign of weakness,
don’t want anyone to know. I used to get
them, too.

(it) Lei pensa che le emicranie siano
segno di debolezza, e non vuole che si sap-
pia. Le prendevo anch’io.

This pain? I long for it. (pt) A dor? Anseio por ela.

ANIMACY
Et il y a eu cette rose aussi pour toi. Tu sais,
elle se distingue des autres.

(en) Also, uh, this rose came for you. You
know, it stands out in front of all the others.

La felicidad es un mito. Y vale la pena
luchar por ella.

(en) Happiness is a myth. And it’s worth
fighting for.

FORMALITY
We’ll call you if something happens, huh? (de) Wir rufen euch an, wenn etwas

passiert.
Well, uh, I was an obstetrician before, and
I most definitely owe you.

(es) Bueno, era obstetra antes, y definiti-
vamente se los debo.

Table 2: An example of the extracted ambiguities with their preceding contexts for each language pair. The
ambiguous sentence is denoted in italics and the ambiguous word is bolded. Note the dialectal use of the “usted”
accusative form “los”. Language denoted in parentheses.

a number of obstacles, foremost is the lack of avail-
able evaluation resources. There are essentially two
kinds of contextual evaluations: general metrics,
which can theoretically be applied to any test set,
and fixed test sets. There is relatively little work
in the former setting (Vernikos et al., 2022; Jiang
et al., 2022), and while they correlate with human
judgments, they have not been proven capable of
discriminating sentence-based from known-high-
quality contextual systems. For the latter, a number
of high-quality evaluation sets exist (Müller et al.,
2018; Lopes et al., 2020; Bawden et al., 2018; Voita
et al., 2019, Table 1), but they are limited both in
language coverage and scope of phenomena.

In this work, we address this lack of evaluation
data by extending coverage of existing datasets to
more languages and contextual phenomena. We:

• develop a pipeline that makes use of broad-
language-coverage annotation tools and hand-
developed rules to identify context-based phe-
nomena in any test set;

• construct rules for five context-based phenom-
ena (§ 2) and seven language pairs (§ 3): DE,
ES, FR, IT, PL, PT, and RU with EN; and

• apply this toolchain to multiple datasets.

We show that this dataset, called CTXPRO, is capa-
ble of discriminating high-quality contextual sys-
tems from sentence-level ones.

2 Contextual phenomena

A number of context-based phenomena which cre-
ate ambiguities are common. We display some ex-
amples in Table 2. Humans easily handle these am-
biguities during translation, which nearly always
takes place in context, so a machine translation
system which ignores these issues will never reach
human-level parity. Some, such as lexical cohe-
sion or fluency, are hard to quantify, while others,
for example pronoun translation accuracy or word
sense disambiguation, are easier. These phenom-
ena all present difficulties and even impossibilities
to systems that translate sentences in isolation. Our
goal is to identify as many of these phenomena
we can in a general way, such that we can create
a general pipeline for isolating them, that can be
reliably applied to any test set.

We describe each phenomena for comprehension
and then provide our extraction methodology in
order to identify when these ambiguities arise.
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Deep within the royal vault there is  a statue  called the Palladium.

It is said Atlantis will never fall while it remains within its walls.

You believe this to be true?

I have held it in my hands.

It  carries the power of the gods.

Au fond de la chambre royale il y a  une statue  appelée le Palladium.

Il est dit qu'Atlantis ne tombera pas tant qu'elle reste entre ses murs.

Vous pensez que cela est vrai ?

Je l'ai tenue dans mes mains.

Elle possède le pouvoir des dieux.
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Figure 1: A diagram showing how the four key words for GENDER identification are identified. The antecedent
distance is determined by what sentence 𝐶𝑒 is found in. In order to be considered, 𝑇𝑒, 𝑇𝑡 , 𝐶𝑒, 𝐶𝑡 would also have to
pass morphological feature tests similar to those shown in Table 3.

2.1 Anaphoric pronouns

Pronouns are a general descriptor that function
as a placeholder for a noun phrase, providing the
speaker with a more succinct form instead of re-
peatedly identifying an established referent.

In grammatical contexts, anaphora refers to the
use of a pronoun to refer to a previously mentioned
word or entity. Pronouns for which the referent
noun can be found in preceding contexts are called
anaphora; in contrast, cataphora denotes situations
where the referent noun follows the pronoun. We
do not consider cataphora in this paper.

2.1.1 Gender
Languages with gendered nouns require agreement
with the appropriate gendered pronoun. English,
which makes no such distinction for inanimate ob-
jects, will use the pronoun “it.” In order to correctly
translate “it” into Spanish, it is necessary to know
what “it” refers to. If “it” refers to a school, it
would be translated differently (una escuela) than
if it refers to a heart (un corazón).

Apart from a few exceptions, English does not
make use of grammatical gender. Machine transla-
tion often centers around translating either into or
out of English with most of the paired languages ex-
pressing genders (masculine, feminine, and neuter),
so there is a clear need to evaluate the translation
of gender. Further, removing English from the
equation does not resolve the problem. Gender as-
signment of inanimate objects is arbitrary which
means that translating between two gendered lan-
guages is non-trivial. In extreme cases, a language
may exhibit “noun classes” which behave simi-
larly to gender, but may correlate more heavily
with meaning. A noun in Swahili is not grouped
via an arbitrary gender assignment, but is instead

somewhat assigned to groups based on other labels
such as animacy, items, plants, or tools. These
classes affect morphological agreement in ways
that English does not express. In any case, translat-
ing a pronoun that refers to a previously mentioned
noun requires resolving this coreference in order to
correctly generate the new pronoun.

2.1.2 Animacy
Humans and animals are often treated differently
grammatically than inanimate objects. As stated,
English makes no gender distinction for inanimate
objects, though it does have gendered pronouns
for animate objects. She and he are English pro-
nouns used for humans and often animals but are
rarely used to refer to inanimate objects.2 This re-
sults in an ambiguity when translating pronouns
into English from languages that do not make this
distinction. For example, in English, she is in the
kitchen clearly refers to a person while it is in the
kitchen refers to a non-person. In French, the word
elle would be used in both situations, requiring an
MT system to make a choice.

2.1.3 Formality
Social expectations dictate language usage. In
many languages, this is explicitly lexicalized with
different second-person pronouns and verb conju-
gations that distinguish intimate or familiar rela-
tionships from formal ones. Examples include the
tu/vous distinction in French and du/Sie in German.

Over time, English has lost its formal register in
pronouns (often called the T-V distinction) which
other languages frequently employ. A common
sentence “Where are you?” may have multiple

2A small exception occurs when inanimate objects are
personified. A frequent example is boats, which are often
referred to as she in English.
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interpretations determined by the addressee, but
subtle cues in preceding context may indicate the
level of formality or familiarity of the speaker—a
“sir”, the domain, or profession mentioned can clar-
ify this. When translating this sentence into French,
the system must choose a register to produce either
“Où êtes-vous?” or “Où es-tu?” There is often in-
sufficient information to make the correct choice
from just a single sentence.

2.2 Verb Phrase Ellipsis
Verb phrases can be dropped for emphasis, style, or
brevity. The manner in which they are ellipsed will
follow the rules of syntax of the specific language.

2.2.1 Isolated Auxiliaries
English auxiliaries (“do”, “will”, “would”) can oc-
cur as standalone verbs by taking the place of a
verb phrase. The question “Will you walk with
me?” can be answered with a short “I will.” Many
target languages require translation of the original
head of the verb phrase rather than the modal or
auxiliary. Simply, “I will” must be translated as “I
will walk” or rather “I walk” inflected in the future
tense. We limit this work to the aforementioned
auxiliaries as they rarely have direct translations.

2.2.2 Inflection of Verb-less Nouns
Extreme ellipsis may remove entire portions of
a sentence and render it a phrase. English word
order conveys grammatical role of nouns. When
elements of the original sentence, such as the verb,
are ellipsed, it may be impossible to infer the gram-
matical case of any remaining nouns which have
no inflection. Translation into languages with case
systems suffers. Voita et al. (2019) exemplifies us-
ing the phrase: “You call her your friend but have
you been to her home? Her work?” To translate
this phrase into Russian, it is necessary to know
that “her work” has the same grammatical case as
“her home” in the previous sentence.

3 Extraction Pipeline

Our pipeline functions by identifying up to four key
tokens and ensuring each token matches a set of
predefined criteria. The four components are: (1)
The source (English) token defined as 𝑇𝑠, the target
(non-English) token defined as 𝑇𝑡 , the source token
which conveys the contextual information required
to resolve the ambiguity defined as 𝐶𝑠, and the
target token aligned to 𝐶𝑠 defined as 𝐶𝑡 . These
relationships are illustrated in Figure 1. Contextual

information is defined by a contextual relationship,
𝑄, which has an associated solver. The predefined
criteria is a set of rules, 𝑅.

We can identify ambiguous sentences by:

1. For each source–target sentence pair, apply
word alignment. Each aligned pair of words
forms a potential 𝑇𝑠–𝑇𝑡 pair.

2. Ensure 𝑇𝑠 meets all criteria 𝑅𝑇𝑠

3. Ensure 𝑇𝑡 meets all criteria 𝑅𝑇𝑡

4. Apply a solver for the contextual relationship,
𝑄 to the English token 𝑇𝑠 and its preceding
context to identify 𝐶𝑠.

5. Ensure 𝐶𝑠 meets all criteria 𝑅𝐶𝑠 .

6. Identify the target token 𝐶𝑡 via word align-
ment to 𝐶𝑠. If translation conveys semantic
symmetry, this token also has a contextual
relationship with 𝑇𝑡 .

7. Ensure 𝐶𝑡 meets all criteria 𝑅𝐶𝑡

Consider the ambiguity of pronoun resolution.
Müller et al. (2018) first proposed a pipeline for
extracting ambiguous translations of English “it”
to German nominatives (“er”, “es”, and “sie”). We
can explain their methodology3 via the aforemen-
tioned definition. The following identifies all ambi-
guities where the English “it” is translated as “sie.”

1. For each source-target sentence pair, apply
word alignment. Each aligned pair of words
forms a potential 𝑇𝑠–𝑇𝑡 pair.

2. Ensure 𝑇𝑠 is the word “it”

3. Ensure 𝑇𝑡 is the word “sie”

4. The contextual information to resolve the am-
biguity is its antecedent—expressed via a
coreference relationship. Apply a coreference
resolver (𝑄) to identify 𝐶𝑠.

5. Ensure 𝐶𝑠 is a noun (not another pronoun).

6. Identify 𝐶𝑡 via word alignment.

7. Ensure 𝐶𝑡 is a feminine, singular noun.

The same criteria could be enumerated for the mas-
culine and neuter equivalents, appropriately chang-
ing gender and surface form checks.

To extract a specific phenomenon and language,
a “rule” (𝑅) must be written which specifies fea-
tures that 𝑇𝑠, 𝑇𝑡 , 𝐶𝑠, and 𝐶𝑡 must have. These fea-
tures can range from part-of-speech, lemma, gen-
der, case, plurality or others. The manner in which

3Müller et al. (2018) performs an extra coreference check
on the target side that we do not.
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English (𝑇𝑒) German (𝑇𝑡 ) Coref English (𝐶𝑒) Coref German (𝐶𝑡 )

Rule Form POS Case Form POS Case POS POS Gender Number

NOM.FEM.SING it PNOUN * sie PNOUN Nom. NOUN NOUN Fem. Sing.
NOM.MASC.SING it PNOUN * er PNOUN Nom. NOUN NOUN Masc. Sing.
NOM.NEUT.SING it PNOUN * es PNOUN Nom. NOUN NOUN Neut. Sing.
ACC.FEM.SING it PNOUN * sie PNOUN Acc. NOUN NOUN Fem. Sing.
ACC.MASC.SING it PNOUN * ihn PNOUN Acc. NOUN NOUN Masc. Sing.
ACC.NEUT.SING it PNOUN * es PNOUN Acc. NOUN NOUN Neut. Sing.
DAT.FEM.SING it PNOUN * ihr PNOUN Dat. NOUN NOUN Fem. Sing.
DAT.MASC.SING it PNOUN * ihm PNOUN Dat. NOUN NOUN Masc. Sing.
DAT.NEUT.SING it PNOUN * ihm PNOUN Dat. NOUN NOUN Neut. Sing.
NOM.INFORM.SING you PNOUN * du PNOUN Nom. - - - -
NOM.FORM+PLUR you PNOUN * Sie PNOUN Nom. - - - -
NOM.INFORM.PLUR you PNOUN * ihr PNOUN Nom. - - - -
ACC.INFORM.SING you PNOUN * dich PNOUN Acc. - - - -
ACC.FORM+PLUR you PNOUN * Sie PNOUN Acc. - - - -
ACC.INFORM.PLUR you PNOUN * euch PNOUN Acc. - - - -
DAT.INFORM.SING you PNOUN * dir PNOUN Dat. - - - -
DAT.FORM+PLUR you PNOUN * ihnen PNOUN Dat. - - - -
DAT.INFORM.PLUR you PNOUN * euch PNOUN Dat. - - - -

Table 3: German criteria for all pronouns. We expand from Müller et al. (2018) to consider more cases (Accusative
and Dative). English case is not used since the German annotations are more precise (English does not label
Dative). PNOUN check in some cases is required to eliminate determiners (possessive adjectives instead of possessive
pronouns)

English (𝑇𝑒) French (𝑇𝑡 )

Rule Lemma Illegal Lemmas

DO.ELL do faire, aller
WOULD.ELL would faire, pouvoir
WILL.ELL will aller, faire

Table 4: French ellipsis Rules. English must have speci-
fied lemma. French alignment cannot have a lemma in
the specified list.

these four components are identified creates the
adaptability for each phenomena.

Gender Following previous works, we retrieve
𝑇𝑠 and 𝑇𝑡 based on surface form and word align-
ment. 𝐶𝑠 is a noun discovered via coreference
chain. If the coreference is a noun phrase, the head
of the phrase is used. 𝐶𝑡 is retrieved via word
alignment. 𝐶𝑡 must match the same morphological
features present in 𝑇𝑡 (e.g., gender and number).

Animacy As explained in Section 2.1.2, the an-
imacy ambiguity that we consider occurs when
translating from the gendered languages into En-
glish (whereas the gender ambiguity occurs when
translating out-of English). To extract these exam-
ples, we use the same rules as GENDER, but we
reverse the language direction for inference.

Formality The distinction of formality is the lack
of a consistent or discrete 𝐶𝑠 which informs the

level of formality. Translating between English and
a T-V language is always ambiguous with respect
to the second person so we forgo using a contextual
resolver 𝑄 to identify the appropriate context.

Auxiliary 𝑇𝑠 is extracted from a pre-constructed
list of auxiliaries—similar to those mentioned in
Section 2.2.1. 𝑇𝑡 , identified via word alignment,
cannot occur in a pre-constructed list of forbidden
translations. These translations are meant to pre-
vent valid translations of auxiliaries, rather than the
ambiguous ellipsed forms. For example, “to do”
translated as a form of “faire” in French, is a direct
translation, and is likely not representative of an
ellipsed form. Contrarily, “to do” translated as a
form of “savoir” in French is not a direct transla-
tion and is indicative of a previous occurrence of
English “to know.” 𝐶𝑡 can be identified by finding
the most recent occurrence of the same verb 𝑇𝑡 , and
𝐶𝑠 is retrieved from word alignment with 𝐶𝑡 .

Inflection 𝑇𝑠 and 𝑇𝑡 can be of any form and any
case. Any aligned noun pair (𝑇𝑠 and 𝑇𝑡 ) that occurs
without an accompanying verb is ambiguous. 𝐶𝑡
is identified as the most recent occurrence of any
noun occurring in the same case as 𝑇𝑡 . We assume
the verb phrase surrounding 𝐶𝑡 was ellipsed when
generating 𝑇𝑡 . We align 𝐶𝑡 to find 𝐶𝑠.

We use FastCoref (Otmazgin et al., 2022) to
perform English coreference resolution, simalign
(Jalili Sabet et al., 2020) to perform cross-lingual
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DE FR RU PL PT IT ES
GENDER 147k 291k 113k 117k 127k 36k 96k
ANIMACY * 80k 145k 66k 39k 38k 20k 84k
FORMALITY 3.9M 5.7M 3.6M 1.7M 857k 833k 10.1M
AUXILIARY 4414 27.6k 39.1k 34.2k 30.2k 17.5k 29.6k
INFLECTION - - 2.6M 3.2M - - -
# LINES 22.5M 41.9M 25.9M 77.2M 33.2M 35.2M 61.4M
% EXTRACTED 18% 14% 25% 6.6% 3.1% 2.5% 16.7%
%-COREFERENCE 0.7% 0.8% 0.6% 0.2% 0.5% 0.2% 0.2%

Table 5: OpenSubtitles2018 Extraction Statistics for each category. # LINES indicates the total number of lines in
OpenSubtitles for the EN-XX language pair. % EXTRACTED indicates the percent of the dataset that was extracted.
%-COREFERENCE indicates the classes that require a strict antecedent (GENDER and AUXILIARY). (*) ANIMACY
was created by reversing a subset of the GENDER class so it is not used to calculate EXTRACTED because of the
overlap.

word alignment, and SpaCy4 to extract all other
morphological features. We provide a larger list of
our criteria in Appendix A.

3.1 Application to OpenSubtitles

We apply our extractor to the OpenSubtitles2018
dataset (Lison and Tiedemann, 2016) following pre-
vious work (Müller et al., 2018; Lopes et al., 2020).
It comprises conversational dialog extracted from
film and television subtitles. The conversational
nature means plenty of context-based phenomenon
occur. In Table 5, we present the total number of
instances we extracted from Open Subtitles.

The fraction of the dataset that contains the phe-
nomenon we target varies from language to lan-
guage. This stems from the number of forms in
each language, the number of genders, as well as
translation standards. German, for instance, has
very few AUXILIARY examples. We speculate this
is due to German having similar auxiliary features
as English so many examples were filtered out due
to our “forbidden translation” criteria.

Some categories are extremely common. FOR-
MALITY is invoked every time the second-person
is used, which is frequent in conversational speech.
INFLECTION also has high occurrences since there
was relatively little filtering on the extracted exam-
ples. GENDER and AUXILIARY are very rarely
extracted—less than 1% of the time in all lan-
guages. A 1% error rate is extreme when deploying
at scale. Further, test sets, in nature, are small. If
only 1% of the test set challenges contextual mod-
els, the results may be insignificant.

To form the dev, devtest, and test splits, we ap-
ply the following approach. For each label within a

4https://spacy.io/usage/models#languages

category, we ensure there are at least 100 examples.
If there are fewer, we keep all examples for test. If
there are more, we split the most recent years of
OpenSubtitles into a 1:1:5 ratio for dev:devtest:test,
limiting the test set’s maximum size to 5000 ex-
amples per label. One label is roughly one surface
form, but corresponds to one “rule” (a set of criteria
𝑅) or one row as shown in Table 3.

4 Quantitative Evaluation

Our goal is to show that our test sets can usefully
discriminate between sentence-level and context-
aware systems. An impediment to this goal is
the lack of contextual machine translation models
across languages for use in comparison and evalu-
ation, and the difficulty in building them. Conse-
quently, we turn to a commercial system, DeepL,
which is alone among commercial providers in ad-
vertising contextual translation.5 We translate with
document-context by providing DeepL with con-
text when translating, and compare to the same
model translating without context at the sentence
level. We show that a contextual system appropri-
ately benefits from the additional context and gains
significance performance on this test set.

Many works release their evaluation sets with the
assumption of contrastive evaluation (Müller et al.,
2018; Lopes et al., 2020; Voita et al., 2019), where
the test is whether a model assigns a higher score
to correct data than to linguistically-manipulated
counterparts. This assumption ignores the fact that
machine translation is a generative problem and
should be evaluated as such. Recent work (Post and
Junczys-Dowmunt, 2023) confronts this problem

5https://www.deepl.com/docs-api/general/
working-with-context
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Generative Accuracy (%) COMET

DE ES FR IT PL PT RU DE ES FR IT PL PT RU

GENDER
sent. 48.1 34.6 40.2 51.1 32.8 44.3 35.9 0.23 0.50 0.33 0.43 0.51 0.52 0.36
doc. 73.3 47.4 59.0 68.3 50.2 64.3 51.8 0.31 0.52 0.43 0.48 0.54 0.57 0.42

+25.2 +12.8 +18.8 +17.2 +17.4 +20.0 +15.9 +0.08 +0.02 +0.09 +0.05 +0.03 +0.05 +0.06

ANIMACY
sent. 61.0 84.4 68.0 81.4 57.6 64.1 55.4 0.27 0.53 0.40 0.42 0.25 0.43 0.19
doc. 74.1 87.8 75.2 86.1 70.5 79.5 71.6 0.38 0.58 0.49 0.46 0.31 0.55 0.34

+13.1 +3.4 +7.2 +4.7 +12.9 +15.4 +16.2 +0.11 +0.05 +0.09 +0.04 +0.06 +0.12 +0.15

FORMALITY
sent. 44.0 31.7 40.6 38.9 25.3 40.1 55.4 0.32 0.54 0.45 0.47 0.51 0.59 0.57
doc. 53.6 35.9 51.5 46.1 31.6 47.2 62.5 0.32 0.55 0.48 0.48 0.51 0.59 0.58

+9.6 +4.2 +10.9 +7.2 +6.3 +7.1 +7.1 +0.0 +0.01 +0.03 +0.01 +0.0 +0.0 + 0.01

AUXILIARY
sent. 7.8 3.3 1.3 4.0 8.2 9.2 5.7 -0.27 -0.06 -0.34 -0.02 0.10 0.03 -0.09
doc. 40.0 52.0 32.2 40.7 49.9 53.8 49.0 0.04 0.54 0.20 0.38 0.53 0.60 0.49

+32.2 +48.7 +30.9 +36.7 +41.7 +44.6 +43.3 +0.31 +0.60 +0.54 +0.40 +0.43 +0.57 +0.58

INFLECTION
sent. - - - - 41.3 - 34.6 - - - - 0.57 - 0.47
doc. - - - - 53.2 - 48.3 - - - - 0.68 - 0.56

- - - - +11.9 - +13.7 - - - - +0.11 - +0.09

Table 6: Generative evaluation percent accuracy scores (left section) evaluation ability to produce expected form;
COMET scores (right section) evaluate the translation quality of this model; sent. denotes that no additional
context was given while doc. was given five consecutive sentences for context. All translations made using DeepL
commercial API. ANIMACY is into English. All others are out of English

and proposes generative evaluation as an alterna-
tive, showing a wide gap between contextual and
sentence-level systems that is only observed under
generative evaluation. Translations are counted as
correct if the expected surface form is present any-
where in the model’s output—matching the entire
word and not simply a substring. We follow this
approach in our evaluation.

We validate our data by showing it (1) adequately
addresses context-based phenomena and (2) is suf-
ficiently challenging. We demonstrate the former
by showing that a context-aware translation model
consistently outperforms a context-less equivalent.
We see the latter is true as the contextual model
does not solve the problem. There is still signifi-
cant context-aware work to be done.

4.1 Accuracy

We begin by translating sentences both with and
without context, using at most five sentences of
context. To limit API calls, we run a subsample of
our produced evaluation sets. We limit each cate-
gory (GENDER, ANIMACY, FORMALITY, AUXIL-
IARY, and INFLECTION) to approximately 10k total
examples, divided evenly amongst the categories
labels. To extract the final sentence for scoring pur-
poses, we apply segmentation using the ERSATZ

segmenter (Wicks and Post, 2022).
The results in Table 6 clearly show that the

DeepL model with additional context far outper-

forms its sentence-level equivalent.6 Many of these
evaluation examples have specific preceding con-
text that needs to be used in order to correctly
translate the ambiguity. FORMALITY is a slight
exception. There is little to no guarantee that ex-
plicit cues are given to convey the nature of the
relationship between the speaker and addressee,
yet preceding context still benefits an average of
9 percentage points across all languages. AUXIL-
IARY is a task of translating verbs. A random guess
would equate to sampling from the distribution
of verbs in a language–which results in low suc-
cess rates. Translating AUXILIARY with context
increases from nearly never correct to a roughly
50% accuracy rate. Translating ANIMACY has
higher sentence-level baselines than some of the
other categories. We attribute this to other seman-
tic cues towards ANIMACY which are less arbi-
trary than something such as GENDER assignment.
For instance, if a noun talks, it is likely animate,
while a noun that is thrown is likely inanimate.
Similarly, INFLECTION may have some sentence-
internal cues. Certain nouns may have a majority
class, or preceding prepositions ((“with”, “for”,
“in”, etc.) may indicate case. This is similar to the
intrasentential coreference found with pronouns,
which makes some occurrences easier than oth-

6Ideally we would make the same comparison between
document- and sentence-level translation with other commer-
cial systems, but there is no way to prevent them from applying
sentence-level segmentation to the document-context string.
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ers. Nonetheless, additional context aids the model.
In every category, the context-aware model shows
consistent gains over its context-less variant.

4.2 Automatic metric

We also present COMET scores (Rei et al., 2020)
in Table 6. Across all categories and language
pairs, COMET shows improvement when the sys-
tem leverages additional context. The consistent
improvement in COMET reinforces the trends we
see with the generative evaluation metric. The one
exception is the FORMALITY class which has min-
imal differences between the sentence-level and
contextual inputs. COMET rewards synonyms and
we suspect formal and informal surface forms have
more similar encodings in COMET models than
these other grammatical forms. A surface-based
metric would better capture the gains that can be
seen from the accuracy scores, which is indeed
what we find (Table 18 in Appendix A).

5 Qualitative Evaluation

Our extraction pipeline relies on handbuilt rules ap-
plied to the outputs of automatic tools. As a result,
the process is noisy and may be susceptible to er-
rors. The previous section showed that a contextual
system does better on our test sets than its sentence-
based counterpart, and there is no reason we can
think of to suspect that errors would systematically
benefit the contextual system. However, in the in-
terest of completeness, we took a more qualitative
look at the data. This includes a systematic manual
review (§ 5.1), direct comparison with prior work
(§ 5.2), and an error analysis (§ 5.3).

5.1 Manual review

Previous work in automatic test set production has
not typically included a manual analysis of rule
quality. To build confidence in these automatic ex-
traction methodologies, we sampled 100 random
test examples from the extracted English–French
GENDER set and manually reviewed and anno-
tated them for errors. We find that 92 of the ex-
tracted examples are correct. Three more were
questionably incorrect—with correct translations
and alignments—yet had atypical coreference reso-
lutions that were difficult for our human reviewer
to understand. Of the remaining five, two had a
non-referential pronoun. One such example “What
is it?” was used in the sense of “What’s wrong?”
rather than “What is that?” In the former, “it” has

no valid antecedent, yet it was extracted.
We present the remaining three errors in Table

7, where they demonstrate where errors arise at
each step in the pipeline. The Coreference Error
is a clear mistake. “They don’t want us to know
what they’re working on” refers to the people be-
ing talked to, and not “these guys”—who instead
seemed to be criminals who broke into a company.
The Alignment Error is an unfortunate combina-
tion of a bad alignment and inconsistent translation.
“the discipline” is aligned to the word “espionnage.”
“discipline” in French is a feminine noun, while
“espionnage” is masculine. The French “il” is mas-
culine, and thus has “espionnage” as an antecedent
despite the English having “the discipline.” This
coincidental error caused this example to still be
extracted. Lastly, one of these examples seemed
to have a typo in the English transcript. The word
“signatures” seemed to be incorrect. We suspect
the correct transcription word was “serial killers.”
Given the inconsistent context on the English side,
we suspect the neural coreference model had diffi-
culties resolving this.

5.2 Comparison with prior work

Since our extraction framework is largely based on
that of Müller et al. (2018), we expect to have a
similar quality of extracted rules (or better, since
the underlying annotations tools have improved).
We thus undertake a comparison to the data that
they released. When applying our pipeline to the
German–English OpenSubtitles data, we extract
147,211 sentences that have ambiguous pronoun
usage. Müller did not report their raw extraction
numbers, but their release includes 12,000 exam-
ples, balanced across gender (but not distance). We
therefore focus our analysis on this subset.

Since their pipeline contained a target-side coref-
erence check that we do not have, one might think
their pipeline would be a stricter selection process,
but we find the opposite to be true. Our pipeline’s
selection overlaps with only half of ContraPro
(6,003 sentences), rejecting the other half (5,997
sentences). An analysis of this rejected portion of
ContraPro turns up some explanations. ContraPro
extracts three categories of German pronouns cor-
responding to neuter, masculine, and feminine gen-
ders. For er and sie, we rejected roughly 25%
of the ContraPro examples; however, we rejected
over 75% of the neuter examples from ContraPro.
Upon review, we found a substantial number of
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Error Type English French

Coreference

We got any ideas what these guys were
after?

Une idée de ce que voulaient ces gars?

No, CEO is on his way down to talk to us
now.

Non, le PDG arrive pour nous le dire.

So far, everyone we’ve talked to hasn’t re-
ally given us much.

Tous ceux à qui on a parlés ne nous ont rien
appris.

Makes sense. C’est logique.
They don’t want us to know what they’re
working on here.

Ils ne veulent pas qu’on sache ce qu’ils
font.

Alignment
As you know the discipline of media espi-
onage is a new one.

Comme vous le savez, l’espionnage médi-
atique est une nouvelle discipline.

Oh yes, it is everywhere. Il est partout.

Translation
You know more about signatures than
most of them put together.

Vous en savez plur sur ces tueurs (en:
killers) qu’eux tous réunis

Table 7: In a sample of 100 extracted items, 8 errors were found. This table shows 3 of these errors made by the
extraction pipeline on the French Gender set. The indicated words show the pronouns in French and English, as
well as their antecedents. Some examples fit into multiple categories, but these show the most evident error type.
en: indicates the English translation of French word.

non-referential instances. These examples include
sentences such as “It was your duty.”, “It would
have been all right if it wasn’t for you.” and “It
was one of those California Spanish houses” that
all have either a non-specified referent or have a
passive construction. The inclusion of these exam-
ples points to inaccurate coference chains, likely
explained by their use of older corefence tools.

Our extraction employs strict criteria to find the
head of a span during coreference and alignment.
The head is used for the gender, person, and num-
ber checks included in the definition of 𝑅 (§ 3).
From our understanding of Müller’s work, they did
not include this check. Mistakes are inherent to
any automatic process, and likely persist in our
dataset as well. Our analysis here lends some con-
fidence to the belief that tighter selection criteria
and improved underlying tools result in better data.

5.3 Model analysis

Absent sufficient information, the translation of
ambiguous words will regress to their proportions
in the training data. For pronouns, this would be
the neuter or masculine class; for auxiliaries, the
direct translation (the “Illegal Lemma” in 𝑅).

We examine the English–German model outputs.
Our evaluation sets have balanced counts across
genders, so a correct model would produce a neuter
pronoun roughly one-third of the time. Instead,

this sentence-level model produces either “es” or
“ihm” (the German neuter pronouns) closer to two-
thirds of the time. This contextual model has better
performance producing the neuter pronouns about
40% of the time. This problem is well-known, but
other issues are not as well documented.

The auxiliary category had the worst scores, both
in terms of how low the sentence-level model was
performing as well as the absolute increase from
adding context. The cause of these scores becomes
obvious as we examine the model outputs. To
generate the rules for the AUXILIARY class, we
enumerated illegal lemmas that represent the most
common direct translations of English modals as
described in Section 3. Ideally, a model would
never generate these verbs for our evaluation set
unless part of a larger verb phrase construction. We
find the sentence-level model generates a transla-
tion that contains a form of one of these lemmas
approximately two-thirds of the time. Conversely,
the contextual model generates these closer to one-
third of the time.

6 Analysis of WMT test sets

As previously earlier, this pipeline is easily applied
to new data and test sets. We demonstrate this by
applying it to the 2019–2022 WMT newswire test
sets (Barrault et al., 2019, 2020; Akhbardeh et al.,
2021; Kocmi et al., 2022). In so doing, we find
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DE RU PL

GENDER 135 64 13
FORMALITY 540 416 4
AUXILIARY 1 0 0
INFLECTION - 14 1

WMT # LINES 6454 7038 1000

Table 8: Counts on the number of extracted examples
from WMT 2019-2022 (when available) test sets.

phenomena in a similar proportion of sentences
to OpenSubtitles, but with a different distribution;
there is a higher rate of GENDER but smaller of
FORMALITY and AUXILIARY. In Table 8, we
present the total number of examples discovered
in WMT 2019-2022 in en-de, en-ru, and en-pl
(when available). The newswire text hardly ever
contains the AUXILIARY type of ambiguity. For-
mality comprises the bulk of the examples, and
upon further inspection, we find a severe bias to-
wards the formal register, with a 1 to 7 ratio of in-
formal to formal—likely due to the characteristics
of the domain. Further, we suspect the sparseness
in contextual ambiguities is important to consider
when evaluating these systems.

7 Related Work

Work in contextual machine translation can be di-
vided into three categories: (1) the publication of
resources, similar to this work; (2) alterations on
the training paradigm via architecture or data input;
(3) evaluation metrics.

This work largely follows the path set forth by
those who have previously published resources on
the detection of gender, pronouns, and formality
(Guillou and Hardmeier, 2016; Müller et al., 2018;
Bawden et al., 2018; Voita et al., 2019; Lopes et al.,
2020). (Currey et al., 2022) produces a gender-
based evaluation dataset using human annotators,
but covers the complement of this work: gender
assigned to humans rather than inanimate objects.
In addition to the manual pipelines, recent work
has been done to promote the automatic detection
of these phenomena. Nadejde et al. (2022) imple-
ments a cross-lingual mutual information metric
that tags words as needing additional context. The
tags were found to often overlap with the variety
discussed in this work. Fernandes et al. (2023)
also use a mutual-information based score to select
data that is then used to derive a similar rule-based

extraction approach, but do not release evaluation
sets.

A substantial amount of work has been done
to allow traditional neural models to handle ad-
ditional input. Some approaches involve more
complex architectures or modifications to train-
ing paradigms incorporate longer sequences (Mi-
culicich et al., 2018; Bao et al., 2021), but Sun
et al. (2022) showed that unaltered Transformers
can handle longer sequences. Other work has fo-
cused on leveraging and cleaning the available
data, since large-scale document bitext is lack-
ing (Junczys-Dowmunt, 2019; Post and Junczys-
Dowmunt, 2023).

Lastly, many have realized that BLEU, COMET,
or other sentence-level metrics will not address
the distinction in document-level performance.
Vernikos et al. (2022) proposed a new method for
adjusting current methods to adjust for document-
level inputs. Jiang et al. (2022) proposed BlonDe,
an entirely novel metric for document-level evalua-
tion. We hope this work complements these works
and serves to further the field in its aspirations to-
wards true context-aware translation.

8 Summary

Machine translation systems face a performance
ceiling that can’t be overcome so long as they con-
tinue to operate at the sentence level. A major
obstacle to that transition is the unavailability of
test sets in many languages and for many contex-
tual phenomena. The goal of this work has been to
help address that problem. The extraction pipeline
proposed in this paper can be used to identify and
generate new test sets which contain linguistic phe-
nomena that can only be consistently translated by
contextual systems. The application of our pipeline
to the OpenSubtitles dataset in seven languages pro-
vides a new set of evaluation sets including a wider
set of languages and phenomena than were avail-
able before. Further, we hope that the extensibility
of our pipeline to new phenomena and languages
allows for others to build upon this work to expand
resources and coverage. The CTXPRO datasets and
extraction pipeline are available as open source
from https://github.com/rewicks/ctxpro.
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A Additional Materials

English (𝑇𝑒) German (𝑇𝑡 )

Rule Lemma Illegal Lemmas

DO.ELL do machen, tun, haben,
können

WOULD.ELL would machen, tun, haben
WILL.ELL will machen, tun, haben,

werden

Table 9: German auxiliary rules. English must have
specified lemma. German alignment cannot have a
lemma in the specified list.

English (𝑇𝑒) Polish (𝑇𝑡 )

Rule Lemma Illegal Lemmas

DO.ELL do robić
WOULD.ELL would robić, by być, być,

by, móc
WILL.ELL will robić, by być, być,

by, móc, iść

Table 10: Polish auxiliary rules. English must have
specified lemma. Polish alignment cannot have a lemma
in the specified list.
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English (𝑇𝑒) Russian (𝑇𝑡 )

Rule Lemma Illegal Lemmas

DO.ELL do Делать
WOULD.ELL would Делать
WILL.ELL will Делать

Table 11: Russian auxiliary rules. English must have
specified lemma. Russian alignment cannot have a
lemma in the specified list.

English (𝑇𝑒) Portugese (𝑇𝑡 )

Rule Lemma Illegal Lemmas

DO.ELL do fazer
WOULD.ELL would fazer, poder
WILL.ELL will fazer, ir

Table 12: Portuguese auxiliary rules. English must have
specified lemma. Portuguese alignment cannot have a
lemma in the specified list.

English (𝑇𝑒) Italian (𝑇𝑡 )

Rule Lemma Illegal Lemmas

DO.ELL do fare
WOULD.ELL would fare, potere, volere
WILL.ELL will fare, andare

Table 13: Italian auxiliary rules. English must have
specified lemma. Italian alignment cannot have a lemma
in the specified list.
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English (𝑇𝑒) Spanish (𝑇𝑡 ) Coref English (𝐶𝑒) Coref Spanish (𝐶𝑡 )

Rule Form POS Case Form POS Case POS POS Gender Number

NOM.FEM.SING it PNOUN Nom. ella PNOUN * NOUN NOUN Fem. Sing.
NOM.MASC.SING it PNOUN Nom. él PNOUN * NOUN NOUN Masc. Sing.
NOM.FEM.PLUR it PNOUN Nom. ellas PNOUN * NOUN NOUN Fem. Plur.
NOM.MASC.PLUR it PNOUN Nom. ellos PNOUN * NOUN NOUN Masc. Plur.
ACC.MASC.SING it PNOUN Acc. lo PNOUN * NOUN NOUN Masc. Sing.
ACC.FEM.SING it PNOUN Acc. la PNOUN * NOUN NOUN Fem. Sing.
ACC.MASC.PLUR them PNOUN Acc. los PNOUN * NOUN NOUN Masc. Sing.
ACC.FEM.PLUR them PNOUN Acc. las PNOUN * NOUN NOUN Fem. Sing.
DISJ.MASC.SING it PNOUN -Nom. él PNOUN * NOUN NOUN Masc. Sing.
DISJ.MASC.SING.ALT it PNOUN -Nom ello PNOUN * NOUN NOUN Masc. Sing.
DISJ.FEM.SING it PNOUN -Nom ella PNOUN * NOUN NOUN Fem. Sing.
DISJ.MASC.PLUR them PNOUN -Nom ellos PNOUN * NOUN NOUN Masc. Plur.
DISJ.FEM.PLUR them PNOUN -Nom ellas PNOUN * NOUN NOUN Fem. Plur.
NOM.INFORM.SING you PNOUN Nom. tú PNOUN * - - - -
NOM.FORM.SING you PNOUN Nom. usted PNOUN * - - - -
NOM.FORM.PLUR you PNOUN Nom. ustedes PNOUN * - - - -
NOM.INFORM.PLUR.MASC you PNOUN Nom. vosotros PNOUN * - - - -
NOM.INFORM.PLUR.FEM you PNOUN Nom. vosotras PNOUN * - - - -
ACC.INFORM.SING you PNOUN Acc. te PNOUN * - - - -
ACC.FORM.SING.MASC you PNOUN Acc. lo PNOUN * - - - -
ACC.FORM.SING.FEM you PNOUN Acc. la PNOUN * - - - -
ACC.FORM.PLUR.MASC you PNOUN Acc. los PNOUN * - - - -
ACC.FORM.PLUR.FEM you PNOUN Acc. las PNOUN * - - - -
ACC.INFORM.PLUR you PNOUN Acc. os PNOUN * - - - -
DISJ.INFORM.SING you PNOUN -Nom. ti PNOUN * - - - -
DISJ.INFORM.SING.ALT you PNOUN -Nom. contigo PNOUN * - - - -
DISJ.FORM.SING you PNOUN -Nom. usted PNOUN * - - - -
DISJ.INFORM.PLUR.MASC you PNOUN -Nom. vosotros PNOUN * - - - -
DISJ.INFORM.PLUR.FEM you PNOUN -Nom. vosotras PNOUN * - - - -
DISJ.FORM.PLUR you PNOUN -Nom. ustedes PNOUN * - - - -

Table 14: Spanish Pronoun Rules

English (𝑇𝑒) French (𝑇𝑡 ) Coref English (𝐶𝑒) Coref French (𝐶𝑡 )

Rule Form POS Case Form POS Case POS POS Gender Number

NOM.FEM.SING it PNOUN Nom. elle PNOUN * NOUN NOUN Fem. Sing.
NOM.MASC.SING it PNOUN Nom. il PNOUN * NOUN NOUN Masc. Sing.
NOM.FEM.PLUR they PNOUN Nom. elles PNOUN * NOUN NOUN Fem. Plur.
NOM.MASC.PLUR they PNOUN Nom. ils PNOUN * NOUN NOUN Masc. Plur.
ACC.MASC.SING it PNOUN Acc. le PNOUN * NOUN NOUN Masc. Sing.
ACC.FEM.SING it PNOUN Acc. la PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.1S mine PNOUN * mienne PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.1P ours PNOUN * la nôtre PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.2S yours PNOUN * tienne PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.2P yours PNOUN * la vôtre PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.3SM his PNOUN * sienne PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.3SF hers PNOUN * sienne PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.3N its PNOUN * sienne PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.3P theirs PNOUN * la leur PNOUN * NOUN NOUN Fem. Sing.
NOM.INFORM.SING you PNOUN Nom. tu PNOUN * - - - -
NOM.FORM+PLUR you PNOUN Nom. vous PNOUN * - - - -
ACC.INFORM.SING you PNOUN Acc. te PNOUN * - - - -
ACC.INFORM.SING.LIAS you PNOUN Acc. t’ PNOUN * - - - -
ACC.FORM+PLUR you PNOUN Acc. vous PNOUN * - - - -
DISJ.INFORM.SING you PNOUN -Nom toi PNOUN * - - - -

Table 15: A sampling of French pronoun rules (abridged). Some forms left off for space.
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English (𝑇𝑒) Italian (𝑇𝑡 ) Coref English (𝐶𝑒) Coref Italian (𝐶𝑡 )

Rule Form POS Case Form POS Case POS POS Gender Number

NOM.MASC.SING it PNOUN Nom. lui PNOUN * NOUN NOUN Masc. Sing.
NOM.FEM.SING it PNOUN Nom. lei PNOUN * NOUN NOUN Fem. Sing.
ACC.MASC.SING it PNOUN Acc. lo PNOUN * NOUN NOUN Masc. Sing.
ACC.FEM.SING it PNOUN Acc. la PNOUN * NOUN NOUN Fem. Sing.
ACC.MASC.PLUR them PNOUN Acc. li PNOUN * NOUN NOUN Masc. Plur.
ACC.FEM.PLUR them PNOUN Acc. le PNOUN * NOUN NOUN Fem. Plur.
DAT.MASC.SING it PNOUN Acc. gli PNOUN * NOUN NOUN Masc. Sing.
DAT.FEM.SING it PNOUN Acc. le PNOUN * NOUN NOUN Fem. Sing.
DISJ.MASC.SING it PNOUN -Nom lui PNOUN * NOUN NOUN Masc. Sing.
DISJ.FEM.SING it PNOUN -Nom lei PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.1S mine PNOUN * mia PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.2S yours PNOUN * tua PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.3M his PNOUN * sua PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.3F hers PNOUN * sua PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.3N its PNOUN * sua PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.2P yours PNOUN * vostra PNOUN * NOUN NOUN Fem. Sing.
GEN.FEM.SING.3P theirs PNOUN * loro PNOUN * NOUN NOUN Fem. Sing.
NOM.INFORM.SING you PNOUN * tu PNOUN * - - - -
NOM.FORM.SING you PNOUN * lei PNOUN * - - - -
NOM.INFORM.PLUR you PNOUN * voi PNOUN * - - - -

Table 16: A sampling of Italian Pronoun Rules. We do not consider the conflated Italian pronouns which combine
accusatives and datives which co-occur. English case is used as it is a better model. Accusative is used for dative
since the SpaCy models conflate the two in English.

English (𝑇𝑒) Polish (𝑇𝑡 ) Coref English (𝐶𝑒) Coref Polish (𝐶𝑡 )

Rule Form POS Case Form POS Case POS POS Gender Number

NOM.NEUT.SING it PNOUN * ono PNOUN Nom. NOUN NOUN Neut. Sing.
NOM.MASC.SING it PNOUN * on PNOUN Nom. NOUN NOUN Masc. Sing.
NOM.FEM.SING it PNOUN * ona PNOUN Nom. NOUN NOUN Fem. Sing.
ACC.NEUT.SING it PNOUN * je PNOUN Acc. NOUN NOUN Neut. Sing.
ACC.NEUT.SING.ALT1 it PNOUN * nie PNOUN Acc. NOUN NOUN Neut. Sing.
ACC.MASC.SING it PNOUN * je PNOUN Acc. NOUN NOUN Masc. Sing.
ACC.MASC.SING.ALT it PNOUN * niego PNOUN Acc. NOUN NOUN Masc. Sing.
ACC.FEM.SING it PNOUN * ją PNOUN Acc. NOUN NOUN Fem. Sing.
GEN.NEUT.SING it PNOUN * jego PNOUN Gen. NOUN NOUN Neut. Sing.
GEN.NEUT.SING.ALT1 it PNOUN * niego PNOUN Gen. NOUN NOUN Neut. Sing.
GEN.NEUT.SING.ALT2 it PNOUN * go PNOUN Gen. NOUN NOUN Neut. Sing.
GEN.MASC.SING it PNOUN * je PNOUN Gen. NOUN NOUN Masc. Sing.
GEN.MASC.SING.ALT1 it PNOUN * niego PNOUN Gen. NOUN NOUN Masc. Sing.
GEN.FEM.SING it PNOUN * jej PNOUN Gen. NOUN NOUN Fem. Sing.
GEN.FEM.SING.ALT1 it PNOUN * niej PNOUN Gen. NOUN NOUN Fem. Sing.
LOC.NEUT.SING it PNOUN * nim PNOUN Loc. NOUN NOUN Neut. Sing.
LOC.MASC.SING it PNOUN * nim PNOUN Loc. NOUN NOUN Masc. Sing.
LOC.FEM.SING it PNOUN * niej PNOUN Loc. NOUN NOUN Fem. Sing.
DAT.NEUT.SING it PNOUN * jemu PNOUN Dat. NOUN NOUN Neut. Sing.
INS.NEUT.SING it PNOUN * nim PNOUN Ins. NOUN NOUN Neut. Sing.
NOM.INFORM.SING you PNOUN * ty PNOUN Nom. - - - -
ACC.INFORM.SING you PNOUN * ciebie PNOUN Acc. - - - -
NOM.FORM.SING.FEM you PNOUN * pani PNOUN Nom. - - - -
ACC.FORM.SING.FEM you PNOUN * panią PNOUN Acc. - - - -

Table 17: A sampling of Polish Pronoun Rules. Some left off for space.
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DE ES FR IT PL PT RU

GENDER
sent. 29.0 35.4 32.6 28.7 23.8 27.8 24.7
doc. 33.8 38.7 37.2 32.7 27.1 31.3 27.6

+4.8 +4.6 +2.9 +3.3 +3.5 +4.0 +3.3

ANIMACY
sent. 33.3 44.3 37.5 35.1 29.8 40.5 32.1
doc. 37.7 48.3 40.6 37.6 32.3 44.4 36.0

+4.4 +4.0 +3.1 +2.5 +2.5 +3.9 +3.9

FORMALITY
sent. 26.4 32.0 28.4 21.7 36.1 29.2 34.3
doc. 28.4 35.6 30.2 23.4 37.1 31.3 36.1

+2.0 +3.6 +1.8 +1.7 +1.0 +2.1 +1.8

AUXILIARY
sent. 17.7 17.3 14.9 17.8 15.3 15.8 19.9
doc. 30.1 33.4 33.6 34.7 33.1 32.5 42.2

+12.4 +16.1 +18.7 +16.9 +17.8 +16.7 +22.3

INFLECTION
sent. - - - - 27.3 - 27.7
doc. - - - - 30.7 - 29.9

- - - - +2.2 - +3.4

Table 18: BLEU scores to evaluate the translation quality of this model. Higher is better. sent. denotes that no
additional context was given while doc. was given five consecutive sentences. All translations produced by DeepL
commercial API.
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Abstract

While large language models have made re-
markable advancements in natural language
generation, their potential in machine transla-
tion, especially when fine-tuned, remains under-
explored. In our study, we conduct compre-
hensive experiments, evaluating 15 publicly
available language models on machine transla-
tion tasks. We compare the performance across
three methodologies: zero-shot prompting, few-
shot learning, and fine-tuning. Central to our
approach is the use of QLoRA, an efficient fine-
tuning method. On French-English, QLoRA
fine-tuning outperforms both few-shot learning
and models trained from scratch. This superi-
ority is highlighted in both sentence-level and
document-level translations, with a significant
BLEU score improvement of 28.93 over the
prompting method. Impressively, with QLoRA,
the enhanced performance is achieved by fine-
tuning a mere 0.77% of the model’s parameters.

1 Introduction

The rapid advancement of large language models
(LLMs) is reshaping the field of natural language
processing (NLP), marking a potential paradigm
shift in future development (Zhao et al., 2023). In-
stead of crafting dedicated task-specific systems,
a growing interest has been focusing on quickly
adapting LLMs to specific tasks simply through
prompting (Liu et al., 2023; Sanh et al., 2022). So
far, studies have shown that prompting LLMs can
match or even rival the performance of specialized
systems on numerous NLP tasks (Radford et al.).

Among all the NLP tasks, the application of
LLMs to machine translation (MT) is understud-
ied. The optimal way to harness LLMs for MT
remains an open question. While encoder-decoder-
based LLMs (Xue et al., 2021; Liu et al., 2020;
Costa-jussà et al., 2022) are inherently designed
for the sequence-to-sequence demands of MT, the
approach for leveraging decoder-only models is
less straightforward.

Although there are initial attempts in this di-
rection (Sia and Duh, 2022; Hendy et al., 2023;
Moslem et al., 2023; Zhu et al., 2023), these stud-
ies mainly concentrate on prompting and few-shot
learning, not exploiting the availability of bitext.
Additionally, most work focus on exceptionally
large LLMs like GPT3 (Brown et al., 2020) with
its staggering 175 billion parameters, which are be-
yond the reach of non-commercial research groups
for local training. This poses a significant hurdle
for institutions with constrained computational re-
sources, rendering the findings less applicable and
relevant to many researchers.

In this paper, we aim to investigate the perfor-
mance of LLMs on MT tasks, with a particular
focus on decoder-based LLMs, a category less
charted for MT applications. Our research fo-
cuses on a range of publicly available medium-
sized LLMs. This includes models pretrained on
English-centric datasets, such as GPT-Neo (Black
et al., 2021), OPT (Zhang et al., 2022), LLaMA2
(Touvron et al., 2023), as well as those on multilin-
gual datasets such as XGLM (Lin et al., 2021) and
BLOOMZ (Muennighoff et al., 2022). We evaluate
various versions of these models, with their param-
eter sizes spanning from 1.3 billion to 13 billion,
totaling 15 models.

In our experiments, we explore zero-shot prompt-
ing, few-shot learning, and fine-tuning, where our
emphasis on fine-tuning fills the gap in previous
studies. For the fine-tuning process, we employ the
QLoRA method (Dettmers et al., 2023), which en-
hances efficiency and minimizes memory usage by
quantizing the model to 4-bit precision and limiting
the number of trainable parameters. To the best of
our knowledge, this is the first instance of QLoRA
being applied to fine-tuning LLMs for MT tasks.

We also evaluate the performance of LLMs in
document-level translation. Standard sequence-to-
sequence MT models focus on translating one sen-
tence at a time, overlooking discourse phenom-
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ena and the broader context. Existing methods
for document-level translation often pivot toward
architectural modifications (Tu et al., 2018; Tan
et al., 2019; Xu et al., 2021), leading to specialized
models that need unique designs. Our objective is
to evaluate the capability of LLMs in preserving
long-term contextual coherence and to explore their
potential in facilitating the development of a robust
document-level translation system.

We demonstrate the effectiveness of fine-tuning
on a French-English dataset – this language pair is
selected due to its accessibility for LLMs, position-
ing it as an ideal starting point for research in this
domain. Our experimental results, complemented
by thorough analysis, reveal that:

• LLMs, when subjected to fine-tuning, are
potent MT models. Through fine-tuning,
they consistently outperform their zero-shot
prompting counterparts, achieving an average
improvement of 8 BLEU for sentence-level
translation and 16.33 BLEU for document-
level translation. Notably, the model opt-13b
even sees a remarkable boost of 28.93 BLEU
(from 4.56 to 33.49).

• There is a large variation in the performance
across different LLMs. LLaMA 2 consistently
outperforms others for both prompting and
fine-tuning. BLOOMZ, initially lagging be-
hind in prompting, ascends to top-tier models
after fine-tuning. However, some models, de-
spite benefiting from fine-tuning, either match
or fall short of the performance of models
trained from scratch. It is also noteworthy that
larger models don’t invariably outshine their
smaller counterparts.

• When prompted, LLMs demonstrate supe-
rior performance in sentence-level translation.
However, the application of fine-tuning yields
more substantial enhancements in document
translation, as reflected by both the BLEU and
COMET scores. Notably, LLaMA 2 surpasses
its performance in sentence-level translation
when trained on documents.

• QLoRA accelerates the fine-tuning process
without compromising model performance.
To attain an equivalent BLEU score, it neces-
sitates 21 times less training time and reduces
the trainable parameters by 1370-fold com-
pared to conventional fine-tuning.

2 Related Work

2.1 LLM Applications

Leveraging LLMs across a spectrum of down-
stream natural language processing (NLP) tasks is
now a prevailing approach. However, the optimal
strategies for utilizing these models both effectively
and efficiently remain an open question. Broadly
speaking, there are three primary methods to build
applications based on LLMs:

• Zero-shot prompting.1 This involves query-
ing LLMs with a prompt that hasn’t been
seen in the training data of the model. Such
prompts typically provide specific task instruc-
tions along with the main query. Given the
sensitivity of LLMs to the structure and con-
tent of prompts, careful prompt engineering is
crucial to achieve optimal performance.

• Few-shot learning. Often referred to as in-
context learning, few-shot learning is a tech-
nique where LLMs are provided with a hand-
ful of examples to guide their responses. Zero-
shot prompting can be considered a subset of
this, where no examples are given. In few-
shot learning, these examples are integrated
into the prompt template, serving as context
to instruct the model on how to respond.

• Fine-tuning. The two methods above al-
low for task adaptation without the need for
further training on the LLMs. In contrast,
fine-tuning involves extending the training of
the LLMs using additional, task-specific data.
This is particularly beneficial when such tai-
lored datasets are available.

Yang et al. (2023) survey the ‘use cases’ and ‘no
use cases’ of LLMs for specific downstream tasks,
considering the three aforementioned methods, and
conclude that LLMs excel in most NLP tasks.

2.2 LLMs for MT

Recent literature has begun to explore the applica-
tion of LLMs for MT, an area that remained rela-
tively under-explored until now. Both Hendy et al.
(2023) and Moslem et al. (2023) underscore the
superiority of GPT3 (Brown et al., 2020), GPT3.5
and ChatGPT (Bawden and Yvon, 2023) in MT

1Throughout this paper, we refer to ‘zero-shot prompting’
simply as ‘prompting’.

469



using prompting. However, the former also indi-
cates that these models may not consistently out-
perform SOTA MT systems and commercial trans-
lators. In a comparative study, Zhu et al. (2023)
experiment with various LLMs, including GLM-
7.5B (Lin et al., 2021), OPT-175B (Zhang et al.,
2022), BLOOMZ-7.1B (Muennighoff et al., 2022),
and ChatGPT. Their findings suggest that while
these decoder-only LLMs are competitive, they still
lag behind when compared to the encoder-decoder-
based multilingual language model NLLB (Costa-
jussà et al., 2022). Briakou et al. (2023) studied the
impact of LLM data on MT.

Prompting strategies for MT are studied by Vilar
et al. (2023) for PaLM (Chowdhery et al., 2022)
and Zhang et al. (2023) for GLM-130B (Zeng et al.,
2022). They reveal several challenges associated
with MT prompting, such as issues with copying,
mistranslation of entities, and hallucination. These
challenges are echoed by Bawden and Yvon (2023),
which identify similar constraints with prompting
on BLOOM (Scao et al., 2022). However, they
show these limitations can be mitigated in a few-
shot learning setting. Sia and Duh (2022) investi-
gated a light-weight tuning method akin to prefix
tuning (Li and Liang, 2021). Sia and Duh (2023)
and Wang et al. (2023) expand the evaluation to
document-level translation.

While prior studies have highlighted the poten-
tial of LLMs in MT, their focus has been primarily
on in-context learning. A significant gap remains
in the exploration of fine-tuning LLMs specifically
for MT tasks. Additionally, there is an evident ab-
sence of research that provides a comprehensive
comparison among prompting, few-shot learning,
and fine-tuning methodologies. Recognizing this
oversight, the primary objective of this paper is to
address and bridge this research gap.

3 QLoRA

QLoRA (Dettmers et al., 2023) is an efficient fine-
tuning approach that reduces the memory usage of
training without compromising the 16-bit task per-
formance. The approach involves quantizing a pre-
trained model to 4-bit precision. Subsequently, a
compact set of learnable Low-rank Adapter (LoRA,
Hu et al. (2021)) weights are added, which can be
tuned through backpropagation.

LoRA Motivated by the empirical findings of Li
et al. (2018) and Aghajanyan et al. (2020), which
suggest that LLMs possess a notably low intrinsic

dimension for their parameters, LoRA hypothe-
sizes a similar low intrinsic rank for weights dur-
ing model adaptation. Thus, LoRA introduces a
reparameterization aimed at reducing dimensions.
Specifically, it employs a low-rank decomposition
to represent the pretrained weights, resulting in
newly-added adapter weight matrices, with the rank
r anticipated to be considerably smaller than the
original weight matrices’ dimension. During fine-
tuning, the pretrained weights are frozen, with only
the newly incorporated adapter updated via back-
propagation. A key observation is that as the rank
r is reduced, there is a corresponding decrease in
the number of adaptable parameters.

4 Experimental Setup

4.1 Datasets

In this study, we focus on the translation direc-
tion from French to English due to its signifi-
cant demand for high-quality translation and the
availability of substantial parallel data. Our fine-
tuning set includes the commonly used Europarl
(Koehn, 2005) and News Commentary dataset from
WMT142. The dev and test sets are the new-
stest2013 and newstest2014 datasets, respectively,
from WMT14. These datasets are constructed from
documents, thus enabling a natural evaluation of
document-level translation. Table 1 summarizes
the statistics of the datasets.

#sents #docs avg.sents/doc
train 2,366,117 21,430 144

dev 3000 126 24
test 3003 169 18

Table 1: Dataset statistics.

4.2 Baseline

We compare the performance of systems built upon
LLMs against an NMT model trained from scratch
using the Amazon Sockeye framework (Hieber
et al., 2022). The model architecture is a 12-layer
transformer with a model size of 1024, 16 attention
heads, and 4096 hidden units in the feed-forward
layers. We employ byte pair encoding (BPE, Sen-
nrich et al. (2016)) separately for each language,
setting the number of BPE symbols to 30k for both
languages. The model is trained with a batch size
of 4096, an initial learning rate of 0.0002, and a

2https://www.statmt.org/wmt14/translation-task.html
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Model Release Time Data Size (B)
GPT-Neo (Black et al., 2021) Mar, 2021 English-centric 1.3; 2.7
OPT (Zhang et al., 2022) June, 2022 English-centric 1.3; 2.7; 6.7
LLaMA2 (Touvron et al., 2023) July, 2023 English-centric 7; 13
XGLM (Lin et al., 2021) Nov, 2022 Multilingual 1.7; 2.9; 4.5; 7.5
BLOOMZ (Muennighoff et al., 2022) Nov, 2022 Multilingual 1.7; 3; 7.1

Table 2: Overview of evaluated LLMs.

plateau-reduce learning rate scheduler. Addition-
ally, we apply a dropout and label smoothing of
0.1, use the Adam optimizer with a warm-up of
10k steps, and set the checkpoint interval to 4000.
Training is halted if there is no improvement in per-
formance on the dev set for 32 consecutive check-
points. The model has 4 billion parameters and is
trained on a single NVIDIA V100 with 32G GPU
memory.

This is a relatively standard NMT model, de-
void of advanced techniques such as back transla-
tion, knowledge distillation, or ensembling, which
could potentially elevate the model to state-of-the-
art performance (Kocmi et al., 2022). However, the
primary objective of this study is to compare the ef-
ficacy of using an off-the-shelf machine translation
toolkit, which is widely accessible and requires
minimal effort for machine translation practition-
ers, against building MT systems using LLMs. Im-
portantly, both methods demand similar levels of
effort in development, making this a fair compar-
ison to ascertain the most efficient approach for
practitioners and researchers alike.

4.3 Pretrained LLMs

We investigate a varied collection of pretrained
LLMs accessible on HuggingFace (Wolf et al.,
2020), all based on the transformer architecture.
This collection comprises five distinct LLMs, each
trained on either English-centric or multilingual
data and available in multiple versions with vary-
ing parameter sizes. This results in a comprehen-
sive assortment of 15 models, with parameter sizes
ranging from 1.3 billion to 13 billion. Table 2 sum-
marizes the models included in our study.
• GPT-Neo - a GPT-2 (Radford et al.) like causal

language model trained on the Pile dataset (Gao
et al., 2020), an 825 GiB English corpus.

• OPT - a suite of causal language models, where
the largest one, OPT-175B, exhibits performance
comparable to GPT-3 (Brown et al., 2020).

• LLAMA 2 - pretrained on 2 trillion tokens of

English-centric data. We used a fine-tuned ver-
sion of the model, referred to as LLAMA 2-CHAT.
This fine-tuned version demonstrates superior
performance compared to open-source chat mod-
els across a wide range of benchmarks.

• XGLM - a multilingual language model trained
on a balanced corpus covering 30 diverse lan-
guages with 500B tokens. The XGLM 7.5B
outperforms GPT-3 on the FLORES-101 (Goyal
et al., 2022) machine translation benchmark in
few-shot learning scenarios.

• BLOOMZ - a multilingual BLOOM model
(Scao et al., 2022) fine-tuned with the xP3 dataset
(Muennighoff et al., 2022), which consists of mul-
tilingual datasets with English prompts, totaling
95 GiB of text.
The selection of these models enables us to as-

sess the impact of various factors on translation
performance, including the type of model (English-
centric vs. multilingual) and model size. Addi-
tionally, the chosen sizes reflect the computational
resources typically available to research institutes
with limited GPU resources, such as university labs.
This consideration ensures that our findings are ap-
plicable and accessible to a broad range of machine
translation researchers and practitioners.

4.4 Prompted Tuning

We fine-tune LLMs using examples that
include specifically formatted prompts
( French: [fr sent] English: ) and their corre-

sponding responses ( [en sent] ). The dev set is
also formatted in the same way. This approach
customizes the model for the French-English
machine translation task.

Sentence-level Prompts The inputs at the sen-
tence level are formatted as follows:

French: [fr sent] English: [en sent] <eos>
We append the special token <eos> at the end

of each sample to regulate the length of the text
generated by the model. Without this, LLMs tend
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to generate text continuously until they reach a
predetermined length limit.

Document-level Prompts We use the given doc-
ument boundaries to concatenate parallel sentences
into document-level sequences. These parallel doc-
uments comprise an equal number of sentences
in both languages. Our goal is to ensure that the
models generate the same number of output sen-
tences per document as the number of input sen-
tences provided, facilitating sentence-level evalu-
ation. We adopt the document mark-up used in
Junczys-Dowmunt (2019), incorporating symbols
for document start ( <BEG> ) and end ( <END> ),
as well as sentence separators ( <SEP> ). In in-
stances where documents exceed our sentence limit
of 10, we substitute the <END> symbol with
a break symbol ( <BRK> ) and commence the
subsequent sequence with a continuation symbol
( <CNT> ) instead of <BEG> . Below is an exam-
ple of a document input:

French: <BEG> [fr sent1] <SEP> [fr sent2]
<SEP><END> English: <BEG> [en sent1]

<SEP> [en sent2] <SEP><END>

4.5 Fine-tuning Setup
We configure the learning rate to 2e-4 and employ
the Adam optimizer for the training process. A
batch size of 32 is used, and the evaluation is per-
formed every 1000 steps. The fine-tuning process
is halted if there is no improvement in the model’s
performance over 16 consecutive checkpoints. For
the LoRA configurations, the rank for the low-rank
approximation is set to 64, and the scaling factor
for the low-rank adaptation is set to 32. The train-
able parameters are limited to the self-attention
layers of the model. Additionally, a dropout rate
of 0.05 is applied in the LoRA layer. The model
weights are quantized to 4-bit precision to reduce
memory requirements, and mixed-precision train-
ing is enabled, using a combination of float16 and
float32 data types to accelerate the training pro-
cess. Models with less than 3 billion parameters are
trained on a single NVIDIA RTX GPU with 24GB
of memory, while models with more than 3 billion
but less than 7 billion parameters are trained on a
single NVIDIA V100 GPU with 32GB of memory.
For models with an even larger number of parame-
ters, we employ multiple V100 GPUs and enable
model parallelism by setting device_map="auto" .
This is facilitated by the Accelerate library from
Hugging Face, which automatically distributes the

model across the available GPUs.

4.6 Evaluation Metrics

We use BLEU and COMET (Rei et al., 2020) as
evaluation metrics to assess the performance of
our models. For BLEU we use the SacreBLEU
(Post, 2018) implementation, which standardizes
tokenization and facilitates reproducibility.

On the other hand, unlike BLEU, which de-
pends on the n-gram overlap between the machine-
generated translation and the reference translation,
COMET models are trained on a comprehensive
dataset comprising human translations and human
quality assessments. This dataset is used to predict
translation quality while also taking the source side
into account. This approach enables COMET to
provide a more holistic evaluation that includes flu-
ency, adequacy, and preservation of meaning. We
employ the latest model, Unbabel/wmt22-comet-
da, for our evaluation. This model scales the scores
between 0 and 1, where a score approaching 1 indi-
cates a high-quality translation.

By employing both BLEU and COMET, we can
ensure that our evaluation is robust and compre-
hensive, accounting for not only the lexical similar-
ity between the translations and the references but
also the overall quality and preservation of mean-
ing in the translations. Moreover, COMET may
serve as a superior evaluation metric when assess-
ing the zero-shot performance of LLMs compared
to BLEU. As we demonstrated in Section 7, the
outputs from LLMs often excel in preserving mean-
ings but might receive a low score if evaluated
solely based on n-gram matching.

5 Sentence-level Translation

In this section, we assess the sentence-level transla-
tion performance of pretrained LLMs using prompt-
ing versus fine-tuned LLMs (Section 5.1). We in-
vestigate the effects of incorporating or not incor-
porating QLoRA during the fine-tuning process
(Section 5.2). Additionally, we analyze the im-
pact of varying QLoRA hyperparameters (Section
5.3), including the rank of the low-rank approxima-
tion (Section 5.3.1), and the trainable parameters
(Section 5.3.2). We also conduct experiments with
different sizes of fine-tuning data and compare the
results of fine-tuned LLMs with the baseline NMT
model (Section 5.4). Lastly, we explore few-shot
learning with varying numbers of shots and diverse
prompts (Section 5.5).
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Figure 1: Prompting (P) vs. QLoRA fine-tuning (FT) on sentence-level translation using various pretrained LLMs.
Baseline is the NMT system described in Section 4.2. Rank r for QLoRA is set to 64.3

5.1 Main Results

We present the results of prompting and QLoRA
fine-tuning in Figure 1. Key observations are:
• While there is a significant disparity in BLEU

scores, the same is not observed in COMET. All
models exhibit comparable COMET scores. The
top-performing fine-tuned model, llama2-13b,
outperforms the baseline from 0.837 to 0.862.
This indicates that while all models produce
semantically coherent translations, their lexical
choices, which affect BLEU scores, might differ.

• In terms of BLEU, the baseline model surpasses
most prompted LLMs, with the exception of
LLAMA 2. Specifically, llama2-7b achieves the
highest performance at 34.56 BLEU, marking a
3.89 BLEU improvement over the baseline.

• 8 out of the 15 fine-tuned LLMs exceed the base-
line. This includes both English-centric and mul-
tilingual models. The standout model is bloomz-
7.1b achieving a BLEU score of 37.39, a 6.72
BLEU enhancement compared to the baseline.

• Fine-tuning invariably boosts LLM performance
on average by 8 BLEU points, with bloomz-7.1b
witnessing the most substantial leap of 20.13
BLEU.

• No clear advantage is discerned when contrast-
ing prompted multilingual models with English-
centric ones. For instance, the multilingual
bloomz-1.7b scores the lowest at 14.16 BLEU.
Yet, when evaluating the fine-tuning gains over

prompting, multilingual models average an 11.32
BLEU improvement, surpassing the 5.02 BLEU
of their counterparts.

• Bigger models do not consistently outshine their
smaller counterparts. For instance, after fine-
tuning, bloomz-1.7b trumps the larger opt-13b
(31.95 vs. 31.29 BLEU). Within the same archi-
tecture, models with more parameters typically
fare better, but there are exceptions, like with
XGLM, where the 4.5b and 7.5b versions lag be-
hind the 2.9b variant.
In conclusion, while directly prompted LLMs

do not universally outperform train-from-scratch
MT models, certain LLMs, such as LLAMA 2,
defy this trend. Moreover, fine-tuning consistently
proves beneficial, with the potential to elevate even
underperforming LLMs, like bloomz-7.1b, to top-
tier performance.

params(%) #GPUs time(hrs)
No QLoRA 27.40 4 52

QLoRA 0.02 1 10

Table 3: Fine-tuning xglm-2.9b with and without
QLoRA to achieve the BLEU score of 30.05.4Only the
self-attention layers are tuned. The rank r for QLoRA
approximation is set to 2.

3We also report TER in Appendix A.
4We train the model without QLoRA for 96 hours in total,

and 30.05 is the BLEU score obtained at the best checkpoint.
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r 2 4 8 16 32 64 128 256 512
train params(%) 0.02 0.05 0.09 0.19 0.39 0.77 1.53 3.01 5.85

BLEU 31.69 31.72 32.28 32.52 32.80 33.04 30.60 30.09 30.31
COMET 0.845 0.846 0.847 0.848 0.849 0.850 0.837 0.835 0.836

Table 4: QLoRA fine-tuning results on XGLM 2.9B with various rank r choices. All the weights except for
self-attentions are frozen.

5.2 QLoRA vs. No QLoRA
To assess QLoRA’s efficacy, we contrast it with
the original approach, a more resource-intensive
choice: fine-tuning without QLoRA, which ex-
cludes both quantization and low-rank adaptation.
We train the xglm-2.9b model using its native 32-
bit precision, necessitating the use of 4 NVIDIA
v100s. This is compared against a model fine-tuned
with QLoRA set at r = 2. For consistency, only the
self-attention layers are unfrozen in both models.
The comparative results are presented in Table 3.

Achieving a BLEU score of 30.05, the model
fine-tuned without QLoRA requires 52 hours
across 4 GPUs, totaling 208 GPU hours. In con-
trast, the QLoRA-enhanced model completes in
just 10 hours, marking a 21-fold acceleration and
utilizing 1370 times fewer trainable parameters
(0.02% compared to 27.4%).

5.3 QLoRA Hyperparameters
We investigate the impact of selecting different
ranks for LoRA and the unfrozen parameters for
fine-tuning. We present the results for XGLM 2.9B.

5.3.1 Rank r

The rank r of the decomposition matrices influ-
ences the number of trainable parameters, with a
larger r resulting in more trainable parameters. We
assess the performance associated with different
choices of r, ranging from 2 to 512, in Table 4,
while only unfreezing the self-attention layers.

With r = 64, the model attains its optimal per-
formance. However, either reducing or increasing
the number of trainable parameters adversely af-
fects the model’s performance. Interestingly, when
r = 512, the performance deteriorates even more
than when r = 2, despite the fact that the latter
converges more quickly due to a smaller number
of trainable parameters.

5.3.2 Trainable Parameters
Next, we aim to determine which part of the model
should be fine-tuned. To do this, we unfreeze the
parameters in different layers of the XGLM 2.9B

model. As illustrated in Table 5, we experiment
with unfreezing parameters from various layers, in-
cluding the self-attention layers, embedding layers,
fully-connected feed-forward layers, and the LM
head layers. The results indicate that fine-tuning
only the self-attention layer is sufficient to yield
the best performance.

Params a a+e a+e+f a+e+f+l
BLEU 31.69 30.09 30.30 28.39

COMET 0.845 0.837 0.834 0.826

Table 5: QLoRA fine-tuning results on XGLM 2.9B
with different trainable parameters. a: self-attentions; e:
embeddings; f : fully-connected feed-forward layers; l:
lm head. Rank r is set to 2.

Figure 2: The performance of the baseline system and
fine-tuned XGLM 2.9B trained with different amounts
of data.

5.4 Data Curves

The performance of a traditional MT model is
closely tied to the volume of its training data, as
highlighted by (Koehn and Knowles, 2017). How-
ever, for LLMs, which have already benefited from
vast training datasets, does this correlation still
hold? To investigate, we compare the responses of
both MT model types to varying training data sizes.
We incrementally adjust the dataset size from 0.1%
(2,366 examples) to its entirety and then train the
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Prompt 1 { French: [fr sent] English: [en sent] } x K

French: [fr sent] English:
Prompt 2 { Translate French to English: French: [fr sent] English: [en sent] } x K

Translate French to English: French: [fr sent] English:
Prompt 3 Translate French to English: { French: [fr sent] English: [en sent] } x K

Translate French to English: French: [fr sent] English:
Prompt 4 Translate French to English:

French: { [fr sent] } x K English: { [en sent] } x K

Translate French to English: French: [fr sent] English:
Prompt 5 { French: [fr sent] Translate to English: [en sent] } x K

French: [fr sent] Translate to English:

Table 6: Prompts used in K-shot learning. The substrings within {} are repeated K times.

BLEU COMET
0-shot 1-shot 5-shot 10-shot 0-shot 1-shot 5-shot 10-shot

Prompt 1 27.08 29.15 29.72 29.62 0.814 0.828 0.833 0.834
Prompt 2 28.36 29.46 29.86 29.95 0.813 0.830 0.836 0.835
Prompt 3 28.36 29.33 29.86 29.74 0.813 0.831 0.835 0.834
Prompt 4 28.36 29.46 28.66 27.83 0.813 0.830 0.829 0.825
Prompt 5 11.82 28.76 29.80 29.70 0.631 0.827 0.834 0.834

Table 7: Few-shot learning results on XGLM 2.9B.

baseline model and fine-tune the LLMs. The out-
comes of this experiment are depicted in Figure
2.

The baseline curve validates the assumption that
performance improves with increased data avail-
ability. In contrast, LLMs make a robust debut;
even without additional training data, they achieve
a BLEU score comparable to the baseline trained
on half the dataset. Yet, their performance does not
consistently improve with more data. In fact, fine-
tuning with less than 50% (1.2 million examples)
of the data seems counterproductive, diminishing
performance until the full dataset comes into play.

5.5 Few-shot Learning

In this section, we evaluate the few-shot learning
performance of LLMs. Few-shot learning is also
denoted as K-shot, with K representing the num-
ber of examples provided before the query, where
in our case, examples are randomly sampled from
the training set. We also compare the impact of 5
slightly varied prompts, detailed in Table 6. The
results of the experiments are presented in Table 7.

When K >= 1, the model consistently out-
performs the 0-shot scenario. For prompt 5, 1-
shot dramatically enhances the model’s capability,

elevating the BLEU score from 11.825 to 28.76.
However, the performance does not exhibit a linear
growth with increasing K; it plateaus. In the case
of prompt 4, augmenting K even diminishes the
performance.

In our experiments, the choice of prompt is
particularly impactful for 0-shot performance, es-
pecially when comparing prompt 5 to the others.
However, this impact seems to lessen when exam-
ples are presented before the query.

6 Document-level Translation

In this section, we delve into the proficiency of
LLMs in document-level translation. Our primary
observations, contrasting the prompted and fine-
tuned LLMs, are detailed in Section 6.1. Addition-
ally, we explore the influence of document length,
measured by the number of sentences per docu-
ment, in Section 6.2.

6.1 Main Results

Figure 3 presents the results for document-level
translations. Key takeaways include:

5We observed many empty generations when prompting
with Prompt 5. One hypothesis is that the prompt is ambigu-
ous and the model is confused about what to translate.
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Figure 3: Prompting (P) vs. QLoRA fine-tuning (FT) on document-level translation using various pretrained LLMs.
Rank r for QLoRA is set to 64.

• In contrast to sentence-level translation,
prompted LLMs face challenges with document-
level translation. 4 out of the 15 LLMs register
BLEU scores below 10. However, consistent
with sentence-level findings, LLAMA 2 continues
to stand out in zero-shot performance, with the
7b and 13b versions achieving impressive BLEU
scores of 35.29 and 36.6, respectively.

• Fine-tuning demonstrates significant promise
for document-level translations, enhancing the
BLEU scores of their prompted counterparts by
an average of 16.33. The most notable improve-
ment is seen in opt-13b, which witnesses a BLEU
increment of 28.93 (from 4.56 to 33.49).

• Unlike sentence-level translation, where COMET
scores remain consistent across all models,
document-level translation displays a more pro-
nounced variance. This variability is particularly
evident in prompted models but diminishes in
fine-tuned ones.

• Trends observed in sentence-level translation
(Section 5.1) persist in the document-level con-
text: (1) Both English-centric and multilingual
models deliver comparable performance. (2)
Larger models do not consistently surpass their
smaller counterparts. (3) Top-performing mod-
els in sentence-level translation, such as LLAMA
2 and BLOOMZ, maintain their dominance in
document-level translation.

6.2 Input Lengths

We construct the examples for fine-tuning by merg-
ing sentences from an original document, as de-
scribed in Section 4.4. By varying the number of
sentences per document – specifically, 5, 10, and
15 – we present our findings in Table 8. Notably,
fine-tuning with sets of 10 consecutive sentences
yields the optimal performance, registering a 30.94
BLEU and a 0.811 COMET score.

#sents 5 10 15
BLEU 29.07 30.94 28.32

COMET 0.781 0.811 0.742

Table 8: QLoRA fine-tuning on documents composed of
different numbers of sentences6. XGLM 2.9B systems
are fine-tuned with r = 64, and self-attentions and
embeddings as trainable parameters.

7 Qualitative Analysis

Figure 4 shows translations of two French sen-
tences using various LLMs. In the first example,
when prompted, bloomz-7.1b replicates the source
sentence verbatim, neglecting to translate. While
this does not occur for every test set sample, as
shown in the second example, similar behavior is
noted in other prompted LLMs. On the other hand,

6We match the length of text documents to that of train
documents.
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French

English

L'ONU donne un bilan même plus élevé avec 979 morts et 1 902 blessés.

The UN has reported even higher numbers with 979 dead and 1,902 injured.

bloomz-7.1b P L'ONU donne un bilan même plus élevé avec 979 morts et 1 902 blessés.

bloomz-7.1b FT The UN gives a higher figure with 979 dead and 1 902 wounded.<eos>.<eos>.<eos>.

llama2-13b P

llama2-13b FT

979 deaths and 1,902 injuries, according to the UN's latest tally.

The UN gives an even higher death toll of 979 and 1 902 injured.<eos>The UN gives 
an even higher death toll of 979 and 1 902 injured.<eos>The UN gives an even higher 
death toll of 979 and 1 902 injured.<eos>The

French

English

L'affaire NSA souligne l'absence totale de débat sur le renseignement

NSA Affair Emphasizes Complete Lack of Debate on Intelligence

bloomz-7.1b P French: The NSA case highlights the complete absence of debate on intelligence.

bloomz-7.1b FT The NSA Case Sheds Light on the Absence of Debate on Intelligence<eos>.<eos>.<eos>.

llama2-13b P

llama2-13b FT

The NSA case highlights the complete lack of debate on intelligence gathering.

The NSA Scandal Highlights the Lack of Intelligence Debate<eos>eos>eos>

Figure 4: Translations from prompted (P) and fine-tuned (FT) LLMs.

the translation using llama2-13b P, though not mir-
roring the reference verbatim, retains the original
sentence’s meaning. Both fine-tuned LLMs pro-
duce proper translations with the initial segment
of the generated sequences. Bloomz-7.1b appends
a <eos> token post-translation, while llama2b-
13b reiterates its translation multiple times. Both
outputs necessitate post-processing, specifically
truncating the output at the first occurrence of the
<eos> token.

In the second example, the LLM-generated trans-
lations retain the meaning of the reference transla-
tion, showcasing LLMs’ potential in the translation
tasks.

8 Conclusions

In this study, we investigate the capabilities of
LLMs in performing machine translation tasks.
Through comprehensive experiments, we assess
the effectiveness of prompting, few-shot learning,
and fine-tuning using QLoRA for French-English
translation. Our key findings are:

1. The proficiency of LLMs in machine trans-
lation varies. While LLAMA 2 consistently
outperforms its counterparts, other models,
when relying solely on few-shot learning, of-
ten lag behind models trained from scratch.

2. Fine-tuning invariably enhances performance,
particularly for models that struggle with few-
shot learning and for translating documents. It
can transform a seemingly inadequate model
into a top-tier translation model, as seen with
bloomz-7.1b.

3. QLoRA, due to its efficiency, can be a superior
alternative to original fine-tuning methods.

4. Fine-tuning LLMs with QLoRA can be a
promising and new paradigm for machine
translation practice.

In the future, we are interested in exploring two
primary avenues. (1) While our current study
demonstrates the promise of LLMs trained on
English-centric data for French-to-English trans-
lations, it raises intriguing questions: Would these
results hold true for other language pairs, espe-
cially for low-resource languages? And would
there be a noticeable difference in performance
between English-centric and multilingual LLMs
in such scenarios? (2) Our experiments are con-
fined to decoder-based LLMs. Moving forward,
we are also interested in comparing these models
against their encoder-decoder counterparts, such as
mT5(Xue et al., 2021), mBART (Liu et al., 2020),
NLLB (Costa-jussà et al., 2022).
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Limitations

Single dataset and language pair Our exper-
iments are confined to a single dataset and the
French-English language pair. It remains unclear if
our findings are generalizable to other datasets and
language pairs.

Medium-sized LLMs We have only experi-
mented with medium-sized LLMs due to computa-
tional resource constraints. The necessity of fine-
tuning for significantly larger LLMs remains an
open question.
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A TER on Sentence-level Translations

The Translation Edit Rate (TER) is a metric
introduced by Snover et al. (2006) to quantify
the amount of human editing required to align
a system’s output with a reference translation.
Specifically, TER is calculated as the ratio of the
total edits made to the length of the reference
translation. Such edits encompass insertions, dele-
tions, single-word substitutions, and shifts in word
sequence. A lower TER indicates better alignment
with the reference. As illustrated in Figure 5,
when evaluated using TER, LLMs do not exhibit a
noticeable improvement over the baseline model.

Figure 5: Prompting (P) vs. QLoRA fine-tuning (FT) on sentence-level translation using various pretrained LLMs.
Baseline is the NMT system described in Section 4.2. Rank r for QLoRA is set to 64.
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Abstract

Resolving semantic ambiguity has long been
recognised as a central challenge in the field of
Machine Translation. Recent work on bench-
marking translation performance on ambiguous
sentences has exposed the limitations of con-
ventional Neural Machine Translation (NMT)
systems, which fail to handle many such cases.
Large language models (LLMs) have emerged
as a promising alternative, demonstrating com-
parable performance to traditional NMT mod-
els while introducing new paradigms for con-
trolling the target outputs. In this paper, we
study the capabilities of LLMs to translate
“ambiguous sentences" - i.e. those contain-
ing highly polysemous words and/or rare word
senses. We also propose two ways to improve
their disambiguation capabilities, through a)
in-context learning and b) fine-tuning on care-
fully curated ambiguous datasets. Experiments
show that our methods can match or outper-
form state-of-the-art systems such as DeepL
and NLLB in four out of five language direc-
tions. Our research provides valuable insights
into effectively adapting LLMs to become bet-
ter disambiguators during Machine Translation.
We release our curated disambiguation corpora
and resources at https://data.statmt.org/
ambiguous-europarl.

1 Introduction

While the field of NMT has advanced rapidly in
recent times, the disambiguation and translation of
ambiguous words still remain an open challenge.
Notably, Campolungo et al. (2022) created a bench-
mark named DiBiMT to study the behaviour of
state-of-the-art (SOTA) NMT systems when trans-
lating sentences with ambiguous words.1 They
reported that even the best-performing commercial
NMT systems yielded accurate translations only

1https://nlp.uniroma1.it/dibimt/public/
leaderboard

Source The horse had a blaze between its eyes.

DeepL 那匹马的两眼之间有一团火焰。
(There is a flame between the horse’s eyes.)

BLOOMZ
(176B)

这匹马的眼睛之间有一道白线。
(There is a white line between the horse’s eyes.)

Table 1: An example of English-to-Chinese translation
involving an ambiguous term “blaze”. For BLOOMZ,
we use 1-shot prompting to obtain the translation.

50-60% of the time,2 while other open-source mul-
tilingual models like mBART50 (Tang et al., 2021)
and M2M100 (Fan et al., 2021) performed much
worse. This was found to be due to biases against
rare and polysemous word senses inherited during
pretraining. Table 1 shows an example from the
DiBiMT benchmark where DeepL3 mistranslates
an ambiguous word while the LLM BLOOMZ re-
solves the word to its correct in-context meaning.

In this paper, we explore whether LLMs can
indeed perform better at translating “ambiguous
sentences" – i.e. those containing highly polyse-
mous and/or rare word senses. The motivation be-
hind this is that while NMT models can potentially
learn biases from noisy or narrow domain parallel
data, hurting their ability to detect and translate rare
word senses, LLMs can potentially be pretrained
on a wider variety of monolingual text – though
they might also prefer fluency over accuracy. Still,
LLMs have shown many emergent abilities due to
scale (Brown et al., 2020; Chowdhery et al., 2022;
Wei et al., 2022a) and moreover, have demonstrated
great potential for Machine Translation (MT) (Vilar
et al., 2023; Zhang et al., 2023).

We comprehensively examine how these trends
extend to the specific task of translating ambigu-
ous sentences. We select a diverse set of foun-
dational and instruction-tuned LLMs, of different

2Subsequent iterations of these commercial models have im-
proved, but large margins still remain.

3https://deepl.com/en/translator
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sizes and with varying combinations of languages
in the pre-training data. We then compare how
these LLMs match up against several widely used
NMT models on the DiBiMT test set, which covers
translation from English to five languages: Span-
ish, Italian, German, Russian and Chinese. We find
that, with only 1-shot in-context learning (Brown
et al., 2020), LLMs – in particular, BLOOMZ
176B (Muennighoff et al., 2023) and LLaMA 65B
(Touvron et al., 2023) – match or outperform top-
performing open-source and commercial MT sys-
tems, and set a new SOTA in two of the five lan-
guages we tested. Furthermore, we propose two
methods for adapting LLMs for ambiguous transla-
tion: 1) in-context learning with sentences having
the same word sense, and 2) fine-tuning on curated
ambiguous parallel corpora. We show that these
methods are highly effective and can further im-
prove performance by up to 15 points in DiBiMT
accuracy in the best case.

Our work thus makes three key contributions:

1. We evaluate the performance of LLMs com-
pared to top-performing NMT systems in the
challenging task of translating ambiguous sen-
tences. We report SOTA scores on 2 of the
5 languages tested, and comparable perfor-
mance otherwise.

2. We also show that our suggested techniques
of similar sentence in-context learning and tar-
geted disambiguation fine-tuning significantly
outperform naive few-shot prompting

3. We conclude our work by evaluating LLMs on
the FLORES200 test sets, and confirm that im-
provements in disambiguation accuracy corre-
late strongly with those in overall MT quality.

2 Background

2.1 Ambiguity in machine translation

Resolving ambiguity in the source sentence was
historically framed as one of the most fundamen-
tal challenges in MT (Weaver, 1952). In an effort
to address this challenge, traditional works inte-
grating Word Sense Disambiguation in Statistical
Machine Translation (Carpuat and Wu, 2007; Chan
et al., 2007) were followed by those integrating it
in NMT architectures in various ad-hoc ways (Choi
et al., 2017; Liu et al., 2018; Pu et al., 2018). Later,
with the introduction of the Transformer (Vaswani
et al., 2017), it was shown that higher layer encoder

representations are robust enough to handle disam-
biguation (Tang et al., 2019) without any explicit
handling of word senses.

However, more recent research creating challeng-
ing evaluation benchmarks has called the purported
abilities of NMT systems into question once again.
Following the proposal of the MuCoW benchmark
for testing WMT19 (Raganato et al., 2019) and
WMT20 (Scherrer et al., 2020) systems, Raganato
et al. (2020a) showed how Transformer-based
NMT models, in general, underperform when
translating rare word senses. Campolungo et al.
(2022), who experimented with SOTA commercial
(Google Translate, DeepL) and open-source sys-
tems (mBART50, M2M100, OPUS-NMT (Tiede-
mann and Thottingal, 2020), etc.), arrived at the
same conclusion when they proposed the DiBiMT
benchmark for evaluating MT systems between En-
glish and 5 languages (Spanish, Italian, German,
Russian, and Chinese). They found similar biases
against low-frequency and highly polysemous word
senses. They also noted the accuracies of these sys-
tems were much lower than the then SOTA WSD
system, ESCHER (Barba et al., 2021) – indicating
significant room for improvement. In this work,
we explored whether foundational and instruction-
tuned LLMs could bridge this gap with minimal
supervision (i.e. few-shot prompting).

2.2 LLMs and machine translation

Previous research has found that LLMs can per-
form machine translation without being specifically
fine-tuned (Radford et al., 2019). In order to elicit
a translation, research in this direction follows the
paradigm of LLM prompting:

1. Zero-shot prompting, where an LLM is di-
rectly asked to translate a source input into
the target language (Radford et al., 2019).

2. Few-shot prompting, also called in-context
learning, where an LLM is supplied with
demonstrations of input and output pairs from
the same task it is performing, before being
queried an input (Brown et al., 2020).

3. Chain-of-thought (CoT), where an LLM is
prompted to reason to gain relevant knowl-
edge about the input before producing an out-
put (Wei et al., 2022b; Kojima et al., 2022).

Besides training-free approaches, another route is
instruction tuning, which optimizes an LLM on a
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mixed range of downstream tasks and fine-tunes the
model to understand and respond to user intention
through natural language (Wei et al., 2021).

It was observed that LLMs might not surpass
Transformer models solely trained to translate, es-
pecially for non-English and low-resource trans-
lation directions (Vilar et al., 2023; Hendy et al.,
2023). Nevertheless, LLMs have been shown to
achieve superiority in tasks requiring in-depth un-
derstanding and manipulation of text, primarily
due to them being pretrained on very large cor-
pora. For example, without fine-tuning, LLMs
are good at adapting to word alignments (Moslem
et al., 2023), translation evaluation (Kocmi and Fe-
dermann, 2023), idiom translation (Raunak et al.,
2023), iterative refinement (Chen et al., 2023), and
interactive translation via CoT (Pilault et al., 2023;
He et al., 2023). Related to our work is Pilault
et al. (2023)’s proposal of using interactive question
answering as a CoT process for LLMs to disam-
biguate source words. As an alternative approach,
we aim to generate translations in a single pass by
leveraging SOTA WSD systems to provide contexts
that guide LLMs to disambiguate better.

3 Methodology

3.1 Preliminaries

A word sense is a concept in a Knowledge Base
(in this work, BabelNet by Navigli et al. (2021))
that denotes a distinct meaning of a word in the
context of a sentence. The polysemy degree of an
ambiguous word is defined as the total count of
all possible senses that a particular word can have.
The sense frequency is defined as the occurrence
count of that particular sense in a disambiguated
training corpus.

In this work, we define an ambiguous word as a
polysemous term with multiple possible, and likely
related, meanings – with the correct sense inferable
only from the sentence-level context. We then re-
fer to a sentence with an ambiguous word as an
“ambiguous sentence” for brevity and ease of expla-
nation. By definition, the DiBiMT test set (Cam-
polungo et al., 2022) contains only one ambiguous
word per sentence.

Word Sense Disambiguation (WSD) is the pro-
cess of linking an ambiguous word in a sentence
to its appropriate word sense in the Knowledge
Base. We use ESCHER-WSD (Barba et al., 2021)
in this work, a high-performing WSD system that
had achieved the SOTA for English.

3.2 K-shot prompting

Given a test sentence X and a Large Language
Model to prompt for translations, we construct a
query with k demonstrations, i.e. parallel sentence
pairs {(X1, Y1), (X2, Y2) . . . (Xk, Yk)} as exam-
ples, followed by the test sentence. As shown
in Figure 1, for foundation LLMs, we frame
the prompt as a text completion task, while for
instruction-tuned LLMs (like BLOOMZ) we struc-
ture the last phrase as a question, in order to con-
form to the latter’s question answering format. In
the naive setting, we choose our demonstrations
randomly from the development set.

3.3 In-context learning with similar
ambiguous contexts

LLMs can effectively gain knowledge relevant to
the test domain through prompting, and this process
is named in-context learning (ICL). We leverage
ICL to help LLMs ingest information on translation
of ambiguous sentences, by providing related sense
translations as examples in the prompt. To achieve
this, we first identify the most polysemous word
in the input sentence by disambiguating it with a
WSD system, and then calculate the polysemy de-
gree of all disambiguated senses with respect to a
large development set. We choose the most polyse-
mous word sense4 and search for other occurrences
of the same sense in the same development set. Fi-
nally, we randomly sample k source-target pairs
including such a sense to use as demonstrations in
k-shot prompting, instead of using random pairs.
This technique seemed to return enough examples
for our purposes in most cases – for 5-shot prompt-
ing, given a corpus of 1.8M sentences, we observed
that we got all 5 matches 92.5% of the time.

3.4 Low-rank fine-tuning

Apart from providing relevant examples through
prompting, another conventional approach is to op-
timize the model parameters in a domain adaptation
fashion for disambiguation. Considering the com-
putational cost, our work experiments with instruc-
tion fine-tuning via low-rank adaptation (LoRA).
This technique appends trainable lower-rank de-
composition matrices to giant matrices in an LLM

4Currently, we only explore the case of one ambiguous word
per sentence, due to the nature of the benchmark. One could
extend our approach to multiple ambiguous words by sepa-
rately sampling examples for each polysemous word and con-
ducting higher-shot prompting - but further research would
be needed to find the optimal way to combine these examples.
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Translate the following sentence from {src_lang} to {tgt_lang}: {src_demo1}

The translation in {tgt_lang} is: {tgt_demo1}

Translate the following sentence from {src_lang} to {tgt_lang}: {src_demok}
The translation in {tgt_lang} is: {tgt_demok}

Translate the following sentence from {src_lang} to {tgt_lang}: {src_test}
The translation in {tgt_lang} is:

k demonstrations

[FOUNDATION LLM]

OR

Translate the following sentence from {src_lang} to {tgt_lang}: {src_test}
Can you translate the input sentence to {tgt_lang}?

[INSTRUCTION-TUNED LLM]

Figure 1: Templates used for k-shot LLM prompting, with k >= 0.

that can remain frozen during fine-tuning (Hu et al.,
2021). By sacrificing a little performance, this fine-
tuning method achieves great parameter efficiency.
We aim to adjust LLMs to perform the translation
task specifically. In order to maximise an LLM’s
capability to disambiguate when translating, we fol-
low a careful data selection procedure to identify
the most ambiguous sentences in our corpus.

Given the size of LLMs, it would be infeasible
to fine-tune them on a large parallel corpus, so we
opt to curate a smaller dataset that suits the am-
biguous translation task. We would like a balanced
mix of sentences with highly polysemous words
as well as those with rare senses of a given word.
This is to ensure fine-tuning reduces both polysemy
degree-related and sense frequency-related biases,
as discovered by Campolungo et al. (2022) and con-
sequently, maximises disambiguation performance.
We, thus, sort our corpora in two ways: one, by the
maximum polysemy degree (greatest first) and two,
by the minimum sense frequency (rarest first) of
all word senses in a given sentence, disambiguated
with ESCHER-WSD. We take the top N/2 sen-
tences from each set and interleave them to create
our final fine-tuning corpus of size N . We release
our fine-tuning corpus, along with the ESCHER-
WSD disambiguation outputs for public use.5

Once the data is chosen, we follow the fine-
tuning paradigm of Alpaca (Taori et al., 2023): the
model is prompted with an instruction specifying
the source and target languages, as well as the test
sentence as an input, and the model is expected to
respond with the translation.6

5https://data.statmt.org/ambiguous-europarl
6https://github.com/tatsu-lab/stanford_alpaca

4 Experiments

In this section, we seek to answer the following
research questions:

1. RQ1: How do LLMs perform at translation of
ambiguous sentences compared to traditional
high-performing NMT systems? (Section 4.3)

2. RQ2: What methods could one use to adapt
LLMs for this task and improve performance
over naive few-shot prompting? (Section 4.4)

3. RQ3: How do these disambiguation-adapted
LLMs fare in terms of overall translation qual-
ity? (Section 4.5)

4.1 Models
To ensure reproducibility, we pick four well-known
and high-performing open-source LLMs,7 of which
we sample seven versions for experimentation:

• BLOOM (Scao et al., 2022): A fully open-
source, multilingual, foundation LLM that
supports 46 languages. To establish the range
of its capabilities, we explore both the small-
est (7.1B) and the largest (176B) versions.

• BLOOMZ (Muennighoff et al., 2023):
BLOOM instruction-tuned on a multilingual
prompting set. Again, we choose the smallest
(7.1B) and the largest (176B) versions.

• LLaMA (Touvron et al., 2023): The popular
LLM trained by Meta AI, on gigantic datasets
ranging up to 1.5T tokens. We evaluate the
smallest (7B) and the largest (65B) versions.

7at the time of experiment formulation

485



• Alpaca (Taori et al., 2023): A LLaMA model
instruction-tuned on a 52K dataset generated
using Self-Instruct (Wang et al., 2023).

To effectively position these open-source LLMs
against traditional NMT systems, we compare them
against the best-performing and the most widely
used commercial and open-source models:

1. DeepL Translator8: a SOTA commercial
NMT system (accessed on 24th July 2023).

2. Google Translate9: Probably the most widely
used commercial NMT system (accessed on
24th July 2023).

3. OPUS (Tiedemann and Thottingal, 2020):
Small, bilingual, Transformer-based NMT
models trained on the OPUS parallel corpora.

4. mBART50 (Tang et al., 2021): Multilingual
NMT models pretrained on monolingual cor-
pora from 50 languages, and fine-tuned on the
translation task. We report performances of
both the English-to-many and many-to-many
fine-tuned models.

5. M2M100 (Fan et al., 2021): A massive mul-
tilingual NMT model that was trained on
2200 translation directions to support many-
to-many translation among 100 languages in
total. We compare both the base (418M) and
the large (1.2B) versions.

6. NLLB-200 (NLLB Team et al., 2022): It is
the current SOTA in many low-resource pairs,
scaling to 200 languages. We experiment with
all its variants, where the largest is a mixture-
of-experts (MoE) model with 54B parameters.
We also benchmark its smaller checkpoints at
1.3B and 3.3B, as well as distilled versions at
0.6B and 1.3B.

We take the results for mBART50, M2M100,
and OPUS directly from the DiBiMT leader-
board.10 We use Hugging Face11 for accessing and
inferencing all other models – except for Google
Translate and DeepL, which are accessed using
their respective APIs. Despite their presence on
the leaderboard, we re-evaluate these systems since
they are being constantly updated.
8https://www.deepl.com/en/translator
9https://translate.google.com/
10https://nlp.uniroma1.it/dibimt/public/
leaderboard

11https://huggingface.co/

System En-Es En-It

Similar contexts dev set 1.81M 1.73M
Fine-tuning corpus 100K 100K

Table 2: Statistics of data used in our experiments, in
terms of parallel sentence count.

4.2 Experimental setup
Datasets In this study, we use the DiBiMT test
set for evaluation and measure accuracy across all
five translation directions: English to Spanish, Ital-
ian, Chinese, Russian, and German, respectively.
For validation, we use the development set from
FLORES 200 (NLLB Team et al., 2022) in our
base setting. To search for similar ambiguous con-
texts (Section 3.3), we require a larger develop-
ment set to find relevant examples and also to ac-
curately estimate polysemy degree. Hence, we use
the Europarl corpus (Koehn, 2005), disambiguated
with ESCHER-WSD. We also use the same disam-
biguated corpus for fine-tuning, however, we first
follow the filtering procedure described in Section
3.4 to create a small corpus full of ambiguous sen-
tences. Validation during fine-tuning is done using
500 randomly sampled sentences from this corpus
and the rest is used for training. We detail the data
statistics used for these experiments in Table 2.

LLM prompting setup Due to memory con-
straints, and to compare all models fairly, we load
LLMs in 8-bit and use a batch size of 1. For gen-
eration, we set both beam size and temperature to
1. To prevent repetition in LLM output, we set
no_repeat_ngram_size to 4. From the LLM’s re-
sponse, we filter out the sentence before the first
newline character as the output translation.

LoRA fine-tuning We inject LoRA modules into
all query, key, and value matrices. We set rank to
8, alpha to 8, and dropout to 0.05. For training, we
set the effective batch size to 32, the learning rate
to 3e-4, and the maximum length to 256. The total
training budget is 5 epochs, and we pick the best
model checkpoint based on cross-entropy loss on
the validation set. The training data is shuffled after
every epoch. Inference is done with a beam size of
3, and a maximum generation length of 150.

4.3 LLMs vs NMT systems on DiBiMT
We show our results in Table 3. For the subsequent
discussion, we note that LLaMA was not intention-
ally trained on Chinese and is, thus, an ‘unseen’
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System # Params Variant En-Es En-It En-Zh En-Ru En-De Average

Commercial systems

DeepL Unknown July 2023 63.91 65.47 58.42 67.53 76.64 66.39
Google Translate Unknown July 2023 54.73 53.59 52.09 62.03 67.35 57.96

Open-source NMT systems

OPUS 74M Bilingual En-X models 36.79 29.93 25.94 28.71 27.04 29.68

mBART50 611M One-to-Many 31.31 26.62 26.63 30.93 26.43 28.38
611M Many-to-Many 29.98 25.89 28.12 27.54 24.25 27.16

M2M100 418M Base 22.35 17.27 12.34 17.01 15.62 16.92
1.2B Large 28.81 23.16 17.30 27.03 22.87 23.83

NLLB-200

0.6B Distilled version 40.93 36.38 28.64 47.13 33.41 37.30
1.3B Distilled version 50.40 53.65 41.15 54.52 52.81 50.51
1.3B Original checkpoint 48.81 48.43 37.31 54.36 48.93 47.57
3.3B Original checkpoint 53.23 57.23 39.95 57.44 56.24 52.82
54B Mixture of Experts 61.33 67.19 48.02 67.88 67.97 62.48

LLaMA family LLMs

LLaMA

7B
1-shot prompting 53.64 48.84 30.61† 60.65 57.41 50.23
3-shot prompting 55.53 50.53 30.52† 57.31 55.34 49.85
5-shot prompting 56.33 48.66 27.92† 56.83 55.26 49.00

65B
1-shot prompting 56.57 60.22 44.73† 65.71 62.05 57.86
3-shot prompting 59.83 60.18 42.77† 67.45 63.41 58.73
5-shot prompting 60.78 63.47 42.49† 66.31 62.98 59.21

Alpaca 7B 0-shot prompting 49.75 45.24 29.63† 55.23 51.52 46.27

BLOOM family LLMs

BLOOM

7.1B 1-shot prompting 55.69 28.79† 51.08 40.00† 29.67† 41.05

176B
1-shot prompting 63.66 42.02† 60.30 43.22† 37.04† 49.25
3-shot prompting 64.52 46.33† 61.20 44.30† 36.69† 50.61
5-shot prompting 65.53 45.99† 61.73 42.92† 38.06† 50.85

BLOOMZ

7.1B 0-shot prompting 56.89 33.91† 53.2 33.33† 21.67† 39.80
1-shot prompting 60.87 40.68† 52.37 33.33† 30.65† 43.58

176B

0-shot prompting 62.67 45.78† 61.87 47.98† 44.06† 52.47
1-shot prompting 64.35 49.31† 66.57 51.88† 43.92† 55.21
3-shot prompting 67.31 45.91† 64.44 53.42† 45.08† 55.23
5-shot prompting 68.55 49.22† 63.36 52.60† 44.94† 55.73

Table 3: Accuracies on DiBiMT test for establish NMT systems and LLMs, using naive k-shot prompting. For
Alpaca, we can only use 0-shot prompting due to its particular prompt template. We highlight the top three scores
per language in bold, with the best underlined as well, the 2nd best as is, and the 3rd best italicized. We indicate
scores for unseen languages (ie. not intentionally included in pretraining) with a †.

language. Similarly, for BLOOM, Chinese and
Spanish are “seen” and the rest are “unseen”. We
share our key observations below:

1. LLMs usually match or beat massive MT
models on seen languages. Except for the
very rich-resourced En-De, where supervised
MT systems appear to have an edge, LLaMA
65B mostly matches the SOTA NMT systems
(namely DeepL and NLLB-200). Further-
more, BLOOMZ sets a new SOTA in its seen
languages, Spanish and Chinese, and outper-
forms DeepL by margins of 7.3% and 12.2%

respectively. These improvements against
such strong, supervised massive NMT sys-
tems are particularly remarkable since our cor-
responding setup for inferencing the LLMs
is quite cheap – as we noted previously, this
is only naive few-shot prompting of an 8-bit
quantized model, with a beam size of 1.

2. LLMs perform relatively worse for unseen
languages, but they can still be much better
than some supervised MT models. We note
that relative to seen languages, LLaMA under-
performs in translation to Chinese. Similarly,

487



BLOOM performs worse for its’ unseen lan-
guages of German, Italian, and Russian. Still,
LLMs yield reasonable performance here that
is still much better than some supervised
NMT systems. For example, BLOOMZ-7B
achieves 40.68% accuracy in English-Italian,
which is about 35.9% more than OPUS, 52.8%
more than mBART50 and 75% more than
M2M100-1.2B. While NLLB-200 does out-
perform BLOOMZ-7B, our results just high-
light the power of pretraining at scale.

3. Scale helps improve performance for am-
biguity translation. Continuing from the
last point, similar to NMT models that im-
prove with scale (e.g. NLLB-200), we observe
that LLMs too perform consistently better at
ambiguous translation on scaling up to their
larger variants. This applies to the transla-
tion of both seen and unseen languages. That
said, the lighter models, such as LLaMA 7B
or BLOOM 7B, also perform quite well and in
many cases, 1-shot prompting of these LLMs
is almost as good as NLLB translations.

4. LLM performance does improve on aver-
age with more demonstrations, but this is
not uniform. On average, we observe that
5-shot prompting works best, followed by 3-
shot and then 1-shot, though some outliers
exist for LLaMA 7B. Moreover, when look-
ing at the performance of individual language
pairs, we note that the improvement trend
is not uniform, and it is possible a 3-shot
translation outperforms a 5-shot one. This
aligns with the finding of Zhang et al. (2023),
who reach the same conclusion regarding over-
all MT quality. Nonetheless, as we show in
Section 4.4.1, accuracy does significantly im-
prove when we provide relevant and helpful
examples – suggesting quality of demonstra-
tions matters more than quantity.

5. General-purpose instruction-tuned LLMs
consistently outperform foundation LLMs.
Interestingly, we observe that 1-shot prompt-
ing of a general-purpose instruction-tuned
LLM like BLOOMZ often significantly out-
performs 5-shot prompting of BLOOM, even
on the very specific task of ambiguity trans-
lation. In fact, even with 0-shot prompting,
models like Alpaca 7B, BLOOMZ 7B and
BLOOMZ 176B perform reasonably well,

matching some supervised MT systems. We
observed that this did not work for foundation
LLMs like BLOOM 165B and LLaMA 7B,
and 0-shot prompting of these models yielded
hallucinations in many cases.

Lastly, we include a qualitative comparison of
DeepL and BLOOMZ 176B translations for the En-
Zh pair in the Appendix (see Table 8) – where we
observe that BLOOMZ generates more contextual
translations, relatively speaking, while its counter-
part tends to translate literally in many cases.

4.4 Adapting LLMs for ambiguous MT
This section reports experiments with two proposed
strategies to enable LLMs to disambiguate bet-
ter and improve performance on the ambiguous
translation task. While both methods are shown
to significantly improve performance, we include
a discussion of the relative tradeoffs between the
techniques in Appendix A.2.

4.4.1 Improving In-Context Learning by
leveraging similar ambiguous contexts

Rather than selecting our examples randomly as
in our naive setting, we employ the data selection
procedure described in Section 3.3 to discover other
examples that contain the same word sense as the
most polysemous sense in the input sentence. We
report our scores in Table 4, and our findings below:

1. Similar contexts yield more improvements
as the example count increases We observe
that for 1-shot prompting, similar contexts per-
form comparably or slightly better than ran-
dom examples. However, the gains increase
substantially as we move towards 3-shot and 5-
shot prompting. We can understand this from
the intuition that 1-shot prompting likely just
guides the LLM towards generating a reason-
able translation, whereas with more relevant
examples, it learns to disambiguate better and
translate in context accordingly.

2. Larger models observe greater and more
consistent gains than smaller LLMs Com-
pared to LLaMA 7B, the other LLMs
(LLaMA 65B, BLOOM 176B and BLOOMZ
176B) yield much larger accuracy improve-
ments on a more uniform basis. This is proba-
bly because scaling up allows LLMs to model
polysemous words better in their semantic
space, facilitating effective in-context learning
of disambiguation capabilities.
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System 1-shot 3-shot 5-shot

Rand. Sim. Rand. Sim. Rand. Sim.

DeepL —63.91—
NLLB-200 54B —61.33—
LLaMA 7B 53.64 54.01 55.53 52.52 56.33 54.45
LLaMA 65B 56.57 59.38 59.83 62.44 60.78 63.74
BLOOM 176B 63.66 62.44 64.52 66.19 65.53 68.22
BLOOMZ 176B 64.35 69.57 67.31 71.15 68.55 71.33

(a) English-Spanish

System 1-shot 3-shot 5-shot

Rand. Sim. Rand. Sim. Rand. Sim.

DeepL —65.47—
NLLB-200 54B —67.19—
LLaMA 7B 48.84 49.47 50.53 53.85 48.66 52.17
LLaMA 65B 60.22 59.77 60.18 64.94 63.47 65.33
BLOOM 176B 42.02 43.17 46.33 48.09 45.99 50.00
BLOOMZ 176B 49.31 49.60 45.91 50.73 49.22 50.53

(b) English-Italian

Table 4: 1-shot, 3-shot and 5-shot results for En-Es and En-It prompting with randomised examples (Rand.) versus
similar contexts (Sim.). The best-performing systems from Table 3, i.e. DeepL and NLLB-200 are chosen as
baselines. For LLMs, for each setting, the better-performing baseline between Rand. and Sim. is highlighted in
bold. The overall best score (among all LLMs) is underlined as well, while the best NMT system is also italicized.

4.4.2 Fine-tuning with ambiguous corpora
We fine-tune Alpaca 7B, BLOOM 7B and
BLOOMZ 7B in En-Es and En-It directions us-
ing the data described in Section 4.2. We show our
results when prompting these fine-tuned LLMs in
Table 5. We make the following observations:

1. Fine-tuning generally improves perfor-
mance. We observe that fine-tuned LLMs sig-
nificantly outperform their non-finetuned ver-
sions in most cases. The biggest improvement
is observed for BLOOM 7B in En-It, where
accuracy increases by as high as 47.73%, in-
dicating the effectiveness of our method. The
only exception to this is when the LLM is al-
ready strong, such as BLOOMZ 7B at En-Es,
and then the improvements are marginal. But
even so, strong instruction-tuned LLMs like
BLOOMZ still gain significantly from fine-
tuning on the En-It pair – where it was orig-
inally weaker due to Italian being an unseen
language during pretraining.

2. Best Cross Entropy does not necessarily
translate to best disambiguation accuracy.
Looking at Table 5, we note that the check-
points with the best cross-entropy fall short of
the topline with the best DiBiMT accuracies,
suggesting the former is not an optimal metric
for this task. Future work could benefit from
using disambiguation-specific metrics for val-
idation, leveraging other ambiguous test sets
like MuCoW (Raganato et al., 2020b).

3. Fine-tuning for 2-3 epochs is sufficient.
We plot the DiBiMT accuracy versus epoch
curves in Figure 2 where the performance is
evaluated after each epoch. We observe that in

all cases, accuracy peaks between the 1st and
the 3rd epoch, after which it mostly plateaus
or dips slightly - suggesting that one does not
need to fine-tune these LLMs for too long.

4. Fine-tuning improves LLM performance
until about 65K training samples. We now
try to answer the Research Question of how
many training samples we need for fine-tuning
these LLMs, to get optimal performance. We
plot the Accuracy vs corpus size graph in Fig-
ure 3, where we indicate corpus size by the
number of parallel sentences. We observe that
accuracy increases non-monotonically with an
increase in corpus size, but peaks anywhere
between 36K-63K training samples, which
seems to depend on the pre-existing capabili-
ties of the LLM. For a raw foundation LLM
like BLOOM 7B, relatively more fine-tuning
data (54K-63K) appears to be beneficial. Al-
paca 7B, which has been instruction-tuned on
an English-only dataset, also seems to benefit
from further fine-tuning—especially for En-
Es, accuracy peaks after 63K training samples.
However, for a powerful LLM like BLOOMZ
that has been instruction-tuned on a large mul-
tilingual dataset like xP3 (Muennighoff et al.,
2023), fine-tuning on smaller datasets (at most
36K sentences, in our case) appears to suffice.

4.5 Overall MT performance of
disambiguation-adapted LLMs

Lastly, for completeness, we evaluate the overall
translation quality of the key LLMs used in this
work, since we are interested in noting how well
the reported disambiguation accuracies extend to
overall MT performance. For our test set, we want
to choose one recently released (ideally within the
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System
En-Es En-It

Alpaca 7B BLOOM 7B BLOOMZ 7B Alpaca 7B BLOOM 7B BLOOMZ 7B

w/o FT 49.75 55.69 60.87 45.24 28.79 40.68
FT (Best Cross-Entropy Loss) 63.27 57.86 60.39 59.62 37.72 39.73

FT (Best Attained Acc.) 63.31 59.72 61.56 59.77 42.40 44.73

Table 5: DiBiMT Accuracies after fine-tuning Alpaca 7B, BLOOM 7B, and BLOOMZ 7B on En-Es and En-It
pairs. The second row indicates checkpoints with the best cross-entropy loss on the validation set, while the last row
shows the one with the best attained DiBiMT accuracy when evaluating after each epoch, and serves as a “topline”.

(a) English-Spanish (b) English-Italian

Figure 2: DiBiMT accuracy at the end of every epoch, for the LoRA fine-tuned LLMs

(a) English-Spanish (b) English-Italian

Figure 3: DiBiMT accuracy vs fine-tuning (FT) corpus size in terms of parallel sentence count. These results are
obtained from evaluating checkpoints at every 300 steps in the 1st epoch - which roughly corresponds to about 9K
sentences, since we use a batch size of 32.

last year) to minimize the chances of its inclusion
in the pretraining corpora of LLMs. We, thus, use
FLORES 200 (NLLB Team et al., 2022) as our
test set since it satisfies this criterion and also sup-
ports all our languages of evaluation. We use sp-
BLEU12 (Goyal et al., 2022), chrF++13 (Popović,
2017) and COMET22 (Rei et al., 2022) using the
wmt22-comet-da model as metrics. In this setting,
we evaluate Alpaca with 0-shot prompting, while
LLaMA 7B, LLaMA 65B and BLOOM 176B use

12nrefs:1|case:mixed|eff:no|tok:flores101|smooth:
exp|version:2.3.1

13nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:
no|version:2.3.1

the 1-shot setup. NLLB-200 is our primary su-
pervised NMT baseline. We also evaluate LoRA
fine-tuned versions of Alpaca 7B and BLOOM 7B,
from section 4.4.2, on the English-Spanish and
English-Italian pairs. We exclude BLOOMZ from
this evaluation since it is instruction-tuned on FLO-
RES200. We report our results in Table 6.

We observe trends similar to those of our
DiBiMT experiments. BLOOM 176B performs
well in translation of seen languages, performing
comparably to NLLB-200 in English-Spanish and
outperforming it in English-Chinese. This is par-
ticularly the case for COMET22 scores, a metric
which has shown high correlations with human
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System En-Es En-It

spBLEU chrF++ COMET22 spBLEU chrF++ COMET22

NLLB-200 54B 32.50 53.79 0.86 37.60 57.33 0.89
Alpaca 7B (0-shot) 23.90 47.30 0.83 23.30 46.40 0.83
LLaMA 7B (1-shot) 23.20 46.20 0.82 22.10 45.00 0.82
LLaMA 65B (1-shot) 27.20 49.70 0.83 28.50 50.50 0.85
BLOOM 7B (1-shot) 24.00 46.30 0.82 10.00† 33.40† 0.63†

BLOOM 176B (1-shot) 28.60 51.20 0.85 20.80† 45.20† 0.81†

Alpaca 7B (FT, 0-shot) 27.40 50.20 0.85 29.20 51.40 0.87
BLOOM 7B (FT, 0-shot) 28.70 51.00 0.86 20.90 45.80 0.80

System En-Zh En-Ru En-De

spBLEU chrF++ COMET22 spBLEU chrF++ COMET22 spBLEU chrF++ COMET22

NLLB-200 54B 23.10 22.83 0.82 38.00 56.34 0.90 44.80 62.79 0.88

Alpaca 7B (0-shot) 4.80† 10.40† 0.62† 21.80 42.60 0.82 27.30 50.30 0.82
LLaMA 7B (1-shot) 5.60† 10.80† 0.66† 20.70 41.20 0.79 22.80 45.40 0.78
LLaMA 65B (1-shot) 13.80† 17.60† 0.77† 26.70 46.10 0.82 31.80 52.80 0.81
BLOOM 7B (1-shot) 19.00 19.50 0.83 3.70† 22.30† 0.46† 8.20† 31.70† 0.51†

BLOOM 176B (1-shot) 25.10 23.80 0.86 10.30† 31.80† 0.65† 19.90† 45.40† 0.74†

Table 6: FLORES 200 results for k-shot prompting of some key LLMs used in this work, compared with the
NLLB-200 baseline. We also include results for the LoRA fine-tuned models, for the En-Es and En-It pairs. Same
as the previous notation, we indicate all unseen language results with a †. We observe similar trends in all standard
MT metrics, as those observed with DiBiMT accuracy.

spBLEU
w/ acc.

ChrF++
w/ acc.

COMET22
w/ acc.

ρ 0.83 0.56 0.76
p-value 0.0001 0.0039 0.0010

Table 7: Pearson’s correlation ρ (Benesty et al., 2009)
between DiBiMT accuracy and spBLEU, chrF++, and
COMET22 respectively, together with p-values.

evaluation, ranking second in the WMT22 Metrics
shared task (Freitag et al., 2022). For the other
languages, LLaMA 65B usually performs better
than BLOOMZ, but in the 1-shot prompting setup,
it is unable to beat the NLLB-200 54B MOE. We
also notice that the fine-tuned versions of Alpaca
7B and BLOOM 7B consistently outperform their
vanilla counterparts – suggesting our techniques
to improve disambiguation performance also boost
overall translation quality.

Thus, while we evaluate key LLMs to verify con-
sistency in trends, we avoid re-running all our base-
lines on FLORES200. Instead, we try to answer a
broader question: how well does DiBiMT disam-
biguation accuracy correlate with standard MT met-
rics? We conduct a Pearson’s correlation test (Ben-
esty et al., 2009) between the accuracy metric and
spBLEU, chrF++, and COMET22 respectively. We
report our results in Table 7, and find that all MT
quality metrics correlate positively with accuracy—

with p-values of the two-sided alternative hypothe-
sis being much lesser than 0.05 in all cases. We dis-
cover that spBLEU and COMET22 exhibit higher
correlations than chrF++. We hypothesize that this
could be due to the character-level chrF++ being
less sensitive to word-level senses. Overall, the
results of Tables 6 and 7 suggest that the significant
accuracy improvements noted earlier are not at the
cost of translation quality, and in turn, could yield
improvements in overall MT scores too.

5 Conclusion

In this work, we studied the capabilities of LLMs to
handle ambiguity during machine translation. We
choose seven of the most widely used foundation
and instruction-tuned LLMs and compare accuracy
with SOTA commercial and open-source NMT sys-
tems on the DiBiMT translation benchmark. Out
of 5 language directions, we report scores compa-
rable to the SOTA on two (En-Ru, En-It) and set a
new SOTA on two others (En-Zh, En-Es). We then
present two techniques that significantly improve
disambiguation accuracy: in-context learning with
similar contexts, and fine-tuning on an ambigu-
ous corpus. We end the paper with an evaluation
of overall MT quality. We hope the methods and
findings shared in this work could guide future re-
searchers studying ambiguity in translation.
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Limitations

In this work, we attempt to note overall trends in
LLM performance as compared to conventional
NMT systems and, based on our results, suggest
methods that generally improve performance. That
said, there are exceptions to these trends - prompt-
ing with similar contexts can, at times, degrade
performance and so can increasing the number of
demonstrations (see Table 4). But there is some
consistency here too that these observations mostly
apply to smaller LLMs (such as LLaMA 7B) while
the larger LLMs benefit more significantly. Also,
as noted in Section 4.4.1, in a small percentage of
cases (7.5%), we are unable to find 5 matches when
attempting 5-shot prompting with similar contexts.
In such cases, it might be worthwhile, from a perfor-
mance perspective, to use random demonstrations;
nonetheless, since we are interested in verifying
the utility of similar contexts and also since there
are only a few cases where it might be pertinent,
we do not explore this.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint.

Yves Scherrer, Alessandro Raganato, and Jörg Tiede-
mann. 2020. The MUCOW word sense disambigua-
tion test suite at WMT 2020. In Proceedings of the
Fifth Conference on Machine Translation, pages 365–
370, Online. Association for Computational Linguis-
tics.

Gongbo Tang, Rico Sennrich, and Joakim Nivre. 2019.
Encoders help you disambiguate word senses in
neural machine translation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1429–1435, Hong Kong,
China. Association for Computational Linguistics.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2021. Multilingual translation from de-
noising pre-training. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3450–3466, Online. Association for Computa-
tional Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford Alpaca:
An instruction-following LLaMA model. https://
github.com/tatsu-lab/stanford_alpaca.

Jörg Tiedemann and Santhosh Thottingal. 2020. Opus-
mt–building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation.
European Association for Machine Translation.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. LLaMA: Open and efficient foun-
dation language models. arXiv preprint.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

David Vilar, Markus Freitag, Colin Cherry, Jiaming Luo,
Viresh Ratnakar, and George Foster. 2023. Prompt-
ing PaLM for translation: Assessing strategies and
performance. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15406–
15427, Toronto, Canada. Association for Computa-
tional Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Warren Weaver. 1952. Translation. In Proceedings of
the Conference on Mechanical Translation.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent abilities of large language models. Transactions
on Machine Learning Research. Survey Certifica-
tion.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Biao Zhang, Barry Haddow, and Alexandra Birch. 2023.
Prompting large language model for machine trans-
lation: A case study. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 41092–41110.
PMLR.

494



Source Tap the head of the drum for this roll.
DeepL 敲击鼓的头部进行滚奏。 head, literal
BLOOMZ 敲击鼓面，发出这个鼓点。 striking surface of a drum

Source they tracked him back toward the head of the stream.
DeepL 他们跟踪他回到溪头 . head (literal and unnatural)
BLOOMZ 他们跟着他回到了河的上游。 upstream

Source The expedition followed the river all the way to the head.
DeepL 探险队沿着河流一直走到河头。 head (literal and unnatural)
BLOOMZ 探险队顺着河一直走到源头。 source

Source How much head do you have at the Glens Falls feeder dam?
DeepL 格伦瀑布支坝的水头有多大？ hydraulic head
BLOOMZ 你有多少头牛在格伦瀑布的蓄水池里？ (a classifier word to express quantities (of cows))

Source the office was full of secret heads.
DeepL 办公室里到处都是秘密头目 . leader, ringleader
BLOOMZ 办公室挤满了神秘的首脑。 leader, head of state

Table 8: Manual inspection on English-to-Chinese translation focused on the disambiguation of “head”, correspond-
ing to the first five test instances in DiBiMT. The baselines are DeepL and BLOOMZ 176B, the highest performing
NMT system and LLM for this pair (from Table 3). The reported annotations are obtained from a native Chinese
speaker who was invited to label the sense of the translated ambiguous word.

A Appendix

A.1 Qualitative comparison: BLOOMZ vs
DeepL

We choose the best-performing LLM and the SOTA
MT system from Table 3 – focusing on the En-Zh
pair since LLMs seem to yield the highest gains
there. With the help of a native Chinese speaker,
we got hypotheses from these two systems anno-
tated, for the first 5 sentences of the DiBiMT test
set. We observe that although there are cases where
DeepL gets it right over BLOOMZ (example 4) or
where both are correct (Example 5), in many in-
stances BLOOMZ appears to generate more contex-
tual (and less literal) translations. We hypothesize
that this could potentially be due to the former’s
powerful language modelling abilities

A.2 Trade-off between prompting and
fine-tuning

We show in Section 4.4 that both prompting with
similar contexts through In-Context Learning (ICL)
and LoRA fine-tuning can significantly improve
performance. However, depending on the use case,
it might be better to favour one over the other. For
instance, in production environments, LLMs that
are LoRA fine-tuned on ambiguous text can pro-
vide powerful disambiguation performance, while
also being more feasible to deploy and run at scale.
In contrast, ICL with k-shot prompting, especially
for higher values of k, can significantly increase
query size and memory consumption, necessitating
reduced batch size and thus, throughput.

However, conducting ICL with similar ambigu-
ous contexts can be used to query LLMs as large
as LLaMA 65B and BLOOMZ 176B and yield per-
formance comparable to SOTA MT systems (see
Table 4). The preprocessing cost overhead of such a
method, namely disambiguating the test set, is also
low - it took us about 13 seconds to disambiguate a
test set of about 500 sentences on 1 Nvidia GeForce
RTX 3090. In contrast, the one-time cost of fine-
tuning can be quite expensive—for instance, it took
us 44 hours to fine-tune an Alpaca 7B with LoRA
on a single Nvidia Tesla A100 40G. Thus, in GPU-
scarce settings where the costs of LoRA fine-tuning
are prohibitive, it might be favourable to use ICL
to query massive LLMs and obtain SOTA perfor-
mances. In contrast, production environments are
likely to prefer the fine-tuned LLMs, since the one-
off fine-tuning costs can be amortized.
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Abstract

Transformers are the predominant model for
machine translation. Recent studies also
showed that a single Transformer model can be
trained to learn translation for multiple differ-
ent language pairs, achieving promising results.
In this work, we investigate how multilingual
Transformer models pay attention when trans-
lating different language pairs. To achieve this,
we first conduct automatic pruning to elimi-
nate a large number of noisy heads and then
assess the functions and behaviors of the re-
maining heads in both self-attention and cross-
attention. We find that different language pairs,
in spite of having different syntax and word or-
ders, tend to share the same heads for the same
functions, such as syntax heads and reordering
heads. However, the different characteristics
of different language pairs can clearly cause
interference in function heads and affect head
accuracies. Additionally, we reveal an interest-
ing behavior of the Transformer cross-attention:
the deep-layer cross-attention heads work in a
cooperative way to learn different options for
word reordering, which may be caused by the
nature of translation tasks having multiple dif-
ferent gold translations in the target language
for the same source sentence.1

1 Introduction

For traditional statistical machine translation, such
as phrase-based translation (Koehn et al., 2003),
the translation process is very clear: source phrases
are translated into target phrases according to trans-
lation rules and then target phrases are reordered
to ensure the fluency of the target sentence. How-
ever, in state-of-the-art neural translation models
(Bahdanau et al., 2014; Vaswani et al., 2017; Chen
et al., 2018), how the model learns to translate is
substantially less obvious. The behavior of the
Transformer model (Vaswani et al., 2017) remains

1Code and scripts for reproducing our re-
sults can be found https://github.com/jingyiz/
multilingual-translation-attention-head-analysis.

particularly hazy, as it contains many different self-
and cross-attention heads in different layers.

A number of existing studies conducted analy-
ses of functions and behaviors of attention heads
in Transformer translation models. Voita et al.
(2019b) found that the Transformer attention is
noisy, as most of the Transformer heads can be
pruned away without significant loss in transla-
tion quality. They also identified three important
functions of self-attention in the Transformer en-
coder, such as heads focusing on syntax. Ferrando
and Costa-jussà (2021) demonstrated that the cross-
attention of the Transformer model frequently at-
tends to uninformative source words to balance the
contribution of source and target context for pre-
dicting the next word. Chen et al. (2020) showed
that some cross-attention heads learn alignment for
the current target word, achieving higher accura-
cies than cross-attention heads that learn alignment
for the next target word. However, these methods
only analyzed attention in bilingual models, not for
multilingual Transformer models.

Multilingual translation, i.e., training a single
Transformer to learn translation for multiple differ-
ent language pairs, has received much attention in
recent years and obtained promising results (Wang
et al., 2020; Kim et al., 2021; Pires et al., 2023). A
number of studies investigated how a multilingual
Transformer learns to translate different language
pairs. Several of these (Lin et al., 2021; Wang et al.,
2020; Xie et al., 2021) learned language-dependent
weight masks to identify language-dependent sub-
networks. Pires et al. (2023) trained the multilin-
gual Transformer to learn language-specific lay-
ers and improved translation quality. Chiang et al.
(2022) and Kim et al. (2021) assessed how different
language pairs share important heads in multilin-
gual Transformer models.

However, prior work has not yet studied the spe-
cific functions and behaviors of different attention
heads in multilingual Transformer models. In this
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paper, we investigate functions and behaviors2 of
both self-attention and cross-attention for multilin-
gual translation. We find that different language
pairs with different syntax and different word or-
ders tend to share the same heads for the same
functions (such as syntax heads and reordering
heads), but the different characteristics of differ-
ent language pairs can clearly cause interference
in function heads and affect head accuracies com-
pared to bilingual models. We further obtain an in-
teresting finding about how the Transformer learns
word reordering: different cross-attention heads
in deep layers work in a cooperative way to learn
different options for reordering. This may result
from the fact that there are multiple different gold
translations (reorderings) in the target language for
the same source sentence3.

2 Related Work

There are a number of studies on analyzing layer
representations of different Transformer layers.
Voita et al. (2019a) used canonical correlation anal-
ysis and mutual information estimators to study
how information flows across Transformer layers
for different learning objectives. Kudugunta et al.
(2019) used Singular Value Canonical Correlation
Analysis (SVCCA) to analyze how representations
evolve in a multilingual translation model. Xu et al.
(2021b) analyzed how word translation evolves in
Transformer layers and showed that translation al-
ready happens progressively in encoder layers and
even in the input embeddings, by measuring word
translation accuracy of different Transformer lay-
ers. These methods did not analyze the specific
functions of attention heads.

Other prior work analyzed Transformer atten-
tion to better understand a particular aspect of
the translation process. Tang et al. (2021) ana-
lyzed Transformer attention for negation transla-
tion and showed that negation is often rephrased
during training, which can make it more difficult
for the model to learn a reliable link between

2Following Voita et al. (2019b)’s work, we use a weight-
based method for analyzing attention head behaviors. It is also
possible to use a norm-based method (Kobayashi et al., 2020),
which may provide a more detailed interpretation of the inner
workings of Transformers compared to weight-based methods
in some cases.

3In the training data of translation models, it is rather rare
that the same source sentence has multiple different translated
target sentences, but it is very common that the same source
phrase has multiple different translated target phrases. There-
fore, translation models are able to learn to translate a source
sentence into different target sentences.

source and target negation. Tang et al. (2018)
analyzed Transformer cross-attention for learning
word sense disambiguation (WSD) and showed that
cross-attention is likely to distribute more attention
to the ambiguous noun itself rather than context
tokens, in comparison to other nouns, which sug-
gests that the Transformer learns to encode contex-
tual information necessary for WSD in the encoder
hidden states. Additionally, Tang et al. (2018) also
noticed that, from shallow layers to deep layers, the
cross-attention accuracy for aligning the next target
word first increases and then decreases. However,
we our study is the first to reveal the cooperative
behavior of cross-attention heads.

There is also prior work that studied representa-
tion sharing in multilingual translation. Firat et al.
(2016) proposed a multiway, multilingual model
with language-specific encoders and decoders and
showed result quality improvements over models
trained on only one language pair. Several authors
(Zhang et al., 2021; Bapna and Firat, 2019; Zhu
et al., 2021) considered language-dependent gating
and adaptation for layer representations. Xu et al.
(2021a) proposed parallel encoder and decoder lay-
ers with language-dependent weighted layer aggre-
gation. Wang et al. (2019) presented a universal rep-
resenter to replace both encoder and decoder mod-
els to enable parameter sharing between encoder
and decoder and they made the representer sensi-
tive for specific languages using language-sensitive
embedding, attention, and discriminator. Zhu et al.
(2020) incorporated a language-aware interlingua
into the encoder–decoder architecture, which en-
ables the model to learn a language-independent
representation from the semantic spaces of differ-
ent languages, while still allowing for language-
specific specialization of a particular language pair.
Additionally, Shaham et al. (2023) showed that
controlling the proportion of each language pair
in the training data can balance the amount of in-
terference between languages in multilingual mod-
els. Yuan et al. (2023) developed a detachable
model by assigning each language (or group of
languages) to an individual branch that supports
plug-and-play training and inference with a novel
efficient training recipe. Xu et al. (2023) investi-
gated how to utilize intra-distillation to learn more
language-specific parameters and then showed the
importance of these language-specific parameters.
However, these methods did not investigate the
head functions in multilingual models.
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DeEn FrEn RoEn EnDe EnFr EnRo Average
R-bi 25.90 29.47 31.46 21.94 31.08 25.74 27.59
R-multi 25.88 29.85 34.07 21.70 31.00 26.17 28.11
R-finetune 26.48 29.91 34.96 22.61 31.79 27.21 28.82
R-prune (λ = 25) 26.31 29.76 34.87 22.31 31.46 27.12 28.63
R-prune (λ = 35) 26.23 29.56 34.82 22.05 31.40 27.21 28.54

Table 1: Translation results (BLEU) on the test sets.

Train
DeEn 2.5M Europarl v7, TED2020, News-Commentary v11
FrEn 2.5M Europarl v7, TED2020, News-Commentary v11
RoEn 0.9M Europarl v8, TED2020, SETIMES2

Valid
DeEn 5,014 newstest2009, newstest2010
FrEn 5,014 newstest2009, newstest2010
RoEn 1,999 newsdev2016

Test
DeEn 9,006 newstest2011, newstest2012, newsdev2013
FrEn 9,006 newstest2011, newstest2012, newsdev2013
RoEn 1,999 newstest2016

Table 2: Datasets and their number of sentence pairs.

3 How Do Transformers Pay Attention
for Multilingual Translation?

3.1 Methodology and Experimental Setup

Bilingual Baseline. We used the original Trans-
former model in its base setting (Vaswani et al.,
2017) (i.e., the same model parameters, train-
ing parameters and inference parameters) as our
bilingual baseline model and conducted transla-
tion experiments for six translation directions4:
German↔English (De↔En), French↔English
(Fr↔En), and Romanian↔English (Ro↔En). For
each translation direction (such as De→En), we
trained a Transformer model using the training data
and validation data for this translation direction
as shown in Table 2.5 Following Vaswani et al.
(2017), we trained each model for 100k training
steps. However, because our training data size for
a single translation direction is smaller than in their
work, 100k training steps caused overfitting in our
models. Therefore we computed the validation loss
after each training epoch and then chose the best
validation checkpoint for evaluation. Translation
results on the test sets are given in Table 1 as R-bi.

4We chose these language pairs because parallel sentences
with gold-standard word alignments are available (Zhang and
van Genabith, 2021) for these language pairs, which can be
used to analyze target-to-source attention (alignment).

5For subword segmentation, we applied byte pair encoding
(Sennrich et al., 2016) and learned a joint vocabulary of size
32k for all languages in our experiments.

λ = 25 λ = 35
DeEn 74 54
FrEn 58 49
RoEn 74 52
EnDe 85 64
EnFr 65 53
EnRo 81 56
Shared 55 45
Total 144

Table 3: Number of remaining heads after automatic
pruning for different translation directions. "Shared"
means the number of heads that remain for all six trans-
lation directions. "Total" refers to the original number
of all heads before automatic pruning.

Multilingual Translation. For multilingual
translation, we trained a single Transformer to
learn translation for all six translation directions.
We combined all training data in Table 2 together
and added a special token at the beginning of each
source sentence to indicate which target language
we desire the model to generate, following
Johnson et al. (2017). We used the same base
setting of the original Transformer with 100k
training steps for our multilingual model. During
training of the multilingual model, we computed
the validation loss for the combined validation
data after each training epoch and found that
the validation loss continuously decreased, so
we used the final checkpoint of the multilingual
model for evaluation. The evaluation results of the
multilingual model are given in Table 1 as R-multi.
In the results, we can observe that the multilingual
model obtained comparable or higher translation
quality compared to our bilingual baseline for
different language pairs.

Finetuning. We then finetuned6 the multilingual
model for each translation direction using direction-

6Finetuning a multilingual model for a given translation
direction (i.e., multilingual pretraining) is very popular for
low-resource language pairs and can significantly improve
translation quality. We find that finetuning generally did not
change the functions of different heads (see Figure 1) but
did improve the accuracies of function heads for the given
translation direction (see Table 12).
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Figure 1: Functional heads (red: rare word head (R); yellow: positional head (−1 and +1); purple: syntactical head
(S); green: C-alignment head (C); blue: N-alignment head (N)) contained in (a) the multilingual model (R-multi);
(b) finetuned models (R-finetune); (c) pruned models with λ = 25; (d) pruned models with λ = 35. From left to
right, the three columns of figures represent S2S, T2T, and T2S attention. Each figure shows attention heads from
the first layer to the last layer (top-down) and each layer contains 8 heads. Black denotes heads that are pruned away.

specific training and validation data.7 During fine-
tuning, we set the maximum number of finetuning
steps to 50k and computed the validation loss after
each training epoch, and finally used the best val-
idation checkpoint for evaluation. We found that
models for all six directions converged during fine-
tuning (the best validation checkpoint is not the last
checkpoint). The results of the finetuned models
are given in Table 1 as R-finetune. As shown in
Table 1, finetuning a pre-trained multilingual trans-
lation model for a specific translation direction can
improve the translation quality for the given transla-
tion direction (i.e., R-finetune > R-multi). Table 1
also shows that the finetuned models can achieve
higher translation quality compared to the bilingual
models (R-bi) for all translation directions in our
experiments.

7For example, when we finetuned the multilingual model
for the De→En direction, we only used training and validation
data with German in the source and English in the target.

Head Pruning. As shown by Voita et al. (2019b),
Transformer attention is noisy, i.e., many atten-
tion heads carry no important function and can be
pruned away without significant loss in translation
quality. Following them, we conduct automatic
pruning to identify important heads and analyze
their functions. For each translation direction, we
continue to finetune the already converged model
(R-finetune) with a regularization loss (Louizos
et al., 2017) along with the original translation loss
to prune away useless heads. With the regulariza-
tion loss, the model learns a 0/1 gate for each head.
Heads with a 0 gate are pruned away. A weight λ
is assigned to the regularization loss to control the
amount of heads to be pruned, i.e., a higher weight
for the regularization loss will result in more heads
being pruned away. Translation results after head
pruning are given in Table 1 and the number of
remaining heads for each translation direction is
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DeEn FrEn RoEn EnDe EnFr EnRo
Accu 0.31 0.36 0.19 0.33 0.36 0.26

Table 4: Accuracy of the rare word head.

listed in Table 3.8 At λ = 35, roughly 2/3 of all
heads were pruned away and the average BLEU
only decreased by 0.28. Table 3 also shows that
different language pairs tended to share important
heads, as most of the remaining heads remained for
all six translation directions.

3.2 Head Function Analysis

We analyzed the behavior of the remaining heads
to understand their functions.

Source-to-source Rare-word Heads. We find
that one source-to-source (S2S) attention head
in the first encoder layer tends to attend to the
most infrequent word of the input sentence, which
agrees with the bidirectional findings of Voita et al.
(2019b). The maximum weight of this head is as-
signed to one of the least two frequent words in the
input sentence roughly 30% of the time, as shown
in Table 4 for most language pairs. We also find
that this behavior of attending to rare words does
not occur in target-to-target (T2T) and target-to-
source (T2S) attention, as all T2T and T2S heads
achieved less than 10% accuracy at attending to the
two least frequent words. The S2S rare word head
is marked in red in Figure 1.9

Self-attention Positional Heads. We find that
some self-attention heads in both the encoder and
the decoder tend to attend to neighbors (+1 or
−1 position). We call a self-attention head “po-
sitional” if its maximum attention weight is as-
signed to neighbors at least 80% of the time. For
example, if the maximum weight of a head is as-
signed to the −1 relative position more than 80%
of the time, then this head is identified as a po-
sitional −1 head, as shown in Figure 1. Table 5
shows positional heads found in the finetuned mod-
els (R-finetune). We find that different language

8The base Transformer model contains 144 attention heads
in total: 48 self-attention heads in the encoder, 48 self-
attention heads and 48 cross-attention heads in the decoder.
Cross-attention and self-attention in both the encoder and the
decoder have 6 layers and each layer contains 8 heads.

9Figure 1 shows functional heads identified for at least one
translation direction. For example, all syntactical heads iden-
tified for different translation directions as shown in Table 7
and Table 9 are marked as S heads in Figure 1. Black heads
are heads that were pruned away for all translation directions
during automatic pruning.

head directions
S2S (−1) 1:6 DeEn,FrEn,RoEn,EnDe,EnFr,EnRo

2:6 DeEn,FrEn,RoEn,EnDe,EnFr,EnRo
0:1 EnDe,EnFr

S2S (+1) 1:7 DeEn,FrEn,RoEn,EnDe,EnFr,EnRo
T2T (−1) 0:5 DeEn,FrEn,RoEn,EnDe,EnFr,EnRo

0:7 DeEn,FrEn,RoEn,EnDe,EnFr,EnRo

Table 5: Positional heads in the finetuned models (R-
finetune). “1:6" denotes the 6th head in the 1st layer.

German French Romanian English
obj 1 −2 −1 −2
nsubj 1 1 2 1
advmod 1 1 1 1
amod 1 −1 −1 1

Table 6: The highest-probability relative distance for
different dependency relationships (forward direction).

pairs generally share the same positional heads,
and positional heads only occur in shallow encoder
and decoder layers. As shown in Figure 1, po-
sitional heads essentially remain unchanged dur-
ing finetuning. However, during pruning, some
positional heads are eliminated and some new po-
sitional heads emerge, mostly because positional
attention is easy to learn and therefore this function
tends to migrate from one head to another during
automatic pruning.

Self-attention Syntactical Heads. We find that
some self-attention heads in both the encoder and
the decoder learn syntactical dependencies, i.e., the
maximum attention weight is assigned to a syn-
tactically related word of the current word. We
call a self-attention head “syntactical” if it learns a
dependency relationship with an accuracy at least
10% higher than the baseline accuracy of this rela-
tionship. The baseline accuracy of a dependency
relationship is the accuracy of a fictional head that
always attends to the most likely relative position
of this relationship. For example, for the obj de-
pendency relationship in English, the correct depen-
dency typically is encountered at the −2 relative
position (38% of cases), which is the most likely
relative position for this relationship. Hence, a fic-
tional head that always attends to the −2 relative
position will achieve 38% accuracy for this rela-
tionship, and 38% can serve as the baseline accu-
racy for the English obj relationship. For different
languages, the most likely relative position of the
obj relationship is different, as shown in Table 6.
We look at four important dependency relation-
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! 3:6 amod-f DeEn,FrEn
amod-b FrEn,RoEn
advmod-f FrEn
nsubj-f EnDe

× 3:2 obj-b DeEn,RoEn,EnDe,EnFr
nsubj-f DeEn

! 2:0 obj-b RoEn,EnDe,EnFr
nsubj-f DeEn,EnDe

! 2:2 obj-f RoEn,EnDe,EnFr,EnRo
× 5:5 obj-b DeEn,RoEn,EnRo

nsubj-f DeEn
! 4:2 obj-f DeEn,RoEn,EnDe
× 2:1 amod-f DeEn

amod-b RoEn
obj-b RoEn

× 4:1 nsubj-f DeEn,EnDe,EnFr
! 3:4 obj-f RoEn,EnDe

nsubj-b DeEn
× 5:1 obj-f RoEn

advmod-b RoEn
! 5:0 amod-b FrEn,RoEn
! 0:0 nsubj-f FrEn,EnDe
! 3:7 nsubj-b FrEn
× 2:5 advmod-f FrEn
× 5:3 obj-f RoEn
× 4:0 nsubj-b RoEn
× 3:1 obj-b RoEn

Table 7: Dependency relationships learned by S2S syn-
tactical heads in the finetuned models. × means the
head is pruned away with automatic pruning at λ = 35,
while!means the head remains after pruning.

head DeEn FrEn RoEn EnDe EnFr EnRo
2:2 0.06 0.43 0.44 0.65 0.51 0.54
4:2 0.46 0.44 0.48 0.53 0.45 0.48

Table 8: Accuracy of S2S heads for the obj-f relation-
ship in the finetuned models. Among all S2S heads,
head “2:2” achieved the highest obj-f accuracy for
EnDe, EnFr, and EnRo; head “4:2” achieved the highest
obj-f accuracy for DeEn, FrEn, and RoEn.

ships10: obj (v→o), nsubj (v→s), advmod (v→a),
and amod (n→a). For each of these 4 relationships,
we consider both the forward and the backward di-
rections. Ultimately, we thus investigate whether a
head learns any of the 8 relationships obj-f, obj-b,
nsubj-f, nsubj-b, advmod-f, advmod-b, amod-f,
and amod-b. We find a head can learn different
dependency relationships, as shown in Tables 7
and 9. The most important dependency relation-
ship learned by the Transformer is obj, as more
than half of all syntactical heads mainly learn the
obj relationship. Tables 7 and 9 further show that
some translation directions share some syntacti-
cal heads (e.g., DeEn, RoEn, and EnDe share the

10We used the parsing results by the Stanford parser (Man-
ning et al., 2014) as the ground truth label in our experiments.

! 3:6 obj-f DeEn,FrEn,RoEn,EnDe,EnRo
advmod-f DeEn,EnDe,EnFr
amod-f EnRo
amod-b EnRo
nsubj-f EnDe

! 2:6 obj-f DeEn,FrEn,RoEn,EnDe,EnFr,EnRo
nsubj-f EnDe
advmod-f EnDe

! 3:5 obj-f DeEn,FrEn,RoEn,EnDe,EnFr,EnRo
nsubj-f EnDe
advmod-f EnDe

! 2:3 nsubj-b DeEn,FrEn,RoEn,EnDe,EnFr,EnRo
amod-f EnRo

× 3:3 nsubj-b DeEn,FrEn,RoEn,EnDe,EnFr,EnRo
! 2:2 obj-f DeEn,EnDe,EnRo

nsubj-f EnDe
advmod-f EnDe

! 1:5 amod-f EnFr,EnRo
amod-b EnRo
advmod-f EnFr
obj-f EnRo

! 1:6 obj-f DeEn,RoEn,EnDe,EnFr,EnRo
× 1:2 advmod-f DeEn,EnDe,EnFr

nsubj-f EnDe
obj-f EnDe

! 2:1 amod-f EnFr,EnRo
nsubj-f EnDe
advmod-f EnDe
obj-f EnDe

! 3:4 obj-f DeEn,EnDe,EnRo
nsubj-b EnRo

× 5:5 obj-f DeEn,FrEn,RoEn,EnDe
× 2:5 obj-f EnDe,EnRo

advmod-b EnRo
× 0:2 obj-f EnDe,EnRo
! 4:5 obj-f EnDe,EnRo
× 5:0 obj-f DeEn,FrEn
× 4:4 obj-f EnRo

amod-f EnRo
! 1:0 obj-f EnRo

amod-b EnRo
× 2:4 nsubj-b DeEn

amod-b EnRo
! 1:3 nsubj-f EnDe

advmod-f EnDe
! 4:0 obj-f EnDe

nsubj-f EnDe
! 3:7 obj-f EnRo

amod-b EnRo
! 4:6 obj-f EnRo
! 4:7 obj-f EnDe
× 5:1 obj-f EnDe
! 4:1 obj-f EnRo
× 5:3 obj-f EnRo
× 5:6 nsubj-b EnFr
× 3:1 obj-f EnRo
× 0:1 obj-f EnDe
× 2:7 obj-f EnDe
! 3:2 obj-f EnRo

Table 9: Dependency relationships learned by T2T syn-
tactical heads in the finetuned models. × means the
head is pruned away with automatic pruning at λ = 35,
while!means the head remains after pruning.
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Head DeEn FrEn RoEn EnDe EnFr EnRo
0:7 0.88 0.81 0.86 0.85 0.77 0.72
1:5 0.81 0.76 0.82 0.77 0.73 0.77
2:5 0.88 0.84 0.85 0.81 0.75 0.68
2:7 0.81 0.73 0.84 0.77 0.80 0.87

Table 10: Accuracy of C-alignment heads.

S2S “4:2” head for the obj-f relationship in Ta-
ble 7), but not all translation directions share all
syntactical heads. For a more direct overview of
how different translation directions share syntac-
tical heads, Table 8 gives the accuracy of differ-
ent S2S heads for the obj-f relationship, which
clearly shows that the “2:2” head mainly learns
obj-f for EnDe, EnFr, and EnRo, while the “4:2”
head mainly learns obj-f for DeEn, FrEn, and
RoEn. Meanwhile, the S2S “2:2” head acquires
nearly 0 obj-f accuracy for the DeEn direction,
although this head is the most accurate obj-f head
for EnDe, EnFr, and EnRo.

Cross-attention C-alignment Heads. We find
that some cross-attention heads in the shallow lay-
ers learn word alignment for the current target
word, i.e., the maximum weight is assigned to the
source word aligned to the current target word.
If a head achieves more than 80% accuracy for
aligning the current target word, we call such a
head a “C-alignment” head. When we calculate
the alignment accuracy11, we only consider situ-
ations when the current target word is a content
word12, as function words generally do not have
clear alignments between different languages. By
attending to the contextualized representation of
the source word aligned to the current target word,
C-alignment heads can help to retrieve the full
context of the current target word (both the left-
side and right-side context), in contrast to target-
to-target self-attention, which can only attend to
the left-side context of the current target word. Ta-
ble 10 gives the accuracy of C-alignment heads in
the finetuned models (R-finetune), showing that C-
alignment heads generally learn the current word
alignment for all translation directions, while the
highest-accuracy C-alignment head for different
directions may differ.

11We use human-annotated word alignments (Zhang and
van Genabith, 2021) as the ground truth label for computing
word alignment accuracies.

12For each language, we judge whether a word is a function
word or a content word using a list of stopwords from NLTK,
https://www.nltk.org/

Head DeEn FrEn RoEn EnDe EnFr EnRo
2:0 0.70 0.67 0.66 0.62 0.72 0.65
3:0 0.72 0.72 0.69 0.65 0.68 0.56
3:7 0.73 0.72 0.72 0.74 0.77 0.77
4:0 0.78 0.80 0.75 0.76 0.76 0.71
4:2 0.78 0.81 0.78 0.79 0.77 0.78
4:5 0.66 0.70 0.66 0.64 0.62 0.60
4:6 0.67 0.71 0.68 0.64 0.70 0.59
4:7 0.82 0.83 0.81 0.81 0.75 0.75
5:4 0.69 0.74 0.70 0.65 0.72 0.63
5:5 0.63 0.70 0.67 0.67 0.66 0.59
5:6 0.66 0.71 0.66 0.68 0.61 0.65

Table 11: Accuracy of N-alignment heads.

Cross-attention N-alignment Heads. We fur-
ther find that some cross-attention heads in the
deep layers learn word alignment for the next tar-
get word, i.e., the maximum weight is assigned to
the source word aligned to the next target word.
As the next word is unknown at the current decod-
ing step, N-alignment heads are rather learning to
predict the next target word than just aligning the
next target word. Therefore, the N-alignment ac-
curacies are generally lower than the C-alignment
accuracies. We identify “N-alignment” heads as
heads that achieve more than 70% accuracy for
aligning the next word. When we calculate the
N-alignment accuracy, we again only consider situ-
ations when the next target word is a content word,
as before for the C-alignment accuracy. Figure 1
shows that C-alignment heads occur in shallow
layers and N-alignment heads occur in deep lay-
ers, which indicates that the Transformer decoder
appears to first use C-alignment heads to obtain
the context of the current target word, and then,
based on the context of the current target word,
predicts which word to generate next. Table 11
gives the accuracy of N-alignment heads in the fine-
tuned models (R-finetune), which shows that differ-
ent language pairs generally shared N-alignment
heads, which is surprising since the purpose of N-
alignment heads is learning word reordering and
different language pairs should have different re-
ordering rules. Table 11 also shows that the highest-
accuracy N-alignment heads are most likely from
the 4th layer, i.e., the N-alignment accuracy first
increases and then decreases as the layer number
increases.

3.3 Head Behavior Analysis

We provide a further analysis of head behavior by
comparing head accuracies in different multilingual
and bilingual models. Table 12 gives the highest
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DeEn FrEn RoEn EnDe EnFr EnRo
S2S obj-f R-bi 0.58 0.40× 0.46 0.57 0.55 0.53

R-multi 0.42 0.43× 0.45 0.60 0.49 0.46×

R-finetune 0.46 △ 0.44× △ 0.48 △ 0.65 △ 0.51 △ 0.54 △
obj-b R-bi 0.46 0.41× 0.60 0.69 0.51 0.61

R-multi 0.41 0.37× 0.53 0.57 0.55 0.46
R-finetune 0.44 △ 0.38× △ 0.57 △ 0.59 △ 0.56 △ 0.50 △

T2T obj-f R-bi 0.84 0.76 0.69 0.74 0.72 0.53
R-multi 0.79 0.76 0.68 0.63 0.73 0.52
R-finetune 0.81 △ 0.78 △ 0.70 △ 0.65 △ 0.72 ▽ 0.55 △

obj-b R-bi − − − 0.37× − −
R-multi − − − 0.38× − −
R-finetune − − − 0.37× ▽ − −

T2S C-a R-bi 0.89 0.88 0.89 0.90 0.82 0.87
R-multi 0.88 0.83 0.85 0.84 0.79× 0.86
R-finetune 0.88 0.84 △ 0.86 △ 0.85 △ 0.80 △ 0.87 △

N-a R-bi 0.80 0.83 0.79 0.81 0.79 0.78
R-multi 0.83 0.83 0.82 0.83 0.79 0.78
R-finetune 0.82 ▽ 0.83 0.81 ▽ 0.81 ▽ 0.77 ▽ 0.78

Table 12: Highest accuracy for syntactical (obj), C-alignment (C-a), and N-alignment (N-a) heads in different
models. × means the accuracy is not high enough to be identified as function head. △ (▽) means finetuning
increased (decreased) the head accuracy (i.e., R-finetune > (<) R-multi).

accuracy of different types of function heads in
the multilingual and bilingual models. As shown
in Table 12, finetuning a multilingual model for
a specific translation direction tended to increase
accuracies of function heads (e.g., the syntactical
obj heads and C-alignment heads) for the given
translation direction, which is unsurprising. How-
ever, Table 12 indeed shows two interesting head
behaviors in multilingual and bilingual models.

Cooperative Behavior of N-alignment Heads.
First, we find the highest N-alignment accuracy
tended to decrease instead of increasing during
finetuning (the average accuracy of N-alignment
heads also decreased). The fact that finetuning de-
creased N-alignment accuracies is surprising, con-
sidering N-alignment heads are crucial for predict-
ing the next target word. We hypothesize that this
is because N-alignment heads work in a coopera-
tive way. Since there are multiple different gold
translations (reorderings) in the target language for
one source sentence, the Transformer uses differ-
ent heads to learn different options for predicting
(aligning) the next target word. Thus, the accu-
racy of a single N-alignment head is less important.
Table 13 gives the accuracy of at least one head
from the 4th layer (the most important N-alignment
layer) correctly aligning the next target word. The
results show that when we consider the whole layer,
the next word alignment accuracy is fairly high and
the layer accuracy generally increased during fine-
tuning. The fact that the accuracy of any individual

DeEn FrEn RoEn EnDe EnFr EnRo
R-b 96.8 97.2 94.7 96.7 95.9 94.3
R-m 96.7 96.9 95.7 96.3 95.3 94.3
R-f 96.8 96.8 96.0 96.4 95.4 95.2

Table 13: Layer accuracy (4th layer) for N-alignment.
R-b: R-bi; R-m: R-multi; R-f: R-finetune.

N-alignment head nevertheless tended to decrease
during finetuning while the overall N-alignment
layer accuracy tended to increase during finetuning
indicates that N-alignment heads work in a coop-
erative way to collect different options for word
reordering.

Multilingual Interference for Head Accuracy.
Second, we find that, although finetuning gener-
ally improved the accuracies of function heads, the
finetuned models (R-finetune) still tended to have
lower accuracy than the bilingual baseline models
(R-bi), especially the C-alignment accuracy and
N-alignment layer accuracy for our high-resource
language pairs De↔En and Fr↔En, as shown in
Tables 12 and 13. This is surprising considering
that R-finetune achieved higher translation quali-
ties compared to R-bi, and suggests that language
interference tends to cause an accuracy decrease
for function heads and can be an important disad-
vantage of multilingual models compared to bilin-
gual models. Regarding the reason why R-finetune
generally had lower head accuracies but higher
translation quality compared to R-bi for De↔En
and Fr↔En tasks, it could be that the multilingual
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pretraining helps the model to learn better represen-
tations (word embeddings) for less frequent words
via the shared vocabulary.

4 Conclusion

This paper analyzes attention head functions and
behaviors in multilingual Transformer translation
models. We find that different language pairs,
in spite of having different syntax and word or-
ders, tend to share the same heads for the same
functions, such as syntax heads and reordering
heads. However, the different characteristics of
different language pairs clearly cause interference
in function heads and affect head accuracies, which
can be an important disadvantage of multilingual
models compared to bilingual models. Addi-
tionally, we reveal an interesting behavior of the
Transformer cross-attention: the deep-layer cross-
attention heads work in a cooperative way to learn
different options for word reordering, which can
be caused by the nature of translation tasks having
multiple different gold translations (reorderings) in
the target language for one source sentence.

Limitations

Our study focuses on models trained for particular
source to target language pairs. It covers six trans-
lation directions with limited typological diversity
in the considered languages, due to the need for
ground truth word alignments. In future work, mul-
tilingual models covering many more languages
with more linguistic diversity can be investigated
following our methodology.
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Abstract

Position-based token-mixing approaches, such
as FNet and MLPMixer, have shown to be ex-
citing attention alternatives for computer vision
and natural language understanding. The mo-
tivation is usually to remove redundant opera-
tions for higher efficiency on consumer GPUs
while maintaining Transformer quality. On the
hardware side, research on memristive crossbar
arrays shows the possibility of efficiency gains
up to two orders of magnitude by performing
in-memory computation with weights stored on
device. While it is impossible to store dynamic
attention weights based on token-token interac-
tions on device, position-based weights repre-
sent a concrete alternative if they only lead to
minimal degradation. In this paper, we propose
position-based attention as a variant of multi-
head attention where the attention weights are
computed from position representations. A
naive replacement of token vectors with po-
sition vectors in self-attention results in a sig-
nificant loss in translation quality, which can be
recovered by using relative position represen-
tations and a gating mechanism. We show ana-
lytically that this gating mechanism introduces
some form of word dependency and validate its
effectiveness experimentally under various con-
ditions. The resulting network, rPosNet, outper-
forms previous position-based approaches and
matches the quality of the Transformer with rel-
ative position embedding while requiring 20%
less attention parameters after training.1

1 Introduction

The Transformer (Vaswani et al., 2017) revolution-
ized the field of neural machine translation be-
fore its wide adoption in numerous other tasks
(Dong et al., 2018; Devlin et al., 2019; Chen
et al., 2021; Dosovitskiy et al., 2021). Using self-
attention (Vaswani et al., 2017), the Transformer
computes high-level representations for each token

1Code available at https://github.com/apptek/
posnet-position_based_attention

as a weighted sum of the entire sequence, where
the weights depend on the pairwise content inter-
actions. However, recent work argues that results
similar to the Transformer can also be achieved
by modeling self-attention weights based on po-
sitional instead of content information (Wu et al.,
2019; You et al., 2020; Tolstikhin et al., 2021; Liu
et al., 2021; Lee-Thorp et al., 2022). Often, these
position-based methods are used with some form
of gating mechanism that precedes or wraps the
token-mixing operation (Wu et al., 2019; Liu et al.,
2021; Kim et al., 2023).

Position-based self-attention alternatives often
speed up the computation on commercial comput-
ing devices like GPU, but they can become more
attractive from the perspective of using memristive
crossbar arrays (Chua, 1971; Strukov et al., 2008).
Recent advances in analog in-memory computation
with memristive crossbar arrays have shown im-
pressive efficiency improvements in the inference
of deep learning models (Hu et al., 2018; Wang
et al., 2019; Kataeva et al., 2019; Yao et al., 2020;
Xue et al., 2021), up to 110 times better energy
efficiency and 30 times better performance den-
sity compared to a Tesla V100 GPU (Yao et al.,
2020). However, such efficiency is obtained by
storing weights of matrix-vector multiplications in
the device rather than calculating them on the fly,
which excludes the possibility of using attention to
compute the weight matrix.

With the goal of finding self-attention alterna-
tives for machine translation that can be more easily
used with memristive crossbar arrays, we compare
existing position-based approaches and observe a
significant quality loss when they use no form of
gating. Additionally, by scoring with a diverse
set of metrics, we show that, even with gating, no
existing approach can consistently match Trans-
former results. While the role of gating to guide
the information flow of neural networks is known
(Srivastava et al., 2015; Dauphin et al., 2017), its

507



importance for the performance of position-based
approaches has yet to be explored.

In this paper, we propose aPosNet and rPosNet,
two position-based networks that leverage gating
and compute self-attention weights based on the
interactions of absolute and relative position rep-
resentations. Both differ slightly from the Trans-
former baseline with relative position embeddings
(Shaw et al., 2018), which enables us to deliver
insights into gating and its dependency on position
information. In summary, we provide the following
contributions:

• Analytically, we derive that wrapping the
weighted sum of tokens with a gating mech-
anism introduces latent content-dependent
token-mixing weights (Section 3).

• We provide an inference-time matrix pre-
computation for positional attention that can
be easily stored in device (Section 4).

• rPosNet outperforms existing position-based
methods and performs on par with the Trans-
former with relative position embeddings
while saving 20% of the self-attention param-
eters (Section 6).

• We show that increasing the expressiveness
of token-mixing weights reduces the useful-
ness of gating, coherently with the idea that
it enables content-based interactions (Section
7.1).

• We observe experimentally that rPosNet is
less effective when used in cross-attention.
Our gating reformulation suggests one prob-
able reason, but we leave detailed investiga-
tions for future work (Section 7.2).

2 Background

Neural machine translation is typically modeled
with an encoder-decoder sequence-to-sequence
(Sutskever et al., 2014) Transformer, which mainly
consists of multi-head attention and feed-forward
sub-layers. In the following, we introduce our nota-
tion, position-based token-mixing alternatives and
the gating mechanism commonly used in modern
architectures.

2.1 Multi-head attention
Given a source sequence representation x P RMˆD

and target sequence representation y P RNˆD, the

multi-head attention mechanism (Vaswani et al.,
2017) mixes the elements in x for every element
in y. If y and x refer to the same sequence, it
is called self-attention. The multi-head concept
derives from performing the following operations
on H parallel splits of the feature dimension D. In
this work, we drop the head indices for simplicity
of notation. To calculate the unnormalized mixing
weight, referred to as attention energy, of yn and
xm, those are projected into query and key and
combined using the dot product:

α̂nm :“ pWQynqpWKxmqJ
?
D

. (1)

Since α̂nm is computed from token contents, we
say that attention captures token-token interactions.
The attention weight is then calculated by the soft-
max normalization of the attention energy:

αnm :“ exp α̂nmř
m1 exp α̂nm1

, (2)

and used as the token-mixing weight in the
weighted sum over projected input tokens x, de-
noted value vectors:

cn :“
ÿ

m

αnm ¨ pW V xmq. (3)

We will refer to the result cn as context vector.
Finally, the context vectors of each head are con-
catenated and mixed with a linear projection, called
output projection.

2.2 Position-based token mixing

We briefly overview how existing position-based
token-mixing approaches propose to modify the
attention weights and provide the corresponding
Equations in Appendix A for comparison.

FNet Proposed for language understanding, FNet
(Lee-Thorp et al., 2022) applies a 2D Fourier trans-
form over the spatial and feature dimension of x.
However, this formulation performed poorly in pre-
liminary experiments, which is why our FNet im-
plementation, denoted FourierNet, applies a 1D
Fourier transform along the spatial dimension and
employs value and output projections. We will
show in our results that, despite its claimed good
quality for natural language understanding, the
translation quality achieved by FourierNet is sig-
nificantly lower than Transformer.
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Figure 1: Flowchart representation of (a) self-attention, (b) gated absolute position-based attention (aPosNet), and
(c) gated relative position-based attention (rPosNet). While self-attention provides word and position information to
queries (Q) and keys (K), we omit word information to calculate the attention weights of PosNet. In rPosNet, we
model relative positions using relative position representations (D). In addition, we employ the gating mechanism
presented in Section 2.3, which applies GeLU activation and layer normalization on the values (V) and elementwise
multiplies the context vector (C) with the GeLU activated gate (G) resulting in the gated context vector (Ĉ).

GaussianNet Proposed for machine translation,
You et al. (2020) hardcode self-attention weights
as a Gaussian distribution. They report similar per-
formance to the Transformer when GaussianNet is
applied for self-attention but a significant degrada-
tion if extended to cross-attention.

LinearNet Tolstikhin et al. (2021) propose mix-
ing tokens with a learnable spatial projection, ef-
fectively representing α. It has been proposed, to-
gether with other architecture changes, for image
classification and natural language understanding
with minor degradations to the Transformer.

LightConv For machine translation and other
tasks, Wu et al. (2019) introduce a lightweight form
of depthwise convolution, which shares the kernel
weights W across the feature dimension of a head
and the outputs while additionally softmax normal-
izing them.

gLinearNet Liu et al. (2021) combine the spatial
projection of LinearNet with the gating mechanism
of Section 2.3. They propose their architecture for
image classification and masked language model-
ing and report significant improvements over Tol-
stikhin et al. (2021).

2.3 Gating mechanisms

Various formulations of gating mechanisms have
been proposed to control the information flow
in neural networks (Hochreiter and Schmidhuber,
1997; Cho et al., 2014; Srivastava et al., 2015;
van den Oord et al., 2016; Dauphin et al., 2017).
They all have in common an elementwise multipli-
cation between two vectors where one, the gate, is
bounded in the r0, 1s interval. The gating mecha-
nism we consider here has been proven effective
with position-based token-mixing approaches (Liu
et al., 2021; Kim et al., 2023) and differs from other
gating mechanisms in that the gate is GeLU acti-
vated (Hendrycks and Gimpel, 2016) and thus only
lower bounded. This gating mechanism modifies
the weighted sum of Equation 3 by applying layer
normalization (Ba et al., 2016) on the value vector
vm “ W V xm and elementwise multiplying the
context vector with the gate gn “ σgpWGynq:

ĉn :“
” ÿ

m

αnm ¨ Norm
`
σgpvmq˘ı

d gn, (4)

where σg refers to the GeLU function and ĉn to the
gated context vector. In general, gating can be ap-
plied with any formulation of α. However, we will
show experimentally in Section 7.1 that its benefits
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strongly depend on the information incorporated
within α.

3 Reformulating the Gating Mechanism

To better understand the implications of gating,
we reformulate Equation 4. We omit layer nor-
malization for simplicity and will show in the Ap-
pendix B that the general reformulation is unaf-
fected if we apply layer normalization on vm. Ad-
ditionally, we leverage the GeLU approximation
σgpvmq « vmσsp1.702vmq, where σs refers to the
Sigmoid function, and rewrite Equation 4 as

ĉn «
ÿ

m

αnmβnm d vm. (5)

Equation 5 shows that gating the context vector
introduces the latent weights βnm P RD:

βnm “ gn d σsp1.702vmq, (6)

which consists of the two independent factors
β1
n “ gn and β1

m “ σsp1.702vmq. While the mul-
tiplication of β1

n and β1
m, in general, allows for

token-token interactions, the independence of these
factors poses a limitation: for a given query token
yn, the ratio between the weights assigned to xm
and to xm1 is independent of yn:

βnm
βnm1

“ β1
m

β1
m1

. (7)

In other words, the ratios of token-mixing weights
for a query yn as computed by β are predetermined
by the ratios across β1

1...M . While we show in Sec-
tion 6 that this limitation is not problematic for
self-attention, it may be part of the reason gating
and relative position-based attention are not effec-
tive in cross-attention (see Section 7.2).

4 Position-based Attention

In this Section, we propose position-based atten-
tion, which determines the token-mixing weight
connecting tokens xm and yn solely based on the
position-position interactions between n and m.
We pair position-based attention with the gating
mechanism of Section 2.3.

4.1 Absolute position-based attention
In absolute position-based attention we compute
the attention energy as the dot product between the
two projected position embeddings ñ and m̃:

α̂nm :“ pWQñqpWKm̃qJ
?
Dh

. (8)

While ñ and m̃ are shared across all layers, WQ

and WK are layer-specific. We refer to the combi-
nation of Equation 8 and the gating mechanism of
Section 2.3 with aPosNet.

Pre-computing the attention energies The
query and key inputs ñ and m̃ are independent
of the word representations yn and xm and are
constant after training. Since the attention energy
values α̂nm only depend on ñ and m̃, we can
pre-compute α̂ and obtain a matrix of the form
pH ˆ N ˆ Mq that can be used during inference.
In the following theoretical complexity discussions
we set N “ M for simplicity of notation.

Theoretical complexity Apart from the gating
overhead, aPosNet has similar theoretical complex-
ity as attention. However, by pre-computing α̂, we
can skip the dot-product and key query projections,
reducing2 the number of parameters from 5D2 to
HN2 ` 3D2 and the number of operations from
2N2D ` 5ND2 to N2D ` 3ND2. We compare
theoretical complexities in Appendix C.

Relation to gLinearNet With the pre-computed
attention energy matrix, aPosNet becomes similar
to gLinearNet except that α of gLinearNet is not
normalized and has been trained directly.

4.2 Relative position-based attention
To model position interactions with relative
position-based attention, we borrow the relative po-
sition representations d̃nm from Shaw et al. (2018),
which we use in the dot product with the projected
position embedding ñ:

α̂nm :“ pWQñqpd̃nmqJ
?
Dh

. (9)

Similarly to Shaw et al. (2018), the distance em-
bedding d̃ is clipped to a maximum unidirectional
context size K:

d̃nm :“ Embeddingrel

´
clip

`
tγnu ´ m,K

˘¯
.

(10)

However, in contrast to Shaw et al. (2018), we
extend relative position-based self-attention to be
compatible with cross-attention by multiplying n
with the length ratio γ :“ M

N which we determine
similar to You et al. (2020) by measuring the aver-
age length ratio on the training set. We refer to the

2Typically in sentence-level machine translation we have
N ! D.
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Table 1: Dataset statistics.

Dataset
Vocab. Size Train

Pairs
Test
Pairs

Valid
Pairs

Src Tgt

DEÑEN 10k 160k 6750 7283
ENÑDE 44k 4M 3003 40k
ENÑFR 46k 36M 3003 27k
ENÑZH 32k 45k 17M 2001 13k

combination of Equation 9 and the gating mecha-
nism of Section 2.3 with rPosNet. In Figure 1, we
illustrate the operations performed by aPosNet and
rPosNet in comparison to multi-head self-attention.

Pre-computing the attention energies Similar
to aPosNet, we can pre-compute α̂ of rPosNet af-
ter training, which summarizes the interactions
between query and relative position representa-
tions into a matrix of shape pH ˆ K̂ ˆ Nq, where
K̂ “ 2K ` 1. While the attention energy matrix
of aPosNet grows quadratically with the length of
the sequence, rPosNet’s matrix grows linearly due
to the constant size K̂ of the relative position rep-
resentations.

Theoretical complexity Pre-computing α̂ after
training reduces the number of parameters from
K̂D ` 4D2 to HK̂N ` 3D2 and operations from
K̂ND`N2D`4ND2 to N2D`3ND2. Inserting
the Base model configuration of Section 5 (D “
2048, K̂ “ 33) and the maximum sentence length
N “ 128, this pre-computation of α̂ saves 23% of
attention parameters.

Relation to LightConv After pre-computing α̂,
rPosNet differs from LightConv in that rPosNet’s
weights have global context and depend also on
the absolute query position, and as such are not
shared across yn. We provide an ablation study in
Section 7.3 to understand the importance of these
differences.

5 Experimental Setup

5.1 Datasets & evaluation
We perform our comparison on four datasets of
varying sizes: IWSLT14 German-English (Fed-
erico et al., 2014), WMT14 English-{German,
French} (Bojar et al., 2014), and WMT18 English-
Chinese (Bojar et al., 2018). We split each
dataset into train and validation pairs and eval-
uate DEÑEN models on the test sets TED-

{dev10,dev12, test10, tst11, tst12}, EN-{DE, FR}
models on newstest14 and ENÑZH models on new-
stest17. An overview of the dataset statistics is
shown in Table 1. We preprocess all datasets using
Byte Pair Encoding (BPE) (Sennrich et al., 2016)
and lowercase the text for the DEÑEN direction.

We report BLEU (Papineni et al., 2002), BLEURT

(Sellam et al., 2020), and COMET (Rei et al., 2020)
for each evaluation. All scores are calculated on
detokenized text. To calculate BLEU scores, we
use sacreBLEU3 and its internal tokenizations45.
For BLEURT and COMET, we use the official im-
plementations67 and the models BLEURT-20 and
wmt20-comet-da, respectively. To summarize re-
sults, we will refer to the translation quality dif-
ference between two approaches as their relative
difference averaged across all metrics and datasets.

5.2 Model architectures

Our Base and Big Transformer architectures fol-
low the implementation of Vaswani et al. (2017),
whereas, for the Small models, we halve the feed-
forward dimension to 1024 and increase dropout
to 0.3. We compare position-based token-mixing
approaches by leveraging the respective formu-
lations instead of encoder/decoder self-attention
while leaving the rest of the Transformer architec-
ture unchanged. We make an exception for Fourier-
Net, which cannot be straightforwardly extended to
the decoder because it has an explicit dependency
on the sequence length. Instead, FourierNet uses
multi-head attention within decoder self-attention.

In preliminary experiments, we found that aPos-
Net works best with sinusoidal positional embed-
dings (Vaswani et al., 2017) and rPosNet with learn-
able embeddings (Gehring et al., 2017). All other
position-based token-mixing approaches use sinu-
soidal positional embeddings. Similar to Shaw et al.
(2018), our implementation of rPosNet and Light-
Conv use a unidirectional context window K “ 16
for the Base and K “ 8 for the Big model.

5.3 Training setup

Our training setup closely follows the configura-
tion of Vaswani et al. (2017). Similarly, we use

3https://github.com/mjpost/sacrebleu
4SacreBLEU signature for EN, FR, DE:

nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
5SacreBLEU signature for ZH:

nrefs:1|case:mixed|eff:no|tok:zh|smooth:exp|version:2.0.0
6https://github.com/google-research/

bleurt
7https://github.com/Unbabel/COMET
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Table 2: Base model results on ENÑDE, ENÑFR, and ENÑZH. We calculate statistical significance (p-value
ď 0.05) using paired bootstrap resampling with respect to the Transformer (:) and to Shaw et al. (2018) (;). Note
that this scoring differs from Vaswani et al. (2017) in that they split German compound words, which usually
increases the BLEU score, and from You et al. (2020) in that we use sacreBLEU’s default tokenizer, not ’intl’.
We ensured that our baseline system and reimplementation of You et al. (2020) match in BLEU when evaluating
similarly.

Model
Params ENÑDE ENÑFR ENÑZH

(ENÑDE) BLEU BLEURT COMET BLEU BLEURT COMET BLEU BLEURT COMET

Transformer 66.5M 26.3 71.1 47.6 37.8 69.0 61.1 33.8 64.3 42.5
Shaw et al. (2018) 66.7M 26.3 71.4 48.6 37.8 69.2 61.6 34.0 64.6 43.5

FourierNet 63.4M 22.8:; 66.0:; 31.8:; 34.9:; 64.2:; 49.3:; 31.5:; 61.6:; 34.9:;
GaussianNet 60.2M 25.3:; 68.1:; 39.5:; 36.7:; 66.9:; 55.7:; 32.6:; 62.6:; 36.8:;
LinearNet 61.8M 25.3:; 69.8:; 44.3:; 37.0:; 67.7:; 58.2:; 33.1:; 63.3:; 40.2:;
LightConv 63.4M 26.0:; 70.6:; 46.7:; 37.4:; 68.6:; 60.3:; 33.0:; 63.5:; 41.1:;
gLinearNet 65.0M 26.1 70.8; 46.7; 37.8 69.1 61.3 33.5; 64.0; 42.4;

aPosNet 65.0M 25.9:; 70.6:; 46.1:; 37.7 69.0 61.4 33.6; 63.7; 42.2;
rPosNet 63.9M 26.6 71.4: 48.6 37.9 69.4: 61.8 33.8 64.2 43.1

Table 3: Big model results on ENÑDE and Small model results on DEÑEN.

Model
ENÑDE DEÑEN

Params BLEU BLEURT COMET Params BLEU BLEURT COMET

Transformer 221M 27.1 72.3 50.4 36.8M 35.0 69.3 37.6
Shaw et al. (2018) 221M 27.3 72.7: 51.5: 37.0M 35.4: 69.7: 38.8:

FourierNet 208M 24.0:; 67.6:; 36.5:; 33.6M 32.5:; 66.9:; 28.2:;
GaussianNet 196M 26.3:; 69.4:; 42.3:; 30.4M 34.3:; 68.4:; 34.1:;
LinearNet 199M 26.6:; 71.3:; 48.0:; 32.0M 34.0:; 68.3:; 33.9:;
LightConv 209M 26.8:; 71.7:; 49.1:; 33.6M 34.4:; 68.9:; 35.5:;
gLinearNet 212M 27.1 72.2; 49.9; 35.2M 34.5:; 69.0:; 36.3:;

aPosNet 212M 26.8:; 71.4:; 47.7:; 35.2M 34.2:; 68.5:; 34.7:;
rPosNet 210M 27.3 72.2; 50.4; 34.1M 35.1; 69.5; 38.2;

the Adam optimizer (Kingma and Ba, 2014) and
a warmup learning rate schedule with 4000 steps.
We group batches by sentence length and train the
Small models for 30k steps, the Base models for
150k, and the Big models for 300k.

The final model is an average over the best check-
point and its following if there are enough check-
points to average, or else we take an average over
the last checkpoints. We determine the best check-
point by its perplexity on the validation set. For
DEÑEN, we consistently average 30 checkpoints
with a checkpoint period of 300 steps; for the Base
models, we average 7 checkpoints with 1000 steps
each; for the Big models, 20 checkpoints with 600
steps each.

The Small models use an effective batch size
of approximately 16000 target tokens while the

Base and Big models accumulate approximately
27000 target tokens per step. The source and target
sentence lengths are restricted to 128 tokens. We
use beam search with a beam size of 12 for all
models. All models in this work are implemented
in PyTorch (Paszke et al., 2019). The Small models
are trained on a single 2080 TI graphics card, the
Base models on two, and the Big models on four.

6 Results

We compare translation quality of the Base model
configurations in Table 2, and Small and Big model
configurations in Table 3.

Gated position-based attention In all experi-
ments, we observe rPosNet performing as well or
slightly better than the Transformer with an av-
erage translation quality increase of 0.7% across
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all test sets and metrics. It shows that the self-
attention weights of rPosNet, consisting of content-
dependent β and position-dependent α, achieve
sufficient expressiveness for machine translation.
aPosNet cannot match this expressiveness and un-
derperforms the Transformer with an average rel-
ative degradation of 1.8%. In the Small setup on
DEÑEN, this reaches an absolute degradation of
2.9 points in COMET and 0.8 points in BLEURT.
The significant difference between aPosNet and
rPosNet highlights the importance of relative posi-
tion information in α.

The results of gLinearNet and LightConv further
emphasize the strong modeling capabilities of abso-
lute (query) and relative position (key) interactions
in rPosNet. In comparison, token-mixing weights
in gLinearNet solely model absolute position in-
teractions and in LightConv relative position inter-
actions. Both cannot match rPosNet’s translation
quality, with gLinearNet on average lacking behind
by 1.3% relative and LightConv by 2.4%. Note that
in contrast to Wu et al. (2019), we do not match pa-
rameters between LightConv and the Transformer.
Most prominent in the Base setting on ENÑDE,
rPosNet outperforms gLinearNet by 0.6 BLEURT

and 1.9 COMET points. While aPosNet cannot
match Transformer results, rPosNet consistently
outperforms other position-based methods and is
on par with Shaw et al. (2018) and the Transformer
across most model sizes and data conditions.

Hard-coded token-mixing weights Our results
show that hard coding encoder self-attention
weights as the twiddle factors of the Fourier trans-
form (FourierNet) leads to poor results for ma-
chine translation and, on average across all datasets
and metrics, degrades translation quality relative
to the Transformer by 13.2%. In GaussianNet,
weights are manually designed to follow the nor-
mal distribution of Transformer self-attention pat-
terns, which significantly reduces the degradation
to 6.3%. However, the translation quality is still
considerably worse than LinearNet’s, the weakest
model with trainable self-attention weights. The
difference between LinearNet and GaussianNet is
negligible in BLEU but made visible with BLEURT

and COMET, which correlate better with human
judgment (Kocmi et al., 2021). In particular, we
confirmed by manually analyzing a sample of trans-
lations (see Appendix E) that the semantic metrics
discriminate better between translation hypotheses
when they all have little overlap with the references

aPosNet
rPosNet

Rel.-Attention
Transformer

Shaw et al. (2018)

41
42
43
44
45
46
47
48
49
50
51

3.5

3.5

2.6

2.0
0.9

C
O

M
E

T

The Dependency Between
Query-Key Information and Gating on ENÑDE
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Figure 2: Approaches depicted on the x-axis differ in
the provided information to queries and keys. On the
y-axis we depict COMET, which is the most accurate
metric according to Kocmi et al. (2021), and provide
the full Table showing BLEU, BLEURT, and COMET
in Appendix D. If position information is provided to
queries and keys, gating has a significant positive impact
on translation quality that diminishes with the usage of
content information.

or changing a single word alters the meaning of the
sentence. Thus, approaches with learnable token-
mixing weights, such as rPosNet, are considerably
better than hard-coded approaches.

7 Analysis

7.1 The impact of gating and query-key
information

The gating mechanism is known to guide the
learning of cross-token patterns (Tu et al., 2017;
Dauphin et al., 2017). In Section 3, we mathe-
matically showed that by gating the context vector,
these patterns are captured within the latent token-
mixing weights β. Since the products of β and
α form the actual token-mixing weights, we ana-
lyze in this Section how content information in α
impacts the usefulness of gating. For that, we com-
pare the utilization of position versus content infor-
mation in the query and key input of self-attention,
with and without gating. The results are visualized
in Figure 2, where we depict COMET scores on the
y-axis and the query and key input on the x-axis.

The formulation of position-based attention with-
out gating primarily8 differs from the Transformer
in the provided information within queries and

8The position embeddings may also differ between ap-
proaches.
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keys. Relative attention uses the relative position
representations of Shaw et al. (2018)’s approach
but without the query-key dot product of multi-
head attention. Thus, relative attention differs from
rPosNet in that content information is provided
to the queries and is equal to dynamic convolu-
tions (Wu et al., 2019) with global context (Chang
et al., 2021). In total, the x-axis of Figure 2 depicts
position-position interactions for aPosNet and rPos-
Net, token-position interactions for relative atten-
tion, token-token interactions for the Transformer,
and token-token + token-position interactions for
Shaw et al. (2018). We sort these approaches on
the x-axis in order of their attention weight expres-
siveness.

Figure 2 shows that the gating mechanism of the
position-based attention approaches aPosNet and
rPosNet increases COMET by 3.5 points. On the
other hand, content-based approaches leverage gat-
ing with a lower absolute COMET increase of 2.6
points for relative attention, 2 points for the Trans-
former and only 0.9 points for Shaw et al. (2018).
Thus, gating is less helpful if α can capture content-
dependent patterns, and increasing the expressive-
ness of those patterns diminishes the usefulness of
gating. Since gating introduces an additional pro-
jection matrix of size D2 per self-attention layer,
content-based mixing approaches may just leverage
the additional parameters, but we leave further in-
vestigation for future work. In contrast, approaches
that do not incorporate content information within
the attention weights can benefit from token-token
interactions captured in β. Additionally, the compa-
rable performance of rPosNet and relative attention
with gating suggests that gating makes the content
information within relative attention redundant for
translation quality.

7.2 Comparing the usage of rPosNet across
attention layers

While the aforementioned experiments concen-
trated on self-attention, we also consider cross-
attention in this Section and analyze how the us-
age of rPosNet affects translation quality compared
to multi-head attention. In Table 4, we depict
the translation quality on ENÑDE when combi-
nations of encoder self-attention (enc-self), de-
coder self-attention (dec-self), and decoder cross-
attention (dec-cross) employ multi-head attention
(✗) or rPosNet (✓). The model using rPosNet only
for cross-attention while all other layers employ

Table 4: A translation quality comparison of all combi-
nations in which encoder self-attention (enc-self), de-
coder self-attention (dec-self), and/or decoder cross-
attention (dec-cross) use either multi-head attention
(✗) or rPosNet (✓). We conduct the experiments on
ENÑDE and report BLEU, BLEURT, and COMET.

rPosNet Layers ENÑDE

enc-
self

dec-
self

dec-
cross BLEU BLEURT COMET

✗ ✗ ✗ 26.3 71.1 47.6

✓ ✗ ✗ 26.4 71.2 48.1
✗ ✓ ✗ 26.1 71.1 47.2
✗ ✗ ✓ 24.6 69.2 43.8

✓ ✓ ✗ 26.6 71.4 48.6
✓ ✗ ✓ 24.8 69.8 45.2
✗ ✓ ✓ 24.3 69.0 42.8

✓ ✓ ✓ 24.9 69.3 43.5

multi-head attention (row 4) significantly decreases
translation quality by 5.7% relative to the Trans-
former. The result suggests that content-dependent
patterns incorporated by β cannot sufficiently cap-
ture source-target token interactions. We hypoth-
esize that part of the reason is the inability of β
to express varying relations across source tokens
(see Section 3). While this may be a significant
limitation of gating, we leave the exploration of
this and other possible reasons to future work.

However, utilizing rPosNet within all self-
attention layers (row 8), so that rPosNet is the
only token-mixing method, does not lead to fur-
ther degradation of translation quality with a rela-
tive degradation to the Transformer of 5.5% (5.3%
relative in BLEU). Although the loss is substan-
tial, rPosNet improves upon You et al. (2020)’s
relative BLEU degradation of 12.3%9. Addition-
ally, Table 4 shows that using rPosNet within de-
coder self-attention is only beneficial if encoder
self-attention leverages rPosNet, whereas the us-
age within encoder self-attention always positively
impacts translation quality.

7.3 From LightConv to rPosNet

With the similarities between LightConv and rPos-
Net, we want to understand what features of rPos-
Net are responsible for its better translation quality.
While Wu et al. (2019) propose LightConv initially

9As reported by You et al. (2020)
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Table 5: Starting from LightConv and progressively
implementing the features of rPosNet.

Model Params
ENÑZH

BLEU BLEURT COMET

Light Convolution 101M 33.2 63.4 40.6
+ GLU [LightConv] 104M 33.0 63.5 41.1
+ GeLU Gating 104M 33.5 63.7 42.4
+ Global Context 104M 33.6 63.9 42.4
rPosNet 104M 33.8 64.2 43.1

with the GLU mechanism (Dauphin et al., 2017)
(see Equation 14), we differentiate between Light-
Conv with and without GLU since the effect of gat-
ing is a central component of our analysis. We start
with LightConv without GLU, denoted Light Con-
volution, and progressively implement the features
of rPosNet. In Table 5, we show the translation
quality on ENÑZH of the models leveraging the
respective position-based approach instead of self-
attention. Light Convolution (row 1) shows similar
translation quality to LightConv (row 2). Replacing
GLU gating with the gating mechanism of Section
2.3, denoted GeLU gating (row 3), increases trans-
lation quality noticeably by 0.5 points in BLEU, 0.2
points in BLEURT, and 1.3 points in COMET. Addi-
tionally, adding global context (row 4) by spreading
the outer kernel weights across the whole sequence
increases translation quality slightly by 0.1 BLEU

and 0.2 BLEURT (no improvement in COMET). The
remaining difference to rPosNet (row 5) is the dif-
ferent training scheme and rPosNet’s unshared ker-
nel weights across query positions. Together they
add additional 0.2 points in BLEU, 0.3 in BLEURT,
and 0.7 in COMET. The results show that all dif-
ferences between LightConv and rPosNet are re-
sponsible for their translation quality difference.
While the global context seems negligible for ma-
chine translation, GeLU gating, training scheme,
and unshared token-mixing weights are the most
important.

8 Related Work

The question of how to represent position and inte-
grate it into the Transformer architecture has been a
vast research field that we briefly want to overview
and connect to our approach. An extensive line
of research focuses on improving position embed-
dings (Kitaev et al., 2020; Liu et al., 2020; Kiyono
et al., 2021) and their integration into the word
vectors (Neishi and Yoshinaga, 2019; Wang et al.,

2020). This direction is mainly orthogonal to our
approach, and many ideas and methods can be
leveraged with position-based attention. We leave
these investigations for future work and restricted
to learnable (Gehring et al., 2017) and sinusoidal
(Vaswani et al., 2017) embeddings.

A different line of research focuses on integrat-
ing position within the attention mechanism (Shaw
et al., 2018; Dai et al., 2019; Dufter et al., 2020;
Huang et al., 2020; Raffel et al., 2020; Ke et al.,
2020; He et al., 2021; Wu et al., 2021). They
all improve over Transformer models for various
tasks by modifying word and position interactions
within the attention matrix and introducing rela-
tive position representations as a scalar or vector.
While they still rely on content-dependent atten-
tion weights, they showed the importance of rela-
tive position representations, which we also used
in rPosNet. However, we are interested in study-
ing purely position-based self-attention approaches
and how they can perform at least on par with
the (content-based) Transformer. Additionally, we
compare with Shaw et al. (2018) as an upper bound
since it leverages token-token interactions and was
proposed for machine translation.

9 Conclusion

We have introduced the gated token-mixing ap-
proaches aPosNet and rPosNet in order to find
a high-quality self-attention alternative for ma-
chine translation whose attention weights can be
pre-computed at inference time. Although their
token-mixing weights are position-based, the gat-
ing mechanism introduces content dependency in
the form of latent weights β, as shown by our anal-
ysis. These weights capture token-token interac-
tions and are crucial for the results of rPosNet. In
our experiments, we have compared aPosNet and
rPosNet with existing position-based token-mixing
approaches and found that rPosNet outperforms all
the position-based alternatives and performs on par
with (Shaw et al., 2018) on most benchmarks while
saving more than 20% of the self-attention param-
eters. Moreover, the possibility of pre-computing
rPosNet’s token-mixing weights paves the way for
high-quality machine translation on specialized
hardware accelerators.

Limitations

The goal of this paper is to find alternatives for
self-attention with minimal or no quality loss that
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can pre-compute token-mixing weights at inference
time. We have compared numerous approaches
across many data conditions and model sizes to
show the validity of our results. However, we can
identify the following limitations in our work:

• rPosNet’s position-based attention is an ef-
fective replacement of Transformer’s self-
attention, but its usage in cross-attention leads
to quality loss;

• We did not have enough computational re-
sources to run our numerous experiments mul-
tiple times, so we relied on the consistent re-
sults we obtained across different conditions
and metrics.

• While our work is motivated by future use in
memristor-based devices, we have no experi-
ments in that specific hardware because i) it
is still experimental and hard to find, and ii)
our proposed models still contain operations
that cannot be performed naively in the analog
domain.
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A Formulas describing related
position-based token-mixing
approaches

In the following, we provide the formulas de-
scribing how the position-based token-mixing ap-
proaches from Section 2.2 formulate the context
vector.

FNet

cn :“ R
´ ÿ

m

exp
“ ´ 2πj

n ¨ m
M

‰ ¨ Fhpxmq
¯

(11)

GaussianNet

cn :“ 1

σ
?
2π

ÿ

m

exp
”´pm ´ µpnqq2

2σ2

ı
¨ pW V xmq

(12)

LinearNet

cn :“
ÿ

m

Wnm ¨ pW V xmq (13)

LightConv

cn :“
2Kÿ

k“0

expWkř2K
k1“0 expWk1

¨ σGLUpW V xn`k´Kq
(14)

B Reformulating the gating mechanism
with layer normalization

Substituting zm “ σgpvmq we rewrite the gating
mechanism of Equation 4 as

ĉn :“
” ÿ

m

αnm ¨ Normpzmq
ı

d gn. (15)

Similar to Section 3, we aim to rediscover the
weighted sum over vm. For this, we utilize the
definition of layer normalization:

Normpxq :“ a d rf1pxqx ´ f2pxqs ` b, (16)

Table 6: Comparing how different attention approaches
leverage gating.

Model Gating Params
ENÑDE

BLEU BLEURT COMET

Transformer ✗ 66.5M 26.3 71.1 47.6
✓ 69.7M 26.6 71.6 49.6

Shaw et al. (2018) ✗ 66.7M 26.3 71.4 48.6
✓ 69.9M 26.7 71.8 49.5

Rel. Self-Attention ✗ 63.6M 25.7 70.4 46.4
✓ 66.7M 26.5 71.3 49.0

aPosNet ✗ 61.8M 25.4 69.4 42.6
✓ 65.0M 25.9 70.6 46.1

rPosNet ✗ 60.8M 25.3 70.1 45.1
✓ 63.9M 26.6 71.4 48.6

with gain a P RD, bias b P RD, f1pxq “ 1?
σx

and
f2pxq “ µx?

σpxq . The insertion into Equation 15

gives us:

ĉn « a d
ÿ

m

αnm f1pzmq ¨ gn d σspvmqloooooooooooomoooooooooooon
βnmPRD

dvm

´ a d
ÿ

m

αnm ¨ f2pzmq ¨ gn `
ÿ

m

αnmb d gn.

(17)

Utilizing the normalization property
ř

m αnm “ 1
we can simplify Equation 17 to:

ĉn « a d
ÿ

m

αnmβnm d vm

` gn d
”
b ´ a

ÿ

m

αnmf2pzmq
ı
, (18)

with

βnm “ f1pzmq ¨ gn d σsp1.702vmq. (19)

Although Equation 18 assumes α to be normalized,
not normalizing α does not affect β and only adds a
context-dependent scale in front of b. All in all, the
Equations show that with or without layer normal-
ization, gating introduces the token-mixing weights
β.

C Theoretical complexity comparison

We compare theoretical complexities across
position-based token-mixing approaches, the Trans-
former, and Shaw et al. (2018) concerning the num-
ber of operations and parameters in Table 7.
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Table 7: We compare the theoretical complexity and number of parameters per attention layer. K̂ refers to the
bidirectional context size. With the formulation of position-based attention, the attention energies can be pre-
computed after training, resulting in different complexities between training and search.

Model
Parameters Operations

Train Search Train Search

Transformer 4D2 2N2D ` 4ND2

Shaw et al. (2018) K̂D ` 4D2 K̂ND ` 2N2D ` 4ND2

FNet 2D2 N logpNqD ` D logpDqN
GaussianNet 2D2 K̂ND ` 2ND2

LinearNet HN2 ` 2D2 N2D ` 2ND2

LightConv HK̂ ` 3D2 K̂ND ` 3ND2

gLinearNet HN2 ` 3D2 N2D ` 3ND2

aPosNet 5D2 HN2 ` 3D2 2N2D ` 5ND2 N2D ` 3ND2

rPosNet K̂D ` 4D2 HK̂N ` 3D2 K̂ND ` N2D ` 4ND2 N2D ` 3ND2

D Table: The impact of gating and
query-key information

By depicting COMET scores in Figure 2, we visual-
ized how the effectiveness of gating decreases with
increased token-mixing weight expressiveness. In
Table 6, we provide the full results with the number
of parameters, BLEU, BLEURT, and COMET.

E Example failure cases of BLEU

Throughout our analysis, we observed that BLEU

often disagrees with the semantic metrics BLEURT

and COMET. For example, the translation quality in
the Base configuration on ENÑDE of GaussianNet,
LinearNet, (see Table 2), aPosNet without gating,
and rPosNet without gating (see Table 6) is sim-
ilarly measured by BLEU but varies significantly
in BLEURT and COMET. We analyzed translation
samples of GaussianNet and LinearNet (see Ta-
ble 8) and observed that BLEU often falsely depicts
translation quality when hypotheses have little over-
lap with the reference or changing a single word
alters the meaning of the sentence. While the inac-
curacies of BLEU are already known (Kocmi et al.,
2021), we want to show exemplarily how BLEU

would have misled our analysis. Without using
BLEURT and COMET, we would have concluded
that aPosNet and rPosNet would be equally good
without gating and that the hard-coded weights of
GaussianNet are as good as the learnable weights
of LinearNet.
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Table 8: Example failure cases on ENÑDE in which BLEU depicts a misleading score. These inaccurate BLEU
scores are best visualized when comparing GaussianNet and LinearNet. Both models achieve the same corpus-level
BLEU score but differ significantly in BLEURT and COMET (see Table 2). The translations show that measuring
the syntactical overlap between the hypothesis and reference translation is not an accurate measure of translation
quality.

BLEU BLEURT COMET

Source Haigerloch: Focus on the Abendmahlskirche
Reference Haigerloch: Abendmahlskirche rückt in den Blickpunkt
LinearNet Haigerloch: Fokus auf die Abendmahlskirche 15.2 84.0 72.3
GaussianNet Haigerloch: Focus on the Abendmahlskirche 15.2 35.6 ´15.0

Source Does he know about phone hacking?
Reference Weiß er über das Telefon-Hacking Bescheid?
LinearNet Weiß er von Telefonhacking? 15.8 80.2 72.5
GaussianNet Kennt er über Telefon-Hacking? 17.0 38.2 8.8

Source The new season in the Falkenberg "Blue Velvet" club has begun.
Reference Die neue Saison in der Falkenberger Discothek "Blue Velvet" hat begonnen.
LinearNet Die neue Saison im Falkenberg "Blue Velvet" Club hat begonnen. 33.1 75.3 85.7
GaussianNet Die neue Saison im Falkenberg "Blue Velvet" hat begonnen. 53.7 72.2 74.5

Source Finally, let’s talk pumpkins.
Reference Aber kommen wir endlich zu den Kürbissen.
LinearNet Abschließend möchte ich noch auf die Kürbisse eingehen. 4.8 71.4 41.0
GaussianNet Schließlich, lassen Sie uns reden Kürbisse. 5.5 36.0 ´60.3

Source A combined English literature and language course will be scrapped.
Reference Der kombinierte Kurs aus englischer Literatur und Sprache wird abgeschafft.
LinearNet Eine kombinierte englische Literatur und Sprachkurs wird verschrottet. 9.6 60.8 44.0
GaussianNet A combined German literature and language course will be scrapped. 3.7 19.8 ´42.8

Source However, there was no sigh of relief to be heard from Ludwigsburg.
Reference Ein erstes Aufatmen war aus Ludwigsburg dennoch nicht zu vernehmen.
LinearNet Von Ludwigsburg war jedoch kein Seufzer der Erleichterung zu hören. 5.3 76.7 46.7
GaussianNet Es gab jedoch keinen Seufzer der Erleichterung, von Ludwigsburg gehört zu werden. 3.7 45.1 ´30.3

Source Sayings come from the Bible
Reference Sprichwörter kommen aus der Bibel
LinearNet Sprichwörter stammen aus der Bibel 42.7 90.3 108.0
GaussianNet Sayings kommen aus der Bibel 66.9 60.7 3.7

Source Uwe Link has an offer for anyone who wants to set off in a carriage.
Reference Wer dann mit der Kutsche vorfahren will, für den hat Uwe Link ein Angebot.
LinearNet Uwe Link hat ein Angebot für jeden, der in einer Kutsche starten will. 9.0 70.0 59.0
GaussianNet Uwe Link hat ein Angebot für jeden, der einen Wagen starten möchte. 8.5 46.3 ´10.0

Source Solicitors should uphold the highest standards of integrity
and should instil trust and confidence in the public.

Reference Anwälte müssen die höchsten Standards an Integrität aufrechterhalten
und in der Öffentlichkeit für Vertrauen und Zuversicht sorgen.

LinearNet Die Staatsanwälte sollten die höchsten Standards der Integrität wahren
und Vertrauen in die Öffentlichkeit schaffen.

10.9 77.9 67.4

GaussianNet Die Umweltschützer sollten die höchsten Standards der Integrität einhalten
und Vertrauen und Vertrauen in die Öffentlichkeit schaffen.

12.2 53.6 ´0.7
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Abstract
Multimodal machine translation (MMT)
systems have been successfully developed
in recent years for a few language pairs.
However, training such models usually re-
quires tuples of a source language text, tar-
get language text, and images. Obtaining
these data involves expensive human an-
notations, making it difficult to develop
models for unseen text-only language pairs.
In this work, we propose the task of zero-
shot cross-modal machine translation
aiming to transfer multimodal knowledge
from an existing multimodal parallel cor-
pus into a new translation direction. We
also introduce a novel MMT model with
a visual prediction network to learn visual
features grounded on multimodal parallel
data and provide pseudo-features for text-
only language pairs. With this training
paradigm, our MMT model outperforms
its text-only counterpart. In our exten-
sive analyses, we show that (i) the selec-
tion of visual features is important, and
(ii) training on image-aware translations
and being grounded on a similar language
pair are mandatory. Our code are available
at https://github.com/toshohirasawa/
zeroshot-crossmodal-mt

1 Introduction
Multimodal machine translation (MMT) aims
to improve translation quality with the help of
other modalities, such as images (Specia et al.,
2016) or videos (Wang et al., 2019). MMT
models have shown promising improvement
over their text-only neural machine translation
(MT) counterparts, especially when it mat-
ters (Li et al., 2021; Lala and Specia, 2018;
Gella et al., 2019). While prior work has suc-
cessfully developed MMT models for language
pairs with available multimodal parallel cor-
pora, incorporating visual information into lan-
guage pairs with no multimodal dataset has

Modality Lang. Examples

Text > 700
bg, cs, da, de, el,
es, et, fr, ja, …

Text+Image ∼ 10 de, fr, cs, ja, …

Table 1: Number of target languages with text-
only (Text) or multimodal (Text+Image) parallel
corpora for the translation from English.

received limited attention. As shown in Table
1, multimodal parallel corpora are only avail-
able for a few language pairs (Elliott et al.,
2016, 2017; Barrault et al., 2018; Nakayama
et al., 2020; Sanayai Meetei et al., 2019; Wang
et al., 2019), which is quite less than the lan-
guage pairs with text-only parallel corpora.
Since building a multimodal parallel corpus
by professional translators is costly and time-
consuming (Wang et al., 2019), creating high-
quality multimodal parallel corpora for many
language pairs is not feasible.

One approach to addressing this problem
is zero-shot cross-lingual transfer, which has
proven successful in text-only machine trans-
lation (Firat et al., 2016; Johnson et al., 2017,
inter-alia). In this paper, we investigate
whether this success also extends to a multi-
modal setting. To this end, we propose the task
of zero-shot cross-modal machine trans-
lation, where models need to perform multi-
modal machine translation in language pairs
that lack multimodal parallel training data. In
this task, there are still language pairs with
multimodal training data, but the target lan-
guage pairs consist of text-only training data.

To tackle this novel task, we propose a sim-
ple M2KT-VPN method that aims at per-
forming Multimodal Knowledge Transfer via
Visual Prediction Network in the zero-shot
cross-modal translation setup. Inspired by El-
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liott and Kádár (2017), a visual prediction
network is employed to mimic visual features
from the textual modality. We hypothesize
that the predicted feature can help bridge the
gap between text-only and multimodal transla-
tion pairs, so the model is not surprised when
it receives true images at inference time.

The contributions of this work are as follows:

• We introduce a novel task, namely zero-
shot cross-modal machine transla-
tion task, aiming to build MMT systems
that can transfer multimodal knowledge
from multimodal language pairs into text-
only language pairs.

• We propose the M2KT-VPN model,
a Transformer-based MMT model along
with a visual prediction network, and show
its zero-shot cross-modal translation capa-
bility.

• Our findings suggest the importance of
image-aware translations and language
similarity between translation directions.

2 Zero-shot Cross-Modal Machine
Translation

We propose a new challenge for multimodal
machine translation systems that we denote
zero-shot cross-modal machine transla-
tion (Figure 1). This task is motivated by the
real-world lack and cost of multimodal paral-
lel corpora, which inhibits the development of
multimodal translation systems beyond a few,
mostly Indo-European, language pairs.

Task definition. The zero-shot cross-modal
machine translation task aims to transfer mul-
timodal knowledge learned from a (visually)
grounded language pair into a language pair
with no multimodal information at training.
We define the two types of machine translation
resources used for this task as follows:

• Grounded language pairs: language
pairs where a multimodal parallel corpus
is available, both at training and test time.

• Zero-shot language pairs: language
pairs that only have a text parallel corpus
for training, but have multimodal parallel
data for test.

(a) Training: no images are available for

(b) Inference: images are provided for

Figure 1: Overview of the zero-shot cross-modal
machine translation task. For the zero-shot lan-
guage pair (e.g., ), images are unavailable during
training (a), but given at the inference (b).

Thus, a model is encouraged to transfer mul-
timodal knowledge learned from grounded lan-
guage pairs to zero-shot ones in order to best
leverage multimodal data that may be available
at test time.

Notation. We consider the following setup
in our paper. Given a sequence of N tokens in
a given source language, x = 〈x1, x2, · · · , xN 〉,
and its associated image z, a multimodal ma-
chine translation model learns to translate x
into a sentence of M tokens in a target lan-
guage, y = 〈y1, y2, · · · , yM 〉. In the follow-
ing, we directly consider a dense representa-
tion of the image z given by a visual feature
extractor, which outputs I features that are
then projected into a given model dimension
d, Hz ∈ RI×d.

3 Proposed Approach: M2KT-VPN

In this section, we introduce a new MMT
model, called M2KT-VPN, which aims to
transfer multimodal knowledge learned from
the multimodal corpus into the zero-shot lan-
guage pair. M2KT-VPN comprises four mod-
ules (Figure 2): a Transformer (Vaswani et al.,
2017) encoder to encode a source sentence, a
visual prediction network (VPN) to predict a
visual feature, a fusion module to incorporate
multimodal information, and a Transformer
decoder to generate a system output. All mod-
ules are trained simultaneously on grounded
and zero-shot language pairs.
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(a) M2KT-VPN (b) Visual prediction network

Figure 2: The overview of the M2KT-VPN model (a) and the visual prediction network (b).

3.1 Multilingual Machine Translation
Module

We design M2KT-VPN as a multilingual MMT
model. Following Fan et al. (2021), we prepend
a special token (e.g., <en>) to the source sen-
tence x indicating the source language, and
another special token (e.g., <fr>) to the tar-
get sentence y indicating the target language.
Similarly, for inference, we condition the de-
coder to generate a translation in a given target
language by prepending its language indicator
token as the first token of the sequence to be
generated. We employ a cross-entropy loss to
train M2KT-VPN models.

3.2 Attention-based Fusion Module
The Transformer encoder embeds a source
text x into a high-dimensional representation
Hx ∈ RN×d without any presence of images.
We then introduce a fusion module to ground
the text-only representation Hx into the image
z through its corresponding visual feature Hz.
This grounded representation of the source se-
quence Hm ∈ RN×d constitutes the input to
the Transformer decoder.

We use an attention-based module to fuse
the visual input into multimodal representa-
tions of language. Our module first applies two
dedicated self-attention operations on the text
and visual features:

H′
x = MHA(Hx,Hx,Hx) (1)

H′
z = MHA(Hz,Hz,Hz) (2)

where MHA denotes the multi-head attention

function (Vaswani et al., 2017). Then, a cross-
attention module fuses these representations
to get the multimodal representation Hm:

Hm = MHA(H′
x,H′

z,H′
z) (3)

3.3 Visual Prediction Network
As described so far, our MMT model assumes
the input is complete, having both text and
image available for translation, both during
training and inference. However, in the zero-
shot cross-modal machine translation task, the
visual modality is absent during training for
the zero-shot language pairs.

To mitigate this gap, we propose a Visual
Prediction Network (VPN) to mimic visual
features for zero-shot language pairs during
training. The VPN generates visual predictions
from the text encoder representation Hx. The
generated visual predictions H̃z in a zero-shot
pair are then fed into the fusion module instead
of the visual feature Hz.

To predict the visual features correspond-
ing to I image regions, VPN first embeds
learnable visual queries (e.g., Lee et al., 2018;
Alayrac et al., 2022; Mañas et al., 2023; Li
et al., 2023), adds positional information, and
then applies layer normalization to obtain the
position-aware region representations H̃0

z .

H̃0
z,i = LayerNorm(Ez(i) + PE(i)) (4)

where Ez(i) is the embedding representation
for the i-th region, and PE(i) is the positional
embedding for the i-th region.
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The following L layers are the same as in a
standard Transformer decoder, each comprising
a self-attention, cross-attention, and a pairwise
feed-forward module.1 The l-th layer takes the
output of the previous layer H̃l−1

z as input. The
cross-attention module in the l-th layer takes
the output of the self-attention module as the
query and the text encoder output Hx as the
key and value. The M2KT-VPN model uses
the output representation of the final layer as
the visual prediction:

H̃z = H̃L
z (5)

The VPN module is trained on grounded
language pairs, using a max-margin loss (El-
liott and Kádár, 2017) in a contrastive learning
manner (Radford et al., 2021a). Given a batch
of K examples, we first generate K (H̃z, Hz)
pairs. We then compute a max-margin loss for
the batch:

K∑

p6=k

I∑

i=1

max{0, α− d( ˜
kHz,i,k Hz,i)

+d(kH̃z,i,p Hz,i)}
(6)

where jH̃z,i, jHz,i is the predicted i-th vector
and the true i-th vector of j-th example in the
batch; d is a cosine similarity function; and α
is the margin2. The max-margin loss is merged
with the cross-entropy loss with a coefficient of
1.0 to obtain the final loss.

4 Experiments

4.1 Experimental Setting
Dataset. We train and evaluate models on
Multi30K dataset. We select English–Czech as
a grounded language pair and English–French
as a zero-shot language pair. For the train-
ing, we divide the training split of Multi30K
into two folds of the same size; one for the
grounded language pair and the other for the
zero-shot language pair. The validation splits
for grounded and zero-shot language pairs have
the same source language texts and the target
language texts, but images are absent for the
zero-shot language pair. The test splits are also
the same, and images are available for both
grounded and zero-shot language pairs. Table

1We use L = 1 in our experiments.
2We use α = 0.1 in our experiments.

Split Images Sents.

Grounded (English–Czech)

Training 14,500 14,500
Validation 1,014 1,014
Test 2,071 2,071

Zero-shot (English–French)

Training – 14,500
Validation – 1,014
Test 3,532 3,532

Table 2: The number of examples in each split for
the grounded and zero-shot language pairs.

2 shows the statistics of each split. We follow
a standard evaluation to report performance
on four test sets: test_2016_flickr (2016),
test_2017_flickr (2017), test_2017_mscoco
(mscoco), and test_2018_flickr (2018).

Preprocessing. For textual modality, we use
Moses (Koehn et al., 2007) to lowercase, nor-
malize punctuation, and tokenize the source
and target sentences. We then learn byte pair
encoding (Sennrich et al., 2016) with 10,000
merge operations on the concatenation of the
training text over all language pairs to ob-
tain a shared vocabulary for all languages.
For visual modality, we extract a visual fea-
ture using DETR-ResNet-50-DC53 (Car-
ion et al., 2020), which is an object detection
model backed by a ResNet-50 model (He
et al., 2016). DC5 stands for dilated C5 stage,
which increases the feature resolution and con-
sequently provides more information for the
small objects. The extracted feature has 100
bounding boxes, each with a visual representa-
tion of 256 dimensions.

Model. We use a tiny version of the Trans-
former model (Transformer-tiny) as our text-
only baseline and the relying model of M2KT-
VPN, as this smaller model works better on
Multi30K (Wu et al., 2021; Li et al., 2022b).
This model comprises four encoder layers and
four decoder layers, and the model hidden size
of both decoder and decoder is 128. It also
has a smaller number of attention heads and a
hidden size of pair-wise feedforward network,
4 and 256, respectively. The vocabulary and

3facebook/detr-resnet-50-dc5
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embedding weights are shared across all lan-
guages. We compare our model against some
baseline models:

• Transformer: a text-only Transformer-
tiny model trained only on English–French
data.

• mTransformer: a text-only multilingual
Transformer-tiny model trained on both
English–Czech and English–French data.

• IMAGINATION: a text-only multilingual
Transformer with a VPN module. This
model also trained on both English–Czech
and English–French data.

Implementation details. We implement
our models on the Fairseq (Ott et al., 2019)
toolkit. The optimizer is Adam (Kingma and
Ba, 2015) with β1 = 0.9 and β2 = 0.98.
The learning rate warms up from 1e − 7
to 0.005 over 2, 000 steps, then decays with
the inverse_sqrt scheduler. We apply la-
bel smoothing of 0.1 for computing the cross-
entropy loss and the dropout of 0.3. Early
stopping with a patience of 10 is used to stop
training models. We average the last ten check-
points and use beam search with width=5 for
inference.

Metrics. We train all models three times
with different seeds and report averaged 4-
gram BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005) scores for
all test sets. Additional to the classic n-gram
matching evaluation, we also compute the
COMET score (Rei et al., 2020)4. We also
report statistical significance (p < 0.05) on the
difference in BLEU scores5.

4.2 Results
The results of our experiments are shown in Ta-
ble 3. We found that our M2KT-VPN model
provides an improvement over the text-only
baselines and IMAGINATION model for all
four test sets. The M2KT-VPN model achieves
an averaged improvement of 2.65% over the
mTransformer model (varies from 1.90% to
3.70% across the test sets). This performance

4We use Unbabel/wmt22-comet-da (Rei et al.,
2022).

5We used Moses’ bootstrap-hypothesis-
differencesignificance.pl.

gain would be owed to the multitask learning
of the visual prediction network; the module
learns to predict visual features and tailor the
features for the machine translation task simul-
taneously.

5 Discussion

This section first provides two basic analyses
of the M2KT-VPN model: model analysis and
probing. We then examine various kinds of fea-
tures to investigate the importance of feature
selection. Finally, we ran an analysis to iden-
tify the requirement for the grounded language
pair.

5.1 Model Analysis
Model ablation. Table 4 shows the results
of a comprehensive ablation analysis to identify
the contribution of each module in the M2KT-
VPN model on entire test splits. To evalu-
ate the contribution of the attention-based fu-
sion module, we compare two well-known fu-
sion strategies: concatenation-based (Li et al.,
2021) and gate-based (Li et al., 2021). Firstly,
the model without a VPN module drops −1.0
METEOR score, indicating a VPN module is
key to resolving the missing visual modality
problem in the zero-shot cross-modal machine
translation task. Second, concatenation-based
and gate-based models do not outperform the
M2KT-VPN model and even the mTransformer
baseline. The concatenation-based model fails
to translate most of the examples. This evi-
dences that attention-based fusion strategies
indeed transfer multimodal knowledge.

Quality of visual prediction. Another
question on M2KT-VPN is whether the visual
prediction network can provide grounded vi-
sual features. To answer this question, We
measured each model’s Median rank score (El-
liott and Kádár, 2017) on the 2016 test data.
We first average true and predicted features
over their regions to get every single repre-
sentative vector. The predicted representative
vector is compared against the true represen-
tative vectors in the test data using the cosine
similarity function to produce a ranked order
of the true representative vectors. The Median
Rank score reports the median value of the
ranks for the gold representative vector com-
pared to the predicted representative vector.
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Model 2016 2017 mscoco 2018 Average

Transformer 55.77 / 76.91 47.48 / 70.77 38.95 / 64.12 33.11 / 60.37 43.83 / 68.04
mTransformer 56.42 / 77.57 48.54 / 72.31 40.50 / 65.56 34.31 / 61.67 44.94 / 69.28
IMAGINATION 57.11 / 77.85 49.53 / 72.68 40.75 / 65.95 35.12 / 62.84 45.63 / 69.83
M2KT-VPN 57.49 / 78.15 †50.19 / 73.43 †41.28 / 66.44 †35.58 / 63.06 †46.13 / 70.27

Table 3: The BLEU / METEOR scores of the text-only models and MMT models in each test set for
English–French translation using English–Czech as the grounded language pair. “†” indicates statistical
significance of the improvement over the IMAGINATION model.

Fusion Module VPN BLEU METEOR

Attention 44.79 69.27

Concatenation 6.43 19.29
Gate 44.88 69.42

Attention 46.13 70.27

Table 4: The average BLEU and METEOR scores
over all test splits for variants of M2KT-VPN.

Model Median Rank

IMAGINATION 45.5
M2KT-VPN 47.0

Elliott and Kádár (2017) 11.0
Random ∼ 500

Table 5: Median rank of randomly selected vector
(Random) and model’s predictions.

Our M2KT-VPN model returns a median rank
of 47.0, which is clearly better than the ran-
dom baseline. This indicates that our model
is learning visually grounded representations.
However, Elliott and Kádár (2017) reported a
median rank of 11.0 for their RNN-based model
that predicts holistic features. This difference
poses another challenge to predicting region-
based visual features using VPN. We would
like to improve the prediction quality and ex-
plore its impact on the translation quality in
our future work.

Neural-based evaluation. Table 6 shows
the average COMET score over all test splits.
We can see the same trend as BLEU and ME-
TEOR in Table 3. While neural-based evalu-
ation metrics would better align with human
preference than those based only on surface
characteristics, this pattern may vary (Freitag
et al., 2021). A human evaluation may rather
be conducted to reveal which metrics align bet-

Model COMET

Transformer 0.7629
mTransformer 0.7651
IMAGINATION 0.7679
M2KT-VPN 0.7698

Table 6: The averaged COMET scores over all test
splits for the English–French translation.

Model 2016 2018 Average

Transformer 55.85 47.54 51.69
mTransformer 57.01 49.85 53.43
IMAGINATION 57.99 50.14 54.07
M2KT-VPN 57.78 50.79 54.28

Table 7: The METEOR scores of the text-only and
MMT models in each test set for English–Czech
translation

ter with the text of captions, where the text is
usually shorter and simpler than those in the
WMT evaluation task.

Multilingualism. The multilingualism of
the M2KT-VPN model is another concern.
Table 7 shows the METEOR score for the
English–Czech translation. The consistent im-
provement over the text-only baseline for both
English–Czech and English–French indicates
that the M2KT-VPN model is capable of per-
forming multilingual translation.

5.2 Probing
Input degradation. We examine the
model’s capability of handling incomplete tex-
tual modality. Intuitively, a better MMT
model can recover the content in the flawed
source text from the visual modality. Following
Caglayan et al. (2019) and Li et al. (2022a), we

6“man”, “woman”, “people”, “mean”, “girl”, and
“boy”.
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Vanilla a young girl standing · · · a yellow cat

Color a young girl standing · · · a [v] cat
Entity a young girl standing · · · a yellow [v]
Char. a young [v] standing · · · a yellow cat
Prog. a young girl standing · · · [v] [v] [v]

Table 8: An example of textual degradation. “Vanilla” shows the original text without degradation.
“Char.” and “Prog.” stand for character and progressive masking, respectively. “Color” deprivation
replaces words that refer to colors with a special token [v]. “Entity” and “Char.” mask out the visually
depictable entities and character words6, respectively. “Prog.” masking all words except the first K words.
The tokens at “[v]” are masked during both training and inference.

Model Vanilla Color Entity Char.

mTransformer 77.57 71.85 61.11 70.73

M2KT-VPN 78.15 72.28 61.49 70.78
(0.03) (-0.13) (-0.32) (0.04)

Table 9: The METEOR scores on vanilla, color-
deprivation, entity-masking, and character-masking
test sets. The scores in the parenthesis show the
METEOR changes when the MMT model takes
random shuffled images as its input.

Figure 3: Evaluation with progressive masking of
the context size of {5, 10, 15, 20}.

conducted four kinds of textual degradations:
color deprivation, entity masking, character
masking, and progressive masking. Table 8
shows examples of a complete text (“Vanilla”)
and its degraded ones. As entity masking is
available only for the 2016 test set, we report
all scores only for 2016 test set. Both the
training and the test data are degraded.

Table 9 shows the BLEU and METEOR
scores of the mTransformer baseline and
M2KT-VPN model for vanilla, color-deprived,
entity-masked, and character-masked 2016 test
sets. The M2KT-VPN model outperforms the
mTransformer baseline for color and entity

degradation scenarios, while we see almost no
change for character degradation. The pos-
sible cause of this difference is the nature of
the DETR model we used to extract the fea-
ture. As the labels that DETR learns to pre-
dict contain only one word (“person”) to stand
for characters but more words for entities, an
MMT model incorporating DETR would be
capable of recognizing entities more precisely
rather than characters. Table 10 also supports
this idea. While the sentence’s third [v] (cor-
responding to “bench”) is correctly translated
into “vif”, the first masked entity (correspond-
ing to “woman”) keeps being mistranslated.
As shown in the image, the DETR feature
provides useful information to distinguish the
“bench” from the “chair”. However, it is not
informative to identify the gender of the person
in the image.7

Figure 3 compares the METEOR scores
of the mTransformer baseline and an M2KT-
VPN model for progressive-masked 2016 test
sets with different context windows (K). The
MMT model outperforms the baseline for K =
{10, 15, 20}. The gap between the baseline and
MMT model widens at K = {10, 15} and nar-
rows at K = {5, 20}. This observation for
K = {10, 15, 20} is consistent with a previous
work of Li et al. (2022b), which claims the gap
widens as the context window is reduced, while
that for K = 5 is contrary to the claim. This
suggests that the visual prediction network
could fail to provide rich visual information
when the textual context is extremely limited.

Visual awareness. We also examine the re-
liance of the model on the visual modality. To

7We found all three trained text-only systems failed
to translate [v] corresponding to “bench”, and all
M2KT-VPN models successfully translate it.
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Vanilla the woman in the brown shirt is sitting on a bright red bench .
Entity the [v] in the brown [v] is sitting on a bright red [v] .

References la femme en t-shirt marron est assise sur un banc rouge vif .

mTransformer l’homme en t-shirt marron est assis sur une chaise de couleur vive .
(the man in the brown t-shirt is sitting on a brightly colored chair.)

M2KT-VPN l’homme en t-shirt marron est assis sur un banc rouge vif .
(the man in the brown t-shirt is sitting on a bright red bench.)

Table 10: Translation examples of the baseline and MMT model. The bounding boxes in the image are
the prediction of the DETR-ResNet-50-dc5 model and have a score of above 0.8. We use DeepL to
translate each hypothesis into English and show it in each parenthesis.

this end, we compute the performance dete-
rioration when a model receives incongruent
images instead of congruent images (Elliott,
2018). The scores with parenthesis in Table 9
show the performance changes when the model
takes incongruent images. Without surprise,
the MMT model is not aware of images for
vanilla, color-deprived, and character-masked
test sets, as the DETR model does not provide
rich information about color and character in
an image. Meanwhile, the model is sensitive
to the input image when the entities in the
source text are masked out; the MMT model
readily uses DETR feature to disambiguate
the masked entities.

5.3 Visual Feature Selection
Selecting a proper visual feature has been
proven to affect MMT model performance (Li
et al., 2021).

In Table 11, we compare the M2KT-VPN
models using different visual features extracted
by different vision backbones.

• ResNet (He et al., 2016): An image recog-
nition model trained to classify an image
into one of the 1,000 ImageNet classes.
ResNet-50 and ResNet-101 comprise
50 and 101 layers, respectively. We extract
the local features of each ResNet model
and feed them into the MMT models.

• Faster R-CNN (Anderson et al., 2018):
An object detection model trained to seg-
ment an image into 36 salient image re-
gions and predict the object in each region.

• DETR (Carion et al., 2020): A
transformer-based object detection model
trained to segment an image into 100 re-
gions and predict the object in each re-
gion. We used four different backbones:

ResNet-50, ResNet-50-DC5, ResNet-
101, and ResNet-101-DC5.

• CLIP (Radford et al., 2021b): A vision
and language model trained on various im-
age and text pairs in a self-supervised way.
We examined three CLIP models using
different backbones: ResNet-101, ViT-
B/16, and ViT-B/32. We use the visual
encoder of each CLIP model to encode
images; no textual modality is involved in
the extraction process.

10 out of 11 MMT models outperform the
mTransformer model in both BLEU and ME-
TEOR scores. This shows that M2KT-VPN
models are capable of incorporating various
kinds of visual features. The only feature that
deteriorates the model performance is ResNet-
101; the feature extracted by ResNet-101 would
be highly optimized for image classification and
not suitable for machine translation.

Among all features, DETR with the
ResNet-50-DC5 backbone serves as the best
feature extractor for the M2KT-VPN model.
On the other hand, the model using CLIP
features obtains almost equal performance to
those using ResNet features. This observa-
tion is partially contrary to the previous works
claiming that enhanced vision features obtain
superior performance compared with low-level
vision features (Li et al., 2022a).

We also observed that DETR with DC5
backbone outperforms the non-DC5 counter-
parts. As DC5 models provide the feature
with higher resolution, the MMT model can re-
ceive richer information about small objects in
an image. Consequently, the MMT model can
better understand and translate those small
objects more accurately.
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Feature BLEU METEOR

None (mTransformer) 44.94 69.28

ResNet-50 45.34 69.67
ResNet-101 44.79 69.29

Faster R-CNN 45.72 69.65

DETR (ResNet-50) 45.79 70.01
DETR (ResNet-50-DC5) 46.13 70.27
DETR (ResNet-101) 45.49 69.84
DETR (ResNet-101-DC5) 45.81 69.91

CLIP (ResNet-101) 45.19 69.47
CLIP (ViT-B/16) 45.64 69.88
CLIP (ViT-B/32) 45.36 69.64

Table 11: The averaged BLEU and METEOR
scores over all test splits of M2KT-VPN models
using different visual features. The models in the
parentheses are backbone models.

Grounded BLEU METEOR

→ Czech 46.14 (↑1.12) 70.27 (↑0.93)
→ German 45.95 (↓2.04) 69.95 (↓1.16)
→ Japanese 42.34 (↓2.53) 68.25 (↓0.99)

Table 12: The scores over all test splits of the
M2KT-VPN model using different grounded lan-
guage pairs. Each “→ X” stands for English→ X as
the grounded language pair. The scores in parenthe-
sis are the changes from the text-only counterpart.

5.4 Grounded Language Pairs
The ability of a model to transfer multimodal
knowledge between grounded and zero-shot lan-
guage pairs is another key research question
for this task. To answer this question, we com-
pare three grounded language pairs for English–
French zero-shot cross-modal translation.8

Shown in Table 12, the translation perfor-
mance of using English–Czech as a grounded
language pair is better than those of using
English–German and English–Japanese.

The observation of using English–German
contradicts our intuition that the more sim-
ilar two language pairs are, the better one
serves as a grounded language pair for another.
As English–German training data is generated
with no involvement of images, this indicates
that M2KT-VPN requires image-aware train-
ing data to transfer multimodal knowledge.

8We retrieved Japanese translations from
Flickr30kEnt-JP (Nakayama et al., 2020)

English–Japanese also contains visual-aware
translations, but it does not improve the per-
formance of English–French. We found that
M2KT-VPN translated the 1.43% of entire test
examples into Japanese regardless the decoder
is conditioned to generate French translation9.
This ratio is much higher than that of the text-
only counterpart (0.27%) and M2KT-VPN us-
ing English–Czech (0.26%) or English–German
(0.28%). We conclude that grounded and zero-
shot pairs should not be too distant.

6 Related Work

Multimodal machine translation. This
task has been developed along with the creation
of multimodal parallel corpora. After the first
multimodal parallel corpus, namely Multi30K
for English–German translation, emerged at
the first conference of machine translation (Bo-
jar et al., 2016), many publicly available
datasets have been proposed: the English–
French version of Multi30K and new test sets
at 2017 (Elliott et al., 2017), the English–
Czech version of Multi30k (Barrault et al.,
2018), and the English–Japanese version of
Multi30k (Nakayama et al., 2020). More re-
cently, Guo et al. (2022) proposed a private
expansion of Multi30K, including Hindi, Turk-
ish, and Latvian translations. They examined
a multilingual MMT model on their dataset
and investigated the multilingual ability of the
model. We put the step forward and inves-
tigate the zero-shot cross-modal translation
capability in an MMT task.

Predicting a visual feature from textual
modality is a well-established approach for im-
proving multimodal machine translation sys-
tems. Elliott and Kádár (2017) first divided the
multimodal machine translation task into two
subtasks: translation task and visual ground-
ing task. Similarly, Zhou et al. (2018) employed
a latent space learning task as their visual
grounding task to bridge textual and visual
modalities. Recently, Li et al. (2022b) proposed
to utilize the feature prediction from a visual
prediction network. We make use of the model
for the visually grounding task and propose to
incorporate the prediction as a pseudo-visual
feature with MMT models.

9We used Google’s language-detection library.
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Zero-shot cross-lingual machine transla-
tion. Zero-shot cross-lingual machine trans-
lation aims to perform a translation with zero-
resource where the considering language pairs
do not have any parallel corpora (Firat et al.,
2016; Johnson et al., 2017; Chen et al., 2017;
Lample et al., 2018; Artetxe et al., 2019). The
previous works have proved the zero-shot cross-
lingual translation capability.

In a multimodal setting, we are only aware
of two previous efforts on zero-shot transfer.
Huang et al. (2020) simulated that no parallel
corpus exists between the language pair and
proposed utilizing the image as the pivot and
performing a zero-shot cross-lingual translation.
Besides, Long et al. (2021) trained a genera-
tive adversarial network (GAN) (Goodfellow
et al., 2014) for generating the visual features
for text-only language pairs. Both approaches
use images for training, and evaluate models on
a single text-only translation direction. Unlike
these works, our work (i) tests MMT models
with complete multimodal inputs and (ii) takes
advantage of a multilingual model.

7 Conclusion

In this paper, we proposed a new task, zero-
shot cross-modal machine translation,
aiming to evaluate MMT systems from the per-
spective of the cross-lingual transferability of
multimodal knowledge learned from grounded
language pairs into language pairs with only
text data during training.

Our proposed MMT model shows promis-
ing results, suggesting that the VPN mitigates
the modality mismatch between training and
inference steps for zero-shot language pairs.
The analysis shows the importance of select-
ing a proper visual feature and the necessity of
image-aware translations, both of which should
be key properties of MMT models.

Limitations

Although our M2KT-VPN model has shown
the zero-shot cross-modal translation capabil-
ity, some limitations exist. While the well-
established visual features are informative for
some object entities, they do not benefit the
translation of character and color words. Be-
sides, the importance of language similarity
between grounded and zero-shot pairs limits

the language pairs we can apply M2KT-VPN
for. In future work, we will extend our M2KT-
VPN model to relax this limitation.
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A Translation Examples

Table 13 shows the translation examples for
the vanilla source text.
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Source two people are walking the dog through the snow .
Reference deux personnes promènent leur chien dans la neige .

mTransformer deux personnes marchent φ dans la neige .
(two people walking φ in the snow .)

M2KT-VPN deux personnes promènent le chien dans la neige .
(two people walking the dog in the snow .)

Source several children are watching someone chase a ball on the sidewalk .
Reference plusieurs enfants regardent quelqu’un courir après une balle sur le trottoir .

mTransformer plusieurs enfants regardent quelqu’un φ sur le trottoir .
(several children look at someone φ on the sidewalk .)

M2KT-VPN plusieurs enfants regardent quelqu’un après une balle sur le trottoir .
(several children look at someone after a ball on the sidewalk .)

Table 13: Translation examples of the baseline and M2KT-VPN model for the vanilla source text. The
bounding boxes in the image are the prediction of the DETR-ResNet-50-dc5 model and have a score
of above 0.8. We use DeepL to translate each hypothesis into English and show it in each parenthesis.
The “φ” stands for the omitted target word in the translation.
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Abstract

Gender biases in language generation systems
are challenging to mitigate. One possible
source for these biases is gender representa-
tion disparities in the training and evaluation
data. Despite recent progress in document-
ing this problem and many attempts at miti-
gating it, we still lack shared methodology and
tooling to report gender representation in large
datasets. Such quantitative reporting will en-
able further mitigation, e.g., via data augmenta-
tion. This paper describes the GENDER-GAP
Pipeline (for Gender-Aware Polyglot Pipeline),
an automatic pipeline to characterize gender
representation in large-scale datasets for 55 lan-
guages. The pipeline uses a multilingual lexi-
con of gendered person-nouns to quantify the
gender representation in text. We showcase it
to report gender representation in WMT1 train-
ing data and development data for the News
task, confirming that current data is skewed to-
wards masculine representation. Having unbal-
anced datasets may indirectly optimize our sys-
tems towards outperforming one gender over
the others. We suggest introducing our gen-
der quantification pipeline in current datasets
and, ideally, modifying them toward a balanced
representation.2

1 Introduction

Despite their widespread adoption, Natural Lan-
guage Processing (NLP) systems are typically
trained on data with social and demographic biases.
Such biases inevitably propagate to our models and
their generated outputs, e.g., by over-representing
a given demographic group and under-representing
others. It is, therefore, critical to measure, report,
and design methods to mitigate these biases, be-
fore they can be encoded and potentially amplified

1http://www2.statmt.org/wmt23/
2The GENDER-GAP pipeline is available at https:

//github.com/facebookresearch/ResponsibleNLP/
tree/main/gender_gap_pipeline
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SCORES
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My mother was a nurse.
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That man bought some snacks.
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...
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...
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...
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Figure 1: The Gender-GAP Pipeline works by identi-
fying gendered lexical terms and reporting statistics on
these lexical matching.

during training (Foulds et al., 2020; Wang and Rus-
sakovsky, 2021).

This paper focuses on quantifying gender rep-
resentation in highly multilingual data (see Figure
1), in particular, for the task of machine translation.
Gender is a complex concept that can be defined
in many ways depending on the field of study, lan-
guage or culture (Chandra et al., 1981; Hellinger
and Bussmann, 2001; Kramer, 2020). We discuss
and define gender in Section 3.1. However, briefly,
we define gender bias as the systematic unequal
treatment based on one’s gender (Blodgett et al.,
2020; Stanczak and Augenstein, 2021). Gender
bias, when it impacts training data, may decrease
the performance of the system on certain gender
groups (Hovy et al., 2020). When impacting eval-
uation data, it may push the system designers to
deploy a system that causes harm by favoring one
group over others (Mehrabi et al., 2021). For ex-
ample, a system that translates text that includes
feminine nouns more poorly than text with mascu-
line nouns may lead the end users to miss important
information or misunderstand the sentence (Savoldi
et al., 2021). A system that inaccurately translates
a gender-neutral sentence in English e.g. they are
professors to a sentence with a masculine noun ils
sont professeurs in French may also lead to serious
representational harm.

We propose the GENDER-GAP pipeline to quan-
tify gender representation bias of multilingual texts
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using lexical matching as a proxy. Our pipeline can
be seen as two main modules.

First, we build a multilingual gender lexicon:
starting from a list of about 30 English nouns ex-
tracted from the HolisticBias dataset (Smith et al.,
2022), split into 3 gendered classes—masculine,
feminine, and unspecified. We manually translate
them and reassign them to the appropriate gender
class for each target language (e.g. “grandfathers”,
masculine in English, becomes “abuelos”, mascu-
line and unspecified in Spanish). Our list is re-
stricted to nouns that refer to people (e.g. man,
woman, individual) or to kinship relationships (e.g.
dad, mom, parent). Most languages, including gen-
derless languages (Prewitt-Freilino et al., 2012)
(e.g. Finnish, Turkish) encode genders through kin-
ship relationships and person terms (Savoldi et al.,
2021). For this reason, focusing on a restricted list
of kinship and person nouns allow us to scale our
lexicon to 55 languages.

Second, we arrive at a straightforward and easily
comparable gender distribution by using a word
matching counter. Based on our newly collected
multilingual lexicon, our pipeline segments each
input sentence at the word-level using Stanza (Qi
et al., 2020), a state-of-the-art word segmentation
tool, and counts the number of occurrences of
words in each gender class. As a result, we ob-
tain a gender distribution across 55 languages. In
summary, our contribution is threefold:

• We collect and release an aligned multilingual
lexicon that can support measurement of the
representation of genders in 55 languages.

• We introduce the Gender-Aware Polyglot
pipeline (GENDER-GAP), a lexical matching
pipeline, and describe the gender distribution
observed in popular machine translation train-
ing and evaluation data. On average, all three
analyzed datasets are biased toward the mas-
culine gender. We find the gender representa-
tions to be domain- and language-specific. Ad-
ditionally, using the GENDER-GAP pipeline,
we can discover sentences that have been
translated with a gender bias.

• We release our pipeline and recommend the re-
porting of gender representations in machine
translation training and evaluation datasets to
improve awareness on potential gender biases.

2 Related work

The study of biases in text has become more impor-
tant in recent years, with Large Language Models
(LLMs) displaying bias against people depending
on their demographics and identity. As a testa-
ment to the importance of this topic, many recent
papers, including those introducing GPT-3 and 4
(Brown et al., 2020; OpenAI, 2023), PaLM 1 and 2
(Chowdhery et al., 2022; Anil et al., 2023), LLaMa
1 and 2 (Touvron et al., 2023a,b), analyze how such
biases affect their model outputs. Some works even
discuss frequencies of gendered terms in their pre-
training corpora (Anil et al., 2023; Touvron et al.,
2023b), as this can affect downstream generation.
Despite this acknowledgment of the issue, general
purpose tools to measure demographic biases are
still fairly rare, and so far have mainly been in
English.

However, some have begun to measure demo-
graphic biases beyond English. Smith et al. (2022)
built a comprehensive analysis dataset covering 13
demographic groups and Costa-jussà et al. (2023)
extended it to the multilingual setting. Specific
to Machine Translation, Savoldi et al. (2021) dis-
cussed best practices in reporting gender bias. Sev-
eral works (Stanovsky et al., 2019; Prates et al.,
2020; Renduchintala et al., 2021; Renduchintala
and Williams, 2022) have explored metrics for ex-
posing failures in automatically translating pronoun
and occupations, and some have even explored MT
model training (Escudé Font and Costa-jussà, 2019;
Stafanovičs et al., 2020) or fine-tuning (Saunders
et al., 2020; Corral and Saralegi, 2022; Costa-jussà
and de Jorge, 2020) or both (Choubey et al., 2021)
to lessen the effect of gender-related biases. More
than this, there are initiatives that provide toolkits
to generate multilingual balanced datasets in terms
of gender (Costa-jussà et al., 2019) from Wikipedia
and even balanced in gender within occupations
(Costa-jussà et al., 2022).

However, despite the progress made, most of
these resources only cover a handful of languages—
the community still lacks easy to use, open-source
toolkits to measure biases across a large number
of languages. In this work, we address this need
by showcasing, GENDER-GAP, a lexical matching
pipeline to measure gender distribution across 55
languages.

537



Masculine
 Singular

Masculine
 Plural

Feminine
 Singular

Feminine
 Plural

Unspecified
 Singular

Unspecified
 Plural

0

25

50

75

100

125

150

175

200
Co

un
t

Figure 2: Distribution of the number of words in our pro-
posed multilingual gender lexicon per language across
gender-classes and number (i.e. singular and plural)

3 Proposed Data Collection and Pipeline

3.1 Defining Gender

Gender is a complex topic that can be defined
in many different ways depending on the field of
studies and the context (Hellinger and Bussmann,
2001). In this work, we approach gender from two
perspectives:

First, linguistic gender (Corbett, 2013; Cao and
Daumé III, 2020; Kramer, 2020; Stanczak and Au-
genstein, 2021) corresponds to the classification
of linguistic units, such as words, into categories
based on the gender information they provide. Lin-
guistic gender refers to overlapping notions, such
as grammatical, and semantic gender, depending
on the properties of the language. Grammatical
gender implies the classification of nouns, adjec-
tives, and other parts of speech into categories
based on their morphosyntactic properties. In many
languages, grammatical gender morphology ap-
pears on all nouns, regardless of whether they refer
to persons, animals, plants, or inanimate objects
(e.g., “il libro” the book is a masculine noun in
Italian). Semantic gender (Corbett, 1991) refers
to the existence of lexical units whose meaning is
associated with a specific cultural notion of peo-
ples’ gender(s). For instance, in English, the word
“men” associated with masculine traits, “woman”
with feminine ones, etc. Semantic gender then may
be present in languages that do not morphologi-
cally mark grammatical gender, such as English,
Turkish, or Mandarin Chinese. In languages that do
mark grammatical gender, grammatical and seman-
tic gender do not always match: for example, in
German, the word for girl “Mädchen” is grammat-

ically neuter, but refers to a person which would
fall into our ’feminine’ class based on its meaning.
For our purposes, we use semantic gender classes
in our multilingual lexicon, since we are interested
in gender representation.

Our goal is to build and foster inclusive NLP
technologies that do not carry, replicate, or amplify
social gender biases, which can impact end users
and societies negatively by affecting representa-
tions of specific groups. However, there are social
meanings of gender that are not readily accessi-
ble in text, so, we use semantic gender on human
words as a proxy for social gender.

Social gender refers to gender as a social con-
struct based on cultural norms and identity (Acker-
man 2019; Cao and Daumé III, 2020; Stanczak and
Augenstein, 2021; Duignan, 2023). As highlighted
by Ackerman 2019, social gender is defined as the
internal gender experienced by a given human in-
dividual. For this reason, data-driven analysis of
genders in large corpora can only relate to social
gender indirectly through linguistic notions of gen-
der(s).3 We assume for our purposes that a list of
gendered words can be used to approximate some
important aspects of social gender for the purposes
of measuring representation disparities.

3.2 Aligned Gendered Multilingual Lexicon

To measure gender distribution across 55 lan-
guages, we first build a multilingual lexicon. We
want this lexicon to be as aligned as possible across
languages while also encoding language-specific
gender linguistic phenomena.

Languages Our lexicon is available in 55 typo-
logically and phylogenetically diverse languages
such as English, Finnish, Zulu, Vietnamese, Ganda,
Japanese or Lithuanian, spanning 15 distinct scripts.
We report the complete list of languages in Fig-
ure 6.

Gender Classes We define three semantic gen-
der classes: masculine, feminine and unspecified.
The unspecified class aggregates nouns of different
sorts. It mainly capture nouns that do not explic-
itly encode any particular gender (e.g. “person” is
considered unspecified in English). For this reason,

3We recall that gender is distinct from sex which refers
to collections of biological properties of individuals such as
genes (e.g., chromosomes), phenotypes (e.g., anatomy) (Coun-
cil of Europe, 2023). See Butler (2011) for a discussion of
additional factors that complicate this view.
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Figure 3: Diagram of the GENDER-GAP pipeline. In the first stage, we process each sentence of the 55 supported
languages of the dataset and count the word matches for each category. Once this step is completed, we compute
a gender-class score which corresponds to the proportion of gendered noun matched within all the words in the
dataset.

“unspecified” can be seen as aggregating masculine,
feminine and non-binary genders (Herdt, 2020).

While there exist more complex gender lexica
as discussed in Stanczak and Augenstein (2021),
they are focused on English and are not always
easily translated. Because our goal is to provide
a methodology that can be used to evaluate bias
across multiple languages, we take a more pared
down lexical approach.

Lexicon creation We start by defining a list of
about ten, high frequency person nouns per gender
class in English. Each noun is found in both its
singular and plural form. To find a list of nouns
that is as universal as possible, we restrict this
list of persons such as masculine “man”, feminine
“woman”, and “person” and synonyms (e.g. “indi-
vidual”) that we complement with kinship terms
classified by gender (e.g., masculine “father”, fem-
inine “mother”, neutral “parent”). Our list corre-
sponds to the one defined in the previous work of
HolisticBias (Smith et al., 2022), which is only
available in English.4

We then translate these nouns into the other lan-
guages by reassigning them to the appropriate gen-
der class. A noun in a given gender class may
be part of another class (or multiple other classes)
in another language. For instance “grandparents”
(masculine, plural) becomes “abuelos” in Spanish
which is both masculine and unspecified genders.

The English-language source list is passed on
translators who are native speakers of the target lan-
guage, with language proficiency at CEFR5 level

4We use the gender noun list v1.1 from HolisticBias
5https://coe.int/en/web/

C2 in the source language. For all languages, trans-
lators are asked to provide equivalent singular and
plural terms in their respective native language, ex-
cept if any of the source concepts do not exist in the
language. For example, not all languages use a dis-
tinctive, gender-agnostic term such as the English
term sibling, distinctively from either brother or
sister. We also consider that the reverse can be true
(i.e. that the target language may have more than
one term to translate one of the English terms in the
source list), and give the translators the possibility
to provide additional translations in such cases. For
instance, when we translate women into Korean we
get : “여성들” and “여인들”.

Additionally, translators are asked to consider
the terms in the source list as lemmas (or head-
words in dictionary entries) and, if applicable to
the given language, to provide relevant morpholog-
ically derived forms, including cases and gendered
forms. Finally, translators are also encouraged
to provide terms covering all language registers,
which is necessary because some languages (e.g.,
Thai or Korean, among others) use several different
terms at various levels of formality.

We are cognizant of the fact that this approach
presents several limitations. The first limitation oc-
curs when a term could be said to fall into both the
unspecified and one of the gendered categories. For
example, the term Spanish padres can be used to
mean both fathers or parents. Some speakers also
use the singular form to mean parent (and not nec-
essarily father). The second limitation applies to

common-european-framework-reference-languages/
level-descriptions retrieved 2023-07-24
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languages that are closer to the synthetic end of the
analytic-synthetic spectrum; i.e. languages that are
agglutinative or highly fusional (e.g., Zulu, Uzbek,
Estonian). This approach may not allow for the de-
tection of many agglutinated or fused word forms.
Finally, due to the templated, context-free nature of
the lexicon, one term was particularly difficult to
disambiguate: veteran, which can be used to refer
to a soldier or a seasoned professional.6 Cultural
differences also had to be considered in addition to
the above ambiguity; for example, Japanese transla-
tors mentioned the fact that the Japanese equivalent
of the term was infrequently used with the first
meaning cited above.7

Lexicon statistics In Figure 2 we can see the
obtained data distribution across number and gen-
der for the different languages. We notice a few
outliers. As described above, translators are asked
to provide relevant morphologically derived forms.
This makes the number of nouns in Estonian to
be 7 times larger than the average. For instance,
“woman” is translated into naine “a woman”, naise
“of a woman”, naisele “to a woman”, etc.

3.3 Proposed Pipeline

Figure 3 shows a diagram of the GENDER-GAP
pipeline. In the first stage or the counts collection,
we work at the sentence level for the NTREX and
FLORES-200 and at the document level for Com-
mon Crawl. We segment each sample at the word
level using Stanza tokenizer available in the given
language (Qi et al., 2020) except for Cantonese
(yue) for which we reuse the model available for
simplified Chinese (zh-hans) and Thai for which
we use PyThaiNLP.8 For the rest of the languages
we use simple nltk9 typographic tokenizer (based
on white-space and punctuation marks). We then
count and increment a gender-class counter any-
time we match a word in the list of words represen-
tative of this class. For instance, in the sentence
“my mother was a nurse” the pipeline will add +1
to the feminine counter (due to lexical match of
“mother”).

Once this process has been done for each sen-
tence in the dataset we move to the second stage

6https://www.merriam-webster.com/dictionary/
veteran retrieved 2023-07-24

7See https://en.wikipedia.org/wiki/Article_9_
of_the_Japanese_Constitution retrieved 2023-07-24

8https://pythainlp.github.io/docs/2.0/api/
tokenize.html

9https://www.nltk.org/api/nltk.tokenize.html

Figure 4: Gender Representation in % of the total tokens
in the FLORES dataset dev split.

Figure 5: Gender Representation in % of the total tokens
in the NTREX dataset.

Figure 6: Gender Representation in % of the total tokens
in the Common Crawl dataset.

or the reporting of gender proportions where we
define a score for each gender-class by dividing the
gender-class count by the total number of words
in the dataset. By doing so, the final gender score
does not depend on any defined linguistic macro-
unit such as sentences or documents lengths but
only on the word-level tokenization.

4 Experiments

To showcase GENDER-GAP, we run it on Com-
mon Crawl raw data and two popular machine trans-
lation evaluation datasets: FLORES-200 (NLLB
Team et al., 2022) and NTREX-128 (Federmann
et al., 2022). FLORES is a Wikipedia-based dataset
including 3001 sentences translated from English
to 200 languages. NTREX-128 is made of 1997
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Lang Fem. Masc. Uns. ∆(|Fem.-Masc.|) %doc.

Flores DevTest.
eng 0.121 0.065 0.379 0.056 (0.0003) 11.2
avg. 0.128 0.144 0.302 0.097 (0.0003) 10.1

NTREX
eng 0.166 0.203 0.379 0.037 (0.0003) 15.5
avg. 0.180 0.224 0.329 0.099 (0.0003) 13.4

CommonCrawl
eng 0.120 0.115 0.243 0.005 (0.0000) 9.4
avg. 0.212 0.260 0.251 0.136 (0.0003) 12.0

Table 1: % Gender Distribution in WMT Evaluation
dataset. We report the English distribution and the aver-
age across all languages (standard deviation indicated
between parenthesis). The full table is available in the
appendix Table 3-5. We bold the most represented gen-
der class, and underline the second most represented
gender class. We define the the gender gap ∆ defined
as the absolute difference between the Feminine and
Masculine scores. %doc. refers to Coverage.

sentences from news documents originally col-
lected for WMT 2019 (Barrault et al., 2019) trans-
lated from English into 128 languages. Both these
datasets are part of the corpora provided by the
WMT shared task. In addition, we run the pipeline
on a sample of Common Crawl.10 Common Crawl
is a snapshot of crawlable web data that is widely
used in the NLP community thanks to the release
of the CCNET corpora (Wenzek et al., 2020), the
OSCAR corpus (Ortiz Suárez et al., 2019) and the
C4 corpus (Raffel et al., 2019). It is used to train
NLP systems like language and machine translation
models. We run our pipeline on 100k documents
for each language. Our pipeline supports 55 lan-
guages, and we run it on the intersection of these
datasets with the set of supported languages.

5 Analysis

5.1 Quantitative Analysis
We report the average coverage and gender distri-
bution in Table 1 along with the complete tables
for the 55 languages in Table 3-5.

Coverage We first look at the number of samples
for which at least one noun is found (cf. %doc
in Table 1). We find that, on average, about 10%
of samples match with at least a noun (between
10.1 and 13.4% depending on the dataset). We
find that the coverage is the largest for Vietnamese
(with up 45.7% of samples matched) and Thai
(28.9% of samples matched) and the smallest for
Korean (between 1.7% and 2.5% depending on the

10https://commoncrawl.org/

dataset). This shows that even though our lexicon
is restricted to person nouns and kinship relation-
ships, we are still covering a very large number of
samples based on which we measure gender repre-
sentations.

Gender Distribution Table 1 shows gender rep-
resentation for masculine, feminine and unspeci-
fied. For better visualization, Figures 4, 5 and 6
report the % of masculine and feminine representa-
tion of the total tokens in FLORES, NTREX, and
Common Crawl respectively.

On average, the masculine gender is more repre-
sented than the feminine in all three datasets. We
find that NTREX is the dataset with the highest bias
toward the masculine gender on average. Account-
ing for uncertainty, using the standard error to de-
fine a confidence interval,11 we find that 30/45 lan-
guages are biased toward the masculine gender for
NTREX. This includes languages like English, Ara-
bic, French, Spanish, Vietnamese, and Panjabi. The
rest of the languages are either balanced between
masculine and feminine (i.e. ∆(|Fem.-Masc.|) is
inferior to the confidence interval length) or biased
toward the feminine gender. In addition, we find
16/54 languages biased toward the masculine gen-
der for all three datasets suggesting an inherent
gender bias in these languages. This includes sev-
eral romance languages such as Spanish, French,
Catalan and Italian along with Belarusian, Indone-
sian, and Panjabi.

Impact of Domains We find that 14/55 lan-
guages for which, the gender representation
changes drastically across the different datasets.
For instance, the gender differences are much
larger in NTREX than in Common Crawl data.
More specifically, in Lithuanian the distribution
is skewed toward the masculine class for NTREX
data, while it is skewed toward the feminine for
Common Crawl data. For Danish, the gender rep-
resentation is balanced for NTREX but skewed
toward the Feminine class for Common Crawl data.
This shows that domains highly impact gender rep-
resentation. NTREX is based on news data, while

11We consider that a given dataset in a language is biased to-
ward a specific gender when the gap ∆(|Fem.-Masc.|) is higher
than two times the standard error (ste.). This is equivalent to
defining a confidence interval as [rg − 2ste, rg + 2ste] given
the gender score rg with g ∈ {masc., fem.}. If ∆(|Fem.-
Masc.|) is inferior to 2ste, we consider the dataset to be gender
balanced. ste is defined as σ(fem−masc)√

n
with n the number

of words in the dataset and σ the standard deviation. See
(Bulmer, 1979) for more details on these definitions.
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Sentence 1: Omission of words/lexical variation

Eng: shark injures 13-year-old on lobster dive in california masc.+= 0

Spa: tiburón hiere a un niño de 13 años que buceaba en busca de langostas en california masc.+= 1

Cat: un tauró fereix un nen de 13 anys mentre buscava llagostes a califòrnia masc.+= 1

Sentence 2: Multiple translations and variation in part of speech

Eng: [...] something increasingly demanded by younger shoppers. unspecified.+= 0

Cat: [...] un aspecte cada cop més demanat pels consumidors més joves. unspecified.+= 1

Sentence 3: Robust to typographic differences
Eng: mother-of-three willoughby and husband dan baldwin have been close to jones and his wife fem.+= 2,masc.+= 1

Cmn: [...]个孩子的母亲的威洛比及其丈夫 dan baldwin十年来与琼斯及其妻子 tara保持[...] fem.+= 2,masc.+= 1

Sentence 4: Synonyms
Eng: [...] the owner of the lloyds pharmacy chain, for £125m, three years ago. masc.+= 0

Vie: [...] chù sõ hũu cũa chuõi nhà thuòc lloyds, vói giá 125 triẽu bàng vào ba năm trùóžc. masc.+= 1

Table 2: Selected examples of gender representation across parallel sentences between English and multiple target
languages (based on the NTREX dataset). Detected gendered nouns in bold/underlined. We indicate the counter
incremented by the pipeline for the three gender classes (feminine, masculine and unspecified) next to each sentence
when there is at least a match in one of the languages.

Common Crawl includes a large diversity of do-
mains from the Web.

Comparing Genders across Languages In ad-
dition, we find a large variability across languages.
Some languages like Belarus (bel) and Swedish
(swe) are highly skewed toward the Masculine
gender class, while other languages are much
more balanced such as Mandarin Chinese (cmn)
or Hindi (hin).

We note that gender distribution cannot be com-
pared across languages quantitatively. Indeed, first,
our lexicon is based by design on nouns that are
not entirely parallel across languages. Second, our
metric highly depends on the number of words in
each dataset, which is not comparable across all
languages due to their differences in morphology
and syntax. However, as discussed below (§ 5.2),
our pipeline allows us to highlight qualitative dif-
ferences in how gender is encoded in different lan-
guages.

5.2 Qualitative Analysis: Gender
representation variation in parallel data

To understand the cause of these gender representa-
tion differences across languages, we present sev-
eral examples in Table 2. We dicuss them here:

• Omission of words: When comparing English
with Romance languages, we observe cases
where the gendered word is omitted in English

while being translated as a masculine noun in
the target language, like Spanish or Catalan.
This leads to larger gender representation gaps
in these languages.

• Multiple translations and part-of-speech: Sen-
tence 2 shows the impact of how a single
English word corresponds to multiple words
in other languages. The unspecified word
"kid" is translated in 10 words in Catalan: un-
specified "jove, criatura"; feminine "minyona,
menuda, nena, marreca"; masculine, "minyó,
menut, nen, marrec", augmenting the cover-
age in that second language. In addition, some
words in Catalan have multiple part-of-speech,
like "jove, menuda, menut" which can act as
nouns or adjectives.

• Sentence 3 illustrates that even with typologi-
cally different languages such as English and
Mandarin Chinese, our lexical matching ap-
proach successfully highlights cases where
gender is preserved across languages.

• Finally, in Sentence 4, we illustrate the limit
of the context-free approach. Indeed, the
noun “ba” means both father and three in Viet-
namese, leading to over-estimating the mascu-
line class on some samples.

In summary, the differences in gender represen-
tation across languages point to four distinct phe-
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nomena: First, the inherent limit of our context-free
lexical approach. Gender is, in some cases, incor-
rectly estimated by a by-design restricted lexical-
matching method (e.g., Sentence 4). Second, differ-
ent domain distributions may lead to diverse gender
representation. As reported in the previous section,
for some languages, the gender scores highly vary
depending on the domains (e.g., News vs. Web
crawled data). This suggests that when we analyze
non-parallel data, the domain may be a prevalent
factor that explains gender representation differ-
ences across languages. Third, as we observe when
analyzing parallel data, gender representation dif-
ferences may come from biases in the translation
itself. For instance, in Sentence 1, the translation
explicitly encoded the masculine gender in Spanish
and Catalan while being gender unspecified in En-
glish. Other translations could have preserved the
gender. Fourth, the way gender is encoded is, partly
at least, unique to each language. Some languages
are inherently biased toward the masculine gender
(e.g. “padres”, which may mean both fathers and
parents in Spanish). Other languages do not always
have genderless nouns. For instance, siblings can
only be translated onto Lithuanian as “broliai ir
seserys” Brothers and Sisters.

6 Conclusion

In this work, we presented GENDER-GAP, a large
scale multilingual pipeline to compute gender dis-
tribution across 55 languages. We find that broadly
used datasets are biased toward masculine gender.
Based on this finding, our primary recommenda-
tion for multilingual NLP practitioner is to report
the gender distribution along with the performance
score. This allows reader and systems adopters
to be aware of these biases in order to integrate
this in their system deployment. Secondly, based
on our multilingual lexicon, many directions could
be taken to mitigate biases in the performance of
the systems (due to biases in the data). Qian et al.
(2022) developed a perturbation-based technique
to build NLP systems that are less biased toward
specific group. We envision using our multilingual
lexicon to adapt this technique beyond English.

Limitations

English-centric We designed the list of gendered
nouns starting from the English language and then
scaled it to multiple languages. This means that
our approach may cover incompletely the nuances

in different language families regarding gender or
only cover them partially and from an English-
centric perspective.

Non-Binary Gender Modeling To favor scala-
bility across 55 languages, we chose to use a three
gender class lexicon. However, this restrict our
approach to binary genders (masculine and femi-
nine) and we only measure imperfectly non-binary
genders distribution (Haynes et al., 2001; Herdt,
2020) with the “unspecified” class. We leave for
future work the refinement of our lexical categories
in order to measure more granularly genders across
languages.

Lexical Matching The core assumption of this
work is that our predefined lexicon defined in Sec-
tion 3.2 gives us a proxy to account for gender dis-
tributions in large datasets. Although our lexicon
is obviously not exhaustive, it is simple enough to
scale to highly multilingual environments. Future
work could consider other types of nouns (beyond
family relations or persons) such as gendered occu-
pations nouns, pronouns, etc.
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Lang Feminine Masculine Unspecified ∆(| Fem.-Masc. |) (ste.) # words % matched sentences

Flores DevTest.
eng 0.121 0.065 0.379 0.056 (0.0003) 23211 11.2
arb 0.051 0.047 0.094 0.004 (0.0002) 25549 4.1
asm 0.056 0.102 0.093 0.046 (0.0003) 21610 4.5
bel 0.161 0.434 0.444 0.274 (0.0005) 21174 12.7
ben 0.076 0.204 0.142 0.128 (0.0004) 21101 7.2
bul 0.083 0.258 0.114 0.175 (0.0004) 22834 9.1
cat 0.115 0.154 0.146 0.038 (0.0003) 26005 9.4
ces 0.113 0.385 0.153 0.271 (0.0005) 20284 10.6
ckb 0.052 0.119 0.152 0.066 (0.0003) 21073 4.3
cmn 0.101 0.042 0.794 0.059 (0.0002) 23676 17.6
cym 0.104 0.046 0.146 0.058 (0.0002) 26013 6.4
dan 0.129 0.045 0.160 0.085 (0.0003) 22471 6.3
deu 0.114 0.059 0.301 0.055 (0.0003) 21922 9.2
ell 0.118 0.261 0.253 0.143 (0.0004) 24548 12.8
est 0.116 0.099 0.519 0.017 (0.0003) 18107 11.0
fin 0.116 0.086 0.147 0.031 (0.0004) 16314 4.9
fra 0.082 0.089 0.234 0.007 (0.0003) 26910 9.6
gle 0.038 0.053 0.479 0.015 (0.0002) 26517 12.3
hin 0.048 0.032 0.104 0.016 (0.0002) 25094 3.8
hun 0.040 0.250 0.060 0.210 (0.0004) 19977 6.0
ind 0.179 0.468 0.193 0.289 (0.0006) 20728 14.5
ita 0.082 0.168 0.223 0.086 (0.0003) 25583 10.2
jpn 0.113 0.061 0.716 0.052 (0.0002) 31000 20.4
kan 0.086 0.032 0.102 0.054 (0.0002) 18593 3.1
kat 0.097 0.029 0.068 0.068 (0.0002) 20527 3.0
khk 0.274 0.874 0.270 0.599 (0.0007) 21861 22.6
kir 0.134 0.194 0.482 0.060 (0.0004) 20120 12.7
kor 0.037 0.055 0.012 0.018 (0.0002) 16341 1.7
lit 0.140 0.088 0.125 0.052 (0.0003) 19246 5.4
lug 0.084 0.023 0.606 0.061 (0.0002) 21457 12.6
mar 0.060 0.044 0.055 0.016 (0.0002) 18281 2.5
mlt 0.661 0.179 0.191 0.482 (0.0005) 25104 18.3
nld 0.113 0.071 0.236 0.042 (0.0003) 21229 7.5
pan 0.105 0.127 0.087 0.022 (0.0003) 27651 6.5
pes 0.166 0.116 0.310 0.050 (0.0003) 24157 10.0
pol 0.137 0.061 0.544 0.076 (0.0003) 21143 13.4
por 0.103 0.078 0.338 0.025 (0.0003) 24269 10.9
ron 0.100 0.092 0.240 0.008 (0.0003) 25046 8.9
rus 0.117 0.117 0.098 0.000 (0.0003) 21431 5.4
slk 0.113 0.054 0.508 0.059 (0.0003) 20292 11.5
slv 0.069 0.032 0.069 0.037 (0.0002) 21586 3.3
spa 0.104 0.201 0.260 0.097 (0.0003) 26896 12.3
swe 0.119 0.176 0.200 0.057 (0.0004) 20969 8.9
swh 0.225 0.213 0.689 0.013 (0.0004) 23964 20.4
tam 0.168 0.101 0.123 0.067 (0.0003) 17862 4.5
tel 0.092 0.140 0.122 0.049 (0.0004) 16373 3.9
tgl 0.075 0.041 0.373 0.034 (0.0002) 29518 11.1
tha 0.156 0.038 0.439 0.118 (0.0003) 28922 12.7
tur 0.287 0.270 0.293 0.017 (0.0005) 17775 8.4
urd 0.074 0.320 0.234 0.245 (0.0004) 26887 9.2
uzn 0.156 0.076 0.260 0.080 (0.0003) 21181 8.3
vie 0.139 0.301 1.441 0.162 (0.0004) 25263 30.6
yue 0.093 0.040 0.837 0.053 (0.0002) 24728 19.1
zul 0.394 0.059 0.653 0.335 (0.0005) 18532 17.0
avg. 0.128 0.144 0.302 0.097 (0.0003) 22572 10.1

Table 3: % Gender Distribution in FLORES-200 dataset (NLLB Team et al., 2022). We bold the most represented
gender class, and underline the second most represented gender class for each language. We report ∆ the gender
gap defined as the absolute difference between the Feminine and Masculine scores along with the standard error
(ste.). % matched sentences refers to the coverage of our pipeline (cf. § 5.1).
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Lang Feminine Masculine Unspecified ∆(| Fem.-Masc. |) (ste.) # words % matched sentences

NTREX
eng 0.166 0.203 0.379 0.037 (0.0003) 48254 15.5
arb 0.105 0.107 0.206 0.002 (0.0002) 51388 8.7
bel 0.224 0.574 0.397 0.350 (0.0004) 44597 16.9
ben 0.131 0.212 0.311 0.081 (0.0003) 40505 11.3
bul 0.122 0.270 0.095 0.148 (0.0003) 49283 10.5
cat 0.195 0.272 0.235 0.077 (0.0003) 54401 15.6
ces 0.248 0.454 0.190 0.206 (0.0004) 43623 16.3
ckb 0.054 0.167 0.244 0.113 (0.0002) 42554 6.5
cmn 0.193 0.149 0.944 0.044 (0.0003) 50326 24.8
cym 0.086 0.164 0.154 0.078 (0.0002) 52540 8.8
dan 0.184 0.177 0.186 0.007 (0.0003) 45684 10.7
deu 0.162 0.192 0.276 0.030 (0.0003) 46398 12.3
ell 0.141 0.344 0.170 0.203 (0.0003) 51204 14.4
est 0.212 0.328 0.458 0.116 (0.0004) 37794 15.8
fin 0.158 0.181 0.196 0.024 (0.0003) 33617 7.9
fra 0.140 0.208 0.258 0.068 (0.0003) 54336 13.9
gle 0.081 0.135 0.493 0.054 (0.0002) 54205 16.2
hin 0.103 0.092 0.147 0.011 (0.0002) 55207 8.1
hun 0.110 0.140 0.072 0.030 (0.0002) 42834 6.6
ind 0.195 0.581 0.213 0.386 (0.0004) 45071 18.1
ita 0.166 0.301 0.229 0.135 (0.0003) 51884 14.8
jpn 0.209 0.201 0.868 0.008 (0.0002) 59704 25.2
kan 0.115 0.101 0.131 0.014 (0.0002) 36574 4.9
kat 0.198 0.140 0.103 0.058 (0.0002) 39912 5.1
kir 0.209 0.181 0.310 0.028 (0.0003) 38682 12.0
kor 0.040 0.062 0.059 0.022 (0.0002) 32204 2.5
lit 0.187 0.216 0.153 0.029 (0.0003) 41190 9.4

mar 0.089 0.056 0.069 0.033 (0.0002) 35980 3.6
mlt 0.795 0.212 0.284 0.583 (0.0004) 51466 24.7
nld 0.190 0.194 0.196 0.004 (0.0003) 48003 11.2
pan 0.150 0.176 0.100 0.026 (0.0002) 53845 9.9
pol 0.242 0.211 0.525 0.030 (0.0003) 42638 17.9
por 0.160 0.228 0.244 0.067 (0.0003) 50482 13.8
ron 0.152 0.191 0.367 0.039 (0.0002) 54463 15.5
rus 0.171 0.210 0.089 0.039 (0.0003) 46295 8.5
slk 0.248 0.216 0.420 0.033 (0.0003) 43063 16.0
slv 0.093 0.084 0.077 0.009 (0.0002) 45339 4.8
spa 0.162 0.297 0.344 0.135 (0.0003) 52579 15.9
swe 0.156 0.265 0.240 0.109 (0.0003) 42980 12.3
tam 0.308 0.273 0.068 0.035 (0.0002) 36960 7.0
tel 0.118 0.213 0.086 0.095 (0.0003) 31427 5.0
tha 0.418 0.128 0.870 0.290 (0.0003) 57923 23.1
tur 0.227 0.183 0.252 0.044 (0.0003) 36163 8.1
vie 0.146 0.633 2.166 0.487 (0.0004) 52577 45.7
yue 0.133 0.173 0.933 0.041 (0.0002) 54233 26.6
avg. 0.180 0.224 0.329 0.099 (0.0003) 46231 13.4

Table 4: % Gender Distribution in NTREX data (Federmann et al., 2022). We bold the most represented gender
class, and underline the second most represented gender class for each language. We report ∆ the gender gap
defined as the absolute difference between the Feminine and Masculine scores along with the standard error (ste.).
% matched sentences refers to the coverage of our pipeline (cf. § 5.1).
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Lang Feminine Masculine Unspecified ∆(| Fem.-Masc. |) (ste.) # words % matched documents

CommonCrawl
eng 0.120 0.115 0.243 0.005 (0.0000) 2529756 9.4
arb 0.101 0.106 0.085 0.005 (0.0000) 6078083 9.5
bel 0.122 0.447 0.358 0.325 (0.0000) 2430561 14.1
ben 0.158 0.199 0.140 0.041 (0.0000) 4603054 14.4
bul 0.072 0.145 0.142 0.073 (0.0000) 2708232 7.7
cat 0.079 0.141 0.152 0.062 (0.0000) 3157729 9.1
ces 0.117 0.146 0.165 0.030 (0.0000) 2366804 7.9
ckb 0.108 0.049 0.124 0.059 (0.0000) 5341945 10.2
cmn 0.170 0.097 0.519 0.072 (0.0000) 5484451 23.8
cym 0.079 0.082 0.164 0.003 (0.0000) 2777579 7.4
dan 0.182 0.102 0.201 0.080 (0.0000) 2310993 7.9
deu 0.144 0.099 0.187 0.044 (0.0000) 2148705 6.8
ell 0.068 0.143 0.142 0.075 (0.0000) 2855903 7.7
est 0.112 0.152 0.429 0.040 (0.0000) 1943773 10.3
fin 0.294 0.201 0.155 0.094 (0.0001) 1621020 7.3
fra 0.110 0.136 0.151 0.025 (0.0000) 2857434 8.3
gle 0.044 0.101 0.406 0.057 (0.0000) 2634719 12.2
hin 0.176 0.124 0.065 0.052 (0.0000) 2675603 7.4
hun 0.058 0.097 0.075 0.038 (0.0000) 2572506 4.5
ind 0.183 0.367 0.184 0.185 (0.0000) 2227691 12.1
ita 0.131 0.195 0.070 0.064 (0.0000) 2961219 8.2
jpn 0.858 0.724 0.963 0.134 (0.0000) 5964414 27.4
kan 0.103 0.094 0.093 0.009 (0.0000) 3772755 7.0
kat 0.129 0.089 0.116 0.040 (0.0000) 3977699 6.2
khk 0.301 0.948 0.248 0.647 (0.0000) 4996882 32.1
kir 0.269 0.308 0.270 0.039 (0.0000) 3895597 20.0
kor 0.032 0.047 0.047 0.015 (0.0000) 2364450 2.4
lit 0.148 0.117 0.243 0.031 (0.0000) 2293338 8.4

mar 0.133 0.112 0.051 0.021 (0.0000) 1531197 3.8
mlt 0.554 0.179 0.213 0.375 (0.0001) 2437212 20.0
nld 0.127 0.101 0.201 0.027 (0.0000) 1921934 6.3
pan 0.236 0.308 0.074 0.072 (0.0000) 6772503 22.4
pes 1.459 1.425 1.514 0.034 (0.0000) 3881584 14.7
pol 0.175 0.074 0.290 0.101 (0.0000) 2453053 9.9
por 0.110 0.160 0.158 0.050 (0.0000) 2846706 9.2
ron 0.207 0.138 0.257 0.068 (0.0000) 2555624 10.1
rus 0.107 0.139 0.117 0.031 (0.0000) 2565203 6.4
slk 0.111 0.066 0.324 0.045 (0.0000) 2269033 8.7
slv 0.057 0.071 0.142 0.014 (0.0000) 2373967 5.3
spa 0.122 0.255 0.183 0.133 (0.0000) 3046193 11.7
swe 0.179 0.372 0.157 0.193 (0.0000) 2346273 11.5
swh 0.221 0.194 0.492 0.027 (0.0000) 2385794 19.9
tam 0.766 0.676 0.073 0.091 (0.0000) 1691612 11.7
tel 0.127 0.165 0.056 0.038 (0.0000) 1277513 3.5
tgl 0.145 0.108 0.419 0.038 (0.0000) 5035687 21.2
tha 0.735 0.107 0.932 0.628 (0.0000) 7142646 28.9
tur 0.228 0.202 0.215 0.027 (0.0000) 2293026 7.3
uzn 0.119 0.077 0.280 0.042 (0.0000) 2973725 9.5
avg. 0.212 0.260 0.251 0.136 (0.0003) 3088848 12.0

Table 5: % Gender Distribution in a Common Crawl sample. We bold the most represented gender class, and
underline the second most represented gender class. We report ∆ the gender gap defined as the absolute difference
between the Feminine and Masculine scores along with the standard error (ste.). % matched documents refers to the
coverage of our pipeline (cf. § 5.1).
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Language Code Language

arb_Arab Modern Standard Arabic
asm_Beng Assamese
bel_Cyrl Belarusian
ben_Beng Bengali
bul_Cyrl Bulgarian
cat_Latn Catalan
ces_Latn Czech
ckb_Arab Central Kurdish
cmn_Hans Mandarin Chinese (simplified script)
cym_Latn Welsh
dan_Latn Danish
deu_Latn German
ell_Grek Greek
eng_Latn English
est_Latn Estonian
fin_Latn Finnish
fra_Latn French
gle_Latn Irish
hin_Deva Hindi
hun_Latn Hungarian
ind_Latn Indonesian
ita_Latn Italian
jpn_Jpan Japanese
kat_Geor Georgian
khk_Cyrl Halh Mongolian
kir_Cyrl Kyrgyz
lit_Latn Lithuanian
lug_Latn Ganda
lvs_Latn Standard Latvian
mar_Deva Marathi
mlt_Latn Maltese
nld_Latn Dutch
pan_Guru Eastern Panjabi
pes_Arab Western Persian
pol_Latn Polish
por_Latn Portuguese
ron_Latn Romanian
rus_Cyrl Russian
slk_Latn Slovak
slv_Latn Slovenian
spa_Latn Spanish
swe_Latn Swedish
swh_Latn Swahili
tam_Taml Tamil
tha_Thai Thai
tur_Latn Turkish
ukr_Cyrl Ukrainian
urd_Arab Urdu
uzn_Latn Northern Uzbek
vie_Latn Vietnamese
yue_Hant Yue Chinese (traditional script)
kan_Knda Kannada
tel_Telu Telugu
tgl_Latn Tagalog
zul_Latn Zulu

Table 6: The 55 languages analyzed in this work, subselected from the 200 NLLB languages (NLLB Team et al.,
2022).
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Abstract

In this paper we propose a novel approach to
automatically classify the level of formality
in Japanese text, using three categories (for-
mal, polite, and informal). We introduce a new
dataset that combine manually-annotated sen-
tences from existing resources, and formal sen-
tences scrapped from the website of the House
of Representatives and the House of Coun-
cilors of Japan. Based on our data, we propose
a Transformer-based classification model for
Japanese, which obtains state-of-the-art results
in benchmark datasets. We further propose
to utilize our classifier to study the effective-
ness of prompting techniques for controlling
the formality level of machine translation (MT)
using Large Language Models (LLM). Our ex-
perimental setting includes a large selection of
such models and is based on an En→Ja par-
allel corpus specifically designed to test for-
mality control in MT. Our results validate the
robustness and effectiveness of our proposed
approach and while also providing empirical
evidence suggesting that prompting LLMs is a
viable approach to control the formality level
of En→Ja MT using LLMs.

1 Introduction

Communication by way of natural language often
includes indicators for respect to acknowledge the
hierarchy, interpersonal relationship, and power
dynamics of the participants in a conversation or
written text. In this context, formality or honorifics
refers to the set of linguistic features used to estab-
lish the degree of respect and deference conveyed
in a given context.

Naturally, these phenomena exhibit significant
variation across different languages and cultures
(Biber and Conrad, 2019). While many European
languages emphasize formality through the use
of standard grammar, more complicated sentence
structures (active, passive, use of clauses, etc.), or
more advanced and complex choice of vocabulary

and phrases, the Japanese language has its own for-
mality system. This system, named Keigo (敬語),
requires users to identify the status or the relation-
ship with the interlocutor, is strict, following a stan-
dard grammar format (Fukada and Asato, 2004),
and can generally be divided into four different
categories (Aoki et al., 2007), as follows.

• Regular (jyotai,常体): a form that is often
used in, but not limited to a daily conversation
with only people one is familiar with or people
who are in the equivalent social status.

• Polite (teineigo,丁寧語): a form that is gen-
erally used throughout the whole Japanese
society to create some distance between one
another. Although this form does not indicate
the amount of respect one holds toward others,
it helps deliver messages in a polite way that
will not be offensive on any occasion.

• Respectful (sonkeigo,尊敬語): a form that
shows extensive respect, which is used to max-
imize the preeminence of the interlocutor.

• Humble (kenjyougo, 謙譲語): a form that
specifies humbleness, which is used by the
Japanese speakers to minimize their own value
in order to highlight the greatness of the inter-
locutor.

In this context, what makes Japanese formality
stand out is that it allows to convert any sentences
from one style to another by simply adjusting the
tense of the verb (Aoki et al., 2007), while main-
taining the original meaning, word choice, and sen-
tence structure.

Additionally, the system follows one additional
rule (Aoki et al., 2007), where one can always
mix the four forms together in one paragraph. The
more respectful form one uses in a sentence or
a paragraph, the more courtesy one states toward
one’s interlocutor. Similarly, the more humble form
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one uses, the more modest one is in the conversa-
tion. However, it is also emphasized that when
containing too many formal terms in a sentence,
the sentence will become annoying and considered
inappropriate in Japanese social rules (Aoki et al.,
2007).

Given the importance of formality in language
generation systems such as machine translation
(MT), the ability to control formality and honorifics
is a critical factor in achieving accurate and ap-
propriate results. In particular, for the Japanese
language, failure in recognizing and incorporating
levels of formality can result in unnatural, impo-
lite, or disrespectful translations, which can im-
pede effective communication across diverse lin-
guistic and cultural contexts (Fukada and Asato,
2004). We therefore think that developing and re-
fining MT models that can accurately control hon-
orific levels is crucial for this language. Although
formality-controlled machine translation (FCMT)
has gained popularity for languages like English
(Niu and Carpuat, 2020), there is a substantial lack
of resources to tackle the formality problem for
Japanese, which extends to the more fundamental
task of formality detection.

In light of this issue, we focus on developing re-
sources to improve formality detection in Japanese.
We begin by uncovering several flaws on existing
corpora for the task, including issues such as the
presence of ungrammatical sentences, as well as
wrong formality labels. To alleviate these issues,
we introduce new resources for Japanese formality
detection which consists of manually-labeled sen-
tences annotated with three formality classes (infor-
mal, polite, and formal). We propose this three-way
setting in opposition to existing resources which
are annotated using binary labels, to better approx-
imate the nature of formality of the Japanese lan-
guage. As existing resources (Nadejde et al., 2022;
Liu and Kobayashi, 2022) lacked data for the for-
mal label, a part of our dataset is constructed with
sentences sampled from these sources and with text
obtained from meeting minutes from committees
of the House of Representatives and the House of
Councilors of Japan 1.

Furthermore, as language generation models
based on Large Language Models (LLMs) have
recently been able to attain substantial performance
improvements on language generation benchmarks,
we note that the lack of a consistent evaluation

1https://kokkai.ndl.go.jp/

method makes it difficult to verify to what extent
such models can perform formality control. In MT,
current studies mainly rely on human assessment
or simple models. For example, Feely et al. (2019)
and Nadejde et al. (2022) use rule-based methods
where lists of grammatical rules are combined with
pattern-matching to perform classification. Though
formality-level classifiers for Japanese based on
machine learning have been proposed in the past
(Rippeth et al., 2022; Liu and Kobayashi, 2022), so
far this has been without focus on MT or lacked
proper evaluation.

In consideration of the above issue, in this paper
we propose a novel approach, based on machine
learning, to evaluate the ability of En→Ja MT mod-
els to perform formality-control. Concretely, we
use our dataset to train a robust Transformer-based
classifier that leverages a masked-language model,
which is able to obtain state-of-the-art performance
on our dataset and on existing Japanese formal-
ity detection benchmarks. Following recent work
relying on machine learning models to evaluate
language generation, such as BERTScore (Zhang
et al., 2019), and MT models, such as COMET (Rei
et al., 2020a), we present an empirical study using
our classifier to evaluate the zero-shot ability of
several state-of-the-art LLMs to perform formality
control.

Our results validate the effectiveness of our
proposed approach and show that, compared to
existing evaluation techniques that rely on rules
and expression-matching, it offers a robust, reli-
able, and accurate evaluation metric for formality-
controlled MT systems. We further demonstrate the
ability of LLMs to generate sequences with varying
levels of formality through the use of well-designed
prompts, concretely showing that both GPT-3 and
ChatGPT can attain a formality control accuracy of
approximately 90%, and ultimately suggesting that
prompting LLMs can result in better formality con-
trol performance than fine-tuned MT models. We
release or data and trained models2 to encourage
further research on this topic.

2 Related Work

To the best of our knowledge, previous work on
formality detection for Japanese is relatively re-
cent and limited in scope, with only two existing
resources. On the one hand, we find the Japanese
portion of the CoCoA-MT (Nadejde et al., 2022)

2https://github.com/epochx/japanese-formality
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dataset, which was released for the 2022 Shared
Task on Formality Control at IWSLT (Anastasopou-
los et al., 2022) and contains a total of 1,600 paral-
lel English-Japanese sentences (1,000 for training,
and 600 for testing). The source data for this corpus
comes from Topical-Chat4 (Gopalakrishnan et al.,
2019), as well as Telephony and Call Center data,
containing text-based conversations about various
topics. For each segment, one reference translation
for each formality level (formal and informal) were
collected. For the Japanese translations, informal
was mapped to jyoutai, and formal was mapped to
teineigo, sonkeigo and/or kenjyougo.

On the other hand, we find the recently-released
KeiCO corpus (Liu and Kobayashi, 2022), which
has a total of 10,007 examples across the four forms
of the Japanese formality system (Levels 1 to 4,
according to the paper). It additionally contains
detailed information about the presence of level-
related honorifics —a sentence may contain mark-
ers for multiple levels of politeness— the social
relationship between the speaker and the listener,
and conversational situations or topics. To obtain
this data, 40 native Japanese volunteers were asked
to regenerate a total of 3,000 sentences coming
from machine translation, dialogue systems, and
semantic analysis systems, by filling in blanks with
honorifics.

The two datasets mentioned above have been
used to train Transformer-based classifiers. Liu and
Kobayashi (2022) rely on Japanese-BERT (Suzuki
and Takahashi, 2021), while the submission of Rip-
peth et al. (2022) for the 2022 Shared Task on For-
mality Control at IWSLT relied on XLM-R (Con-
neau et al., 2020).

Our work is also related to FCMT. In this con-
text, recent approaches have relied on formality-
annotated parallel corpora such as CoCoA-MT,
early work on this task resorted to other resources
such as rule-based generation of synthetic data for
English-Japanese (Feely et al., 2019) and English-
German (Sennrich et al., 2016), as well as synthetic
supervision by means of multi-tasking (formality
classification and machine translation). We also
find that these studies rely on rule-based simple
approaches to measure the accuracy of formality
control in the translation, or directly perform hu-
man assessment. For example, the FSMT approach
English-French by Niu et al. (2017) conducted a
human study in which they assigned translation
pairs for human annotators. Neural CFMT mod-

els for English-Japanese (Feely et al., 2019) and
English-German (Sennrich et al., 2016) depend on
rule-based classifiers, where grammatical rules for
the language are listed and matched.

The recent rise of LLMs has enabled models to
perform certain language generation tasks in zero-
shot or few-shot manner (Brown et al., 2020), or by
means of prompts. Some of these capabilities have
been further enhanced by means of prompt-based
training (Sanh et al., 2022), where zero-shot gener-
alization is induced by explicit multitask learning.
This work is relevant to our paper, as we test the
ability of several such models to perform zero-shot
FCMT. Our study also considers multilingual ef-
forts in Neural MT, admittedly also a kind of LLM,
where we look at M2M100 (Fan et al., 2021) and
NLLB200 (Costa-jussà et al., 2022)

Finally, we also find recent work on using few-
shot prompting-based techniques to control the for-
mality level of English-German Machine Transla-
tion (Garcia et al., 2023). Also, Pu and Demberg
(2023) recently performed an in-depth study of the
capabilities of ChatGPT to generate text in different
styles, including formal/informal labels, showing
that the model sometimes incorporates factual er-
rors or hallucinations when adapting the text to suit
a specific style.

3 A robust classifier for Japanese
Formality

3.1 Data

The size and quality of the datasets are vital req-
uisites to maximize the performance of the ma-
chine learning models (Mohri et al., 2018). As one
goal of our work is to train a robust classifier for
Japanese formality, we look at two main issues. In
contrast to existing resources, which either offer
limited flexibility by simplifying the dynamics of
Japanese formality into two classes (Nadejde et al.,
2022), or are too specific by exactly following the
grammar (Liu and Kobayashi, 2022), we propose a
compromise between these and divide the Japanese
language into three categories based on the four
formality levels and their corresponding applied
situations: (1) “Informal” (for regular tense), (2)
“Polite” (for polite tense or teineigo), and (3) For-
mal (for respectful and humble tenses). Below, we
detail how we transformed existing datasets for our
purposes, created new resources when necessary,
and how we constructed a final curated corpus to
train our model.
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RECOCOA-MT As we divided Japanese for-
mality into 3 classes, this suggested that the re-
utilization of the Japanese portion CoCoA-MT cor-
pus required a transformation of the labels, so we
began by analyzing the data. During this stage,
we found that many of the examples of the par-
allel corpus contain broken sentences, while in
many cases other sentences do not have an un-
derstandable Japanese meaning. Based on these
observations, we decided to re-annotate the data
and recruited volunteer Japanese native speakers
to proceed3. During the re-annotation procedure,
we confirmed that 44 out of the 1,000 training ex-
amples were mislabeled. After re-annotation and
filtering, 520 sentences are labeled as informal, 464
sentences as polite, and 12 sentences as formal.

KOKAI As seen above, the re-annotation of
COCOA-MT showed that the label distribution in
this dataset was heavily skewed away from the for-
mal label, which suggested that more data for this
particular level of formality was required. Noting
that Japanese political committees tend to rely on
language that is considered formal, or at least po-
lite, with very little informal syntax, we proceeded
to collect all the meeting minutes from the Japanese
Congress (House of Representatives of Japan and
the House of Councilors of Japan) from 1947 to
2022. In total, we obtained 64,630 sentences with
23,672 paragraphs, excluding 11,805 broken sen-
tences which are mostly the names, dates, or titles
of the committees or the list of participants. We
surmise some of these broken sentences, as well as
the informal sentences that we observed upon close
examination, are likely interrupted utterances that
occurred during the sessions. Despite the overall
formal nature of the source of data, to ensure the
quality of the labels we use for training, we ran-
domly selected 1,360 examples from the raw data
and ask our volunteer Japanese native speakersfoot-
note:annotators to annotate the examples following
the same procedure as before. As a result, we ob-
tain 137 informal examples, 760 polite examples,
and 463 formal examples.

DAILY We collected 200 sentences sampled from
Japanese news, novels, textbooks, business letters

3We recruited 30 native Japanese speakers within 20 and
30 years old. All annotators are currently undergraduate or
graduate students of a university in Tokyo, Japan. Further-
more, these annotations were double-checked with the help of
Japanese dictionaries by 3 additional native Japanese speakers
who are graduate students of the same university.

and academic documents. The dataset is well-
balanced across our three labels with 65, 67, and
68 sentences for the informal, polite, and formal
classes, respectively. We use this small corpus
mainly for preliminary experiments, but also in-
clude these examples in the data used to train our
model, as explained below.

KEICO We note that according to Liu and
Kobayashi (2022), both respectful and humble
tenses are used for the proposed formality Lev-
els 1 and 2. We therefore simply map these two
classes to our formal class, to make the annotations
compatible with our setting

Using these sources of data except the KEICO,
we prepared a first training set consisting of 1,000
examples (426 informal, 501 polite sentences, and
273 formal), leaving a total of additional 200 ex-
amples left for development purposes. Though
KOKAI has been collected to specifically cover for
the lack of annotated data for the formal label in
RECOCOA-MT, because the contents are highly
related to politics and other related domains, we
hypothesize that by only utilizing examples derived
for this dataset for training may lead to models that
may fail to generalize well to other situation where
the respectful and humble tenses are also utilized.
To that end, for the initial training set we purposely
omit examples from KEICO, which contains for-
mal examples from a diverse set of domains, and
build a second training set that relies on examples
taken from this corpus to balance the topic distribu-
tion. We take a total of 2K examples from KEICO
(with 530, 503, and 967 sentences for informal,
polite, and formal classes, respectively.)

3.2 Model

Drawing from the success of classifiers based on
BERT (Devlin et al., 2019), which have achieved
excellent performance in a large selection of down-
stream tasks, and following Liu and Kobayashi
(2022), we propose to use Japanese-BERT (Suzuki
and Takahashi, 2021) to train a formality classi-
fier for Japanese formality. The input text is pre-
processed and tokenized using the MeCab mor-
phological parser (Kudo, 2005), which is what
Japanese-BERT utilizes. For training, we used the
AdamW (Loshchilov and Hutter, 2019) optimizer,
with a learning rate of 10−5, a batch size of 16 and,
and train for a maximum of 20 epochs.

We evaluate our model in the test portions of ex-
isting datasets, namely, COCOA-MT and KEICO.
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For the former, our analysis reveals that out of 600
examples in the test set, only 594 have been made
available, which we utilize in our study. For the
latter, since no official test splits are provided, we
try to follow the experimental setting proposed by
Liu and Kobayashi (2022)4 and randomly selected
20% of the examples to test.

To contextualize our contributions and put the
performance of our classifier in context, we con-
sider a selection of baselines taken from previous
work, as well as our implementations of newly-
introduced models, and use F1-Score for evalua-
tion.

On COCOA-MT, we consider the rule-based
classifiers proposed by Nadejde et al. (2022) and
Feely et al. (2019), as well as our Transformer-
based classifier. To test our model in this dataset,
which is a binary classification setting, we either
train another Transformer-based model on binary
labels, or simply convert the prediction of the 3-
way models into binary classification by consider-
ing all the other 3 tenses except for regular form as
formal.

For this dataset, we additionally propose a new
rule-based classifier for Japanese formality, which
we adapt from Feely et al. (2019). Concretely,
we propose ways to mitigate some limitations that
were identified in the existing model. For exam-
ple, the original rules assigned “ない (negative -
present tense)” and “なかった (negative - past
tense)” to the polite class, while we consider that
both of them should be the regular form. In our
approach, we label all sentences that are not classi-
fied as belonging to the “Polite” and the “Formal”
class as “Informal”.

We omit results by Rippeth et al. (2022), who
fine-tune XLM-R on binary classification between
formal and informal classes, but only report accu-
racy on the development set, defined as the last 50
paired contrastive examples from each language,
which we regard as too small and incompatible
with our setting. Their model obtains an accuracy
of 98% on both the formal and informal classes on
this set.

For the KEICO dataset, we compare the perfor-
mance of our Transformer-based and rule-based
classifiers against the BERT-based classifier pro-
posed by Liu and Kobayashi (2022). Since this clas-
sifier is trained on a different label set compared to

4Their reported metrics are the result of 10 runs with dif-
ferent initialization, and each time 20% of the examples are
randomly chosen for the evaluation.

Model Precision Recall F1-score

Nadejde et al. (2022) 0.70 0.49 -
Feely et al. (2019)* 0.87 0.83 0.83

Rule-based* 0.98 0.98 0.98

no KEICO samples
Transformer 3-way* 0.97 0.97 0.97
Transformer 2-way 0.97 0.97 0.97

with KEICO samples
Transformer 3-way* 0.97 0.97 0.97
Transformer 2-way 0.97 0.97 0.97

Table 1: Performance formality-level classifiers for
Japanese on CoCoA-MT, where * indicates models that
were originally designed for 3-way classification, but
adapted for binary formality labels by considering po-
lite, respectful, and humble forms as Formal. Precision
and recall values from (Nadejde et al., 2022) are based
on M-Acc score, and are computed on a 300-example
subset of the data. F1-scores were not reported, so we
omit them.

our approach, we proceed as follows: (1) we com-
pare the average F1-score for the respectful and
humble term detection task in (Liu and Kobayashi,
2022) against the F1-score of our classifier on
the formal label, which we regard as a roughly-
equivalent setting, (2) as our approach directly
collapses Levels 1 and 2 in Liu and Kobayashi
(2022) to our formal label, while Level 3 (which
uses teineigo) and Level 4 (no honorifics) perfectly
match our polite and informal class, respectively,
we compare F1-scores as-is against the overall clas-
sification performance.

3.3 Results

As can be seen in Table 1, both our rule-based and
Transformer-based models are able to outperform
previous work on COCOA-MT by substantial mar-
gins. We further notice that both models are able
to attain very similar, and extremely high perfor-
mance of 97% F1-score, and that neither the change
in label setting, nor the addition of examples from
KEICO have any effect on the performance. We
think these results are compelling evidence sug-
gesting the limited quality of the examples in this
dataset. Based on this, we recommend researchers
to consider other benchmarks instead.

Table 2 shows our results on the KEICO dataset.
We see that our Transformer-based classifier ob-
tains an overall F1-score of 0.84, surpassing of the
classifier proposed by Liu and Kobayashi (2022).
By contrast, our rule-based classifier only obtains
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Model F1-score
Formality Hon. Level

Liu and Kobayashi (2022) 0.802 0.727

Rule-based 0.620 -

no KEICO samples
Transformer 0.550 0.604

with KEICO samples
Transformer 0.840 0.810

Table 2: Summary of results on the KeiCO dataset. The
“Formal” column refers to the accuracy of the model to
detect formal terms, while the “Level” column indicates
the performance of detecting the level of honorifics.

an F1-score of 0.620, showing that rule-based meth-
ods, as comprehensive as they may be, offer limited
reliability in multi-domain scenarios.

We also observe that the addition of examples
from the KEICO dataset to the training data has
a substantial impact on the performance of our
model. It is only when these examples are added
that our Transformer-based model is able to outper-
form the baseline. We think this result validates our
domain-shift hypothesis, suggesting that examples
from KOKAI offer only a narrow variety of expres-
sions of Japanese formality, which do not allow the
model to generalize well to more general domains.

Overall, our results suggest that the KEICO
dataset offers a more compelling and real-like arena
to evaluate the accuracy of Japanese formality clas-
sifiers.

4 Empirical Study

Having demonstrated the abilities of our
Transformer-based classifier of Japanese formality,
we now turn to a more practical issue, and tasks
ourselves with testing the proposed approach in a
real scenario. We examine formality abilities of
English to Japanese machine translation using a
zero-shot prompting approach. To the best of our
knowledge, our work is the first one to study this
issue.

4.1 Experimental Setup
Data We utilize the COCOA-MT En→Ja test
set for our experiments. As mentioned earlier, ex-
amples in this dataset exhibit numerous flaws, in-
cluding incomplete and semantically meaningless
sentences, but since no other suitable dataset exists,
we resort to this dataset nonetheless. We assume
the existence of tuples (x, yformal, yinformal) where x

is the input sentence in English, and y are the target
sentences in Japanese at different formality levels.
Using the original 594 English sentences, below
we show how we prompt our selection of models to
produce both informal and formal Japanese transla-
tions.

Models We utilize large multilingual MT models
trained on massive parallel corpora, specifically,
M2M100 (Fan et al., 2021) and NLLB200 (Costa-
jussà et al., 2022). Additionally, we experiment
with M2M100 models of different sizes, including
the 418M and 1.2B models. For each MT model,
we use the English sentences from COCOA-MT as
input, and concatenate them with a prefix prompt
p ∈ P = {formal, informal} which is added using
square brackets. Thus, the input to the models is
expressed as “[p];x,” where ; denotes white-space-
based concatenation.

Moreover, as LLMs have shown good perfor-
mance on MT when provided with an appro-
priate prompt, we also experiment using GPT-
3 (Brown et al., 2020) and ChatGPT. We use
similar prompts to those used for the MT mod-
els, but suggest more clearly to the models
to perform the formality control task by using
“Translate English to p Japanese: x”. For Chat-
GPT, as the official API was not yet available at the
time of our experiments, so we manually input a to-
tal of 1,188 examples (594 examples for each infor-
mal and formal setup) into the web client of Chat-
GPT Plus5. We also consider the recently-released
llama2 models (Touvron et al., 2023), specifically
the chat versions, which have been optimized for
dialogue. We utilize the 7B-parameter and 13-
B models, the latter we quantize to 4-bits using
QLoRA (Dettmers et al., 2023) in order to fit our
GPU memory. We follow the approach by the origi-
nal paper to create our prompt, and test two settings
(1) a zero-shot approach where the model is directly
asked to generate translation, and (2) a one-shot
setting, where we incorporate a source-target trans-
lation example for the given formality target. We
construct this example manually, making sure it
has minimum overlap with the examples from our
data.

Finally, we also consider the Transformer-based
model by Nadejde et al. (2022) as a baseline. This
model is a 20-layer encoder and 2-layer decoder
Transformer trained from scratch on the COCOA-
MT, with the help of data augmentation techniques.

5https://openai.com/blog/chatgpt
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Model Cmp (%) COMET BLEU M-Acc Accuracy
Rule T-3 T-2

Nadejde et al. (2022) 100 - 22.20 0.76 (-) - - -

M2M100 (418M) 100 0.731 16.19 0.49 (0.18) 0.51 0.49 0.51
M2M100 (1.2B) 100 0.744 17.25 0.50 (0.19) 0.50 0.49 0.49
NLLB200 (600M) 100 0.733 8.83 0.47 (0.19) 0.49 0.48 0.48

llama2-chat (7B) 74.8 0.698 8.53 0.52 (0.24) 0.55 0.54 0.54
+ one shot 84.1 0.617 6.76 0.51 (0.26) 0.56 0.51 0.56

llama2-chat (13B) 55.4 0.731 11.36 0.83 (0.19) 0.64 0.63 0.63
+ one-shot 91.3 0.561 8.05 0.61 (0.30) 0.56 0.56 0.57

GPT-3 100 0.875 23.79 0.86 (0.25) 0.91 0.90 0.90
ChatGPT 98.9 0.868 20.63 0.83 (0.25) 0.91 0.91 0.91

Table 3: Performance of our experiments with formality-controlled En→Ja MT, including results MT models
(Nadejde et al., 2022) fine-tuned on the data, and zero-shot approaches using pre-trained MT models and LLMs.
Here, T-3 and T-2 indicate the proposed 3-way and binary Transformer-based classifiers, and Cmp. is short for
Compliance, showing the percentage of output that contained valid translations. For M-Acc (Nadejde et al., 2022),
we also show the coverage of the matched sentences between parenthesis, as this evaluation metric model overlooks
examples that do not match its rules.

Evaluation We perform evaluation in terms of
the quality of the generated translations, and in
terms of the ability to perform formality control.
For the former, we follow previous work and report
and BLEU scores (Papineni et al., 2002) relying
on the sacrebleu6 implementation (Post, 2018), and
also consider COMET (Rei et al., 2020b) using
the “wmt22-comet-da” model, which has multilin-
gual support. For the latter, we rely on Matched-
Accuracy (M-Acc) (Nadejde et al., 2022) which
is a rule-based corpus-level metric for COCOA-
MT. M-acc works by checking if the hypothesis
contains: a) any of the formality-marking phrases
annotated in the formal reference and b) none of the
phrases annotated in the informal reference (or vice
versa). Crucially, sentences that are not matched
are simply skipped. This metric was shown by
Nadejde et al. (2022) to be relatively reliable for
Japanese, obtaining a precision and recall of 0.7
and 0.49, respectively, when tested on a random
sample of 300 sentences that were manually anno-
tated by two professional translators. Finally, we
utilize our proposed rule-based and Transformer-
based classifiers. Finally, we also measure the zero-
shot or few-shot ability of LLMs to “comply” with
the given prompt by generating plausible transla-
tions. Based on the provided instruction, we use
heuristics to parse and extract the translation from

6https://github.com/mjpost/sacrebleu

the text generated, and report the percentage of
output that our heuristics are able to parse success-
fully.

4.2 Results

Table 3 summarizes our results on the formality
control in En→Ja MT performance of all the mod-
els considered. We see that zero-shot prompting
techniques work much better on LLMs than on pre-
trained multilingual MT models, with the former
attaining the best performance overall. In partic-
ular, we see that zero-shot techniques based on
prompting lead to substantially low BLEU scores
and formality control accuracy when tested on pre-
trained multilingual MT models, which are also
outperformed by the fine-tuned models by (Nade-
jde et al., 2022). This suggests that pre-trained
multilingual MT models may simply lack the abil-
ity to be prompted for formality control.

In terms of model compliance, we notice that
prompting LLMs leads to unstable behavior, with
models often not following the provided instruc-
tion. This therefore leads them to not generate a
valid translation, or to do so in a what such that it
is not feasible to find the translation automatically
in the model output. For example, some models
do not follow the input-output pattern described
in the prompt, while others tend to explain their
translations in some cases. Finally, llama2 mod-
els sometimes refused to provide a translation for
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safety reasons, as they detected words regarded as
rude or potentially harmful in the input.

Moreover, our results shed light on the reliability
issues of M-Acc which, due to its hard matching
approach, ends up ignoring many of the transla-
tions generated by the systems we test. We observe
that across all our tested systems, its coverage lies
between 0.18 to 0.25. M-acc is in principle de-
signed to work only for the COCOA-MT dataset.
While this is allegedly a strong limitation already,
we think the coverage issue we observed suggests
that the approach may be even more limited.

In contrast to these results, we observe that
both our Transformer-based and rule-based ap-
proaches offer no coverage issues, while also agree-
ing with each other and with the overall M-acc
scores. We think these results validate our tech-
niques as valid alternatives for the evaluation of
formality-controlled MT, setting a potential direc-
tion for future developments.

5 Conclusions

This paper explores new alternatives to evaluate the
ability of En→Ja MT models to perform formality
control, proposing classifiers based on rule-based
methods and a machine learning approach using
HuggingFace Transformers7 (Wolf et al., 2020).

To build robust models, we focus on develop-
ing resources to improve formality detection in
Japanese, uncovering several flaws on existing cor-
pora for the task, and introducing new annotated
datasets. In contrast to prior work approaching
formality using binary labels, we use three classes
(informal, polite, and formal) to better approxi-
mate the ways honorifics are used in the Japanese
language. Extensive experiments on benchmark
datasets show that our proposed models offer state-
of-the-art performance.

Finally, we empirically show that our machine-
learning approach is superior to existing evaluation
techniques for formality-controlled MT systems,
offering a reliable and accurate evaluation solution.
The study also demonstrates the ability of LLMs to
generate sequences with varying levels of formality
through well-designed prompts, resulting in state-
of-the-art results in En→Ja formality-controlled
MT. Our findings provide a valuable contribution
to the NLP field by presenting a new approach
to evaluate formality-controlled MT systems and
highlighting the effectiveness of LLMs in this task.

7https://huggingface.co/docs/transformers

Limitations

In this work, we have introduced both data and
models to tackle the task of formality detection in
the Japanese language. Though our results suggest
that we have been able to build a robust classifier
that obtains good performance, we offer no empiri-
cal evidence to suggest how well these capabilities
could generalize to untested domains or situations.

Moreover, as some of our experiments involved
black-box models that are only accessible through
an API, such as GPT-3 and ChatGPT, we are un-
able to offer reliability in replicating those results.
Upon acceptance, we will be releasing the output
we obtained from these models for the sake of re-
producibility of our experiments.

Finally, we also utilize pre-trained models either
as baselines or to initialize our proposed classifier,
and we think this is an important driver of the per-
formance we observed. This may be an issue where
access to pre-trained models is limited.
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Abstract
Quality Estimation (QE), the evaluation of ma-
chine translation output without the need of ex-
plicit references, has seen big improvements in
the last years with the use of neural metrics. In
this paper we analyze the viability of using QE
metrics for filtering out bad quality sentence
pairs in the training data of neural machine
translation systems (NMT). While most cor-
pus filtering methods are focused on detecting
noisy examples in collections of texts, usually
huge amounts of web crawled data, QE models
are trained to discriminate more fine-grained
quality differences. We show that by selecting
the highest quality sentence pairs in the training
data, we can improve translation quality while
reducing the training size by half. We also pro-
vide a detailed analysis of the filtering results,
which highlights the differences between both
approaches.

1 Introduction

In the times of statistical machine translation, a
well-known motto was “there’s no data like more
data”. Experimental results seemed to confirm this,
with the performance of the systems steadily im-
proving as more data was made available. Web
crawling has proven to be a valuable source of data
for training translation systems, with projects like
Common Crawl1 or ParaCrawl (Bañón et al., 2020)
providing numerous parallel sentences with which
to train MT systems. Inevitably, when crawling
huge amounts of data, noise will be present. Tak-
ing the web as an example, the quality of available
texts varies greatly between websites. There are
sources which reliably produce high-quality text,
e.g. large circulations newspaper websites usually
contain text written and proof-read by professional
journalists. But by its open nature, the web also
contains texts of dubious quality (both in style and
in content) which may pollute the collected texts.

∗ Equal contribution.
1https://commoncrawl.org/

When considering bilingual data collection, an
additional difficulty comes into play, namely the
alignment of segments between two or more lan-
guages. Sentence alignment algorithms (Gale and
Church, 1993; Moore, 2002; Sennrich and Volk,
2011; Thompson and Koehn, 2019) are bound to
make mistakes, resulting in pairing of sentences
that are not necessarily translations of each other.
Even if the correspondence between sentences may
be correct, the quality of sentences may differ
greatly between languages. While one source may
provide high quality text in its original language,
the available translations may be of sub-par quality
due to a variety of reasons (Freitag et al., 2022b).
In addition, given the increased availability (and
quality) of machine translation engines, MT out-
put is expected to be part of the crawled data, thus
contaminating the training material.

Statistical systems were robust against such type
of noise (Goutte et al., 2012). The maximum likeli-
hood estimators of phrase probabilities (and related
models) were based on relative frequencies, with
the consequence that noisy translation units, while
being available to the system at translation time,
had a low chance of being used. In fact, works
on filtering data dealing with statistical systems,
e.g. Johnson et al. (2007) were more concerned
with the efficiency of the systems, rather than with
quality.

With the advent of neural machine translation,
the situation has changed, and the quality of the
data has a major impact in the resulting quality
of the translation system. Neural networks have a
great ability of memorizing (parts of) the training
data (Arpit et al., 2017; Feldman and Zhang, 2020).
Whereas for phrase-based models the noise was di-
luted in the abundance of better-quality data, in neu-
ral models such outliers may have a critical effect
on the output of the system. Therefore data filtering
has become increasingly important, even spawning
dedicated shared tasks (Koehn et al., 2018, 2019,
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2020). Research in this area has allowed NMT sys-
tems to take advantage of big amounts of training
data. As an example, initial versions of ParaCrawl
degraded translation quality when adding them un-
filtered to the training data of MT systems (Junczys-
Dowmunt, 2018b; Schamper et al., 2018), whereas
nowadays it is one of the main data sources used in
WMT for the languages where it is available.

Thanks to these filtering techniques, huge
amounts of parallel sentences are available for sev-
eral languages, in some cases reaching up to hun-
dreds of millions of sentences. But as noted above,
not all texts are of the same quality. It is only
natural to ask the question, once the training data
reaches a size which is “big enough”, if all the
available text is useful for training NMT systems,
or if the lower quality sentences are hindering the
system. Note that most data filtering systems are
focused in detecting noise or problems in the trans-
lation (e.g. under- or overtranslation). In very
wide strokes, most systems answer the question “Is
sentence A a translation of sentence B?”, without
looking (too much) into the quality.

Judging the quality of translations is the focus
of the Quality Estimation (QE) field of machine
translation. It can be considered an extension of
machine translation evaluation, where references
are not available. In the last years, the use of neural
models has improved the results in this area dra-
matically. Would it then be possible to use quality
estimation methods for filtering data and improve
the quality of a neural machine translation system,
which has been trained on already cleaned data? In
other words, can we do a more fine-grained data
selection beyond discarding “obvious” errors, fo-
cusing on selecting the best data that can be found
in the training corpus? We explore these questions
in this paper.

Our scientific contributions are:

• We show that neural QE metrics are effective
methods for data filtering.

• We analyze the differences between the sen-
tences filtered by the methods and find out that
QE methods are more sensitive toward quality
differences, being able to detect bad quality
translations or fine grained translation errors
(e.g. wrong named entities in a perfectly valid
translation).

• We show that on the other hand QE filtering
cannot account for some actual noise prob-

lems. Thus a “traditional” method for filter-
ing the raw data coming from crawls is still
needed as a first step.

2 Related Work

Already in the early days of the popularization of
statistical methods for machine translation, the po-
tential of mining data from the web was recognized
by Resnik (1999). In contrast to other data sources
at the time (e.g. Canadian Hansards, European
Parliament Proceedings) which consisted largely
of clean data, the necessity of including additional
“quality assurance” steps were recognized in this
work. As pointed out above, statistical systems
were robust against noisy input data (Goutte et al.,
2012), and as such, the topic of “corpus filtering”
was mainly focused on selecting subsets of data
closer to a given domain (Axelrod et al., 2011).
Nevertheless Taghipour et al. (2011) shows that
statistical systems may also benefit from careful
curation of the training data.

The situation changed dramatically with the ad-
vent of neural machine translation, as such sys-
tems are much more sensitive to noisy input data
(Khayrallah and Koehn, 2018). A clear reflection
of this fact was the creation of a new dedicated
shared task in the WMT yearly conference (Koehn
et al., 2018, 2019, 2020) in the years 2018 to 2020.2

Junczys-Dowmunt (2018a) was the best perform-
ing system in the first edition of the filtering shared
task, using a cross-entropy approach between two
translation systems trained on clean data. In the
next edition, the focus was moved towards low
resource conditions. That year Chaudhary et al.
(2019) presented the best performing system, using
a system based on LASER embeddings (Schwenk
and Douze, 2017).

The 2020 edition continued the focus on low-
resource languages. At that evaluation, three were
the best performing systems: Lu et al. (2020) and
Lo and Joanis (2020) both use pre-trained multilin-
gual models as a key component of their filtering
systems. Esplà-Gomis et al. (2020) used an im-
proved version of BICLEANER, their submission
for the 2018 campaign (Sánchez-Cartagena et al.,
2018). The authors further improved their system
(Ramírez-Sánchez et al., 2020), including an ex-
tension using neural models (Zaragoza-Bernabeu
et al., 2022). This latest version is considered state-

2In this year’s WMT there is a new related shared task:
“Parallel Data Curation”.
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of-the art and it is that which we take as baseline
for comparing our method.

Of course, this is just but a very rough overview
of the best performing systems in each evaluation
campaign. We refer to the reports of each cam-
paign for a more detailed overview of the methods
explored each year. Bane et al. (2022) provide one
more recent overview of data filtering methods. In
this work, the authors sample 5M sentences from
original training data and added 1M noise samples
manually. They show that a two-stage approach
can be beneficial for improving the quality of a
translation system.

All of these methods have a common focus on
detecting the type of noise that may originate from
crawled data. This type of noise has been ana-
lyzed in Khayrallah and Koehn (2018), and Herold
et al. (2022) build on their work and carry out a
comparison of the efficiency of different filtering
methods on various types of noise. Kreutzer et al.
(2022) also provide an extensive analysis on the
noise present in several widely used corpora.

Most similar to our work Carpuat et al. (2017)
start with already clean data and analyze the effect
of semantic divergence on translation quality. They
are able to effectively select a subset of the training
data and improve translation quality measured in
BLEU. Bernier-Colborne and Lo (2019) use YiSi-2,
also a quality estimation metric as a component in
their corpus filtering system for the WMT 2019
shared task. Lo and Simard (2019) extend this
idea by including BERT (word) alignments in the
YiSi pipeline. We follow a conceptionally similar
approach to these papers, using state-of-the-art QE
metrics and provide a more in-depth comparison
to other corpus filtering methods more oriented
towards noise detection.

Quality estimation is again its own area of re-
search, with dedicated shared tasks, e.g. (Zerva
et al., 2022), that measure how well metrics can
predict word- and sentence-level quality scores. In
contrast to traditional MT evaluation, QE aims to
assess the quality of the output texts without the use
of a reference translations. The most successful QE
metrics learn to jointly predict word- and sentence-
level scores, like COMETKIWI (Kepler et al., 2019;
Rei et al., 2022). Another possibility is to modify
the input to a learned reference-based metrics like
BLEURT (Sellam et al., 2020) or COMET (Rei et al.,
2020) to use the source segment instead of a ref-
erence translation to predict sentence-level quality

scores (Rei et al., 2021). We follow the latter ap-
proach and train a QE version of BLEURT that pre-
dicts sentence-level quality scores (see Section 3)
that are used for data filtering.

3 From BLEURT to BLEURTQE

The QE metric that we propose for data filtering
is a learned MT evaluation metric that is based on
a BLEURT-style architecture (Sellam et al., 2020).
BLEURT is a reference-based regression metric that
is trained to predict a quality score for a hypothesis
translation given a reference. The hypothesis and
reference are concatenated together with a special
token in between, then fed as input to the metric,
which predicts a floating point quality score.

Our QE metric is a modification of the original
model. To make it a QE metric, we pass the source
segment as input to the metric instead of the refer-
ence. Then, we follow the winning submission to
the WMT’22 Metrics Shared Task (Freitag et al.,
2022a), MetricX, and use a modified version of the
mT5 encoder-decoder language model (Xue et al.,
2021) as our network architecture. Not that these
is a multilingual model, so the same system can
be used for a variety of languages. The source and
hypothesis are passed as input to the encoder, and
an arbitrary logit from the first step of the decoder
is trained to predict the hypothesis quality score.

The QE metric is trained on the direct assess-
ment quality judgments that were collected as part
of the WMT Metrics Shared Task from 2015-2020
(Bojar et al., 2015, 2016, 2017; Specia et al., 2018,
2020; Fonseca et al., 2019) for all available lan-
guage pairs. To (meta-)evaluate the metric we mea-
sure its correlation with ground-truth translation
quality ratings using the benchmark MQM dataset
from WMT’22 (Zerva et al., 2022) that includes 3
language pairs: en-de, zh-en, and en-ru. Since our
metric is used to score individual segments and not
systems, we report the segment-level correlation
between our metrics’ scores and the gold MQM
scores using Pearson’s r and Kendall’s τ , shown in
Table 1. The correlations are competitive to the top
QE submissions to the WMT’22 Metrics Shared
Task.

A (more refined) version of this metric has been
submitted to this year’s QE shared task (Juraska
et al., 2023), and has been open sourced. We refer
the reader to the system description for a more
fine-grained discussion of the details of the metric.
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en-de en-ru zh-en

Metric r τ r τ r τ

UniTE-src 0.40 0.29 0.39 0.34 0.40 0.43
COMETKIWI 0.43 0.29 0.39 0.36 0.51 0.36
BLEURTQE 0.38 0.29 0.41 0.39 0.38 0.35

Table 1: Segment-level Pearson’s r and Kendall’s τ
on the WMT’22 MQM ratings for our QE metric,
BLEURTQE and the top-performing metrics in the
WMT’22 Metrics Shared Task, COMETKIWI (Rei et al.,
2022), UniTE-src (Wan et al., 2022).

4 Experiments

We report experiments on three language pairs: En-
glish↔ German, Japanese↔ English and Chinese
↔ English. Our starting point is the full training
data as provided by the WMT evaluation campaign.
Corpus sizes can be found in Table 3. As can be
seen in that table, we are working on a medium-
to-large data condition, with the smallest language
pair already having over 30M sentence pairs.

One thing to note is that these datasets have al-
ready undergone a cleaning process by the WMT
organizers. I.e. a system trained on the entirety of
this data is already able to obtain very good perfor-
mance. In fact, many of the systems participating
in the WMT evaluations take the available data
as-is.

For each language pair we will consider different
ways to reduce the size to 50% of their original size.
This value was chosen in preliminary experiments
on the English to German data, and it is comparable
to previous work (Bane et al., 2022). Fixing the
target size beforehand also allows a fair comparison
between all the methods.

4.1 Filtering Approaches

We will consider three different filtering ap-
proaches for our experiments.

4.1.1 Random Selection
The most straightforward method to reduce the size
of the training data is to just randomly select the
desired amount of sentence pairs. We do not expect
this method to perform well, but it constitutes the
most direct baseline for data size reduction.

4.1.2 BICLEANER

As a representative for the “noise-detection” corpus
filtering methods we chose to use BICLEANER AI.3

3https://github.com/bitextor/bicleaner-ai

This tool is an extension of the previous BI-
CLEANER tool. The underlying method is based
on a classifier that predicts if a sentence is a trans-
lation of another. BICLEANER AI substitutes the
original classifier, based on handcrafted rules and
extremely randomized trees, with a neural classi-
fier based on XLM-RoBERTa. Zaragoza-Bernabeu
et al. (2022) provide a detailed description of the
tool and present an extensive experimental com-
parison showing state of the art results for filtering
ParaCrawl.

It is also worth noting that BICLEANER is part
of the pre-processing pipeline for generating the
ParaCrawl dataset.

4.1.3 Quality Estimation for Filtering
For testing the performance of QE metrics
for filtering we use two state-of-the-art met-
rics, COMETKIWI4 (Kepler et al., 2019) and
BLEURTQE5 as described in Section 3. For each
sentence pair in the training data, we compute the
QE score for the translation from English into the
foreign language. We use these scores for filtering
for both translation directions, i.e. the resulting par-
allel data is the same for English→ Foreign than
from Foreign→ English. We are aware that this
may introduce a certain bias, as the performance of
the QE metrics is not symmetrical. However scor-
ing the full training data is a costly operation as we
have to run big neural models on tens or hundreds
of millions of sentence pairs. We still expect to see
improvements even when using the wrong direction
for data filtering. The only exception may be the
backtranslated portion of the Chinese↔ English
dataset: As the starting data is Chinese, the filter-
ing method may miss low quality backtranslations
produced by an automatic system.

4.2 Experimental Setup

For all the filtering methods (except random selec-
tion), we compute the score of each sentence pair,
and then select a threshold as to keep 50% of the
original data. We then train an NMT system from
scratch using the resulting training data sets.

Our translation system is a transformer-based
encoder-decoder model based on PaxML6, very
similar to most of the systems participating in the
WMT evaluation campaign. It consists of 6 encoder

4https://unbabel.github.io/OpenKiwi
5The tool will be open-sourced with the publication of the

shared task system description.
6https://github.com/google/paxml
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and 6 decoder layers, a model dimension of 1024,
hidden dimension of 8192 and 16 attention heads.
GELUs with gated activation are used as activation
functions. We use a 32k shared vocabulary for
each language pair, and limit the maximal sentence
length to 128 tokens. The model has a total of
551M parameters.

We removed all sentences which have more than
128 tokens, but did not perform any other filtering
or preprocessing of the data. All models are trained
until they converged and we selected the check-
point with the best BLEURT score on the WMT
2022 test sets.

In the discussion of the results we focus on
the evaluation using COMET22. Traditional met-
rics like BLEU and CHRF are consistently out-
performed by neural metrics in the WMT metrics
shared task (Freitag et al., 2022a), thus we favor
the use of such new metrics. We chose COMET22
over BLEURT in order to avoid overfitting on this
last metric, as our proposed BLEURTQE model is
based on it, and it also guides the checkpoint se-
lection. Nevertheless, BLEURT, BLEU and CHRF
scores are given in Appendix B.2 and confirm the
trends reported here.

4.3 Test Data
In order to test on a variety of domains we use
test sets from the WMT and IWSLT evaluation
campaigns. We use the WMT 2019 (where avail-
able) consisting of news data, and the WMT 2022
and WMT2023 test sets, which are composed of
a mix of different domains each. Additionally we
experiment on the IWSLT’21 test set, sourced from
TED talks (Anastasopoulos et al., 2021), and the
IWSLT’23 dev set7, which is based on ACL talks
presentations (Agarwal et al., 2023).

Following the training data settings, we also fil-
tered the test sentences longer than 128 tokens. As
the WMT 2023 test set includes paragraph level
evaluation, its size is reduced for en→ de from 557
segments to 404 and for de→ en from 549 to 468.
All other test sets are barely affected (see Table 6
in Appendix A).

4.4 Experimental Results
Translation results for the English↔ German lan-
guage pair are shown in Table 2a. For en→ de we
can see that randomly selecting data hurts perfor-
mance by 1 point on the WMT23 test set. Using

7We use the dev set for IWSLT’23, since the test set is
currently not publicly available.

each of the other filtering methods we are able
to improve performance over using the full train-
ing dataset. For BICLEANER the improvement is
rather modest, around 0.4 points for most test cor-
pora. Note however that BICLEANER was already
applied to the ParaCrawl dataset, which consti-
tutes a big portion of the available training data
for this language pair. As such it is understand-
able, or even expected, that translation quality is
not improved by applying it again. The QE metrics
perform similarly to each other, with a slight ad-
vantage of BLEURTQE over COMETKIWI. Using
BLEURTQE we are able to achieve an improvement
of up to 1.7 points on the WMT23 test set.

The results for de → en majorly confirm the
previous observations. The best results are again
achieved in this case on the WMT’23 data, with
an improvement of 1.3 points achieved by both
QE methods. For the WMT’22, IWSLT’21 and
IWSLT’23 test sets, the translation performance
basically stays constant for all filtering methods.

Results on English ↔ Japanese, shown in Ta-
ble 2b also show similar trends. In this case the
biggest improvement comprises 2.3 points on the
WMT’23 test set8, obtained by BLEURTQE. How-
ever for the ja→ en translation direction we find an
outlier, where no filtering achieves improvements
over the baseline on the IWSLT’23 data.

Lastly, Table 2c shows the results for the Chinese
↔ English language pair. Again we can confirm
the same trends as for the other two language pairs.
The QE metrics are able to improve up to 2.8 points
for the WMT’23 test set. The IWSLT’23 dataset
again fails to achieve improvements, and in this
case BICLEANER deteriorates translation quality,
while the QE metrics are able to keep the perfor-
mance.

Overall, we see that the QE metrics are effective
in improving translation quality while retaining just
half of the training data. The improvements can
rage up to more than 2 COMET22 points, depend-
ing on language pair and test set. For IWSLT’23,
having a more specialized technical domain, the
QE metrics are not able to improve quality, for sev-
eral language directions. But except for the case of
English→ Japanese, they also do not hurt perfor-
mance. Additional results differentiating between
the single domains of the WMT’22 and WMT’23
corpora can be found in Appendix B.1. In Ap-

8A slightly bigger improvement of 2.4 is obtained for
WMT’22, but we skip this as we used this corpus to choose
the best checkpoint during training.
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(a) COMET22 scores for en ↔ de experiments.

Filter WMT’22 (dev) WMT’19 WMT’23 IWSLT’21 IWSLT’23

en→ de

Random 84.0 85.5 80.8 82.8 84.2
None 86.2 86.0 81.8 83.2 84.5
BICLEANER 86.7⋆ 86.4⋆ 82.2 83.3 84.9
COMETKIWI 86.9⋆⋆ 86.7⋆⋆ 82.9⋆ 83.6⋆ 84.8
BLEURTQE 87.2 ⋆⋆⋆ 86.7⋆⋆ 83.5⋆⋆ 83.9⋆⋆ 85.1⋆

de→ en

Random 84.2 84.3 83.5 84.1 87.2
None 84.5 84.6 83.3 84.2 87.4
BICLEANER 84.2⋆ 84.8 84.0⋆ 84.1 87.3
COMETKIWI 84.6⋆ 85.1⋆ 84.6⋆⋆ 84.4⋆ 87.3
BLEURTQE 84.8⋆⋆ 85.2⋆ 84.6⋆⋆ 84.4⋆ 87.3

(b) COMET22 scores for en ↔ ja experiments.

Filter WMT’22 (dev) WMT’23 IWSLT’23

en→ ja

Random 84.5 80.7 85.8
None 85.6 82.3 86.9
BICLEANER 86.0⋆ 83.2⋆ 87.2
COMETKIWI 86.6⋆⋆ 83.7⋆⋆ 87.9⋆

BLEURTQE 87.0 ⋆⋆⋆ 84.0 ⋆⋆⋆ 87.4

ja→ en

Random 75.9 75.0 84.6
None 77.6 75.9 85.5⋆

BICLEANER 78.1⋆ 77.4⋆ 85.0
COMETKIWI 78.7⋆⋆ 78.0⋆⋆ 85.0
BLEURTQE 79.0 ⋆⋆⋆ 78.2⋆⋆ 85.1

(c) COMET22 scores for en ↔ zh experiments.

Filter WMT’22 (dev) WMT’19 WMT’23 IWSLT’23

en→ zh

Random 80.2 77.2 79.3 82.1
None 81.2 77.6 79.7 84.2⋆

BICLEANER 81.7⋆ 78.4⋆ 80.3⋆ 83.3
COMETKIWI 83.0⋆⋆ 80.1⋆⋆ 82.5 ⋆⋆⋆ 84.1⋆

BLEURTQE 83.4 ⋆⋆⋆ 79.9⋆⋆ 82.2⋆⋆ 84.1⋆

zh→ en

Random 72.2 78.1 74.2 84.1
None 72.8 78.3 74.7 84.9⋆

BICLEANER 74.8⋆ 79.6⋆ 75.7⋆ 84.2
COMETKIWI 75.2⋆⋆ 80.0⋆⋆ 76.0⋆⋆ 84.5
BLEURTQE 75.4⋆⋆ 79.9⋆⋆ 76.0⋆⋆ 84.8⋆

Table 2: COMET22 scores all experiments. For each language direction, systems marked with stars are statistically
significantly better than systems with fewer stars (pairwise permutation test (Koehn, 2004) with p=0.05). "Random"
was excluded from the significance computation.
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Language pair Full Filtered Common

de↔ en 292.8M 146M 105M
en↔ zh 55.2M 27.6M 17.5M
en↔ ja 33.9M 16.9M 10.4M

Table 3: Amount of sentences before filtering, after fil-
tering, i.e. 50% of the original corpus size, and number
of sentences kept by both BLEURTQE and BICLEANER.
All language directions include ParaCrawl data. En-
glish↔ Chinese includes around 19.7M backtranslated
Chinese sentences, as provided by the WMT organizers.

pendix B.2 we also report the results of the same ex-
periments using BLEU, CHRF and BLEURT. These
metrics confirm the observations presented in this
section.

Koehn et al. (2020) mentions that on average
metrics that select shorter sentences performed bet-
ter on Parallel Corpus Filtering. Contrary to that
we observed that dropping 50% of the data with the
proposed method led to on average slightly longer
sentences e.g. from 14.4 to 15.5 words per sentence
for BLEURTQE on English↔ German.

5 Analysis

In this section we provide an in-depth analysis of
the differences between the BLEURTQE-based and
the BICLEANER filtering methods. Table 3 shows
the amount of sentence pairs that are kept by both
methods, which is roughly two thirds of the fil-
tered sentences for all language pairs. Thus, it is
clear that both methods do indeed perform quite
different filtering. We will first report on manual in-
spection of the most striking divergences between
both methods. In Section 5.2 we will then provide
a more quantitative analysis of the behaviour of the
methods using synthetic data.

5.1 Human Inspection

We will now analyze the difference in the filtering
methods by looking into the sentences that are se-
lected by each method. To this end, we select the
sentences where one method filters it but the other
does not. In addition we use automatic clustering
methods in the spirit of (Aharoni and Goldberg,
2020) in order to get insights about topic distribu-
tion. We limit our analysis to the German–English
language pair9, but as the methods are largely lan-
guage independent, we feel confident that our find-

9None of the authors are speakers of Japanese or Chinese.

ings will generalize to the other language pairs.
Also, due to the fuzzy and partially subjective na-
ture of this investigation, we are unable to provide
exact statistics about each kind of effect.10

We have encountered the following major differ-
ences in the working of the methods. For each of
these categories it is easy to find an abundance of
examples (easily in the thousands) in the filtered
data.

Single Entity Mistranslations When looking
into the parallel data available for training, one can
find a big amount of “templated texts”, i.e. sen-
tences that have a common structure, but that differ
in one or few components, frequently named en-
tities or numbers. Some examples can be found
in Table 4a. The first entry in this table is a typi-
cal example. In the travel domain, there is a big
amount of sentences of the form “Flights from cityA
to cityB”, “Hotels in city” or similar formulations.
One frequent source of sentence alignment errors
originates from sentences that follow the same tem-
plate, but have different instantiations. Although
the travel domain is one of the biggest representa-
tive of these type of sentences, it is by no mean the
only one, as the other examples in Table 4a show,
including the financial and the technical domain.

In these type of sentences, the QE metric seems
to be more sensitive to alignment errors. All the
sentences shown in Table 4a (and many others)
are selected by BICLEANER, while BLEURTQE
discards them.

Low Quality Translations In this category we
include training examples where one or both sides
are of low quality. Examples can be found in Ta-
ble 4b. We can see that the language quality of the
examples is borderline at best. Strictly speaking,
the translations are “correct” in the sense that they
preserve the structure of the sentence. As such BI-
CLEANER gives them a relative high score and are
kept in the training corpus. BLEURTQE, on the
other hand, is explicitly trained to flag such erro-
neous sentences (as they might very well originate
from MT engines), and thus these examples are
filtered out.

Bad Related Sentence Alignments As pointed
out above, sentence alignment is also an automatic
process. While both methods perform quite well
when detecting clearly bad aligned sentences (see
Section 5.2), we found that there are cases where

10If we were able to develop such statistics in an automatic
way, we would be able to improve the filtering methods by
including the same approaches!
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(a) Single Entity Mistranslations. Templated texts where the specific instantiation is different in both languages. BLEURTQE
filters out these examples, while BICLEANER keeps them.

English German Comments

Flights from Tallinn to Stockholm Flüge ab Tallinn nach Friedrichshafen “Stockholm”’ changed to
“Friedrichshafen”.

Total EU spending in Germany – C
11.013 billion

Gesamtzuschüsse der EU in den
Niederlanden: 2,359 Milliarden EUR

Land and amount changed.

Documents that we receive from a
manufacturer of a Redball Electrical
565 can be divided into several groups.

Dokumente, die wir vom Produzenten
des Geräts Trevi AVX 565 erhalten,
können wir in mehrere Gruppen teilen.

Product code changed.

(b) Examples of low quality sentences in at least one of the languages. BLEURTQE filters out these examples, while BICLEANER
keeps them.

English German Comments

We are both, we have own factory
which can ensure sculpture quality and
best price and have a profession team to
provide you best service.

Wir sind beide, wir haben eigene Fabrik,
die Skulpturqualität und besten Preis
sichern kann und ein Berufsteam haben,
um Ihnen besten Service zur Verfügung
zu stellen.

Unnatural language on both sides.

We honor do not track signals and do
not track, plant cookies, or use
advertising when a Do Not Track
(DNT) browser mechanism is in place.

Wir achten darauf, dass Sie keine
Signale verfolgen und keine Cookies
verfolgen oder Cookies verwenden,
wenn Sie einen
DNT-Browser-Mechanismus (Do not
Track) verwenden.

Unnatural language on both sides.

It really is fast, easy, free and
additionally to attempt.

Es ist schnell, Schnell, gratis und am
besten von allen zu try.

Incorrect sentences in both languages.

(c) Examples of wrong sentence alignment, although the sentences are related to each other. BLEURTQE filters out these
examples, while BICLEANER keeps them.

English German Translated German

Could you help me? Help to improve
my English and French language

Ja, ich möchte gern mein Deutsch mit
Dir verbessern.

Yes, I want to improve my German with
you.

We, therefore, guarantee that you will
get daily updates on office spaces to
rent in Hong Kong.

Wir können Ihnen deshalb versichern,
dass Sie bei uns täglich einen aktuellen
Überblick über den österreichischen
Markt erhalten.

We can guarantee that you will get an
up-to-date daily overview about the
Austrian market.

This implies that the law is either
repealed or not enforced.

Darüber hinaus wird sichergestellt, dass
bestehende Gesetze nicht dupliziert
oder konterkariert werden.

In addition, it is ensured that existing
laws are not duplicated or counteracted.

(d) Examples of sentence pairs originating from the Bible. BLEURTQE filters them out, probably due to archaic language, while
BICLEANER keeps them.

English German

19 Behold, my belly is as wine which hath no vent; it is
ready to burst like new bottles.

19 Siehe, mein Bauch ist wie der Most, der zugestopfet
ist, der die neuen Fässer zerreißet.

7:16 Those who went in, went in male and female of all
flesh, as God commanded him; and Yahweh shut him in.

7:16 und das waren Männlein und Fräulein von allerlei
Fleisch und gingen hinein, wie denn Gott ihm geboten
hatte.

Table 4: Example sentences where the filtering methods diverge.
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the source and target sides are related and the BI-
CLEANER system seems to get confused by this
proximity. Some examples are given in Table 4c.
It can be seen that in all three examples the Ger-
man side is clearly related to the English text, with
probably a overlap big enough to get an accept-
able score from the translation system underlying
BICLEANER. Again, as BLEURTQE is trained to
distinguish fine-grained differences between trans-
lations, it is more robust against this kind of prob-
lems.

Religious Texts One shortcoming we found for
the BLEURTQE method is that many sentences
originating from the Bible corpus (or similar re-
ligious texts) are filtered out, while BICLEANER

keeps them. Some examples are given in Table 4d.
This is probably due to the language being archaic,
very different to the type of sentences BLEURTQE
has been trained on. Such style would be heav-
ily penalized in an evaluation, as a more modern
language would be preferred.

5.2 Noise

In the previous section we saw several examples
where BLEURTQE outperforms BICLEANER for
data selection. However we should not forget that
BICLEANER was developed with a (related but)
different goal, namely the cleaning of raw data.
In fact, our starting datasets, as made available
for the WMT evaluation have already undergone a
cleaning process, and are already at a pretty high
quality level.

If we were dealing with crawled data directly,
we would need to address different phenomena. In
this section we study how the filtering methods
perform when dealing with the typical noise found
on crawled data. We follow Herold et al. (2022) for
the categorization of different noise types, which
in turn is based on Khayrallah and Koehn (2018).
We create synthetic data for the English→ German
translation direction containing the following noise
categories:

Misaligned Sentences created by shuffling the tar-
get side of the corpus.

Misordered Words created by reordering the
words in either the source or the target sen-
tences.

Wrong Language created by taking parallel sen-
tences corresponding to another language pair.

Untranslated created by copying one sentence
into the other direction i.e. each sentence pair
in the corpus has a copy of the source sen-
tence as a “target” sentence (or the reverse
direction).

Over/Undertranslation created by truncating ei-
ther the source or the target side.

We refer the reader to Herold et al. (2022) for
a more detailed description and justification of
these categories. We omitted the “Short Segments”,
“Raw Crawled Data” and “Synthetic Translations”
categories, as it was not clear how to define the
correct filtering strategy in those cases.

For each of the studied categories, we generated
200K synthetic noise examples by randomly select-
ing a subset of the training data. For these experi-
ments we re-tuned the threshold for each method
by computing the scores for the original sentences
and the noise examples, and computing the me-
dian. In this way, we filter exactly half of the data
and a perfect system would be able to completely
separate the original examples from the noisy ones.

Results can be found in Table 5. It can be seen
that for most categories BICLEANER clearly out-
performs BLEURTQE. This is specially the case
for the “Wrong Language” and “Untranslated” cat-
egories, where BICLEANER can detect all the noisy
examples. In fact, one of the practical advantages
of BLEURTQE is at the same time one of its weak-
nesses. As its backbone model is a multilingual
model, it is able to handle a wide number of lan-
guages, but it does not have a way to differentiate
between them.

For “Misordered Words” we find an interesting
asymmetry. BLEURTQE is much stronger in detect-
ing problems when the target side is reordered, un-
doubtedly due to this being the “natural” direction
for which it was trained. BICLEANER also shows
this behavior, with its target side performance be-
ing superior to that of BLEURTQE, but inferior in
the opposite direction. BICLEANER is also clearly
better at detecting Over- and Undertranslations.

5.3 Combination of Filtering Methods

Since BLEURTQE and BICLEANER based filter-
ing both improve translation quality, and they fil-
ter different sentences, it is only natural to try to
combine both. As can be seen in Table 3, the
amount of available data dropped to roughly one
third when combining both methods. The result
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Noise type BLEURTQE BICLEANER

Misaligned Sentences 8.1 5.6
Misordered Words (src) 24.3 39.1
Misordered Words (tgt) 10.3 6.3
Wrong Language 43.8 0.0
Untranslated (src) 47.6 0.0
Untranslated (tgt) 63.8 0.0
Overtranslation 35.2 13.9
Undertranslation 13.4 7.5

Table 5: Percentage of sentences being kept as valid for
each of the synthetic noise categories. 0% means that
all noisy sentences have been filtered out, i.e. perfect
performance.

only slightly degraded in the English to German
direction compared to just using BLEURTQE (0.3
BLEURT points on WMT’22), but degraded more
in the German to English direction (0.6 BLEURT

points on WMT’22). Combining the two methods
is thus too aggressive with our setup, and hurts
translation performance. Adapting the thresholds
for the combination, may result in better perfor-
mance. Note however that ParaCrawl already used
BICLEANER in its pipeline (Esplà et al., 2019), thus
we have already implicitly been using a combina-
tion of both methods.

6 Conclusions

In this paper we have shown that filtering data us-
ing QE metrics is an effective way of improving
translation quality. In contrast to “traditional” data
filtering methods that focus on detecting noise in
the data, QE methods focus on selecting the best
translation examples. Analyzing the differences
between the two different methods, we see that
QE metrics are not as effective at detecting certain
types of noise, e.g. untranslated sentences, but are
much better at identifying more fine grained prob-
lems in the data, like small translation errors or
grammatical mistakes. Therefore, when starting
with already cleaned data, we can obtain a boost in
performance by focusing the NMT system training
on the best sentences.

Our results show that the improvements obtained
generalize across different domains, as measured
by a variety of metrics. Even for more distant do-
mains, like the ACL Talks of of the IWSLT’23
corpus, the performance of the systems remains
largely constant. QE estimation is a very active
field of research. Using this approach, the improve-
ments obtained in this area can have a direct impact
on improving the quality of NMT systems.

Limitations

Better results could have been obtained by tuning
the threshold for each method individually, but this
would also increase the computational cost mas-
sively.

A more in-depth comparison could be carried
out starting from the raw web-crawled data. How-
ever in this study we chose to start from conditions
similar to what most participants in the WMT eval-
uation use.

Ethics Statement

BLEURTQE and COMETKIWI scoring all the train-
ing data is computationally expensive, and may be
a limiting factor of the method for small institu-
tions.
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man, Roldano Cattoni, Maha Elbayad, Marcello Fed-
erico, Xutai Ma, Satoshi Nakamura, Matteo Negri,
Jan Niehues, Juan Pino, Elizabeth Salesky, Sebas-
tian Stüker, Katsuhito Sudoh, Marco Turchi, Alexan-
der Waibel, Changhan Wang, and Matthew Wiesner.

570



2021. FINDINGS OF THE IWSLT 2021 EVAL-
UATION CAMPAIGN. In Proceedings of the 18th
International Conference on Spoken Language Trans-
lation (IWSLT 2021), pages 1–29, Bangkok, Thailand
(online). Association for Computational Linguistics.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas,
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Anna Zaretskaya. 2022. A comparison of data fil-
tering methods for neural machine translation. In
Proceedings of the 15th Biennial Conference of the
Association for Machine Translation in the Americas
(Volume 2: Users and Providers Track and Govern-
ment Track), pages 313–325, Orlando, USA. Associ-
ation for Machine Translation in the Americas.

Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L.
Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere,
Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec,
Brian Thompson, William Waites, Dion Wiggins, and
Jaume Zaragoza. 2020. ParaCrawl: Web-scale acqui-
sition of parallel corpora. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4555–4567, Online. Association
for Computational Linguistics.

Gabriel Bernier-Colborne and Chi-kiu Lo. 2019. NRC
parallel corpus filtering system for WMT 2019. In
Proceedings of the Fourth Conference on Machine
Translation (Volume 3: Shared Task Papers, Day
2), pages 252–260, Florence, Italy. Association for
Computational Linguistics.
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Appendices

A Test Data Statistics

Table 6 shows statistics of the test data sets after
filtering the sentences with a length of over 128
tokens.

B Additional Results

B.1 WMT Data: Domain-specific Evaluation
The WMT’22 and WMT’23 test sets are comprised
of text originating from different domains. The
scores reported in the main text correspond to the
evaluation of the corpora as a whole. In Tables 7
to 12 we show the results for each individual do-
main. It can be seen that the improvements are
achieved over all separate domains. There are

test set lines filtered

WMT’22

en→ de 2037 2036
de→ en 1984 1981
en→ ja 2037 2037
ja→ en 2008 2007
en→ zh 2037 2037
zh→ en 1875 1849

WMT’23

en→ de 557 404
de→ en 549 468
en→ ja 2074 2073
ja→ en 1992 1988
en→ zh 2074 2073
zh→ en 1976 1948

Table 6: WMT test set sizes. All test sets are filtered
to use less than 128 tokens. This mainly reduced the
en↔ de WMT’23 test set since this was a paragraph
level task. The effect on all other test sets is minimal.

only two cases where training on all data per-
forms slightly better than filtering with BLEURTQE
(ecommerce de → en in Table 8, and manuals
zh→ en in Table 10).

B.2 Other Metrics
In this appendix we report the COMET22, BLEURT,
BLEU and CHRF scores for the experiments re-
ported in Section 4. Table 13 shows the results for
German→ English, Table 14 for English→ Ger-
man, Table 15 for English→ Japanese, Table 16
for Japanese→ English, Table 17 for English→
Chinese and Table 18 for Chinese→ English. The
additional metrics support the conclusions of the
paper.
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WMT’22 WMT’23

conversation ecommerce news social mastodon news speech user review

None 87.9 87.4 86.4 83.1 82.5 80.8 80.9 82.0
BICLEANER 88.7 88.1 86.8 83.1 82.5 82.3 81.4 82.1
COMETKIWI 88.8 88.3 86.8 83.9 83.3 82.9 81.6 83.8
BLEURTQE 88.9 88.5 87.2 84.2 84.2 83.1 81.8 84.0

Table 7: COMET22 scores for each domain of en→ de WMT test sets.

WMT’22

conversation ecommerce news social

None 84.7 85.4 84.4 83.5
BICLEANER 84.8 85.0 84.5 82.8
COMETKIWI 85.0 85.2 84.8 83.6
BLEURTQE 85.1 85.3 84.9 83.9

Table 8: COMET22 scores for each domain of de→ en WMT test sets.

WMT’22

conversation ecommerce news social

None 84.2 84.0 81.5 75.3
BICLEANER 85.2 83.9 81.8 76.1
COMET22 86.0 84.8 83.3 78.1
BLEURT 86.4 84.9 83.6 78.7

Table 9: COMET22 scores for each domain of en→ zh WMT test sets.

WMT’22 WMT’23

conversation ecommerce news social manuals news user review

None 74.0 66.8 76.8 74.1 77.7 78.9 68.4
BICLEANER 75.2 70.8 77.9 75.6 77.4 79.5 70.5
COMETKIWI 76.4 71.2 78.2 75.7 77.5 80.1 70.6
BLEURTQE 75.9 71.5 78.3 76.0 77.5 79.7 71.0

Table 10: COMET22 scores for each domain of zh→ en WMT test sets.

WMT’22

conversation ecommerce news social

None 88.1 87.5 86.4 80.6
BICLEANER 88.6 87.7 86.5 81.0
COMETKIWI 89.2 87.9 87.3 81.9
BLEURTQE 89.3 88.6 87.7 82.5

Table 11: COMET22 scores for each domain of en→ ja WMT test sets.

WMT’22

conversation ecommerce news social

None 77.5 83.0 75.2 74.9
BICLEANER 77.0 83.1 77.1 75.2
COMETKIWI 77.4 84.1 77.8 75.4
BLEURTQE 78.2 83.9 78.3 75.5

Table 12: COMET22 scores for each domain of ja→ en WMT test sets.
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WMT’22 (dev) WMT’19 WMT’23

Filter COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF

None 84.5 73.4 32.3 57.4 84.6 73.1 41.1 64.8 83.3 72.2 37.4 61.2
Random 84.2 73.1 32.0 57.1 84.3 72.9 40.5 64.4 83.5 72.2 38.2 62.1
BICLEANER 84.2 73.0 32.0 57.2 84.8 73.4 41.3 65.5 84.0 73.1 38.9 63.5
COMETKIWI 84.6 73.6 32.5 57.5 85.1 74.0 41.8 65.7 84.6 73.8 40.6 65.0
BLEURTQE 84.8 73.7 32.3 57.4 85.2 74.0 41.4 65.3 84.6 73.9 39.9 64.2

IWSLT’21 IWSLT’23

Filter COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF

None 84.2 73.2 27.8 52.7 87.4 79.1 47.2 72.4
Random 84.1 73.0 27.3 52.5 87.2 78.5 45.6 71.2
BICLEANER 84.1 73.0 27.5 52.5 87.3 79.0 46.9 72.1
COMETKIWI 84.4 73.3 28.0 53.0 87.3 79.0 46.6 71.9
BLEURTQE 84.4 73.3 28.0 53.0 87.3 79.0 47.1 72.2

Table 13: Full results for German→ English. The COMETKIWI and BLEURTQE results for IWSLT’21 are identical due to
rounding.

WMT’22 (dev) WMT’19 WMT’23

Filter COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF

None 86.2 76.7 35.9 62.6 86.0 75.7 43.1 67.0 81.8 70.1 38.2 61.6
Random 86.0 76.5 35.1 62.2 85.5 75.0 42.4 66.5 80.8 68.9 36.4 61.0
BICLEANER 86.7 77.5 36.4 63.1 86.4 76.2 42.9 67.2 82.2 70.5 38.4 62.3
COMETKIWI 86.9 77.6 36.2 63.0 86.7 76.4 44.0 68.0 82.9 71.9 40.9 65.9
BLEURTQE 87.2 78.0 36.7 63.3 86.7 76.5 42.1 66.8 83.5 72.4 40.9 65.5

IWSLT’21 IWSLT’23

Filter COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF

None 83.2 73.0 23.2 56.6 84.5 76.5 45.8 72.2
Random 82.8 72.8 22.8 56.3 84.2 76.2 44.9 71.7
BICLEANER 83.3 73.1 23.1 56.7 84.9 76.8 45.2 71.9
COMETKIWI 83.6 73.5 23.2 56.9 84.8 76.6 45.9 72.4
BLEURTQE 83.9 74.0 23.9 57.2 85.1 76.8 45.6 72.0

Table 14: Full results for English→ German.

WMT’22 (dev) WMT’23 IWSLT’23

Filter COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF

None 85.6 64.5 22.2 31.4 82.3 58.3 19.0 28.9 86.9 68.1 40.5 48.1
Random 84.5 62.8 21.0 30.3 80.7 55.5 17.2 27.2 85.8 65.8 35.7 43.6
BICLEANER 86.0 64.9 21.9 31.5 83.2 59.2 19.1 29.0 87.2 68.2 39.2 47.1
COMETKIWI 86.6 65.5 22.7 32.1 83.7 60.0 19.3 29.5 87.9 69.3 41.3 48.6
BLEURTQE 87.0 66.1 22.7 32.2 84.0 60.0 19.5 29.5 87.4 68.1 38.8 46.5

Table 15: Full results for English→ Japanese.

WMT’22 (dev) WMT’23 IWSLT’23

Filter COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF

None 77.6 62.6 18.1 42.5 75.9 62.2 16.0 41.6 85.5 73.4 30.5 62.2
Random 75.9 60.8 16.1 40.8 75.0 61.0 15.0 40.7 84.6 71.9 27.4 59.9
BICLEANER 78.1 63.6 18.2 44.3 77.4 63.3 17.2 44.2 85.0 72.2 28.4 61.0
COMETKIWI 78.7 64.1 18.8 44.6 78.0 64.0 16.6 44.1 85.0 72.6 28.2 60.8
BLEURTQE 79.0 64.4 19.0 45.2 78.2 64.3 17.4 44.7 85.1 72.8 29.6 61.7

Table 16: Full results for Japanese→ English.
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WMT’22 (dev) WMT’23

COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF

None 81.2 65.8 37.7 33.5 79.7 64.8 43.4 39.0
Random 80.2 64.5 36.6 32.7 79.3 64.3 41.6 37.3
BICLEANER 81.7 66.6 37.0 33.0 80.3 65.7 42.4 37.6
COMETKIWI 83.0 68.0 38.2 34.0 82.5 68.2 44.0 40.1
BLEURTQE 83.4 68.5 38.7 34.4 82.2 67.7 43.6 38.9

WMT’19 IWSLT’23

COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF

None 77.6 59.4 31.1 27.4 84.2 72.2 52.5 47.1
Random 77.2 59.1 30.7 27.5 82.1 69.3 47.6 41.9
BICLEANER 78.4 60.4 31.1 27.5 83.3 70.7 47.9 42.3
COMETKIWI 80.1 62.2 32.1 28.3 84.1 71.2 47.9 42.2
BLEURTQE 79.9 61.9 31.7 28.1 84.1 71.1 47.3 42.2

Table 17: Full results for English→ Chinese.

WMT’22 (dev) WMT’23

COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF

None 72.8 59.5 17.4 46.2 74.7 61.0 18.8 44.9
Random 72.2 58.8 16.9 46.3 74.2 60.2 18.5 44.9
BICLEANER 74.8 60.9 17.1 47.6 75.7 61.5 19.1 45.8
COMETKIWI 75.2 61.4 17.9 48.5 76.0 61.6 19.2 46.2
BLEURTQE 75.4 61.7 17.7 48.1 76.0 61.9 18.6 45.7

WMT’19 IWSLT’23

COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF

None 78.3 65.6 23.7 53.6 84.9 74.5 33.3 63.2
Random 78.1 65.0 23.2 53.2 84.1 73.8 31.7 62.1
BICLEANER 79.6 66.6 23.9 54.7 84.2 73.9 32.6 62.4
COMETKIWI 80.0 67.0 24.7 55.5 84.5 73.9 30.8 61.6
BLEURTQE 79.9 67.2 23.7 54.9 84.8 74.5 32.1 62.5

Table 18: Full results for Chinese→ English.
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Abstract

This paper presents the results of the WMT23
Metrics Shared Task. Participants submitting
automatic MT evaluation metrics were asked
to score the outputs of the translation systems
competing in the WMT23 News Translation
Task. All metrics were evaluated on how well
they correlate with human ratings at the sys-
tem and segment level. Similar to last year,
we acquired our own human ratings based on
expert-based human evaluation via Multidimen-
sional Quality Metrics (MQM). Following last
year’s success, we also included a challenge
set subtask, where participants had to create
contrastive test suites for evaluating metrics’
ability to capture and penalise specific types of
translation errors. Furthermore, we improved
our meta-evaluation procedure by considering
fewer tasks and calculating a global score by
weighted averaging across the various tasks.

We present an extensive analysis on how
well metrics perform on three language pairs:
Chinese→English, Hebrew→English on the
sentence-level and English→German on the
paragraph-level. The results strongly confirm
the results reported last year, that neural-based
metrics are significantly better than non-neural
metrics in their levels of correlation with human
judgments. Further, we investigate the impact
of bad reference translations on the correlations
of metrics with human judgment. We present
a novel approach for generating synthetic ref-
erence translations based on the collection of
MT system outputs and their corresponding
MQM ratings, which has the potential to miti-
gate bad reference issues we observed this year
for some language pairs. Finally, we also study
the connections between the magnitude of met-
ric differences and their expected significance
in human evaluation, which should help the
community to better understand and adopt new
metrics.

Metric avg corr

XCOMET-Ensemble 1 0.825
XCOMET-QE-Ensemble* 2 0.808
MetricX-23 2 0.808
GEMBA-MQM* 2 0.802
MetricX-23-QE* 2 0.800
mbr-metricx-qe* 3 0.788
MaTESe 3 0.782
CometKiwi* 3 0.782
COMET 3 0.779
BLEURT-20 3 0.776
KG-BERTScore* 3 0.774
sescoreX 3 0.772
cometoid22-wmt22* 4 0.772
docWMT22CometDA 4 0.768
docWMT22CometKiwiDA* 4 0.767
Calibri-COMET22 4 0.767
Calibri-COMET22-QE* 4 0.755
YiSi-1 4 0.754
MS-COMET-QE-22* 5 0.744
prismRef 5 0.744
mre-score-labse-regular 5 0.743
BERTscore 5 0.742
XLsim 6 0.719
f200spBLEU 7 0.704
MEE4 7 0.704
tokengram_F 7 0.703
embed_llama 7 0.701
BLEU 7 0.696
chrF 7 0.694
eBLEU 7 0.692
Random-sysname* 8 0.529
prismSrc* 9 0.455

Table 1: Official ranking of primary submissions to the
WMT23 Metric Task. The final score is the weighted av-
erage correlation over 10 different tasks. Starred metrics
are reference-free, and underlined metrics are baselines.
See Table 18 for the pairwise comparisons from which
the ranks were derived.

1 Introduction

The metrics shared task1 has been a key component
of WMT since 2008, serving as a way to validate
the use of automatic MT evaluation metrics and
drive the development of new metrics. We eval-

1https://wmt-metrics-task.github.io/
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uate reference-based automatic metrics that score
MT output by comparing the translations with a
reference translation generated by human transla-
tors, who are instructed to translate “from scratch”
without post-editing from MT. In addition, we also
invited submissions of reference-free metrics (qual-
ity estimation metrics or QE metrics) that compare
MT outputs directly with the source segments. All
metrics are evaluated based on their agreement with
human rating when scoring MT systems and hu-
man translations at the system and sentence level.
The final ranking of this year’s submitted primary
metrics is shown in Table 1. Below are some key
details and changes for this year’s metric shared
task:

• Language Pairs: For this year, we focus on
three main language pairs: (i) One language pair
with paragraph-level test sets: English→German
(en→de), (i) one low-resource language pair
with sentence-level test sets: Hebrew→English
(he→en), (iii) one high-resource language pair
with sentence-level test sets: Chinese→English
(zh→en).

• Human Evaluation: Like last year, we col-
lected our own human ratings for our three lan-
guage pairs from professional translators via
MQM (Lommel et al., 2014; Freitag et al., 2021).
We released and uploaded2 all MQM annotations,
and we recommend using Marot3 for looking into
this data.

• Meta Evaluation: This year’s meta-evaluation is
significantly streamlined from last year’s. Instead
of 201 tasks, we use just 10, designed to capture
complementary ranking and linearity properties
at system- and segment-level granularity. We
replace Kendall’s tau at the segment level with
a version of pairwise accuracy that gives met-
rics credit for correctly predicting ties in human
scores, while automatically calibrating for each
metric’s natural scale (Deutsch et al., 2023). In-
stead of averaging per-task ranks to derive an
overall score for each metric, we simply average
correlation/accuracy scores across tasks. This
places metric scores on an absolute scale, and
makes them independent of the performance of

2https://github.com/google/
wmt-mqm-human-evaluation

3https://github.com/google-research/
google-research/tree/master/marot

other metrics. Finally, we compute top-level sig-
nificance clusters to provide a clearer global rank-
ing of participating metrics.

• Synthetic Reference: The MQM scores for the
human reference translation for zh→en were un-
expectedly low, ranking humans below almost
all WMT submissions. We investigate the im-
pact of bad reference translations on reference-
based metrics and propose a novel approach
to create a synthetic reference translation from
all WMT submissions and their corresponding
MQM scores.

• Challenge Sets Subtask: For the second year,
we include a decentralized sub-task on challenge
sets, in which test sets are submitted by different
research teams targeting to reveal metrics’ abil-
ities or the weaknesses in evaluating particular
translation phenomena. We received three chal-
lenge sets covering a wide range of translation
errors and linguistic phenomena in more than a
hundred translation directions.

• Understand Magnitude of Score Difference:
This year, we include two analyses to understand
the meaning of the score differences that metrics
present with respect to the statistical significance
of MT system rankings according to human an-
notations and metric scores. These analyses pro-
vide additional assistance for MT researchers to
build an intuition on the relationship between the
magnitude of metric score differences and the
reliability of the improved translation quality.

• MTME: Similar to last year, all the data has been
uploaded to MTME4, and all results in this pa-
per are calculated with this analysis tool. We
encourage every metric developer to use MTME
to calculate contrastive scores to enhance consis-
tency and comparability going forward.

Our main findings are:

• XCOMET-Ensemble is the winner of the
WMT23 Metrics Shared Task (Table 1).

• High correlations between automatic metrics
and human judgments at the segment level do
not necessarily guarantee high correlations at
the system level (Figure 5).

4https://github.com/google-research/
mt-metrics-eval
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• Reference quality matters: The low quality
reference for zh→en significantly lowered the
correlation of all metrics with human judge-
ment (Section 8).

• We determined the magnitude of score differ-
ences required to produce a statistically signif-
icant difference in human judgment for each
metric, revealing that even minor score dif-
ferences of the top performing metrics can
be statistical significant with high probability
(Section 7).

• Results from the challenge sets independently
agreed with our findings that the quality of
reference matters. Developing reference-free
metrics is worth further exploration, and met-
ric researchers are advised to investigate into
the influence of language-agnostic multilin-
gual embeddings on MT evaluation. It is
equally important for metric researchers to
test the performance of metrics in diverse col-
lection of linguistic phenomena and wider
landscape of translation quality in order to
minimize unexpected behaviours of metrics
(Section 10).

The rest of the paper is organized as follows:
Section 2 describes the test data and additional
MT systems that we trained. Section 3 presents
an overview of the conducted expert-based human
evaluation. Section 4 describes the metrics evalu-
ated this year (baselines and participants). Sec-
tion 5 describes the conducted meta-evaluation.
Section 6 reports our main results. Section 7 inter-
prets and evaluates metrics’ scores beyond correla-
tions. Section 8 analyses the impact of bad refer-
ence translations on the various metrics. Section 9
summarizes our results for additional WMT23
Translation task language-pairs based on their Di-
rect Assessment human evaluation. Section 10
presents a description of the submitted challenge
sets along with their findings. Finally, Section 11
presents our most relevant conclusions.

2 Translation Systems

Similar to previous years’ editions, the source, ref-
erence texts, and MT system outputs for the metrics
task are mainly derived from the WMT23 General
MT Shared Task. In addition to the MT system
outputs from the WMT evaluation campaign, we
included translations from two additional MT sys-
tems which we deemed interesting for evaluation.

2.1 WMT Test Sets

We use test sets prepared by the WMT23 General
MT Shared Task (Kocmi et al., 2023). For our
three main language pairs, the test sets contain 557
en→de, 1910 he→en, and 1976 zh→en segments.
This year, the test sets cover up to five domains
from the following list: news, conversational, user
reviews, manuals, and social. Each language pair
contains a comparable number of sentences from
each domain, resulting in reasonably balanced test
sets.

English→German contains four balanced do-
mains: news, social, conversational, and user re-
views. In contrast to other language pairs, segments
are paragraphs rather than sentences.

Hebrew→English contains only news and user
reviews domains. This language pair has two hu-
man references, but one of them (refA) is suspected
of being a post-edited Online-B system output.

Chinese→English contains news, user reviews,
and manuals. The first two domains contain around
750 sentences, while manuals contains around 500.

The reference translations provided for the test
sets are produced by professional translators.

For more details regarding the news test sets, we
refer the reader to the WMT23 General MT Shared
Task findings paper (Kocmi et al., 2023).

2.2 Additional MT Output

Similar to last year, we made an effort to expand the
pool of translations beyond the WMT submissions,
which can potentially be quite similar to each other.
We added translations which we expected to differ
in two main ways from the submissions: 1) by
using a massively multilingual model; and 2) by
generating with MBR decoding;

For our multilingual model, we selected the 3.3B
parameter NLLB200 model (NLLB Team et al.,
2022) via the huggingface (Wolf et al., 2020) inter-
face. We found NLLB200 to significantly outper-
form the M2M100 (Fan et al., 2021) that we used
last year.

Minimum Bayes Risk (MBR) decoding has re-
cently gained attention in MT as a decision rule,
with the potential to overcome some of the bi-
ases of MAP decoding in NMT (Eikema and Aziz,
2020; Müller and Sennrich, 2021; Eikema and Aziz,
2021; Freitag et al., 2022; Fernandes et al., 2022).
MBR decoding centrally relies on a reference-
based utility metric: its goal is to identify a hy-
pothesis with a high estimated utility (expectation
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under model distribution) with the hope that a high
estimated utility translates into a high actual utility
(with respect to a human reference). In practice,
this means generating several candidate transla-
tions and finding the translation that is most similar
to the rest of the candidate translations.

We produced both the top-1 greedy transla-
tion and MBR outputs. For MBR, we sampled
100 translation candidates from the model via Ep-
silon sampling (Hewitt et al., 2022; Freitag et al.,
2023). We used epsilon_cutoff=0.02 and
eta_cutoff=0.0. This year, we used sentence-
level BLEU from sacreBLEU (Post, 2018) with the
default ‘a13’ tokenizer and the ‘floor’ smoothing
method as utility function only.

3 MQM Human Evaluation

Automatic metrics are usually evaluated by measur-
ing correlations with human ratings. The quality
of the underlying human ratings is critical, and re-
cent findings (Freitag et al., 2021) have shown that
crowdsourced human ratings are not reliable for
high quality MT output. Furthermore, an evalua-
tion schema based on MQM (Lommel et al., 2014),
which requires explicit error annotation, is prefer-
able to an evaluation schema that only asks raters
for a single scalar value per translation. Similar to
last year, we decided to conduct our own MQM-
based human evaluation on a subset of submissions
and language pairs that are most interesting for
evaluating current metrics.

MQM is a general framework that provides a
hierarchy of translation errors which can be tai-
lored to specific applications. Google and Unba-
bel sponsored the human evaluation for this year’s
metrics task for a subset of language pairs using
either professional translators (English→German,
Chinese→English) or trusted and trained raters
(Hebrew→English). The error annotation typology
and guidelines used by Google’s and Unbabel’s
annotators differ slightly and are described in the
following two sections.

3.1 English→German and Chinese→English

Annotations for English→German and
Chinese→English were sponsored and exe-
cuted by Google, using 18 professional translators
(10 for English→German, 8 for Chinese→English)
having access to the full document context. Each
segment gets annotated by a single rater. Instead
of assigning a scalar value to each translation,

annotators were instructed to label error spans
within each segment in a document, paying
particular attention to document context. Each
error was highlighted in the text, and labelled
with an error category and a severity. Segments
that are too badly garbled to permit reliable
identification of individual errors are assigned a
special Non-translation error. Error severities are
assigned independent of category, and consist of
Major, Minor, and Neutral levels, corresponding
respectively to actual translation or grammatical
errors, smaller imperfections and purely subjective
opinions about the translation. Since we are
ultimately interested in scoring segments, we adopt
the weighting scheme shown in Table 2. For more
details, exact annotator instructions and a list of
error categories, we refer the reader to Freitag et al.
(2021) as the exact same setup was used for the
previous two metrics tasks.

Severity Category Weight

Major Non-translation 25
all others 5

Minor Fluency/Punctuation 0.1
all others 1

Neutral all 0

Table 2: Google’s MQM error weighting.

3.2 Hebrew→English

The annotations for the Hebrew→English language
pair were sourced from Unbabel, who engaged four
professional native language annotators possess-
ing extensive translation experience. Much like
Google’s approach, these annotators were provided
with the full document context, comprising up to
ten segments. Their task was to identify and clas-
sify errors by highlighting them, following Unba-
bel’s MQM 3.0 typology5.

The annotators were instructed to classify the
errors based on severity, with Unbabel’s classifica-
tion encompassing not only “Minor” and “Major”
error severities (analogous to Google’s criteria) but
also a “Critical” error severity. However, to ensure
consistency in our evaluation process, we opted
to align with the Google methodology outlined
previously. Specifically, we treated all annotated
“Critical” errors as “Major” errors, and we applied
a weighting scheme for punctuation errors, as de-
tailed in Table 2.

5see Unbabel Annotation Guidelines - Typology 3.0
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3.3 Human Evaluation Results

Due to the fact that we ran our own human eval-
uation, we were only able to evaluate a subset of
the test segments. In Table 3, you can see the num-
ber of segments and documents for each language
pair and test set that we used for human evaluation.
We followed a simple and consistent approach to
downsample the data: we considered each docu-
ment, while only keeping the first 10 sentences of
each document. By doing this, we did not need
to discard most of the documents and only needed
to crop longer documents. The English→German
test is on the paragraph-level, and we had to dis-
card two documents as the first paragraph already
contained more than 10 sentences. In all cases, the
MQM score for a segment is the sum of the scores
for the errors in that segment, and the MQM score
for a test set is the average of the MQM scores of
the segments that were annotated.

The results of the MQM human evaluation
can be seen in Table 4. Most of the reference
translations are ranked first, except for refA for
Chinese→English. Not ranking the human evalua-
tion on top of the MT output is usually a signal for
a corrupt human evaluation. We double-checked
the annotation for refA and can confirm that the
reference translation indeed contained many errors.

4 Baselines and Submissions

We computed scores for several baseline metrics
in order to compare submissions against previous
well-studied metrics. We will start by describing
those baselines, and then we will describe the sub-
missions from participating teams. An overview of
the evaluated metrics can be seen in Table 5.

4.1 Baselines

SacreBLEU baselines We use the following met-
rics from SacreBLEU (Post, 2018) as baselines:

• BLEU (Papineni et al., 2002) is based on the
precision of n-grams between the MT output
and its reference weighted by a brevity penalty.
Using SacreBLEU we obtained sentence-
BLEU values using the sentence_bleu
Python function and for corpus-level BLEU

we used corpus_bleu (both with default
arguments6).

6lnrefs.1|case.mixed|lang.LANGPAIR|tok.13a|smooth.exp|
version.2.3.0

• F200SPBLEU (NLLB Team et al., 2022)
are BLEU scores computed with sub-
word tokenization done by the standardized
FLORES-200 Sentencepiece models. We used
the command line SacreBLEU to compute the
sentence level F200SPBLEU7 and we average
the segment-level scores to obtain a corpus-
level score.

• CHRF (Popović, 2015) uses character
n-grams instead of word n-grams to compare
the MT output with the reference. For CHRF
we used the SacreBLEU sentence_chrf
function (with default arguments8) for
segment-level scores and we average those
scores to obtain a corpus-level score.

BERTSCORE (Zhang et al., 2020) leverages
contextual embeddings from pre-trained transform-
ers to create soft-alignments between words in can-
didate and reference sentences using cosine similar-
ity. Based on the alignment matrix, BERTSCORE

returns a precision, recall and F1 score. We used
F1 without TF-IDF weighting.

BLEURT (Sellam et al., 2020) is a learned metric
fine-tuned on Direct Assessments (DA). Unlike
COMET, BLEURT encodes the translation and the
reference together and utilizes the [CLS] token as
an embedding to represent the pair. We employed
the BLEURT20 checkpoint (Pu et al., 2021), which
was trained on top of RemBERT using DA data
from previous shared tasks spanning from 2015 to
2019, along with additional synthetic data created
from Wikipedia articles.

COMET (Rei et al., 2022a) is a learned metric
fine-tuned using DA from previous WMT Trans-
lation shared tasks. This metric relies on sentence
embeddings from the source, translation, and ref-
erence to produce a final score. We utilized the de-
fault model wmt22-comet-da provided in ver-
sion 2.0.2 of the Unbabel/COMET framework.
This model employs XLM-R large as its backbone
model and is trained on data from the 2017 to 2019
WMT shared tasks, in combination with the MLQE-
PE corpus (Fomicheva et al., 2022).

COMETKIWI (Rei et al., 2022b) is a reference-
free learned metric that functions similarly to

7nrefs:1|case:mixed|eff:yes|tok:flores200|smooth:exp| ver-
sion:2.3.0

8chrF2|lang.LANGPAIR|nchars.6|space.false|version.2.3.0
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language news social speech user reviews manuals

en→de 104/139 (30/30) 206/212 (79/79) 58/113 (23/25) 92/93 (58/58) n/a
he→en 619/1558 (68/70) n/a n/a 201/352 (26/26) n/a
zh→en 377/763 (38/38) n/a n/a 677/726 (127/127) 123/487 (14/14)

Table 3: Numbers of MQM-annotated segments per domain (number of docs in brackets).

English→German ↓
System all news social speech user-reviews

refA 2.96 3.12 2.02 4.74 3.77
GPT4-5shot 3.72 4.00 2.41 6.51 4.60
ONLINE-W 3.95 2.69 2.62 5.90 7.13
ONLINE-B 4.71 4.35 3.14 5.96 7.85
ONLINE-Y 5.64 4.45 3.67 7.48 10.26
ONLINE-A 5.67 4.40 3.84 7.78 9.87
ONLINE-G 6.57 6.43 4.12 7.93 11.38
ONLINE-M 6.94 4.87 4.41 8.30 14.08
Lan-BridgeMT 8.67 7.99 5.55 9.72 15.78
LanguageX 9.25 8.43 5.74 14.23 14.92
NLLB_Greedy 9.54 8.29 5.20 14.82 17.35
NLLB_MBR_BLEU 10.79 9.93 5.53 17.75 19.18
AIRC 14.23 14.32 8.34 20.34 23.45

Hebrew→English ↓
System all news user-reviews

refA 1.17 1.28 0.86
GPT4-5shot 1.33 1.29 1.48
ONLINE-A 1.38 1.34 1.50
ONLINE-B 1.55 1.60 1.39
GTCOM_DLUT 1.89 1.85 1.99
UvA-LTL 1.92 1.80 2.30
ONLINE-G 2.06 2.06 2.04
ONLINE-Y 2.35 2.42 2.12
LanguageX 2.38 2.33 2.53
Samsung_Research_Philippines 3.23 3.62 2.05
NLLB_MBR_BLEU 3.68 3.83 3.20
NLLB_Greedy 3.79 3.98 3.19
Lan-BridgeMT 3.79 3.81 3.74

Chinese→English ↓
System all news manuals user-reviews

Lan-BridgeMT 2.10 2.31 1.28 2.13
GPT4-5shot 2.31 2.26 2.01 2.39
Yishu 3.23 3.34 1.67 3.46
ONLINE-B 3.39 3.27 1.78 3.74
HW-TSC 3.40 3.40 1.83 3.68
ONLINE-A 3.79 2.90 1.83 4.63
ONLINE-Y 3.79 3.47 2.84 4.14
ONLINE-G 3.86 3.58 2.02 4.34
ONLINE-W 4.06 3.84 2.16 4.53
LanguageX 4.23 4.05 2.84 4.59
IOL_Research 4.59 3.60 1.85 5.63
refA 4.83 5.04 5.17 4.65
ONLINE-M 5.43 4.71 2.98 6.28
ANVITA 6.08 5.17 2.97 7.15
NLLB_MBR_BLEU 6.36 6.57 3.39 6.78
NLLB_Greedy 6.57 6.70 2.95 7.16

Table 4: MQM human evaluations for generalMT2023.
Lower average error counts represent higher MT quality.
Systems above any solid line are significantly better
than those below, based on all domains with p < 0.05.

BLEURT, but instead of encoding the transla-
tion along with its reference, it uses the source.
We utilized the wmt22-cometkiwi-da model,
which was a top-performing reference-free met-
ric from last year’s shared task. This reference-
free metric is fine-tuned on the same data as
wmt22-comet-da using the version 2.0.2 of the
Unbabel/COMET framework.

DOCWMT22COMETDA (Vernikos et al.,
2022) is the document-level version of
wmt22-comet-da, which computes the BERT
embeddings using multi-sentence context instead
of just the single sentence.

DOCWMT22COMETKIWIDA is the document-
level version of WMT22-COMETKIWI-DA (QE)
which computes the BERT embeddings using multi-
sentence context instead of just the single sentence.

MS-COMET-QE-22 (Kocmi et al., 2022b) is
built on top of COMET by Microsoft Research us-
ing proprietary data. This metric is trained on a
several times larger set of human judgements com-
pared to COMET-baseline, covering 113 languages
and 15 domains. Furthermore, the authors propose
filtering of human judgement with potentially low
quality to further improve the model. The metric
calculated scores in quality estimation fashion with
only source segment and MT hypothesis.

PRISMREF and PRISMSRC (Thompson and
Post, 2020a,b) PRISMREF is the reference-based
PRISM that uses a multilingual MT model in zero-
shot paraphrase model to score the candidate trans-
lation conditioned on the reference sentence, and
the reference sentence conditioned on the candidate
translation, and averages the two scores. PRISM-
SRC is the source-based (i.e. QE as a metric)
PRISM that uses a multilingual MT model to force-
decode and score the candidate translation condi-
tioned on the source sentence.

RANDOM-SYSNAME is a random metric that
takes the system name as the only parameter. For
each translation system, the metric computes the
mean value X as sha256(sysname)[0]%10. It
uses discrete scores. Segment-level scores follow

583



m
et

ri
c

br
oa

d
ca

te
go

ry
su

pe
rv

is
ed

re
f.

fr
ee

ci
ta

tio
n

av
ai

la
bi

lit
y

(h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

)

baselines
B

L
E

U
le

xi
ca

lo
ve

rl
ap

Pa
pi

ne
ni

et
al

.(
20

02
)

m
j
p
o
s
t
/
s
a
c
r
e
b
l
e
u

F
20

0S
P
B

L
E

U
le

xi
ca

lo
ve

rl
ap

N
L

L
B

Te
am

et
al

.(
20

22
)

m
j
p
o
s
t
/
s
a
c
r
e
b
l
e
u

C
H

R
F

le
xi

ca
lo

ve
rl

ap
Po

po
vi

ć
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Gaussian distribution around mean value X (in a
range 0-9) and standard deviation of 2.

YISI-1 (Lo, 2019) is a MT evaluation metric that
measures the semantic similarity between a ma-
chine translation and human references by aggre-
gating the IDF-weighted lexical semantic similari-
ties based on the contextual embeddings extracted
from pre-trained language models (e.g. RoBERTa,
CamemBERT, XLM-RoBERTa, etc.).

4.2 Metric Submissions

The rest of this section summarizes the participat-
ing metrics.

CALIBRI-COMET22 and CALIBRI-
COMET22-QE apply a post-processing
approach to ratings provided by COMET. It
uses Unbabel/wmt22-comet-da as the
backbone for the referenced CALIBRI-COMET22
and Unbabel/wmt22-cometkiwi-da as
the backbone for the unreferenced CALIBRI-
COMET22-QE metric. The information whether
a translation is error-free from MQM ratings (e.g.
under Google’s MQM error weighting, error-free
translations have a score of 0) can be recovered. It
then aims to calibrate the scores of the backbone
model with respect to this binary error-freeness
label using isotonic regression. During test time,
it takes the samples for a given tuple (lang-pair,
test-set, domain, ref, system-id) and employs a
heuristic strategy to select samples from previous
years that match the test sample score distribution.
It then fits an isotonic regression model to the
selected samples and transforms the test scores
accordingly. The main idea is that in this way, the
averaged system-level score can be interpreted as
the fraction of error-free translations.

COMETOID22 (Gowda et al., 2023) is a
reference-free metric created using knowledge
distillation from reference-based metrics. Using
COMET-22 as a teacher metric, it scores the MT
outputs submitted to the WMT News/General Ma-
chine Translation task since 2009. A student met-
ric, called COMETOID22, is then trained to mimic
the teacher scores without using reference transla-
tion. The student metric has the same architecture
as COMET-QE, and is initialized with pretrained
weights from InfoXLM, a multilingual language
model. We submit three variants: COMETOID22-
WMT{21,22,23}, where the suffix indicates the
training data cut-off year.

COMETKIWI XL/XXL (Rei et al., 2023)
shares the same architecture as the COMETKIWI

baseline but replaces InfoXLM with XLM-R
XL (3.5B) and XXL (10.7B). In terms of training
data, these models are trained on the same dataset
as COMETKIWI, along with newly released Di-
rect Assessments (DA) for Indian languages, which
were introduced as additional training data for this
year’s Quality Estimation (QE) shared task (Blain
et al., 2023).

EBLEU (ElNokrashy and Kocmi, 2023) String-
based metrics such as BLEU and CHRF depend on
string similarity as proxy for meaning similarity
between candidate and target sentences. EBLEU
stands for ‘Embedded BLEU’ and is loosely in-
spired by it. In EBLEU, we match candidate and
target tokens approximately using non-contextual
word embeddings and a word-to-word similarity
map in a form we have dubbed “relative meaning
diffusion tensors”.

EMBED_LLAMA (Dreano et al., 2023a) relies
on pretrained Llama2 embeddings, without any
fine-tuning, to transform sentences into a vector
space that establishes connections between geomet-
ric and semantic proximities. This metrics draws
inspiration from Word2vec, and utilizes cosine dis-
tance for the purpose of estimating similarity or
dissimilarity between sentences.

GEMBA-MQM (Kocmi and Federmann, 2023)
is a LLM-enabled metric for error quality span
marking. It uses three-shot prompting with the
GPT4 model. In contrast to EAPrompt (Lu et al.,
2023), it does not require language specific exam-
ples and requires only a single prompt.

HWTSC-EE-METRIC and KG-
BERTSCORE (Wu et al., 2023) EE stands
for Entropy Enhanced MT Metrics and aims at
achieving a more balanced system-level rating by
assigning weights to segment-level scores pro-
duced by MT metrics. The weights are determined
by the difficulty of a segment determined by the
entropy between the hypothesis-reference pair.
This year, the COMET metric is utilized as the
backbone of our EE metrics. The model we use is
WMT22-COMET-DA.

KG-BERTSCORE incorporates multilingual
knowledge graph into BERTSCORE and generates
the final evaluation score by linearly combining the
results of KGSCORE and BERTSCORE, in which
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we use COMET-QE to calculate BERTSCORE

this year.

MATESE (Perrella et al., 2022) leverages
transformer-based encoders to identify error spans
in translations, and classify their severity between
Minor and Major. Differently from last year’s ver-
sion, MATESE is now based on DeBERTa for eval-
uating translations towards English, and InfoXLM
for German and Russian. Furthermore, it has been
re-trained using also the MQM data released at
WMT2022.

MBR-METRICX-QE (Naskar et al., 2023) MBR
decoding with neural utility metrics like BLEURT

is known to be effective in generating high qual-
ity machine translations. We use the underlying
technique of MBR decoding and develop an MBR
based reference-free quality estimation metric. Our
method uses an evaluator machine translation sys-
tem and a reference-based utility metric (specifi-
cally BLEURT and METRICX) to calculate a quality
estimation score of a model. We report results re-
lated to comparing different MBR configurations
and utility metrics.

MEE4 (Mukherjee and Shrivastava, 2023) is
an unsupervised, reference-based metric (an im-
proved version of MEE) focusing on computing
contextual and syntactic equivalences, along with
lexical, morphological, and semantic similarity.
The goal is to comprehensively evaluate the fluency
and adequacy of MT outputs while also consider-
ing the surrounding context. Fluency is determined
by analysing syntactic correlations, while context
is evaluated by comparing sentence similarities us-
ing sentence embeddings. The ultimate score is
derived from a weighted amalgamation of three
distinct similarity measures: a) Syntactic similarity,
which is established using a modified BLEU score.
b) Lexical, morphological, and semantic similar-
ity, quantified through explicit unigram matching.
c) Contextual similarity, gauged by sentence simi-
larity scores obtained from the Language-Agnostic
BERT model.

METRICX-23 and METRICX-23-QE (Juraska
et al., 2023) are learned reference-based and
reference-free (respectively) regression metrics
based on the mT5 encoder-decoder language model.
They further fine-tune the mT5-XXL checkpoint on
direct assessment data from 2015-2020 and MQM
data from 2020 to 2021 as well as synthetic data.
There are two contrastive submissions, “b” and

“c”, for both the reference-based and QE metrics.
The “b” variant additionally trains on MQM data
from 2022 and the “c” variant uses the PaLM-2
language model (Anil et al., 2023) to initialize the
metric instead of mT5.

MRE-SCORE (Viskov et al., 2023) is a trained
metric that is based on the encoder part of mT0-
large model. We use a concatenation of source, ref-
erence and hypothesis texts for input. Additionally,
some of the variants of the model uses contextual
embeddings from LaBSE.

SESCOREX (Xu et al., 2023b) and IN-
STRUCTSCORE (Xu et al., 2023c) SESCOREX
is an improved version of SESCORE2 (Xu et al.,
2023a). Building upon the established strengths
of SESCORE2, we utilize its framework for syn-
thetic data generation to pre-train our scoring
model. To further elevate the performance of
SESCOREX, we introduce two key modifications:
fine-tuning human rating data and transitioning the
scoring backbone model to the MT5-xl model. IN-
STRUCTSCORE is an open-source, explainable eval-
uation metric for text generation. Utilizing explicit
human guidelines and GPT4’s implicit knowledge,
we fine-tune an Llama model to provide evaluation
metrics along with diagnostic reports that align
with human assessments. Unlike traditional neural
metrics, INSTRUCTSCORE evaluates text genera-
tion by providing a quality score based on detailed
error explanations.

SLIDE (Raunak et al., 2023) Building metrics
explicitly for document-level MT quality estima-
tion has been challenging owing to the lack of large-
scale document-level human annotated datasets. In
this submission, we present a metric named SLIDE

(Sliding Document Evaluator), which operates at
the span of multiple sentences or paragraphs by
way of an overlapping sliding window. SLIDE

feeds each chunk into a source-based COMET

model, with scores over overlapping chunks ac-
cumulated to produce a system-level score. SLIDE

is motivated by two ideas: (1) Since COMET’s un-
derlying encoder is trained on wider contexts, we
might observe generalizable evaluation behaviour
beyond typical sentences-level lengths, within cer-
tain length limits and (2) since a sentence’s evalua-
tion will differ at different positions within a docu-
ment, it may be helpful to evaluate each sentence
in multiple different contexts.
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TOKENGRAM_F (Dreano et al., 2023b) is an
F-score-based evaluation metric for machine trans-
lation that is heavily inspired by CHRF++. By
replacing word-grams with token-grams obtained
from contemporary tokenization algorithms, TO-
KENGRAM_F captures similarities between words
sharing the same semantic roots and thus obtains
more accurate ratings.

XCOMET-XL/XXL (Guerreiro et al., 2023) is
a new COMET (Rei et al., 2020) model that is de-
signed to identify error spans in sentences and gen-
erate a final quality score, making it a more inter-
pretable learnt metric. This metric is optimized for
both regression and sequence tagging, and it can
be used with or without references. XCOMET-QE

submission results from the same model but run-
ning inference without a reference. These models
utilize XLM-R XL or XXL as their backbone mod-
els, with XCOMET-XL having 3.5B parameters and
XCOMET-XXL having 10.7B parameters. The train-
ing process for this metric occurs in stages, starting
with DAs and then is fine-tuning on MQM data.
XCOMET-ENSEMBLE is an ensemble between 1
XL and 2 XXL checkpoints that result from the
different training stages.

XLSIM (Mukherjee and Shrivastava, 2023)
is a supervised reference-based metric that re-
gresses on human scores provided by WMT (2017-
2022). Using a cross-lingual language model XLM-
RoBERTa, we train a supervised model using a
Siamese network architecture with cosine similar-
ity loss.

5 Meta Evaluation

Our main goal in evaluating metrics is to establish a
ranking that reflects a metric’s performance across
a range of settings and applications. Combining re-
sults from different settings is challenging because
correlations with human gold scores have different
ranges and may be subject to differing degrees of
noise. There are also many ways of measuring cor-
relation, with different strengths and weaknesses,
and it is often not clear which is best in a given
setting.

Last year, our approach was to define a large
number of “tasks” (201 in total) that varied along
dimensions such as language pair, domain, granu-
larity, correlation statistic, etc. For each task, we
used pairwise significance tests to establish a dense
clustered ranking of participating metrics (e.g., 1,

1, 1, 2, 3, 3, ...). Motivated by theoretical results
pertaining to combining rankings from different
knowledge sources (Colombo et al., 2022; Dwork
et al., 2001), we established an overall ranking by
simply averaging the per-task ranks.

This approach has several disadvantages. First,
it is difficult to incorporate new metrics into the
comparison, since this requires not only comput-
ing the score of a new metric on 201 tasks, but
also comparing it to all existing metrics on each
task using expensive resampling significance tests.
Adding a new metric also has the undesirable effect
of potentially causing other metrics to swap places
in the overall rankings. While rank averaging has
theoretical underpinnings, as noted above, these
apply to settings in which the constituent tasks pro-
vide only ranking information themselves. In order
to take advantage of richer information available
from correlation statistics, we derived dense ranks
from pairwise significance tests, but this relies on
an ad hoc clustering algorithm, and it is not clear to
what extent our average ranks are supported by the
original theory. They also lack confidence infor-
mation, making it difficult to quantify conclusions
about the overall superiority of one metric over
another.

This year we adopted a much simpler approach
in order to address these difficulties. We use just 10
main tasks, and compute an overall score by taking
a weighted average of results from each task. We
perform significance tests on each pair of metrics
for each task as before, but also do so for each pair
of metrics on the overall average score, allowing us
to establish a clearer global ranking. The average
score for a new metric can be computed relatively
quickly, and it does not affect the scores of other
metrics. Significance tests still require the expen-
sive step of comparing to all other metrics, but they
are no longer necessary for computing a metric’s
raw overall score.

We acknowledge that this approach is not per-
fect. One problem is that we need to combine
correlations and accuracies that may have differ-
ent dynamic ranges. For example, the mean Pear-
son correlation across all metrics for en→de at the
system level is 0.88 with standard deviation 0.24,
while at the segment level it is 0.39 with a stan-
dard deviation of 0.17. Averaging system-level and
segment-level correlations will therefore effectively
upweight the system-level contribution. We experi-
mented with different weightings to compensate for
this, but found that they did not make a large differ-
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language ref used scored ref

en→de A –
he→en B A
zh→en A –

Table 6: Use of reference translations.

ence, and decided to use equal weights for simplic-
ity. Another problem is that we do not account for
dependencies among tasks. Although all tasks are
at least somewhat complementary, many–such as
system-level and segment-level correlations—are
based on the same underlying data, and thus violate
the assumptions of our hypothesis tests. We leave
more sophisticated inference approaches such as
proposed by Dror et al. (2017) or Hagmann and
Riezler (2023) for future work.

5.1 Task Attributes

Tasks are identified by unique value assignments
for each of the following attributes: language, level,
and correlation statistic. Unlike last year, we no
longer have tasks specific to different domains, as
domains differ across languages this year. We also
drop the "include-human" vs "no-human" distinc-
tion, and always score reference translations that
are not used by the metrics. As shown in Table 6,
Hebrew→English is the only language pair for
which such a reference is available. Finally, last
year we used three different averaging methods for
each correlation statistic at the segment level; this
year we choose only one method for each segment-
level correlation.

Attributes are as follows:

Language
Language pairs include those for which
we have MQM ratings—English→German,
Hebrew→English, and Chinese→English—plus
all, which indicates all pairs pooled together.

Level
We computed correlations at the system level and
the segment level. For English→German, segments
are paragraphs; for the two other language pairs,
they are sentences. System-level scores for hu-
man ratings and for all metrics that did not supply
an explicit system-level score are averages over
segment-level scores.

Correlation/accuracy
We computed three correlation/accuracy statistics
selected to provide complementary information:

task lang level correlation wt

1 all system accuracy 3

2 en→de system Pearson 1
3 en→de segment Pearson 1
4 en→de segment acc∗eq 1

5 he→en system Pearson 1
6 he→en segment Pearson 1
7 he→en segment acc∗eq 1

8 zh→en system Pearson 1
9 zh→en segment Pearson 1
10 zh→en segment acc∗eq 1

Table 7: Tasks and weighting.

• System-level pairwise ranking accuracy (as
proposed by Kocmi et al., 2021). This is com-
puted over data pooled across all three lan-
guage pairs.

• Segment-level pairwise ranking accuracy with
tie calibration (as proposed by Deutsch et al.,
2023). We use the acc∗eq variant to compare
vectors of metric and gold scores for each seg-
ment, then average the results over segments.

• System- and segment-level Pearson correla-
tion. At the segment level, we flatten matrices
of system × segment scores into vectors be-
fore comparing them.

5.2 Tasks and Weighting

Table 7 shows the complete list of tasks and their
weights. All tasks receive a weight of 1, except
for system-level accuracy, which has a weight of 3
because it combines data from all three language
pairs.

To compute a global score for each metric across
all tasks, we first map Pearson correlations from
their natural range of [−1, 1] into the [0, 1] range of
the accuracy scores, then take a weighted average
of the results.

5.3 Rank Assignment

For each task, we assign ranks to metrics based
on their significance clusters. To do so, we com-
pare all pairs of metrics and determine whether the
difference in their correlation scores is significant,
according to the PERM-BOTH hypothesis test of
Deutsch et al. (2021). We use 1000 re-sampling
runs and set p = 0.05. As advocated by Wei et al.
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(2022), we divide the sample into blocks of 100,
compute significance after each block (cumulative
over all blocks sampled so far), and stop early if
the p-value is < 0.02 or > 0.50.

The acc∗eq statistic creates a problem for signifi-
cance testing because it optimizes a latent tie thresh-
old for each metric on each test set (just one thresh-
old for all item-wise score vectors). Since the per-
mutation test for comparing two metrics creates
two new vectors by randomly swapping elements
of the original vectors on each draw, this necessi-
tates the very expensive step of finding two new tie
thresholds for each draw. To reduce the expense,
we used the following approximate procedure. First
find an optimal threshold for each input metric on
the current test set, then create all pairs of item-wise
scores and assign a correct/incorrect status to each
pair by examining whether the metric’s ranking
matches the human ranking. Then perform the per-
mutation test on these pairwise status vectors rather
than the original score vectors. This approximation
has more degrees of freedom than the original test,
and can sample pairs that would never result from
swapping the original score vectors, but our experi-
ments showed that it is a reasonable proxy for the
correct procedure.

To compute overall p-values based on weighted
average scores of two metrics across all tasks, we
cache the results of the draws for the per-task sig-
nificance tests. In all cases, these are vectors of K
pairs of correlation or accuracy statistics. Where
K < 1000 due to early stopping, we duplicate ele-
ments to get 1000 examples. Then for i in 1..1000
we compare the weighted average of the pairs from
the ith draw across all tasks, and record the results
to produce an overall p-value.

Clustering

Given significance results (p-values) for all pairs
of metrics, we assign ranks as follows. Starting
with the highest-scoring metric, we move down
the list of metrics in descending order by score,
and assign rank 1 to all metrics until we encounter
the first metric that is significantly different from
any that have been visited so far. That metric is
assigned rank 2, and the process is repeated. This
continues until all metrics have been assigned a
rank. Note that this is a greedy algorithm, and
hence it can place two metrics that are statistically
indistinguishable in different clusters.

6 Main Results

As we have seen in Section 5, the main results are
the overall scores by taking a weighted average
of the results from the ten main tasks, including
system-level and segment-level tasks in different
translation directions. Similar to last year, since
the main use case of automatic metrics is to rank
systems, system-level accuracy has a 1/4 weight on
the final score with the remaining 3/4 distributed
over 9 different settings.

Table 1 shows the official scores and rankings of
all baselines and primary submissions. Table 8 and
9 show the scores and rankings of each individual
task at system level and segment level, respectively.
Similar to last year’s results, neural metrics per-
form significantly better than lexical metrics. Of
the 32 evaluated metrics, BLEU, F200SPBLEU and
CHRF are ranked 28th, 24th and 29th respectively.
On the other hand, fine-tuned neural baseline met-
rics, like COMET and BLEURT-20, remain ranked
higher than several of the new primary submissions.
They are surpassed only by submissions relying on
significantly larger models.

It is worth noting that the best-performing base-
line, COMETKIWI, along with four of the seven
top-performing primary submissions, are reference-
free. As we will elaborate on in a later section
(Section 8), there are quality issues with human ref-
erence translations. This highlights the challenge
of ensuring robustness to poor-quality references
for reference-based metrics. In cases where a high-
quality human reference is not available, reference-
free metrics can serve as more robust alternatives.

Overall, XCOMET-Ensemble is the best per-
forming metric in terms of average scores over
the 10 meta-evaluation settings, with a statistically
significant advantage over all other metrics. It con-
sistently correlates best with human MQM scores
at segment level for all translation directions, and
it is ranked at worst in the 2nd significance cluster
for all system-level meta-evaluation tasks.

Figure 1 shows the correlation scores split by
translation direction. There are two key observa-
tions: 1) a majority of the metrics have higher
correlations for en→de among the three transla-
tion directions, except for MRE-SCORE-LABSE-
REGULAR and EBLEU, that perform substantially
better for he→en, and YISI-1 and BERTSCORE,
that perform equally in en→de and he→en; 2)
reference-based metrics struggle for zh→en due
to the reference quality, except for XCOMET-
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en→de,he→en,zh→en en→de he→en zh→en
accuracy pearson pearson pearson

Metric avg-corr task1 task2 task5 task8

XCOMET-Ensemble 1 0.825 1 0.928 2 0.980 1 0.950 2 0.927
XCOMET-QE-Ensemble* 2 0.808 1 0.908 2 0.974 2 0.909 3 0.892
MetricX-23 2 0.808 1 0.908 2 0.977 2 0.910 4 0.873
GEMBA-MQM* 2 0.802 1 0.944 1 0.993 2 0.939 1 0.991
MetricX-23-QE* 2 0.800 2 0.892 2 0.969 3 0.858 4 0.859
mbr-metricx-qe* 3 0.788 2 0.880 2 0.976 2 0.915 2 0.936
MaTESe 3 0.782 2 0.904 4 0.918 2 0.906 3 0.889
CometKiwi* 3 0.782 1 0.904 3 0.946 3 0.860 2 0.963
COMET 3 0.779 2 0.900 1 0.990 2 0.940 3 0.898
BLEURT-20 3 0.776 2 0.892 1 0.990 2 0.937 4 0.880
KG-BERTScore* 3 0.774 2 0.884 4 0.926 2 0.908 2 0.962
sescoreX 3 0.772 2 0.892 3 0.952 3 0.901 5 0.797
cometoid22-wmt22* 4 0.772 2 0.880 2 0.973 4 0.839 2 0.940
docWMT22CometDA 4 0.768 2 0.904 1 0.990 2 0.922 3 0.907
docWMT22CometKiwiDA* 4 0.767 2 0.900 2 0.970 2 0.906 2 0.965
Calibri-COMET22 4 0.767 1 0.904 2 0.963 2 0.930 4 0.863
Calibri-COMET22-QE* 4 0.755 2 0.863 2 0.978 4 0.778 2 0.934
YiSi-1 4 0.754 2 0.871 4 0.925 2 0.917 4 0.823
MS-COMET-QE-22* 5 0.744 2 0.871 3 0.959 5 0.721 3 0.901
prismRef 5 0.744 2 0.851 4 0.920 1 0.956 6 0.762
mre-score-labse-regular 5 0.743 2 0.888 3 0.942 1 0.958 3 0.903
BERTscore 5 0.742 2 0.871 5 0.891 3 0.895 5 0.810
XLsim 6 0.719 2 0.855 4 0.925 3 0.887 5 0.796
f200spBLEU 7 0.704 3 0.819 4 0.919 4 0.805 6 0.772
MEE4 7 0.704 3 0.823 5 0.861 3 0.879 6 0.743
tokengram_F 7 0.703 3 0.815 5 0.858 3 0.878 5 0.795
embed_llama 7 0.701 3 0.831 5 0.861 4 0.841 5 0.785
BLEU 7 0.696 3 0.815 4 0.917 5 0.769 7 0.734
chrF 7 0.694 3 0.795 5 0.866 4 0.776 5 0.809
eBLEU 7 0.692 2 0.859 4 0.918 2 0.911 7 0.727
Random-sysname* 8 0.529 4 0.578 6 0.357 6 0.209 8 0.093
prismSrc* 9 0.455 5 0.386 6 -0.327 6 -0.017 8 -0.406

Table 8: Results on system-level tasks for main language pairs. Rows are sorted by the overall average correlation
across all 10 tasks (leftmost column). Starred metrics are reference-free, and underlined metrics are baselines.

ENSEMBLE and SESCOREX. The reason for the
significant drop in correlation for he→en is unclear.
This drop is observed across almost all metrics,
whether they are trained or untrained, reference-
free or reference-based, and they exhibit varying
degrees of degradation.

We continue to be interested in metrics’ ability to
generalise across domains. In Figure 2, 3 and 4 we
present the performance of each metric across dif-
ferent domains in each translation direction. Most
metrics perform well in evaluating translation in the
user reviews domain across translation direction,
despite lacking annotated data in that domain. Fur-
ther investigation is required to understand whether
this is because the translation quality of MT output
is more diverse in the user reviews domain, making
it easier for metrics to accurately discriminate.

Figure 5 shows the average correlations of met-
rics when grouped separately by system-level and
segment-level tasks. Many metrics fall into the
same significance cluster when evaluated on the

system-level, as we only have a limited number
of MT systems. Although most of the metrics
compute the system-level score by averaging their
segment-level scores, we observe that high cor-
relations between automatic metrics and human
judgments at the segment level do not necessarily
guarantee high correlations at the system level. For
example, PRISMSRC is in the middle of the pack
and has moderate Pearson’s correlation at segment
level for en→de. However, it is negatively corre-
lating with human judgements when evaluating the
same language pair at system level.

7 Understanding metrics’ scores beyond
correlation

In the past few years, we demonstrated that new
metrics correlate better with human judgments than
BLEU does. Some new baseline metrics even con-
sistently outperform BLEU for consecutive years
across translation directions and domains. How-
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en→de en→de he→en he→en zh→en zh→en
pearson acc-t pearson acc-t pearson acc-t

Metric task3 task4 task6 task7 task9 task10

XCOMET-Ensemble 1 0.695 1 0.604 1 0.556 1 0.586 1 0.650 1 0.543
XCOMET-QE-Ensemble* 2 0.679 3 0.588 3 0.498 4 0.554 1 0.647 3 0.533
MetricX-23 4 0.585 1 0.603 1 0.548 2 0.577 2 0.625 3 0.531
GEMBA-MQM* 6 0.502 5 0.572 5 0.401 3 0.564 6 0.449 5 0.522
MetricX-23-QE* 3 0.626 2 0.596 2 0.520 3 0.564 1 0.647 4 0.527
mbr-metricx-qe* 4 0.571 3 0.584 5 0.411 4 0.553 5 0.489 2 0.537
MaTESe 5 0.554 9 0.528 4 0.459 5 0.550 4 0.511 12 0.479
CometKiwi* 7 0.475 5 0.569 7 0.387 6 0.544 6 0.442 4 0.525
COMET 8 0.432 4 0.574 5 0.401 8 0.532 8 0.396 7 0.514
BLEURT-20 7 0.484 5 0.572 8 0.382 10 0.519 9 0.378 6 0.518
KG-BERTScore* 8 0.451 7 0.556 8 0.382 7 0.537 7 0.430 6 0.516
sescoreX 5 0.519 6 0.563 7 0.385 15 0.484 3 0.536 9 0.499
cometoid22-wmt22* 8 0.441 4 0.578 9 0.365 11 0.515 5 0.479 7 0.515
docWMT22CometDA 10 0.394 7 0.559 10 0.339 13 0.497 10 0.353 10 0.493
docWMT22CometKiwiDA* 8 0.444 8 0.547 12 0.286 14 0.489 8 0.387 10 0.493
Calibri-COMET22 9 0.413 10 0.522 5 0.401 11 0.515 8 0.396 14 0.474
Calibri-COMET22-QE* 8 0.441 12 0.483 6 0.395 12 0.506 6 0.443 10 0.491
YiSi-1 11 0.366 8 0.542 6 0.395 8 0.529 11 0.290 8 0.504
MS-COMET-QE-22* 12 0.310 8 0.546 12 0.295 13 0.498 9 0.367 9 0.498
prismRef 6 0.516 10 0.518 11 0.319 9 0.528 14 0.183 8 0.504
mre-score-labse-regular 17 0.111 9 0.530 8 0.378 10 0.522 16 0.145 12 0.481
BERTscore 12 0.325 9 0.528 10 0.335 11 0.515 12 0.236 9 0.499
XLsim 13 0.239 9 0.527 14 0.233 16 0.480 17 0.111 15 0.464
f200spBLEU 14 0.237 9 0.526 14 0.230 18 0.447 18 0.108 13 0.476
MEE4 16 0.202 9 0.529 13 0.256 19 0.441 18 0.105 12 0.480
tokengram_F 15 0.227 10 0.520 14 0.226 17 0.461 20 0.060 11 0.485
embed_llama 13 0.250 12 0.483 15 0.215 20 0.430 15 0.161 16 0.447
BLEU 16 0.192 10 0.520 15 0.220 19 0.442 17 0.119 14 0.472
chrF 14 0.232 10 0.519 15 0.221 17 0.460 19 0.063 11 0.485
eBLEU 19 -0.011 11 0.512 16 0.131 18 0.445 22 -0.084 14 0.473
Random-sysname* 18 0.064 14 0.409 17 0.041 20 0.428 21 0.018 18 0.381
prismSrc* 9 0.425 13 0.426 16 0.140 19 0.441 13 0.223 17 0.421

Table 9: Results on segment-level tasks for main language pairs. Rows are sorted by the overall average correlation
across all 10 tasks (leftmost column in Table 8). Starred metrics are reference-free, and underlined metrics are
baselines.

ever, the research community is still reluctant to
adopt newer and better automatic MT evaluation
metrics in practice. One of the reasons is that MT
researchers have established some “common be-
liefs” about the relationship between BLEU and ac-
tual translation quality, and similar intuitions about
new metrics have yet to crystallize. Thus, this year,
we conduct two additional analyses beyond correla-
tion with human to understand the meaning of the
score differences that metrics present with respect
to the statistical significance of MT system rank-
ings according to human annotations and metric
scores. Our results should NOT be used as argu-
ments to forego significance tests or appropriate
human evaluation. These analyses only support
an intuitive sense of metric score meanings to en-
courage broader adoption of new automatic MT
evaluation metrics.

7.1 Correspondence to MQM scores
significance

First, we follow Lo et al. (2023a) to study the re-
lationship between statistically significant differ-
ences in human scores and the magnitude of metric
differences. Specifically, we run a one-sided paired
t-test with an equal variance assumption for each
system pair on segment-level MQM scores. After
that, we fit the corresponding metric score differ-
ences and the p-values of the t-test on the MQM
scores to an isotonic regression (Robertson et al.,
1988), that predicts whether the human MQM score
difference will be significant given the metric’s
score difference. Isotonic regression produces a
non-decreasing function where the classifier output
can be interpreted as a confidence level.9 We set
pmqm < 0.05 as the significance level of MQM

9https://scikit-learn.org/stable/
modules/isotonic.html
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Figure 1: Average metrics’ meta-evaluation scores in
tasks grouped by translation direction. The “mixed“
group is the accuracy score of the metrics in task 1.

Figure 2: Average metrics’ correlation with human in
tasks grouped by domain in en→de. The “mixed“ group
is the average correlation in all en→de tasks.

Figure 3: Average metrics’ correlation with human in
tasks grouped by domain in he→en. The “mixed“ group
is the average correlation in all he→en tasks.

Figure 4: Average metrics’ correlation with human in
tasks grouped by domain in zh→en. The “mixed“ group
is the average correlation in all zh→en tasks.
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Figure 5: Average metrics’ correlation with human in
tasks grouped by granularity level.

scores. Thus, the output of the isotonic regression
function can be viewed as Pr(pmqm < 0.05|∆M)
where pmqm is the p-value of the t-test on the MQM
scores for each system pair and ∆M is the metric
score difference.

Figure 6 shows the (log) p-value of one-sided
paired t-test on the MQM scores against the cor-
responding BLEU and COMET score difference
for each system pair in en→de. Figures 9-14 in
appendix D, show the same analyses for all met-
rics and translation directions. For each metric, we
can choose a particular level of confidence (i.e., a
point along the y-axis on the right) to give metric
score difference cut-offs (i.e., a point along the x-
axis) that this metric difference reflects significant
MQM score differences. Drawing a horizontal line
from the confidence level, say 80%, to the red line
enables us to find the minimum metric difference
cut-off required at the corresponding x-value down
from the red line, i.e. 11 for BLEU in Figure 6.
Using this lookup method, Table 10 shows the cut-

offs of ∆M when Pr(pmqm < 0.05|∆M) = 0.8
for each metric and translation directions.

We run the leave-one-system-out cross valida-
tion and Table 10 shows that the range of preci-
sion in the cross validation are consistently high
across metrics, with the exception of BLEU, CHRF,
PRISMSRC, RANDOM-SYSNAME and SLIDE. This
means the metric cut-offs we find using the regres-
sion model are reliable.

Contrary to the common belief that 2 BLEU im-
provement represents “significant” or “notable by
human” improvement in the actual translation qual-
ity, our analyses show that 2.2 BLEU is the mini-
mum required improvement for a high confidence
(80%) that MQM annotators to mark significant
differences in the translation output for one trans-
lation direction (zh→en) and that threshold would
be as high as 11 BLEU for en→de. Table 10 serves
as a reference between BLEU differences and dif-
ferences in some of the modern metrics, and assists
metric users in understanding scores provided by
modern metrics. For example, when evaluating
he→en translation quality, we see that a BLEU

difference of 3.5 corresponds to 80% confidence
that the metric’s ranking of the two MT systems
will match with the decision made by human an-
notators with a significant difference. Meanwhile,
a COMET score difference of 0.014 would have
the same 80% chance of human judged significant
difference.

7.2 Correspondence to metric scores
significance

Inspired by Marie (2022), we run a study similar
to that in the previous subsection but on the rela-
tions between statistically significant differences
in metric scores and the magnitude of metric dif-
ferences. Instead of one-sided t-test on MQM, the
p-values are now obtained by running statistical
significance tests with bootstrap resampling on the
metric scores for each system pair. Similarly, we
fit the corresponding metric score differences and
the p-values of the significance test to an isotonic
regression for predicting whether the translation
quality improvement as indicated by the metric will
be significant given the metric score difference. We
set pM < 0.05 and thus, the output of the isotonic
regression function is now Pr(pM < 0.05|∆M),
where pM is the p-value of the significance test on
the metric scores for each system pair and ∆M is
the metric score difference.

Figure 7 shows the (log) p-value of the signifi-
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Figure 6: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the metric (left: BLEU, right:
COMET) score difference for each system pair in en→de. The red line is the isotonic regression fit to all data
points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when
they are less than 0.0001.

en→de he→en zh→en
Metric min ∆M c.v. precision min ∆M c.v. precision min ∆M c.v. precision
BERTSCORE 0.011 [75-100%] 0.0053 [83-100%] 0.0033 [75-100%]
BLEU 11 [33-100%] 3.5 [82-100%] 2.2 [75-100%]
BLEURT-20 0.041 [75-100%] 0.019 [100-100%] 0.013 [82-100%]
CALIBRI-COMET22 0.068 [71-100%] 0.031 [89-100%] 0.043 [80-100%]
CALIBRI-COMET22-QE 0.072 [82-100%] 0.020 [86-100%] 0.025 [67-100%]
CHRF 2.8 [25-100%] 3.2 [83-100%] 2.6 [86-100%]
COMET 0.030 [78-100%] 0.014 [88-100%] 0.013 [80-100%]
COMETKIWI 0.022 [67-100%] 0.014 [64-100%] 0.0098 [62-100%]
COMETOID22-WMT22 0.018 [86-100%] 0.0077 [71-100%] 0.011 [67-100%]
DOCWMT22COMETDA 0.027 [78-100%] 0.012 [82-100%] 0.014 [82-100%]
DOCWMT22COMETKIWIDA 0.026 [75-100%] 0.012 [64-100%] 0.0096 [71-100%]
EBLEU 0.022 [57-100%] 0.019 [83-100%] 0.017 [86-100%]
EMBED_LLAMA 0.062 [67-100%] 0.019 [80-100%] 0.020 [80-100%]
F200SPBLEU 4.6 [60-100%] 3.6 [75-100%] 3.5 [86-100%]
GEMBA-MQM 2.0 [89-100%] 1.0 [82-100%] 2.0 [69-100%]
KG-BERTSCORE 0.0097 [50-100%] 0.0097 [86-100%] 0.0079 [62-100%]
MATESE 0.99 [71-100%] 0.77 [75-100%] 0.70 [73-100%]
MBR-METRICX-QE 0.047 [75-100%] 0.026 [82-100%] 0.022 [75-100%]
MEE4 0.013 [71-100%] 0.024 [78-100%] 0.020 [86-100%]
METRICX-23 0.73 [100-100%] 0.29 [76-100%] 0.55 [83-100%]
METRICX-23-QE 0.53 [71-100%] 0.092 [67-100%] 0.49 [60-100%]
MRE-SCORE-LABSE-REGULAR 0.010 [67-100%] 0.016 [100-100%] 0.0064 [62-100%]
MS-COMET-QE-22 1.5 [80-100%] 1.4 [67-100%] 1.2 [60-100%]
PRISMREF 0.081 [75-100%] 0.14 [88-100%] 0.19 [83-100%]
PRISMSRC 0.036 [73-100%] 0.040 [33-100%] 0.022 [64-100%]
RANDOM-SYSNAME 7.8 [0-100%] 0.082 [67-90%] 5.0 [50-90%]
SESCOREX 0.38 [73-100%] 0.50 [89-100%] 0.62 [73-100%]
SLIDE 0.049 [78-100%] 0.017 [78-100%] 0.013 [58-100%]
XCOMET-ENSEMBLE 0.029 [88-100%] 0.0092 [83-100%] 0.012 [75-100%]
XCOMET-QE-ENSEMBLE 0.038 [86-100%] 0.012 [83-100%] 0.021 [67-100%]
XLSIM 0.015 [67-100%] 0.0073 [82100%] 0.0091 [70-100%]
YISI-1 0.0049 [67-100%] 0.0060 [80-100%] 0.0054 [75-100%]

Table 10: Minimum ∆M when Pr(pmqm < 0.05|∆M) = 0.8 for each metric in different translation directions
round to 2 significant figures, and the range of precision for the isotonic regression model in leave-one-system-out
cross validation.

cance test with bootstrap resampling on the metric
scores for BLEU and COMET score difference of
each system pair in en→de. Additional figures
(Figures 15-20 in appendix Appendix D) show the
same analyses for all metrics and translation direc-

tions. Using the same lookup method described in
the previous subsection, Table 11 shows the cut-
offs of ∆M when Pr(pM < 0.05|∆M) = 0.8 for
each metric and translation directions.

We run the leave-one-system-out cross valida-
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Figure 7: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (left: BLEU, right: COMET) score difference for each system pair in en→de. The red line is the
isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for readability, values of pM are
rounded up to 0.0001 when they are less than 0.0001.

en→de he→en zh→en
Metric min ∆M c.v. precision min ∆M c.v. precision min ∆M c.v. precision
BERTSCORE 0.0026 [100-100%] 0.0012 [100-100%] 0.00085 [100-100%]
BLEU 1.1 [100-100%] 0.79 [100-100%] 0.58 [93-100%]
BLEURT-20 0.0081 [100-100%] 0.0041 [100-100%] 0.0024 [100-100%]
CALIBRI-COMET22 0.010 [91-100%] 0.0063 [100-100%] 0.0064 [100-100%]
CALIBRI-COMET22-QE 0.015 [100-100%] 0.0086 [89-100%] 0.0078 [92-100%]
CHRF 0.99 [100-100%] 0.68 [100-100%] 0.48 [100-100%]
COMET 0.0038 [100-100%] 0.0038 [90-100%] 0.0029 [100-100%]
COMETKIWI 0.0074 [91-100%] 0.0019 [100-100%] 0.0025 [93-100%]
COMETOID22-WMT22 0.0062 [82-100%] 0.0026 [100-100%] 0.0019 [100-100%]
DOCWMT22COMETDA 0.0033 [100-100%] 0.0013 [100-100%] 0.0023 [100-100%]
DOCWMT22COMETKIWIDA 0.0028 [100-100%] 0.0021 [100-100%] 0.0015 [100-100%]
EBLEU 0.0076 [90-100%] 0.0048 [100-100%] 0.0050 [100-100%]
EMBED_LLAMA 0.013 [100-100%] 0.0079 [100-100%] 0.0054 [100-100%]
F200SPBLEU 1.0 [100-100%] 0.94 [100-100%] 0.65 [100-100%]
GEMBA-MQM 0.52 [100-100%] 0.38 [100-100%] 0.35 [100-100%]
KG-BERTSCORE 0.0051 [100-100%] 0.0016 [100-100%] 0.00029 [93-100%]
MATESE 0.33 [100-100%] 0.20 [100-100%] 0.15 [100-100%]
MBR-METRICX-QE 0.0073 [100-100%] 0.0039 [100-100%] 0.0023 [100-100%]
MEE4 0.0029 [90-100%] 0.0067 [100-100%] 0.0054 [100-100%]
METRICX-23 0.23 [100-100%] 0.083 [90-100%] 0.089 [92-100%]
METRICX-23-QE 0.19 [100-100%] 0.072 [89-100%] 0.11 [100-100%]
MRE-SCORE-LABSE-REGULAR 0.0034 [100-100%] 0.0028 [100-100%] 0.0010 [100-100%]
MS-COMET-QE-22 0.49 [100-100%] 0.45 [88-100%] 0.18 [100-100%]
PRISMREF 0.018 [100-100%] 0.031 [100-100%] 0.020 [100-100%]
PRISMSRC 0.028 [100-100%] 0.025 [75-100%] 0.016 [100-100%]
RANDOM-SYSNAME 0.21 [100-100%] 0.14 [100-100%] 0.12 [100-100%]
SESCOREX 0.039 [100-100%] 0.10 [100-100%] 0.085 [100-100%]
XCOMET-ENSEMBLE 0.010 [90-100%] 0.0035 [100-100%] 0.0033 [100-100%]
XCOMET-QE-ENSEMBLE 0.0065 [100-100%] 0.0027 [100-100%] 0.0042 [93-100%]
XLSIM 0.0019 [100-100%] 0.0018 [100-100%] 0.0022 [100-100%]
YISI-1 0.0013 [100-100%] 0.0033 [73-100%] 0.00074 [100-100%]

Table 11: Minimum ∆M when Pr(pM < 0.05|∆M) = 0.8 for each metric in different translation directions
round to 2 significant figures, and the range of precision for the isotonic regression model in leave-one-system-out
cross validation.

tion, and Table 11 shows that the range of precision
in the cross validation are consistently high across
metrics. This means the metric cut-offs we find
using the regression model are reliable.

Our results, agreeing with Marie (2022), show
that to claim significant differences (pM < 0.05)

in BLEU with high confidence (80%), the BLEU

differences should be greater than 1.1 BLEU for
en→de. Table 11 serves as a reference of metric
differences with respect to statistical significance
with high confidence. For example, when evaluat-
ing en→de translation quality, we see that a BLEU
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difference of 1.1 corresponds to 80% confidence
the difference is statistical significant. Meanwhile,
a COMET score difference of 0.0038 would have
the same 80% chance of statistical significance.

We have to emphasize again that our result
should NOT be interpreted as evidence to forego
significance tests or appropriate human evaluation.
Instead, we are only providing assistance to build
an intuition on the meaning of the scores provided
by the new metrics to encourage the transition away
from BLEU.

8 Synthetic Reference Translations

Reference-based metrics compare machine trans-
lations of source segments to human translations
of those same source segments to determine how
good they are. The quality of the underlying human
translation is crucial and can impact the quality of
the predicted scores more than the choice of met-
ric (Freitag et al., 2020). Motivated by the low hu-
man ratings of refA for Chinese→English (Table 4)
and the relatively high rankings of reference-free
metrics (in comparison to other language pairs)
for this language-pair, we investigate a method for
generating a synthetic reference translation based
on the MT output and the corresponding MQM
ratings.

8.1 Synthetic Reference Generation

The main idea is straightforward: Given the set of
translations of WMT23 General MT Shared Task
(generalMT2023) from the WMT campaign and
their corresponding MQM ratings, we generate a
new synthetic reference translation by choosing
for each segment the translation that received the
lowest MQM error score as the selected reference.
The original human reference translation (i.e. refA)
is considered as one of the possible translations
in this process, and MQM score ties are broken
randomly. Table 12 shows the resulting MQM
score of the synthetic reference translations. We
were able to reduce the MQM score to below 1 for
both tested language pairs (en→de and zh→en),
which corresponds to an average of less than one
minor error per segment. While this may seem like
a significant improvement, we must caution the
reader that this is in essence "cherry-picking" based
on the MQM ratings and may therefore introduce
many hidden issues.

It is also interesting to understand how many
segments come from each of the individual MT

zh→en en→de

synthetic Ref. 0.66 0.87
best MT 2.10 3.72
refA 4.83 2.96

Table 12: MQM scores of the synthetic references.

systems in this selection process. Table 13 shows
the number of segments contributed by each sys-
tem to the generated synthetic reference transla-
tions. Unsurprisingly, the top performing MT sys-
tems are also the main contributors to the selected
synthetic reference translation. For en→de, refA
(the original human-generated reference transla-
tion) provided the majority of the selected trans-
lations, while for zh→en GPT4-5shot is the main
contributor, reflecting that the human-generated
reference refA for zh→en was indeed error-prone.
However, it is interesting to note that despite the
overall low quality of this human-generated ref-
erence, our method still selected 209 segments
from this translation as the lowest-error translation.
This would appear to indicate that these human-
generated reference translations are not uniformly
bad, and only a subset of the translations were un-
reliable and contained major errors. A possible ex-
planation could be that multiple translators worked
on the reference, however, we confirmed with the
sponsor translating zh→en that all segments were
translated with the same translator.

zh→en en→de

GPT4-5shot 314 refA 243
refA 209 GPT4-5shot 57
Lan-BridgeMT 157 ONLINE-B 36
ANVITA 142 ONLINE-A 20
HW-TSC 105 AIRC 20
IOL_Research 42 ONLINE-W 19
ONLINE-W 33 NLLB_Greedy 14
ONLINE-Y 28 NLLB_MBR_BLEU 13
ONLINE-B 26 ONLINE-G 10
ONLINE-A 24 ONLINE-Y 9
ONLINE-G 21 Lan-BridgeMT 9
NLLB_Greedy 20 ONLINE-M 8
ZengHuiMT 18 ZengHuiMT 2
Yishu 18
NLLB_MBR_BLEU 14
ONLINE-M 6

Table 13: Number of segments contributed by each
system towards the synthetic reference.

8.2 Impact on Metrics

Figure 8 compares the segment-level and system-
level Pearson correlations of all submitted metrics
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Figure 8: Pearson Correlation when using either the synthetic ref or the original human translation as reference
translation. QE metrics are coloured in yellow; ref-based metrics are coloured in blue.

when using either the original or the synthetic ref-
erence translation. Reference-based metrics are
coloured in blue, while QE metrics are coloured
in orange. Obviously, as QE metrics do not use
reference translations, their correlations are ex-
actly the same. For Chinese→English, replac-
ing the human-generated reference translation by
the synthetic reference translation has a dramatic
impact. All reference-based metrics increased
their correlation levels with human judgements at
both the segment-level and the system-level. This
clearly indicates how critically important a high
quality reference translation is for reference-based
metrics, but moreover, it also highlights the ad-
vantages of QE metrics in cases where human-
generated references have major quality issues. For
the English→German language pair, the human-
generated reference translation is of higher quality
than any submitted MT system. Consequently, the
synthetic reference translation had almost no im-
pact on the segment-level correlations and only a
mixed impact on the system-level correlations.

The main takeaways from this study are (i) poor
human-generated reference translations can dramat-
ically hurt the performance and reliability of your
metric, (ii) strong QE metrics can be better alterna-
tives in such scenarios, and (iii) generating a syn-
thetic reference translation from all system outputs

can be used to mitigate bad reference translations,
although it assumes obtaining MQM annotations
and suffers from cherry-picking bias.10

An open unanswered question remains: is it al-
ways necessary for a reference translation to be of
higher quality than the translation generated by the
MT system, in order to have a reliable reference-
based metric? This would imply that generating
a synthetic reference translation with any errors
is problematic, since for any reference-based au-
tomatic metric, these synthetic references would
become useless for evaluating any MT system that
generates translations that surpasses the reference
in quality.

9 DA+SQM Human Evaluation

In addition to our MQM annotations and as a con-
trastive evaluation to cover more language pairs,
we look into the performance of metrics when com-
pared to the human evaluation campaign conducted
by the WMT23 General MT Shared Task (Kocmi
et al., 2023), who ran human evaluation for all 14
translation directions and all WMT23 submissions.

In contrast to previous years, they no longer use

10Among other issues, any practical strategy for creating
synthetic references would need to have a way of avoiding bias
toward systems that are similar to the ones used for reference
creation.

597



MTurk neither reference-based evaluation for into-
English language pairs. They no longer use z-score
normalization because the user interface decision
to not track users (i.e., only maintaining HIT in-
formation) means that the z-scores are likely to be
influenced by the distribution of system quality in
the HITs rather than only annotator variation.

They employ the Direct Assessment Scalar Qual-
ity Metrics (DA+SQM) technique as presented in
Kocmi et al. (2022a).

DA+SQM asks bilingual raters to annotate sys-
tem translations against original sources on a 0–
100 labelled scale. The scale is marked with seven
points representing expected quality.

At the time of writing, the WMT23 General
MT Shared Task had collected data only for 8
translation directions: Chinese↔English (zh↔en),
German↔English (de↔en), Japanese↔English
(ja↔en), English→Czech (en→cz), and
Czech→Ukrainian (cz→uk).

We present system-level accuracy results for
both MQM and DA+SQM in Table 14. There are
many factors that could affect the ranking. Apart
from using a different human annotation protocol,
MQM compares 3 translation directions whereas
the DA+SQM compares 8 translation directions,
containing also the non-English low-resource pair
of cz→uk. There is an overlap of only two trans-
lation directions between the two: en→de and
zh→en. The main difference in ranking is for met-
rics XCOMET-Ensemble and MetricX-23 ranking
significantly lower than for MQM. Investigating
system-level Pearson’s correlation for individual
languages in Tables 19 to 27 shows that both met-
rics are performing considerably lower across all
languages (except en→cz and cz→uk) and we do
not see any pattern behind the drop in performance.

10 Challenge Sets Sub-task

For the second year, we included a sub-task on chal-
lenge sets. This sub-task is inspired by the Build it
or break it: The Language Edition shared task (Et-
tinger et al., 2017) which aimed at testing the gener-
alizability of NLP systems beyond the distributions
of their training data. Whereas the standard evalua-
tion of the shared task runs on test sets containing
generic text from real-world content, the challenge
set evaluation is based on test sets designed with
the aim of revealing the abilities or the weaknesses
of the metrics on evaluating particular translation
phenomena. In order to shed light on different per-

Metric MQM DA+SQM
Translation directions 3 8
System pairs (N) 237 793

GEMBA-MQM* 0.944 (1) 0.899 (1)
XCOMET-Ensemble 0.928 (2) 0.870 (10)
MetricX-23 0.908 (3) 0.863 (11)
XCOMET-QE-Ensemble* 0.908 (4) 0.871 (8)
CometKiwi* 0.904 (5) 0.887 (3)
COMET 0.900 (6) 0.890 (2)
BLEURT-20 0.892 (7) 0.880 (6)
MetricX-23-QE* 0.892 (8) 0.870 (9)
mre-score-labse-regular 0.888 (9) 0.861 (12)
KG-BERTScore* 0.884 (10) 0.884 (4)
cometoid22-wmt22* 0.880 (11) 0.884 (5)
BERTscore 0.871 (12) 0.799 (16)
MS-COMET-QE-22* 0.871 (13) 0.879 (7)
YiSi-1 0.871 (14) 0.832 (13)
eBLEU 0.859 (15) 0.781 (19)
XLsim 0.855 (16) 0.831 (14)
prismRef 0.851 (17) 0.808 (15)
embed_llama 0.831 (18) 0.778 (20)
f200spBLEU 0.819 (19) 0.786 (17)
BLEU 0.815 (20) 0.770 (22)
tokengram_F 0.815 (21) 0.786 (18)
chrF 0.795 (22) 0.777 (21)
Random-sysname* 0.578 (23) 0.580 (23)
prismSrc* 0.386 (24) 0.412 (24)

Table 14: Comparison between system-level pairwise
accuracy using MQM and DA+SQM gold scores. MQM
results pool data from our 3 main language pairs;
DA+SQM results pool data from the 8 language pairs
for which DA+SQM scores are available. Rows are
sorted by MQM accuracy, with the pure rank order indi-
cated in brackets. Starred metrics are reference-free and
underlined metrics are baselines.

spectives on evaluation, the sub-task takes place
in a decentralized manner, where, contrary to the
main metric task, the test sets are not provided by
the organizers but by different research teams, who
are also responsible for analysing and presenting
the results.

This subtask is made of three consecutive phases;
1) the Breaking Round, 2) the Scoring Round and
3) the Analysis Round:

1. In the Breaking Round, every challenge set
participant (Breaker) submits their challenge
set S composed of contrastive examples for
different phenomena, where every example
(s, t̂, t, r) ∈ S contains one source sentence s,
one incorrect translation t̂, one correct transla-
tion t and one reference r.

2. In the Scoring Round, the organizers decom-
pose the S into a blind test set S′, where each
example includes either an incorrect transla-
tion (s, t̂, r) or a correct translation (s, t, r)
along with the source and the reference. The
separated contrastive examples are shuffled,
and the golden truth of which samples are cor-
rect or incorrect is kept in a separate set. The

598



challenge set directions phenomena items citation availability (https://github.com/)

ACES 146 translation errors 36476 Amrhein et al. (2023) EdinburghNLP/ACES

DFKI-CS 3 linguistic phenomena 20993 Avramidis et al. (2023) DFKI-NLP/mt-testsuite

MSLC23 4 low quality MT 9345 Lo et al. (2023b) nrc-cnrc/MSLC23

Table 15: Overview of the participation at the metrics challenge sets sub-task

metrics participants from the main task (the
Builders) are asked to score with their met-
rics the translations in the given blind test set
without knowing which ones are correct or
incorrect. Also, in this phase, the organizers
score all data with the baseline metrics.

3. Finally, after having gathered all metric scores,
the organizers return the respective scored
translations to the Breakers for the Analysis
round, where they look at which metrics are
able to correctly rank the correct translations
higher than the incorrect ones for the phenom-
ena being tested.

There were 3 submissions this year, covering a
wide range of phenomena and 146 different trans-
lation directions. An overview of the submitted
challenge sets can be seen in Table 15. A short
description of every submission follows:

ACES Challenge Set The Translation Accuracy
ChallengE Set (ACES, Amrhein et al., 2023) con-
sists of 36K examples representing challenges from
68 phenomena and covering 146 translation direc-
tions. The phenomena range from simple perturba-
tions at the word/character level to more complex
errors based on discourse and real-world knowl-
edge. We benchmark the performance of segment-
level metrics submitted to WMT 2023 using ACES.
For each metric, the authors provide a detailed pro-
file of performance across the ten top-level accu-
racy error categories in ACES as well as an overall
ACES-Score for quick comparison. They also mea-
sure the incremental performance of the metrics
submitted to both WMT 2023 and 2022.

They find that:

• there is no clear winner among the metrics
submitted to WMT 2023,

• neural metrics also tend to focus more on lex-
ical overlap than semantic content,

• reference-free metrics using language-
agnostic multilingual embeddings struggle
with detecting untranslated or sentences
translated in the wrong direction, and

• performance change between the 2023 and
2022 versions of the metrics is highly variable.

The authors’ recommendations are similar to
those from WMT 2022. Metric developers should
focus on: building ensembles of metrics from
different design families, developing metrics that
pay more attention to the source and rely less on
surface-level overlap, and carefully determining
the influence of multilingual embeddings on MT
evaluation.

DFKI Challenge Set The submission by DFKI
(Avramidis et al., 2023) employs a linguistically
motivated challenge set that includes about 21,000
items extracted from 155 machine translation sys-
tems for three language directions (de→en, en→de,
en→ru), covering more than 100 linguistically-
motivated phenomena organized in 14 categories.
The metrics that have the best performance with re-
gard to our linguistically motivated analysis are the
COMETOID22-WMT23 for de→en and METRICX-
23-C for en→de and en→ru. Some of the most
difficult phenomena for the metrics to score are
passive voice for de→en, named entities, termi-
nology and measurement units for en→de and fo-
cus particles, adverbial clause and stripping for
en→ru.

MSLC23 Challenge Set The Metric Score Land-
scape Challenge (MSLC23; Lo et al., 2023b) data
set aims to gain insight into metric scores on a
broader/wider landscape of MT quality. Recent
development of MT evaluation metrics has focused
on improving their correlation with human judg-
ment on translations of high-quality systems (e.g.,
participants in the WMT News/General MT Shared
Tasks). This means that metric performance may
be untested on low- to medium-quality MT out-
put. MSLC23 provides a collection of low- to
medium-quality MT output on the news portion
of the WMT23 General MT Shared Task test set.
Together with the high quality systems submitted
to the General MT Shared Task, this enables bet-
ter interpretation of metric scores across a range
of different levels of translation quality. With this
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wider range of MT quality, the authors also visual-
ize and analyse metric characteristics beyond just
correlation.

The authors find that the smaller variations in
segment-level scores given by some metrics at the
low end of quality could indicate that these metrics
struggle to discriminate between low-quality MT
systems. This is further shown by the observation
that some metrics rank the low-quality systems in
reverse order at system level. A “universal score”
phenomenon for some metrics, where a small sub-
set of non-minimum/maximum distinct scores are
assigned to a variety of translation output, has been
discovered. There is also an observation of diverse
behaviours from different metrics on empty string
translation. These results highlight the need for
metric researchers to check their metrics’ perfor-
mance on a wider landscape of translation quality,
or to indicate to potential users that they should be
cautious about using their metric on a wide range
of quality.

11 Conclusion

This paper summarizes the results of the WMT23
shared task on automated machine translation
evaluation, the Metrics Shared Task. We pre-
sented an extensive analysis on how well met-
rics perform on our three main translation direc-
tions: English→German, Hebrew→English and
Chinese→English. The results, based on 10 differ-
ent tasks, confirm the superiority of neural-based
learned metrics over overlap-based metrics like
BLEU, SPBLEU or CHRF. These results are con-
firmed with DA+SQM human judgement. We also
found that reference-free metrics were strong con-
tenders this year, partly because they do not rely on
the quality of reference translations, an increasingly
important issue as MT systems under evaluation
become better. In addition, we continued the chal-
lenge set subtask, where participants had to create
contrastive test suites for evaluating metrics’ ability
to capture and penalise specific types of translation
errors.

12 Ethical Considerations

MQM annotations and additional reference transla-
tions in this paper are done by professional transla-
tors. They are all paid at professional rates.

Organizers from the National Research Council
Canada and Unbabel have submitted to this task
the frozen stable versions of their metrics (YiSi

and COMET) dated before this year’s shared task
and publicly available. Newer versions of COMET
were developed without using any of the test set,
test suite or challenge sets. We ensured that the
metrics co-authored by Tom Kocmi were imple-
mented without using any privileged test sets or
insider information.
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A Correlations with MQM for all metrics

Tables 16 and 17 contain system- and segment-level results for all metrics (including contrastive sub-
missions) on the 10 standard tasks described in Table 7. No pairwise significance tests were carried
out for these results, so the per-task ranks only indicate each metric’s order on that task, rather than its
significance cluster as in Tables 8 and 9.

lang: en→de,he→en,zh→en en→de he→en zh→en
corr_fcn: accuracy pearson pearson pearson
metric avg-corr task1 task2 task5 task8

XCOMET-Ensemble 1 0.825 6 0.928 9 0.980 4 0.950 14 0.927
XCOMET-XXL 2 0.824 5 0.932 7 0.982 1 0.964 16 0.911
MetricX-23-QE-b* 3 0.823 2 0.940 8 0.982 5 0.947 15 0.926
XCOMET-XL 4 0.816 7 0.924 18 0.973 11 0.937 26 0.884
MetricX-23-QE-c* 5 0.813 4 0.932 20 0.972 8 0.939 4 0.974
MetricX-23-b 6 0.811 9 0.916 4 0.990 15 0.928 19 0.902
XCOMET-QE-Ensemble* 7 0.808 13 0.908 16 0.974 23 0.909 23 0.892
MetricX-23 8 0.808 12 0.908 12 0.977 22 0.910 28 0.873
GEMBA-MQM* 9 0.802 1 0.944 1 0.993 9 0.939 1 0.991
MetricX-23-QE* 10 0.800 24 0.892 22 0.969 35 0.858 30 0.859
cometoid22-wmt23* 11 0.794 3 0.936 10 0.979 16 0.928 8 0.956
mbr-metricx-qe* 12 0.788 29 0.880 13 0.976 19 0.915 11 0.936
CometKiwi-XXL* 13 0.786 11 0.912 6 0.986 14 0.929 2 0.978
CometKiwi-XL* 14 0.786 8 0.916 14 0.975 29 0.900 3 0.974
MaTESe 15 0.782 17 0.904 36 0.918 25 0.906 25 0.889
CometKiwi* 16 0.782 16 0.904 27 0.946 34 0.860 6 0.963
COMET 17 0.779 20 0.900 3 0.990 7 0.940 21 0.898
MetricX-23-c 18 0.778 10 0.916 28 0.944 6 0.946 9 0.953
instructscore 19 0.777 22 0.896 25 0.952 21 0.910 31 0.825
BLEURT-20 20 0.776 23 0.892 5 0.990 12 0.937 27 0.880
KG-BERTScore* 21 0.774 27 0.884 30 0.926 24 0.908 7 0.962
sescoreX 22 0.772 25 0.892 26 0.952 28 0.901 35 0.797
cometoid22-wmt22* 23 0.772 28 0.880 17 0.973 37 0.839 10 0.940
cometoid22-wmt21* 24 0.768 30 0.871 19 0.973 38 0.832 13 0.929
docWMT22CometDA 25 0.768 18 0.904 2 0.990 17 0.922 17 0.907
docWMT22CometKiwiDA* 26 0.767 21 0.900 21 0.970 26 0.906 5 0.965
Calibri-COMET22 27 0.767 15 0.904 23 0.963 13 0.930 29 0.863
Calibri-COMET22-QE* 28 0.755 34 0.863 11 0.978 40 0.778 12 0.934
YiSi-1 29 0.754 33 0.871 31 0.925 18 0.917 32 0.823
MS-COMET-QE-22* 30 0.744 32 0.871 24 0.959 43 0.721 20 0.901
prismRef 31 0.744 37 0.851 33 0.920 3 0.956 40 0.762
mre-score-labse-regular 32 0.743 26 0.888 29 0.942 2 0.958 18 0.903
BERTscore 33 0.742 31 0.871 38 0.891 30 0.895 33 0.810
XLsim 34 0.719 36 0.855 32 0.925 31 0.887 36 0.796
f200spBLEU 35 0.704 40 0.819 34 0.919 39 0.805 39 0.772
MEE4 36 0.704 39 0.823 41 0.861 32 0.879 41 0.743
tokengram_F 37 0.703 42 0.815 43 0.858 33 0.878 37 0.795
embed_llama 38 0.701 38 0.831 42 0.861 36 0.841 38 0.785
BLEU 39 0.696 41 0.815 37 0.917 42 0.769 42 0.734
chrF 40 0.694 43 0.795 40 0.866 41 0.776 34 0.809
eBLEU 41 0.692 35 0.859 35 0.918 20 0.911 43 0.727
Random-sysname* 42 0.529 44 0.578 44 0.357 44 0.209 44 0.093
prismSrc* 43 0.455 45 0.386 45 -0.327 45 -0.017 45 -0.406
HuaweiTSC_EE_Metric – – 19 0.900 39 0.878 27 0.903 22 0.894
slide* – – 14 0.904 15 0.975 10 0.938 24 0.890

Table 16: Results for all metrics on system-level tasks for main language pairs. Rows are sorted by the overall
average correlation across all 10 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: en→de en→de he→en he→en zh→en zh→en
corr_fcn: pearson acc-t pearson acc-t pearson acc-t
metric task3 task4 task6 task7 task9 task10

XCOMET-Ensemble 2 0.695 3 0.604 1 0.556 1 0.586 2 0.650 2 0.543
XCOMET-XXL 1 0.695 4 0.603 2 0.556 4 0.577 5 0.627 3 0.541
MetricX-23-QE-b* 5 0.628 1 0.606 6 0.529 3 0.580 1 0.661 4 0.539
XCOMET-XL 3 0.680 6 0.601 5 0.536 7 0.568 7 0.624 9 0.531
MetricX-23-QE-c* 11 0.525 11 0.581 7 0.526 6 0.576 9 0.581 1 0.545
MetricX-23-b 9 0.566 2 0.604 4 0.537 2 0.581 8 0.612 6 0.535
XCOMET-QE-Ensemble* 4 0.679 8 0.588 9 0.498 10 0.554 4 0.647 7 0.533
MetricX-23 7 0.585 5 0.603 3 0.548 5 0.577 6 0.625 8 0.531
GEMBA-MQM* 16 0.502 17 0.572 13 0.401 9 0.564 16 0.449 14 0.522
MetricX-23-QE* 6 0.626 7 0.596 8 0.520 8 0.564 3 0.647 11 0.527
cometoid22-wmt23* 20 0.448 9 0.586 16 0.397 15 0.544 19 0.439 15 0.520
mbr-metricx-qe* 8 0.571 10 0.584 12 0.411 11 0.553 13 0.489 5 0.537
CometKiwi-XXL* 28 0.417 13 0.578 19 0.390 13 0.550 24 0.390 10 0.528
CometKiwi-XL* 21 0.446 18 0.571 22 0.384 18 0.533 21 0.430 13 0.522
MaTESe 10 0.554 30 0.528 10 0.459 12 0.550 11 0.511 34 0.479
CometKiwi* 18 0.475 19 0.569 20 0.387 14 0.544 18 0.442 12 0.525
COMET 25 0.432 15 0.574 14 0.401 19 0.532 22 0.396 19 0.514
MetricX-23-c 15 0.508 27 0.539 31 0.313 20 0.531 27 0.371 21 0.507
instructscore 12 0.519 20 0.563 11 0.458 17 0.536 12 0.499 40 0.459
BLEURT-20 17 0.484 16 0.572 24 0.382 24 0.519 26 0.378 16 0.518
KG-BERTScore* 19 0.451 23 0.556 23 0.382 16 0.537 20 0.430 17 0.516
sescoreX 13 0.519 21 0.563 21 0.385 33 0.484 10 0.536 24 0.499
cometoid22-wmt22* 23 0.441 14 0.578 26 0.365 25 0.515 14 0.479 18 0.515
cometoid22-wmt21* 26 0.428 12 0.581 27 0.360 26 0.515 15 0.458 20 0.514
docWMT22CometDA 30 0.394 22 0.559 28 0.339 31 0.497 29 0.353 28 0.493
docWMT22CometKiwiDA* 22 0.444 24 0.547 33 0.286 32 0.489 25 0.387 27 0.493
Calibri-COMET22 29 0.413 34 0.522 15 0.401 27 0.515 23 0.396 36 0.474
Calibri-COMET22-QE* 24 0.441 41 0.483 18 0.395 29 0.506 17 0.443 29 0.491
YiSi-1 31 0.366 26 0.542 17 0.395 21 0.529 30 0.290 22 0.504
MS-COMET-QE-22* 33 0.310 25 0.546 32 0.295 30 0.498 28 0.367 26 0.498
prismRef 14 0.516 38 0.518 30 0.319 22 0.528 33 0.183 23 0.504
mre-score-labse-regular 41 0.111 28 0.530 25 0.378 23 0.522 35 0.145 32 0.481
BERTscore 32 0.325 31 0.528 29 0.335 28 0.515 31 0.236 25 0.499
XLsim 35 0.239 32 0.527 35 0.233 34 0.480 37 0.111 39 0.464
f200spBLEU 36 0.237 33 0.526 36 0.230 37 0.447 38 0.108 35 0.476
MEE4 39 0.202 29 0.529 34 0.256 41 0.441 39 0.105 33 0.480
tokengram_F 38 0.227 35 0.520 37 0.226 35 0.461 41 0.060 31 0.485
embed_llama 34 0.250 40 0.483 40 0.215 42 0.430 34 0.161 41 0.447
BLEU 40 0.192 36 0.520 39 0.220 39 0.442 36 0.119 38 0.472
chrF 37 0.232 37 0.519 38 0.221 36 0.460 40 0.063 30 0.485
eBLEU 43 -0.011 39 0.512 42 0.131 38 0.445 43 -0.084 37 0.473
Random-sysname* 42 0.064 43 0.409 43 0.041 43 0.428 42 0.018 43 0.381
prismSrc* 27 0.425 42 0.426 41 0.140 40 0.441 32 0.223 42 0.421

Table 17: Results for all metrics on segment-level tasks for main language pairs. Rows are sorted by the overall
average correlation across all 10 tasks (leftmost column in Table 16). Starred metrics are reference-free, underlined
metrics are baselines, and italicized metrics are contrastive submissions.
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metric avg corr p-values

XCOMET-Ensemble 1 0.825 . 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
XCOMET-QE-Ensemble* 2 0.808 . . 46 20 26 00 00 00 01 01 01 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetricX-23 2 0.808 . . . 24 25 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
GEMBA-MQM* 2 0.802 . . . . 43 03 00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetricX-23-QE* 2 0.800 . . . . . 13 07 05 03 00 06 02 00 00 00 00 01 01 00 00 02 00 00 00 00 00 00 00 00 00 00 00
mbr-metricx-qe* 3 0.788 . . . . . . 31 24 17 10 16 09 02 02 00 00 00 03 00 02 01 00 00 00 00 00 00 00 00 00 00 00
MaTESe 3 0.782 . . . . . . . 48 38 26 19 24 12 09 04 06 03 03 00 01 03 00 00 00 00 00 00 00 00 00 00 00
CometKiwi* 3 0.782 . . . . . . . . 39 25 26 23 04 07 01 02 02 02 00 00 01 00 00 00 00 00 00 00 00 00 00 00
COMET 3 0.779 . . . . . . . . . 22 34 25 23 01 19 11 11 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BLEURT-20 3 0.776 . . . . . . . . . . 46 34 35 10 20 16 13 04 02 00 00 01 00 00 00 00 00 00 00 00 00 00
KG-BERTScore* 3 0.774 . . . . . . . . . . . 43 49 24 29 32 16 08 00 04 07 02 00 00 00 00 00 00 00 00 00 00
sescoreX 3 0.772 . . . . . . . . . . . . 49 30 37 31 18 06 08 03 04 04 00 00 00 00 00 00 00 00 00 00
cometoid22-wmt22* 4 0.772 . . . . . . . . . . . . . 34 22 22 07 14 03 04 07 01 00 00 00 00 00 00 00 00 00 00
docWMT22CometDA 4 0.768 . . . . . . . . . . . . . . 51 44 24 10 03 03 03 04 00 00 00 00 00 00 00 00 00 00
docWMT22CometKiwiDA* 4 0.767 . . . . . . . . . . . . . . . 48 14 20 07 09 12 03 00 00 00 00 00 00 00 00 00 00
Calibri-COMET22 4 0.767 . . . . . . . . . . . . . . . . 17 23 10 16 11 01 00 00 00 00 00 00 00 00 00 00
Calibri-COMET22-QE* 4 0.755 . . . . . . . . . . . . . . . . . 45 30 36 30 18 07 01 04 02 01 00 00 00 00 00
YiSi-1 4 0.754 . . . . . . . . . . . . . . . . . . 30 13 22 31 00 00 00 00 00 00 00 00 00 00
MS-COMET-QE-22* 5 0.744 . . . . . . . . . . . . . . . . . . . 52 49 43 12 01 02 02 02 01 00 00 00 00
prismRef 5 0.744 . . . . . . . . . . . . . . . . . . . . 44 44 00 00 01 00 00 00 00 00 00 00
mre-score-labse-regular 5 0.743 . . . . . . . . . . . . . . . . . . . . . 49 06 01 04 01 00 00 00 00 00 00
BERTscore 5 0.742 . . . . . . . . . . . . . . . . . . . . . . 18 03 07 05 01 02 02 00 00 00
XLsim 6 0.719 . . . . . . . . . . . . . . . . . . . . . . . 04 10 01 06 01 01 00 00 00
f200spBLEU 7 0.704 . . . . . . . . . . . . . . . . . . . . . . . . 51 48 39 06 13 12 00 00
MEE4 7 0.704 . . . . . . . . . . . . . . . . . . . . . . . . . 46 46 33 23 16 00 00
tokengram_F 7 0.703 . . . . . . . . . . . . . . . . . . . . . . . . . . 45 22 15 11 00 00
embed_llama 7 0.701 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 30 29 00 00
BLEU 7 0.696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 35 00 00
chrF 7 0.694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 00 00
eBLEU 7 0.692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 00
Random-sysname* 8 0.529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 04
prismSrc* 9 0.455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 18: Results of pairwise metric significance tests for primary submissions using permutation resampling. Each
value gives the 100 × estimated probability of the null hypothesis that the average correlation of the metric in the
current row is ≤ the average correlation of the metric in the current column. Starred metrics are reference-free, and
underlined metrics are baselines.

B Significance comparisons for main results

Table 18 contains the results of pairwise comparisons for the results in Table 1.

C Correlations with WMT DA-SQM for all metrics

Tables 19 to 27 give correlations with WMT direct assessment (DA-SQM) scores on all 8 translation
directions for which those scores are available. In all cases, reference A was used, and no additional
metrics were available to be scored by the metrics. We evaluate metrics on a task setup similar to that
of Table 7: one system-level pairwise accuracy task involving all languages (with a weight of 8), and
system-level Pearson, segment-level Pearson, and segment-level acc∗eq tasks for each translation direction
(24 tasks in total, each with a weight of 1). Each table shows overall average correlation, along with the
results for the tasks for one translation direction. Metrics that did not participate in all tasks do not have
an average correlation, and are displayed at the end of each table.

We wish to emphasize that the DA+SQM is considerably noisier than MQM. This increased variability
may influence the outcomes observed in the following spotlight evaluation. Consequently, readers should
exercise considerable caution when drawing conclusions from these results.
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lang: cs→uk,de→en,en→cs,en→de,en→ja,en→zh,ja→en,zh→en
corr_fcn: accuracy
metric avg-corr task1

CometKiwi-XXL* 1 0.798 1 0.912
CometKiwi-XL* 2 0.795 2 0.905
COMET 3 0.787 8 0.890
CometKiwi* 4 0.787 10 0.887
cometoid22-wmt23* 5 0.786 6 0.897
KG-BERTScore* 6 0.784 12 0.884
MetricX-23-QE-c* 7 0.780 9 0.887
BLEURT-20 8 0.778 15 0.880
MetricX-23-QE-b* 9 0.777 14 0.880
cometoid22-wmt22* 10 0.776 13 0.884
MetricX-23-c 11 0.775 5 0.898
cometoid22-wmt21* 12 0.774 11 0.885
XCOMET-Ensemble 13 0.774 20 0.870
MetricX-23-b 14 0.768 17 0.873
MetricX-23-QE* 15 0.768 19 0.870
MS-COMET-QE-22* 16 0.767 16 0.879
XCOMET-QE-Ensemble* 17 0.766 18 0.871
MetricX-23 18 0.762 22 0.863
YiSi-1 19 0.749 25 0.832
XCOMET-XL 20 0.748 24 0.860
XLsim 21 0.745 26 0.831
XCOMET-XXL 22 0.743 21 0.866
GEMBA-MQM* 23 0.739 4 0.899
prismRef 24 0.736 27 0.808
mre-score-labse-regular 25 0.734 23 0.861
BERTscore 26 0.732 28 0.799
tokengram_F 27 0.714 30 0.786
chrF 28 0.712 33 0.777
f200spBLEU 29 0.708 29 0.786
embed_llama 30 0.701 32 0.778
eBLEU 31 0.694 31 0.781
BLEU 32 0.660 34 0.770
Random-sysname* 33 0.537 35 0.580
prismSrc* 34 0.514 36 0.412
HuaweiTSC_EE_Metric – – 7 0.892
slide* – – 3 0.902

Table 19: Correlations with WMT DA-SQM scores for all metrics on all-pairs data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: cs→uk cs→uk cs→uk
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 12 0.889 4 0.462 6 0.555
CometKiwi-XL* 2 0.795 18 0.866 15 0.412 10 0.548
COMET 3 0.787 5 0.899 6 0.454 8 0.553
CometKiwi* 4 0.787 23 0.788 8 0.429 13 0.536
cometoid22-wmt23* 5 0.786 7 0.898 11 0.420 15 0.534
KG-BERTScore* 6 0.784 24 0.788 9 0.429 16 0.530
MetricX-23-QE-c* 7 0.780 3 0.920 2 0.502 9 0.553
BLEURT-20 8 0.778 2 0.926 7 0.443 12 0.538
MetricX-23-QE-b* 9 0.777 6 0.898 16 0.410 4 0.559
cometoid22-wmt22* 10 0.776 19 0.851 19 0.403 19 0.528
MetricX-23-c 11 0.775 1 0.932 1 0.523 5 0.558
cometoid22-wmt21* 12 0.774 21 0.822 14 0.414 23 0.521
XCOMET-Ensemble 13 0.774 8 0.897 3 0.482 3 0.560
MetricX-23-b 14 0.768 13 0.888 17 0.410 1 0.568
MetricX-23-QE* 15 0.768 11 0.889 21 0.382 7 0.555
MS-COMET-QE-22* 16 0.767 20 0.851 23 0.322 24 0.519
XCOMET-QE-Ensemble* 17 0.766 17 0.873 5 0.462 11 0.540
MetricX-23 18 0.762 15 0.879 20 0.395 2 0.567
YiSi-1 19 0.749 26 0.753 25 0.315 20 0.526
XCOMET-XL 20 0.748 14 0.882 10 0.423 18 0.529
XLsim 21 0.745 22 0.792 24 0.318 21 0.526
XCOMET-XXL 22 0.743 9 0.897 18 0.407 33 0.436
GEMBA-MQM* 23 0.739 4 0.913 12 0.419 34 0.323
prismRef 24 0.736 27 0.694 22 0.372 17 0.530
mre-score-labse-regular 25 0.734 25 0.772 13 0.417 14 0.534
BERTscore 26 0.732 32 0.544 26 0.292 22 0.524
tokengram_F 27 0.714 30 0.626 28 0.268 25 0.518
chrF 28 0.712 29 0.637 27 0.273 26 0.517
f200spBLEU 29 0.708 28 0.676 30 0.221 28 0.504
embed_llama 30 0.701 34 0.511 33 0.157 30 0.492
eBLEU 31 0.694 33 0.512 31 0.188 27 0.511
BLEU 32 0.660 31 0.548 32 0.184 31 0.480
Random-sysname* 33 0.537 35 0.343 34 0.047 32 0.469
prismSrc* 34 0.514 36 -0.236 29 0.261 29 0.495
HuaweiTSC_EE_Metric – – 10 0.893 – – – –
slide* – – 16 0.877 – – – –

Table 20: Correlations with WMT DA-SQM scores for all metrics on cs→uk data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: de→en de→en de→en
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 15 0.931 14 0.411 11 0.571
CometKiwi-XL* 2 0.795 12 0.934 17 0.402 13 0.569
COMET 3 0.787 6 0.953 2 0.480 2 0.584
CometKiwi* 4 0.787 14 0.933 9 0.447 16 0.559
cometoid22-wmt23* 5 0.786 17 0.913 3 0.471 12 0.571
KG-BERTScore* 6 0.784 13 0.933 7 0.447 20 0.553
MetricX-23-QE-c* 7 0.780 30 0.835 8 0.447 7 0.574
BLEURT-20 8 0.778 3 0.965 1 0.486 5 0.578
MetricX-23-QE-b* 9 0.777 21 0.893 12 0.425 4 0.579
cometoid22-wmt22* 10 0.776 23 0.881 6 0.449 17 0.558
MetricX-23-c 11 0.775 9 0.944 27 0.298 24 0.544
cometoid22-wmt21* 12 0.774 26 0.856 10 0.437 19 0.556
XCOMET-Ensemble 13 0.774 28 0.842 15 0.408 9 0.573
MetricX-23-b 14 0.768 27 0.850 18 0.389 1 0.590
MetricX-23-QE* 15 0.768 24 0.876 13 0.418 8 0.574
MS-COMET-QE-22* 16 0.767 29 0.841 32 0.256 23 0.545
XCOMET-QE-Ensemble* 17 0.766 34 0.813 19 0.385 18 0.556
MetricX-23 18 0.762 31 0.831 20 0.382 3 0.584
YiSi-1 19 0.749 1 0.970 5 0.451 10 0.572
XCOMET-XL 20 0.748 35 0.780 22 0.341 25 0.544
XLsim 21 0.745 8 0.947 23 0.340 15 0.560
XCOMET-XXL 22 0.743 32 0.828 21 0.375 31 0.517
GEMBA-MQM* 23 0.739 10 0.938 4 0.463 34 0.426
prismRef 24 0.736 4 0.963 16 0.403 14 0.565
mre-score-labse-regular 25 0.734 16 0.916 34 0.121 26 0.540
BERTscore 26 0.732 2 0.969 11 0.434 6 0.576
tokengram_F 27 0.714 22 0.891 25 0.319 21 0.551
chrF 28 0.712 25 0.860 24 0.328 22 0.550
f200spBLEU 29 0.708 19 0.904 28 0.291 27 0.539
embed_llama 30 0.701 18 0.913 29 0.275 30 0.525
eBLEU 31 0.694 5 0.954 33 0.207 28 0.538
BLEU 32 0.660 20 0.897 31 0.270 29 0.534
Random-sysname* 33 0.537 37 0.185 35 0.044 33 0.472
prismSrc* 34 0.514 36 0.449 30 0.273 32 0.502
HuaweiTSC_EE_Metric – – 7 0.950 – – – –
slide* – – 11 0.934 – – – –
MaTESe – – 33 0.816 26 0.308 35 0.373

Table 21: Correlations with WMT DA-SQM scores for all metrics on de→en data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: en→cs en→cs en→cs
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 1 0.922 7 0.367 5 0.548
CometKiwi-XL* 2 0.795 5 0.897 6 0.369 7 0.541
COMET 3 0.787 14 0.865 4 0.377 10 0.524
CometKiwi* 4 0.787 22 0.790 13 0.350 11 0.518
cometoid22-wmt23* 5 0.786 13 0.865 11 0.352 16 0.507
KG-BERTScore* 6 0.784 21 0.790 12 0.350 17 0.507
MetricX-23-QE-c* 7 0.780 6 0.893 3 0.391 8 0.540
BLEURT-20 8 0.778 20 0.793 5 0.373 12 0.510
MetricX-23-QE-b* 9 0.777 10 0.881 18 0.338 2 0.551
cometoid22-wmt22* 10 0.776 17 0.825 16 0.341 18 0.506
MetricX-23-c 11 0.775 23 0.750 19 0.316 13 0.510
cometoid22-wmt21* 12 0.774 18 0.824 17 0.340 14 0.508
XCOMET-Ensemble 13 0.774 3 0.903 1 0.402 6 0.543
MetricX-23-b 14 0.768 11 0.880 15 0.344 1 0.552
MetricX-23-QE* 15 0.768 12 0.878 14 0.348 4 0.549
MS-COMET-QE-22* 16 0.767 19 0.797 21 0.286 21 0.497
XCOMET-QE-Ensemble* 17 0.766 2 0.908 2 0.395 9 0.528
MetricX-23 18 0.762 7 0.891 9 0.361 3 0.550
YiSi-1 19 0.749 26 0.568 24 0.245 24 0.492
XCOMET-XL 20 0.748 4 0.898 8 0.362 15 0.507
XLsim 21 0.745 25 0.627 23 0.259 20 0.503
XCOMET-XXL 22 0.743 8 0.890 10 0.353 33 0.439
GEMBA-MQM* 23 0.739 16 0.852 20 0.309 34 0.327
prismRef 24 0.736 27 0.557 22 0.265 22 0.495
mre-score-labse-regular 25 0.734 24 0.718 33 0.130 19 0.504
BERTscore 26 0.732 30 0.480 25 0.228 23 0.493
tokengram_F 27 0.714 34 0.409 26 0.203 26 0.481
chrF 28 0.712 33 0.450 27 0.201 27 0.480
f200spBLEU 29 0.708 29 0.496 28 0.199 29 0.475
embed_llama 30 0.701 32 0.466 30 0.172 28 0.476
eBLEU 31 0.694 31 0.467 32 0.169 25 0.483
BLEU 32 0.660 28 0.519 29 0.186 30 0.460
Random-sysname* 33 0.537 35 0.015 34 0.002 32 0.452
prismSrc* 34 0.514 36 -0.042 31 0.171 31 0.456
HuaweiTSC_EE_Metric – – 15 0.862 – – – –
slide* – – 9 0.885 – – – –

Table 22: Correlations with WMT DA-SQM scores for all metrics on en→cs data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: en→de en→de en→de
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 13 0.972 4 0.506 1 0.595
CometKiwi-XL* 2 0.795 5 0.984 3 0.512 3 0.589
COMET 3 0.787 21 0.953 5 0.496 5 0.588
CometKiwi* 4 0.787 1 0.990 1 0.537 6 0.586
cometoid22-wmt23* 5 0.786 26 0.944 6 0.491 12 0.580
KG-BERTScore* 6 0.784 3 0.990 2 0.523 17 0.578
MetricX-23-QE-c* 7 0.780 39 0.859 12 0.465 19 0.576
BLEURT-20 8 0.778 25 0.945 15 0.452 18 0.577
MetricX-23-QE-b* 9 0.777 33 0.910 19 0.437 4 0.588
cometoid22-wmt22* 10 0.776 32 0.911 16 0.447 21 0.575
MetricX-23-c 11 0.775 2 0.990 8 0.482 13 0.580
cometoid22-wmt21* 12 0.774 34 0.905 20 0.433 22 0.574
XCOMET-Ensemble 13 0.774 38 0.861 25 0.399 20 0.576
MetricX-23-b 14 0.768 35 0.896 30 0.377 8 0.583
MetricX-23-QE* 15 0.768 37 0.867 18 0.443 11 0.582
MS-COMET-QE-22* 16 0.767 28 0.942 33 0.371 28 0.558
XCOMET-QE-Ensemble* 17 0.766 41 0.849 29 0.382 27 0.564
MetricX-23 18 0.762 40 0.855 28 0.389 9 0.582
YiSi-1 19 0.749 6 0.980 13 0.456 23 0.571
XCOMET-XL 20 0.748 42 0.845 34 0.365 32 0.552
XLsim 21 0.745 7 0.979 27 0.391 25 0.566
XCOMET-XXL 22 0.743 36 0.868 24 0.399 39 0.525
GEMBA-MQM* 23 0.739 17 0.961 7 0.488 42 0.434
prismRef 24 0.736 16 0.963 37 0.321 36 0.544
mre-score-labse-regular 25 0.734 30 0.927 42 0.144 35 0.548
BERTscore 26 0.732 12 0.973 23 0.417 24 0.567
tokengram_F 27 0.714 27 0.943 32 0.371 30 0.556
chrF 28 0.712 24 0.945 31 0.374 31 0.553
f200spBLEU 29 0.708 14 0.970 36 0.324 29 0.557
embed_llama 30 0.701 23 0.951 35 0.348 34 0.550
eBLEU 31 0.694 31 0.920 41 0.159 37 0.542
BLEU 32 0.660 18 0.958 38 0.275 38 0.541
Random-sysname* 33 0.537 44 0.278 43 0.075 41 0.482
prismSrc* 34 0.514 45 -0.364 40 0.190 40 0.485
HuaweiTSC_EE_Metric – – 10 0.975 – – – –
instructscore – – 8 0.977 10 0.473 15 0.578
slide* – – 4 0.984 – – – –
Calibri-COMET22 – – 22 0.953 21 0.425 7 0.584
Calibri-COMET22-QE* – – 19 0.957 17 0.445 33 0.551
MEE4 – – 15 0.968 22 0.421 26 0.565
MaTESe – – 43 0.791 39 0.272 43 0.375
docWMT22CometDA – – 29 0.941 14 0.454 2 0.593
docWMT22CometKiwiDA* – – 11 0.973 26 0.392 14 0.579
mbr-metricx-qe* – – 20 0.954 9 0.477 10 0.582
sescoreX – – 9 0.977 11 0.473 16 0.578

Table 23: Correlations with WMT DA-SQM scores for all metrics on en→de data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: en→ja en→ja en→ja
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 3 0.993 2 0.527 2 0.592
CometKiwi-XL* 2 0.795 2 0.993 1 0.528 1 0.593
COMET 3 0.787 12 0.969 6 0.462 11 0.580
CometKiwi* 4 0.787 6 0.984 4 0.516 4 0.588
cometoid22-wmt23* 5 0.786 11 0.979 10 0.449 13 0.574
KG-BERTScore* 6 0.784 5 0.984 3 0.516 7 0.583
MetricX-23-QE-c* 7 0.780 22 0.955 8 0.456 9 0.580
BLEURT-20 8 0.778 4 0.990 15 0.417 15 0.569
MetricX-23-QE-b* 9 0.777 21 0.956 14 0.428 3 0.590
cometoid22-wmt22* 10 0.776 20 0.960 11 0.449 14 0.569
MetricX-23-c 11 0.775 28 0.918 23 0.371 25 0.545
cometoid22-wmt21* 12 0.774 16 0.964 12 0.442 16 0.568
XCOMET-Ensemble 13 0.774 26 0.920 5 0.470 6 0.586
MetricX-23-b 14 0.768 23 0.941 16 0.413 5 0.587
MetricX-23-QE* 15 0.768 30 0.898 17 0.411 10 0.580
MS-COMET-QE-22* 16 0.767 9 0.983 7 0.458 18 0.565
XCOMET-QE-Ensemble* 17 0.766 31 0.895 9 0.455 12 0.574
MetricX-23 18 0.762 29 0.916 18 0.401 8 0.580
YiSi-1 19 0.749 7 0.984 21 0.382 20 0.561
XCOMET-XL 20 0.748 34 0.821 19 0.397 21 0.558
XLsim 21 0.745 27 0.918 24 0.354 22 0.557
XCOMET-XXL 22 0.743 32 0.871 20 0.394 31 0.485
GEMBA-MQM* 23 0.739 8 0.983 13 0.429 33 0.389
prismRef 24 0.736 25 0.922 22 0.371 19 0.561
mre-score-labse-regular 25 0.734 10 0.979 31 0.120 17 0.566
BERTscore 26 0.732 18 0.962 26 0.317 23 0.550
tokengram_F 27 0.714 13 0.969 27 0.227 24 0.548
chrF 28 0.712 14 0.966 28 0.220 26 0.543
f200spBLEU 29 0.708 19 0.961 30 0.190 29 0.523
embed_llama 30 0.701 15 0.964 29 0.212 28 0.524
eBLEU 31 0.694 24 0.926 32 0.073 30 0.522
BLEU 32 0.660 33 0.833 34 0.001 34 0.070
Random-sysname* 33 0.537 36 0.307 33 0.064 32 0.484
prismSrc* 34 0.514 35 0.764 25 0.322 27 0.530
HuaweiTSC_EE_Metric – – 17 0.963 – – – –
slide* – – 1 0.995 – – – –

Table 24: Correlations with WMT DA-SQM scores for all metrics on en→ja data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: en→zh en→zh en→zh
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 14 0.982 7 0.559 3 0.601
CometKiwi-XL* 2 0.795 8 0.988 4 0.588 1 0.601
COMET 3 0.787 3 0.995 6 0.575 8 0.589
CometKiwi* 4 0.787 4 0.994 1 0.635 7 0.590
cometoid22-wmt23* 5 0.786 1 0.997 5 0.588 11 0.584
KG-BERTScore* 6 0.784 5 0.994 2 0.635 10 0.584
MetricX-23-QE-c* 7 0.780 28 0.913 18 0.468 12 0.582
BLEURT-20 8 0.778 9 0.988 8 0.550 18 0.571
MetricX-23-QE-b* 9 0.777 19 0.963 19 0.456 2 0.601
cometoid22-wmt22* 10 0.776 7 0.989 9 0.537 15 0.574
MetricX-23-c 11 0.775 24 0.937 12 0.507 23 0.563
cometoid22-wmt21* 12 0.774 10 0.988 10 0.527 16 0.573
XCOMET-Ensemble 13 0.774 21 0.944 14 0.493 4 0.596
MetricX-23-b 14 0.768 27 0.926 23 0.420 5 0.595
MetricX-23-QE* 15 0.768 22 0.943 22 0.439 6 0.594
MS-COMET-QE-22* 16 0.767 2 0.996 3 0.610 19 0.570
XCOMET-QE-Ensemble* 17 0.766 30 0.908 21 0.450 14 0.577
MetricX-23 18 0.762 33 0.885 24 0.411 9 0.588
YiSi-1 19 0.749 15 0.977 15 0.493 20 0.566
XCOMET-XL 20 0.748 35 0.790 26 0.366 28 0.542
XLsim 21 0.745 12 0.985 11 0.524 17 0.572
XCOMET-XXL 22 0.743 32 0.885 25 0.391 31 0.517
GEMBA-MQM* 23 0.739 18 0.973 16 0.489 33 0.385
prismRef 24 0.736 17 0.975 13 0.496 21 0.564
mre-score-labse-regular 25 0.734 11 0.986 32 0.177 13 0.577
BERTscore 26 0.732 16 0.975 17 0.474 22 0.563
tokengram_F 27 0.714 20 0.945 27 0.343 24 0.558
chrF 28 0.712 25 0.934 29 0.326 25 0.550
f200spBLEU 29 0.708 31 0.905 28 0.327 26 0.547
embed_llama 30 0.701 26 0.927 30 0.297 27 0.542
eBLEU 31 0.694 29 0.912 31 0.210 29 0.535
BLEU 32 0.660 34 0.804 33 0.093 34 0.141
Random-sysname* 33 0.537 36 0.046 34 0.018 32 0.462
prismSrc* 34 0.514 23 0.941 20 0.452 30 0.527
HuaweiTSC_EE_Metric – – 6 0.992 – – – –
slide* – – 13 0.982 – – – –

Table 25: Correlations with WMT DA-SQM scores for all metrics on en→zh data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: ja→en ja→en ja→en
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 2 0.984 1 0.474 2 0.578
CometKiwi-XL* 2 0.795 3 0.982 4 0.446 6 0.573
COMET 3 0.787 16 0.968 5 0.445 3 0.576
CometKiwi* 4 0.787 10 0.975 3 0.455 10 0.568
cometoid22-wmt23* 5 0.786 19 0.966 7 0.435 15 0.560
KG-BERTScore* 6 0.784 9 0.975 2 0.455 12 0.561
MetricX-23-QE-c* 7 0.780 21 0.965 11 0.418 7 0.572
BLEURT-20 8 0.778 22 0.964 6 0.436 9 0.570
MetricX-23-QE-b* 9 0.777 12 0.972 16 0.383 4 0.575
cometoid22-wmt22* 10 0.776 25 0.946 8 0.432 19 0.550
MetricX-23-c 11 0.775 11 0.972 22 0.342 24 0.547
cometoid22-wmt21* 12 0.774 26 0.944 9 0.431 20 0.549
XCOMET-Ensemble 13 0.774 24 0.947 12 0.410 5 0.574
MetricX-23-b 14 0.768 29 0.938 21 0.343 1 0.578
MetricX-23-QE* 15 0.768 30 0.936 20 0.344 11 0.567
MS-COMET-QE-22* 16 0.767 34 0.916 14 0.388 22 0.548
XCOMET-QE-Ensemble* 17 0.766 31 0.935 13 0.388 16 0.557
MetricX-23 18 0.762 33 0.918 24 0.332 8 0.572
YiSi-1 19 0.749 6 0.978 15 0.383 13 0.561
XCOMET-XL 20 0.748 32 0.922 25 0.327 23 0.547
XLsim 21 0.745 1 0.989 23 0.342 18 0.552
XCOMET-XXL 22 0.743 27 0.941 18 0.352 31 0.492
GEMBA-MQM* 23 0.739 4 0.982 10 0.421 34 0.395
prismRef 24 0.736 13 0.971 19 0.351 17 0.557
mre-score-labse-regular 25 0.734 5 0.980 33 0.186 21 0.548
BERTscore 26 0.732 7 0.977 17 0.357 14 0.560
tokengram_F 27 0.714 18 0.967 27 0.290 25 0.546
chrF 28 0.712 20 0.966 26 0.292 26 0.545
f200spBLEU 29 0.708 23 0.955 29 0.226 28 0.528
embed_llama 30 0.701 14 0.969 31 0.203 29 0.524
eBLEU 31 0.694 15 0.969 32 0.202 27 0.530
BLEU 32 0.660 28 0.939 30 0.221 30 0.517
Random-sysname* 33 0.537 36 0.288 35 0.061 32 0.481
prismSrc* 34 0.514 37 -0.747 34 0.171 33 0.470
HuaweiTSC_EE_Metric – – 17 0.967 – – – –
slide* – – 8 0.976 – – – –
MaTESe – – 35 0.904 28 0.242 35 0.326

Table 26: Correlations with WMT DA-SQM scores for all metrics on ja→en data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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lang: zh→en zh→en zh→en
corr_fcn: pearson pearson acc-t
metric avg-corr task1 task2 task3

CometKiwi-XXL* 1 0.798 1 0.938 3 0.435 4 0.540
CometKiwi-XL* 2 0.795 3 0.936 6 0.427 9 0.535
COMET 3 0.787 21 0.811 11 0.378 15 0.525
CometKiwi* 4 0.787 4 0.931 1 0.460 10 0.534
cometoid22-wmt23* 5 0.786 9 0.913 10 0.402 16 0.523
KG-BERTScore* 6 0.784 5 0.927 2 0.448 18 0.521
MetricX-23-QE-c* 7 0.780 14 0.843 13 0.373 6 0.537
BLEURT-20 8 0.778 25 0.766 17 0.331 21 0.520
MetricX-23-QE-b* 9 0.777 17 0.823 21 0.298 1 0.544
cometoid22-wmt22* 10 0.776 8 0.918 5 0.432 19 0.520
MetricX-23-c 11 0.775 7 0.924 16 0.339 24 0.512
cometoid22-wmt21* 12 0.774 10 0.908 7 0.419 20 0.520
XCOMET-Ensemble 13 0.774 20 0.816 18 0.322 7 0.537
MetricX-23-b 14 0.768 26 0.759 26 0.261 3 0.540
MetricX-23-QE* 15 0.768 24 0.770 22 0.284 5 0.538
MS-COMET-QE-22* 16 0.767 6 0.927 8 0.418 22 0.519
XCOMET-QE-Ensemble* 17 0.766 22 0.803 19 0.315 17 0.522
MetricX-23 18 0.762 30 0.735 24 0.264 8 0.536
YiSi-1 19 0.749 31 0.715 25 0.263 28 0.511
XCOMET-XL 20 0.748 28 0.758 27 0.254 27 0.512
XLsim 21 0.745 32 0.702 33 0.218 26 0.512
XCOMET-XXL 22 0.743 23 0.787 23 0.275 39 0.463
GEMBA-MQM* 23 0.739 11 0.873 14 0.370 41 0.356
prismRef 24 0.736 41 0.632 31 0.229 25 0.512
mre-score-labse-regular 25 0.734 18 0.817 38 0.146 30 0.509
BERTscore 26 0.732 33 0.702 30 0.236 23 0.515
tokengram_F 27 0.714 37 0.670 37 0.167 31 0.503
chrF 28 0.712 35 0.701 35 0.168 32 0.503
f200spBLEU 29 0.708 39 0.651 39 0.139 36 0.483
embed_llama 30 0.701 34 0.702 41 0.123 34 0.494
eBLEU 31 0.694 42 0.629 42 0.107 35 0.494
BLEU 32 0.660 43 0.610 40 0.134 37 0.475
Random-sysname* 33 0.537 44 -0.144 43 -0.026 40 0.446
prismSrc* 34 0.514 45 -0.457 28 0.248 38 0.471
HuaweiTSC_EE_Metric – – 19 0.816 – – – –
instructscore – – 38 0.652 32 0.227 42 0.342
slide* – – 12 0.863 – – – –
Calibri-COMET22 – – 27 0.759 20 0.313 13 0.529
Calibri-COMET22-QE* – – 13 0.854 12 0.375 11 0.530
MEE4 – – 40 0.632 36 0.168 33 0.498
MaTESe – – 29 0.739 34 0.201 43 0.319
docWMT22CometDA – – 15 0.836 15 0.345 12 0.530
docWMT22CometKiwiDA* – – 2 0.938 9 0.403 2 0.542
mbr-metricx-qe* – – 16 0.827 4 0.435 14 0.526
sescoreX – – 36 0.695 29 0.238 29 0.509

Table 27: Correlations with WMT DA-SQM scores for all metrics on zh→en data. Rows are sorted by the overall
average correlation across all 25 tasks (leftmost column). Starred metrics are reference-free, underlined metrics are
baselines, and italicized metrics are contrastive submissions.
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D Additional figures

Figures 9-14 show the (log) p-value of one-sided paired t-test on the MQM scores against the score
difference of each metric for each system pair in each translation direction. Figures 15-20 show the (log)
p-value of significance test with bootstrap resampling on the metric scores against the score difference of
that metric for each system pair in each translation direction.

en→de he→en zh→en

Figure 9: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of each
metric (top to bottom: BERTScore, BLEU, BLEURT-20, CALIBRI-COMET22, CALIBRI-COMET22-QE) for
each system pair in each translation direction (left to right: en→de, he→en, zh→en). The red line is the isotonic
regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are
rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 10: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of
each metric (top to bottom: CHRF, COMET, COMETKIWI, COMETOID22-WMT22, DOCWMT22COMETDA,
DOCWMT22COMETKIWIDA) for each system pair in each translation direction (left to right: en→de, he→en,
zh→en). The red line is the isotonic regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note:
for readability, values of pmqm are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 11: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of each metric
(top to bottom: EBLEU, EMBED_LLAMA, F200SPBLEU, GEMBA-MQM, KG-BERTSCORE, MATESE) for
each system pair in each translation direction (left to right: en→de, he→en, zh→en). The red line is the isotonic
regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are
rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 12: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of each metric
(top to bottom: MBR-METRICX-QE, MEE4, METRICX-23, METRICX-23-QE, MRE-SCORE-LABSE-REGULAR,
MS-COMET-QE-22) for each system pair in each translation direction (left to right: en→de, he→en, zh→en). The
red line is the isotonic regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note: for readability,
values of pmqm are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 13: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of each
metric (top to bottom: PRISMREF, PRISMSRC, RANDOM-SYSNAME, SESCOREX, SLIDE, TOKENGRAM_F) for
each system pair in each translation direction (left to right: en→de, he→en, zh→en). The red line is the isotonic
regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are
rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 14: Log p-value of one-sided paired t-test on MQM scores (pmqm) against the score difference of each metric
(top to bottom: XCOMET-ENSEMBLE, XCOMET-QE-ENSEMBLE, XLSIM, YISI-1) for each system pair in each
translation direction (left to right: en→de, he→en, zh→en). The red line is the isotonic regression fit to all data
points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when
they are less than 0.0001.
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en→de he→en zh→en

Figure 15: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: BERTSCORE, BLEU, BLEURT-20, CALIBRI-COMET22, CALIBRI-COMET22-QE,
CHRF) score difference for each system pair in each translation direction (left to right: en→de, he→en, zh→en).
The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for readability,
values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 16: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores
against each metric (top to bottom: COMET, COMETKIWI, COMETOID22-WMT22, DOCWMT22COMETDA,
DOCWMT22COMETKIWIDA, EBLEU) score difference for each system pair in each translation direction (left
to right: en→de, he→en, zh→en). The red line is the isotonic regression fit to all data points, representing
Pr(pM < 0.05|∆M). Note: for readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 17: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: EMBED_LLAMA, F200SPBLEU, GEMBA-MQM, KG-BERTSCORE, MATESE,
MBR-METRICX-QE) score difference for each system pair in each translation direction (left to right: en→de, he→en,
zh→en). The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for
readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 18: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against each
metric (top to bottom: MEE4, METRICX-23, METRICX-23-QE, MRE-SCORE-LABSE-REGULAR, MS-COMET-
QE-22, PRISMREF) score difference for each system pair in each translation direction (left to right: en→de, he→en,
zh→en). The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for
readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 19: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against each
metric (top to bottom: PRISMSRC, RANDOM-SYSNAME, SESCOREX, TOKENGRAM_F, XCOMET-ENSEMBLE,
XCOMET-QE-ENSEMBLE) score difference for each system pair in each translation direction (left to right: en→de,
he→en, zh→en). The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M).
Note: for readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de he→en zh→en

Figure 20: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: XLSIM, YISI-1) score difference for each system pair in each translation direction
(left to right: en→de, he→en, zh→en). The red line is the isotonic regression fit to all data points, representing
Pr(pM < 0.05|∆M). Note: for readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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Abstract

We report the results of the WMT 2023 shared
task on Quality Estimation, in which the chal-
lenge is to predict the quality of the output
of neural machine translation systems at the
word and sentence levels, without access to
reference translations. This edition introduces
a few novel aspects and extensions that aim
to enable more fine-grained, and explainable
quality estimation approaches. We introduce
an updated quality annotation scheme using
Multidimensional Quality Metrics to obtain
sentence- and word-level quality scores for
three language pairs. We also extend the pro-
vided data to new language pairs: we specif-
ically target low-resource languages and pro-
vide training, development and test data for
English-Hindi, English-Tamil, English-Telegu
and English-Gujarati as well as a zero-shot test-
set for English-Farsi. Further, we introduce a
novel fine-grained error prediction task aspir-
ing to motivate research towards more detailed
quality predictions.

1 Introduction

This edition of the shared task on Quality Estima-
tion (QE) aims to build on previous editions and
findings to further benchmark methods for estimat-
ing the quality of neural machine translation (MT)
output at run-time, without the use of reference
translations. It includes (sub)tasks that consider
the quality of machine translations at word- and
sentence-level.

Over the past years, the QE field has been mov-
ing towards explainable, large, multilingual models
that have been shown to achieve high performance,
especially at sentence-level (Specia et al., 2021;
Zerva et al., 2022). The recent proliferation of
Large Language Model (LLM) technology and the
consequential performance improvements in MT el-
evate the significance of advancing methodologies
for quality estimation. In light of this, emphasis
should be placed on multilingual quality estima-

tion, in particular for low- and medium-resource
languages, necessitating the development of more
precise and interpretable quality assessment tech-
niques. Additionally, it is important to address
the challenge of robustness to hallucinations, pri-
oritise sustainability, and optimise computational
efficiency. These considerations collectively con-
tribute to progress toward trustworthy and depend-
able QE systems that could facilitate real-time, re-
liable assessments of translation quality.

In this edition of the shared task, we further
expand the provided resources, introducing new
low-resource language pairs for Indian languages,
namely Marathi, Tamil, Telugu, Gujarati and Hindi,
as well as Farsi and Hebrew. Following the pre-
vious editions, we provide both annotations for
direct assessments (DA), post-edits (PE) and Mul-
tidimensional Quality Metrics (MQM) (Lommel
et al., 2014). We describe in detail the annotation
process and provide statistics for the different lan-
guage pairs in Section 2.

Overall, in addition to advancing the state-of-the-
art at all prediction levels, our main goals are:

• to extend the languages covered in our
datasets with low- and medium-resource lan-
guages;

• to investigate the potential of fine-grained
quality estimation;

• to investigate new multilingual and language
independent approaches esp. with regards to
zero-shot approaches;

• to study the robustness of QE approaches to
hallucinations; and

• to continue monitoring the computational ef-
ficiency of proposed approaches for sustain-
ability purposes.

We thus designed two tasks this year:
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Task 1 The core QE task, which consists of separate
sentence-level and word-level sub-tasks. For
the sentence-level sub-tasks, the goal is to
predict a quality score for each segment in
a given test set, which can be a variant of DA
(§2.1) or MQM (§2.2). For the word-level sub-
task, participants had to predict translation
errors in the form of binary quality tags (see
§3.1.3).

Task 2 The fine-grained error prediction task, where
participants were asked to detect error spans
alongside error severities (§3.2).

The tasks make use of large datasets annotated
by professional translators with either 0-100 DA
scoring, post-editing or MQM annotations. We up-
date the training and development datasets of pre-
vious editions and provide new test sets for Tasks 1
and 2. The datasets and models released are pub-
licly available1.

Apart from the data made available through the
QE shared task, participants were also allowed to
explore any additional data and resources deemed
relevant, across tasks. In addition, LLMs could
also be used both to extend resources and to com-
plement predictions.

The shared task uses CodaLab as a submission
platform, where each sub-task corresponds to a sep-
arate competition instance. Participants (Section 5)
could submit up to a total of 10 submissions per
sub-task. Results for all tasks evaluated according
to standard metrics are given in Section 6. Base-
line systems were trained by the task organisers
and entered into the platform to provide a basis for
comparison (Section 4). A discussion on the main
goals and findings from this year’s task is presented
in Section 7.

2 Datasets

2.1 DA & Post-edit data:
For all language pairs, the data provided is selected
from publicly available resources. Specifically
for training, we used the language pairs from the
MLQE-PE dataset (Fomicheva et al., 2022), as well
as newly annotated data for languages spoken in
India (Hindi, Tamil, Telugu and Gujarati). Overall,
we provided training data for 15 language pairs
with DA annotations, 12 with post edits, and 3 with
MQM annotations, accounting for a mix of high,

1https://github.com/WMT-QE-Task/
wmt-qe-2023-data

medium and low-resource languages. The statistics
for the provided data are detailed in Table 1.

For the English-Marathi language pair included
in the last edition, we provided a novel test set this
year. To expand on language resources for the QE
shared task, we chose Hindi (Hi) and Gujarati (Gu)
as target languages from the Indo-Aryan language
family, Tamil (Ta) and Telugu (Te) were chosen
from the Dravidian language family. For En-Hi,
En-Ta, En-Te, and En-Gu, dataset curation and
annotation were performed with the help of profes-
sional translators who were native speakers of the
target language. The annotators were provided with
guidelines which discussed DA score ranges with
various error types. Additionally, parallel segments
were curated from the following parallel corpora:
i) Anuvaad parallel corpus2 (General, Healthcare
and Legal domain; ii) IITB English-Hindi paral-
lel corpus3 (Kunchukuttan et al., 2018) (Culture/-
Tourism domain), and parallel segments scraped
from NPTEL4; and iii) SpokenTutorials5 (Educa-
tion domain). The curated segments were selected
from the above-mentioned domains to ensure cross-
domain impact and performance.

From the Anuvaad parallel corpus, we fil-
tered source and parallel segments based on
LaBSE (Feng et al., 2022) at high threshold val-
ues in the range [0.85, 0.99]. This helps us ensure
the presence of good-quality reference translations
from a noisy parallel corpus. We then selected
source sentences for the dataset by varying token
length in buckets of 0− 10, 10− 20, and 20− 30
tokens. This allows us to get annotations on vari-
ous sentence lengths and helps manage the annota-
tion cost to a certain extent. Moreover, translation
models tend to generate erroneously over longer
sequences (Varis and Bojar, 2021), and ensuring
short and longer source sentences are a part of the
data helps us presume a balanced DA distribution in
the human annotation. We obtained the translation
with the 1.3B parameter NLLB model (Costa-jussà
et al., 2022) from HuggingFace6. The inference
was performed with 5 beams, limiting the n-gram
repetition to 2 and maximum length to 80 tokens,
with early stopping enabled. The curation of source

2https://github.com/project-anuvaad/
anuvaad-parallel-corpus

3Unreleased parallel segments, to be released here in v3.2:
https://www.cfilt.iitb.ac.in/iitb_parallel/

4https://nptel.ac.in/
5https://spoken-tutorial.org/
6https://huggingface.co/facebook/

nllb-200-distilled-1.3B
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segments from parallel corpora allowed us to com-
pare the performance with IndicTrans (Ramesh
et al., 2022) and 600M parameter NLLB model,
in terms of TER and BLEU, helping us select the
model and parameters above.

During the annotation, weekly validation of ran-
domly selected instances was performed by an un-
biased native speaker who provided feedback to
further improve annotations during the data cura-
tion. After all three annotators performed the DA
annotations, we separated the data into training,
development, and test sets while filtering for a bal-
anced distribution of DA scores across all sets.

For the En-Fa dataset, we used the post-edited
data provided in Azadi et al. (2022) to get the word-
level quality annotations. It contains 1K sentences
derived from some English scientific articles in the
domains of technology, computer science, and hu-
manities. These sentences were firstly translated to
Farsi, using an RNN-based commercial MT system
named Faraazin7. Then, each sentence was given
to a professional human translator to be post-edited
and provide the correct translation with minimum
edits. These post-edits were finally validated by
another annotator to ensure their quality.

2.2 MQM Data
As training data, we used the annotations re-
leased for the Metrics and QE shared tasks in
the previous years (Freitag et al., 2021a,b). To-
gether, these annotations, cover 3 high-resource
language pairs, namely: Chinese-English (Zh-En),
English-German (En-De) and English-Russian (En-
Ru), and span across two domains (News and Ted
Talks).

As test data, we annotated new evaluation sets
for three language directions. A low-resource
language pair, Hebrew-English (He-En), and two
high-resource language pairs, English-German and
Chinese-English. The evaluation sets were anno-
tated by professional translators following a MQM
typology (Burchardt, 2013) and specific guide-
lines8.

The documents used for the evaluation sets are
shared with the General MT task in WMT and
follow the same distribution of domains in that
data. These documents were translated using the
NLLB (Team et al., 2022) model of 1.3B parame-
ters9, the same model used in Section 2.1. We note

7https://www.faraazin.ir/
8http://bit.ly/mqm-guidelines
9Model identifier FACEBOOK/NLLB-200-1.3B

that the En-De sources were originally organised
in document-level, and we opted for converting
them to smaller segments, so that we do not di-
vert from the processing applied for the other LPs.
Hence we first applied sentence splitting and then
followed the same translation and annotation pro-
cess described in this section.

All evaluation sets were annotated by profes-
sional translators and, for En-De and Zh-En the
annotations were reviewed by a separate group
of professional translators that amended any in-
coherences or disagreements from the first round
of annotation. Regarding the domains of the data,
for He-En, two different evaluation sets were an-
notated, one with newswire articles and another
from product user reviews. For En-De, documents
from four domains were annotated: transcriptions
of meetings, newswire articles, social media posts,
and product user reviews. For Zh-En, documents
from three domains were used: manuals from infor-
mation technology software or devices, newswire
articles and product user reviews.

3 Quality Estimation tasks

In what follows, we briefly describe each sub-task,
including the datasets provided for them.

3.1 Task 1: Predicting translation quality

The ability to accurately estimate the quality of
translations on sentence- or word-level on-the-fly,
i.e., without access to human-references is at the
core of the QE shared task. Sentence and word-
level estimates can provide complementary views
of the quality of a sentence capturing different as-
pects (e.g. overall fluency versus specific mistrans-
lations).

Following last edition, the data was produced in
the following ways:

1. DA sentence level scores: The quality of each
source-translation pair is annotated by at least
3 independent expert annotators, using DA on
a scale 0-100.

2. MQM approach: Each source-translation pair
is evaluated by at least 1 expert annotator, and
errors identified in texts are highlighted and
classified in terms of severity (minor, major,
critical) and type (grammar correctness, omis-
sion, style, mistranslation, among others). We
use this information for both word and sen-
tence level quality scores.
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3. Post-editing approach: The translation is post-
edited to obtain the closest possible, fully cor-
rect translation of the source. By considering
the alignment between the source, translation
and post-edited sentence, we can propagate
the errors from the source to the translated
sentence and annotate the segments that were
potentially mistranslated and/or not translated
at all. We use this information to infer word-
level quality scores.

The DA and MQM sentence level annotations
were further processed to obtain normalised quality
scores that have the same direction between high
and low quality. We provide more details on the
required pre-processing in §3.1.1 and §3.1.3.

3.1.1 Sentence-level quality prediction
This year we used a single competition instance
both for DA and MQM-derived annotations aim-
ing to motivate the submission of models that are
robust to both annotation formats. To that end, we
also aligned the scores by processing and normalis-
ing them as follows:

• For the DA scores we standardize the scores
with respect to each annotator and then com-
pute the mean average of standardized scores
for each sentence.

• For the MQM scores we need to first compute
the overall score from the individual errors.
Hence for each annotator, we first compute
the sentence-level score as

MQM sent(hyp) =

100− ∑
e∈hyp

severity(e)

|hyp| ,

(1)
where hyp is a hypothesis sentence repre-
sented as a sequence of tokens, e is an error
annotated in that sentence and the severity is
computed but adding:

+ 1 point for minor errors
+ 5 points for major errors
+ 10 points for critical errors

To align with DA annotations we subtract the
summed penalties from 100 (perfect score)
and we then divide by the sentence length
(computed as number of words). We then
normalise per annotator as in the DA case
and compute the mean average in the case of
multiple annotators.

Regarding evaluation, systems in this task (both
for DA and MQM) are evaluated against the true
z-normalised sentence scores using Spearman’s
rank correlation coefficient ρ as the primary
metric. This is what was used for ranking system
submissions. Pearson’s correlation coefficient, r,
and Kendall τ were also computed as secondary
metrics but not used for the final ranking of sys-
tems.

3.1.2 Hallucinations
Hallucinations are highly pathological translations
that contain content that is detached from the
source (Raunak et al., 2021). As such, they can
have devastating impact when models are deployed
in the wild for real-world applications. Quality esti-
mation systems are an appealing and attractive strat-
egy to identify and flag these translations before
they reach end-users. However, recent research has
found that QE models may not appropriately pe-
nalize hallucinations and other critical errors (Rau-
nak et al., 2022; Guerreiro et al., 2023c). This
concern is further amplified for low-resource lan-
guages, where this undesirable behavior may arise
even more frequently (Dale et al., 2023b). As such,
in this edition of the shared task, we created data
to assess the capability of submitted QE models in
detecting hallucinations.

The data was created through a three-step pro-
cess: (i) we started by generating translations for
all language pairs of this year’s shared task with
NMT models10, using the FLORES devtest and
test splits (Goyal et al., 2022), as well as Wiki-
Matrix data available through OPUS (Schwenk
et al., 2019); then (ii) we automatically detected
hallucinations generated by the models; and finally
(iii) manually verified the flagged translations in or-
der to guarantee that they are hallucinations. To au-
tomatically detect the hallucinations, we followed
the procedure from Guerreiro et al. (2023a), which
directly draws from several relevant contributions
from research works in the literature of hallucina-
tion detection (Ferrando et al., 2022; Dale et al.,
2023a; Guerreiro et al., 2023c).

To evaluate the performance of the submissions,
we created, for each language pair, an evaluation
set that consists of: all the hallucinations for the
language pair, and the samples whose gold score
is above the 25th percentile. This is to ensure that
the non-hallucinations in the evaluation set are not

10We used the massively multilingual models (175M and
615M parameters) released in Goyal et al. (2022).
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Language Sentences Tokens DA PE MQM Data Source Release
Pairs Train / Dev / Test23 Train / Dev / Test23

D
A

&
po

st
ed

its

En-De 10,000 / – / – 148,044 / – / – ✓ ✓ Wikipedia 2021/22
En-Zh 10,000 / – / – 148,529 / – / – ✓ ✓ Wikipedia 2021/22
Ru-En 10,000 / – / – 105,871 / – / – ✓ ✓ Reddit 2021/22
Ro-En 10,000 / – / – 154,825 / – / – ✓ ✓ Wikipedia 2021/22
Et-En 10,000 / – / – 126,547 / – / – ✓ ✓ Wikipedia 2021/22
Ne-En 10,000 / – / – 135,095 / – / – ✓ ✓ Wikipedia 2021/22
Si-En 10,000 / – / – 140,932 / – / – ✓ ✓ Wikipedia 2021/22
Ps-En 2,000 / – / – 54,459 / – / – ✓ ✓ Wikipedia 2021/22
Km-En 2,000 / – / – 44,029 / – / – ✓ ✓ Wikipedia 2021/22
En-Ja 2,000 / – / – 41,272 / – / – ✓ ✓ Wikipedia 2021/22
En-Cs 2,000 / – / – 40,638 / – / – ✓ ✓ Wikipedia 2021/22
En-Yo 1,010 / – / – 21,238 / – / – ✓ ✓ 2021/22
En-Mr 27,000 / 1,000 / 1,086 717,581 / 26,253 / 27,951 ✓ ✓ multi-domain/multi-corpus 2022/23
En-Hi 7,000 / 1,000 / 1,074 181,336 / 25,943 / 28,032 ✓ multi-domain/multi-corpus 2023
En-Gu 7,000 / 1,000 / 1,075 153,685/ 21,238 / 23,084 ✓ multi-domain/multi-corpus 2023
En-Ta 7,000 / 1,000 / 1,067 150,670 / 21,655/ 20,342 ✓ multi-domain/multi-corpus 2023
En-Te 7,000 / 1,028 / 1,000 147,492 / 20,686 / 22,640 ✓ multi-domain/multi-corpus 2023
En-Fa – / – / 1,000 –/ – / 26,807 ✓ news (multi-domain) 2023

M
Q

M

En-De 30,425 / – / 1,897 877,066 / – / 37,996 ✓ multi-domain 2021/23
En-Ru 17,144 / – / – 395,045 / – / – ✓ multi-domain 2021/22
Zh-En 36,851 / – / 1,675 1,654,454 / – / 39,770 ✓ multi-domain 2021/23
He-En – / – / 1,182 – / – / 35,592 ✓ multi-domain 2023

Table 1: Statistics of the data used for Task 1 and Task 2. The number of tokens is computed based on the source
sentences. Hallucinated data included in the calculations for the 2023 testsets.

highly pathological translations (they may however
be incorrect translations). We report the Area Un-
der the Receiver Operating Characteristic curve
(AUROC) and Recall at k (R@k), where k is de-
fined as the number of hallucinations in the evalu-
ation set. A perfect QE detector would have 100
AUROC and 100% Recall at k. We report the statis-
tics of the evaluation sets in Table 8.

3.1.3 Word-level quality prediction
This sub-task focuses on detecting word-level er-
rors in the MT output. The goal is to automatically
predict the quality of each token using a binary de-
cision, i.e., using OK as a label for tokens translated
correctly and BAD otherwise.

We follow the annotation conventions of the pre-
vious edition, i.e., we do not consider source-side
annotations, and incorporate omission errors to the
target token annotations. Specifically, to account
for omission errors, we consider the following con-
vention: the token on the right side of the omitted
text in the translation is annotated as “BAD”. An
additional <EOS> token is appended at the end of
every translation segment to account for omissions
at the end of each sentence. This allows the provi-
sion of a unified framework for both the post-edit
originated annotations and the MQM annotations.

We thus use the same source-translation pairs
used for the sentence-level tasks and obtain the

binary tags as follows:

• For post-edited data, we use the methodol-
ogy to obtain translation error distance (TER)
scores (Snover et al., 2006) to obtain align-
ments between translation and post-edit and
annotate the misaligned tokens as BAD.

• For MQM data, the tokens that fall within the
text-spans annotated as errors (or any sever-
ity or category) are annotated as BAD. If the
whitespace between two words is annotated as
an error, then this is considered an omission,
and the next token is annotated as BAD.

For the word-level task, submissions are
ranked using the Matthews Correlation Coef-
ficient (MCC, Matthews, 1975) as the primary
metric, while F1-scores are provided as comple-
mentary information.

3.2 Task 2: Fine-grained error detection

For this task we attempt to focus on finer-grained
quality predictions, taking advantage of the de-
tailed information provided in the MQM annota-
tion schema. Specifically, the MQM schema allows
the annotation of additional information for each
identified error. Specifically, each error span is an-
notated with error severity (minor, major, critical)
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as well as error type (see also Figure 1). Such in-
formation allows for a more detailed analysis of
the errors of MT systems, an understanding of their
failure points and can provide the basis towards
more explainable quality estimation.

Ideally, a fine-grained QE system is expected to
be able to predict both the error type and its cor-
responding severity. However, the cardinality of
error categories, the complexity of disentangling
between them and the scarcity of MQM annota-
tions render such a classification task particularly
challenging. Hence, in this first attempt, we chose
to focus only on error severity and merged to-
gether the major and the critical labelled errors due
to the scarcity of the latter (see Table 2). As a result,
we aimed to classify error spans as either minor or
major.

LP minor major critical
En-De 652 595 81
Zh-En 633 1063 242
He-En 792 1837 3

Table 2: Error severities (original: before merging criti-
cal and major severities) for the 2023 MQM test set.

As such, the information used for this task con-
sists of: i) start and end index positions for each
error span; and ii) the simplified error severity. The
error spans are identified as sequences of continu-
ous characters within a target hypothesis, allowing
for annotations of single white spaces and punctu-
ation marks in order to account for omission and
punctuation errors respectively. Aiming to mimic
the human annotations and simplify the task, over-
lapping error spans were allowed. Figure 1 shows
an example of annotations.

For the evaluation, the primary metric was
F1-score, computed on the character level and
weighted to allow for half points for correctly iden-
tified span but misclassified severity. Precision and
recall were also provided as complementary met-
rics. The evaluation approach is inspired by (Fon-
seca et al., 2019) but does not consider document-
level annotations. With respect to overlapping an-
notations, we allow for multiple character level
annotations 11 and will consider the best matching
annotation per character position. As such for each
segment we compute recall for the characters in

11The gold data was processed to remove identical segments
that correspond to the same span but have different error cat-
egories, but it preserved any partially overlapping segments
that correspond to different error categories and/or severities.

Figure 1: Example of gold annotations (MQM) for Task
2 (top) and respective prediction examples (bottom).
Example taken from He-En test set.

gold annotation text spans, by computing the ratio
between the overlap with system error spans and
the gold error span length and weighting severity
mismatches by 0.5. Respectively, we compute pre-
cision with respect to the system error span length
and apply the same weighting convention (down-
weighting by 0.5 for mismatched error severities).
Figure 1 and Table 3 shows an example of the afore-
mentioned process 12.

4 Baseline systems

4.1 Task 1: quality estimation

For the sentence-level sub-task, we opted for
COMET-QE models (Rei et al., 2021) respectively
pretrained on the DA and MQM QE data from
WMT’21. Models are publicly available to down-
load13.

For the word-level sub-task, we trained a sim-
plified architecture inspired by COMETKIWI (Rei
et al., 2022a). More specifically, we used the multi-
task architecture combining the sentence-level tar-
get and the binary word-level targets. However,
we did not pretrain on HTER scores or Metrics
data, and we skipped the few-shot language adap-
tation and language-specific tuning of task weights.
The architecture of the baseline model is shown
in Figure 2. The list of hyperparameters and their
corresponding values can be found in appendix A.

12The link to evaluation scripts can be found at:
https://github.com/WMT-QE-Task/qe-eval-scripts/
blob/main/wmt23/

13https://wmt-qe-task.github.io/subtasks/
task1/
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Systems Precision Recall F1-score

System A 1∗7+1∗28+0.5∗6
7+28+13 = 0.79 1∗7+1∗28+0.5∗6

12+28+6 = 0.83 0.81

System B 0.5∗12+1∗28+0.5∗6
12+28+6 = 0.80 1∗12+1∗28+0.5∗6

12+28+6 = 0.80 0.80

Table 3: Example of Precision and Recall computations for each annotation in the example of Figure 1.

Figure 2: Baseline model for Task1 word level. Figure
adapted from (Rei et al., 2022a)

4.2 Task 2: fine-grained error detection
For Task 2 we constructed a simple baseline by
using the same model used for Task 1 word-level,
and post-process the predictions as follows:

• Detokenize the sentence

• Annotate continuous BAD tokens as a single
text span

• Assume all errors are major

For all models, a large XLM-RoBERTa pre-
trained encoder was used, without additional lan-
guage tuning. The specific hyperparameters used
are presented in Table 11.

5 Participants

Table 4 lists teams who officially took part to the
QE shared task this year. In the remaining of this
section, we report a brief system description gath-
ered from each participant. For each team, we
indicate the task(s) and sub-task(s) (i.e. language-
pair(s)) they participated into.

Bering Lab (T1-SL; En-De, Zh-En): For each lan-
guage pair, the team used an ensemble of the
best three models from a pool of 10 mod-
els jointly trained for the word and sentence
level tasks using a novel relative ranking loss
function and Adversarial Weight Perturbation
(AWP) to improve the robustness of the model.
Using no additional pseudo-generated data,
they pre-train the models using publicly avail-
able data from the previous WMT conferences
that were augmented using the TER tool to
generate binary word tags. They then fine-
tuned 10 separate models on the labelled data
from the WMT 2022 QE task randomly split
into 10 folds. The models are fine-tuned in
two steps. In the first step, the models are fine-
tuned without AWP using the same objective
as the pre-training step. Then, the best check-
point from the first step is selected and tuned
on the same objective, but with AWP. For the
final submission they ensemble (average) the
z-normalized scores from the top three models
to get the final predictions.

(T1-WL; En-De, Zh-En): For each language
pair, they use an ensemble of five models
jointly trained for the word and sentence level
tasks using a novel relative ranking loss func-
tion. Using no additional pseudo-generated
data, they pre-train the models using publicly
available data from the previous WMT confer-
ences that were augmented using the TER tool
to include word tags. They then split the la-
belled data from the WMT 2022 QE task into
20 folds and chose the best combination of
five folds based on the minimum mean of the
Kolmogorov-Smirnov goodness-of-fit scores
between each validation set. Using these 5
folds, they fine-tune 5 final models using the
same objective as the pre-training step. For
the final prediction, the team chose the max
score from each model for each token to get
the final predictions.

NJUNLP (T1 & T2; En-De): Inspired by Direc-
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tQE (Cui et al., 2021) and CLQE (Geng et al.,
2023b), NJUNLP submission continues ex-
ploring pseudo data methods for QE. They
generate pseudo MQM data using parallel
data from the WMT translation task. Specifi-
cally, they replace the reference tokens with
these tokens sampled from translation mod-
els. To simulate translation errors with dif-
ferent severities, they sample tokens with
lower generation probabilities for worse er-
rors. They pre-train the XLMR large model
on pseudo MQM data, then fine-tune it on
real QE data (including PE data). At both
stages, they jointly learn sentence-level scores
(MSE loss and margin ranking loss) and word-
level tags (cross-entropy loss). For Task 1, the
QE model outputs the sentence scores and the
‘OK’ probability of each token.

For Task 2, they set different thresholds for the
‘OK’ probability to predict fine-grained sever-
ity. They regard consecutive ‘BAD’ tokens
as a whole span and take the worse severity
of each token as the result. They train dif-
ferent models with different parallel data and
ensemble their results as the final submission.

HW-TSC (T1-SL; En-De, Zh-En, En-Mr, En-Hi, En-
Ta, En-Te, En-Gu): HW-TSC uses CrossQE,
the same model as the one reported in (Tao
et al., 2022), which consists of a multilin-
gual base model and a task-specific down-
stream layer. The input is the concatena-
tion of the source and the translated sen-
tences. To enhance the performance, they
finetuned and ensembled multiple base mod-
els using multilingual encoders such as XLM-
RoBERTa, InfoXLM and RemBERT as well
as a COMETKIWI model. Moreover, they
introduce a new corruption-based data aug-
mentation method, which generates deletion,
substitution and insertion errors in the origi-
nal translation and uses a reference-based QE
model to obtain pseudo scores.

(T2; all): For Task 2 they they convert the
original word-level binary classification to a
3-way classification to adapt to Task 2 sever-
ities (no-error, minor, major). They then
use a multitasking COMET model based on
COMETKIWI (Rei et al., 2023) which com-
bines sentence scores and word-level tags
using a weighted loss function. They set

the weight of the sentence score sub-module
to 0. They use InfoXLM-large and XLM-
RoBERTa-large as the pre-trained encoders
used during training and train on different
data subsets for each LP. They finally use
COMETKIWI-DA and continue to train a
model based on COMETKIWI-DA. They fi-
nally combine the results over five check-
points using the union of the predicted spans,
which out-performed token-level majority vot-
ing.

KUNMT (T2; En-De, Zh-En): KUNMT proposes
the use of different models to decompose
tasks and post-editing with a large language
model. In the process of error determina-
tion, span extraction, and severity assessment
for each error span, distinct models were em-
ployed sequentially. The error determination
model determines if an error exists in the sen-
tence, and then the span assessment model
explores the parts of the sentence where the
error exists. For the spans where the error
exists, the severity evaluation model evalu-
ates whether the severity of the error is mi-
nor or major. All models were built upon
XLM-RoBERTa-large, with some incorporat-
ing prompt-based learning. Results were sub-
sequently calibrated using a large language
model and tailored prompt engineering for the
specific task.

Unbabel-IST (T1 & T2; all): the submission for
Task 1 (word-level and sentence-level) follows
their work from last year (Rei et al., 2022b).
The major difference is the inclusion of the
data from this year (e.g. sentence-level DA’s
for En-Te, En-Hi, En-Gu, En-Ta) and scal-
ing the size of the pretrained encoder from
InfoXLM to XLM-R XL and XXL (XXL was
only used for sentence-level). They ensemble
multiple checkpoints for the sentence-level
subtask, using a weighted averaging of the
predicted scores, optimised by LP.

For Task 2 they experimented with word-level
models from Task 1 with GPT-4 prompts
and with XCOMET (Guerreiro et al., 2023b).
Their primary submission uses XCOMET
which stands for eXplainable COMET. This
model is trained with references to perform re-
gression and error span identification. During
inference the model can be used without refer-
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ences, yet, for this task they found that using
pseudo-references yields better performance
if used with a simple heuristic where they first
use a sentence-level QE system trained for
Task 1 to evaluate the pseudo-reference. If the
pseudo-reference is of high-quality, they give
more weight to it otherwise, they give more
weight to the source.

IOL Research (T1-SL; all): The IOL team ex-
perimented with several pretrained language
models with extra modules to predict sentence
level score and word tags including mBERT,
XLM-RoBERTa-large, mDeberta, RemBert
and InfoXLM. They first finetuned these mod-
els on DA and MQM scores data of QE and
Metrics tasks in the previous years. Then,
source text and its translation are fed into
finetuned models added with extra modules
for both sentence and word-level tasks. For
sentence level, they separate embeddings of
source text and translation of each layer in
transformer models, and make a weighted sum
among different layers for source and transla-
tion. Then the weighted embeddings of source
and translation are concatenated and fed into
a two-layer deep neural network to get score
prediction with mean squared error (MSE)
loss.

(T1-WL; all): For the word-level subtask,
they use BiLSTM layer or one-layer DNN
to do tag prediction on each token of transla-
tion with cross-entropy loss. The best check-
point of each model is chosen by determining
which checkpoint is best with respect to ei-
ther Spearman correlation coefficient or MCC
score, after training for three (3) epochs. The
model of each language pair is tuned individu-
ally. The final result for each language pair is
predicted by a weighted ensemble of different
model checkpoints with LP-specific weights
computed through weight searching using Op-
tuna.

MMT (T1-SL; En-De, En-Mr, En-Hi, En-Ta, En-
Te, En-Gu): For the studied language pairs,
the MMT team enriched the training dataset
through the application of eleven distinct data
augmentation techniques, such as synonym
substitution and back-translation, individu-
ally on the source sentence of each training
instance. The results were generated using

the best-performing model chosen from those
trained on the corresponding augmented train-
ing datasets (in the case of English-German,
the chosen model was trained on the aug-
mented dataset created by applying the top
four effective data augmentation techniques
to each source sentence). The training method-
ology adheres to the COMET framework,
with the foundational pre-trained model be-
ing XLM-RoBERTa-large.

SurreyAI (T1-SL; En-Mr, En-Hi, En-Ta, En-Te, En-
Gu): The team proposes ensembleTQ as the
main model, for which they train multiple
multilingual QE models by fine-tuning pre-
trained language models (PTLMs) with au-
toencoder architecture. To that end they use
the MonoTransQuest (Ranasinghe et al., 2020)
architecture and report mean z-scores. The
PTLMs that they combine in the ensemble
are InfoXLM-large, XLMV-base and XLM-
RoBERTa-large.

6 Results

In this section, we present and discuss the results
of our shared task. Please note that for all the three
sub-tasks we used statistical significance testing
with p = 0.05.

6.1 Task 1

As we have seen in Task 1 description sentence-
level submissions are evaluated against the true
z-normalised sentence scores using Spearman’s
rank correlation coefficient ρ along with the fol-
lowing secondary metrics: Pearson’s correlation
coefficient, r, and Kendall’s τ . Nonetheless, the
final ranking between systems is calculated using
the primary metric only (Spearman’s ρ). Statistical
significance was computed using William’s test.

For the word-level task, the submissions are
ranked using the Matthews correlation coefficient
(MCC). F1-scores are provided as complementary
information only and statistical significance was
computed using randomisation tests (Yeh, 2000)
with Bonferroni correction (Abdi, 2007) for each
language pair.

The results for Task 1 are described in Tables
5 and 6. Looking at the obtained scores, we can
observe an overall improved performance for the
sentence-level scores, compared to previous years.
While it is hard to make direct comparisons since
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ID Affiliations

BeringLab BeringLab –
HW-TSC Huawei Translation Services Center, China (Li et al., 2023)
IOL Research Transn IOL Research, China (Yan, 2023)
KUNMT Korea University, South Korea –
MMT University of Manchester, UK & ASUS Intelligent

Could Services, Singapore & University of Melbourne,
Australia

(Wu et al., 2023)

NJUNLP Nanjing University & Huawei Translation Services Cen-
ter, China

(Geng et al., 2023a)

Surrey AI University of Surrey & Aston University, UK (Sindhujan et al., 2023)
Unbabel-IST Unbabel & INESC-ID & Instituto de Telecomunicações

& Instituto Superior Técnico, Portugal
(Rei et al., 2023)

Table 4: Participants to the WMT23 Quality Estimation shared task.

the test-sets are new (and many language pairs are
introduced for the first time), we can see that top
performers obtain higher scores for En-Mr and Zh-
En compared to the previous edition, and only for
En-De we observe a relative drop (potentially justi-
fiable by the introduction of more domains in the
test set this year). Interestingly, for the word-level
scores we observe higher correlations for the zero-
shot tasks, as opposed to the ones where more train-
ing and development resources were made avail-
able.

We observe that especially for the sentence-level
task all participants this year submitted ensembled
predictions, with the ensemble size ranging from
3 to 12 models. We note that several teams com-
bined models using different pre-trained encoders
(HW-TSC, IOL Research, Surrey) and some par-
ticipants focused their efforts on optimising the
ensembled scores. Most notably, Bering Lab use a
multi-step training where they select the best mod-
els on the first step, retrain with their proposed
Adversarial Weight Perturbation method and then
ensemble the top-3 models for the final submission.
IOL research and Unbabel-IST also optimise the
ensemble weights using optuna search.

We finally observe that following the trend of
previous editions several participants experiment
with training data augmentation techniques. No-
tably, most approaches this year focus on data aug-
mentation that relates to the word-level or fine-
grained annotations, either by computing TER-
based word tags (Bering Lab), or by corrupting the
target translations to generate pseudo-data with arti-
ficially generated error spans (NJUNLP, HW-TSC).
For the latter, NJUNLP replace tokens and make
use of the token distribution to approximate major
versus minor errors (i.e, lower versus higher gen-
eration probabilities) and generate MQM-style an-

notations. Instead, HW-TSC propose to randomly
corrupt the target (where corruption corresponds
to insertion, deletion or replacement of a token)
and use a heuristic score of the corrupted target to
approximate a DA annotation style.

Best performers A total of seven teams partic-
ipated in the sentence-level sub-task, yet only
Unbabel-IST and IOL Research participated for all
language pairs (including the zero-shot language
pair, He-En), with Unbabel winning in the multi-
lingual setting. However, for the individual lan-
guage pairs, we observe different teams ranking at
the top for different language pairs. Specifically,
HW-TSC ranks at the top for all Indic language
pairs, sharing the win with Unbabel-IST for En-
Mr, En-Hi and En-Gu. On the MQM annotations,
Unbabel-IST won the Zh-En and He-En language
pairs, while IOL-Research and NJUNLP ranked
top for En-De.

A total of four teams participated in the word-
level sub-task, and similarly to the sentence-level
only Unbabel-IST and IOL Research participated
for all language pairs (including both zero-shot
language pairs: He-En and En-Fa). NJUNLP won
the task for the En-De language pair while Unbabel-
IST ranked at the top for Zh-En, He-En, En-Mr and
the multilingual task. IOL Research tied at the top
for En-Fa.

We observe that while submissions consist of a
mix of monolingual and multilingual submissions,
and participants adopted a set of different strate-
gies to design their architectures and tuning pro-
cess, the top-ranking participants do share some
common methodological choices. Specifically, all
aforementioned participants tune their models in
a multitasking setup, taking advantage of not only
the sentence-level scores but also the word-level
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Multidimensional Quality Metric (MQM) Direct Assessment (DA)

Model Multi En-De En-Zh He-En En-Mr En-Hi En-Ta En-Te En-Gu
Unbabel-IST 0.594 0.456 0.493 0.668 0.704 0.598 0.739 0.388 0.714
IOL Research 0.556 0.483 0.482 0.575 0.505 0.600 0.740 0.376 0.695
BASELINE 0.372 0.340 0.447 0.475 0.392 0.281 0.507 0.193 0.337
HW-TSC – 0.437 0.460 – 0.692 0.644 0.775 0.394 0.691
MMT – 0.316 – – 0.650 0.494 0.547 0.337 0.540
SurreyAI – – – – 0.596 0.551 0.674 0.349 0.649
BeringLab – 0.380 0.384 – – – – – –
NJUNLP – 0.479 – – – – – – –

Table 5: Spearman correlation for the official submissions to WMT23 Quality Estimation Task 1 Sentence-level.
For each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system according to the Williams Significance Test (Williams, 1959). Baseline systems
are highlighted in grey

.

Multidimensional Quality Metric (MQM) Post-Editing (PE)

Model Multi En-De Zh-En He-En En-Mr En-Fa
Unbabel-IST 0.329 0.246 0.302 0.402 0.347 0.345
IOL Research 0.298 0.256 0.250 0.359 0.334 0.351
BASELINE 0.252 0.179 0.225 0.275 0.287 0.293
BeringLab – 0.233 0.241 – – –
NJUNLP – 0.297 – – – –

Table 6: Matthews Correlation Coefficient (MCC) for the official submissions to WMT23 Quality Estimation Task
1 Word-level. For each language pair, results marked in bold correspond to the winning submissions, as they are
not significantly outperformed by any other system according to the Williams Significance Test (Williams, 1959).
Baseline systems are highlighted in grey

.

Multidimensional Quality Metric (MQM)

Model Multi En-De En-Zh He-En
Unbabel-IST 0.220 0.273 0.288 0.279
HW-TSC 0.165 0.166 0.235 0.266
BASELINE 0.156 0.167 0.219 0.227
KUNMT – 0.214 0.210 –
NJUNLP – 0.284 – –

Table 7: F1-score for the official submissions to
WMT23 Quality Estimation Task 2 Error Span De-
tection. For each language pair, results marked in bold
correspond to the winning submissions, as they are not
significantly outperformed by any other system accord-
ing to the Williams Significance Test (Williams, 1959).
Baseline systems are highlighted in grey

.

quality tags. This inferred alignment between fine-
grained quality annotations and overall quality at
the segment level seems to be a promising direction
for further improvements in quality estimation.

6.2 Task 2

For Task 2, the submissions are ranked using the
F1-score, computed at character level for the anno-
tated error spans, as described in Section 3.2. Pre-
cision and Recall scores are also provided as com-
plementary information to help contextualise the
performance observed. Statistical significance was
computed using randomisation tests (Yeh, 2000)

with Bonferroni correction (Abdi, 2007) for each
language pair. The results for Task 2 are described
in Table 7.

For this subtask we also had participants using
pretrained large language models to enhance their
submissions. Both KUNMT and Unbabel-IST (for
the complementary submission of the latter) used
GPT-4 with prompts tailored to fine-grained error
span detection. KUNMT use an approach where
they combine two prompts in a chain-of-thought
manner, asking the model to act as an expert that
either:

• Acts as an expert annotator that evaluates
the translation and annotates error spans and
severities (following the task instructions); or

• Acts as annotation validator and edits previous
annotations or marks them as good.

We provide the full prompts in the Appendix E. In
turn, Unbabel considers GPT4 both for the word
level part of Task 1 and for Task 2, using prompts
inspired by (Fernandes et al., 2023).

Aside from the use of LLMs, there are two main
approaches in participating submissions: i) Partici-
pants who extended the word-level approach to ob-
tain fine-grained error spans (HW-TSC, NJUNLP);
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Figure 3: Balance between major and minor errors for
each team and the original annotation (first bar).

and ii) participants who designed a methodology
directly targeting error-spans (KUNMT, Unbabel-
IST). To expand the word-level approach, NJUNLP
maintain the binary OK/BAD labels and tune dif-
ferent thresholds to decide the severity of the BAD
tags. They resolve severity inconsistencies over
spans by taking the worst severity. Instead, HW-
TSC convert the binary task to a 3-way classifi-
cation ([OK, MINOR, MAJOR]) and tune on the
Task 2 data. On the other hand, in their main ap-
proach, Unbabel-IST depart from the word-level
approach and tune XCOMET directly on error span
annotations, in a multitask setting (predicting both
overall sentence score, and severities over spans).

Analysing the results, we can observe that with
the exception of KUNMT, most submissions obtain
higher Recall scores compared to Precision. More-
over, if we look at the distribution of identified error
severities for e.g. En-De (see Figure 3) we can also
observe a difference in the severity proportions as
NJUNLP and Unbabel-IST identify mostly “major”
errors and obtain better performance compared to
KUNMT and HW-TSC that predict less skewed
severities, with proportions closer to the gold data.

Best performers. Four teams participated in
Task 2, IST-Unbabel, HW-TSC, KUNMT and
NJUNLP, with only Unbabel-IST and HW-TSC
participating in all tasks. NJUNLP ranked first for
the En-De language pair while Unbabel-IST ranked
first for the rest, including the multilingual track.
We note that both top-ranking participants are us-
ing ensemble approaches as well as enhancing their
approaches with pseudo-data (pseudo-references in
the case of Unbabel-IST and pseudo-MQM scores
in the case of NJUNLP).

7 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

Granularity of quality annotations We note
that while performance for the sentence-level qual-
ity scores is better, the finer-grained annotations
are also contributing towards these improvements.
Indeed, while in comparison participants achieve
lower performance for the fine-grained and word-
level tasks, most of the top-ranking submissions
across tasks constitute multi-task approaches,
that combined information from the finer-grained
annotations and the sentence level scores.

Moreover, comparing the F1-scores between the
word-level Task 1 and Task 2, while F1-scores for
Task 2 are somewhat lower, considering the addi-
tional complexity of considering error severities
and multiple spans, the performance seems promis-
ing. To further encourage future participation and
improved performance we aim to focus on extend-
ing MQM annotations for the next iterations, but
also revising the error severity definition to poten-
tially include ‘critical’ errors.

Zero shot predictions We observe that perfor-
mance for the zero-shot language pairs, He-En and
En-Fa was not hampered by the lack of training and
development resources. While fewer participants
submitted predictions for these languages, their
performance was on par with other language pairs.
For for the word-level task, scores were actually
higher than those observed for other language pairs.
Looking closer at the approach adopted by the par-
ticipants in these tasks, we can see that besides re-
lying on multi-lingual encoders no additional data
was used to train for these languages, across tasks.
These findings are encouraging towards annotating
a wider range of language pairs (maintaining the
emphasis on low and medium source languages)
to test on for the upcoming editions, even when
training resources are scarce.

Hallucinations We report the hallucination de-
tection results in Table 9. Overall, the results indi-
cate that good-quality QE models are capable of de-
tecting hallucinations very satisfactorily. Some sub-
missions, in fact, obtain perfect or near-perfect re-
sults for some language pairs, which indicates that
they are able to appropriately penalise the severity
of hallucination errors. Not only that, but they can
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also distinguish the hallucinations from other trans-
lations whose quality may not necessarily be high.
This is a property that was not observed in previous
iterations of QE models (Amrhein and Sennrich,
2022; Raunak et al., 2022), in particular those that
were based on dual encoding of the source and the
translation (e.g., COMET-QE (Rei et al., 2020)).

Nevertheless, even the top-performing QE sys-
tems, including the winning submissions, may
struggle with localised critical errors such as os-
cillations. We show two such examples in Ta-
ble 10. In fact, although most pathological hal-
lucinations are detected, some egregious examples
have not been detected by both the IOL Research
and Unbabel-IST systems (e.g., a he-en transla-
tion that contains 70 hallucinated <unk> tokens,
and a zh-en translation that contains the oscilla-
tion "Tropical and Sub-Tropical Plains and
Plains, Tropical and Sub-Tropical Plains
and Plains, Tropical and Sub-Tropical
High Plains, Sub-Tropical Plains and
Sub-Tropical Plains, Sub-Tropical Plains
and Sub-Tropical Plains").

One hypothesis for this undesirable behavior is
that such samples are out-of-distribution for the
QE systems. As such, augmenting the training sets
with examples of such hallucinations (e.g., as done
in xCOMET (Guerreiro et al., 2023b)) may be a
straightforward yet effective approach for correct-
ing this behavior.

8 Conclusions

This year’s edition of the QE Shared Task in-
troduced a number of new elements: new low-
resource language pairs (including two zero-shot
ones), new test sets, and new fine-grained error
detection task that we aspire to continue in future
editions. It also introduced a mix of hallucinated
data together with the original translations, allow-
ing us to assess the robustness of submissions and
detect failure patterns that will hopefully help de-
velop more robust QE systems in the future.

The tasks attracted a steady number of partici-
pating teams and we believe the overall results are
a great reflection of the evolution of the QE field.
We note that the gold labels and best submissions
to all tasks are made available for those interested
in further analysing the results. We aspire for the
future editions to continue the efforts set in this
and previous years and expand the resources and
coverage of QE, while further exploring recent and

more challenging subtasks such as fine-grained QE
and explainable QE.

9 Ethical Considerations

MQM and DA annotations in this paper are done
by professional translators. They are all paid at
professional rates.

Organisers from Unbabel and University of Sur-
rey have submitted to this task without using prior
access to test sets nor using any insider informa-
tion.
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A Hyper-parameters of pre-trained baseline models for Task 1 Quality Estimation

T1 Sentence-level T1 Word-level
Hyper-parameter COMET-QE COMETKIWI

Encoder Model XLM-RoBERTa (large) XLM-RoBERTa (large)
Optimizer Adam (default parameters) Adam (default parameters)
n frozen epochs 0.3 0.3
Keep embeddings frozen True True
Learning rate 3e-05 and 1e-05 1e-06 and 1e-05
Batch size 4 4
Loss function MSE MSE and CE (ϵ = 1.0)
Dropout 0.15 0.1
FP precision 32 32
Feed-Forward hidden units [2048, 1024] [2048, 1024]
Word weights – [0.3, 0.7]
Feed-Forward activation Tanh –

Table 11: Hyper-parameters of both the COMET-QE and the CometKiwi models used as baselines for Task 1
Quality Estimation.
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B Official Results of the WMT23 Quality Estimation Task 1 Sentence-level

Tables 12, 13, 14, 15, 16, 17, 18, 19 and 20 show the results for all language pairs and the multilingual
variants, ranking participating systems best to worst using Spearman correlation as primary key for each
of these cases.

Model Spearman Pearson Kendall
Unbabel-IST • 0.594 0.580 0.438
IOL Research 0.556 0.513 0.407
BASELINE 0.372 0.308 0.265

Table 12: Official results of the WMT23 Quality Estimation Task 1 Sentence-level Multilingual (average over all
language pairs). Teams marked with "•" are the winners, as they are not significantly outperformed by any other
system according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
IOL Research • 0.483 0.429 0.364 2,357,242,105 589,270,071 5
NJUNLP • 0.479 0.423 0.360 3,264,730,349 560,145,557 12
Unbabel-IST 0.456 0.457 0.346 42,868,104,221 10,716,932,147 6
HW-TSC 0.437 0.433 0.331 27,730,527,504 6,932,631,876 12
BeringLab 0.380 0.281 0.283 2,243,955,309 560,945,155 3
BASELINE 0.340 0.253 0.257 2,277,430,715 569,330,715 1
MMT 0.316 0.221 0.237 2,448,132,038 569,330,715 6

Table 13: Official results of the WMT23 Quality Estimation Task 1 Sentence-level for Engligh-German (MQM).
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.493 0.423 0.378 42,868,104,221 10,716,932,147 4
IOL Research • 0.482 0.392 0.369 2,357,242,105 589,270,071 5
HW-TSC 0.460 0.369 0.352 27,730,527,504 6,932,631,876 12
BASELINE 0.447 0.318 0.342 2,277,430,715 569,330,715 1
BeringLab 0.384 0.230 0.288 2,243,955,309 560,945,155 3

Table 14: Official results of the WMT23 Quality Estimation Task 1 Sentence-level for Chinese-English (MQM).
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.668 0.518 0.499 42,868,104,221 10,716,932,147 4
IOL Research 0.575 0.424 0.416 2,357,242,105 589,270,071 5
BASELINE 0.475 0.363 0.337 2,277,430,715 569,330,715 1

Table 15: Official results of the WMT23 Quality Estimation Task 1 Sentence-level for Hebrew-English (MQM).
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.
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Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.704 0.735 0.513 42,868,104,221 10,716,932,147 6
HW-TSC • 0.692 0.718 0.504 27,730,527,504 6,932,631,876 12
MMT 0.650 0.663 0.466 2,448,132,038 569,330,715 7
SurreyAI 0.596 0.668 0.423 2,362,232,012 633,305,686 3
IOL Research 0.505 0.372 0.353 2,357,242,105 589,270,071 5
BASELINE 0.392 0.427 0.274 2,277,430,715 569,330,715 1

Table 16: Official results of the WMT23 Quality Estimation Task 1 Sentence-level English-Marathi (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
HW-TSC • 0.644 0.720 0.477 27,730,527,504 6,932,631,876 12
IOL Research 0.600 0.667 0.433 2,357,242,105 589,270,071 5
Unbabel-IST 0.598 0.667 0.431 42,868,104,221 10,716,932,147 4
SurreyAI 0.551 0.668 0.395 2,362,232,012 633,305,686 3
MMT 0.494 0.570 0.345 2,448,132,038 569,330,715 7
BASELINE 0.281 0.245 0.190 2,277,430,715 569,330,715 1

Table 17: Official results of the WMT23 Quality Estimation Task 1 Sentence-level English-Hindi (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
HW-TSC • 0.775 0.778 0.597 27,730,527,504 6,932,631,876 12
IOL Research 0.740 0.742 0.557 2,357,242,105 589,270,071 5
Unbabel-IST 0.739 0.733 0.550 42,868,104,221 10,716,932,147 4
SurreyAI 0.674 0.710 0.495 2,362,232,012 633,305,686 3
MMT 0.547 0.531 0.384 2,448,132,038 569,330,715 7
BASELINE 0.507 0.402 0.354 2,277,430,715 569,330,715 1

Table 18: Official results of the WMT23 Quality Estimation Task 1 Sentence-level English-Tamil (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
HW-TSC • 0.394 0.350 0.269 27,730,527,504 6,932,631,876 12
Unbabel-IST • 0.388 0.362 0.264 42,868,104,221 10,716,932,147 4
IOL Research 0.376 0.344 0.257 2,357,242,105 589,270,071 5
SurreyAI 0.349 0.376 0.241 2,362,232,012 633,305,686 3
MMT 0.337 0.281 0.228 2,448,132,038 569,330,715 7
BASELINE 0.193 0.153 0.134 2,277,430,715 569,330,715 1

Table 19: Official results of the WMT23 Quality Estimation Task 1 Sentence-level English-Telegu (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.
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Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.714 0.745 0.529 42,868,104,221 10,716,932,147 4
IOL Research 0.695 0.742 0.513 2,357,242,105 589,270,071 5
HW-TSC 0.691 0.714 0.511 27,730,527,504 6,932,631,876 12
SurreyAI 0.649 0.700 0.474 2,362,232,012 633,305,686 3
MMT 0.540 0.581 0.386 2,448,132,038 569,330,715 7
BASELINE 0.337 0.307 0.230 2,277,430,715 569,330,715 1

Table 20: Official results of the WMT23 Quality Estimation Task 1 Sentence-level English-Gujarati (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.
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C Official Results of the WMT23 Quality Estimation Task 1 Word-level

Tables 21, 22, 23, 24, 25 and 26 show the results for all language pairs and the multilingual variant,
ranking participating systems best to worst using Matthews Correlation Coefficient (MCC) as primary key
for each of these cases.

Model MCC F1-score
Unbabel-IST • 0.329 0.355
IOL Research 0.298 0.322
BASELINE 0.252 0.243

Table 21: Official results of the WMT23 Quality Estimation Task 1 Word-level Multilingual (average over all
language pairs). The winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model MCC F1-score Disk footprint (B) # Model params Ensemble
NJUNLP • 0.297 0.329 3,264,730,349 560,145,557 12
IOL Research 0.256 0.281 2,357,242,105 589,270,071 5
Unbabel-IST 0.246 0.279 2,252,351,787 563,041,309 1
BeringLab 0.233 0.269 2,243,955,309 560,945,155 5
BASELINE 0.179 0.207 2,252,351,659 563,041,309 1

Table 22: Official results of the WMT23 Quality Estimation Task 1 Word-level English-German (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model MCC F1-score Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.302 0.331 2,252,351,787 563,041,309 1
IOL Research 0.250 0.268 2,357,242,105 589,270,071 5
BeringLab 0.241 0.262 2,243,955,309 560,945,155 5
BASELINE 0.225 0.255 2,252,351,659 563,041,309 1

Table 23: Official results of the WMT23 Quality Estimation Task 1 Word-level Chinese-English (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model MCC F1-score Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.402 0.439 2,252,351,787 563,041,309 1
IOL Research 0.359 0.361 2,357,242,105 589,270,071 5
BASELINE 0.275 0.275 2,252,351,659 563,041,309 1

Table 24: Official results of the WMT23 Quality Estimation Task 1 Word-level Hebrew-English (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model MCC F1-score Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.347 0.359 2,252,351,787 563,041,309 1
IOL Research 0.334 0.373 2,357,242,105 589,270,071 5
BASELINE 0.287 0.224 2,252,351,659 563,041,309 1

Table 25: Official results of the WMT23 Quality Estimation Task 1 Word-level English-Marathi (Post-Editing).
The winning submission is indicated by a •. Baseline systems are highlighted in grey.
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Model MCC F1-score Disk footprint (B) # Model params Ensemble
IOL Research • 0.351 0.389 2,357,242,105 589,270,071 5
Unbabel-IST 0.345 0.365 2,252,351,787 563,041,309 1
BASELINE 0.293 0.254 2,252,351,659 563,041,309 1

Table 26: Official results of the WMT23 Quality Estimation Task 1 Word-level English-Farsi (Post-Editing). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.
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D Official Results of the WMT23 Quality Estimation Task 2 Error Span Detection

Tables 27, 28, 29 and 30 show the results for all language pairs and the multilingual variant, ranking
participating systems best to worst using F1-score as primary key for each of these cases.

Model F1-score Precision Recall
Unbabel-IST • 0.220 0.164 0.360
HW-TSC 0.165 0.177 0.161
BASELINE 0.156 0.203 0.128

Table 27: Official results of the WMT23 Quality Estimation Task 1 Word-level Multilingual (average over all
language pairs). The winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
NJUNLP • 0.284 0.238 0.352 560,145,557 3,264,730,349 12
Unbabel-IST 0.273 0.209 0.394 -1 -1 -1
KUNMT 0.214 0.224 0.206 818,245,780 2,235,540,305 3
BASELINE 0.167 0.229 0.131 563,041,309 2,252,351,659 1
HW-TSC 0.166 0.220 0.133 285,019,112 1,148,646,407 5

Table 28: Official results of the WMT23 Quality Estimation Task 1 Word-level English-German (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.288 0.246 0.349 3,485,770,281 13,943,358,015 5
HW-TSC 0.235 0.221 0.250 285,019,112 1,148,646,407 4
BASELINE 0.219 0.259 0.190 563,041,309 2,252,351,659 1
KUNMT 0.210 0.216 0.204 818,245,780 2,235,540,305 3

Table 29: Official results of the WMT23 Quality Estimation Task 1 Word-level Chinese-English (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
Unbabel-IST • 0.279 0.241 0.332 3,485,770,281 13,943,358,015 5
HW-TSC 0.266 0.254 0.279 285,019,112 1,148,646,407 10
BASELINE 0.227 0.474 0.150 563,041,309 2,252,351,659 1

Table 30: Official results of the WMT23 Quality Estimation Task 1 Word-level Hebrew-English (MQM). The
winning submission is indicated by a •. Baseline systems are highlighted in grey.

E GPT-4 prompts for Task 2

We add below the prompts used by KUNMT team with GPT4 for Task 2.
Expert annotator prompt:

You are an expert in the Fine-grained error span detection task. The goal of this task is to predict the
word-level translation error spans. you will be asked to predict both the error span (start and end indices)
as well as the error severity (major or minor) for each segment. There can be multiple error spans, and
you must indicate the severity of the error for the spans that exist. If no errors exist in the translation, the
error span is (-1,-1) and the error severity is no-error.

Expert validator prompt:
Review this result by checking the work done by the other workers. If the work was done correctly,
mark it as "GOOD"; if there were any errors, re-annotate the Error Span and Error Severity. To avoid
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inconsistencies, we expect the indices of the errors spans to correspond to characters in the target string
before tokenisation, i.e., the target string that will be provided as test data.’
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Abstract

This paper presents the overview of the second
Word-Level autocompletion (WLAC) shared
task for computer-aided translation, which aims
to automatically complete a target word given
a translation context including a human typed
character sequence. We largely adhere to the
settings of the previous round of the shared task,
but with two main differences: 1) The typed
character sequence is obtained from the typing
process of human translators to demonstrate
system performance under real-world scenar-
ios when preparing some type of testing ex-
amples; 2) We conduct a thorough analysis on
the results of the submitted systems from three
perspectives. From the experimental results,
we observe that translation tasks are helpful
to improve the performance of WLAC mod-
els. Additionally, our further analysis shows
that the semantic error accounts for a signif-
icant portion of all errors, and thus it would
be promising to take this type of errors into
account in future.

1 Introduction

Computer-aided translation (CAT) helps hu-
man translators produce high-quality translations
with the assistance of machine translation sys-
tems (Koehn et al., 2003; Vaswani et al., 2017), and
it has witnessed a lot of attention during the past
decades (Bowker, 2002; Koehn, 2009; Foster et al.,
1997; Langlais et al., 2000; Barrachina et al., 2009;
Alabau et al., 2014; Knowles and Koehn, 2016;
Santy et al., 2019; Huang et al., 2021). Among
all the tasks in CAT, Word-Level autocompletion
(WLAC) is one of the most fundamental tasks and
its goal is to autocomplete a word when a human
translator types a sequence of characters (Huang
et al., 2015; Li et al., 2021), in order to acceler-
ate the editing process for human translators under
CAT settings. To facilitate the research in WLAC,

∗ The authors are listed alphabetically except the first
author.

the first WLAC shared task was held in WMT
2022 (Casacuberta et al., 2022; Yang et al., 2022;
Ángel Navarro et al., 2022; Moslem et al., 2022;
Ailem et al., 2022). This year, we continue holding
the second edition of WLAC shared task in WMT
2023.

In this paper, we summarize the overview of
the WLAC shared task in WMT 2023, which is
named by WLAC 2023 for brevity, including data
preparation process, submitted systems and their
evaluation results. Specifically, WLAC 2023 in-
volves two language pairs, i.e. Chinese-English
and German-English, and contains four directional
sub-tasks in total, similar to WLAC 2022 shared
task. For training data preparation, we follow the
common practice of leveraging a bilingual corpus
for simulation. For test data preparation, however,
there is one important difference in this year to
make the test data more similar to realistic scenar-
ios: for some testing examples (see §2.2), their
typed character sequences are obtained from the
typing process of human translators.

We have received twenty-one submissions in to-
tal from four teams in WLAC 2023. We evaluate
all these submissions and present their overall eval-
uation results. In particular, we conduct a thorough
analysis of submitted systems to better understand
the challenges and difficulties emerged in WLAC
tasks. The analysis of these systems is investigated
according to three perspectives which include the
frequency of target words, the size of context, as
well as the human defined error types. From all
the perspectives, we observe some insights which
might be useful for further improvement on WLAC
in future. In summary, our main findings are high-
lighted as follows:

1. Through effective use of translation models,
it is able to substantially benefit the WLAC
models in terms of accuracy.

2. Among all type of errors, the semantic error
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makes up the majority of error cases, where
predicted words are semantically deviated
from the ground-truth words.

3. It is possible to directly use large language
models (LLMs) for WLAC tasks, but the re-
sults show that currently LLMs can not effec-
tively handle WLAC without fine-tuning.

2 Task Description and Data Preparation

2.1 Task Definition
WLAC tasks aim to auto-complete a target word
for the CAT process. The definition of WLAC is
as follows: given a source sequence x, translation
context c = (cl, cr), where cl and cr are left and
right side context respectively, and a character-level
typed sequence s by human translators, WLAC
aims to predict the target word w with s as its
prefix, which should be the most appropriate to be
placed between cl and cr (Huang et al., 2015; Li
et al., 2021). Formally, we expect to model the
relationship following the below equation:

w = f(x, s, cl, cr) (1)

More generally, the right or left side context could
be empty in real-world CAT systems. Conse-
quently, there are four types of situations should be
considered in WLAC tasks:

1. zero-context: both cl and cr are empty;

2. suffix: cl is empty while cr is non empty;

3. prefix: cl is non empty while cr is empty;

4. bi-context: both cl and cr are non empty.

EN-DE EN-ZH

Sentence Pairs 4,465,840 15,886,041
Words (src/tgt) 120M/114M 441M/395M

Table 1: The statistical description of the total number
of sentence pairs and the scale of tokenized words on
English⇔ German and English⇔ Chinese language
pairs.

2.2 Data Preparation
We mainly follow the previous edition settings
for data preparation, which includes two language
pairs, i.e. English⇔ Chinese and English⇔ Ger-
man. Both translation directions are considered in
the evaluation, resulting in four directional tasks.

Training Data Following previous edition
settings, we employ simulated training data
⟨x, s, c, w⟩ for this year WLAC. The construction
of which follows the algorithm proposed by Li et al.
(2021) 1. The reason of such a simulation is to com-
pensate for the limited size of manually annotated
training data.

Specifically, for English ⇔ German language
pair, we use the WMT14 EN-DE training dataset
preprocessed by Stanford NLP Group 2, which
is about 4.5 million sentence pairs; For English
⇔ Chinese pair, we leverage UN Parallel Corpus
dataset 3 from WMT17, which consists of 15 mil-
lion sentence pairs. Moses tokenizer 4 is applied to
both English and German sentences while Jieba 5

is used to segment Chinese sentences. The detailed
statistical description of the datasets is shown in
Table 1.

For a fair comparison, only the above-mentioned
corpus is allowed to be employed for bilingual
training. However, there is no limitation for any
monolingual data usage and even for pre-trained
language models (Devlin et al., 2018) or large lan-
guage models such as ChatGPT and Llama (Tou-
vron et al., 2023).

Testing Data Similar to the data preparation in
WLAC 2022, testing data in this year consists of
two types of datasets as well. Type I is the conven-
tional simulation on bilingual data which follows
the same construction rules as the training data;
Type II testing data is obtained from the real-world
post-editing scenario. To alleviate any information
leakage about the testing sets, the bilingual dataset
and post-editing data are created by a third-party
company 6 to guarantee that both data are not in-
cluded in the training data.

In details, to create the testing examples for Type
II testing set, we focus on the words that the transla-
tors had modified and then sample their context ac-
cording to four types. 7 In particular, unlike WLAC
2022 where the typed sequence is randomly sam-

1The scripts for simulation is available at https://
github.com/lemaoliu/WLAC.

2https://nlp.stanford.edu/projects/nmt/data
3https://conferences.unite.un.org/UNCorpus/

Home/DownloadOverview
4https://github.com/moses-smt/mosesdecoder
5https://github.com/fxsjy/jieba
6We paid about 10,000 dollars to obtain the test data from

the third-party company.
7Since the sentences from post-editing naturally belong to

bi-context type, we need to obtain all types of examples via
randomly sampling context.
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Date Type ZH⇒EN EN⇒ZH DE⇒EN EN⇒DE
Sentence Pairs

Type I 11341 11430 9653 9367
Type II 5044 5173 4910 5172
Overall 16385 16603 14539 14564

Averaged Length (src/tgt)

Type I 28.88/4.71 31.88/4.46 28.73/4.47 29.18/4.43
Type II 32.29/5.71 35.66/5.42 32.93/5.46 33.61/5.24
Overall 29.16/4.85 32.22/4.58 29.19/4.59 29.72/4.53

Table 2: The total number of testing examples for both Type I and II cases over four language pair directions. A/B
denotes that A is the averaged number of source words in the source sentences and B is the averaged number of
target words in the context.

Data Type ZH⇒EN EN⇒ZH DE⇒EN EN⇒DE
Bi-context

Type I 2489 2514 2081 2021
Type II 1107 1139 1060 1117
Overall 3596 3653 3141 3138

Prefix

Type I 3884 3902 3416 3315
Type II 1729 1766 1739 1830
Overall 5613 5668 5155 5145

Suffix

Type I 2499 2534 2098 2033
Type II 1113 1147 1066 1123
Overall 3612 3681 3164 3156

Zero-Context

Type I 2466 2479 2058 1997
Type II 1098 1122 1046 1103
Overall 3564 3601 3104 3100

Table 3: The number of testing examples on four types
of context cases for each sub-tasks.

pled according to target words, in WLAC 2023 the
typed sequences for Type II dataset are obtained ac-
cording to the typing process of human translators.
This makes examples in Type II data more realistic
than those in WLAC 2022.

Finally, when generating testing examples from
the parallel sentences and post-edited sentences,
we increase the proportion of Prefix type this year
because the Prefix context type is more likely to
match the popular left-to-right interactive transla-
tion systems. The statistics of sentence pairs are
shown on Table 2 and the statistics of the different
context types are shown on Table 3.

3 Experimental Setting

3.1 Evaluation Metric
According to the findings from WLAC
2022 (Casacuberta et al., 2022), the auto-
matic evaluation result is highly consistent with
the human evaluation result on the same dataset.
Hence, in this year, we only employ the automatic
evaluation for the submitted systems. Specifically,
we use accuracy as the automatic evaluation metric
(Li et al., 2021) to demonstrate the performance of
all submitted systems:

acc =
Nmatch

N
(2)

where Nmatch is the total number of correctly pre-
dicted words and N is the total number of all testing
samples.

3.2 Submitted Systems
We received 21 submissions from 4 teams. We
briefly summarize their approaches below.

SJTU-MTLAB The SJTU-MTLAB participates
in all language directions. They submitted both
word-level model and BPE-level model and their
BPE-level model performs better (Chen and Wang,
2023). The BPE-level model is based on the
Transformer architecture with encoder and decoder,
where the encoder take the source sentence and all
context as input and the decoder is responsible for
generating the target word. They also introduce
another decoder to generate the full target sentence,
and jointly train the full model with WLAC task
and machine translation task. The translation de-
coder is discarded during inference to maintain a
reasonable inference cost. For more details about
this system, it can be found in Chen et al. (2023).
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Systems ZH-EN EN-ZH EN-DE DE-EN
Traditional Supervised Method

SJTU-MTLAB 56.93 61.16 67.27 68.16
HW-TSC 56.40 57.80 66.42 68.10
PRHLT/sys1 - - 37.05 39.98
PRHLT/sys2 - - 37.38 43.56

Few-Shot Method

KnowComp/0-shot 9.82 - 9.72 7.53
KnowComp/1-shot 21.43 - 14.96 15.34
KnowComp/5-shot 27.74 - 21.98 22.95

Table 4: Official evaluation results for all submitted systems. The score is reported in accuracy.

HW-TSC The Huawei Translation Services Cen-
ter (HW-TSC) participates in all language direc-
tions. They model the WLAC task in the BPE level
and iteratively generates a subword to compose the
prediction word. 8 Specifically, they employ an
encoder-decoder architecture, where the encoder
encodes the source sentence and the decoder takes
as input the target side context. They first train
a machine translation task as a baseline and then
they fine-tune the baseline with WLAC data and
BERT-style MLM data to get the final model.

KnowComp KnowComp group proposes a large
language model (LLM) based system for this year’s
WLAC task. They first randomly sample in-context
examples as prompts to obtain the row ChatGPT
outputs and extract the final prediction by post-
processing (Wu et al., 2023). Specifically, they
provide the source sentence x and target sentence
with a special token [mask] as a placeholder for
x (i.e., (cl, [mask], cr)), and let LLMs predict the
word that should fill in the mask position. Since
more than one word may be generated, they search
for the first word that starts with the pre-typed se-
quence s as the final prediction. They evaluate the
submitted systems in Chinese⇒ English, German
⇒ English, and English⇒ German directions.

PRHLT PRHLT group participates in English⇔
German and German⇔ English categories. Their
submitted system is developed on a segment-based
interactive machine translation (IMT) system (Án-
gel Navarro et al., 2023). It predicts the results by
word correction task based on a sequence of seg-

8HW-TSC team does not submit the system report this
year, but it is told that the system is very similar to that used
in WLAC 2022 by personal communication with the team
members.

mented contexts. Moreover, to further enhance the
system performance under zero-context situations,
they developed a dictionary-based translation mod-
ule for zero-context word completion. Additionally,
they made a second submission which fine-tunes
an LLM (mT5) (Xue et al., 2020) to adapt it to
the WLAC task. To perform this fine-tuning they
created a new parallel dataset in which source sen-
tences are the concatenation of the original source
sentences + left context + right context + typed
sequence, and the target sentences are the autocom-
pletions.

4 Experimental Result and Analysis

4.1 Evaluation Results

Overall result The overall evaluation results of
all submissions are reported on Table 4. The per-
formance of HW-TSC and SJTU-MTLAB are com-
parable, and both systems perform the best among
all the submissions. Both HW-TSC and SJTU-
MTLAB make use of the knowledge from machine
translation, and the large gains indicate the effec-
tiveness to incorporate WLAC task with machine
translation task according to the experiments in the
system report of Chen and Wang (2023). Further-
more, we can see that fine-tuning the large mT5
model (PRHLT/sys2) delivers substantial improve-
ments over PRHLT/sys1. It is worth noting that the
KnowCamp system does not involve re-training for
WLAC tasks, and thereby it is unfair to compare it
with other systems which are trained with the large
scale of the supervised training data. Anyway, its
evaluation result still shows that the large language
model can not handle the WLAC task well without
fine-tuning on the training data.
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Figure 1: The accuracy of all language directions among different context types.

Result for context types In addition to the over-
all result, we also evaluate the submissions accord-
ing to different context types of testing examples
for all sub-tasks. The accuracy of four systems for
four context types is illustrated in Figure 1, where
only the best system from each team is evaluated.
As we can see, for most systems, the accuracy
increases from zero_context to bi_context. This
indicates that more context can bring better perfor-
mance. One exception is KnowComp, which does
not perform well in zero_context and suffix. One
of the possible reasons is that the large language
models would find it difficult to make a correct pre-
diction with little(zero_context) or unusual context
type (the setting of suffix is contradictory with the
left-to-right paradigm in large language models).

4.2 Analysis

In this subsection, we conduct a thorough analysis
on the evaluation results from three perspectives.
Since the analysis results are similar across differ-
ent language directions, we conduct the following
analysis on the de-en direction, because all the sys-
tems have submitted results on this direction.

Frequency The first perspective is to analyze
the accuracy according to the word frequency. To
this end, we divide testing examples into 16 bins
according to the frequency of their ground-truth
word: suppose an example is with a frequency of
f (f ≥ 1), then it is placed into the bin with id as
the rounding number of min(16, log f). Then we
calculate the accuracy for each bin and the result is
depicted in Figure 2. From the figure it is observed

that it is very difficult to predict the rare words (i.e.
their frequency is zero) in WLAC, which is in line
with the task of neural machine translation (Luong
et al., 2015). When the frequency is more than one,
the accuracy is much higher than that for frequency
of zero; however, the accuracy does not strictly
increase as the frequency gets higher than one.

Context size The second perspective is to ana-
lyze the accuracy of each system according to the
context size. The number of words in the left and
right contexts indicate whether the context provides
the sufficient information to predict the target word
and thus the accuracy of each system might be influ-
enced by the context size. Since different examples
may have different length in the sentence, we group
the examples into bins according to the relative con-
text size defined by the ratio of the context size to
the size of the source sentence. Then we measure
the accuracy for each bin and the results for all sys-
tems are illustrated in Figure 3. As shown from this
figure, for all the supervised systems the accuracy
generally increases when the relative context size
becomes larger. However, the KnowComp system
seems to be insensitive to the context size. This
fact may indicate that KnowComp does not make
full use the context, which provides an explanation
why KnowComp does not work well for WLAC.

Error Analysis In order to look deeper into the
reason why the models make wrong prediction, we
propose to manually analyze the errors made by
each system, which is the third perspective. To this
end, we first define three types of errors for each
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Figure 2: The accuracy of different bins organized according to the frequency of ground-truth target word. Each bin
id corresponds to the rounding number of min(16, log f) with f as the frequency of the target word.

incorret prediction. The first one is the constraint
error, where the predicted word fails to meet the
constraint of typed character sequence. There are
two main reasons to this error: 1) the system does
not use the hard constraint manner during infer-
ence; 2) the system uses the hard constraint during
inferenct but still can not predict a word which
satisfies the constraint due to some unusual typed
character sequence. Another common type of er-
rors is morphology error, where the prediction has
similar semantics with ground truth but has differ-
ent morphology. For example, the ground truth is
needs while the prediction is need. We detect this
type of error by nltk.stem 9 tool. The third error
is called semantic error, where the predictions are
completely deviated from the ground-truth words
in semantic. To measure how much the prediction
deviate from the ground truth, we use the fastText10

tool to compute the semantic similarity of predic-
tions and ground truths. We report the proportion of
errors where the semantic similarity of prediction
and label is less than 0.3.

The results for all systems are reported in Table
5. According to the constraint errors, the SJTU-
MTLAB and HW-TSC can meet the constraint
well, while the LLM based method, KnowComp,
often fails to generate a proper word with given
typed character sequence. After manually check-
ing the results from all these systems, we find that
both SJTU-MTLAB, PRHLT and KnowComp does
not employ the hard constraint during inference
and HW-TSC sometimes can not predict a word
satisfying the constraint due to unusual typed se-
quences. In addition, according to the morphology
error, as we can see from Table 5, there are still

9https://www.nltk.org/api/nltk.stem.html
10https://fasttext.cc/

a non-negligible amount of predictions fall into
this group, indicating the potential for further im-
provement. Finally, according to the semantic error,
as reported in Table 5, most of the errors belongs
to this group. This is the most critical error type,
and we recommend reducing this part of the error is
very promising to improve the overall performance.

4.3 Discussion on future direction
Through the overall results and analysis, we point
out some possible direction of further improve-
ment:

• Incorporating machine translation task. The
SJTU-MTLAB and HW-TSC introduce ma-
chine translation into the WLAC task and
show superior performance. This indicates the
importance of adding translation knowledge
into WLAC and we encourage more effective
method to combine these two tasks.

• Improving large language models for WLAC.
KnowComp employs the large language mod-
els through in-context learning for WLAC. Al-
though its performance is not as good as other
systems, it still exhibits potential because it
does not leverage the large-scale supervised
data for training. Indeed, simply fine-tuning
the large mT5 model on the supervised data
yields respectful results (see PRHLT/sys2).
Therefore, it is promising to further improve
LLMs by using of the supervised data.

• Alleviating the semantic error. The large
amount of semantic error indicates that the
current systems still fail to model the problem
in many cases. We expect the development
of more powerful models to push the SOTA
forward by taking semantic error into account.

659



Figure 3: The accuracy of different bins organized according to the relative context size of each example. The
relative context size is defined by the ratio of the size of left and right contexts to the size of the source side for each
example.

Systems Constraint Morphology Semantic
SJTU-MTLAB 4.12% 12.62% 57.69%
HW-TSC 1.89% 10.98% 56.28%
KnowComp 22.30% 6.77% 74.57%
PRHLT 7.18% 10.23% 59.85%

Table 5: The proportion of different types of error
among constraint error, morphology error, and the se-
mantic error respectively. The sum of each line does not
equal to 1 because different types or error may share
overlaps.

5 Conclusion

This paper presents the overview for the shared
task of Word-level Auto-Completion, which is the
key component of computer-aided translation. We
describe the task definition, data preparation pro-
cess, the submitted systems, evaluation metric and
evaluation results of the systems. We have received
twenty-one submissions from four participants this
year. We report the evaluation results of all systems,
conduct a thorough analysis on the prediction re-
sults of these systems and obtain some insightful
findings. We hope that our findings can encour-
age the emerge of more powerful models and at-
tract more researchers to participate the study of
computer-aided translation.
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Abstract
The WMT 2023 Terminology Shared Task in-
vestigates progress in machine translation of
texts with specialized vocabulary. The partici-
pants were given the source text and segment-
level terminology dictionaries for three lan-
guage pairs: Chinese→English, English→
Czech, and German→ English. We evaluate 21
submissions from 7 teams on two main criteria:
general translation quality and the effectiveness
of translating specialized terminology. Systems
took varied approaches — incorporating termi-
nology at inference time or weakly supervised
training that uses terminology access. While
incorporating terminology dictionaries leads to
improvement in the translation quality, incor-
porating an equal amount of information from
the reference leads to similar results. This chal-
lenges the position of terminologies being the
crux of meaning in translation, it can also be
explained by inadequate metrics which are not
terminology-centric.

1 Introduction

General-purpose machine translation models of-
ten show limitations when applied to specialized
tasks, like translating specialized vocabulary. This
gap is critical in medicine, science, and law, where
language precision is paramount — medical inac-
curacies, juridical misunderstandings, and techno-
logical malfunctions can lead to serious problems.
The translation of technical terms is not a mere
exercise in lexical fidelity — it supports effective
communication in highly specialized fields. Ter-
minology correctness and consistency has already
been long in focus from the modelling (Dinu et al.,
2019; Hasler et al., 2018), evaluation (Zouhar et al.,
2020; ibn Alam et al., 2021; Semenov and Bojar,
2022) and translators’ perspective (Cabré, 2010;
Vargas-Sierra, 2011; Arcan et al., 2017).

We shed light into recent advancement in this
area by assessing MT systems with segment-level

Source Der Bericht entspricht FOG.
Reference The report is ROA-compliant.
Hyp. 1 The report is in accordance with FOG.

Hint 1 “FOG”→ “ROA”
Hyp. 2 The report is in accordance with ROA.

Hint 2 “entspricht”→ “compliant”
Hyp. 3 The report is compliant with ROA.

Table 1: Translation with “terminologies”. Hyp. 1 is
without any hints and the worst while Hyp. 3 is close to
the reference. Hint 1 is proper terminology while Hint 2
only helps align the translation with the reference. Does
terminology-assisted MT work because of Hint 1 or
because it leaks information from the reference?

terminology dictionaries. Alongside the general
evaluation of translation quality, our shared task
emphasizes the effectiveness terminology dictio-
naries. This task follows the latest efforts on
evaluating progress in terminology-enhanced trans-
lation (Alam et al., 2021). While we are also
concerned with the quality of the translation,
we refocus on measuring the relative improve-
ment of incorporating the terminology dictionary.

Perf. ↑ A B
Base 95 90

+Dict. 92 70

Focusing on System A being over-
all better with terminologies than
System B might obscure the fact
that System A is already good
without terminologies while the methods of System
B improves. From research perspective, System B
gives us more insight into how to more efficiently
incorporate terminology dictionaries. Additionally,
it disentangles the terminology-incorporation meth-
ods from the general MT methods.

This shared task provides one repackaged and
two newly-annotated datasets which can be used
for segment-level terminology enhanced machine
translation evaluation.1

1Public terminology datasets Chinese→English (repack),
English→Czech (new data) and German→English (new data):
github.com/wmt-terminology-task/data-2023
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German→
English

Source: “Most informative is the analysis of airway secretions:”
Reference: “Häufig jedoch führt die Analyse von Material aus den Atemwegen zur Diagnose:”
Proper: “analysis of airway secretions”→“Analyse von Material aus den Atemwegen”
Random: “Most”→“Häufig”

English→
Czech

Source: “We present Eman, an experiment manager, and show how to use it to train several simple
MT systems.”
Reference: “Popisujeme Emana, nástroj pro správu experimentů, a ukazujeme, jak ho lze využít k
trénování několika jednoduchých systémů pro strojový překlad.”
Proper: “Eman”→“Emana”, “an experiment manager”→“nástroj pro správu experimentů”, “MT
systems”→“systémů pro strojový překlad”
Random: “how to use”→“jak ho lze využít”, “train”→“trénování”, “simple”→“jednoduchých”

Chinese→
English

Source: “凌寒再次挥手，又结结实实地抽了他一巴掌。”
Reference: Ling Han raised his hand once more, and gave him another solid slap.
Proper: ‘凌寒”→“Ling Han” Random: ‘手”→“his hand”

Table 2: Examples from the WMT 2023 Terminology Shared Task test dataset, based on MuchMore Springer
Bilingual Corpus, Rosa and Zouhar (2022), and Jiang et al. (2023). Base is without any terminologies, Proper is
real terminologies and Random are random but aligned phrases from source to the reference.

2 Task Description

We focus on how translation quality improves
with the incorporation of segment-level terminol-
ogy on German→English, English→Czech, and
Chinese→English datasets. Participants are given
source sentences along with a segment-level termi-
nology dictionary (Source and Hints in Table 1).
For the purposes of this study, we define terminol-
ogy as low-frequency words or phrases that occur
typically within a particular domain, such as com-
puter science paper abstract. We scan the source
and references for such phrases and provide this
segment-level annotation, together with the source,
to the participants in the form X→Y where X is
a span from the source and Y is a span from the
reference (Proper in Table 2).

Given that the participants are given a part of
the reference, Y , this raises the following ques-
tion: Is the improvement in translation quality due
to the information that a particular terminology
X is translated as Y or merely because a part of
the reference is leaked to the model? To better at-
tribute any performance gains, we therefore also
test a different mode, where we give the partici-
pants “terminologies” where X ′ and Y ′ are still
aligned spans and translations of each other, but
sampled randomly. That is, they are treated as ter-
minology but are, in fact, random phrases (Random
in Table 2). For this reason, we ask the participants
to carry out the translation in three distinct modes:

2www2.statmt.org/wmt23/translation-task.html

• Base: MT with no terminology dictionary.

• Proper: MT with a terminology dictionary. For
example “Sprachmodell”→ “language model”.

• Random: MT with randomly chosen, but cor-
rect, non-terminological translations. For exam-
ple “Hund”→ “dog”.

By comparing performance across these modes, we
isolate the model’s inherent translation ability and
its ability to make use of the terminology.

3 Data

For MT training, the participants were restricted
to only the parallel or monolingual datasets enu-
merated in the WMT general track (Kocmi et al.,
2023).2 The inclusion of pre-trained models was
permitted, provided that such usage was explicitly
declared. Any employment of terminology-specific
datasets that were not part of the specified resources
was expressly disallowed. For the terminology-
targeted evaluation, we repurposed one dataset and
created two new ones. From all of them, we pro-
vided 100 segments to the participants as a sanity-
check development set. See examples for all lan-
guage pairs in Table 2.

3.1 Chinese→English Test Data
Our Chinese→English translation test data is
sourced from the BWB corpus (Jiang et al., 2023),
which covers web novels annotated with, among
others, terminologies. The BWB corpus comprises
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X→Y Count X/Y Words Terms

German→English 2963 22.2/22.6 3.8
English→Czech 3005 25.6/21.6 3.6
Chinese→English 2640 9.7/36.9 1.1

Table 3: Our test dataset size, average number of words
per line and average number of terms per segment (equal
between Proper and Random).

Term. Prompt

Proper Identify and annotate all terminology en-
tities (consider only consecutive words)
from source sentence and match them with
the counterpart in the translated sentence.

Random Identify and annotate as many as possible
aligned words (consider only consecutive
words) between source sentence and the
translated sentence.

Prompt 1: The upper prompt formulation extracts proper
terminology and the bottom extracts random terminol-
ogy. See Prompt 2 (Appendix) for the full example with
few-shot examples.

~3k sentences across six web novels. These anno-
tations identify each named entity and concept in
the sentences, highlighting their co-referred expres-
sions. The average terminology count per line is
1.1 (Table 3). Examples of such terminology are
in Table 2. Terminology often faces issues of mis-
translation or contextually inconsistent translation.
Additionally, MT quality declines when terminol-
ogy is positioned as the subject due to the Chinese’s
subject-dropping nature.

3.2 English→Czech and
German→English Test Data

For the next two language directions we created a
new semi-automatically annotated corpus of termi-
nologies. For English→Czech we used 3k sentence
pairs from a dataset of NLP papers abstracts (Rosa
and Zouhar, 2022). For German→English we used
3k sentence pairs from a dataset of medical paper
abstracts (MuchMore Springer Bilingual Corpus).
In both cases, the focus on academic texts was
guided by the high occurrence of terminology in
this domain (3.8 and 3.6, Table 3).

Automatic alignment tools usually have lower
precision than linguists and linguists have lower re-
call and the collection is both time and budget con-
suming. Therefore, to extract the aligned terminol-
ogy, we use human-machine collaboration. First,

we use GPT-4 (OpenAI, 2023) to create aligned
terminology pairs from source and references. We
use two few-shot prompts to collect the raw align-
ments (Prompts 1 and 2). Then we ask linguists
to validate these alignments and fix those that are
incorrect (either missing terminology, wrong align-
ment or pairs that are not a terminology). For the
Czech-English language pair, humans revised ap-
proximately 8% of GPT annotations. There is no
modification to terminology in the German-English
GPT annotations. Consultation with German lin-
guist affirmed that no adjustments were necessary.
Nonetheless, further examination is needed to fully
assess GPT’s proficiency in terminology alignment
for German. This task was sponsored by Microsoft
and we release both the pre- and post-alignment
data for the further research of GPT capabilities.

4 Participants and System Descriptions

We received a total of 21 per-language submissions
from 7 teams. We provide short descriptions of
their systems, based on the submitted details.

AdaptTerm (Moslem et al., 2023b). The term-
inology-enriched MT system builds on Moslem
et al. (2023a); Haque et al. (2020). It consists of:
1. using an LLM to generate bilingual synthetic

data based on the provided terminology;
2. fine-tuning a generic model, OPUS, with a mix

of the terminology-based synthetic data gener-
ated by #1 and a randomly sampled portion of
the original generic data; and

3. generating translations with the fine-tuned
model from #2, and then fixing translations that
do not include the required terms with an LLM.

Lingua Custodia (Liu, 2023). This submission
includes all three language directions. They use
two strategies to extract synthetic terminology from
the training data. The first one relies on the invari-
able n-grams between the source and the target
sentence, while the second one extracts parallel
sentences that appear inside another training sam-
ple as one terminology item. Then, they train a
Transformer-based model with annotated data us-
ing the extracted terminology, identical to Alam
et al. (2021). In addition, after the text annotation,
they further apply several annotated data filters to
reduce some bias introduced by the automatic anno-
tation. The final trained model can be used directly
to translate a text with any new terminology.
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OPUSCAT (Nieminen, 2023). A standard Trans-
former system is finetuned with parallel data where
parts of the source sentences have been annotated
with their corresponding translations in the target
sentences, causing the system to learn to copy the
annotated target parts from the source sentence into
the target sentence. The translations are generated
using a series of models, with different fine-tuned
terminology models acting as backoff models to the
base transformer model, in cases where the base
transformer output does not contain the specified
terminology.

UEDIN (Bogoychev and Chen, 2023). Their pri-
mary system, twoshot, is 2-shot decoding where
we enforce terminology constraints via terminol-
ogy hints in the source and if this does not work
we use alignment-based methods to identify the
mistranslated terminology word on the target side
and penalize it, giving the decoder a chance to gen-
erate the hinted word. System Tag is decoding with
terminology hints while LLM is an unconstrained
contrastive system.

BJTU-LB (no description paper). They train
the in-context learning ability of the model, and
then concatenate the term translation pairs in front
of the sentence to be translated as the context. The
model can generate different translation results ac-
cording to different contexts.

VARCO-MT (Park et al., 2023). The ForceGen
is a Transformer-based model that is tailored to
ensure the appearance of given terminology in the
generated output. By modifying the input format
and decoding process, it incorporates a copy mech-
anism on the source side, allowing it to copy the
target terminology from the provided terminology
pairs. During the generation process, it uses a force
decoding technique, which compels the model to
actively generate the target terminology as needed.
The TSSNMT is a novel Transformer-based NMT
model that uses a shared encoder to process both
input text and terminology. The model then em-
ploys cross-attention mechanisms between the two
encoder hidden states and passes them through a
gate, enabling the model to autonomously decide
which pieces of information (input or terminology)
to focus on during translation.

Huawei. Did not submit system description. The
translations are also on a subset not used for final
evaluation. We include the results in the analysis

sections in gray (Huawei) for completeness but
urge the readers not to draw any comparisons to
other systems.

5 Evaluation

Our evaluation is focused on: (1) general transla-
tion quality, (2) quality of translation of specific
terminologies, and (3) efficiency in using segment-
level terminology dictionaries.

Standard Metrics. Following recent trends in
MT evaluation (Kocmi et al., 2021), we use ChrF
(Popović, 2015) and COMET (Rei et al., 2020) for
the general translation quality evaluation.3 While
the latter one is generally touted as more robust and
correlated more with human judgement, in this case
we are also concerned in exact match of n-grams,
which is captured by ChrF.

Term Success Rate. In the terminology success
rate we compare the machine-translated terms with
their dictionary equivalents. One would be tempted
to check for the presence of the reference termi-
nology translation in the output by the regular ex-
pression match. However, this is sensitive to minor
orthographic variants. Therefore, we use fuzzy
search with threshold of 90% to scan for termi-
nology matches, yielding a number between 0 (no
terminology translated correctly) to 1 (all terminol-
ogy translated correctly).

Term Consistency. This metric looks at whether
technical terms are translated uniformly across the
entire text corpus. We aim for high consistency,
measured by the low occurrence of multiple trans-
lations for the same term within the text. We use the
approach suggested by Semenov and Bojar (2022).
Given the source sentences, outputs, and source
terms assigned to each sentence, we firstly make
word alignment for the source sentences and out-
puts, and extract the aligned translated terms for
each source term occurrence. Then, we automati-
cally choose the “pseudo-reference” terminology
translations, based on which translation of which
source term occurred in the text first. In the last
step, we compare two sets –the real outputs and
the pseudo-references for each term occurrence–
by means of F1 score on a scale of 0 (no consis-
tent terminology) to 1 (all terminology translated
consistently).

3ChrF uses the defaults from sacreBLEU (Post, 2018) and
COMET is wmt22-comet-da.
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ChrF
System De→En En→Cs Zh→En

AdaptTerm 61.0 64.4 37.5
Lingua Custodia 61.8⋆ 67.7⋆ 32.6
OPUS-CAT 53.6 62.5 24.5
UEDINLLM 60.0 64.8 41.2
UEDINTag 58.3 64.7 41.0
UEDINTwoshot 60.5 62.4 34.5
BJTU-LB 43.8⋆
VARCO-MTTSSNMT 43.0
VARCO-MTForceGen 40.5
Huawei 62.1 58.2 36.8

COMETDA
22

System De→En En→Cs Zh→En

AdaptTerm 0.801 0.841 0.688
Lingua Custodia 0.735 0.834 0.609
OPUS-CAT 0.790 0.869⋆ 0.521
UEDINLLM 0.813⋆ 0.869⋆ 0.757⋆
UEDINTag 0.809 0.868 0.757⋆
UEDINTwoshot 0.792 0.835 0.650
BJTU-LB 0.751
VARCO-MTTSSNMT 0.755
VARCO-MTForceGen 0.715
Huawei 0.843 0.887 0.666

Table 4: Averages of ChrF and COMET scores with
Proper terminology dictionaries. The ⋆ marks best
within each column (language) and metric.

5.1 Main Results (Table 4)

We begin the comparison using two standard met-
rics of MT quality in the case where Proper ter-
minology dictionaries were provided. The choice
of the best-performing system diverges based on
the two metrics: Lingua Custodia is selected as
the best by ChrF in two language directions, it
ranks the same system on Zh→En as the second
lowest-performing one. In contrast, COMET ranks
UEDINLLM as the best across all three language
directions. Given that this metric better captures
human judgement (Freitag et al., 2022), this rank-
ing is likely more close to the true quality.

5.2 Terminology Quality (Table 6)

The results are even more different when focus-
ing solely on the correctness of the terminol-
ogy. Overall, most systems translate 60%-70%
of terminologies correctly. For terminology con-
sistency, the most immediate outlier is VARCO-
MTTSSNMT, yielding impressive score of 0.971 on
Chinese→English. Table 5 illustrates how even in
the same document the terminology can be trans-
lated differently, which is undesired.

Source Die Krankheit entwickelt sich bei Kindern und
jungen Erwachsenen und folgt dem Muster der
Blaschko-Linie.

MT The condition develops during childhood and adoles-
cence and follows the pattern of the blaschko line.
...

Source Ungefähr 95% aller Personen, die M. leprae ausge-
setzt sind, entwickeln die Krankheit nicht.

MT About 95% of all individuals exposed to M. leprae
do not develop the disease.

Table 5: Example of term inconsistency (Krankheit→
disease, condition) within the same document.

Terminology Consistency
System De→En En→Cs Zh→En

AdaptTerm 0.617 0.753 0.750
Lingua Custodia 0.602 0.766 0.696
OPUS-CAT 0.661⋆ 0.808⋆ 0.293
UEDINLLM 0.588 0.741 0.713
UEDINTag 0.606 0.750 0.755
UEDINTwoshot 0.574 0.737 0.622
BJTU-LB 0.764
VARCO-MTTSSNMT 0.971⋆
VARCO-MTForceGen 0.773
Huawei 0.788 0.603 0.562

Terminology Success Rate
System De→En En→Cs Zh→En

AdaptTerm 0.587 0.613 0.758
Lingua Custodia 0.622⋆ 0.662 0.747
OPUS-CAT 0.443 0.557 0.124
UEDINLLM 0.560 0.629⋆ 0.753
UEDINTag 0.539 0.626 0.739
UEDINTwoshot 0.587 0.562 0.536
VARCO-MTTSSNMT 0.779
VARCO-MTForceGen 0.800⋆
BJTU-LB 0.749
Huawei 0.694 0.462 0.486

Table 6: Averages of Terminology Consistency and
Terminology Success Rate with Proper terminology
dictionaries. The ⋆ marks best within each column
(language) and metric.

5.3 Terminology Utility (Tables 7 and 8)

Previous investigations into the general translation
and terminology translation quality did not reveal
many differences between the systems. We now fo-
cus on the usefulness of the additional information
and show the difference between Base and either
Proper or Random terminology dictionaries in Ta-
ble 7. Notably AdaptTerm and Lingua Custodia
improve the most from their Base version. With an
exception of OPUS-CAT, both ChrF and COMET

667



ChrF COMETDA
22 T. Consistency T. Success Rate

System +Proper +Random +Proper +Random +Proper +Random +Proper +Random

AdaptTerm 9.0 11.6 0.043 0.054 0.020 -0.120 0.239 0.257
Lingua Custodia 10.1 11.8 0.032 0.026 0.118 -0.059 0.345 0.341
OPUSCAT -10.2 -1.0 -0.031 0.012 0.055 -0.044 -0.285 0.074
UEDINLLM 6.4 7.5 0.011 0.017 0.027 -0.100 0.164 0.128
UEDINTag 5.4 6.5 0.010 0.013 0.055 -0.090 0.162 0.117
UEDINTwoshot 6.9 5.9 0.029 0.012 0.045 -0.074 0.193 0.297
BJTU-LB † 2.5 0.8 0.015 0.007 0.058 -0.150 0.178 -0.015
VARCO-MTTSSNMT † 8.3 4.7 0.054 0.017 0.171 -0.189 0.515 0.508
VARCO-MTForceGen † 3.4 0.9 0.019 0.003 0.166 -0.137 0.417 0.202
Huawei 0.2 0.9 -0.004 0.010 -0.010 0.042 0.033 -0.012

Table 7: Average difference in each metric between the Base and added dictionary (Proper or Random). All numbers
are averages across all languages except for † which is Chinese→English only.

improves across all metrics when given any of the
two dictionaries. This challenges the notion that
the additional information supplied to the MT sys-
tem needs to be terminology while in fact it can
be any information that leaks from the reference.
Focusing on a particular language pair in Table 8,
there seems to be weak effect of lower variance
when terminology dictionaries are provided.

COMETDA
22 Zh→En

System Base Proper Random

AdaptTerm 0.638 0.142 0.688 0.109 0.678 0.104
Lingua Custodia 0.476 0.148 0.609 0.128 0.528 0.124
OPUSCAT 0.557 0.147 0.521 0.155 0.624 0.132
UEDINLLM 0.750 0.076 0.757 0.075 0.753 0.078
UEDINTag 0.747 0.083 0.757 0.077 0.747 0.083
UEDINTwoshot 0.572 0.158 0.650 0.121 0.596 0.155
BJTU-LB 0.736 0.101 0.751 0.092 0.743 0.092
VARCO-MTTSSNMT 0.701 0.145 0.755 0.138 0.718 0.135
VARCO-MTForceGen 0.696 0.094 0.715 0.091 0.699 0.095
Huawei 0.679 0.101 0.666 0.104 0.709 0.103

Table 8: Distribution of segment-level COMET scores
on Chinese→English language direction (if available)
between all three translation modes. Notation: mean var.

6 Related Work

Similar to the previously shared task on translation
using terminologies (Alam et al., 2021), our ter-
minology hints are mined semi-automatically. We
also extend this line of work by contrasting ran-
dom and proper terminologies. The focus on termi-
nologies in translation is an important one. Both
Zouhar et al. (2020) and Semenov and Bojar (2022)
show that the ordering of the system diverges when
comparing performance on terminologies versus
general performance.

Constrained Decoding. A simple paradigm for
improving terminology translation is constrained
decoding. Anderson et al. (2017) track constraint
satisfaction using a finite-state machine. Hokamp
and Liu (2017) reduce the time complexity to linear
and Post and Vilar (2018) further improve on this.

Other approaches. Other than constrained de-
coding, several works have approached the problem
by guiding the text generation model, including
those that modify the token-level distribution using
an external model (Stahlberg et al., 2017; Gulcehre
et al., 2017; Chatterjee et al., 2017; Pascual et al.,
2021), and those that incorporate constraints into
the training process through additional annotations
(Dinu et al., 2019; Bergmanis and Pinnis, 2021;
Niehues, 2021, inter alia).

7 Conclusion

This iteration of machine translation with termi-
nologies focused on evaluating the efficiency of
using segment-level terminology dictionaries. I.e.
it is not enough that the system performs well but
it should also perform better when given this ad-
ditional information. Indeed, the improvement be-
tween Base and Proper terminology enriched trans-
lations ranged across systems between 0 and 10
ChrF points. This helps isolate which terminology-
enhancement methods are the most useful.

Limitations

The evaluation datasets are based on publicly-
available data, which might have been leaked to the
training of submitted systems, skewing the results.
We further acknowledge that the comparisons in
this work were not done using statistical testing.
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Ethical Consideration

The work of both linguist working on the validation
of GPT alignment was well-paid of around a twice
to three times the minimal hourly wage in their
respective countries. The annotated texts did not
contain any sensitive or explicit passages.
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Identify and annotate all terminology entities (consider only consecutive words) from source sentence
and match them with the counterpart in the translated sentence.

_________________________
Source ’en’: after blowing your nose, coughing or sneezing.
Translation ’fr’: après s’être mouché ou avoir toussé/éternué.
Annotation: {’en’: ’coughing’, ’fr’: ’toussé’}, {’en’: ’sneezing’, ’fr’: ’éternué’}

_________________________
Source ’zh’: 仙羽郡，武宗学府，后山林中，一个身披宽松武袍的削瘦少年，双盘下蹲，舌尖抵住牙
齿，全身力量集中于左右两拳，轰打人粗大树。
Translation ’en’: In mountainous forest behind Xianyu prefecture , martial arts training institute ,
there was thin young man wearing loose and comfortable martial artist robe . In the lotus position with
his tongue against his teeth, he focused all his strength into both his fists and pummeled huge tree.
Annotation: {’zh’:’ 仙羽郡’,’en’: ’Xianyu prefecture’}, {’zh’:’ 武宗学府’,’en’: ’a martial arts
training institute’}

_________________________
Source ’en’: According to Statistics Austria’s current estimate from April 2015, expenditure for
research and development carried out in Austria in 2015 is projected to grow nominally by around
=C271.36 million or 2.76% compared to 2014, thereby exceeding the =C10 billion threshold for the first
time (=C10.10 billion).
Translation ’de’: Gemäß der aktuellen Globalschätzung der Statistik Austria vom April 2015 werden
die gesamten Ausgaben für Forschung und Entwicklung in Österreich 2015 voraussichtlich gegenüber dem
Jahr 2014 um rd.271,36 Mio. =Cbzw. 2,76% nominell wachsen und damit erstmals die 10 Mrd. =C-Schwelle
überschreiten (10,10 Mrd. =C).
Annotation: {’en’: ’expenditure’, ’de’: ’gesamten Ausgaben’}, {’en’: ’research and development’, ’de’:
’Forschung und Entwicklung’}, {’en’: ’threshold’, ’de’: ’-Schwelle’}

_________________________
Source ’cs’: Podle ředitele Institutu veřejné správy Filipa Hrůzy si pořadatelé nyní musí vyhodnotit,
jestli je pro Brno závod výhodný.
Translation ’en’: According to the Head of the Public Administration Institute, Filip Hrůza, the
organizers must now assess whether the race brings benefits to Brno.
Annotation: {’en’: ’Public Administration Institute’, ’cs’: ’Institutu veřejné správy’}, {’en’:
’race’, ’cs’: ’závod’}

_________________________
Source ’{source_lang}’: {source_segment}
Translation ’{target_lang}’: {translated_segment}
Annotation:

Prompt 2: The prompt for collecting aligned terminology with GPT-4. Bolded text is replaced with current segment.
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Abstract

We present the results from the 9th round of
the WMT shared task on MT Automatic Post-
Editing, which consists of automatically cor-
recting the output of a “black-box” machine
translation system by learning from human cor-
rections. Like last year, the task focused on
English→Marathi, with data coming from mul-
tiple domains (healthcare, tourism, and gen-
eral/news). Despite the consistent task frame-
work, this year’s data proved to be extremely
challenging. As a matter of fact, none of the of-
ficial submissions from the participating teams
succeeded in improving the quality of the al-
ready high-level initial translations (with base-
line TER and BLEU scores of 26.6 and 70.66,
respectively). Only one run, accepted as a
“late” submission, achieved automatic evalu-
ation scores that exceeded the baseline.

1 Introduction

This paper presents the results of the 9th round
of the WMT task on MT Automatic Post-Editing
(APE). The task involves the automatic correc-
tion of the output generated by a “black-box” ma-
chine translation system by learning from human-
revised machine-translated output supplied as train-
ing material. The overall task formulation (see
Section 2) remained consistent with that of all pre-
vious rounds. In this formulation, the challenge
revolves around fixing errors in English documents
that have been automatically translated by a state-
of-the-art, non-domain-adapted neural MT (NMT)
system unknown to the participants. In continuity
with last year’s round, the evaluation focused on
English→Marathi,1 with training/dev/test data se-
lected from a mix of domains, namely- healthcare,
tourism, and general/news (see Section 3).

Three teams participated in the task by submit-
ting a total of four runs for the final evaluation (see

1Marathi is an Indo-Aryan language predominantly spoken
by Marathi people in the Indian state of Maharashtra.

Section 4).2 However, while only two out of the
three participants were able to submit their runs on
time, the one remaining submission arrived with a
two-month delay. This led us to categorize it as a
late (therefore, unofficial) submission for the sake
of fairness to the other participants.

For all the teams, the task posed significant chal-
lenges primarily due to the high average quality of
the initial translations slated for post-editing (26.6
TER / 70.66 BLEU / 79.78 chrF). This challenge
was compounded by the substantial imbalance in
distribution between near-perfect translations (ap-
proximately 40% of the total) and those necessitat-
ing extensive revisions (approximately 20%). As
a consequence, none of the official runs was able
to improve over the baseline in terms of the task’s
automatic evaluation metrics (Section 5.1), with
the best run achieving results (27.73 TER / 69.03
BLEU / 78.64 chrF) that highlight a slight quality
degradation compared to the original, untouched
NMT outputs that represent our baseline. For the
sake of completeness, we report that the late sub-
mission achieved a slight improvement over the
baseline, attested by TER, BLEU, and chrF scores
of 25.74, 71.27, and 80.41, respectively. The re-
sults computed by means of automatic evaluation
metrics were also confirmed by our human evalua-
tion based on direct assessment (Section 5.2).

2 Task Description

MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by (Chatterjee et al.,
2015), from the application point of view, the task
is motivated by its possible uses to:

• Enhance MT output by harnessing informa-
tion that is not available to the decoder or by
conducting deeper text analysis, which may

2A fourth participant withdrew the submitted run, which
was affected by major errors in the generated outputs.
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be prohibitively expensive during the decod-
ing phase.

• Address systematic errors stemming from an
MT system whose decoding process is inac-
cessible for focused modifications.

• Provide professional translators with im-
proved MT output quality, thereby reducing
the need for subsequent human post-editing.

• Tailor the output of a general-purpose MT sys-
tem to align with the lexicon and style require-
ments of a specific application domain.

This 9th round of the WMT APE shared task
kept the same overall evaluation setting of the pre-
vious eight rounds. Specifically, the participating
systems had to automatically correct the output of
an unknown “black-box” MT system (a generic
NMT system not adapted to the target domain)
by learning from training data containing human
revisions of translations produced by the same sys-
tem. For the second year in a row, the selected
language pair was English-Marathi (with Marathi
as the target language for post-editing). Training,
development and test data were drawn from the
following three domains: healthcare, tourism, and
general/news.

3 Data, Metrics, Baseline

3.1 Data
In continuity with last year, the selected language
pair is English-Marathi. Marathi is one of the most
spoken Indian languages, with approximately 83
million native speakers and 16 million speakers
as a second/third language.3 Marathi is a known
agglutinative language and presents various chal-
lenges to machine translation compared to its other
Indian counterparts (Khatri et al., 2021; Banerjee
et al., 2021). Moreover, the English-Marathi lan-
guage pair is considered low-resource compared to
English-Hindi/Bengali/Malayalam (Ramesh et al.,
2022), despite having more native speakers world-
wide.

The training and development datasets supplied
to the participants remain consistent with those
employed in the 2022 iteration of the task. These
datasets consist of 18,000 and 1,000 (source, target,
human post-edit) triplets, wherein:

3Ethnologue-2022 - Ethnologue has been an active re-
search project since 1951 which maintains online archives
of recognized languages list, and their statistics.

• The source (SRC) is an English sentence;

• The target (TGT) is a Marathi translation
of the source produced by a generic, black-
box NMT system unknown to participants.
This multilingual NMT system (Ramesh et al.,
2022) is based on the Transformer architec-
ture (Vaswani et al., 2017) and is trained on
a total of 49 million sentence pairs where the
En-Mr parallel corpus is 4.5 million sentence
pairs. This parallel data is generic and covers
many domains, including the three domains
covered by the APE 2023 test set, namely-
healthcare, tourism/culture and general/news.

• The human post-edit (PE) is a manually re-
vised version of the target, which was pro-
duced by native Marathi speakers.

We provide the same corpus of artificially gen-
erated data as additional training material from
the last round. It consists of 2 million triplets de-
rived from the Anuvaad en-mr parallel corpus.4

The Anuvaad parallel corpus consists of data for
12 en-X language pairs, where X comprises 12
Indian languages, including Marathi. The English-
Marathi data consists of 2.5 million parallel sen-
tences. Specifically, the source, target, post-edit in-
stances of this synthetic corpus are respectively ob-
tained by combining: i) the original English source
sentence from the Anuvaad corpus, ii) its automatic
translation into Marathi,5 iii) the original Marathi
target sentence from the Anuvaad corpus.

Test data consisted of 1,000 (source, target)
pairs, similar in nature to the corresponding el-
ements in the train/dev sets (i.e., same domains,
same NMT system). The human post-edits of the
target elements were left apart to measure APE
systems’ performance both with automatic metrics
(TER, BLEU, chrF) and via human evaluation.

3.2 Metrics

The participating systems were evaluated both by
means of automatic metrics and manually. Auto-
matic evaluation (Section 5.1) was carried out after
tokenizing the data with sacremoses6, by comput-
ing the distance between the automatic post-edits
produced by each system for the target elements of

4https://github.com/project-anuvaad/
anuvaad-parallel-corpus

5from IndicTrans En-X Model (Ramesh et al., 2022)
6https://pypi.org/project/sacremoses/
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the test set, and the human corrections of the same
test items.

The official systems’ ranking is based on the av-
erage (case-sensitive) TER (Snover et al., 2006)
calculated on the test set by using the TERcom7

software: lower average TER scores correspond to
higher ranks. As additional performance indicators,
BLEU (Papineni et al., 2002) and chrF (Popović,
2015) were computed8. The human evaluation
(Section 5.2) was conducted via source-based di-
rect human assessment (Graham et al., 2013a).

3.3 Baseline

The official baseline results were the
TER/BLEU/chrF scores calculated by com-
paring the raw MT output with human post-edits.
This corresponds to the score achieved by a
“do-nothing” APE system that leaves all the test
targets unmodified.

4 Submissions

As shown in Table 1, this year, we received sub-
missions from three teams, one of which submitted
their run with a two-month delay that motivates
its categorization as a late submission9. The main
characteristics of the participating systems are sum-
marized below.

Korea Advanced Institute of Science and Tech-
nology (kaistai). This team participated with a
system inspired by the recent surge of large lan-
guage models (LLMs) that have been successfully
applied to a variety of language generation tasks.
Their goal was to verify whether LLMs could per-
form the APE task through prompting. To this
aim, they used gpt-3.5-turbo with specific prompts
designed to generate either (a) post-edits or (b)
post-edits along with the rationales behind them.
While the results of preliminary evaluations based
on COMET suggested the viability of the approach
for medium-/high-resource language pairs, they
also highlighted that the often radical changes pro-
duced by LLMs can potentially be penalized by
more strict reference-based evaluations based on
BLEU, TER, or chrF.

7http://www.cs.umd.edu/~snover/tercom/
8chrF was computed using SacreBLEU https://pypi.

org/project/sacrebleu/(version 2.3.0)
9A fourth participating team retracted their submitted run

due to errors in the generated outputs that significantly affected
their final results.

Korea University (KU_UPs). The participation
of this team was centred on data filtering tech-
niques. With a focus on removing potentially
harmful material from a model training perspective,
the proposed method concentrates on eliminating
the two extremes of the training data distribution:
the (near-)perfect MT outputs on one side, and
those that require complete rewriting on the other.
According to preliminary experiments carried out
on previous APE datasets (WMT2020/2021/2022),
data selection driven by TER and COMET yields
better performance when the outlier instances re-
quiring excessive post-editing are removed from
the training. On this basis, the submitted APE sys-
tem was built by training the multilingual M2M100-
418M model (Fan et al., 2021).

Huawei Translation Service Center and Xiamen
University School of Informatics (HW_TSC). –
late submission – This team participated with a
Transformer-based system pre-trained on the pro-
vided synthetic APE data and then fine-tuned on
the real APE data augmented via automatic transla-
tion (with Google Translate run on the post-edits in
the training set) and by integrating En-Mr parallel
sentences from FLORES-200 (NLLB Team et al.,
2022). R-Drop (Liang et al., 2021), which regular-
izes the training inconsistency induced by dropout,
is used to mitigate overfitting during the training
phase. A sentence-level Quality Estimation system
is also used to select the most appropriate output,
choosing between the original translation and the
corresponding APE-generated output.

5 Results

5.1 Automatic Evaluation

Automatic evaluation results are shown in Table 2.
The submitted runs are ranked based on the average
TER (case-sensitive) computed using human post-
edits of the MT segments as a reference, which
is the APE task’s primary evaluation metric. To
provide a broader view of systems’ performance,
BLEU and chrF results computed using the same
references are also reported.

As can be seen from the table, the three rankings
coherently show that the best official submission
(by the KU_UPS team, which achieved scores of
27.73 TER, 69.03 BLEU, and 78.64 chrF) outper-
forms the others. None of them, however, was
able to improve the quality of the original transla-
tions (i.e. the do nothing baseline), differently from
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ID Participating team
kaistai Korea Advanced Institute of Science and Technology, South Korea
KU_UPs Korea University, South Korea (Moon et al., 2023)
HW_TSC Huawei Translation Service Center & Xiamen University School of Informatics, China (Yu et al., 2023)

Table 1: Participants in the WMT23 Automatic Post-Editing task.

TER BLEU CHRF

en-mr HW-TSC_HW_1_PRIMARY.txt† 25.74 71.27 80.41
baseline (MT) 26.60 70.66 79.78
KU_UPs-filtered4-PRIMARY.tsv 27.73 69.03 78.64
kaistai_prompt-wo-cot_contrastive 54.59 40.97 67.24
kaistai_prompt-w-cot_primary 58.55 31.63 61.61

Table 2: NEWResults for the WMT23 APE English-Marathi shared task – average TER (↓), BLEU (↑), chrF (↑).
Gray† indicates a late submission, which was received after the conclusion of this year’s human evaluation and,
consequently, is not discussed in Section 5.2.

the slightly better outputs of the late submission
by HW_TSC. This prompts further analyses to ex-
plore the underlying reasons for this unexpected
outcome. We do this in two ways: 1) by giving a
closer look at systems’ behaviour (Section 5.1.1),
in order to spot trends in their post-editing strate-
gies; 2) by analysing the task’s inherent level of
difficulty (Section 5.1.2) in terms of the possibility
to learn valuable correction patterns from the train-
ing data and effectively apply them to the supplied
test set.

5.1.1 Analysis: Systems’ Behaviour

Modified, improved and deteriorated sentences
To gain a first insight into the behaviour of partic-
ipating systems, Table 3 provides an overview of
each submitted run, detailing the number of modi-
fied, improved, and deteriorated sentences, along
with the systems’ overall precision (i.e., the ratio
of improved sentences to the total count of modi-
fied instances where improvement or deterioration
is observed). It’s worth noting that each system
has modified a much higher number of sentences
than the combined total of improved and deterio-
rated ones. This discrepancy accounts for modified
sentences in which the corrections do not result in
any variations in TER. This “grey area”, where the
automatic assessment of quality improvement or
degradation is not feasible, underscores the impor-
tance of including human evaluation for a compre-
hensive assessment of systems’ performance (see
Section 5.2). As can be seen from the table, and in
line with the findings from previous rounds, con-
servative post-editing seems to yield better results
compared to the adoption of aggressive strategies.

The difference between the top-ranked system and
the other submitted runs is indeed evident when we
look at the proportion of modified test sentences
(37.4%10 vs ≥ 93.1%), indicating that limiting the
applied edits to the strictly necessary ones remains
the main challenge to achieve significant quality
improvements. While this outcome may be influ-
enced by the reference-based automatic evaluation
framework employed (as it penalizes correct edit
operations that deviate from those presented in the
reference), it is noteworthy that the results of the
manual evaluation, as detailed in Section 5.2, align
with this observation.

Another observation is that precision is certainly
the other key factor in achieving good APE results.
Besides being much more conservative, the best
submission stems, in fact, for a higher precision in
selecting the edit operations to be applied (48.1111

vs ≤ 21.00). Also, this finding aligns with the out-
comes of previous rounds, in which the winning
system consistently exhibited the highest precision.
Notably, the precision of this year’s official submis-
sions (averaging 29.62) is significantly lower than
the values observed in previous rounds (e.g., 69.0,
53.96, 69.49 for the top-ranked system in 2020,
2021, and 2022, respectively).12 This difference in
precision may well explain why none of them were
able to improve upon the baseline results.

Edit operations Further indications about the
system’s behaviour can be drawn from a more fine-

10Which drops to 24.4% for the late submission.
11Further increased to 51.89 for the late submission.
12This holds even if we include the late submission in the

computation, with an average precision that slightly grows to
35.19.
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Systems Modified Improved Deteriorated Prec.
HW-TSC_HW_1_PRIMARY.txt† 244 (24.4%) 110 (45.08%) 102 (41.8%) 51.89
KU_UPs-filtered4-PRIMARY.tsv 374 (37.4%) 153 (40.9%) 165 (44.11%) 48.11
kaistai_prompt-wo-cot_contrastive 931 (93.1%) 187 (20.08%) 709 (76.15%) 20.87
kaistai_prompt-w-cot_primary 989 (98.9%) 193 (19.51%) 777 (78.56%) 19.89
Average 76.46% 26.83% 66.27% 29.62

Table 3: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted
to the APE 2023 English-Marathi subtask. The “Prec.” column shows systems’ precision as the ratio between the
number of improved sentences and the total number of modified instances for which improvement or deterioration
can be assessed in terms of TER variations. Average values considering only the three official submissions.

Figure 1: Distribution of edit operations (insertions,
deletions, substitutions and shifts) performed by the
three primary submissions to the WMT23 APE English-
Marathi shared task.

grained analysis of the distribution of their edit
operations (insertions, deletions, substitutions, and
shifts). Such distribution is obtained by comput-
ing the TER between the original MT output and
the output of each primary submission, taken as
a reference. As shown in Figure 1, although the
overall behaviour of the systems is similar, some
differences are noticeable. Indeed, in line with pre-
vious rounds, they all exhibit a high percentage of
deletions, followed by insertions, substitutions and
shifts. However, for the best official submission,13

the percentage of the latter two types of operations
is minimal (2.9% substitutions and 3.67% shifts)
and balanced by a less skewed distribution of inser-
tions (30.52%) and deletions (62.91%). Especially
the comparatively higher proportion of more “radi-
cal” (i.e., structural) modifications applied by the
worse system (13.43% shifts), which again sug-
gests its lower conservativeness, can account for its
lower automatic evaluation scores.

13Note, however, that the same consideration also applies
for the late submission.

5.1.2 Analysis: Complexity Indicators

While systems’ behaviour is influenced by imple-
mentation and architectural choices on the one
hand, it also depends on the data used for training,
development, and evaluation on the other. There-
fore, looking at the intrinsic difficulty of the task
from a data perspective is also crucial for interpret-
ing the observed performance of the systems. To
delve into this aspect, we concentrate on the possi-
bility of learning useful correction patterns during
training and successfully applying them at test time.
We analyse such a possibility in terms of three in-
dicators, namely: i) repetition rate, ii) MT quality,
and iii) TER distribution in the test set. For the sake
of comparison across the nine rounds of the APE
task (2015–2023), Table 4 reports, for each dataset,
information about the first two aspects. The third
one, instead, will be discussed by referring to Fig-
ure 2.

Repetition Rate The repetition rate (RR), mea-
sures the repetitiveness inside a text by looking
at the rate of non-singleton n-gram types (n=1...4)
and combining them using the geometric mean.
Higher RR values indicate greater text repetitive-
ness, which may imply an increased likelihood of
learning correction patterns from the training set
that are also applicable to the test set. As shown
in the last row of Table 4, the RR values for the
SRC, TGT, and PE elements (averaged across the
training, development, and test sets) are relatively
low. Furthermore, upon closer examination, Ta-
ble 5 reveals a non-negligible difference between
the RR values of the SRC, TGT, and PE elements
in the training set compared to the corresponding
values calculated on the test set. This difference
is particularly pronounced for the PE sentences,
where the RR is more than two times higher. Al-
though the reported RR values can be considered
indicative of a challenging task, it is important to
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Lang. Domain MT type RR_src RR_tgt RR_pe Basel. BLEU Basel. TER δ TER
2015 en-es News PBSMT 2.9 3.31 3.08 n/a 23.84 +0.31
2016 en-de IT PBSMT 6.62 8.84 8.24 62.11 24.76 -3.24
2017 en-de IT PBSMT 7.22 9.53 8.95 62.49 24.48 -4.88
2017 de-en Medical PBSMT 5.22 6.84 6.29 79.54 15.55 -0.26
2018 en-de IT PBSMT 7.14 9.47 8.93 62.99 24.24 -6.24
2018 en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.38
2019 en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.78
2019 en-ru IT NMT 18.25 14.78 13.24 76.20 16.16 +0.43
2020 en-de Wiki NMT 0.65 0.82 0.66 50.21 31.56 -11.35
2020 en-zh Wiki NMT 0.81 1.27 1.2 23.12 59.49 -12.13
2021 en-de Wiki NMT 0.73 0.78 0.76 71.07 18.05 -0.77
2022 en-mr health/tourism/news NMT 1.46 0.89 0.72 67.55 20.28 -3.49
2023 en-mr health/tourism/news NMT 1.85 1.24 1.12 70.66 26.60 +1.13

Table 4: Basic information about the APE shared task data released since 2015- languages, domain, type of MT
technology, repetition rate and initial translation quality (TER/BLEU of TGT). The last column (δ TER) indicates,
for each evaluation round, the difference in TER between the baseline (i.e., the “do-nothing” system) and the
top-ranked official submission.

Data RR
Train_src 1.55
Train_mt 1.03
Train_pe 0.81
Dev_src 1.4
Dev_mt 0.8
Dev_pe 0.64
Test_src 2.6
Test_mt 1.9
Test_pe 1.91

Table 5: Repetition Rate (RR) values of source (src),
target translation (mt) and post-edited translation (pe)
elements in the APE 2023 training, development and
test sets.

note that the top-ranked submissions in previous
rounds (e.g. in 2022 and 2020) were able to achieve
significant improvements over the baseline despite
similar RR values (with δ TER values of−3.49 and
−12.13, respectively). This variability reinforces
the findings from previous rounds, emphasizing
that RR alone is insufficient as a complexity in-
dicator. Rather, it underscores the significance of
examining its interaction with other indicators and
its potential cumulative impact on them.

MT Quality As emphasized by the findings from
all previous rounds of the task, a more reliable in-
dicator of complexity is the quality of the machine-
translated (TGT) texts that require correction. We
assess this quality by computing TER (↓) and
BLEU (↑) scores (shown in the Basel. TER/BLEU
columns in Table 4), using the human post-edits as
references.14 In principle, higher-quality original

14Scores for the newly introduced chrF metric are not in-
cluded in the table, as they would not be comparable with
values from previous rounds where chrF was not considered.

translations leave less room for improvement to
APE systems, which have at the same time fewer
errors to learn from during training and fewer cor-
rections to make at test time. On one side, in-
deed, training on good (or near-perfect) automatic
translations can significantly reduce the number
of learned correction patterns. On the other side,
testing on similarly high-quality translations can
have two effects: i) it reduces the number of cor-
rections required and the applicability of learned
patterns, and ii) it increases the risk of introducing
errors, especially when post-editing near-perfect
TGTs. This observation is supported by the strong
correlation (>0.83) between the initial MT quality
(“Basel. TER” in Table 4) and the TER difference
between the baseline and the top-ranked submis-
sion (“δ TER” in Table 4) previously reported in the
analysis of the 2015-2022 rounds by Bhattacharyya
et al. (2022).

Looking at the baseline TER score, this year’s
test data look for a comparatively lower difficulty
for APE systems compared to most of the previ-
ous rounds, which in only 2 cases (i.e., for the two
languages covered in 2020) appear to be less chal-
lenging. Interestingly, however, when looking at
the baseline BLEU score, the difficulty appears to
be higher, with up to 6 previous test sets featuring
translations of lower quality (hence easier to han-
dle) compared to this year. The reasons for such dif-
ferences deserve further investigation, which might
shed light on the fact that, contrary to expectations,
MT quality is less indicative of this year’s task
difficulty compared to previous rounds15.

15Considering this year’s data, in fact, the correlation be-
tween “Basel. TER” and “δ TER” in Table 4 drops from >0.83
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TER distribution in the test set Complementary
to repetition rate and MT quality, the TER distribu-
tion (computed against human references) for the
translations present in the test provides valuable
insights for interpreting the results of this year’s
round of the task. While TER distribution and MT
quality may appear to be closely related, it’s im-
portant to note that, even at similar overall quality
levels, more or less skewed distributions can create
distinct testing conditions. Indeed, as shown by pre-
vious analyses (Bojar et al., 2017; Chatterjee et al.,
2018, 2019, 2020; Akhbardeh et al., 2021; Bhat-
tacharyya et al., 2022), more challenging rounds
of the task were typically characterized by TER
distributions heavily skewed toward lower values
(i.e., a larger percentage of test items having a TER
between 0 and 10).

On one side, a higher proportion of (near-
)perfect test instances, requiring minimal or no
corrections, increases the likelihood that APE sys-
tems will make unnecessary edits, which will be
penalized by automatic evaluation metrics. Con-
versely, less skewed distributions may be easier
to handle, as they provide automatic systems with
more opportunities for improvement, with a larger
number of test instances necessitating revision. In
the lack of more focused analyses on this aspect, we
can hypothesize that under ideal conditions from
the APE standpoint, the peak of the distribution
would correspond to “post-editable” translations
containing enough errors that leave some margin
for focused corrections but not too many errors to
be so unintelligible to require a whole re-translation
from scratch.16 In light of the above observations,
the APE 2023 test set can be considered as par-
ticularly challenging. As illustrated in Figure 2,
the TER distribution exhibits a U-shaped (bimodal)
pattern, characterized by two prominent peaks cor-
responding to the two most critical regions within
the 0 − 100 TER range. At one extreme, the first
peak corresponds to the vast majority of test in-
stances (about 45% of the total) that can be con-
sidered as perfect or near-perfect translations (i.e.,
0<TER<5), which implies a high chance of apply-
ing unnecessary corrections. At the other extreme,
the second peak corresponds to a significant portion
of test items (about 20%) that can be considered

to 0.78.
16For instance, based on the empirical findings reported

in (Turchi et al., 2013), TER=0.4 is the threshold that, for
human post-editors, separates the “post-editable” translations
from those that require complete rewriting from scratch.

Figure 2: TER distribution in the APE 2023 English-
Marathi test set.

as too poor and unintelligible (i.e., 95<TER<100)
to grant the safe application of any post-editing
strategies. Although the remaining portion of the
test set falls almost entirely in the range of “post-
editable” outputs (i.e., 10<TER<40), its small size
significantly reduces the potential for improvement
through the APE process. Overall, this year’s test
set deviates significantly from all previous ones,
where the TER distributions have never been char-
acterized by such a pronounced bimodal pattern.
In light of this, we can conclude that while, on the
one hand, the repetition rate and machine transla-
tion quality do not provide sufficiently convincing
insights to justify performance below the baseline
for the official submissions, on the other hand, the
TER distribution has posed a significant challenge
for this year’s participants.

5.2 Human Evaluation

We conducted a human evaluation of the primary
system submissions to complement the automatic
evaluations. However, this could be performed
only for the official system submissions, as the late
submission was received after the conclusion of
the human assessments. This section discusses our
evaluation procedure and the results obtained from
it.

5.2.1 Evaluation Procedure
We provided annotation guidelines to professional
translators who are native speakers of the target lan-
guage. The same guidelines were also used to col-
lect Indic language quality estimation shared task
dataset (Zerva et al., 2022). The annotators pro-
vided a source-based direct assessment (DA) (Gra-
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Avg DA Avg z

test.pe 83.76 0.426

KU_UPs-filtered4-PRIMARY 66.56 −0.171
test.mt 65.86 −0.138
kaistai_prompt-w-cot_primary 64.79 −0.116

Table 6: Results for the human evaluation campaign
for the En-Mr language pair. Systems ordered by DA
score; systems within a cluster are considered tied; lines
indicate clusters according to Wilcoxon rank-sum test p
<0.05.

ham et al., 2013b; Cettolo et al., 2017; Bojar et al.,
2018) score to each segment containing the source
and the APE system output. We hired 4 translators
to evaluate the two primary system submissions
(KU_UP & KAISTAI), manually post-edited seg-
ments (test.pe), and the MT Output (test.mt). We
chose to allocate an equal number of instances to
each translator after shuffling, and only a single DA
annotation was collected for each instance (Toral,
2020). Shuffling the instances before allocation
helps prevent annotator bias towards a single sys-
tem in the direct assessments.

The annotation guidelines provide a detailed de-
scription of potential adequacy and fluency-based
errors based on which the translator could estimate
the direct assessment score range. However, the
translators were additionally instructed to priori-
tize adequacy errors and focus on assessing the
semantic similarity between the source and the sys-
tem output. The annotators manually entered the
DA score between 0-100. The collected DA an-
notations were unshuffled based on the segment
IDs, which were unknown to the translators. We
expected the human post-editing to be of higher
quality compared to APE system submissions and,
consequently, better than the MT baseline.

5.2.2 Evaluation Results

We present the results obtained from the human
evaluation campaign in Table 6. As expected, the
human post-edited segments were rated the high-
est at 83.76 mean DA score. However, contrary to
automatic evaluation, the submission by KU_UP
was rated slightly better than the MT baseline
(test.mt). But, the score difference in both cases-
human and automatic evaluation, seems insignifi-
cant. Additionally, as per the Wilcoxon Rank-sum
test, KU_UP and MT baseline score distributions
seem to be in a cluster. In line with the automatic

evaluation, the mean DA obtained by the submis-
sion from kaistai was rated the lowest at 64.79,
lower than the MT baseline at 65.86. This sub-
mission utilizes LLMs to perform the APE task
and raises a question on the viability of LLMs for
APE when a low-resource language is concerned.
LLMs are mostly fine-tuned and/or evaluated on
task datasets in English (Hendrycks et al., 2020;
Longpre et al., 2023), and there remain unanswered
questions on their viability for complex and chal-
lenging multilingual tasks like APE. Owing to a
challenging test set this year, our analysis high-
lights the difficulty posed by the task and implores
us to consider a different setting in which the APE
task can perhaps gain assistance through a transla-
tion quality signal. QE systems have been explored
for assisting the APE task in a supervised multi-
task scenario, which intuitively helps the model
perform better at both tasks.

6 Conclusion

We presented the results from the 9th shared task
on Automatic Post-Editing at WMT. In continuity
with the 2022 round, the task focused on the au-
tomatic correction of NMT outputs generated by
a black-box English-Marathi system. The three
participating systems were evaluated both automat-
ically (with TER as the primary metric, BLEU,
and ChrF) and manually. According to automatic
evaluation results, only one (late) submission suc-
ceeded in outperforming the do-nothing baseline.
The analysis of this year’s data suggests that one of
the main causes of difficulty might be the bimodal,
U-shaped TER distribution of the test instances,
which substantially differs from the test set distri-
butions observed in all previous rounds (skewed
but a pattern closer to normal). Our manual evalu-
ation confirms the automatic evaluation outcomes
and affirms the challenge posed by APE for the
current approaches. We observe that one of the sys-
tems performs quite close to the MT baseline while
the other performs well below the same. Addition-
ally, the lack of multilingual datasets in LLM train-
ing/benchmarking raises a question on the viability
of performing challenging multilingual tasks like
APE. All in all, these findings advocate for further
research on this challenging problem, which, far
from being solved, this year revealed new nuances
in terms of difficulty. Next year, we plan to intro-
duce two new low-resource language pair datasets
for the APE task. Future developments will also
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likely include a re-definition of some aspects of
the evaluation settings, which have remained rel-
atively stable over the years. For instance, the set
of automatic evaluation metrics will likely be re-
considered and expanded so as to include more
semantics-oriented measures, with an eye on the ad-
vent of large language models increasingly adopted
also for APE.
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Abstract

This paper presents the results of the low-
resource Indic language translation task or-
ganized alongside the Eighth Conference on
Machine Translation (WMT) 2023. In this
task, participants were asked to build machine
translation systems for any of four language
pairs, namely, English-Assamese, English-
Mizo, English-Khasi, and English-Manipuri.
For this task, the IndicNE-Corp1.0 dataset is re-
leased, which consists of parallel and monolin-
gual corpora for northeastern Indic languages
such as Assamese, Mizo, Khasi, and Manipuri.
The evaluation will be carried out using auto-
matic evaluation metrics (BLEU, TER, RIBES,
COMET, ChrF) and human evaluation.

1 Introduction

Low-resource Indic languages refer to the vast ar-
ray of languages spoken in India, which, unfortu-
nately, possess limited linguistic resources avail-
able for their study and development. These lan-
guages typically suffer from a combination of fac-
tors that set them apart from the more prominent
and widely supported languages spoken in the coun-
try. The challenges these languages face include
having a smaller number of speakers, a relative lack
of governmental support, inadequate documenta-
tion, and limited access to technological resources.

India is renowned for its linguistic diversity, with
a rich tapestry of languages spoken across the sub-
continent. The Eighth Schedule of the Indian Con-
stitution officially recognizes 22 languages, which
receive significant government backing and protec-
tion. However, beyond these major languages, nu-
merous smaller languages and dialects are spoken
by various indigenous and minority communities
throughout the country.

These low-resource Indic languages face a se-
ries of interconnected challenges that make their

preservation and promotion difficult: lack of writ-
ten scripts, limited vocabulary resources, inade-
quate linguistic research, and insufficient digital
content. The collective impact of these factors
makes it challenging to preserve and promote low-
resource Indic languages. As a consequence, they
are at risk of falling into disuse, with their speak-
ers shifting to more widely recognized languages.
Efforts to document, revitalize, and support these
languages are crucial not only for linguistic diver-
sity but also for the preservation of cultural heritage
and the rights of minority language communities
in India.

Efforts are being made by various organizations,
researchers, and language enthusiasts to address
the issues faced by low-resource Indic languages
(Pal et al., 2013a,b; Pal, 2018). These initiatives
involve language documentation, the development
of writing systems, the creation of linguistic re-
sources such as parallel corpora (Ramesh et al.,
2022), parallel fragment extraction from compara-
ble corpora (Gupta et al., 2013; Pal et al., 2014),
dictionaries and grammars, and the promotion of
language use through educational programs and
digital platforms.

Technology indeed plays a pivotal role in sup-
porting low-resource Indic languages. In recent
years, machine learning and natural language pro-
cessing techniques have been harnessed to create
innovative solutions for these languages, includ-
ing speech recognition, machine translation, and
text-to-speech systems. These technological ad-
vancements offer a transformative potential in ad-
dressing the linguistic challenges faced by these
languages and can have a profound impact on their
preservation and revitalization.

To work towards the goal of supporting low-
resource Indic languages, we organized the "In-
dic MT Shared Task" focusing on several less-
popular languages that belong to different lan-
guage families. These languages include As-
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samese (Indo-Aryan), Mizo (Sino-Tibetan), Khasi
(Austroasiatic), and Manipuri (Sino-Tibetan). In
this shared task, we present IndicNE-Corp1.0 in
which parallel (English-Assamese (en–as), English–
Mizo (en–lus), English–Khasi (en–kha), English–
Manipuri (en–mni)) and monolingual (Assamese,
Mizo, Khasi, Manipuri) corpora for northeastern
Indic languages available.

2 Shared Task: Low-Resource Indic
Language Translation

In recent years, there has been significant improve-
ment in the performance of machine translation
(MT) systems. This progress can be attributed to
the development of new techniques, such as multi-
lingual translation and transfer learning. As a result,
the benefits of MT are no longer restricted to users
of widely spoken languages. This advancement has
led to a growing interest within the research com-
munity in expanding MT coverage to encompass a
wider range of languages, each with its unique geo-
graphical presence, degree of diffusion, and level
of digitalization.

However, despite the enthusiasm for extending
MT to more languages and users, there remains a
substantial challenge. The challenge stems from
the fact that MT methods typically require large
volumes of parallel data for training high-quality
translation systems. This requirement has proven
to be a major hurdle, particularly when dealing
with low-resource languages where obtaining such
extensive parallel data can be exceedingly diffi-
cult. Consequently, there is a pressing need to
develop MT systems that can perform well even
when trained on relatively small parallel datasets.
The ability to achieve effective machine translation
with limited resources is of paramount importance
for increasing accessibility and usability across a
wide spectrum of languages and linguistic commu-
nities. In this translation task, our focus was on the
following language pairs (both directions for each):

• Subtask-1 : English↔ Assamese

• Subtask-2 : English↔Mizo

• Subtask-3 : English↔ Khasi

• Subtask-4 : English↔Manipuri

In this translation task, participants had the oppor-
tunity to submit up to 1 PRIMARY system for
each language pair/translation direction, where no

additional parallel data was permitted for train-
ing. Additionally, participants could submit up
to 2 CONTRASTIVE systems for each language
pair/translation direction. This structure allowed
participants to showcase their translation systems
under various conditions and constraints, including
the absence of additional parallel data in the case
of PRIMARY systems.

3 Dataset: IndicNE-Corp1.0

In the creation of IndicNE-Corp1.0, we compiled
datasets from our prior research projects, includ-
ing contributions from Laskar et al. (2020, 2022);
Khenglawt et al. (2022); Laskar et al. (2021);
Laitonjam and Ranbir Singh (2021). These datasets
served as the foundation for constructing both
parallel and monolingual corpora. In our earlier
works, we undertook the development of English-
Assamese (eng-asm) (Laskar et al., 2020, 2022),
English-Mizo (eng-lus) (Khenglawt et al., 2022),
English-khasi (eng-kha) (Laskar et al., 2021),
English-Manipuri (eng-mni) (Laitonjam and Ran-
bir Singh, 2021) parallel and monolingual cor-
pora for Assamese, Mizo, Khasi and Manipuri lan-
guages. The different online sources were explored
that include Bible, multilingual online dictionary
(Xobdo and Glosbe), multilingual question paper,
PMIndia1 (Haddow and Kirefu, 2020), web pages,
blogs and online news papers. The collected data
statistics for parallel (train, validation and test set)
and monolingual corpora are presented in subse-
quent sections below. For primary investigation in
this shared task, we have not included very com-
plex sentences in the test set.

3.1 Assamese

Assamese exhibits a subject-object-verb (SOV)
word order, in contrast to the subject-verb-object
(SVO) word order found in English. Additionally,
it is characterized as an agglutinative language, as
discussed by Sarma et al. (2017) and Baruah et al.
(2021), signifying its propensity to incorporate suf-
fixes and prefixes into words to convey diverse
grammatical meanings. This intricacy poses a no-
table challenge for machine translation systems, as
they must accurately analyze and generate these
intricate word forms.

Furthermore, Assamese boasts a complex verb
conjugation system encompassing tense, aspect,
mood, and agreement markers. These markers hold

1http://data.statmt.org/pmindia/v1/ parallel/
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the power to significantly alter the meaning of a
verb, making it a formidable task for translation
systems to capture these subtleties with precision.
The data statistics for the English-Assamese paral-
lel data are presented in Table 1.

Type Sentences Tokens
eng asm

Train 50,000 969,623 825,063
Validation 2,000 31,503 25,929
Test 2,000 32,466 27,483

Table 1: English-Assamese parallel data statistics for
train, valid, and test set

3.2 Mizo

Mizo follows the object-subject-verb order when
the object is considered. Mizo is a tonal language
(Lalrempuii et al., 2021; Khenglawt et al., 2022),
which means that differences in pitch or tone can
represent different meanings. The vowels (a, aw, e,
i, o, u) primarily indicate intonation. In the Mizo
language, the main tones are rising, falling, high,
and low. For example, depending on the tone, the
word “ban” in Mizo can mean a pillar, the arm, to
stretch, arrive at, sticky, or dismiss. A circumflex
(ˆ) is frequently used to indicate long intonations
(primarily to distinguish them from short intona-
tions). Mizo is an agglutinative and highly inflected
language with declension of nouns and pronouns.
It also has many monosyllables and decomposable
polysyllables, with meaning derived from each syl-
lable. A sentence’s tense can be changed by includ-
ing particles such as “ang,” “dawn,” “mek,” “tawh,”
and so on. The data statistics for the English-Mizo
parallel data are presented in Table 2.

Type Sentences Tokens
eng lus

Train 50,000 981,468 1,06,2414
Validation 1,500 38,525 40,983
Test 2,000 21,905 25,098

Table 2: English-Mizo parallel data statistics for train,
valid and test set

3.3 Khasi

Khasi follows the subject-verb-object word order.
It orthography has 23 alphabets and has six vowels,
the vowels are “a e i ï o u”. In Khasi orthography
the alphabets “c f q v x z” are not present and in-
stead the letters “ï ñ ng” are present which makes
the orthography to be different from English or
other orthographies (Warjri et al., 2021). Khasi is

rich in subject agreement markers. Subject agree-
ment is indicated by verbs, adjectives, and adverbs.
Nouns have their own grammatical number and
gender. In morphology, Khasi is mostly isolating;
while some words are derived through specific mor-
phological processing, others are found standing
alone with no morphology indicated. As a result,
(a) word categories such as Nouns, Verbs, Adjec-
tives, and so on are invariant, and (b) words are
mostly mono-morphemic in nature, so it is com-
mon to encounter only isolating words in a single
long sentence or discourse. The data statistics for
the English-Khasi parallel data are presented in
Table 3.

Type Sentences Tokens
eng kha

Train 24,000 7,29,930 8,75,545
Validation 1,000 24,609 37,407
Test 1,000 24,150 35,901

Table 3: English-Khasi parallel data statistics for train,
valid and test set

3.4 Manipuri
Manipuri language uses Bengali script2 and Meetei
mayek3 in written form. In this dataset, we use
the Bengali script. Manipuri language also has
an extensive suffix with limited prefixation and
verb-final word order in a sentence, i.e., subject-
object-verb order (Huidrom et al., 2021). Linguis-
tic features of this language include agglutinative
verb morphology, tone, the absence of grammatical
person, number, gender, and a prevalence of as-
pect over tense. The data statistics for the English-
Manipuri parallel data are presented in Table 4.

Type Sentences Tokens
eng mni

Train 21,687 390,730 330,319
Validation 1,000 16,905 14,469
Test 1,000 14,886 12,775

Table 4: English-Manipuri parallel data statistics for
train, valid, and test set

Table 5 presents the statistics for parallel data
length differences among the four language pairs.
In Figure 1, we illustrate the overlapping tokens
between the test set and the training and validation
sets for these same four language pairs. In addition
to the parallel data, we have also made available
monolingual corpora for Assamese, Mizo, Khasi,

2http://unicode.org/charts/PDF/U0980.pdf
3http://unicode.org/charts/PDF/UABC0.pdf
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Figure 1: Overlapping tokens among test-train and test-
validation data set of English-Assamese, English-Mizo,
English-Khasi and English-Manipuri

and Manipuri. The monolingual data statistics per
languages are presented in Table 6.

Language Size (MB) Sentences Tokens
asm 805 2,624,715 49,232,154
lus 145 1,909,823 27,936,225
kha 104 182,737 22,140,361
mni 716 2,144,897 36,514,693

Table 6: Monolingual data statistics for Assamese,
Mizo, Khasi and Manipuri languages

4 Participants and System Descriptions

In this shared task, a total of 31 teams registered
and contributed, as indicated in Table 8, the re-
leased the dataset have been distributed among par-
ticipants. In Table 7, we have compiled the system
outputs submitted by participants, encompassing
both primary and contrastive submission types.

Language Pair Number of Participants
English-Assamese 13 (Primary), 11 (contrastive)
English-Mizo 10 (Primary), 8 (contrastive)
English-Khasi 11 (Primary), 8 (contrastive)
English-Manipuri 14 (Primary), 11 (contrastive)

Table 7: Number of participants in the low-resource
Indic language translation task at WMT23

However, we have received system description
papers from 9 teams and included concise system
details for those teams where the authors provided
such information.

CFILT-IITB (Gaikwad et al., 2023): The par-
ticipant utilized phrase-pair injection (Sen et al.,
2021), back-translation (Sennrich et al., 2016), and
transfer learning with the help of large pre-trained
multilingual IndicTrans2 model (Gala et al., 2023)
to build NMT systems for the English-Assamese
and English-Manipuri language pairs.

IOL Research (Zhang et al., 2023): The contrib-
utor used monolingual data to train two denoising
language models similar to T5 (Raffel et al., 2020)
and BART (Lewis et al., 2019), and then used par-
allel data to fine-tune the pre-trained language mod-
els to obtain two multilingual machine translation
models. Besides, the multilingual machine transla-
tion models were used to translate English mono-
lingual data into other multilingual data, form-
ing multilingual parallel data as augmented data
(Sennrich et al., 2016) to build NMT systems for
English-Assamese, English-Mizo, English-Khasi,
and English-Manipuri language pairs.

IACS-LRILT (Suman et al., 2023): The team
IACS-LRILT used IndicBART (Dabre et al., 2022)
pre-trained language model for fine-tuning the
training data to build NMT systems for English-
Assamese, and English-Manipuri language pairs.

GUIT-NLP (Ahmed et al., 2023): Team GUIT-
NLP used back-translation (Sennrich et al., 2016)
strategy and explored NMT systems by leveraging
subword tokenization (Sennrich et al., 2015; Kudo
and Richardson, 2018) and hyperparameters tuning
for English-Assamese, English-Mizo, and English-
Khasi language pairs.

NITS-CNLP (Singh et al., 2023): The NITS-
CNLP team used the OpenNMT toolkit (Klein
et al., 2017) and built a transformer-based (Vaswani
et al., 2017) NMT model with hyperparameters tun-
ing for the English-Manipuri language pair.

NICT-AI4B (Dabre et al., 2023): The group
explored NMT systems by leveraging back-
translation strategy (Sennrich et al., 2016) with de-
noising techniques (Lewis et al., 2020; Dabre et al.,
2022) and fine-tuned IndicTrans2 model (Gala
et al., 2023) for the English-Assamese, English-
Mizo, English-Khasi, and English-Manipuri lan-
guage pairs.

MUNI-NLP (Signoroni and Rychly, 2023):
The participant explored transformer-based
(Vaswani et al., 2017) NMT systems by inves-
tigating different hyperparameters tuning for
English-Assamese, English-Mizo, English-Khasi,
and English-Manipuri language pairs.

CUNI (Kvapilíková and Bojar, 2023): The
CUNI team used back-translation (Sennrich et al.,
2016) for data augmentation, denoising, leverag-
ing multilingual masked language modelling, and
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Data Length Number of Sentences
eng-asm eng-lus eng-kha eng-mni

Test

1-10 435 1071 61 327
11-20 1013 804 315 462
21-30 481 120 381 164
31-40 71 5 194 43
41-50 49 4

Train

1-10 560 148 32 339
11-20 910 437 341 335
21-30 468 433 385 216
31-40 62 292 194 86
41-50 190 48 24

Valid

1-10 6895 10940 488 6351
11-20 21032 16264 5559 7681
21-30 18679 14316 7320 4764
31-40 3245 8007 6656 1947
41-50 149 473 3977 944

Table 5: Length-wise sentence group distribution for the test, train, and validation parallel data of English-Assamese,
English-Mizo, English-Khasi, and English-Manipuri

built NMT systems for English-Assamese, English-
Mizo, English-Khasi, and English-Manipuri lan-
guage pairs.

ATULYA-NITS (Agrawal et al., 2023): This
group used Google Colab, and trained the trans-
former model (Vaswani et al., 2017) using a
T4 GPU for the English-Assamese, and English-
Manipuri language pairs.

Organizer: The shared task organizer used
the OpenNMT toolkit (Klein et al., 2017) and
built biLSTM-based NMT systems with hyper-
parameters tuning only on parallel data for the
English-Assamese, English-Mizo, English-Khasi,
and English-Manipuri language pairs.

5 Results and Discussion

We present results4 for both directions of the four
language pairs, namely, English-Assamese in
Table 9, English-Mizo in Table 10, English-Khasi
in Table 11, and English-Manipuri in Table 12.
Here, we have reported the evaluation scores of
those teams who submitted system output and their
associated papers. To evaluate quantitative results,
standard evaluation metrics (Papineni et al., 2002),
namely, BLEU (bilingual evaluation under study),
TER (translation error rate) (Snover et al., 2006),
RIBES (rank-based intuitive bilingual evaluation
score) (Isozaki et al., 2010), ChrF (character

4http://www2.statmt.org/wmt23/indic-mt-task.html

n-gram F-score) (Popović, 2015) and COMET (Rei
et al., 2020). Moreover, we have hired linguistic
experts who possess linguistic knowledge of the
concerned language pair and randomly selected
20 sample sentences of primary submission type
for manual evaluation (reported in Table 13 to
16). The human evaluator evaluates the candidate
translations based on adequacy, fluency, and
overall rating. Adequacy of translation measures
the amount of meaning of reference translation,
which is contained in a candidate translation.
Furthermore, a translation is considered fluent
if it is a well-formed sentence of the target
language, irrespective of its correspondence with
the reference translation. For example, given the
reference translation to be “He wakes up early
in the morning,” the candidate translation “He is
flying to Delhi” is inadequate, as it contains no
content of the reference translation. However, the
translation is fluent because the sentence has a
proper meaning, and it is a well-formed sentence in
the English language. The overall rating takes into
account adequacy as well as fluency of candidate
translation. An adequate and fluent translation is
considered excellent and assigned a high overall
rating. The human evaluation parameters have
been rated on a scale of 0–5, with larger values
signifying the better. Final adequacy, fluency, and
overall rating scores are the average scores of
individual test sentences.
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Team Name Organization
BITS-P Birla Institute of Technology and Science, Pilani, India
NITS-CNLP National Institute Of Technology, Silchar, India
OneMT IIIT-Hyderabad, India
SML lab IISc, Bangalore, India
NICT-AI4B NICT Japan
ANVITA Centre for AI and Robotics (CAIR), India
MUNI-NLP Masaryk University, Czechia
HV-NITS National Institute Of Technology, Silchar, India
IREL-IIITH IIIT HYDERABAD India
NVIDIA-India NVIDIA, India
AIMLNLP-IITI Indian Institute of Technology, Indore, India
NLP_NITH NIT Hamirpur, India
TRANSSION MT TRANNSION, China
CNLP-IISC IISc, Bangalore, India
CUNI Charles University, Czechia
A3-108 LTRC, IIIT Hyderabad, India
IOL Research Transn, China
SLP-BV Banasthali Vidyapith, India
IACS-LRILT Indian Assosciation for the Cultivation of Science, India
NITR NIT Rourkela, India
IIT-NLP lab IIT dharwad, India
Team SiggyMorph University of British Columbia, Canada
Lexical wizards Kalinga Institute of Industrial Technology, India
JUNLP Jadavpur University, India
ATULYA-NITS National Institute of Technology, Silchar, India
CFILT-IITB Indian Institute of Technology, Bombay, India
COGNITIVE LAB-IIITM Indian Institute of Information Technology, Manipur, India
LRNMT-IIITH IIIT Hyderabad, India
GUIT-NLP Gauhati University, India
TRDDC TCS Research, India
HW-TSC Huawei Translate Center, China

Table 8: Registered participants in the low-resource Indic language translation task at WMT23 and dataset released
to them. Not all the teams participated in all language pairs. Bold marks are those who submitted system outputs
and system description papers
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Discussion:

• For both directions of English-Assamese,
Team: IACS-LRILT attains the best BLEU
score (as shown in Table 9). They utilized the
IndicBART language model in fine-tuning the
training model. Also, Assamese-to-English
translation attains higher scores than English-
to-Assamese translation. It is due to the fact
that Assamese is a highly inflectional, mor-
phologically rich, and agglutinative language.

• For both directions of English-Mizo, Team:
NICT-AI4B attains the best BLEU score (as
shown in Table 10). They utilized IndicTrans2
model in fine-tuning the training model. It is
observed that encountering tonal words for
English-to-Mizo translation is a challenging
task.

• For both directions of English-Khasi, Team:
IOL Research attains the best BLEU score
(as shown in Table 11). They used denois-
ing language models (T5 / BART) and data
augmentation techniques.

• For English-to-Manipuri translation, Team:
CUNI attains the best BLEU score (as shown
in Table 12). They used data augmenta-
tion, denoising, leveraging multilingual, and
masked language modelling techniques. And,
Manipuri-to-English translation, Team: IACS-
LRILT attains the best BLEU score (as shown
in Table 12) by utilizing the IndicBART lan-
guage model in fine-tuning the training model.
Also, it is observed that Manipuri-to-English
translation attains higher scores than English-
to-Manipuri translation. This is due to the fact
that Manipuri is a morphologically rich and
highly agglutinative language.

• In human evaluation, it is noticed that fluency
scores are better than adequacy scores for all
language pairs submission. The reason be-
hind this is that NMT systems are well known
for producing fluent translations (Koehn and
Knowles, 2017).

6 Conclusion

We presented the results of the participating teams
in the four language pairs translation task in terms
of automatic and human evaluation metrics. We

released a dataset, namely, IndicNE-Corp1.0 in
the shared task on low-resource Indic language
translation at the eighth conference on machine
translation (WMT) 2023. The dataset comprises
four low-resource languages, namely, Assamese,
Mizo, Khasi, and Manipuri which belong to the
northeastern region of India. In the future, we will
include more northeastern Indic language datasets
in addition to increasing the existing dataset size.

Comments

A few teams, namely, TRANSSION MT (TRANN-
SION, China), HW-TSC (Huawei Translate Cen-
ter, China), ANVITA (Centre for AI and Robotics
(CAIR), India), COGNITIVE LAB-IIITM (Indian
Institute of Information Technology, Manipur, In-
dia) and NITR (NIT Rourkela, India) submitted
system results but unfortunately did not submit the
associated system description paper. Therefore, we
have not reported their results in this paper.

Acknowledgements

We would like to thank all the participants for their
active participation in this shared task. Also, thank-
ful to the organizers and reviewers of the Eighth
Conference on Machine Translation (WMT) 2023.

References
Goutam Agrawal, Rituraj Das, Anupam Biswas, and

Dalton Meitei Thounaojam. 2023. Neural machine
translation for english - manipuri and english - as-
samese.

Mazida Ahmed, Kuwali Talukdar, Parvez Boruah,
Shikhar Kumar Sarma, and Kishore Kashyap. 2023.
Guit-nlp’s submission to shared task: Low resource
indic language translation.

Rupjyoti Baruah, Rajesh Kumar Mundotiya, and
Anil Kumar Singh. 2021. Low resource neural ma-
chine translation: Assamese to/from other indo-aryan
(indic) languages. ACM Trans. Asian Low-Resour.
Lang. Inf. Process., 21(1).

Raj Dabre, Jay Gala, and Pranjal Chitale. 2023. Nict-
ai4b’s submission to the indic mt shared task in wmt
2023.

Raj Dabre, Himani Shrotriya, Anoop Kunchukuttan,
Ratish Puduppully, Mitesh Khapra, and Pratyush Ku-
mar. 2022. IndicBART: A pre-trained model for indic
natural language generation. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1849–1863, Dublin, Ireland. Association for
Computational Linguistics.

688



Team Name Translation Type BLEU ChrF RIBES TER COMET
English-To-Assamese (Primary) 34.82 56.58 0.87 55.10 0.77
English-To-Assamese (Contrastive-1) 34.71 56.59 0.87 54.75 0.78
English-To-Assamese (Contrastive-2) 6.57 39.71 0.45 86.26 0.79

IACS-LRILT Assamese-To-English (Primary) 66.36 75.88 0.93 37.44 0.84
Assamese-To-English (Contrastive-1) 66.33 75.88 0.93 37.38 0.84
Assamese-To-English (Contrastive-2) 23.19 48.42 0.61 71.79 0.75
English-To-Assamese (Primary) 18.15 50.16 0.53 75.53 0.80
English-To-Assamese (Contrastive) 18.15 50.16 0.53 75.53 0.80

CFILT-IITB Assamese-To-English (Primary) 35.24 57.73 0.70 60.85 0.80
Assamese-To-English (Contrastive) 35.24 57.73 0.70 60.85 0.80
English-To-Assamese (Primary) 17.03 45.31 0.58 76.57 0.78
English-To-Assamese (Contrastive-2) 21.07 51.71 0.58 73.03 0.81
English-To-Assamese (Contrastive-1) 18.09 51.98 0.57 73.41 0.82

NICT-AI4B Assamese-To-English (Primary) 27.02 50.71 0.71 62.46 0.76
Assamese-To-English (Contrastive-1) 37.28 59.97 0.72 58.81 0.81
Assamese-To-English (Contrastive-2) 36.97 59.82 0.72 58.53 0.81
English-To-Assamese (Primary) 14.35 43.87 0.63 73.37 0.78
English-To-Assamese (Contrastive) 14.10 43.66 0.63 72.77 0.78

IOL Research Assamese-To-English (Primary) 28.73 51.99 0.76 57.06 0.78
Assamese-To-English (Contrastive) 27.83 51.45 0.76 57.44 0.78
English-To-Assamese (Primary) 13.92 41.66 0.60 80.26 0.76
English-To-Assamese (Contrastive-1) 3.98 41.57 0.59 78.91 0.75
English-To-Assamese (Contrastive-2) 3.88 39.68 0.59 80.34 0.75

CUNI Assamese-To-English (Primary) 20.71 44.94 0.69 73.56 0.72
Assamese-To-English (Contrastive-1) 17.49 42.21 0.65 80.90 0.70
Assamese-To-English (Contrastive-2) 16.85 41.55 0.65 85.24 0.70
English-To-Assamese (Primary) 8.57 25.24 0.44 86.14 0.59

Organizer Assamese-To-English (Primary) 11.28 28.70 0.53 83.10 0.56
English-To-Assamese (Primary) 7.96 27.31 0.31 91.38 0.59

MUNI-NLP Assamese-To-English (Primary) 11.29 30.13 0.64 73.39 0.64
English-To-Assamese (Primary) 5.47 21.66 0.32 96.76 0.57

ATULYA-NITS Assamese-To-English (Primary) 8.50 24.36 0.45 89.53 0.53
English-To-Assamese (Primary) 4.89 25.16 0.46 87.21 0.61
English-To-Assamese (Contrastive-1) 4.27 24.59 0.43 90.13 0.59
English-To-Assamese (Contrastive-2) 3.75 22.65 0.42 93.57 0.58

GUIT-NLP Assamese-To-English (Primary) 5.50 25.81 0.56 80.10 0.57
Assamese-To-English (Contrastive-1) 4.70 24.96 0.55 81.53 0.56
Assamese-To-English (Contrastive-2) 4.14 23.73 0.53 83.41 0.55

Table 9: Automatic evaluation scores of participated teams for English-Assamese language pair

Team Name Translation Type BLEU ChrF RIBES TER COMET
English-To-Mizo (Primary) 33.18 56.73 0.73 55.68 0.70
English-To-Mizo (Contrastive-2) 33.64 56.88 0.72 57.71 0.71
English-To-Mizo (Contrastive-1) 26.47 50.60 0.66 65.97 0.69

NICT-AI4B Mizo-To-English (Primary) 32.47 51.33 0.69 60.56 0.67
Mizo-To-English (Contrastive-2) 33.30 52.74 0.70 60.87 0.68
Mizo-To-English (Contrastive-1) 28.47 47.93 0.61 67.54 0.69
English-To-Mizo (Primary) 31.20 54.56 0.76 54.54 0.70
English-To-Mizo (Contrastive-1) 31.28 54.58 0.76 54.20 0.70
English-To-Mizo (Contrastive-2) 30.66 54.48 0.76 54.98 0.69

CUNI Mizo-To-English (Primary) 29.47 49.98 0.73 60.44 0.66
Mizo-To-English (Contrastive-1) 28.63 48.58 0.72 62.21 0.65
Mizo-To-English (Contrastive-2) 28.53 49.51 0.73 62.55 0.66
English-To-Mizo (Primary) 28.24 54.02 0.78 53.04 0.70
English-To-Mizo (Contrastive-1) 27.74 53.71 0.78 53.40 0.70

IOL Research Mizo-To-English (Primary) 32.54 51.83 0.78 53.48 0.71
Mizo-To-English (Contrastive-1) 31.37 50.94 0.77 55.37 0.70
English-To-Mizo (Primary) 23.67 45.1 0.71 62.29 0.67

Organizer Mizo-To-English (Primary) 22.59 39.53 0.66 68.83 0.57
English-To-Mizo (Primary) 23.29 46.72 0.75 59.93 0.68
English-To-Mizo (Contrastive-1) 23.78 48.06 0.75 58.07 0.69

GUIT-NLP Mizo-To-English (Primary) 18.81 40.33 0.66 73.65 0.57
Mizo-To-English (Contrastive-1) 18.51 41.32 0.67 73.70 0.60
English-To-Mizo (Primary) 20.48 45.60 0.73 61.22 0.68

MUNI-NLP Mizo-To-English (Primary) 23.16 43.02 0.72 62.31 0.63

Table 10: Automatic evaluation scores of participated teams for English-Mizo language pair
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Team Name Translation Type BLEU ChrF RIBES TER COMET
English-To-Khasi (Primary) 21.63 44.47 0.72 62.10 0.68
English-To-Khasi (Contrastive) 21.48 44.30 0.65 62.55 0.68

IOL Research Khasi-To-English (Primary) 20.72 43.34 0.72 71.78 0.63
Khasi-To-English (Contrastive) 20.60 43.09 0.58 71.35 0.63
English-To-Khasi (Primary) 19.95 43.30 0.68 66.47 0.67
English-To-Khasi (Contrastive-2) 21.05 46.06 0.65 73.80 0.68
English-To-Khasi (Contrastive-1) 20.77 43.82 0.65 69.51 0.68

NICT-AI4B Khasi-To-English (Primary) 17.80 39.22 0.66 74.10 0.60
Khasi-To-English (Contrastive-1) 20.06 40.33 0.58 78.44 0.60
Khasi-To-English (Contrastive-2) 20.02 39.82 0.59 77.50 0.59
English-To-Khasi (Primary) 16.64 39.92 0.65 70.69 0.67
English-To-Khasi (Contrastive-1) 16.49 40.00 0.65 69.92 0.67
English-To-Khasi (Contrastive-2) 15.79 38.79 0.65 71.29 0.66

CUNI Khasi-To-English (Primary) 13.84 37.05 0.65 79.73 0.58
Khasi-To-English (Contrastive-1) 12.71 36.32 0.66 81.37 0.57
Khasi-To-English (Contrastive-2) 11.55 35.62 0.64 87.54 0.56
English-To-Khasi (Primary) 13.90 37.31 0.61 73.99 0.65

MUNI-NLP Khasi-To-English (Primary) 12.71 34.55 0.65 78.15 0.56
English-To-Khasi (Primary) 10.41 33.31 0.63 71.67 0.64

GUIT-NLP Khasi-To-English (Primary) 8.74 30.54 0.63 79.64 0.52
English-To-Khasi (Primary) 10.08 31.13 0.59 75.57 0.62

Organizer Khasi-To-English (Primary) 8.02 28.04 0.56 86.94 0.49

Table 11: Automatic evaluation scores of participated teams for English-Khasi language pair

Team Name Translation Type BLEU ChrF RIBES TER COMET
English-To-Manipuri (Primary) 29.50 59.85 0.73 60.60 0.74
English-To-Manipuri (Contrastive-1) 5.96 60.96 0.75 58.97 0.75
English-To-Manipuri (Contrastive-2) 5.86 60.13 0.73 60.25 0.74

CUNI Manipuri-To-English (Primary) 36.08 62.29 0.76 61.19 0.76
Manipuri-To-English (Contrastive-1) 33.62 60.29 0.75 65.96 0.75
Manipuri-To-English (Contrastive-2) 31.03 59.08 0.74 77.42 0.74
English-To-Manipuri (Primary) 27.36 61.60 0.74 58.28 0.76
English-To-Manipuri (Contrastive-2) 27.40 61.55 0.74 58.16 0.76
English-To-Manipuri (Contrastive-1) 24.17 62.95 0.70 62.85 0.76

NICT-AI4B Manipuri-To-English (Primary) 39.40 64.70 0.77 51.27 0.79
Manipuri-To-English (Contrastive-1) 46.06 69.96 0.80 47.44 0.83
Manipuri-To-English (Contrastive-2) 43.35 69.27 0.80 47.43 0.82
English-To-Manipuri (Primary) 26.36 63.48 0.70 62.04 0.76
English-To-Manipuri (Contrastive-1) 26.36 63.48 0.70 62.04 0.76

CFILT-IITB Manipuri-To-English (Primary) 47.54 70.41 0.81 47.17 0.83
Manipuri-To-English (Contrastive-1) 47.54 70.41 0.81 47.17 0.83
English-To-Manipuri (Primary) 25.78 49.94 0.84 60.43 0.71
English-To-Manipuri (Contrastive-1) 25.82 49.93 0.84 60.57 0.71
English-To-Manipuri (Contrastive-2) 9.69 40.45 0.54 81.18 0.67

IACS-LRILT Manipuri-To-English (Primary) 69.75 78.16 0.94 32.08 0.84
Manipuri-To-English (Contrastive-1) 69.75 78.16 0.94 32.10 0.84
Manipuri-To-English (Contrastive-2) 22.10 48.03 0.63 72.19 0.70
English-To-Manipuri (Primary) 23.51 60.03 0.74 60.68 0.75
English-To-Manipuri (Contrastive) 23.05 59.85 0.70 61.04 0.75

IOL Research Manipuri-To-English (Primary) 42.68 67.55 0.83 46.27 0.82
Manipuri-To-English (Contrastive) 42.48 67.51 0.80 46.31 0.82
English-To-Manipuri (Primary) 22.75 48.35 0.61 70.02 0.70

NITS-CNLP Manipuri-To-English (Primary) 26.92 48.64 0.65 67.62 0.66
English-To-Manipuri (Primary) 21.58 45.97 0.61 69.76 0.69

Organizer Manipuri-To-English (Primary) 24.86 46.37 0.64 70.26 0.63
English-To-Manipuri (Primary) 19.65 53.26 0.66 69.70 0.72

MUNI-NLP Manipuri-To-English (Primary) 32.18 58.71 0.76 56.35 0.74
Manipuri-To-English (Contrastive) 32.18 58.71 0.74 67.86 0.74
English-To-Manipuri (Primary) 15.02 35.96 0.46 85.96 0.65

ATULYA-NITS Manipuri-To-English (Primary) 18.70 38.49 0.54 81.02 0.59

Table 12: Automatic evaluation scores of participated teams for English-Manipuri language pair
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Team Name Translation Type Adequacy Fluency Overall Rating
English-To-Assamese (Primary) 3.60 4.35 3.98

NICT-AI4B Assamese-To-English (Primary) 3.75 4.30 4.03
English-To-Assamese (Primary) 2.80 3.85 3.33

CFILT-IITB Assamese-To-English (Primary) 3.50 4.35 3.93
English-To-Assamese (Primary) 2.55 3.20 2.88

IACS-LRILT Assamese-To-English (Primary) 3.20 3.35 3.28
English-To-Assamese (Primary) 3.10 4.20 3.65

IOL Research Assamese-To-English (Primary) 3.70 4.60 4.15
English-To-Assamese (Primary) 3.60 4.05 3.82

CUNI Assamese-To-English (Primary) 2.85 3.80 3.32
English-To-Assamese (Primary) 1.60 3.05 4.65

Organizer Assamese-To-English (Primary) 1.50 2.55 2.02
English-To-Assamese (Primary) 1.35 3.35 2.35

MUNI-NLP Assamese-To-English (Primary) 1.50 2.45 1.97
English-To-Assamese (Primary) 1.50 2.95 2.22

ATULYA-NITS Assamese-To-English (Primary) 1.30 2.60 3.90
English-To-Assamese (Primary) 1.35 3.05 2.20

GUIT-NLP Assamese-To-English (Primary) 1.00 2.45 3.45

Table 13: Human evaluation score of English-Assamese

Team Name Translation Type Adequacy Fluency Overall Rating
English-To-Mizo (Primary) 3.60 4.25 3.92

NICT-AI4B Mizo-To-English (Primary) 3.10 4.50 3.80
English-To-Mizo (Primary) 2.85 4.35 3.60

CUNI Mizo-To-English (Primary) 3.30 4.40 3.85
English-To-Mizo (Primary) 3.95 4.45 4.20

IOL Research Mizo-To-English (Primary) 3.75 4.55 4.15
English-To-Mizo (Primary) 2.05 3.55 2.80

Organizer Mizo-To-English (Primary) 1.60 3.35 2.47
English-To-Mizo (Primary) 3.05 3.85 3.45

MUNI-NLP Mizo-To-English (Primary) 2.50 4.20 3.35
English-To-Mizo (Primary) 3.25 4.15 3.70

GUIT-NLP Mizo-To-English (Primary) 2.00 3.75 2.87

Table 14: Human evaluation score of English-Mizo

Team Name Translation Type Adequacy Fluency Overall Rating
English-To-Khasi (Primary) 4.45 4.75 4.60

IOL Research Khasi-To-English (Primary) 4.30 4.70 4.50
English-To-Khasi (Primary) 4.20 4.60 4.40

NICT-AI4B Khasi-To-English (Primary) 3.70 4.40 4.05
English-To-Khasi (Primary) 3.30 4.20 3.75

CUNI Khasi-To-English (Primary) 3.40 4.40 3.90
English-To-Khasi (Primary) 2.70 4.50 3.60

MUNI-NLP Khasi-To-English (Primary) 2.65 4.05 3.35
English-To-Khasi (Primary) 2.80 4.60 3.70

GUIT-NLP Khasi-To-English (Primary) 2.45 3.80 3.12
English-To-Khasi (Primary) 1.95 4.05 3.00

Organizer Khasi-To-English (Primary) 1.80 3.45 2.62

Table 15: Human evaluation score of English-Khasi
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Team Name Translation Type Adequacy Fluency Overall Rating
English-To-Manipuri (Primary) 3.25 3.55 3.45

CUNI Manipuri-To-English (Primary) 3.05 3.15 3.00
English-To-Manipuri (Primary) 2.95 4.10 3.50

NICT-AI4B Manipuri-To-English (Primary) 3.50 3.50 3.45
English-To-Manipuri (Primary) 4.25 4.50 4.35

CFILT-IITB Manipuri-To-English (Primary) 4.80 4.75 4.75
English-To-Manipuri (Primary) 2.45 2.65 2.45

IACS-LRILT Manipuri-To-English (Primary) 3.45 3.45 3.45
English-To-Manipuri (Primary) 2.80 4.60 3.70

IOL Research Manipuri-To-English (Primary) 3.95 4.00 3.95
English-To-Manipuri (Primary) 2.45 3.05 2.70

NITS-CNLP Manipuri-To-English (Primary) 2.15 2.50 2.20
English-To-Manipuri (Primary) 2.50 3.50 2.95

Organizer Manipuri-To-English (Primary) 2.05 2.10 2.05
English-To-Manipuri (Primary) 3.00 3.50 3.15

MUNI-NLP Manipuri-To-English (Primary) 3.20 3.30 3.20
English-To-Manipuri (Primary) 1.75 2.15 1.95

ATULYA-NITS Manipuri-To-English (Primary) 1.80 1.85 1.80

Table 16: Human evaluation score of English-Manipuri
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Abstract

We benchmark the performance of segment-
level metrics submitted to WMT 2023 using the
ACES Challenge Set (Amrhein et al., 2022).
The challenge set consists of 36K examples
representing challenges from 68 phenomena
and covering 146 language pairs. The phe-
nomena range from simple perturbations at the
word/character level to more complex errors
based on discourse and real-world knowledge.
For each metric, we provide a detailed profile
of performance over a range of error categories
as well as an overall ACES-Score for quick
comparison. We also measure the incremental
performance of the metrics submitted to both
WMT 2023 and 2022. We find that 1) there
is no clear winner among the metrics submit-
ted to WMT 2023, and 2) performance change
between the 2023 and 2022 versions of the met-
rics is highly variable. Our recommendations
are similar to those from WMT 2022. Metric
developers should focus on: building ensem-
bles of metrics from different design families,
developing metrics that pay more attention to
the source and rely less on surface-level over-
lap, and carefully determining the influence of
multilingual embeddings on MT evaluation.

1 Introduction

Challenge sets are a useful tool in measuring the
performance of systems or metrics on one or more
specific phenomena of interest. They may be used
to compare the performance of a range of differ-
ent systems or to identify performance improve-
ment/degradation between successive iterations of
the same system.

Challenge sets exist for a range of natural lan-
guage processing (NLP) tasks including Sentiment
Analysis (Li et al., 2017; Mahler et al., 2017;
Staliūnaitė and Bonfil, 2017), Natural Language
Inference (McCoy and Linzen, 2019; Rocchietti
et al., 2021), Question Answering (Ravichander

∗Equal contribution by all authors.

et al., 2021), Machine Reading Comprehension
(Khashabi et al., 2018), Machine Translation (MT)
(King and Falkedal, 1990; Isabelle et al., 2017),
and the more specific task of pronoun translation
in MT (Guillou and Hardmeier, 2016).

The WMT 2021 Metrics shared task (Freitag
et al., 2021) introduced the task of constructing
contrastive challenge sets for the evaluation of MT
metrics. Contrastive challenge sets aim to assess
how well a given metric is able to discriminate
between a good and incorrect translation of the
source text. The provision of a reference translation
allows for flexibility: it may be included for the
assessment of reference-based (i.e. MT) metrics,
or excluded for the assessment of reference-free
(i.e. Quality Estimation (QE)) metrics.

We re-submitted ACES1 (Amrhein et al., 2022),
originally developed for the WMT 2022 challenge
sets shared task (Freitag et al., 2022), to the corre-
sponding shared task at WMT 2023. ACES largely
focuses on translation accuracy errors and consists
of 68 phenomena ranging from simple perturba-
tions at the word/character level to more complex
errors based on discourse and real-world knowl-
edge. We report on both the performance of metrics
submitted to WMT 2023, and on the incremental
performance of those metrics that were submitted
to both WMT 2022 and WMT 2023. We also re-
peat the analyses in Amrhein et al. (2022) for the
WMT 2023 metrics to confirm whether the findings
from WMT 2022 still hold.

Overall, we find similar trends to those observed
last year. Again, we do not find one clear winner
and whilst neural metrics tend to perform better
than their non-neural counterparts, different cat-
egories of metrics exhibit different strengths and
weaknesses. The major challenges identified in
Amrhein et al. (2022) still hold: (i) reference-based
metrics are still overly reliant on the reference

1The ACES dataset is available at https://huggingface.
co/datasets/nikitam/ACES
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Figure 1: Diagram of the error categories on which our collection of challenge sets is based. Red means challenge
sets are created automatically, and blue means challenge sets are created manually.

and do not pay enough attention to the source, (ii)
reference-based metrics still rely on surface-level
overlap, and (iii) the over-reliance on multilingual
embeddings still persists – evidence from our analy-
ses suggests that language agnostic representations
present in the multilingual space may harm per-
formance. Accordingly, our recommendations are
also similar to those of last year. Metric developers
should focus on: constructing ensembles of metrics
with different design principles, developing met-
rics that also focus on information in the source,
reducing dependence on surface-level overlap with
the reference, and reassessing the impact of multi-
lingual embeddings on MT evaluation.

With respect to incremental performance
changes between metrics submitted to both 2022
and 2023, we observe mixed results. Whilst im-
provements are observed for some metrics, there
is a degradation in performance for other metrics.
However, even for those metrics for which an over-
all improvement was observed, this improvement
was inconsistent across the top-level categories in
ACES. Further, the performance even degraded for
some categories.

2 ACES Overview

The Translation Accuracy ChallengE Set (ACES)
consists of 36,476 examples covering 146 language
pairs and representing challenges from 68 linguis-
tic phenomena. These phenomena are grouped
into ten top-level categories: addition, omission,

mistranslation, untranslated, do not translate errors,
overtranslation, undertranslation, real-world knowl-
edge, wrong language, and punctuation 2. The mis-
translation and real-world knowledge categories
are further sub-categorised to include additional
fine-grained categories. We illustrate the broad ac-
curacy error categories in Fig 1 and give examples
for each of the top-level categories in Appendix A.

The focus of ACES is on translation accuracy
errors, reflecting the need to evaluate contemporary
MT systems that are capable of producing fluent
but potentially error-prone output. The selection of
the top-level categories in the ACES error hierar-
chy is based on the Accuracy class in the Multidi-
mensional Quality Metrics (MQM) ontology (Lom-
mel et al., 2014), and extended to include trans-
lations defying real-world knowledge and trans-
lations in the wrong language. ACES includes
a wide range of phenomena ranging from simple
perturbations that involve the omission/addition of
characters or tokens, to more complex scenarios
involving mistranslations e.g. ambiguity or hallu-
cinations in translation, untranslated elements of
a sentence, discourse-level phenomena, and real-
world knowledge.

Each ACES example consists of a source sen-
tence, a reference translation, a phenomenon la-
bel indicating the error type, and two translation

2Note that although the focus of ACES is on accuracy
errors, we also include a small set of fluency errors for the
punctuation category.
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Mistranslation - Overly literal (Idioms)
SRC (de): Er hat versucht, mir die Spielregeln zu erklären, aber ich verstand nur Bahnhof.
REF (en): He tried to explain the rules of the game to me, but I did not understand them.

✓: He tried to explain the rules of the game to me, but it was all Greek to me.
✗: He tried to explain the rules of the game to me, but I only understood train station.

Real-world Knowledge - Commonsense
SRC (en): Die Luft im Haus war kühler als in der Wohnung.
REF (de): The air in the house was cooler than in the apartment.

✓: The air in the house was cooler than in the apartment because the apartment had a broken air conditioner.
✗: The air in the house was cooler than in the apartment because the house had a broken air conditioner.

Table 1: Examples from the Mistranslation and Real-world Knowledge categories in ACES. An example consists
of a source sentence (SRC), reference (REF), good (✓) and incorrect (✗) translations, and a phenomenon label
indicating the error type. en: English, de: German. Top: the German idiom “ich verstand nur Bahnhof” has been
translated in an overly-literal way in the incorrect translation. Bottom: the incorrect translation contains an error in
commonsense reasoning as to why the air in the house was cooler than in the apartment.

hypotheses: an incorrect translation containing
an error relating to the phenomenon of interest,
and a good translation. Several examples from
ACES are presented in Table 1. In the top exam-
ple, from the Mistranslation error category, the
incorrect translation contains an overly literally
translation of the German idiom “ich verstand nur
Bahnhof” (corresponding to the English expression
“it was all Greek to me”). In the bottom exam-
ple, from the Real-world Knowledge error category,
both the good and incorrect translations contain
additional information not present in the source
sentence, however, the incorrect translation con-
tains an error in commonsense reasoning as to why
the air in the house was cooler than the apartment.

ACES examples were constructed from pre-
existing datasets, using a range of automatic, semi-
automatic, and manual methods. A detailed de-
scription of each of the phenomena in ACES can
be found in Amrhein et al. (2022).

3 Related Work

Challenge sets have been used for several tasks (Li
et al. (2017); McCoy and Linzen (2019); Ravichan-
der et al. (2021), inter alia) to investigate the be-
haviour of these tasks under a specific phenomenon
rather than the standard test distribution (Popović
and Castilho, 2019). Lately, with the success of
neural metrics, the development of challenge sets
for MT evaluation has promoted great interest in
studying the strengths and weaknesses of these met-
rics. We summarise here recent work on challenge
sets for MT metric evaluation.

DEMETR (Karpinska et al., 2022), which com-
prises 31K English examples translated from ten
languages, was developed for evaluating MT met-

ric sensitivity to a range of 35 different types of
linguistic perturbations, belonging to semantic, syn-
tactic, and morphological error categories. These
were divided into minor, major, and critical errors
according to the type of perturbation, similar to the
grading of error categories to compute the weighted
ACES-Score. As in ACES, example generation
was carefully designed to form minimal pairs such
that the perturbed translation only differs from the
actual translation in one aspect. The application of
DEMETR in evaluating a suite of baseline metrics
revealed a similar pattern to the analyses in Am-
rhein et al. (2022) - that metric performance varies
considerably across the different error categories,
often with no clear winner. It is worth noting that
DEMETR and ACES each have their respective ad-
vantages: all examples in DEMETR have been veri-
fied by human annotators; ACES provides broader
coverage in terms of both languages and linguistic
phenomena.

In addition to ACES, three other datasets were
submitted to the WMT 2022 challenge sets shared
task (Freitag et al., 2022): SMAUG (Alves et al.,
2022), the HWTSC challenge set (Chen et al.,
2022), and the DFKI challenge set (Avramidis
and Macketanz, 2022). These datasets differ from
ACES in terms of their size, and the languages and
phenomena/categories they cover (see Table 2).

Both SMAUG and HWTSC contained five differ-
ent phenomena each pertaining to a single category
of critical error for meaning change. In compari-
son, the DFKI challenge set has over 100 linguis-
tically motivated phenomena, organised into 14
categories. Whereas the aim of ACES was to pro-
vide a broad coverage of language pairs, the other
datasets provide an in-depth focus on specific lan-
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Ex. Lang. Phenomena Categories
pairs

SMAUG 632 2 5 5
HWTSC 721 1 5 5
DFKI 19,347 1 >100 14
ACES 36,476 146 68 10

Table 2: Comparison of challenge sets for MT metric
evaluation in terms of: Examples, Language-pairs, Phe-
nomena, and Categories.

guage pairs: SMAUG (pt↔en and es→en), DFKI
(de↔en), and HWTSC (zh↔en). Whilst there is a
clear overlap between the ACES phenomena and
those in SMAUG and HWTSC, many of the phe-
nomena in the DFKI dataset are complementary
such that in the case of evaluating metrics for the
German-English pair, metric developers might con-
sider benchmarking on both datasets.

4 Metrics

We list below the metrics that participated in the
2023 challenge set shared task and the baselines
provided by the organisers.

4.1 Baseline Metrics

BERTScore (Zhang et al., 2020) uses contextual
embeddings from pre-trained language models to
compute the cosine similarity between the tokens
in the hypothesis and the reference translation.
The resulting similarity matrix is used to compute
precision, recall, and F1-scores.

BLEURT-20 (Sellam et al., 2020) is a BERT-based
(Devlin et al., 2019) regression model, which
is first trained on scores produced by automatic
metrics/similarity of pairs of reference sentences
and their corrupted counterparts. It is then
fine-tuned on WMT human evaluation data to
provide a score for a hypothesis given a reference
translation.

BLEU (Papineni et al., 2002) compares the
token-level n-grams in the hypothesis with those
in the reference translation. It then computes a
precision score weighted by a brevity penalty.

chrF (Popović, 2017) provides a character n-gram
F-score by computing overlaps between the
hypothesis and reference translation.

COMET-22 (Rei et al., 2022) is an ensemble

between a vanilla COMET model (Rei et al.,
2020) trained with Direct Assessment (DA)
scores and a multitask model that is trained
on regression (MQM regression) and sequence
tagging (OK/BAD word identification from MQM
span annotations). These models are ensembled
together using a hyperparameter search that
weights different features extracted from these
two evaluation models and combines them into a
single score. The vanilla COMET model is trained
with DAs ranging from 2017 to 2020 while the
Multitask model is trained using DAs ranging from
2017 to 2020 plus MQM annotations from 2020
(except for en-ru which uses TedTalk annotations
from 2021).

COMET-Kiwi (Rei et al., 2022) ensembles two
QE models similarly to COMET-22. The first
model follows the classic Predictor-Estimator QE
architecture where MT and source are encoded
together. This model is trained on DAs ranging
from 2017 to 2019 and then fine-tuned on DAs
from MLQE-PE (the official DA from the QE
shared task). The second model is the same multi-
task model used in the COMET-22 submission
but without access to a reference translation. This
means that this model is a multitask model trained
on regression and sequence tagging. Both models
are ensembled together using a hyperparameter
search that weights different features extracted
from these two QE models and combines them
into a single score.

f200spBLEU (Goyal et al., 2022) computes
BLEU over text tokenised with a single language-
agnostic SentencePiece subword model. For the
f200spBLEU version of spBLEU used in this
year’s shared task, the SentencePiece tokeniser
(Kudo and Richardson, 2018) was trained using
data from the FLORES-200 languages.

MS-COMET-22 (Kocmi et al., 2022) is built on
top of the COMET (Rei et al., 2020) architecture.
It is trained on a set of human judgments several
times larger – covering 113 languages and 15 do-
mains. Furthermore, the authors propose filtering
out those human judgements with potentially low
quality. MS-COMET-22 is a reference-based
metric that receives the source, the MT hypothesis
and the human reference as input.
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Random-sysname is a random baseline. The met-
ric takes the name of the system as the only param-
eter. It uses a discrete score. Segment-level scores
follow a Gaussian distribution around mean value
X (in the range 0-9) and a standard deviation of
2. The mean X is calculated from the name of the
system as: X = sha256(sysname)[0]%10

The idea behind this baseline is two-fold. Firstly,
having a baseline showing how a random metric
would perform could help to put scores into
context (in particular, pairwise accuracy can create
a perception of great performance while 50% is
just a toss of a coin). Secondly, it could help to
detect errors in metric meta-evaluations.

YiSi-1 (Lo, 2019) measures the semantic similarity
between the hypothesis and the reference transla-
tion by using cosine similarity scores of multilin-
gual representations at the lexical level. It option-
ally uses a semantic role labeller to obtain structural
similarity. Finally, a weighted F-score based on
structural and lexical similarity is used for scoring
the hypothesis against the reference translation.

4.2 Metrics Submitted to WMT 2023

We list the descriptions of the metrics submitted to
WMT 2023 by the metric developers and refer the
reader to the relevant system description papers for
further details.

Embed_Llama relies on pretrained Llama 2
embeddings, without any finetuning, to transform
sentences into a vector space that establishes
connections between geometric and semantic
proximities. This metric draws inspiration from
Word2vec and utilizes cosine distance for the
purpose of estimating similarity or dissimilarity
between sentences.

MetricX-23 and MetricX-23-QE are learned
reference-based and reference-free (respectively)
regression metrics based on the mT5 encoder-
decoder language model. They further finetune
the mT5-XXL checkpoint on direct assessment
data from 2015-2020 and MQM data from 2020 to
2021 as well as synthetic data.

Tokengram_F is an F-score-based evaluation
metric that is heavily inspired by chrF++. By
replacing word-grams with token-grams obtained
from contemporary tokenization algorithms,

tokengram_F captures similarities between words
sharing the same semantic roots and thus obtains
more accurate ratings.

Partokengram_F we did not receive a description
of this metric.

XCOMET is a new COMET-base model that
is trained to identify errors in sentences along
with a final quality score and thus leads to an
explainable neural metric. The metric is optimised
towards regression and error span detection
simultaneously. The same model may be used
both with references (XCOMET) and without
references (XCOMET-QE). The models are built
using XLM-R XL and XXL, thus XCOMET-XL
has 3.5B parameters and XCOMET-XXL has
10.7B parameters. The metric is trained in stages
where it first sees DAs and then is fine-tuned with
MQM. XCOMET-ENSEMBLE is an ensemble
between 1 XL and 2 XXL checkpoints that result
from these training stages.

XLsim is a supervised reference-based metric that
regresses on human scores provided by WMT
(2017-2022). Using a cross-lingual language
model (XLM-RoBERTa (Conneau et al., 2020)),
a supervised model is trained using a Siamese
network architecture with CosineSimilarityLoss.
XLSIMQE is the reference-free variant of this
metric.

Cometoid22 is a reference-free metric created
using knowledge distillation from reference-based
metrics. First, using COMET-22 as a teacher
metric, the MT outputs submitted to the WMT
News/General Translation task since 2009 are
scored. Next, a student metric, called Cometoid22,
is trained to mimic the teacher scores without using
reference translation. The student metric has the
same architecture as COMET-QE, and is initialised
with pre-trained weights from the multilingual
language model InfoXLM. Three variants were
submitted: cometoid22-wmt21,22,23, where the
suffix indicates the training data cut-off year.

COMETKiwi-XL and COMETKiwi-XXL
use the same COMETKiwi model architecture
from WMT 2022 but replace InfoXLM with
XLM-R XL and XXL (for COMETKIWI-XL and
COMETKIWI-XXL respectively).
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KG-BERTScore incorporates a multilingual
knowledge graph into BERTScore and generates
the final evaluation score by linearly combining the
results of KGScore and BERTScore. In contrast
to last year, COMET-QE is used to calculate
BERTScore.

GEMBA-MQM is an LLM-enabled metric for
error quality span marking. It uses three-shot
prompting with a GPT-4 model. In contrast to
EAPrompt (Lu et al., 2023), it does not require
language-specific examples and requires only a
single prompt.

5 Results

5.1 Phenomena-level Results
As in Amrhein et al. (2022) we begin by provid-
ing a broad overview of metric performance on the
different phenomena categories, before conducting
more detailed analyses (see Section 5.3). We re-
strict the overview to the metrics which provide a)
segment-level scores and b) scores for all language
pairs and directions in ACES. Out of the metrics
that participated, 33 fulfil these criteria: 10 base-
lines, 11 reference-based, and 12 reference-free
metrics.

We first compute the Kendall’s tau-like corre-
lation scores3 (Freitag et al., 2021, 2022) for all
of the ACES examples. This metric measures the
number of times a metric scores the good transla-
tion above the incorrect translation (concordant)
and equal to or lower than the incorrect translation
(discordant):

τ =
concordant− discordant

concordant+ discordant

We then report the average score over all exam-
ples belonging to each of the nine top-level accu-
racy categories in ACES, plus the fluency category
punctuation (see Table 3). In addition, we compute
the ACES-Score, a weighted combination of the
top-level categories, which allows us to identify
high-level performance trends of the metrics (see
Equation 1). Note that the ACES-Score ranges
from -29.1 (all phenomena have a correlation of -1)
to 29.1 (all phenomena have a correlation of +1).

3Evaluation scripts are available here: https://github.
com/EdinburghNLP/ACES

ACES = sum





5 ∗ τaddition

5 ∗ τomission

5 ∗ τmistranslation

1 ∗ τuntranslated

1 ∗ τdo not translate

5 ∗ τovertranslation

5 ∗ τundertranslation

1 ∗ τreal-world knowledge

1 ∗ τwrong language

0.1 ∗ τpunctuation





(1)

Overall, the best-performing metrics submitted
to this year’s shared task, according to the ACES-
Score, are COMETKIWI (a reference-free base-
line metric), and KG-BERTSCORE (a reference-
free metric). BLEU remains one of the worst-
performing metrics, with only the random baseline,
RANDOM-SYSNAME, achieving a lower ACES-
Score. XCOMET-ENSEMBLE is the top ranking
among the reference-based metrics. We caution
that we developed ACES to investigate strengths
and weaknesses of metrics on a phenomena level
– hence, we advise the reader not to draw any con-
clusions based solely on the ACES-Score.

As observed in Amrhein et al. (2022) the perfor-
mance of the metrics is highly variable, with no
clear winner in terms of performance across all of
the top-level ACES categories. We also observe
similar trends in terms of the most challenging
categories (addition, undertranslation, real-world
knowledge, and wrong language). We find that,
unlike last year, some metrics perform similarly to
or worse than the baseline metrics. In particular,
EMBED_LLAMA and GEMBA-MQM which are
designed using Large Language Models (LLMs),
struggle with this challenge set. This suggests that
we need better design strategies in using the rich
representations from LLMs for MT evaluation. In
general, we find that reference-free metrics perform
on par or better than reference-based metrics.

In terms of performance across the top-level
categories, we also observe variation in the per-
formance of metrics belonging to the baseline,
reference-based, and reference-free groups. The
reference-free group exhibits overall stronger per-
formance compared with the other groups, but in
particular for the mistranslation, overtranslation,
undertranslation, and real-world knowledge cate-
gories.
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5.2 Mistranslation Results
Next, we drill down to the fine-grained categories
of the largest ACES category: mistranslation. We
present metric performance for the sub-level cate-
gories (discourse, hallucination, and other) in Ta-
ble 4. The discourse sub-category includes errors
involving the mistranslation of discourse-level phe-
nomena such as pronouns and discourse connec-
tives. Hallucination includes errors at the word
level that could occur due to hallucination by an
MT model, for example, the use of wrong units,
dates, times, numbers or named entities, as well
as hallucinations at the subword level that result
in nonsensical words. The other cub-category cov-
ers all other categories of mistranslation errors in-
cluding overly-literal translations (see example in
Table 1) and the introduction of ambiguities in the
translation output. Again, as in 2022, we find
that performance on the different sub-categories
is highly variable, with no clear winner among
the metrics. We also make similar observations
to those in Amrhein et al. (2022), that the halluci-
nation phenomena are generally more challenging
than discourse-level phenomena; performance on
the hallucination sub-category is poor overall.

5.3 Analysis
We repeat the analyses we performed in Amrhein
et al. (2022) for the metrics submitted to WMT
2023 to confirm whether our findings from WMT
2022 still hold. We highlight similar observations
to those from WMT 2022 and summarise our in-
sights below.

5.3.1 How sensitive are metrics to the source?
Finding: Reference-based metrics tend to ignore
the source.

In the ACES Mistranslation - Ambiguous Trans-
lations category, examples were designed in such a
way that given an ambiguous reference the correct
translation candidate can only be identified through
the source sentence (See an example in Table 9).
We leverage this property to present an analysis
aimed at discovering how important the source is
for different metrics. We exclude from the analy-
sis all metrics that a) do not take the source and
b) do not cover all language pairs. This leaves us
with 22 metrics: seven reference-based metrics,
fourteen reference-free metrics, and the RANDOM-
SYSNAME baseline. In Table 5 we present results
for the Ambiguity - Discourse Connectives (for the
ambiguous English discourse connective “since”

disco. halluci. other

Examples 3698 10270 10489

BERTscore 0.563 -0.062 0.361
BLEU -0.042 -0.418 -0.250
BLEURT-20 0.695 0.141 0.398
chrF 0.406 -0.138 0.160
COMET-22 0.657 0.113 0.383
CometKiwi 0.779 0.465 0.580
f200spBLEU 0.095 -0.190 -0.150
MS-COMET-QE-22 0.631 0.240 0.417
Random-sysname -0.117 -0.122 -0.111
YiSi-1 0.608 0.017 0.366

eBLEU 0.374 -0.166 0.282
embed_llama -0.089 -0.140 0.189
MetricX-23 0.757 0.663 0.393
MetricX-23-b 0.749 0.656 0.390
MetricX-23-c 0.694 0.755 0.477
partokengram_F -0.062 -0.101 0.027
tokengram_F 0.396 -0.132 0.157
XCOMET-Ensemble 0.791 0.566 0.626
XCOMET-XL 0.706 0.482 0.521
XCOMET-XXL 0.609 0.540 0.504
XLsim 0.217 -0.066 0.236

cometoid22-wmt21 0.782 0.286 0.400
cometoid22-wmt22 0.748 0.290 0.423
cometoid22-wmt23 0.758 0.223 0.478
CometKiwi-XL 0.752 0.501 0.602
CometKiwi-XXL 0.735 0.535 0.661
GEMBA-MQM 0.076 0.291 0.127
KG-BERTScore 0.685 0.466 0.580
MetricX-23-QE 0.728 0.604 0.628
MetricX-23-QE-b 0.694 0.617 0.666
MetricX-23-QE-c 0.747 0.659 0.739
XCOMET-QE-Ensemble 0.702 0.558 0.651
XLsimQE 0.053 0.050 0.134

Average 0.511 0.248 0.365

Table 4: Average Kendall’s tau-like correlation results
for the sub-level categories in mistranslation: discourse-
level, hallucination, and other errors. Metrics are
grouped into baseline (top), and participating reference-
based (middle) and reference-free (bottom) metrics.
Note that Average is an average over averages. Best
results are highlighted in green.

which can have either causal or temporal meaning),
and Ambiguity - Occupation Names Gender (male
and female) challenge sets.

In addition, we measure the correlation gain
when metrics receive access to disambiguation in-
formation via the source – for this we use the Real-
world Knowledge - Commonsense challenge set
i.e. a scenario in which the source contains disam-
biguation information (See an example in Table 1).
In Table 6 we observe that the correlation gain is
lower for the majority of the reference-based metric
correlation scores compared with the reference-free
metric correlation scores, when access to the sub-
ordinate clause is provided via the source.
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since female male

causal temp. anti. pro. anti. pro. AVG

Examples 106 106 1000 806 806 1000 3824

Random-sysname -0.075 -0.019 -0.146 -0.156 -0.109 -0.154 -0.110

COMET-22 -0.868 0.887 -0.254 0.591 -0.467 0.432 0.053
MetricX-23 -1.000 1.000 -0.864 -0.062 0.062 0.870 0.001
MetricX-23-b -1.000 1.000 -0.790 0.112 -0.092 0.780 0.002
MetricX-23-c -0.849 0.849 -0.998 -0.581 0.576 0.996 -0.001
XCOMET-Ensemble -0.585 0.981 0.852 0.948 0.273 0.922 0.565
XCOMET-XL -0.698 0.906 0.456 0.960 -0.330 0.698 0.332
XCOMET-XXL -0.868 0.925 0.372 0.675 0.541 0.918 0.427

cometoid22-wmt21 -0.698 0.868 0.580 0.950 -0.787 0.022 0.156
cometoid22-wmt22 -0.623 0.868 0.456 0.851 -0.444 0.442 0.258
cometoid22-wmt23 -0.566 0.925 0.342 0.851 0.117 0.844 0.419
CometKiwi 0.075 1.000 0.990 0.998 -0.171 0.440 0.555
CometKiwi-XL 0.075 0.925 0.952 0.990 0.380 0.892 0.702
CometKiwi-XXL 0.132 0.943 0.932 0.995 0.241 0.796 0.673
GEMBA-MQM -0.604 0.736 0.722 0.320 -0.762 -0.692 -0.047
KG-BERTScore 0.075 1.000 0.990 0.998 -0.171 0.440 0.555
MS-COMET-QE-22 -0.283 0.811 -0.194 0.323 0.243 0.692 0.265
MetricX-23-QE -0.472 0.736 0.974 0.995 0.117 0.816 0.528
MetricX-23-QE-b -0.566 0.868 0.968 0.995 0.722 0.968 0.659
MetricX-23-QE-c -0.302 0.774 0.968 0.998 0.911 0.866 0.702
XCOMET-QE-Ensemble -0.208 0.925 0.930 0.975 0.546 0.912 0.680
XLsimQE 0.245 -0.113 0.208 0.350 -0.256 -0.170 0.044

Table 5: Results on the challenge sets where the good translation can only be identified through the source sentence.
Upper block: reference-based metrics, lower block: reference-free metrics. Best results for each phenomenon and
each group of models is marked in bold and green and the average over all can be seen in the last column.

In line with last year’s findings, we report that
reference-based metrics still lag behind reference-
free metrics in terms of their correlation on chal-
lenge sets that can only be disambiguated by look-
ing at the source. This indicates that reference-
based metrics still rely too much on the reference
translation. We conclude that our initial finding
from 2022 still holds: that reference-based met-
rics tend to ignore relevant information in the
source. One exception is XCOMET-ENSEMBLE,
a reference-based metric that reaches similar cor-
relations and correlation gains as some of the mid-
performing reference-free metrics. We suspect that
by training the same model to exhibit reference-
based and reference-free behaviour, the model
learns to utilise the information from the source
in addition to the reference, when provided.

5.3.2 How much do metrics rely on surface
overlap with the reference?

Finding: Reference-based metrics still rely on
reference overlap.

Surface-level metrics are often too reliant on
overlap with the reference. We aim to discover
whether neural reference-based metrics submit-
ted to the 2023 shared task are able to avoid this
problem. Using the Hallucination - Numbers and
Named Entities challenge set we compared how
well reference-based and reference-free metrics4

on average can identify number and named entity
mismatches. In these challenge sets, we perform
both word-level and character-level edits (i.e. sub-
stitutions) to simulate the hallucination behaviour.
In order to thoroughly understand the behaviour of

4Excluding surface-level overlap metrics (BLEU, CHRF,
FP200SPBLEU, PARTOKENGRAM_F, TOKENGRAM_F).
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corr.
gain

Random-sysname -0.052

COMET-22 0.042
MetricX-23 0.004

MetricX-23-b -0.002
MetricX-23-c 0.008

XCOMET-Ensemble 0.162
XCOMET-XL 0.110

XCOMET-XXL 0.016

cometoid22-wmt21 0.120
cometoid22-wmt22 0.124
cometoid22-wmt23 0.138

CometKiwi 0.454
CometKiwi-XL 0.148

CometKiwi-XXL 0.108
GEMBA-MQM 1.107
KG-BERTScore 0.436

MS-COMET-QE-22 0.198
MetricX-23-QE 0.272

MetricX-23-QE-b 0.296
MetricX-23-QE-c 0.142

XCOMET-QE-Ensemble 0.112
XLsimQE 0.184

Table 6: Results on the real-world knowledge common-
sense challenge set with reference-based metrics in the
upper block and reference-free metrics in the lower
block. The numbers are computed as the difference
between the correlation with the subordinate clause in
the source and the correlation without the subordinate
clause in the source. Largest gains are bolded.

metrics under such hallucination errors, we intro-
duced three levels. The first, easiest level follows
Freitag et al. (2021) and applies a change to an
alternative translation to form an incorrect transla-
tion. The second level uses an alternative transla-
tion that is lexically very similar to the reference as
the good translation and applies a change to the ref-
erence to form an incorrect translation. The third,
and hardest level, uses an alternative translation
that is lexically very different from the reference
as the good translation and applies a change to
the reference to form an incorrect translation. In
this way, our challenge set tests whether number
and named entity differences can still be detected
as the surface similarity between the two trans-
lation candidates decreases and the surface sim-
ilarity between the incorrect translation and the

Level 1 Level 2 Level 3

0.0

0.5

NUMs ref − based

NUMs ref − free

NEs ref − based

NEs ref − free

Figure 2: Decrease in correlation for reference-based
and reference-free metrics on the named entity and num-
ber hallucination challenge sets.

reference increases. See an example of the differ-
ent levels below as taken from the dataset paper -

SRC (es): Sin embargo, Michael Jackson, Prince
y Madonna fueron influencias para el
álbum.

REF (en): Michael Jackson, Prince and Madonna
were, however, influences on the album.

Level-1 ✓: However, Michael Jackson, Prince, and
Madonna were influences on the album.

Level-1 ✗: However, Michael Jackson, Prince, and
Garza were influences on the album.

Level-2 ✓: However, Michael Jackson, Prince, and
Madonna were influences on the album.

Level-2 ✗: Michael Jackson, Prince and Garza were,
however, influences on the album.

Level-3 ✓: The record was influenced by Madonna,
Prince, and Michael Jackson though.

Level-3 ✗: Michael Jackson, Prince and Garza were,
however, influences on the album.

We take the average correlation for all reference-
based and reference-free metrics that cover all lan-
guages. We then plot the decrease in correlation
with increasing surface-level similarity of the incor-
rect translation to the reference (Figure 2). As in
the corresponding analysis of the WMT 2022 met-
rics, we observe that, on average, reference-based
metrics have a much steeper decrease in correlation
than the reference-free metrics as the two transla-
tion candidates become more and more lexically
diverse and the surface overlap between the incor-
rect translation and the reference increases. This
indicates that reference-based metrics may prefer a)
an incorrect translation in cases where it is lexically
similar to the reference but contains a severe error
over b) a good translation that shares little overlap
with the reference.

We also observe a clear effect of surface-level
overlap between the reference and the hypothesis
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reference-based reference-free

hallucination -0.32 ± 0.15 +0.06 ± 0.06
overly-literal -0.22 ± 0.14 0.00 ± 0.03
untranslated -0.44 ± 0.11 -0.03 ± 0.06

Table 7: Average correlation difference and standard
deviation between the challenge sets with reference-
copied good translations and the challenge sets with the
synonymous good translations.

on three challenge sets for which we have different
versions of the good translation, where the error
was corrected with: a) the corresponding correct
token from the reference and b) a synonym for the
correct token from the reference. In Table 7, we can
see a much larger difference in correlation between
the challenge sets with reference-copied good trans-
lations and the challenge sets with the synonymous
good translations, for the reference-based metrics
as compared to the reference-free metrics. That
is, it is much easier for reference-based metrics
to identify mistranslations when the good transla-
tion matches a term in the reference compared with
when a synonym is used. Furthermore, when the
incorrect translation shares a high degree of lexi-
cal overlap with the reference but does not have
the same meaning (as in the Mistranslation - Lex-
ical Overlap challenge set based on adversarial
paraphrase from PAWS-X (Yang et al., 2019)), the
reference-based metrics only reach a correlation of
0.05 ± 0.16 on average. In contrast, the reference-
free metrics reach a correlation of 0.27 ± 0.16.

We again conclude that although state-of-the-
art reference-based MT evaluation metrics are no
longer solely reliant on surface-level overlap, it still
has a considerable influence on their predictions.

5.3.3 Do multilingual embeddings help design
better metrics?

Finding: Multilingual embeddings can be harm-
ful with poor design.

We are interested in the extent to which the repre-
sentations in neural MT evaluation metrics, which
are trained on multilingual models, are language-
dependent. For this analysis, we investigated the
effect of alignment of multilingual embeddings (in-
cluding LLMs) on the evaluation task through the
wrong-language and untranslated - full sentences
phenomena for those metrics that provided scores
for examples in all language pairs. In the wrong-
language phenomenon, the incorrect translation
contains a high-quality translation of the source in

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

Correlation

ref − based ref − free

Figure 3: Correlation of reference-based metrics (blue)
and reference-free metrics (orange) on the sentence-
level untranslated test challenge set.

a similar language to the target language while the
good translation is the machine translation output
of the source sentence in the target language. In
the challenge set for untranslated - full sentences,
the incorrect translation is a copy of the source
sentence and the good translation is machine trans-
lation output in the target language. Multilingual
embeddings learn cross-lingual representations by
reducing the language-specific properties during
pretraining (Wu and Dredze, 2019). We hypothe-
sised that making representations language agnos-
tic may harm MT evaluation in cases where trans-
lations are extremely poor, such that they remain
untranslated or hallucinate from a similar language.

In Figure 3 we plot the correlations for all
reference-based and reference-free metrics. Over-
all, we observe that several metrics from 2023 have
much better correlation scores than 2022 indicat-
ing that newer models have developed strategies to
avoid learning language-agnostic representations.
In particular, we find that many of the reference-
free metrics submitted to the 2023 shared task have
improved on the untranslated - full sentences cat-
egory (though a few reference-free metrics from
2022 had performance closer to 1, which is not the
case with the 2023 metrics). This is a welcome
change as we expect these metrics to perform a
more faithful evaluation when many of the words
remain untranslated in the hypothesis, especially in
the lower resource setting. Whilst some reference-
free metrics struggle considerably on this challenge
set and almost always prefer the copied source to
the real translation, reference-based metrics gener-
ally exhibit good correlation i.e. they can identify
the copied source quite easily. As reference-based
metrics tend to ignore the source, the scores are
likely based on the similarity between the reference
and the MT output. This is evident from their poor
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Figure 4: Correlations for different top-level phenomena
categories with different models trained on successively
more data.

performance on the wrong - language category (see
Table 3). This suggests that language-agnostic rep-
resentations present in the multilingual space may
harm performance.

5.4 Training data size effects

One submission this year, namely COMETOID22,
submitted three different reference-free metric ver-
sions, each trained on successively more data. This
allows us to investigate the effects of the metric
training data size5 on the performance on ACES.
(Note that we cannot draw any conclusions about
the training data size of the pretraining models
that are used.) In Figure 4 we can see the effect
of training data size on the performance on the
top-level phenomena categories. COMETOID22-
WMT23, the model that has seen the most data,
outperforms the other two metrics on almost all top-
level categories. The correlation gain is especially
pronounced for the untranslated, do not translate
(content in the source is erroneously translated into
the target language), overtranslation (the target
translation contains more specific information than
the source) and wrong language categories (see
Table 9 for examples for each of the phenomena).
For clearer insights as to where the performance
gain comes from, we would need to analyse the
training data in depth. However, it is evident from
these results that more training data is beneficial for
metric development. In the next section, we look at
metric score changes over metric implementation
cycles - where likely more than just the training
data changed.

5Note that for COMETOID22 this is not human judgement
labelled data but rather pseudo labelled data where labels come
from the reference-based COMET-22 model.

5.5 Changes over one year

We compare the results of metrics submitted by the
same teams last year and this year in Table 8.

We report changes in performance in terms of
deltas, computed by subtracting the 2022 score
from the 2023 score. We do this for the follow-
ing pairs of metrics: KG-BERTSCORE (2022)
and KG-BERTSCORE (2023); COMETKIWI

(2022) paired with COMETKIWI-XL (2023)
and COMETKIWI-XXL (2023); COMET-22
(2022) paired with XCOMET-ENSEMBLE (2023),
XCOMET-XL (2023) and XCOMET-XXL
(2023).

We observe that KG-BERTSCORE has im-
proved over its performance of last year. From
the description provided by the metric developers,
the main difference is that the 2023 version of KG-
BERTSCORE metric uses COMET-QE instead of
BERTScore (Zhang et al., 2020) to compute the
similarity between the source and the hypothesis.
Whilst we might therefore attribute the increase
in performance to this change, a more systematic
comparison of the two metric versions would be
required to confirm whether this is the only con-
tributing factor.

The metrics in the COMETKIWI family ex-
hibit: a slight drop in performance (COMETKIWI-
XL) and a similar performance to that of last year
(COMETKIWI-XXL). The difference can be at-
tributed to changing the underlying encoder, XLM-
R XL and XLM-R XXL (Goyal et al., 2021) re-
spectively, and the use of additional fine-tuning
data made available this year. We have seen that
the addition of more training data helps in Sec-
tion 5.4. Considering that there is no improvement
in the performance, we question if an increase in
the underlying model capacity of the encoder alone
is useful for obtaining better MT evaluation.

Performance change for the XCOMET family
is variable: there is a performance increase for
XCOMET-ENSEMBLE (compared to COMET-22),
for XCOMET-XL the increase is smaller, and
the performance of XCOMET-XXL is degraded.
The XCOMET family is designed to provide both
a quality score and an error span. Considering
that the metric also provides an explanation of the
scores without hurting the performance, this is in-
deed a positive change. Finally, it is worth noting
that for all metrics in Table 8 a change in perfor-
mance is observed for almost all ACES categories,
for all metrics.
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COMETKiwi KG-BERTScore XCOMET

-XL -XXL -Ensemble -XL -XXL

addition -0.120 -0.004 -0.251 0.595 0.455 0.142
omission -0.004 -0.002 0.103 0.118 -0.126 -0.254
mistranslation -0.005 0.013 0.077 0.126 0.038 0.005
untranslated 0.000 0.142 0.266 -0.181 -0.342 -0.362
do not translate -0.395 -0.553 0.000 0.053 0.079 -0.105
overtranslation 0.027 0.035 0.119 0.073 -0.067 0.017
undertranslation -0.019 -0.021 0.077 0.014 -0.132 -0.025
real-world knowledge -0.020 0.100 0.107 0.003 -0.123 -0.198
wrong language -0.014 -0.173 -0.618 -0.296 -0.232 -0.395
punctuation -0.037 0.004 0.264 0.206 -0.144 0.006

ACES-Score -1.04 -0.38 0.40 4.23 0.21 -1.64

Table 8: Comparison of average Kendall’s tau-like correlation: delta calculated as 2023 score minus 2022 score.

Whilst it is not possible to draw conclusions or
make predictions about the future of metric de-
velopment based solely on the observations from
two consecutive metrics shared tasks, we highlight
several high-level changes. Firstly, we note the
participation of many more COMET-based metrics
in 2023, compared with 2022. This is presum-
ably based on the success of COMET at previous
shared tasks and its adoption within the MT com-
munity. We find that three metrics from 2022 are
now used as baseline metrics namely COMET-
22, COMETKIWI, and MS-COMET-QE-22. In
contrast to the submissions in 2022, we find some
new metrics that use lexical overlap through text
matching or embeddings (TOKENGRAM_F, PAR-
TOKENGRAM_F, and EBLEU). However, their per-
formance trend is similar to other surface overlap
metrics. This year has also seen submissions based
on large language models (EMBED_LLAMA and
GEMBA-MQM). As seen in Section 2, their mod-
erate performance indicates the need for more ef-
fective approaches. Additionally, we note an over-
all increase between 2022 and 2023 in the num-
ber of metrics submitted to WMT that a) provide
segment-level scores and b) provide scores for all
language pairs and directions in ACES. There were
37 segment-level metrics at WMT 2022, 24 of
which covered the language pairs and directions in
ACES, compared with 47 and 33, respectively in
2023. This suggests that the interest in metric de-
velopment remains high, and could be increasing.

From our analyses in Section 5.3, we also draw
similar conclusions to Amrhein et al. (2022) with
the exception of reference-free metrics improving
at the Untranslated - Full Sentences task. Despite
the success of LLMs across various tasks (Brown
et al., 2020), leveraging them to evaluate translated

outputs still requires some improved design strate-
gies. All these observations suggest that evaluat-
ing MT outputs is indeed a hard problem (Neubig,
2022). While we do have a good suite of metrics
to provide a proxy for evaluation, there are indeed
several interesting challenges that need to be tack-
led before we find an ideal evaluation regime. And
even then, we need to continuously monitor this
to ensure that we do not optimise towards metric
weaknesses that we have not yet discovered.

5.6 Recommendations

We provide the same recommendations as last year:

No metric to rule them all. There is no con-
sistent winning metric across all categories (see
Table 3). We recommend developing evaluation
methods that combine different design strategies
for robust evaluation. We also recommend inno-
vation in the ensemble building as simple strate-
gies like majority voting do not lead to signifi-
cant improvement (Moghe et al., 2023). We find
that some submissions in this year’s shared task al-
ready contain ensembles (XCOMET-ENSEMBLE,
XCOMET-QE-ENSEMBLE) which suggests that
our recommendations are in line with the efforts of
the community.

The source matters. The trend where reference-
based metrics tend to disregard information in the
source is also persistent, as seen in Section 5.3. We
also observe that reference-free metrics are highly
competitive with reference-based metrics as seen in
Table 3 and also in Freitag et al. (2022); Zerva et al.
(2022), inter alia. Furthermore, as references are
often not perfect themselves (Freitag et al., 2020),
it is ideal to develop evaluation regimens that focus
more on the information in the source sentence than
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the references.

Surface overlap still prevails. Neural metrics
were introduced to overcome surface-level overlap
present in the string-based metrics. However, the
results in Section 5.3.2 suggest that neural met-
rics tend to focus more on lexical overlap than
semantic content. We thus recommend including
paraphrases in the training regime as well as de-
signing loss functions that explicitly discourage
surface-level overlap.
Lastly, simple strategies to model language-specific
information in the metrics could also improve the
robustness of the metrics to language pair attacks.

6 Conclusion

We re-submitted the ACES Challenge Set to
WMT2023 to identify the strengths and weaknesses
of the metrics submitted to this year’s shared task.
Overall, we find similar trends to that of last year.
While neural metrics tend to be better, different
categories of metrics have different strengths, and
we do not find one clear winner. With respect to
the metrics that were resubmitted with some design
changes, we find that these design changes have
variable outcomes with a performance drop in some
cases. The major challenges of (i) metrics not pay-
ing enough attention to the source, (ii) reference-
based metrics still relying on surface-level overlap,
and (iii) over-reliance on multilingual embeddings
still persist. Hence, our recommendations are also
similar to that of last year: build ensembles of dif-
ferent design families, encourage development that
better utilises information in the source, include
diverse training examples to reduce the influence
of surface-level overlap, and carefully determine
the influence of multilingual embeddings/LLMs on
MT evaluation.

Limitations

When comparing the results of the baseline metrics
common to the 2022 and 2023 metrics shared tasks,
we observed differences in the scores returned for
a small subset (2,659; approx 7%) of the ACES
examples. A subsequent investigation suggested
that differences in the pre-processing steps by the
shared task organisers in 2022 and 2023 may have
led to the differences; we further conjecture that
differences in handling the double quotes present
in some of the ACES examples may be one of the
main causes. Regardless of the source of the differ-
ences, we highlight that care should be taken when

pre-processing the ACES dataset prior to bench-
marking metric performance, especially when the
aim is to draw comparisons with results reported
in previous work. However, we note that this issue
is not specific to ACES, but may potentially affect
any text-based dataset. With the exception of the
comparison of results from 2022 and 2023 in Sec-
tion 5.5, for which we used the subset of 33,817
examples which were unaffected by pre-processing
differences, all other results reported in this paper
use the full set of 36,476 ACES examples. We also
note that ideally, incorrect processing of double
quotes by a metric should not lead to a difference
in scores especially when dealing with semantic
errors.

As we re-submitted the same version of the
ACES dataset to WMT 2023, the same biases de-
scribed in Amrhein et al. (2022) remain: 1) there
is greater coverage in terms of phenomena and
number of examples for some language pairs (par-
ticularly en-de and en-fr), 2) more examples are
provided for categories for which examples may
be generated automatically, compared to those that
required manual construction/filtering, 3) errors
present in the datasets used to construct the exam-
ples may have propagated through into ACES, 4)
the focus of the ACES is on accuracy errors; the
inclusion and evaluation of fluency errors remains
a direction for future work.

ACES consists of examples that target a range of
linguistic phenomena, which are then arranged in
a hierarchy of error categories. In order to provide
metric profiles over this range of error categories
we require segment-level scores. We therefore re-
port only results for those metrics submitted to
WMT 2023 that provide segment-level scores; met-
rics that provide only system-level outputs are ex-
cluded. Further, we excluded those metrics that did
not provide scores for all of the language pairs in
ACES from the results and analyses in this paper.

The 2023 WMT metric shared task evaluated
metrics at the paragraph level for English-German.
Currently, ACES is not able to capture document-
level metric performance. We hope such challenge
sets will become available in the near future to
be able to track metric improvements beyond the
sentence level.

Ethics Statement

As described in Amrhein et al. (2022) some exam-
ples within the ACES challenge set exhibit biases.
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However, this is necessary in order to expose the
limitations of existing metrics. The challenge set is
already publicly available.
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A Examples from ACES

We shall now list one example from every top-level
category in Table 9. We reuse most of the examples
mentioned in the original paper under the respec-
tive categories.
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Addition
target includes content not present in the source

SRC (de): In den letzten 20 Jahren ist die Auswahl in Uptown Charlotte exponentiell gewachsen.
REF (en): In the past 20 years, the amount in Uptown Charlotte has grown exponentially.

✓: Over the past 20 years, the selection in Uptown Charlotte has grown exponentially.
✗: Over the past 20 years, the selection of child-friendly options in Uptown Charlotte has grown exponentially.

Omission
errors where content is missing from the translation that is present in the source

SRC (fr): Une tornade est un tourbillon d’air à basse-pression en forme de colonne, l’air alentour est aspiré vers l’intérieur et le haut.
REF (en): A tornado is a spinning column of very low-pressure air, which sucks the surrounding air inward and upward.

✓: A tornado is a column-shaped low-pressure air turbine, the air around it is sucked inside and up.
✗: A tornado is a low-pressure air turbine, the air around it is sucked inside and up.

Untranslated - Word Level
errors occurring when a text segment that was intended for translation is left untranslated in the target content

SRC (fr): À l’origine, l’émission mettait en scène des comédiens de doublage amateurs, originaires de l’est du Texas.
REF (de): Die Sendung hatte ursprünglich lokale Amateursynchronsprecher aus Ost-Texas.
✓ (copy): Ursprünglich spielte die Show mit Amateursynchronsprechern aus dem Osten von Texas.
✓ (syn.): Ursprünglich spielte die Show mit Amateur-Synchron-Schauspielern aus dem Osten von Texas.

✗: Ursprünglich spielte die Show mit Amateur-Doubling-Schauspielern aus dem Osten von Texas.

Mistranslation - Ambiguous Translation
an unambiguous source text is translated ambiguously

SRC (de): Der Manager feuerte die Bäckerin.
REF (en): The manager fired the baker.

✓: The manager fired the female baker.
✗: The manager fired the male baker.

Do Not Translate
content in the source that should be copied to the output in the source language, but was mistakenly translated into the target language.

SRC (en): Dance was one of the inspirations for the exodus - song “The Toxic Waltz”, from their 1989 album “Fabulous Disaster”.
REF (de): Dance war eine der Inspirationen für das Exodus-Lied „The Toxic Waltz“ von ihrem 1989er Album „Fabulous Disaster“.

✓: Der Tanz war eine der Inspirationen für den Exodus-Song „The Toxic Waltz“, von ihrem 1989er Album „Fabulous Disaster”.
✗: Der Tanz war eine der Inspirationen für den Exodus-Song „Der Toxische Walzer“, von ihrem 1989er Album „Fabulous Disaster”.

Undertranslation
erroneous translation has a meaning that is more generic than the source

SRC (de): Bob und Ted waren Brüder. Ted ist der Sohn von John.
REF (en): Bob and Ted were brothers. Ted is John’s son.

✓: Bob and Ted were brothers, and Ted is John’s son.
✗: Bob and Ted were brothers. Ted is John’s male offspring.

Overtranslation
erroneous translation has a meaning that is more specific than the source

SRC (ja): その 40分の映画はアノーがアラン・ゴダードと協力して脚本を書いた。
REF (en): The 40-minute film was written by Annaud with Alain Godard.

✓: The 40-minute film was written by Annaud along with Alain Godard.
✗: he 40-minute cinema verite was written by Annaud with Alain Godard.

Real-world Knowledge - Textual Entailment
meaning of the source/reference is entailed by the “good” translation

SRC (de): Ein Mann wurde ermordet.
REF (en): A man was murdered.

✓: A man died.
✗: A man was attacked.

Wrong Language
incorrect translation is a perfect translation in a related language

SRC (en): Cell comes from the Latin word cella which means small room.
REF (es): El término célula deriva de la palabra latina cella, que quiere decir «cuarto pequeño».

✓ (es): La célula viene de la palabra latina cella que significa habitación pequeña.
✗ (ca): Cèl·lula ve de la paraula llatina cella, que vol dir habitació petita.

Table 9: Examples from each top-level accuracy error category in ACES. An example consists of a source sentence
(SRC), reference (REF), good (✓) and incorrect (✗) translations, language pair, and a phenomenon label. We also
provide a description of the relevant phenomenon. en: English, de: German, fr: French, ja: Japanese, es: Spanish,
ca: Catalan
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Abstract

We employ a linguistically motivated chal-
lenge set in order to evaluate the state-of-
the-art machine translation metrics submitted
to the Metrics Shared Task of the 8th Con-
ference for Machine Translation. The chal-
lenge set includes about 21,000 items extracted
from 155 machine translation systems for
three language directions (German⇔English,
English→Russian), covering more than 100
linguistically-motivated phenomena organized
in 14 categories. The metrics that have the
best performance with regard to our linguisti-
cally motivated analysis are the COMETOID22-
WMT23 (a trained metric based on distil-
lation) for German-English and METRICX-
23-C (based on a fine-tuned mT5 encoder-
decoder language model) for English-German
and English-Russian. Some of the most diffi-
cult phenomena are passive voice for German-
English, named entities, terminology and mea-
surement units for English-German and focus
particles, adverbial clause and stripping for
English-Russian.

1 Introduction

Most NLP evaluation has relied for years on testing
the system performance on randomly picked test
sets and producing a single generic score. Yet, ma-
chine learned systems learn to make abstractions
and due to these, phenomena who are on the long
tail of the training and test data may be overlooked
hidden behind a very high generic score. Addi-
tionally, generic scores are often helpful to show
relative improvement and reflect overall quality, but
cannot explain the performance in a comprehensive
way.

For example, old-style machine translation (MT)
metrics measuring lexical overlap would equally
penalize the omission of an article and the omission
of the particle forming the negation in a sentence,
although negation is more crucial for its meaning.
While the evaluation of so obvious errors has been

addressed by the trained MT metrics, their evalua-
tion relies on correlations with human judgments
on randomly picked test-sets. In this case, a sin-
gle correlation score may not be able to explain
the strengths and weaknesses of the metrics with
regard to the functioning of language.

Motivated by these considerations, we employ a
multifold test set with linguistically-motivated chal-
lenges that will allow us to understand the metric
performance from a linguistic perspective. These
challenges are organized in smaller sets, one set
per phenomenon, whereas the phenomena are or-
ganized in broader categories. By measuring the
ability of the metrics to detect the errors in these
challenge sets, we can get scores that indicate dif-
ferent aspects of linguistic performance.

This paper describes the application of such a
challenge set on the evaluation of the MT metrics
submitted at the relevant shared task of the 8th
Conference of Machine Translation (Freitag et al.,
2023). The rest of the paper is structured as follow-
ing: Section 2 describes related work, and section 3
describes the way the challenges were selected. In
Section 4 the results are presented and described,
first from the perspective of metric comparison and
then focusing on the performance for particular
linguistically-motivated categories and phenomena
per language direction. Some conclusions are given
in Section 5.

2 Related work

There has been a growing interest for more fine-
grained evaluation of Natural Language Processing
(NLP) tools, as shown by the increasing number
of publications many of whom have received dis-
tinctions (Ribeiro et al., 2020; Avelino et al., 2022;
Campolungo et al., 2022). Concerning machine
translation (MT), initial efforts were made in the
1990s with the introduction of test suites (King
and Falkedal, 1990), and these efforts have been
revitalized in light of recent advancements in the
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field (Guillou and Hardmeier, 2016). To the best
of our knowledge, the first endeavours related to
the use of challenge sets in a meta-level in order to
evaluate MT metrics were applied to Quality Esti-
mation metrics (Avramidis et al., 2018), based on
the first version of our linguistically-motivated test
suite (Macketanz et al., 2018). The analysis was
broadened to cover a broader range of MT metrics,
including reference-based ones, as appeared in the
Findings paper of the Metrics shared task of the
6th Conference on Machine Translation (Freitag
et al., 2021), which was based on a later version
of our test suite on German-English (Avramidis
et al., 2019, 2020; Macketanz et al., 2021, 2022a),
a resource also employed in this paper.

With the occasion of the first challenge set sub-
task for the metrics shared task of the 7th Confer-
ence on Machine Translation (Freitag et al., 2022),
a few more challenge sets emerged. ACES (Am-
rhein et al., 2022) for example, focuses on 68 accu-
racy errors. Similarly, Alves et al. (2022) evaluate
the robustness of MT metrics by generating trans-
lations with critical errors. In a more linguistic
direction, Chen et al. (2022) examine the capability
of the metrics to correlate synonyms in different ar-
eas and to discern catastrophic errors at both word-
and sentence-levels.

Our submission at that sub-task (Avramidis and
Macketanz, 2022) augmented the preliminary anal-
ysis appearing at Freitag et al. (2021) by adding the
language direction of English-German and present-
ing a more fine-grained analysis, not only in the
category level but also on the phenomenon level.
This year’s submission, explained on our paper, in-
cludes that same challenge set as last year, whereas
English-Russian has been added as an additional
language direction.

3 Method

3.1 Test suite for MT systems
Here, we are going to explain how we created
the pool of MT sentences that were used for the
challenge set. The selection was based on a
linguistically-motivated test suite (Macketanz et al.,
2022a)1. The test suite contains a set of source sen-
tences focusing on particular phenomena, each of
them accompanied by some rules or regular expres-
sions that can detect which translations would be
accepted for these source sentences. This allows a

1https://github.com/DFKI-NLP/
mt-testsuite

semi-automatic evaluation when new translations
are provided, whereas a human annotator resolves
cases not covered by the rules.

For this experiment, we employed the test suite
on three language directions: German-English
(Avramidis et al., 2020), English-German (Macke-
tanz et al., 2021) and English-Russian (Macketanz
et al., 2022b). The German-English side consists of
5,539 German test sentences covering 107 linguis-
tically motivated phenomena, the English-German
side consists of 4,782 English test sentences cover-
ing 126 phenomena, and the English-Russian side
consists of 1,225 English test sentences covering
64 phenomena. All language directions are orga-
nized in 14 categories, which nevertheless differ
among the directions.

The above described test suite has been used to
evaluate the outputs of 116 German-English, 29
English-German systems and 10 English-Russian
systems submitted at the translation task of the Con-
ference of Machine Translation (WMT). German-
English outputs were collected from systems sub-
mitted in the years 2018-2021, English-German
outputs in the years 2020-2021 and English-
Russian in 2022.

3.2 Challenge set for MT metrics

The sentences selected with the help of the test
suite are consequently used to create the challenge
set. The source sentences and the system outputs
have to be organized in contrastive pairs of cor-
rect/incorrect translations and a reference. In order
to achieve this, for every source sentence from the
test suite selection we create a challenge item in-
cluding:

• one correct translation to be used as a refer-
ence translation,

• another correct translation to be used as the
first translation candidate

• one incorrect translation to be used as the con-
trastive translation candidate

The two candidate translations and the reference
consist one challenge item. Since source and trans-
lations were collected as a result of testing for a
particular phenomenon, the same phenomenon will
be what the challenge item will test.

Given that we may have many correct and wrong
translations for the same source, the reference and
the translations of the challenge items result from
random combinations of correct and wrong transla-
tions from the collected WMT outputs. Therefore,
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the same source sentence may appear many times.
As a result, we get a challenge set with 10,402

items for German-English, 8,945 items for English-
German and 1,727 items for English-Russian.

3.3 Evaluation of metrics

For each challenge item, the two machine transla-
tion (MT) outputs, are provided to the metrics as
separate MT hypotheses. Which output is correct,
and which is incorrect, is hidden from the metrics.
These hypotheses are then evaluated against the
previously mentioned reference and/or the source.
An item is deemed correctly scored when the met-
ric assigns a higher score to the correct MT output
compared to the incorrect one. Following this, the
statistics below are computed:

i) Accuracy per Phenomenon: the ratio of
all correctly-scored challenge items per phe-
nomenon to the total number of challenge
items for that particular phenomenon.

ii) Accuracy per Category: the ratio of all
correctly-scored challenge items per category
to the total number of challenge items for that
category, after consolidating the underlying
phenomena of that category into a single set.

Significance tests are performed to compare the
highest metric accuracy for each phenomenon
with all other metric accuracies for the same phe-
nomenon. This is a one-tailed Z-test, conducted
with a significance level of α = 0.95. Metrics with
accuracies that are not significantly worse than the
highest accuracy are considered to share the top
position for that phenomenon. A similar approach
is used to identify the best accuracies per category,
after aggregating the challenge items from the un-
derlying phenomena within each category.

Metric categories We conduct this significance
testing in two stages: first, for all metrics involved
in the shared task, and then separately for each of
the three metric categories (baseline, Quality Esti-
mation (QE) as a metric, reference-based). Systems
that are significantly superior per phenomenon
across all metrics are highlighted with a gray back-
ground, while those that are significantly superior
per metric category are denoted in boldface.

Averaging Lastly, we provide three types of av-
eraging scores:

i) Micro-average: This approach considers all
items equally, aggregating all test items to
compute the average percentages.

ii) Category macro-average: Here, all cate-
gories are treated equally, with the percent-
ages being computed independently for each
category and then averaged.

iii) Phenomenon macro-average: This average
treats all phenomena equally, with the percent-
ages being computed independently for each
phenomenon and then averaged.

4 Results

The results are displayed in detail in Tables 1, 2
and 3 for the category level and in Tables 4, 5 and
6 for the phenomenon level, for the three language
directions respectively.

4.1 Metric performance analysis

Here we are observing the statistics with a focus
on comparing the performance of various metrics
on the challenge set.

German-English The accuracies of the metrics,
as measured for several categories in German-
English, can be seen in Table 1. The best perform-
ing metric for German-English is COMETOID22-
WMT23 (Gowda et al., 2023), which, wins signifi-
cantly based on both the micro-average (83%) and
the macro-average (87%). This metric is a distilled
QE model that has been trained on COMET (Rei
et al., 2020) scores of WMT outputs, including the
ones of WMT23. For this reason, we include it
into the reference-aware metrics. We notice that its
performance among the other metrics is impressive.
It is the first metric in 6 categories and among them
the only one who wins at Verb tense/aspect/mood
and function words, achieving 93% and 91% accu-
racy respectively.

Another two reference-based baseline metrics,
COMET and PRISMREF (Thompson and Post,
2020a,b) share the first position when the category
macro-average is considered (82%). None of the
other reference-aware metrics submitted this year
managed to compete with the metrics with the high-
est accuracy mentioned above.

The lowest performing metric is the reference-
less random baseline RANDOM-SYSNAME, pro-
vided by the organizers (44%), followed by XL-
SIMQE (55-58%; Mukherjee and Shrivastava,
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2023) and MATESE (57-58%; Perrella et al.,
2022).

When considering the metric performance with
regard to particular categories, one can see, again
this year, that different metrics win in different com-
binations of categories. Here, only COMETOID22-
WMT23 as mentioned above, wins 6 metrics, fol-
lowed by PRISMREF and METRIC-23-C, which
win 4 categories. 17 metrics do not win any cate-
gory, ranging in accuracies around 75%.

English-German The accuracies of the metrics,
as measured for several categories in English-
German, can be seen in Table 2. The best perform-
ing metric in English-German is METRICX-23-C,
which is in the first significance cluster based on
both the micro-average (81%) and the category
macro-average (84%). This metric uses the mT5
encoder-decoder language model, which is fine-
tuned using direct assessment data, MQM (Lom-
mel et al., 2014) data and synthetic data. The cate-
gories to which its success may be mostly attributed
are the multi-word expressions (MWE; with 92%)
and the non-verbal agreement (95%).

Another three metrics share the first position,
when the micro average is considered, namely
the QE version of the latter, MetricX-23-QE-c
and also mbr-metricx-qe (Naskar et al., 2023) and
XCOMET-Ensemble. It is impressive that QE
methods manage to reach high accuracy without
access to reference content.

When looking at the worse-performing metrics,
MATESE here performs worse than the baseline
(36-38%), followed by PARTOKENGRAM_F (55-
56%; Dreano et al., 2023b).

In English-German it is even harder to say which
metrics perform well in multiple categories, as only
one of them, XCOMET-QE-ENSEMBLE, achieves
the highest performance in 3 categories (function
words, non-verbal agreement and subordination).
The rest of the metrics show a good performance
in 2 categories or fewer.

English-Russian The accuracies of the metrics,
as measured for several categories in English-
German, can be seen in Table 3. For this lan-
guage pair, variants of the MetricX achieve sig-
nificantly higher accuracies than all the other met-
rics. In particular, METRICX-23-C achieves the
highest accuracy based on both micro-average
and category macro-average, whereas METRICX-
23-B and METRICX-23-QE-C achieve a slightly

lower macro-average, which is nevertheless not
significantly worse than the one of the former.
MATESE is again by far the lowest performing
metric (32/34%), lower than the random baseline.
We may assume that this metric has not been opti-
mized for this language direction.

4.2 Linguistically motivated analysis
In this section, we are focusing on the results for
particular phenomena or categories.

4.2.1 German-English
Category-level The overall average accuracy of
all metrics with regard to the linguistically moti-
vated categories is at 76% for German-English,
which is two percentage points lower than last
year’s average. It is still a fact, that the metrics
in average fail to predict properly the scores for
one out of four challenge items that we provided.
Luckily, there has been noticeable accuracy for
some categories, for example METRICX reference-
based variants achieved an accuracy of 96% for
false friends, whereas negation errors have been
scored correctly with a 98.5

The worse performing category is Verb valency,
where the best metrics achieved only 66% accu-
racy, and the rest of the metrics averaged to a mere
56%. In this category one can observe the low-
est accuracy, given by an LLM-based metric, EM-
BED_LLAMA (Dreano et al., 2023a) with 41%.

Phenomenon-level The best accuracy for this
language pair (Table 4) is achieved this year at sev-
eral variations of verb tenses, i.e. Transitive - future
II, Modal negated - present, Reflexive - preterite
subjunctive II and Intransitive - pluperfect which
get more than 85% in average.

The lowest accuracy of all metrics in average is
given for passive voice, where the highest accuracy
achieved by several metrics is only 54.5%. Errors
related to commas, domain-specific terms and loca-
tions have also been scored with a less than 65%
accuracy.

4.2.2 English-German
Category-level The overall average accuracy of
all metrics with regard to the linguistically moti-
vated categories is at 71-73% for English-German.
The category where all metrics perform better in
average is negation (83%), where 11 of the met-
rics achieve more than 90% accuracy. Negation
is closely followed by function words Non-verbal
agreement (80%).
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The worse performing category in average is
named entities and terminology (58,8%), where
most metrics’ accuracies are close to 50%, except
for BLEURT (Yan et al., 2023) (80.3%). The rest
of the categories lie in rather mediocre accuracies,
between 58.8% and 80%.

Phenomenon-level The English-German phe-
nomena, where metrics perform best in average
(Table 5) are the transitive conditional II simple,
gerunds, contact clause and the intransitive present
perfect simple, achieving more than 85% of ac-
curacy. The phenomena which incur the lowest
average accuracies are the transitive present pro-
gressive, measuring units, modals and intransitive -
future II progressive with less than 50% accuracy.
The former and the latter were observed as the most
difficult phenomena to score also last year.

4.3 English-Russian

This analysis for English-Russian occurs for the
first time this year, based on the MT outputs col-
lected at last year’s shared task. For this purpose
the test instances are much fewer than the other lan-
guage pairs and therefore the numbers are not very
conclusive. Therefore, categories and phenomena
that have only a handful of samples will not be
included in our analysis, although they appear in
the tables.

Category-level Here, the average accuracy over
all metrics is much lower than the other language
directions, reaching only 66%, only 20% above the
random baseline. The best performing category
is ambiguity (86,3%), more than 13% better than
the following categories. The worst performing
categories are function words and punctuation, with
less than 55%. The rest of the categories range in
accuracies between 53 and 73%.

Phenomenon-level The good performance of the
ambiguity category is also confirmed in the table
on the phenomenon level (Table 6), as in Russian
this is the only phenomenon of this category, as
opposed to other language pairs where we also
have examples of structural ambiguity. The most
difficult phenomena to score appear to be the focus
particles, adverbial clause and stripping with less
than 50% average accuracy, in many cases lower
than the random baseline.

5 Conclusion

In this paper we analysed the performance of sev-
eral state-of-the-art metrics with regard to partic-
ular linguistically-motivated phenomena for three
language pairs, German-English, English-German
and for the first time, English Russian. The analy-
sis gave a multitude of observations, regarding both
the performance of the metrics and the correspond-
ing linguistic observations.

The metrics demonstrating the best performance
in average are COMETOID22-WMT23 for the
German-English language pair, and METRICX-
23-C for both the English-German and English-
Russian language pairs. Quality estimation meth-
ods have impressively good performance in sev-
eral phenomena. Some metrics that report usage of
LLMs (EMBED_LLAMA) have not scored very high
in overall, indicating that more work is required in
this direction.

Among the various linguistic phenomena, we
could identify some of the particularly challenging
ones. In German-English, metrics have difficul-
ties scoring the passive voice properly. In English-
German named entities and terminology as well as
specific measurement units pose the most difficul-
ties. In English-Russian translation, translations
with focus particles, adverbial clause, and strip-
ping phenomena emerge as particularly complex
challenges.
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Abstract

The tokengram_F metric presented in this pa-
per is a novel approach to evaluating machine
translation that has been submitted as part of
the WMT23 challenge. It offers a new per-
spective on evaluating machine translation that
takes advantage of modern tokenization algo-
rithms to provide a more natural representation
of the language in comparison to word n-grams.

Tokengram_F is an F-score-based evaluation
metric for Machine Translation that is heavily
inspired by chrF++ and can act as a more accu-
rate replacement. By replacing word n-grams
with n-grams obtained from tokenization algo-
rithms, tokengram_F captures similarities be-
tween words sharing the same semantic roots.

While requiring minimal training based on an
open corpus of monolingual datasets, the token-
gram_F metric proposed still retains excellent
performance that is comparable to more compu-
tationally expensive metrics. The tokengram_F
metric demonstrates its versatility by showing
satisfactory results, even when a tokenizer for
a specific language is not available. In such
cases, the tokenizer of a related language can
be used instead, highlighting the adaptability of
the tokengram_F metric to less commonly-used
languages.

1 Introduction

Machine Translation (MT) is a subdomain of Neu-
ral Language Processing (NLP) that is focused
on the translation of one natural language to an-
other, with the aim of producing natural-sounding
sentences. To evaluate the quality of algorithm-
generated translations, evaluation metrics provide
quantitative scores to objectively assess the accu-
racy of the model. Machine-generated translations
are compared to human-generated translations in
different ways depending on the evaluation met-
ric. In recent years, machine translation has seen a
great deal of progress in terms of accuracy and flu-
ency. However, there is still a need for more robust

evaluation metrics that can effectively measure the
quality of machine-generated translations.

Popular metrics in MT include BLEU (Papineni
et al., 2002), which measures the overlap between
sequences of words in the reference and generated
texts; chrF (Popović, 2015), which is an F1 score at
the character-level; chrF++ (Popović, 2017), which
extends chrF with word n-grams; TER (Snover
et al., 2006), which counts the erroneously-aligned
words between the reference and the generation,
and METEOR (Banerjee and Lavie, 2005), which
takes into account synonyms and stems.

More recent metrics rely on neural network ar-
chitectures, such as COMET (Rei et al., 2020) and
MS-COMET (Kocmi et al., 2022). By using the
similarity of vector representations of the gener-
ated translation and the reference translation, they
provide state-of-the-art machine evaluation of trans-
lations at the cost of being expensive to train and
compute.

Since its third instance in 2006, the Workshop
on Statistical Machine Translation (WMT) has re-
leased an evaluation task to compare metrics each
year. Generated translations are usually ranked by
humans, and the correlation coefficient between
the human-performed ranking and the evaluation
metric-performed ranking determines the quality
of the metric.

2 Tokengram_F

2.1 Tokenization

As text cannot be directly processed by machine
learning algorithms, it first has to be converted into
a numerical representation. Tokenization splits the
text into smaller character sequences, including but
not limited to phonemes, syllables, letters, words
or base pairs, collectively named tokens. The to-
kenization process also often consists of adding
special tokens, such as the unknown <unk> token
to represent never-seen characters or the padding

730



<pad> token to pad the sentence to a fixed length.
Each token can be converted to and from a unique
identifier, which is usually an integer between 0
and the maximum vocabulary size minus one.

2.2 chrF++

An n-gram refers to a consecutive series of n to-
kens that are extracted from a given corpus of text
or speech, with these units of text being defined
based on the particular context of the application. A
character-gram, or unigram, is a token that contains
exactly one character, while a word-gram contains
an entire word. chrF++ is an F-score using both
word-grams and character-grams to compare the
generated translation to the reference translation.
The general formula is

ngrFβ = (1 + β2)
(ngrP × ngrF )

(β2 × ngrP + ngrR)

where β determines the weight of the recall as dis-
cussed in Section 3.4.3.

2.3 Modern tokenization algorithms

Subword-based tokenization divides words depend-
ing on their number of occurrences in the training
data. Subwords can be combined to represent less
frequent words or even words that were not present
in the training data. For instance, in cases where
a word such as “decaying” is absent from the vo-
cabulary, an English tokenizer may represent it by
combining the “decay” and “ing” tokens.

Byte Pair Encoding (BPE) (Sennrich et al.,
2016), had been used for data compression long be-
fore it was ever applied in NLP-related tasks. After
first counting the frequency of each unique word
in the training data, BPE merges frequent occur-
rences of subword pairs until it reaches the desired
vocabulary size.

Instead of starting from a small vocabulary
representing the set of unique words, and growing
in size from there (as in BPE), Unigram (Kudo,
2018) initialises its base vocabulary to a large
number of symbols and then trims it down to the
desired size. It is analogous to factor analysis, as
at each step it calculates the loss of information
that would be induced by removing each token,
and then erases the less important ones from its
vocabulary.

The sentence “The kingly sovereign governs”
becomes:

words : " The " " k i n g l y " " s o v e r e i g n " " g o v e r n s "
t o k e n s : " The " " k ing " " l y " " s o v e r e i g n " " govern " " s "

2.4 Replacing word-grams

When using word-grams for scoring, each word
is compared regardless of its proximity to other
words. For example, the words “say” and “saying”
share a common root but this link would be lost
when using word-grams.

In this work, the authors claim that modern tok-
enization algorithms can be used instead of word-
grams to split the text in a more natural manner
that reflects the structure of each language. To-
kengram_F is an evaluation metric derived from
chrF++ that replaces the use of word-grams by to-
kens learned either by Unigram or by BPE.

3 Methodology

3.1 Framework

SentencePiece (Kudo and Richardson, 2018) is a
fast data-driven text tokenizer and detokenizer im-
plementing the Unigram algorithm. The vocabu-
lary size (number of individual tokens) needs to be
provided before training. The minimum vocabu-
lary size would consist of the number of special
tokens and individual characters of the alphabet for
each language. A large vocabulary size might lead
to overfitting and a reduction in the effectiveness
of the model, given that some parameters will be
dedicated to rare words.

3.2 Training

The tokengram_F score uses the same 3-letter ISO-
639-2 language code as the Tatoeba dataset, while
the WMT tasks rely on the 2-letter ISO-639-1 lan-
guage code. The website of the Library of Congress
(Library of Congress, 2017) was used for conver-
sions between the two norms.

The Tatoeba Translation Challenge (Tiedemann,
2020) is an initiative that aims to evaluate the ef-
fectiveness of MT systems on a large, diverse, and
high-quality parallel corpus. While the main train-
ing data relies on OPUS (Tiedemann, 2012), which
provides open-source sentence-aligned text corpora
to support data-driven NLP, Tatoeba also provides
monolingual datasets extracted from CirrusSearch
Wikimedia dumps (Foundation, 2023).

Out of the 279 different languages available, 240
had a sufficiently large corpus to be included in the
work described in this paper.
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3.3 Exceptions

As the tokengram_F metric is dependent on the
utilization of the Tatoeba monolingual datasets for
tokenizer training, adaptations were necessary to
accommodate languages that are not represented
within this dataset.

3.3.1 Livonian:

While there is no dataset in the Tatoeba Transla-
tion Challenge to train a Livonian tokenizer, the
Latvian tokenizer produced satisfactory results and
was utilised as a substitute, highlighting the ver-
satility of the tokengram_F metric and its ability
to accommodate languages that are less frequently
used.

3.3.2 Serbian and Indonesian:

The Tatoeba challenge does not offer monolingual
datasets for neither Serbian nor Indonesian. Nev-
ertheless, the Tatoeba Wikimedia data, which are
appropriate for tokenizer training and available for
both the Serbian and Indonesian languages, were
employed as a substitute.

3.4 Tokengram_F parameters

3.4.1 Tokenization algorithm:

While Tokengram_F can be used with any tokeniza-
tion algorithm, this study examined both BPE and
Unigram.

3.4.2 n-gram length:

This parameter determines the number of items
in the reference that will be compared with each
item in the source sentence, to assess the degree of
correspondence of the two sentences.

Previous work (Popović, 2015, 2017) has indi-
cated that for chrF++ there is no necessity to set
the maximum word n-gram length beyond N=6.

3.4.3 Beta:

In this metric, the relative importance of precision
and recall in the evaluation metric is determined by
the β parameter. When beta is equal to 1.0, preci-
sion and recall have equal importance, while when
beta is equal to 3.0, recall is three times more sig-
nificant than precision. Previous research (Popović,
2015) has evaluated two beta values, 1.0 and 3.0,
with the latter being considered “the most promis-
ing variant” due to the higher correlations it ob-
tained.

3.4.4 Vocabulary size:

The goal of the present study is to mitigate the
effect of infrequent words on the accuracy of the to-
kengram_F metric. To investigate the influence of
vocabulary size on the performance of the metric,
three tokenizers were trained for each language us-
ing vocabulary sizes of 16,000, 32,000, and 50,000
tokens. As the average vocabulary size tends to de-
crease from one year to the next (Libovický, 2021),
wider vocabularies have not been examined.

3.5 Optimal parameters

3.5.1 Finetuning

The optimal parameters were determined based on
achieving the highest average correlation among
segments or systems across three datasets: WMT20
(Mathur et al., 2020), WMT21 (Freitag et al., 2021),
and WMT22 (Freitag et al., 2022).

Initially, the n-gram length was assessed at val-
ues of 3, 6, and 9, while maintaining a vocabulary
size of 50,000. Consistent with the findings of the
original paper, a n-gram length of 6 demonstrated
the strongest correlation as shown in Table 1, and
thus it was chosen for subsequent evaluations.

Subsequently, the beta values of 2, 3, and 4 were
examined specifically for an n-gram length N of
6. The best overall correlation is obtained with
Unigram and β=3.0.

Table 3 presents the results obtained with a vo-
cabulary size of 32,000. As with the previous vo-
cabulary size, the choice of the tokenization algo-
rithm only slightly affects the results. A β of 3.0
or 4.0 seems to give the best results.

As shown in Table 2, the vocabulary size of
16,000, which was the smallest size examined,
exhibits generally weaker correlations compared
to larger sizes, thus precluding the exploration of
smaller sizes.

3.5.2 Results

Despite the marginal disparity, when the results
are not rounded, the optimal parameters for token-
gram_F are found to be a vocabulary size of 50,000,
unigram tokenization, an n-gram length N=6, and
a β value of 3.0.

3.6 Source code

The source code of tokengram_F is available at
https://github.com/SorenDreano/tokengram_F.

732



4 Conclusion

Instead of using word n-grams as a basis for com-
paring a generated translation with a reference
translation, tokengram_F utilises contemporary
tokenization algorithms to accomplish this task.
As a result, words that share common roots are
deemed similar, regardless of whether they are ex-
act matches or not.

The results obtained from evaluating the token-
gram_F metric on the WMT20, WMT21, and
WMT22 datasets indicate that the use of tokens
generated through the SentencePiece framework
leads to improved performance compared to the
use of traditional word-grams in the chrF++ metric.
Full results are displayed in Appendix A. The to-
kengram_F metric is a simple and efficient method
for obtaining a reasonable correlation with human
rankings, with the added benefit of requiring mini-
mal training time to be applied to new languages.

In the segment-level task of the WMT22 edition,
tokengram_F managed to obtain better overall cor-
relations than any other metric that could provide
results for all language pairs, including ones that
require extensive neural networks to operate. With
the exception of two tasks, tokengram_F outper-
formed both chrF and chrF++ metrics.

In conclusion, the tokengram_F metric is pre-
sented as a promising alternative for evaluating the
quality of machine translations, as it offers a simple
and efficient solution with above-average perfor-
mance compared to other models. The findings of
this study provide strong evidence of the potential
of the tokengram_F metric as a valuable evalua-
tion tool for machine translation. Its combination
of simplicity, efficiency, and adaptability make it
an attractive alternative to existing metrics and a
promising direction for future research in the field.

5 Further work

The optimal number of tokens in a tokenizer may
vary depending on the language. Subsequent re-
search could concentrate on determining the most
suitable vocabulary size per language.

The majority of the tokenizers were trained using
the MonoLinguage Datasets from the Tatoeba Chal-
lenge, which are based on data from the Wikimedia
Foundation. It remains possible that alternate data
sources may produce varying results.
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A Appendix. Tables

Table 1: Correlations over all metrics depending of the hyperparameters with a vocabulary size of 50,000

Vocabulary 50000

Algorithm BPE Unigram

Beta 4 3 2 4 3 2

n-gram 6 9 6 3 6 6 9 6 3 6

System
WMT20

0.875 0.871 0.876 0.871 0.877 0.876 0.871 0.876 0.871 0.877

System
WMT21

0.715 0.715 0.716 0.713 0.717 0.716 0.715 0.717 0.714 0.718

System
WMT22

0.837 0.831 0.834 0.834 0.829 0.836 0.831 0.835 0.834 0.830

Segment
WMT20

0.277 0.274 0.277 0.279 0.277 0.276 0.273 0.277 0.278 0.277

Segment
WMT21

0.158 0.155 0.158 0.166 0.157 0.160 0.159 0.158 0.170 0.152

Segment
WMT22

0.398 0.393 0.398 0.399 0.400 0.398 0.393 0.399 0.397 0.400

Average 0.543 0.540 0.544 0.543 0.543 0.544 0.540 0.544 0.543 0.542

Table 2: Correlations over all metrics depending of the hyperparameters with a vocabulary size of 16,000

Vocabulary size 16000

Tokenization algorithm BPE Unigram

Beta 4 3 2 4 3 2

n-gram length 6

System WMT20 0.875 0.876 0.877 0.876 0.877 0.877

System WMT21 0.715 0.716 0.717 0.716 0.717 0.718

System WMT22 0.839 0.837 0.83 0.839 0.837 0.83

Segment WMT20 0.278 0.278 0.277 0.277 0.277 0.277

Segment WMT21 0.152 0.153 0.157 0.146 0.15 0.153

Segment WM22 0.398 0.399 0.4 0.398 0.4 0.402

Average 0.543 0.543 0.543 0.542 0.543 0.543
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Table 3: Correlations over all metrics depending of the hyperparameters with a vocabulary size of 32,000

Vocabulary size 32000

Tokenization algorithm BPE Unigram

Beta 4 3 2 4 3 2

n-gram length 6

System WMT20 0.875 0.876 0.877 0.876 0.876 0.877

System WMT21 0.715 0.716 0.717 0.716 0.717 0.718

System WMT22 0.837 0.835 0.83 0.837 0.835 0.83

Segment WMT20 0.277 0.277 0.277 0.277 0.277 0.277

Segment WMT21 0.157 0.158 0.157 0.158 0.158 0.153

Segment WM22 0.397 0.399 0.400 0.399 0.401 0.402

Average 0.543 0.544 0.543 0.544 0.544 0.543

Table 4: Tokengram_F results on the WMT20 dataset compared to chrF++

Language pair tokengram_F system r chrF++ system r tokengram_F segment τ chrF++ segment τ
en-cs 0.865 0.833 0.485 0.478
en-de 0.961 0.958 0.371 0.367
en-ru 0.981 0.952 0.162 0.156
en-ta 0.941 0.956 0.590 0.579
en-zh 0.851 0.983 0.403 0.388
en-ja 0.949 0.328 0.521 0.506
en-pl 0.958 0.315 0.256 0.255
en-iu 0.433 0.338 0.340 0.338
cs-en 0.872 0.844 0.095 0.09
de-en 0.997 0.998 0.440 0.435
pl-en 0.508 0.970 0.032 0.034
ta-en 0.957 0.522 0.184 0.186

km-en 0.984 0.965 0.281 0.275
ps-en 0.894 0.964 0.143 0.145
ja-en 0.972 0.763 0.251 0.245
ru-en 0.921 0.977 0.055 0.054
zh-en 0.960 0.841 0.130 0.130
iu-en 0.765 0.726 0.242 0.246

736



Table 5: Tokengram_F results on the WMT21 dataset compared to chrF (chrF was used in place of chrF++ as
chrF++ results were not reported)

Language pair tokengram_F system r chrF system r tokengram_F segment τ chrF segment τ
en-cs 0.978 0.970 0.549 0.531
en-zh 0.625 0.549 0.121 0.092
en-ha 0.760 0.748 0.185 0.186
en-ja 0.967 0.966 0.384 0.371
en-ru 0.756 0.943 0.214 0.201
en-de 0.842 0.831 0.448 0.098
cs-en 0.562 0.562 -0.052 -0.053
zh-en 0.269 0.723 0.395 -0.035
ha-en 0.921 0.924 0.021 0.021
ja-en 0.823 0.831 0.006 0.005
ru-en 0.579 0.593 -0.123 -0.126
de-en 0.424 0.357 -0.151 -0.162
fr-de 0.655 0.646 0.049 0.054
de-fr 0.504 0.498 0.111 0.110
bn-hi 0.949 0.941 0.079 0.071
hi-bn 0.877 0.872 0.335 0.327
xh-zu 0.999 0.998 0.306 0.301
zu-xh 0.997 0.999 0.529 0.530

Table 6: Tokengram_F results on the WMT22 dataset compared to chrF++ (chrF was used in place of chrF++ as
chrF++ results were not reported)

Language pair tokengram_F system r chrF system r tokengram_F segment τ chrF segment τ
en-cs 0.602 0.689 0.077 0.147
en-zh 0.248 0.210 -0.044 0.051
en-hr 0.899 0.920 0.274 0.185
en-ja 0.927 0.931 0.241 0.142
en-liv 0.989 0.988 0.370 0.101
en-ru 0.852 0.813 0.659 0.153
en-uk 0.869 0.895 0.178 0.177
en-de 0.799 0.811 1.000 0.085
liv-en 0.985 0.969 0.500 0.184
zh-en 0.787 0.881 0.415 0.071

sah-ruh 1.000 1.000 0.856 0.430
uk-cs 0.971 0.979 0.350 0.171
cs-uk 0.921 0.927 0.311 0.195
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Abstract

Embed_llama is an assessment metric for lan-
guage translation that hinges upon the utiliza-
tion of the recently introduced Llama 2 Large
Language Model (LLM), specifically focusing
on its embedding layer, to transform sentences
into a vector space that establishes connections
between geometric and semantic proximities.

Investigations utilizing previous WMT datasets
have revealed that within the Llama 2 archi-
tecture, relying solely on the initial embedding
layer does not result in the highest degree of cor-
relation when assessing machine translations.
The incorporation of additional layers, however,
holds the potential to augment the contextual
understanding of sentences.

As a contribution to the WMT23 challenge, this
study delves into the advantages derived from
employing a pre-trained LLM that has not un-
dergone fine-tuning specifically for translation
evaluation tasks, to provide a metric conducive
to operation on readily accessible consumer-
grade hardware. This research digs into the
observation that deeper layers within the model
do not result in a linear increase in the spatial
proximity between sentences within the vector
space.

1 Introduction

The assessment of algorithm-generated translations
entails the utilization of evaluation metrics that
furnish quantitative scores to objectively gauge
the precision of the model’s output. Various
methodologies are employed to juxtapose machine-
generated translations with their human-generated
counterparts, contingent upon the specific evalua-
tion metric employed. In recent years, the realm
of machine translation (MT) has witnessed notable
advancements in terms of both translation accuracy
and linguistic fluency.

Over time, there has been a significant enhance-
ment in the correlation coefficient between human

assessments and the automated evaluation of sen-
tences generated by machines. Earlier metrics,
such as BLEU (Papineni et al., 2002) or chrF++
(Popović, 2017), predominantly relied on the tex-
tual overlap between reference translations and the
machine-generated counterparts. In contrast, con-
temporary approaches, exemplified by COMET
(Rei et al., 2020), harness recent breakthroughs
in Natural Language Processing(NLP) and trans-
former models, enabling them to consider not only
individual words, but also to leverage contextual
semantics for a more comprehensive evaluation.

In the domain of Machine Learning (ML) ap-
plied to NLP, the embedding layer assumes a piv-
otal role within neural network architectures, par-
ticularly in tasks centered on textual data. Its cen-
tral objective lies in the transformation of discrete
tokens, encompassing entities like words or charac-
ters into continuous vector representations. These
vector representations, which maintain continuity,
are amenable to acquisition and manipulation by
neural networks and are commonly referred to as
word embeddings.

2 Embed_Llama

The initial component in a Natural Language Pro-
cessing (NLP) model is typically an embedding
layer, which serves the purpose of converting the
distinct identifiers of tokens within the input sen-
tence into a vectorized representation. In this con-
text, it is essential to emphasize that sentences
conveying similar semantic content should exhibit
proximity in the vector space, irrespective of the
presence of word-level overlap, in contrast to sen-
tences chosen randomly.

Embed_Llama draws inspiration from Word2vec
(Mikolov et al., 2013) using Llama 2 (Touvron
et al., 2023), a contemporary open-source pre-
trained model. Rather than needing to train an extra
NLP model for the purpose of assessing translation
quality, a viable alternative approach involves uti-
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lizing a pre-trained, extensive neural network like
Llama 2, which has been originally trained for next-
token prediction. This approach allows for the in-
vestigation of how closely related sentences evolve
across the model’s various layers, all without incur-
ring the supplementary expenses associated with
fine-tuning or training anew.

2.1 Word2vec
Word2vec is a methodology that utilizes a neu-
ral network model to extract word associations
from comprehensive textual corpora. Post train-
ing, this model possesses the capability to iden-
tify synonymous terms and offer word suggestions
for unfinished sentences. As the terminology im-
plies, Word2vec symbolizes individual words by
employing distinct numerical vectors, systemati-
cally engineered to encapsulate both the semantic
and syntactic characteristics inherent to the words.

Embed_Llama leverages vectorial space to es-
timate similarity or dissimilarity. This estimation
is accomplished by computing the cosine distance
between two sentences.

2.2 Vocabulary size
The lexical repertoire of Llama 2 encompasses
32,000 unique tokens, a figure lower than that of
both GPT-2 (Radford et al., 2019) and GPT-NeoX
(Black et al., 2022), which both employ 50,000
unique tokens. Regrettably, the specific vocabulary
sizes pertaining to GPT-3 (Brown et al., 2020) and
GPT-4 (OpenAI, 2023) remain undisclosed.

2.3 Embeddings
The dimensionality of the embedding space repre-
sents a hyperparameter subject to adjustment. Em-
beddings of higher dimensions have the capacity
to capture more intricate relationships; however,
it is noteworthy that such higher-dimensional em-
beddings may necessitate increased quantities of
data and computational resources for their effective
utilization.

2.4 Cosine distance
The cosine similarity metric quantifies the similar-
ity between two n-dimensional vectors by comput-
ing the cosine of the angle between them. This
scoring measure finds common application in the
domain of text mining (Singhal, 2001). The general
formula for two vectors A and B is:

cos θ =
A ·B
∥A∥∥B∥

To enable efficient computation on consumer-
grade hardware, the two sentences slated for com-
parison are padded to match the maximum token
count of the longer sentence in the pair. Con-
sequently, a sentence initially shaped as [length]
transforms into the shape [length ×4,096] following
its processing through the embedding layer.

3 Hyperparameter

As the objective of this current study revolves
around the utilization of a pre-trained network, our
sphere of influence is limited to a sole hyperparam-
eter, namely, the number of blocks to retain before
computing the cosine distance.

3.1 Block architecture

As shown in Figure 1, each block, denoted as
the LlamaDecoderLayer, is structured with sev-
eral components, including an attention layer, two
normalization layers, and a multi-layer perceptron.
The multi-layer perceptron, in turn, consists of
three linear layers along with an associated acti-
vation function, while the attention layer also in-
cludes a rotary embedding layer.

The Llama 2 model, comprising 7 billion pa-
rameters, encompasses an embedding layer, 32
blocks, and a projection layer. To determine the op-
timal number of blocks, datasets extracted from the
WMT challenge editions of 2020, 2021, and 2022
were employed. Due to the limited GPU memory
allocation in the current project, it was only feasi-
ble to investigate the Llama 2 model up to a depth
of 22 blocks, whereas the model has a total of 32
available blocks.

Figure 1: Architecture of the Llama2 model as displayed
in the Huggingface library

3.2 Exploring the depth

It was initially hypothesized that increasing the
number of blocks would improve the contextual
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representation of sentence meaning. Figure 2 re-
veals that, in contrast to our initial hypotheses, the
augmentation of block quantities does not signifi-
cantly modify the correlation between the systems
and the ground truth, whether by augmentation
or reduction. Furthermore, it is noteworthy that
this correlation exhibits variability across different
datasets. Specifically, the Pearson correlation be-
tween the number of layers and algorithm accuracy
is 0.34 for the WMT20 dataset, but it decreases to
-0.79 for the WMT22 dataset.

Figure 2: System correlations depending on the Llama
layer

As shown in Figure 3, these observations hold
with respect to segment correlation as well. The
quantity of blocks employed in the Embed_Llama
does not consistently enhance the metric’s quality,
whether for individual segments or entire systems.

Figure 3: Segment correlations depending on the Llama
layer

The highest levels of correlation between hu-
man rankings and Embed_Llama rankings were
achieved by utilizing a mere two blocks following

the embedding layer, resulting in optimal overall
performance across the WMT20, WMT21, and
WMT22 datasets. This not only expedited the com-
putational process, but also decreased the GPU
memory demands for metric computation.

3.3 Inter-languages variations
As depicted in Figure 4, the associations between
metric quality and language pairs exhibit large
variations. For instance, when considering the
Hungarian-to-English language pair, the Pearson
coefficient registers at 0.83, whereas it falls to -0.85
for the Czech-to-Ukrainian pair.

Figure 4: System correlations for each language pair in
the WMT2022 dataset depending on the Llama layer

3.4 Intra-languages variations
Considerable variability is observed even within
the same language pair across various datasets. For
instance, the English-to-Chinese language pair is
encompassed within the WMT2020, WMT2021,
and WMT2022 datasets. However, as illustrated
in Figure 5, no discernible correlations emerge be-
tween the number of utilized blocks and the quality
of Embed_Llama scores. This is evident in the
transformation of the Pearson coefficient, which
shifts from -0.28 in the WMT2021 to 0.73 in the
WMT2022 dataset.

3.5 Inter-datasets variations
Table 1 presents the average mean values and their
corresponding standard deviations, showcasing the
relationship between metric accuracy and the num-
ber of utilized blocks for language pairs common
to all three datasets. It is notable that, apart for
the English-to-Japanese pair, there exists a signifi-
cant degree of variability in the performance of the
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Figure 5: System correlations of the English-to-Chinese
language pair depending on the Llama layer and the
dataset

Language pair Mean Standard deviation
en-cs -0.34 0.22
en-de -0.02 0.4
en-ja -0.89 0.04
en-ru -0.02 0.54
en-zh 0.35 0.45
zh-en -0.17 0.46

Table 1: Means and standard deviations of the sys-
tem correlations depending on the Llama layer when
WMT2020, WMT2021 and WMT2022 are merged

same language pairs across different datasets. This
variability is underscored by the substantial stan-
dard deviations in relation to the absolute values
of the means. Given the limited usage of just three
datasets, it is essential to acknowledge that the rel-
atively small sample size may hinder the ability to
draw conclusive inferences regarding inter-dataset
variability.

3.6 Full results

Tables 2, 4 and 6, correspondingly, present the Pear-
son correlation coefficients for datasets WMT2020,
WMT2021 and WMT2021, illustrating the associ-
ation between the algorithm-assigned scores and
the actual rankings of the evaluated systems for
individual language pairs.

With regard to segment-level correlations, they
are presented in Tables 3, 5 and 7 for WMT2020,
WMT2021, and WMT2022, respectively. It is
noteworthy that, in contrast to system correla-
tions, these are represented by Kendall coefficients,
which are utilized as a measure of ordinal associa-

tion.
It is noteworthy that the observed variations in

these correlations are predominantly influenced by
the specific language pairs, rather than the depth
of the final block employed prior to cosine simi-
larity computation, aligning with our anticipated
outcome.

3.7 Source code

The source code of Embed_Llama is available at
https://github.com/SorenDreano/embed_llama.

4 Conclusion

Although the authors initially anticipated that Em-
bed_Llama would exhibit suboptimal performance
for a majority of language pairs, except for those
involving English, due to the apparent constraints
posed by a limited vocabulary size and the nature
of the dataset Llama 2 was trained on, the actual
performance did not exhibit a significant underper-
formance.

The results from previous iterations of the WMT
metrics shared task, presented in Appendix A, in-
dicate that this approach may not meet the con-
temporary state-of-the-art standards exemplified by
METRICX_XXL (unpublished) and COMET-22
(Rei et al., 2022).

The methodology involving the utilization of a
non-finetuned, pre-trained Large Language Model
(LLM) to assess translation quality through vector
space similarity comparisons remains a prospective
avenue of inquiry. This prospect gains relevance
in light of forthcoming open-source models charac-
terized by expansive vocabularies and training data
encompassing diverse languages.

5 Further work

Given the recent proliferation of open-source
LLMs, it is likely that another model, either
presently or in the near future, may surpass the
performance of Llama 2 for translation evaluation
without necessitating any fine-tuning.

In the current investigation, the exploration has
been confined to the 7 billion parameters model. It
remains conceivable that employing a more exten-
sive model with increased parameters may yield
a more precise metric, albeit at the trade-off of
heightened computational resource demands.

In the present evaluation, an exploration was lim-
ited to the initial 22 blocks. Subsequent endeavors

741



may consider augmenting this number, as doing so
could potentially result in further benefits.

Moreover, it is worth noting that the optimal
selection of the number of blocks to employ may
be contingent upon the specific target language.
Consequently, adjusting this hyperparameter based
on the language in question could potentially yield
enhanced correlation results.

In the scope of the current academic study, solely
the cosine distance served as the chosen similarity
measure for tensors. Future research endeavors
may wish to investigate alternative distance metrics,
such as the Euclidean distance or the Manhattan
distance, for potential exploration.
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A Appendix. Tables

Table 2: Pearson correlations (r) for the WMT20 system dataset depending on the Llama layer.
The findings pertaining to the second layer are shown in bold, as it represents the prevailing
default layer count within the Embed_Llama

Language pair L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
en-cs 0.855 0.866 0.875 0.877 0.873 0.876 0.872 0.863 0.861 0.864 0.867
en-de 0.923 0.928 0.933 0.929 0.928 0.927 0.927 0.926 0.925 0.925 0.928
en-ru 0.856 0.677 0.769 0.772 0.81 0.829 0.821 0.902 0.912 0.899 0.918
en-ta 0.883 0.901 0.914 0.921 0.926 0.932 0.934 0.936 0.939 0.942 0.945
en-zh 0.137 0.019 0.07 0.028 0.038 0.065 0.083 0.135 0.143 0.191 0.193
en-ja 0.898 0.892 0.879 0.871 0.88 0.881 0.874 0.883 0.88 0.876 0.871
en-pl 0.88 0.874 0.88 0.878 0.875 0.864 0.868 0.873 0.873 0.872 0.868
en-iu 0.252 0.226 0.194 0.156 0.137 0.121 0.119 0.106 0.105 0.096 0.094
cs-en 0.795 0.777 0.752 0.771 0.789 0.788 0.796 0.795 0.796 0.789 0.775
de-en 0.992 0.996 0.996 0.994 0.99 0.99 0.99 0.988 0.988 0.988 0.99
pl-en 0.419 0.403 0.428 0.433 0.401 0.395 0.4 0.394 0.388 0.398 0.407
ta-en 0.876 0.889 0.918 0.922 0.919 0.923 0.921 0.919 0.917 0.919 0.918

km-en 0.954 0.969 0.988 0.988 0.988 0.989 0.99 0.989 0.987 0.986 0.985
ps-en 0.926 0.874 0.877 0.862 0.872 0.877 0.873 0.875 0.875 0.875 0.878
ja-en 0.913 0.938 0.947 0.946 0.946 0.948 0.949 0.948 0.946 0.948 0.949
ru-en 0.949 0.939 0.949 0.948 0.953 0.947 0.948 0.949 0.948 0.944 0.939
zh-en 0.97 0.967 0.963 0.956 0.957 0.955 0.955 0.954 0.954 0.951 0.951
iu-en 0.64 0.676 0.68 0.662 0.638 0.645 0.638 0.625 0.616 0.615 0.633

Language pair L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22
en-cs 0.865 0.866 0.86 0.858 0.851 0.856 0.855 0.857 0.866 0.874 0.874
en-de 0.925 0.926 0.922 0.921 0.917 0.918 0.918 0.921 0.923 0.929 0.929
en-ru 0.922 0.904 0.903 0.898 0.902 0.885 0.862 0.902 0.93 0.941 0.938
en-ta 0.942 0.942 0.944 0.946 0.947 0.947 0.948 0.948 0.948 0.946 0.946
en-zh 0.202 0.181 0.195 0.2 0.193 0.173 0.162 0.163 0.149 0.122 0.125
en-ja 0.87 0.867 0.869 0.865 0.865 0.857 0.858 0.848 0.838 0.836 0.836
en-pl 0.873 0.871 0.875 0.872 0.869 0.86 0.865 0.862 0.858 0.857 0.857
en-iu 0.084 0.085 0.082 0.084 0.083 0.078 0.073 0.082 0.091 0.092 0.086
cs-en 0.781 0.787 0.787 0.794 0.802 0.794 0.8 0.79 0.783 0.776 0.785
de-en 0.989 0.989 0.988 0.988 0.986 0.989 0.989 0.991 0.992 0.994 0.994
pl-en 0.408 0.42 0.421 0.418 0.417 0.414 0.413 0.41 0.406 0.415 0.415
ta-en 0.918 0.917 0.914 0.91 0.907 0.912 0.912 0.913 0.913 0.919 0.921

km-en 0.983 0.982 0.975 0.975 0.967 0.964 0.967 0.968 0.97 0.966 0.968
ps-en 0.876 0.881 0.887 0.892 0.891 0.888 0.889 0.889 0.889 0.895 0.897
ja-en 0.947 0.946 0.944 0.941 0.936 0.94 0.942 0.943 0.942 0.941 0.941
ru-en 0.938 0.938 0.938 0.939 0.94 0.935 0.935 0.935 0.933 0.935 0.937
zh-en 0.95 0.951 0.951 0.95 0.952 0.953 0.951 0.954 0.955 0.958 0.958
iu-en 0.619 0.613 0.606 0.6 0.602 0.627 0.63 0.639 0.644 0.662 0.66

Table 3: Kendall correlations (τ ) for the WMT20 segment dataset depending on the Llama layer

Language pair L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
en-cs 0.226 0.231 0.244 0.234 0.232 0.226 0.229 0.225 0.225 0.222 0.226
en-de 0.181 0.19 0.207 0.201 0.205 0.198 0.202 0.201 0.199 0.196 0.198
en-ru 0.028 0.034 0.037 0.045 0.038 0.045 0.042 0.044 0.043 0.046 0.05
en-ta 0.355 0.354 0.323 0.284 0.282 0.267 0.279 0.281 0.282 0.26 0.255
en-zh 0.147 0.141 0.164 0.144 0.138 0.141 0.147 0.152 0.152 0.16 0.165
en-ja 0.277 0.281 0.295 0.29 0.285 0.287 0.283 0.285 0.284 0.284 0.282
en-pl 0.097 0.095 0.103 0.101 0.101 0.102 0.098 0.101 0.098 0.094 0.102
en-iu 0.218 0.224 0.205 0.187 0.18 0.173 0.185 0.187 0.186 0.179 0.18
cs-en 0.064 0.065 0.073 0.072 0.077 0.076 0.076 0.073 0.074 0.078 0.083
de-en 0.349 0.374 0.387 0.384 0.39 0.389 0.385 0.376 0.372 0.375 0.381
pl-en -0.016 -0.016 -0.0 -0.007 -0.0 0.0 -0.003 0.002 -0.002 -0.005 -0.006
ta-en 0.108 0.118 0.125 0.121 0.122 0.119 0.128 0.121 0.106 0.108 0.123

km-en 0.141 0.145 0.144 0.12 0.13 0.122 0.117 0.114 0.097 0.108 0.114
ps-en 0.088 0.081 0.074 0.076 0.058 0.053 0.06 0.061 0.065 0.061 0.08
ja-en 0.109 0.136 0.136 0.144 0.147 0.149 0.151 0.144 0.137 0.139 0.134
ru-en 0.011 0.02 0.019 0.022 0.026 0.022 0.031 0.023 0.02 0.02 0.017
zh-en 0.065 0.067 0.071 0.072 0.073 0.072 0.072 0.071 0.068 0.069 0.069
iu-en 0.16 0.161 0.175 0.178 0.187 0.191 0.195 0.194 0.195 0.198 0.199

Language pair L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22
en-cs 0.23 0.229 0.222 0.223 0.215 0.218 0.221 0.222 0.221 0.222 0.221
en-de 0.19 0.193 0.187 0.183 0.177 0.178 0.184 0.184 0.186 0.186 0.19
en-ru 0.043 0.037 0.043 0.042 0.045 0.036 0.039 0.037 0.039 0.043 0.044
en-ta 0.281 0.29 0.283 0.266 0.261 0.267 0.264 0.232 0.204 0.224 0.237
en-zh 0.166 0.168 0.162 0.165 0.16 0.163 0.166 0.163 0.165 0.166 0.164
en-ja 0.282 0.276 0.28 0.281 0.274 0.272 0.271 0.271 0.263 0.266 0.27
en-pl 0.098 0.096 0.091 0.087 0.093 0.093 0.095 0.093 0.09 0.092 0.092
en-iu 0.17 0.167 0.162 0.163 0.154 0.153 0.149 0.146 0.141 0.145 0.143
cs-en 0.081 0.073 0.073 0.076 0.074 0.079 0.081 0.081 0.077 0.073 0.075
de-en 0.377 0.377 0.371 0.372 0.361 0.37 0.37 0.378 0.374 0.383 0.386
pl-en -0.004 0.0 -0.001 0.005 0.001 -0.001 0.001 -0.004 -0.006 -0.004 -0.003
ta-en 0.118 0.111 0.107 0.101 0.103 0.11 0.112 0.114 0.112 0.106 0.103

km-en 0.109 0.11 0.092 0.097 0.083 0.091 0.1 0.111 0.116 0.124 0.126
ps-en 0.074 0.081 0.067 0.068 0.064 0.056 0.066 0.07 0.07 0.067 0.07
ja-en 0.128 0.125 0.116 0.112 0.102 0.115 0.117 0.125 0.126 0.129 0.129
ru-en 0.015 0.007 0.009 0.008 0.013 0.012 0.015 0.018 0.02 0.025 0.022
zh-en 0.069 0.072 0.07 0.069 0.066 0.069 0.07 0.072 0.07 0.074 0.074
iu-en 0.192 0.177 0.173 0.176 0.173 0.179 0.184 0.183 0.188 0.189 0.189
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Table 4: Pearson correlations (r) for the WMT21 system dataset depending on the Llama layer

Language pair L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
en-cs 0.985 0.984 0.985 0.982 0.981 0.981 0.982 0.982 0.979 0.98 0.982
en-zh 0.497 0.531 0.555 0.559 0.58 0.597 0.591 0.583 0.555 0.553 0.551
en-ha 0.534 0.551 0.567 0.567 0.567 0.553 0.554 0.553 0.563 0.56 0.547
en-ja 0.82 0.83 0.838 0.836 0.83 0.84 0.837 0.839 0.829 0.822 0.816
en-ru 0.567 0.621 0.682 0.674 0.674 0.658 0.674 0.614 0.572 0.576 0.573
en-de 0.818 0.793 0.804 0.801 0.794 0.789 0.794 0.799 0.796 0.792 0.79
cs-en 0.542 0.454 0.435 0.428 0.429 0.432 0.426 0.426 0.429 0.42 0.423
zh-en 0.232 0.186 0.155 0.159 0.172 0.179 0.188 0.196 0.198 0.196 0.192
ha-en 0.825 0.855 0.858 0.855 0.867 0.868 0.867 0.867 0.865 0.86 0.855
ja-en 0.728 0.726 0.748 0.753 0.761 0.76 0.759 0.759 0.761 0.761 0.759
ru-en 0.613 0.606 0.535 0.514 0.5 0.496 0.502 0.506 0.506 0.504 0.509
de-en 0.171 0.22 0.237 0.238 0.221 0.23 0.223 0.223 0.225 0.234 0.243
fr-de 0.564 0.556 0.555 0.556 0.556 0.555 0.557 0.555 0.556 0.554 0.552
de-fr 0.477 0.511 0.578 0.579 0.579 0.58 0.579 0.575 0.563 0.564 0.574
bn-hi 0.908 0.943 0.94 0.942 0.937 0.929 0.941 0.95 0.943 0.941 0.942
hi-bn 0.879 0.872 0.913 0.93 0.925 0.915 0.912 0.907 0.911 0.908 0.915
xh-zu 0.952 0.932 0.934 0.931 0.923 0.909 0.904 0.905 0.898 0.899 0.891
zu-xh 0.95 0.937 0.97 0.973 0.975 0.972 0.971 0.972 0.976 0.976 0.976

Language pair L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22
en-cs 0.983 0.984 0.983 0.983 0.979 0.981 0.982 0.983 0.983 0.984 0.983
en-zh 0.548 0.545 0.548 0.545 0.545 0.549 0.554 0.543 0.533 0.524 0.528
en-ha 0.541 0.543 0.554 0.553 0.571 0.562 0.572 0.567 0.556 0.542 0.534
en-ja 0.81 0.804 0.795 0.793 0.781 0.783 0.786 0.777 0.772 0.774 0.779
en-ru 0.581 0.582 0.562 0.58 0.526 0.557 0.565 0.603 0.621 0.625 0.637
en-de 0.796 0.803 0.808 0.808 0.814 0.81 0.81 0.8 0.79 0.787 0.791
cs-en 0.394 0.386 0.383 0.387 0.388 0.395 0.41 0.425 0.422 0.433 0.435
zh-en 0.189 0.189 0.185 0.189 0.19 0.173 0.174 0.168 0.157 0.142 0.146
ha-en 0.846 0.842 0.84 0.841 0.841 0.827 0.828 0.829 0.823 0.818 0.814
ja-en 0.76 0.763 0.768 0.771 0.775 0.772 0.772 0.77 0.769 0.762 0.763
ru-en 0.51 0.512 0.513 0.52 0.521 0.52 0.529 0.534 0.535 0.532 0.528
de-en 0.23 0.217 0.212 0.196 0.184 0.207 0.21 0.205 0.203 0.215 0.214
fr-de 0.553 0.554 0.555 0.555 0.553 0.55 0.55 0.547 0.543 0.541 0.542
de-fr 0.566 0.564 0.558 0.558 0.556 0.567 0.564 0.561 0.563 0.574 0.577
bn-hi 0.935 0.932 0.931 0.931 0.93 0.933 0.933 0.938 0.94 0.93 0.922
hi-bn 0.904 0.892 0.876 0.86 0.869 0.863 0.859 0.865 0.864 0.852 0.829
xh-zu 0.9 0.903 0.906 0.903 0.909 0.905 0.908 0.912 0.903 0.898 0.896
zu-xh 0.977 0.979 0.981 0.981 0.981 0.981 0.977 0.977 0.976 0.969 0.962

Table 5: Kendall correlations (τ ) for the WMT21 segment dataset depending on the Llama layer

Language pair L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
en-cs 0.197 0.198 0.243 0.243 0.238 0.223 0.221 0.219 0.219 0.214 0.22
en-zh 0.028 0.028 0.048 0.042 0.042 0.044 0.039 0.041 0.039 0.037 0.037
en-ha 0.073 0.077 0.087 0.081 0.077 0.071 0.071 0.068 0.062 0.061 0.062
en-ja 0.181 0.184 0.204 0.21 0.214 0.204 0.197 0.196 0.204 0.196 0.192
en-ru 0.094 0.101 0.099 0.099 0.089 0.09 0.091 0.086 0.081 0.087 0.084
en-de 0.241 0.31 0.172 0.172 0.241 0.31 0.31 0.241 0.241 0.241 0.241
cs-en -0.042 -0.048 -0.049 -0.045 -0.041 -0.044 -0.042 -0.05 -0.046 -0.045 -0.051
zh-en 0.319 0.286 0.319 0.384 0.395 0.319 0.308 0.319 0.384 0.297 0.276
ha-en -0.022 -0.016 -0.007 -0.003 -0.003 -0.009 -0.008 -0.007 -0.011 -0.014 -0.011
ja-en -0.028 -0.021 -0.019 -0.018 -0.015 -0.017 -0.014 -0.015 -0.014 -0.012 -0.015
ru-en -0.121 -0.124 -0.12 -0.12 -0.117 -0.123 -0.12 -0.119 -0.121 -0.124 -0.122
de-en -0.155 -0.158 -0.151 -0.148 -0.153 -0.157 -0.155 -0.156 -0.158 -0.155 -0.152
fr-de 0.057 0.058 0.055 0.052 0.044 0.055 0.062 0.057 0.053 0.047 0.051
de-fr 0.054 0.066 0.082 0.079 0.075 0.051 0.057 0.054 0.049 0.055 0.055
bn-hi -0.006 0.007 0.016 0.026 0.026 0.024 0.024 0.022 0.015 0.023 0.014
hi-bn 0.132 0.119 0.126 0.135 0.139 0.137 0.145 0.15 0.147 0.146 0.14
xh-zu 0.128 0.129 0.139 0.13 0.118 0.104 0.101 0.101 0.09 0.082 0.065
zu-xh 0.169 0.139 0.181 0.181 0.16 0.129 0.122 0.116 0.12 0.118 0.109

Language pair L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22
en-cs 0.213 0.218 0.213 0.22 0.198 0.209 0.209 0.196 0.193 0.194 0.197
en-zh 0.042 0.045 0.048 0.048 0.043 0.043 0.043 0.046 0.041 0.04 0.04
en-ha 0.058 0.06 0.061 0.061 0.061 0.06 0.062 0.064 0.068 0.067 0.067
en-ja 0.189 0.187 0.196 0.193 0.202 0.196 0.195 0.19 0.184 0.179 0.179
en-ru 0.088 0.089 0.109 0.107 0.116 0.116 0.109 0.106 0.108 0.104 0.105
en-de 0.172 0.172 0.172 0.172 0.034 0.034 0.034 0.034 0.034 0.034 0.034
cs-en -0.047 -0.048 -0.045 -0.055 -0.054 -0.06 -0.056 -0.055 -0.053 -0.058 -0.058
zh-en 0.297 0.319 0.265 0.265 0.33 0.286 0.362 0.286 0.297 0.276 0.276
ha-en -0.014 -0.013 -0.011 -0.014 -0.012 -0.015 -0.014 -0.014 -0.014 -0.014 -0.014
ja-en -0.016 -0.02 -0.021 -0.02 -0.02 -0.022 -0.022 -0.021 -0.02 -0.021 -0.018
ru-en -0.121 -0.121 -0.123 -0.123 -0.123 -0.126 -0.124 -0.116 -0.116 -0.12 -0.121
de-en -0.152 -0.152 -0.152 -0.154 -0.159 -0.154 -0.154 -0.155 -0.156 -0.155 -0.157
fr-de 0.049 0.047 0.043 0.041 0.031 0.034 0.032 0.036 0.032 0.032 0.031
de-fr 0.039 0.04 0.035 0.039 0.049 0.046 0.053 0.046 0.046 0.046 0.052
bn-hi 0.015 0.02 0.022 0.022 0.019 0.02 0.023 0.023 0.027 0.025 0.025
hi-bn 0.123 0.114 0.114 0.113 0.114 0.12 0.12 0.116 0.108 0.091 0.074
xh-zu 0.076 0.083 0.081 0.094 0.096 0.088 0.098 0.089 0.085 0.083 0.07
zu-xh 0.118 0.122 0.14 0.131 0.141 0.138 0.141 0.144 0.137 0.125 0.122744



Table 6: Pearson correlations (r) for the WMT22 system dataset depending on the Llama layer

Language pair L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
en-cs 0.484 0.477 0.469 0.458 0.451 0.443 0.442 0.437 0.434 0.434 0.429
en-zh 0.069 0.091 0.115 0.122 0.113 0.118 0.119 0.111 0.11 0.115 0.123
en-hr 0.866 0.862 0.869 0.868 0.875 0.875 0.869 0.871 0.868 0.871 0.87
en-ja 0.911 0.914 0.909 0.901 0.906 0.909 0.911 0.905 0.896 0.893 0.896
en-liv 0.943 0.946 0.941 0.938 0.94 0.943 0.943 0.944 0.945 0.945 0.944
en-ru 0.798 0.787 0.792 0.794 0.798 0.793 0.793 0.797 0.8 0.798 0.793
en-uk 0.816 0.828 0.832 0.825 0.818 0.804 0.803 0.796 0.795 0.789 0.788
en-de 0.598 0.602 0.62 0.641 0.644 0.654 0.651 0.659 0.673 0.672 0.672
liv-en 0.987 0.984 0.978 0.979 0.979 0.976 0.978 0.98 0.982 0.981 0.978
zh-en 0.715 0.777 0.807 0.821 0.83 0.841 0.842 0.851 0.852 0.85 0.848
sah-ru 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
uk-cs 0.857 0.849 0.854 0.851 0.854 0.861 0.861 0.858 0.855 0.856 0.857
cs-uk 0.851 0.846 0.836 0.841 0.84 0.839 0.838 0.836 0.835 0.836 0.834

Language pair L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22
en-cs 0.429 0.431 0.436 0.44 0.44 0.44 0.445 0.444 0.439 0.437 0.439
en-zh 0.119 0.123 0.108 0.114 0.108 0.116 0.122 0.136 0.148 0.149 0.148
en-hr 0.871 0.87 0.872 0.873 0.877 0.878 0.879 0.881 0.881 0.879 0.879
en-ja 0.892 0.893 0.881 0.879 0.872 0.877 0.88 0.884 0.885 0.889 0.891
en-liv 0.944 0.946 0.946 0.947 0.947 0.946 0.949 0.947 0.943 0.942 0.942
en-ru 0.795 0.794 0.798 0.795 0.798 0.795 0.796 0.789 0.785 0.782 0.782
en-uk 0.789 0.79 0.793 0.794 0.794 0.793 0.798 0.798 0.796 0.796 0.794
en-de 0.668 0.666 0.665 0.658 0.666 0.664 0.66 0.652 0.648 0.644 0.644
liv-en 0.977 0.977 0.978 0.977 0.978 0.977 0.98 0.978 0.977 0.975 0.975
zh-en 0.845 0.844 0.845 0.842 0.842 0.839 0.84 0.836 0.828 0.826 0.83
sah-ru 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
uk-cs 0.855 0.855 0.855 0.855 0.854 0.853 0.853 0.851 0.848 0.846 0.848
cs-uk 0.832 0.832 0.83 0.831 0.828 0.829 0.83 0.831 0.83 0.83 0.832

Table 7: Kendall correlations (τ ) for the WMT22 segment dataset depending on the Llama layer

Language pair L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
en-cs 0.014 0.014 0.023 0.024 0.021 0.024 0.021 0.021 0.015 0.009 0.013
en-zh -0.041 -0.03 -0.034 -0.039 -0.035 -0.024 -0.026 -0.027 -0.026 -0.029 -0.026
en-hr 0.119 0.115 0.14 0.125 0.123 0.11 0.117 0.118 0.128 0.123 0.122
en-ja 0.097 0.098 0.101 0.091 0.085 0.082 0.081 0.082 0.079 0.08 0.075
en-liv 0.362 0.332 0.35 0.34 0.33 0.33 0.334 0.31 0.292 0.322 0.332
en-ru 0.262 0.227 0.234 0.248 0.23 0.199 0.188 0.227 0.223 0.244 0.234
en-uk 0.081 0.063 0.062 0.062 0.066 0.055 0.044 0.041 0.04 0.048 0.052
en-de 0.4 0.4 0.4 0.8 0.8 0.8 1.0 0.8 0.8 0.8 1.0
liv-en 0.247 0.276 0.311 0.303 0.302 0.302 0.286 0.298 0.291 0.306 0.314
zh-en 0.179 0.217 0.241 0.217 0.195 0.225 0.223 0.213 0.193 0.209 0.203
sah-ru 0.458 0.419 0.484 0.492 0.478 0.45 0.456 0.47 0.461 0.456 0.444
uk-cs 0.145 0.159 0.16 0.153 0.141 0.125 0.132 0.146 0.167 0.156 0.146
cs-uk 0.133 0.149 0.159 0.154 0.154 0.148 0.15 0.151 0.149 0.154 0.151

Language pair L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22
en-cs 0.008 0.014 0.014 0.011 0.02 0.018 0.017 0.011 0.011 0.008 0.008
en-zh -0.03 -0.028 -0.034 -0.033 -0.031 -0.033 -0.033 -0.028 -0.029 -0.027 -0.027
en-hr 0.118 0.11 0.119 0.116 0.109 0.101 0.106 0.118 0.127 0.129 0.128
en-ja 0.081 0.083 0.082 0.083 0.081 0.083 0.084 0.075 0.072 0.074 0.074
en-liv 0.344 0.344 0.346 0.34 0.328 0.328 0.346 0.34 0.34 0.344 0.348
en-ru 0.22 0.202 0.174 0.188 0.16 0.167 0.167 0.202 0.192 0.195 0.206
en-uk 0.049 0.047 0.048 0.048 0.044 0.049 0.042 0.036 0.049 0.038 0.034
en-de 1.0 0.8 0.8 0.8 0.6 0.8 1.0 0.8 1.0 1.0 1.0
liv-en 0.313 0.286 0.261 0.26 0.249 0.258 0.269 0.28 0.272 0.277 0.286
zh-en 0.225 0.219 0.195 0.191 0.179 0.185 0.179 0.183 0.211 0.213 0.209
sah-ru 0.441 0.436 0.45 0.439 0.43 0.427 0.447 0.416 0.408 0.399 0.408
uk-cs 0.144 0.15 0.155 0.153 0.149 0.159 0.158 0.156 0.143 0.137 0.137
cs-uk 0.148 0.152 0.154 0.15 0.14 0.14 0.142 0.141 0.139 0.141 0.141

745



Proceedings of the Eighth Conference on Machine Translation (WMT), pages 746–750
December 6–7, 2023. ©2023 Association for Computational Linguistics

eBLEU: Unexpectedly Good Machine Translation Evaluation
Using Simple Word Embeddings

Muhammad ElNokrashy
Microsoft

Cairo, Egypt
muelnokr@microsoft.com

Tom Kocmi
Microsoft

Munich, Germany
tomkocmi@microsoft.com

Abstract

We propose eBLEU, a metric inspired by
BLEU metric that uses embedding similari-
ties instead of string matches. We introduce
meaning diffusion vectors to enable match-
ing n-grams of semantically similar words
in a BLEU-like algorithm, using efficient,
non-contextual word embeddings like fastText.
On WMT23 data, eBLEU beats BLEU and
ChrF by around 3.8% system-level score, ap-
proaching BERTScore at −0.9% absolute dif-
ference. In WMT22 scenarios, eBLEU out-
performs f101spBLEU and ChrF in MQM by
2.2%−3.6%. Curiously, on MTurk evaluations,
eBLEU surpasses past methods by 3.9%−8.2%
(f200spBLEU, COMET-22). eBLEU presents
an interesting middle-ground between tradi-
tional metrics and pretrained metrics.

1 Introduction

The machine translation field has improved signifi-
cantly, with various metrics developed to measure
translation quality. Translation quality in human
eyes is usually a delicate balance to convey mean-
ing, style, tone, and other dimensions of text from
one language into another with different idioms
and concept ontologies. After all, translation is not
only about translating words from one language to
another literally, but ensuring that the core meaning
behind is also accurately conveyed.

Traditional metrics, like the BLEU score (Pap-
ineni et al., 2002) or ChrF (Popović, 2015), have
proven effective over last 20 year. However, there
has been growing evidence that they have not kept
pace with the performance of recent NMT and
LLM MT systems (Kocmi et al., 2021; Freitag et al.,
2022). BLEU essentially computes a score based
on string n-grams matches. One clear limitation
of this approach is that it fails to recognize seman-
tically similar words. For instance, in the eyes of
BLEU, the words (cat, kitty) are as different as (cat,
book) or (fire, water).

Recent neural metrics, on the other hand, have
explored the potential of leveraging pretrained lan-
guage models for encoding entire sentences. These
models either compare encoded sentences in a
shared embedding space or employ a trained clas-
sifier to predict human scores, as demonstrated by
Rei et al. (2020); Zhang et al. (2020); Freitag et al.
(2022). These methods are more capable of captur-
ing semantic nuances.

In this paper, we introduce eBLEU, a metric
designed to address the mentioned limitation of the
BLEU score while keeping the calculation as close
to BLEU as possible by using the word embedding
similarities instead of string matching. By doing
so, eBLEU enhances the metric by recognizing
semantically similar n-grams. Our method relies
on the meaning diffusion map to approximate n-
gram matching in a BLEU-like algorithm. The core
implementation leverages efficient, non-contextual
word embeddings, such as fastText embeddings.

2 Related work

In machine translation, measuring quality is a bal-
ance of many potentially competing factors. The
most prominent are language quality (fluency) and
accuracy of meaning conveyed (adequacy). Other
factors may be critical in special scenarios. Con-
sider the conveyance of tone or cultural register in
translated dialog (see for example registers in East-
Asian languages). Or the conveyance of flow in a
translated play (see some examples of translations
of the Greek epic Iliad in Mendelsohn, 2011).

Traditional automatic quality assessment meth-
ods, like BLEU and METEOR (Banerjee and Lavie,
2005), rely on string matching against a reference.
The more matches, the more a candidate captures of
the intended meaning in the reference, as proxy for
adequacy. While features like n-gram matching in
BLEU and explicit ordering penalties in METEOR
act as proxy for fluency.

Such metrics suffer from limitations inherent to
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their literal string matching core, which some try
to mitigate (e.g. via lemmatization or synonym dic-
tionaries). These limitations are clearer in light of
the more complex and semantically rich language
produced by recent Neural MT systems and Large
Language Model MT systems.

BERTScore (Zhang et al., 2020) utilizes a simi-
lar idea to ours, matching contextual encodings of
words in candidate/reference pairs. While it uses
unigrams only, eBLEU uses n-grams as well, and
calculates token matches differently. Other sys-
tems, like COMET (Rei et al., 2020), are finetuned
on human judgement scores for machine translation
evaluation specifically.

3 Preliminaries

3.1 BLEU
The BLEU formula applied to a single candi-
date/reference sentence pair X,Y is:

BLEU
N

(X,Y ) = bp(X,Y )
∏

n∈1..N
prn(X,Y )

wn

(1)

where bp(X,Y ) is the brevity penalty. This score
ranges between [0, 1] for lowest and highest match.

The n-gram precision prn(X,Y ) is:

∑
s∈ [X]n

min( C(s,X) , C(s, Y ) )

∑
s∈ [X]n

C(s,X)
(2)

Set of n-gram substrings in candidate

Count of s in candidate

3.2 Embeddings
At the core, our method utilizes simple word em-
beddings that can be generated from sub-word in-
formation or memorized for full words as appropri-
ate. We do not require tokenization of words into
sub-words. Here we use the fastText word embed-
dings (Bojanowski et al., 2017). Other simple word
embeddings should be appropriate as-is but were
not tested. FastText is trained for every language
separately and we require a trained fastText model
for the target language in any translation pair.

3.3 String Matching
Strings under strict equality are literal representa-
tions of unique identities: the string abc is equal
only to abc itself. This works for BLEU. Now we
want to match based on the closeness of meaning
instead, where (cat, cats) would be closer together
than (cat, book).

4 eBLEU description

We propose the following formulation for an
embedding-based matching in the style of BLEU
precision from eq. (2).

Let X refer to the candidate sentence, and Y
refer to the reference sentence. Now, given an
asymmetric similarity function mdSim (a | b) from
a with reference to b, we can define the following
analogous values for “precision” and “recall”:

precision: pr(X,Y ) = mdSim (Y | X) (3)

recall: re(X,Y ) = mdSim (X | Y ) (4)

mn is the n-gram score of the pair, defined as the
geometric mean of the n-gram precision and recall
from eq. (3, 4):

mn =
(
prn(X,Y ) · ren(X,Y )

) 1
2 (5)

The final score is a weighted geometric average
of the n-gram-based scores mn between candidate
and reference, for N = 4 and wn = N − n.

eBLEU
N

(X,Y ) = lp(X,Y )
∏

n∈1..N
mn

wn/N

(6)

where lp is a modified length penalty which
penalizes longer candidates as well.

(e)BLEU This shows the analogous structure of
eBLEU compared to BLEU, given an appropriate
definition for mdSim as used in eq. (3, 4).

4.1 Aggregating Similarity Values
Similar to prn(X,Y ), we want mdSim (Y | X)
to be a single value for a candidate/reference sen-
tence pair, as if aggregating the meaning diffusion
values mx for x ∈ X:

mdSim (Y | X) =

∑
x
min( mX , mX|Y )

∑
x

mX

(7)

Compare Equation (7) for eBLEU with Equa-
tion (2) for BLEU.

Index over words in cand.

MD vector of words in cand.

4.2 Meaning Diffusion
Meaning Diffusion (MD) is a value for each word
in a sentence indicating the ratio of similar words
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Sum

3.8

3.7

3.6

2.6

2.9

2.9

cats cat felines kind loving aloof

cats

cat

felines

kind

loving

aloof

1 0.94 0.92 0.26 0.36 0.33

0.94 1 0.79 0.29 0.34 0.34

0.92 0.79 1 0.21 0.35 0.37

0.26 0.29 0.21 1 0.45 0.39

0.36 0.34 0.35 0.45 1 0.44

0.33 0.34 0.37 0.39 0.44 1

Cross-token cosine map

Figure 1: (Right) Meaning Diffusion Map between some
words for illustration. Notice the similarity of cats, cat,
felines and the relative similarity of kind, loving but not
aloof. (Left) Meaning Diffusion Vector is the sum of a
word’s similarity to all words in the sentence.

in the same sentence. This allows claims such as
“there exists 2/7 eats ” in:

The cat eats , no, devours the food.
That is: meats≈2/7. See also Figure 1 (Left).

MD Map Ŝy,y′ is a weighted sum over the can-
didate side (x) with softmax-normalized weights.
It approximates the similarity matrix of the refer-
ence Y against itself (see Figure 1 (Right)), as seen
through the candidate X . The L1 variant replaces
softmax with a simple division by the sum of val-
ues: Sy,x/

∑
x Sy,x.

MD Vectors m∗ represent each word’s total
closeness to all other words in the same sentence
( mY ) or through a candidate sentence ( mY |X ).

Ŝy,y′ = softmax
x

(Sy,x) · Sx,y (8)

mY |X =
∑

y′
Ŝy,y′ (9)

mY =
∑

y

Sy,y (10)

Vector Similarity For the candidate/reference
X,Y , let X,Y be the embedding matrices shaped
as token× embedding. Sx,y is Cosine vector simi-
larity clipped within [0, 1], defined as:

Sx,y = clip[0,1] cosembedding(X,Y⊤) (11)

4.3 N-gram Scores
For each n ∈ 1..N , we calculate the n-gram score
of a sentence pair using Sn

x,y: the geometric mean
of the cosine scores of adjacent words in each sen-
tence, such that the n-gram-aware Sn

x,y is of shape
|X| − n+ 1× |Y | − n+ 1.

4.4 Length Penalty
The length penalty penalizes length mismatch be-
tween candidate and reference, as used in eq. (6):

lp(X,Y ) =

{
1.0 ratio ≤ 0.5

e0.5−ratio else
(12)

ratio =
abs(|X| − |Y |)

|Y | (13)

5 Evaluation and Results

In this section, we describe the evaluation of the
metric and the results

5.1 Meta-evaluation
We use the WMT Metrics 2022 test set (Fre-
itag et al., 2021) which contains human judg-
ments based on three different protocols: MQM,
DA+SQM and MTurk DA. The translation systems
are mainly from participants of the WMT22 Gen-
eral MT shared task (Kocmi et al., 2022). The
source segments and human reference translations
for each language pair contain around 2,000 sen-
tences from four different texts domains: news,
social, conversational, and e-commerce.

Human labels are produced via three methods:

• MQM - annotated by professionals who mark
individual errors in each translation, as de-
scribed in (Freitag et al., 2021)

• DA+SQM - professional annotators are asked
to rate each translation on a scale 0-100
(Kocmi et al., 2022)

• MTurk DA - low paid crowd of MTurk an-
notators is asked to rate each translation on a
scale 0-100, for how much it resembles human
reference (Kocmi et al., 2022)

To determine the correlation of automatic met-
rics with humans, we measure system-level, pair-
wise accuracy (Kocmi et al., 2021), which is de-
fined as the number of system pairs ranked cor-
rectly by the metric with respect to the human
ranking divided by the total number of system pair
comparisons. Formally:

Accuracy =
|sign(metric∆) == sign(human∆)|

|all system pairs|

We reproduced scores reported in the WMT22
Metrics shared task findings paper with the official
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System MQM DA-SQM MTurk

COMET-22 83.94% 84.19% 62.61%
COMET-20 83.58% 82.17% 63.53%
BERTScore 77.37% 75.92% 66.57%

f101spBLEU 74.45% 74.26% 65.96%
f200spBLEU 74.09% 74.26% 66.87%
chrF 73.36% 75.92% 66.57%
BLEU 70.80% 70.22% 65.35%

eBLEU-FastText
↪→ L1 76.64% 74.45% 68.69%
↪→ Softmax* 74.82% 72.43% 70.82%

Table 1: System-level WMT22 results on 3 human la-
beling scenarios. The Softmax variant of eBLEU was
submitted to WMT23.

WMT22 script.1 Scores match Table 8 (DA+SQM
and DA) and Table 11 for MQM of the WMT22
Metrics findings paper (Freitag et al., 2022).

5.2 Results

On WMT23 scenarios (Table 2), eBLEU scores
89.3%, improving noticeably on ChrF, BLEU, and
f200spBLEU, beating the latter by 2.5% points.
Its ranking cluster (9) puts it much closer to
more sophisticated embedding-based metrics (like
BERTScore) than string metrics like BLEU. No-
tably, this was achieved by the Softmax variant,
which scored below the L1 variant on the more
accurate human MQM and DA-SQM scenarios.

On WMT22 scenarios (Table 1), eBLEU out-
performs both f101spBLEU and ChrF in MQM by
2.2%− 3.6% in system-level accuracy.

eBLEU shows SOTA correlation with MTurk
evaluations at 70.82%, beating existing meth-
ods by 3.9%− 8.2% (f200spBLEU, COMET-22).
Although Freitag et al. (2022) shows them to
be of sub-optimal quality, this is interesting as
MTurk evaluations often involve manual n-gram
matching—a nice result given the intuition behind
our method.

6 Conclusion

6.1 eBLEU: Between Strings and Neural Eval

In this paper, we introduced eBLEU, a novel met-
ric that adapts the BLEU algorithm by adding
embedding-based semantic understanding. By in-

1
https://github.com/google-research/mt-metrics-eval

2 As provided by the WMT team.

System Rank Score

COMET 2 93.5%
BERTScore 7 90.2%

f200spBLEU 11 86.8%
BLEU 12 85.9%
ChrF 12 85.2%

eBLEU-FastText
↪→ Softmax 9 89.3%

Table 2: WMT23 System-level ranking clusters and
correlations on en-de, he-en, zh-en language pairs.2

corporating word embedding similarities and lever-
aging meaning diffusion vectors, eBLEU bridges
the gap between literal and semantic matching.

We show that eBLEU can outperform widely
adopted metrics like (sp)BLEU and ChrF, and ap-
proaches some pretrained contextual embedding-
based metrics, like BERTScore, using simpler,
cheaper-to-compute embeddings like fastText.

On WMT23, eBLEU scores 89.3%, placing al-
most halfway between BLEU, and COMET, an
especially finetuned model for MT evaluation.

Although eBLEU lags behind the latest pre-
trained metrics, it presents an interesting approach
for a simple semantically informed metric.

6.2 Limitations

However, it is important to recognize the limita-
tions. Fundamentally, eBLEU does not attempt to
improve the BLEU formula as a proxy for adequacy
and fluency. Thus predictably, it lags far behind
the latest pretrained metrics such as COMET or
BLEURT. As language models, the core of these
systems holds the advantages of large pre-training
data, contextual understanding of input candidates
and references, and potentially task-specific fine-
tuning for the translation domain. Their more gen-
eral nature allows for much improved measurement
of adequacy and fluency among the range of pos-
sible translations that humans may produce and
judge acceptable.

In summary, eBLEU offers a semantically-aware
machine translation evaluation metric extending
standardized BLEU algorithm. There may exist
other such methods that bridge the gap further
while improving inference time, efficiency, or in-
terpretability where needed.
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Abstract
This paper describes our submissions to the
2023 Conference on Machine Translation
(WMT23) Metrics shared task. Knowledge dis-
tillation is commonly used to create smaller
student models that mimic a larger teacher
model while reducing the model size and
hence inference cost in production. In this
work, we apply knowledge distillation to ma-
chine translation evaluation metrics and dis-
till existing reference-based teacher metrics
into reference-free (quality estimation; QE) stu-
dent metrics. We mainly focus on students
of Unbabel’s COMET22 reference-based metric.
When evaluating on the official WMT22 Met-
rics evaluation task, our distilled Cometoid QE
metrics outperform all other QE metrics on
that set while matching or out-performing the
reference-based teacher metric. Our metrics
never see the human ground-truth scores di-
rectly – only the teacher metric was trained on
human scores by its original creators. We also
distill ChrF sentence-level scores into a neu-
ral QE metric and find that our reference-free
(and fully human-score-free) student metric
ChrFoid outperforms its teacher metric by over
7% pairwise accuracy on the same WMT22
task, rivaling other existing QE metrics.1

1 Introduction

The Conference on Machine Translation (WMT)
organizes an annual shared task for meta-evaluation
of machine translation (MT) evaluation met-
rics (Freitag et al., 2022), where numerous MT
evaluation metrics are proposed and revised each
year. The MT metrics are broadly categorized as:
(i) reference-based metrics, which score MT hy-
pothesis against one or more reference translations
from humans, and (ii) reference-free metrics, which
do not require references and instead score hypothe-
sis directly against the source sentence. Reference-
free metrics, also known as quality estimation (QE)

1Metrics and usage instructions are available at:
https://github.com/marian-nmt/wmt23-metrics

metrics, are an attractive choice in scenarios where
reference translations are either unavailable or un-
reliable. However, currently, QE metrics lag be-
hind the reference-based metrics by a considerable
margin according to metrics meta-evaluation re-
sults (Freitag et al., 2022).

Knowledge distillation (KD) (Liang et al., 2008;
Hinton et al., 2015) is commonly used to create
smaller student models that mimic larger teacher
models (Kim and Rush, 2016) which reduces com-
putational cost when deploying models in produc-
tion (Kim et al., 2019). Other use cases of KD
in MT include distillation from auto-regressive
teacher translation models to non-autoregressive
students (Zhou et al., 2020) where the students
“suffer” from an information bottleneck (here: no
access to their own previous output in a time se-
quence) which impedes their performance when
trained on original data. The simplified and prob-
ably smoothed output distribution of the teacher
is easier to “digest” and often results in improved
performance for the student.

In this work, we treat existing reference-based
metrics as teachers and by applying knowledge dis-
tillation, we create reference-free student metrics
that completely eliminate the need for references
in evaluation. This is achieved by introducing a
hard information bottleneck: just dropping the ref-
erence during training while keeping the original
reference-based teacher score.

2 Experiments

2.1 Data Preparation

Our training set combines public and internal data
sets. The public data is composed of all the MT sys-
tems submitted to WMT News (or General) Trans-
lation task between years 2009 and 2023. Our inter-
nal data set is prepared by translating parallel data
using four MT systems: Moses SMT (Koehn et al.,
2007), readily available bilingual NMT (Tiede-
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mann and Thottingal, 2020), multilingual trans-
former NMT (Gowda et al., 2021), and Microsoft
Translator service. The number of examples in our
training data is reported in Table 1.

For each training example i, let si, ri and hi,
be source, reference and MT hypothesis segments,
respectively. Each example is initially scored using
teacher metrics that use reference translations and
later references are dropped while training the stu-
dent metrics. In this work, we use COMET22 (Rei
et al., 2022a) and ChrF (Popović, 2015) as teacher
metrics. Teacher metrics that need source, refer-
ence and hypotheses as inputs – e.g. COMET22 – pro-
duce training data in the form of (si, ri, hi) → R.
The reference-only teachers such as ChrF produce
(ri, hi) → R. All teacher sentence-level scores
are normalized to the [0, 1] range. For COMET22
this required no change; for ChrF, computed by
SacreBLEU (Post, 2018), we divide scores by 100.

Distilled students are trained on source-
hypothesis pairs (si, hi) → R where the score
is from the respective original reference-based
teacher. Neither the references nor the human
scores are directly seen by the student. However,
indirectly, human scores may have been used by
the teacher metric, which is the case for COMET22,
but not for ChrF.

Dataset Number of Examples
WMT09-21 systems 4.0M
WMT22 systems 0.5M
WMT23 systems 0.5M
Internal dataset 6.8M

Table 1: Training dataset size.

2.2 Model

Our distilled models have a similar architecture
to COMET-QE models (Rei et al., 2020a),2 and are
implemented in MarianNMT (Junczys-Dowmunt
et al., 2018), a fast NMT toolkit.3 We slightly
simplify the architecture by removing the encoder
layer mixing and the batch-normalization present
in the original implementation (neither seemed to
contribute to any improvements), but we keep the
general architecture of the added FFN regressor and
the way how the encoder embeddings of source and
hypothesis are combined into a single vector. Final
output scores are squashed to the [0, 1] range via a

2https://huggingface.co/Unbabel/
wmt20-comet-qe-da

3https://marian-nmt.github.io

sigmoid function.
Similar to COMET22, we initialize our stu-

dent models with the pretrained weights from
InfoXLM (Chi et al., 2021),4 specifically
infoxlm-large that has 24 transformer lay-
ers (Vaswani et al., 2017).

We create the following four student models:

• Cometoid22-wmt21: student model distilled
from COMET22 and trained on scored data from
the WMT News Translation task from 2009 -
2021 and similarly sized private data.

• Cometoid22-wmt22: Same as above, ex-
cept we include system outputs submitted to
WMT22. This is our primary submission to
WMT23 Metrics shared task.

• Cometoid22-wmt23: Same as the above, ex-
cept we include the system outputs submitted
to WMT23.

• ChrFoid-wmt23: Same as the above, but we
use segment-level ChrF as the teacher. This
is an experimental model trained after the
WMT23 Metrics shared-task deadline and has
not been submitted to the shared task.

We evaluate our models on the WMT22 shared
task while including WMT22 shared-task system
outputs (MT systems and their reference-based
scores) in the training data. This may seem sus-
picious at first, but note that our models do not
use any human scores (the actual ground-truth of
the task) in the training process, neither did the
reference-based teachers which were trained be-
fore the WMT22 shared task. For the part of the
evaluation where system submissions are avail-
able, this can be seen as part of an involved scor-
ing process where the teacher remains blind to
WMT22/WMT23 outputs, but the student does see
them during distillation.

However, we are aware that this view may
be disputable, hence we have submitted our
Cometoid22-wmt22 (blind to WMT23 outputs) as
the primary submission to the WMT23 shared task
instead of Cometoid22-wmt23 that has seen scored
WMT23 outputs (but not the actual ground-truth).
We also provide results for Cometoid22-wmt21
which is fully blind in regard to both – WMT22
and WMT23 outputs.

4https://huggingface.co/microsoft/
infoxlm-large
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Metric DA+SQM MQM
Metricx_xxl_MQM_2020 0.861 0.850
Metricx_xl_MQM_2020 0.859 0.843
Cometoid22-wmt23 QE 0.859 0.803
Metricx_xxl_DA_2019 0.857 0.865
Cometoid22-wmt22 QE 0.857 0.807
Metricx_xl_DA_2019 0.850 0.865
Cometoid22-wmt21 QE 0.848 0.788
UniTE 0.847 0.828
COMET22 0.839 0.839
UniTE-ref 0.838 0.818
COMETKiwi(WMT22) QE 0.832 0.788

Cross-QE QE 0.832 0.781

ChrFoid-wmt23 QE 0.832 0.777

COMETKiwi (public) QE 0.816 0.770
ChrF 0.758 0.734

Table 2: WMT22 Evaluation system-level pairwise ac-
curacy with DA+SQM (13 language pairs) and MQM
(3 language pairs only). Rows are ordered by DA+SQM
accuracy. Cometoid22 metrics are the best reference-
free ( QE ) metrics.

2.3 Training

We ensure that scores from teacher metrics are
in [0, 1] range and optimize student metrics using
cross-entropy loss.5 Rei et al. (2020b) found that
freezing InfoXLM layers for a number of epochs
and training only the added parameters is benefi-
cial, however, we were unable to confirm this with
our metrics; we have fine-tuned all parameters till
convergence according to perplexity on a small
heldout subset of the data. For the final primary
submission, we added the heldout data back to the
training data and trained for the same number of
iterations. We see minor improvements from Mix-
up regularization (Pinto et al., 2022) which we use
for all student trainings.

3 Results and Analysis

We report system level pairwise accuracy ob-
tained using mt-metrics-eval,6 the official meta-
evaluation pipeline used in WMT22 Metrics task.
Table 2 shows that our COMETOID metrics are the
top-performing QE metrics on the WMT22 Met-
rics data set. Interestingly, COMETOID student
models also outperform the COMET22 reference-
based teacher model on DA+SQM data (we do fare
worse on the smaller MQM data set only). Last but

5Our preliminary experiments with mean absolute error
loss performed inferior to cross-entropy.

6https://github.com/google-research/
mt-metrics-eval

not least, ChrFoid – our student metric distilled
from the ChrF (Popović, 2015) string-based met-
ric – does surprisingly well and out-performs the
teacher metric by a considerable margin despite
now being reference-free.

4 Related Work

Reference-free ( QE ) metrics: Comet20-QE (Rei
et al., 2020b) and CometKiwi22 (Rei et al., 2022c)
are popular QE metrics. UniTE (Wan et al., 2022)
supports inference in reference-free mode, in addi-
tion to reference-based mode. These metrics rely
on scores from human evaluators during training
and are limited by availability of high quality hu-
man ratings. Our metrics are trained with scores
from teacher models and are trained on larger train-
ing data than what has been rated by human evalu-
ators.

Distillation: Pu et al. (2021) and Rei et al.
(2022b) apply knowledge distillation to the
reference-based metrics, however, their distillation
is aimed at reducing the model size for the sake
of reducing computational cost during inference.
Our work differs from theirs, as we distill with the
aim of removing the need for human references at
inference time.

5 Conclusion

We believe this work describes a perhaps simpler
avenue towards more powerful QE metrics than
proposed so far: build strong reference-based first,
next distill into even stronger QE metrics. It fur-
ther seems that performance improves with adding
fully synthetic data (via adding larger amounts of
inputs and automatically scored outputs). This ef-
fect seems also applicable to “dumb” metrics like
ChrF: we have arrived at CHRFOID, a QE metric
that has seen no human scores at all, and yet rivals
the performance of the best previously available
QE metrics. Knowledge distillation combined with
a strong information bottleneck (reference-based
to reference-free) seems to be the key in this new
approach.

Limitations

Using available system outputs of the same shared
task for training the metric may be a disputable
approach even if the ground-truth was not used.
Training time and model size of our distilled met-
rics are similar to the other popular metrics, and
may be a limitation.
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Abstract

This report details the MetricX-23 submission
to the WMT23 Metrics Shared Task and pro-
vides an overview of the experiments that in-
formed which metrics were submitted. Our 3
submissions—each with a quality estimation
(or reference-free) version—are all learned
regression-based metrics that vary in the data
used for training and which pretrained lan-
guage model was used for initialization. We re-
port results related to understanding (1) which
supervised training data to use, (2) the im-
pact of how the training labels are normalized,
(3) the amount of synthetic training data to
use, (4) how metric performance is related to
model size, and (5) the effect of initializing
the metrics with different pretrained language
models. The most successful training recipe
for MetricX employs two-stage fine-tuning on
DA and MQM ratings, and includes synthetic
training data. Finally, one important takeaway
from our extensive experiments is that optimiz-
ing for both segment- and system-level perfor-
mance at the same time is a challenging task.1

1 Introduction

Automatic evaluation metrics are critical to the de-
velopment of machine translation (MT) systems.
They are the most frequently used method for com-
paring two MT systems and deciding which gen-
erates higher quality translations. Each year, the
Conference on Machine Translation (WMT) runs a
Metrics Shared Task to benchmark the quality of
state-of-the-art evaluation metrics (Freitag et al.,
2022). Meta-evaluating metrics by measuring how
well they correlate to human ratings of translation
quality is critical for understanding the extent to
which automatic evaluations of MT systems are
trustworthy.

This report details the MetricX-23 submission
to the Metrics Shared Task. MetricX is a learned

1Our code and mT5-based models can be found at https:
//github.com/google-research/metricx.

MetricX-23

mT5-XXL
DA 15-20,

z-normalization,
Scores clipped to 

[-1, 1]

MQM 20-21 + 
Synthetic Data,

Raw MQM scores

MetricX-23-b

mT5-XXL
DA 15-20,

z-normalization,
Scores clipped to 

[-1, 1]

MQM 20-22 + 
Synthetic Data,

Raw MQM scores

MetricX-23-c

PaLM 2 
(Bison)

DA 15-20,
z-normalization,

Scores clipped to 
[-1, 1]

MQM 20-21 + 
Synthetic Data,

Raw MQM scores

Figure 1: A high-level summary of the 3 different
submissions to the WMT’23 Metrics Shared Task.
MetricX-23-b and MetricX-23-c differ from the pri-
mary submission in that the “b” version is finetuned
on MQM 2022 data in addition to 2020 and 2021, and
the “c” version uses PaLM 2 as its pretrained language
model (differences in bold). Each of the submission
also includes a QE variant that follows the same train-
ing procedure.

regression-based metric that is trained to predict a
floating point score that represents the quality of a
candidate translation. This year, we made 3 differ-
ent submissions to the shared task that vary in the
training data that is used for finetuning and which
pretrained language model is used for initialization.
Our primary submission, denoted MetricX-23, is
based on the mT5 encoder-decoder language model
(Xue et al., 2021), which is further finetuned on
direct assessment (DA) ratings, MQM data (Lom-
mel et al., 2014; Freitag et al., 2021), and synthetic
data. Our contrasting submission, MetricX-23-b,
includes additional MQM data, and MetricX-23-c
finetunes the PaLM 2 language model (Anil et al.,
2023) instead of mT5. Each of the 3 submissions
has a reference-based and quality estimation (QE,
or reference-free) version.

Figure 1 contains a high-level overview of the
training recipe that we used for our submissions. In
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order to arrive at the metrics that were ultimately
submitted to the shared task, we ran various ex-
periments that are detailed in this report. The key
takeaways from those experiments include:

1. Training on z-normalized DA scores instead
of the raw scores tends to be a trade-off
between segment- and system-level perfor-
mance;

2. Training on raw MQM ratings is better than
z-normalized ratings;

3. Training on DA data followed by MQM data
yields a better metric than on either type of
data individually;

4. Synthetic data is necessary for the metric
to learn to score the reference against itself
higher than a machine translation against the
reference;

5. Metric performance improves significantly as
the size of the pretrained language model in-
creases.

2 Metric Descriptions

The MetricX-23 metrics that were submitted to
the Metrics Shared Task are all learned regression-
based metrics that are trained to predict a floating
point number that represents the quality of a given
translation.

The input to the reference-based metrics is
the candidate translation (hypothesis) and refer-
ence segments—each with a corresponding pre-
fix (“candidate:” and “reference:”, respectively)—
concatenated together. The combined input is en-
coded by the model, and then the metric uses the
encoding to predict a score. This stands in contrast
to COMET-style metrics in which the hypothesis
and reference are encoded separately, then com-
bined in order to predict a score (Rei et al., 2020).
The QE variants use the source segment instead of
the reference, with the prefix changed to “source:”.

We use two different network architectures for
different versions of the metric. The choice of
architecture depends on which pretrained language
model is used to initialize the model.

The first architecture is based on the encoder-
decoder mT5 language model (Xue et al., 2021).
The input is encoded by the encoder, then the out-
put logit from an arbitrary token in the vocabulary
distribution from the first step of decoding is se-
lected to represent the score for the hypothesis and

trained accordingly.2 In practice, we found that
this method for using the pretrained weights for
both the encoder and decoder worked better than
using a regression head on top of the encoder and
discarding the decoder.

The second architecture is the prefix language
model based on Transformer (Vaswani et al., 2017)
used by the PaLM 2 model (Anil et al., 2023). We
augment the architecture by adding a feedforward
regression layer on top of the input encoding. The
output from the feedforward layer is trained to pre-
dict the translation quality score.

Both types of model are trained with a mean
squared error (MSE) loss function. Further imple-
mentation details related to checkpoint selection,
optimization, etc., can be found in §3.3. Informa-
tion related to training data, label normalization,
etc., can be found in §4.

3 Experimental Setup

3.1 Training and Evaluation Data

The two data sources that are primarily used to
train and meta-evaluate MT metrics are the direct
assessment (DA) data and Multi-dimensional Qual-
ity Metrics (MQM; Lommel et al., 2014; Freitag
et al., 2021) that have been collected by WMT over
the years, and both of which are publicly available.
We use the DA data for training and the MQM data
for both training and evaluation.

The DA judgments come from non-expert an-
notators that score the quality of a translation on
a scale from 0 to 100. Often, the scores are z-
normalized per rater in order to better compare
across raters, since each rater may have a different
rating strategy despite using the same scale. We
experiment with using different subsets of the DA
data from 2015 to 2021, as well as using the raw
rating or z-normalized rating as the ground-truth
quality score.

In contrast, the MQM ratings are done by pro-
fessional raters. Each rater marks specific spans
of text within a translation that contain an error,
and label that error with a severity level and cat-
egory. Each error receives a weight based on its
severity and category. A segment’s MQM score is
the sum of the error weights in the segment. Our
experiments use the MQM data collected by WMT

2The specific token to use can be chosen arbitrarily from
the vocabulary, but the same token is then used throughout the
training and inference. In our case, we opted for one of the
<extra_id_**> tokens reserved in mT5’s vocabulary.
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from 2020 to 2022. The 2022 ratings are our pri-
mary evaluation dataset, and all correlations that
we report are calculated on this dataset.

Our experiments additionally leverage a metrics
challenge set, DEMETR (Karpinska et al., 2022),
for metric meta-evaluation. DEMETR is a collec-
tion of paired translations that probe a metric’s abil-
ity to correctly model different phenomena. The
pairs of translations differ by some linguistic phe-
nomena, with one translation assumed to be higher-
quality than the other, and the metric is evaluated
on how often it correctly ranks the two translations.
We use DEMETR to evaluate how frequently the
reference translations evaluated against itself re-
ceives a higher score than a machine translation
evaluated against the same reference.

3.2 Meta-Evaluation

In our experiments, we calculate the metrics’ agree-
ments with human judgments of translation quality
using four different correlations. At the system-
level, we use both Pearson’s r and pairwise accu-
racy (Kocmi et al., 2021). System-level Pearson’s r
captures how strong the linear relationship is be-
tween the metric and human scores for MT systems.
Pairwise accuracy evaluates a metric’s ranking of
MT systems by calculating the proportion of all
possible pairs of MT systems that are ranked the
same by the metric and human scores.

At the segment-level, we use the no-grouping
Pearson’s r and the group-by-item pairwise accu-
racy with tie calibration as described by Deutsch
et al. (2023).3 The no-grouping Pearson’s r quanti-
fies the linear relationship between the metric and
human scores across all possible translations from
every system and document. The group-by-item
pairwise accuracy calculates the proportion of all
possible pairs of translations for the same input
segment that are ranked the same or predicted to
be a tie by the metric and human, then averages the
accuracies over all possible input segments. Since
regression-based metrics rarely predict ties and the
segment-level pairwise accuracy rewards correct tie
predictions, Deutsch et al. (2023) uses a procedure
called tie calibration that automatically introduces
ties into metric scores by introducing an ε such
that any two translations with a difference in metric
score less than ε are considered to be tied.

3We chose this pairwise accuracy over Kendall’s τ , which
has typically been used in WMT Metrics evaluation, for its
superior handling of ties in metric scores.

3.3 Implementation Details

Our metrics are implemented with TensorFlow
(Abadi et al., 2015) and the T5X library (Roberts
et al., 2022). Each training run uses 64 TPUs and
trains for a maximum of 10K steps with a batch size
of 512 on the DA data, or 3K steps with a batch
size of 256 on the much smaller MQM dataset.
Adafactor is used for optimization (Shazeer and
Stern, 2018). Checkpoint selection is done by se-
lecting the model that has the highest segment-level
pairwise accuracy after tie calibration on the en-de
and zh-en language pairs.

We are publicly releasing our mT5-based sub-
missions, converted from TensorFlow to PyTorch
(Paszke et al., 2019) checkpoints, along with cor-
responding code to use them to predict translation
quality scores.

4 Experimental Results

We made three different submissions to the shared
task, each with a reference-based and QE variant:

1. MetricX-23(-QE): An mT5-XXL model that
was finetuned on a combination of DA data
from 2015–2020, MQM data from 2020–
2021, and synthetic data.

2. MetricX-23(-QE)-b: The same as MetricX-
23(-QE) except we additionally included
MQM data from 2022.

3. MetricX-23(-QE)-c: The same as MetricX-
23(-QE) except it is a finetuned PaLM-2 Bison
model.

An overview of these submissions is shown in Fig-
ure 1. In the rest of this section, we describe the
experimental results that led us to these submis-
sions.

The experiments in the process of determining
the best training recipe were performed with mT5-
XL (3.7B parameters), but our final submissions
then use the XXL variant with 13B parameters. All
results are reported as the mean of 3 independent
runs, along with the standard deviation across the
runs, unless stated otherwise.

4.1 Training Data

We start by determining which of the data available
from previous WMT Metrics Shared Tasks is useful
for training our metric, and whether it is beneficial
to perform any transformations of the ratings before
using them for training.
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4.1.1 DA Ratings

DA ratings have been used for scoring candidate
translations in the shared task since 2015. To ob-
tain DA ratings, human annotators were asked to
provide an integer score on a scale of 0 to 100 for
a translation produced by an MT system, given a
reference translation produced by an expert transla-
tor.4 There are over 2M raw DA ratings available
from the years between 2015 and 2021, spanning
40 different language pairs. The total number of rat-
ings drops to ca. 1M when ratings for the same seg-
ment (from different raters) are aggregated, which
we do in order to avoid providing the model with
different signals for the same translation.

Since the DA ratings come from hundreds of dif-
ferent raters, the WMT Metrics Shared Task orga-
nizers typically z-normalize them per rater before
using them as the ground truth for metric evalua-
tion. This is to make the ratings more comparable
across different raters, considering some of them
can be very strict, others lenient, and some can use
the whole rating scale, while others just a narrow
range of it. Hence a DA rating of, say, 50 can end
up being used for translations of widely varying
quality. The normalization ensures that the mean of
each rater’s ratings is 0 and the standard deviation
is 1. These official normalized DA ratings, which
we refer to as z-scores, are available along with the
raw DA ratings in the data from the shared tasks.

Score Normalization. In our first experiment,
we compare the performance of our metric fine-
tuned on the raw DA ratings and on the z-scores on
different subsets of the DA data. As the first two
rows of Table 1 show, using z-scores results in an
overall weaker performance, but a drastic improve-
ment on segment-level Pearson’s r (42.93 vs. 38.83
for zh-en). Thus, picking between using raw rat-
ings or z-scores for training the metric comes down
to the preference between high system-level or high
segment-level performance. Given the models’ per-
formance on the system-level metrics is already
relatively high (between 80 and 99), we choose to
use z-normalized DA ratings over their raw coun-
terparts for our submissions. Nevertheless, as we
show in Section 4.2, adding synthetic data during
finetuning can restore some of the system-level

4Technically, some of the translation data is “target-
original”, meaning that the reference (target) is the text origi-
nally to be translated, and the source is the translation. This is
the case for some language pairs in the DA data from earlier
years.

(a) Raw DA ratings.

(b) DA z-scores.

(c) Clipped DA z-scores.

Figure 2: WMT15-20 DA rating distributions after z-
normalization and after clipping to [−1.0, 1.0], com-
pared to the raw rating distribution.

performance. Moreover, our later experiments in
Section 4.3 demonstrate that further finetuning on
MQM ratings is more effective using a model first
finetuned on DA z-scores than raw DA ratings.

Score Clipping. Normalized and raw ratings fol-
low very different distributions, as depicted in Fig-
ure 2. The raw rating distribution is relatively
flat across the whole range with a large spike at
the maximum value, i.e., 100. In contrast, the z-
score distribution ranges roughly from −17 to 5,
with the majority of the mass between −1 and 1,
a sharp peak around 0.65, and a long tail on the
negative side. In order to prevent the model from
putting too much weight on the outliers during
training, and not learning to differentiate well be-
tween translations scored around zero, we propose
clipping the scores to be in the [−1.0, 1.0] range.5

This creates a spike on the right end, similar to
that observed on the raw rating distribution, but
also a spike on the left end, similar in magnitude
to the other spike (see Figure 2c). Finetuning a
model on the clipped z-scores results in segment-
level performance gains compared to the unmodi-

5MSE loss magnifies errors in predictions greater than 1
and shrinks errors smaller than 1 relative to the absolute dif-
ference.
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SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
en-de zh-en en-de zh-en en-de zh-en en-de zh-en

15-20 raw 59.98 51.63 43.51 38.83 83.33 89.38 90.79 98.51
±0.03 ±0.15 ±0.77 ±0.44 ±1.28 ±1.68 ±1.39 ±0.35

15-20 z 59.57 51.26 47.08 42.93 81.62 85.35 85.60 98.02
±0.20 ±0.40 ±0.23 ±0.13 ±1.48 ±1.68 ±1.00 ±0.20

15-20 z clipped 59.77 51.45 46.89 45.05 79.49 86.08 83.24 97.28
±0.21 ±0.15 ±0.32 ±0.24 ±0.00 ±1.68 ±0.97 ±0.11

15-21 z clipped 59.70 50.76 47.76 43.26 80.34 85.35 85.21 97.31
±0.10 ±0.30 ±1.02 ±0.70 ±1.96 ±1.68 ±1.67 ±0.82

Table 1: Performance of MetricX that is initialized with mT5-XL, finetuned on DA ratings in different ways. “15-
20” indicates that ratings from the years 2015 through 2020 were used, “z” indicates z-normalized scores, and
“clipped” denotes experiments with the scores clipped to the [−1.0, 1.0] range. Note that the data from 2015 is a
small set of 2,500 z-normalized ratings only, so there is technically no data from 2015 in the “15-20 raw” setting.

fied z-scores, though further sacrifices some of the
system-level performance (compare rows 2 and 3
in Table 1). Compared to finetuning on raw ratings
(row 1 vs. row 3), there is up to 16% increase on
the segment level (Pearson on zh-en), at the cost
of an up to 9% drop in system-level performance
(Pearson on en-de).

Data Selection. The DA ratings we used in our
experiments thus far were from 2015 to 2020. Sav-
ing the WMT22 data for the validation set, we
have the option of adding the WMT21 DA ratings
to the training set. Doing this leads to moderate
gains in system-level en-de performance, yet an
equal, if not bigger, performance drop in zh-en
across all metrics (compare the last two rows in Ta-
ble 1). We also tried excluding earlier years of DA
ratings, such as 2015–2017 or 2015–2018, since
up until 2018 a half of the translations in the data
were target-original (Barrault et al., 2019), and all
DA annotations were reference-based (Ma et al.,
2019), as opposed to source-based, such as is the
case with a good part of the DA annotations from
2019 onward, and all of the MQM ratings. We
hypothesized that the older data might thus be pro-
viding some low-quality signals to the model dur-
ing training, negatively affecting the performance.
Nevertheless, the model seems to prefer additional
training data, even if of a mixed quality, as we
consistently observed a slight drop in performance
after excluding the earlier years, especially on sys-
tem level. Therefore, the rest of the experiments
uses DA data from 2015 to 2020.

4.1.2 MQM Ratings
MQM ratings have been collected in the context
of the WMT Metrics Shared Task only since 2020.

Due to the MQM annotation being significantly
more labor-intensive, there is significantly less data
collected per year than using the DA methodol-
ogy. In fact, MQM ratings are only available for
three language pairs, namely en-de, zh-en and en-
ru. Since we reserve the ratings from 2022 for
validation, we are left with only two years worth of
MQM data to use for training, which amounts to
approximately 114K ratings. For both training and
evaluation we negate the MQM scores, changing
thus the range to [−25, 0], so that the score corre-
sponding to no errors in the translation would be
the highest value, as opposed to the lowest value, in
the range. In the following paragraphs, we discuss
our experiments with finetuning a model on MQM
ratings only, in order to see if the model learns
anything different than what it learns from the DA
ratings.

Data Selection. We start this set of experiments
with finetuning our model on the combination of
’20 and ’21 MQM ratings, and confirming that there
is an added benefit to it over finetuning on just one
of the years. As demonstrated by the first two rows
in Table 2, finetuning on the ’20 and ’21 data indi-
vidually leads to very different performance across
the set of metrics. Using just the ’20 MQM data by
itself, our model achieves better segment-level per-
formance than using all of the DA data, however, it
is the opposite case on system level. As for training
on ’21 data only, the performance is significantly
worse overall despite a slightly better segment-wise
pairwise accuracy on en-de. Although this may sug-
gest that the ’21 MQM data is of a lower quality,
it may also simply be the consequence of the ’21
data having only a little over a third of the number
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SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
en-de zh-en en-de zh-en en-de zh-en en-de zh-en

20 raw 59.91 52.52 48.03 54.43 77.35 84.98 75.30 85.46
±0.24 ±0.13 ±1.56 ±0.58 ±2.67 ±0.63 ±0.71 ±1.76

21 raw 60.43 51.92 42.21 54.07 69.66 82.42 56.62 85.92
±0.12 ±0.04 ±1.69 ±1.00 ±1.96 ±1.10 ±4.67 ±0.40

20-21 raw 60.77 52.72 47.59 55.41 73.93 83.52 72.70 85.68
±0.17 ±0.24 ±1.82 ±0.43 ±0.74 ±1.10 ±0.15 ±0.70

20-21 z 59.74 51.98 45.84 54.34 74.79 82.78 70.79 86.14
±0.33 ±0.82 ±0.99 ±0.75 ±0.74 ±2.29 ±2.79 ±1.06

Table 2: Performance of MetricX initialized with mT5-XL on the WMT22 MQM dataset, finetuned on different
subsets of MQM ratings. “z” indicates z-normalized scores.

of ratings in the ’20 data.6 Finetuning on both the
’20 and the ’21 data combined, however, outper-
forms both of the individual years on segment-level
metrics, while it lands somewhere in between ac-
cording to system-level metrics (see row 3 in the
table). Hence, we use the MQM ratings from both
years in all of our subsequent experiments.

Score Normalization. We observed on the DA
data that z-normalization has certain benefits, so
we experiment with it even on the MQM data. We
perform the z-normalization ourselves in the same
way the shared task organizers normally do for
the DA ratings, and compare a model finetuned on
these z-scores to one finetuned on the raw MQM
ratings. It is clear from the comparison of rows 3
and 4 in Table 2 that z-normalization drags the per-
formance down, especially on the segment level.7

One possible explanation could be that the normal-
ization has a negative effect here because of the
raters having annotated different sets of documents
each, and the set of raters being very small at the
same time. It could also be that z-normalization is
actually not a very practical transformation of train-
ing labels for this task, yet it helps in case of DA
ratings, which are of a much lower quality.8 The
metrics are evaluated against raw MQM ratings, so
z-normalization during training could negatively
impact its Pearson correlation at test time. At any
rate, based on this result, we opt for the raw MQM
ratings when finetuning our models henceforth.

6In the ’20 MQM data, candidate translations have multiple
ratings, so we also experimented with averaging them, but
that, somewhat surprisingly, resulted in a consistently lower
performance across the board.

7We verified that this is the case both with and without
aggregating the ratings of the same translations by multiple
raters in the ’20 data.

8For instance, z-normalization discounts the ratings of
raters who gave the same score, e.g., 100, to most of the
translations they rated.

4.2 Adding Synthetic Data

Using the DEMETR challenge set, we discovered
that training MetricX on either the DA or the MQM
dataset does not teach it to reliably score a transla-
tion that exactly matches the reference higher than
or equal to a machine translation, which should be
a basic sanity check for an evaluation metric. In
order to fix this behavior, we create simple syn-
thetic examples where the reference is copied as
the candidate translation and the label is set to the
maximum score. Depending on the training set
these synthetic examples are used along with, the
labels may need to be rescaled to ensure they corre-
spond to the maximum score, e.g., 100 when used
with raw DA ratings or 0 with MQM ratings. Since
z-scores do not have a maximum value, per se,
there is no straightforward way of incorporating
this synthetic data into such a training set. Clipped
z-scores make this trivial though, which is another
argument for training MetricX on clipped DA z-
scores instead of the full range of z-scores. We use
all of the references across all language pairs in the
DA data between 2015 and 2022 to construct this
synthetic dataset, which amounts to a little over
180K unique examples.

We also prepare a second synthetic dataset with
the opposite type of examples, that is, ones that
have no candidate translation and therefore a label
corresponding to the minimum score (i.e., 0 for DA,
and −25 for MQM). It is created using the same
data as the other synthetic dataset, only instead of
copying the reference, we set all of the translations
to an empty string, resulting in the same number of
synthetic examples.

Next, we perform experiments to determine what
the minimum ratio of synthetic examples to regular
training examples is with which a high accuracy on
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Figure 3: Effects of adding different proportions of syn-
thetic data to the DA 15-20 training set (using clipped z-
scores). The gray bars indicate the DEMETR-reference
score (with the scale on the left y-axis), while the lines
show the relative increase or decrease of the correlation
metrics w.r.t. using no synthetic data (with the scale on
the right y-axis). “Acc.” stands for pairwise accuracy,
and “r” denotes Pearson’s r. Segment-level Pearson’s r
followed similar trends to segment-level accuracy, and
was therefore omitted for better readability.

the DEMETR-reference metric can be achieved.9

Figure 3 illustrates the effects of adding the syn-
thetic data to the “DA 15-20 z clipped” training set
in the following proportions: 0.4%, 1%, and 2%
of the DA examples.10 As we can see by looking
at the gray bars, the synthetic data has the desired
effect of bringing the accuracy of correctly scor-
ing a reference higher than a machine translation
from a mere 31% to almost 100%. However, this
comes at a cost. With the increasing amount of syn-
thetic data, the segment-level performance slowly
degrades for both language pairs (see the blue and
red lines in the plot). On the system level side, we
see mixed results: a big improvement for en-de
(see the yellow and brown lines) and a comparable
drop in performance for zh-en, though only accord-
ing to pairwise accuracy (see the orange and green
lines). As such, we find adding 1% of synthetic
examples to the DA data a good compromise be-
tween achieving relatively high DEMETR scores
and maintaining good performance on the segment-
and system-level correlation metrics. For the actual
scores, we refer the reader to row 1 in Table 3.

We carried out a similar study with the MQM
20-21 training data, landing on 2% of synthetic
examples as the best proportion.11 Note that, with

9When included in the training data, both of the synthetic
datasets are added in the same proportion.

101% corresponds to ca. 10K synthetic examples.
11Since the MQM dataset is much smaller, 2% here corre-

sponds to only ca. 2K synthetic examples.

a model finetuned on raw MQM ratings, the ac-
curacy on DEMETR was relatively high to begin
with, typically between 80% and 90%. The 2% of
synthetic data brought it up to nearly 99% though.
Interestingly, training on the combination of MQM
and synthetic data did not have a negative impact
on the correlation metrics, as was the case with DA
data. On the contrary, the performance received
a consistent boost across all metrics, with an up
to 1% increase in system-level scores and 5% in
segment-level scores (see row 2 in Table 3).

4.3 Two-Stage Finetuning
In the previous two sections, we identified the best
subset and format of the DA/MQM ratings, and
we found the right balance between the DA/MQM
examples and the synthetic examples for training
a MetricX model. Here, we take it one step fur-
ther and perform two-stage finetuning experiments,
wherein we first finetune the model on the DA 15-
20 training set, and then further finetune it on MQM
20-21 data with a smaller learning rate. The reason
for finetuning on the two datasets in this order is
3-fold: (1) MQM is substantially smaller and has a
limited language coverage, (2) MQM is a higher-
quality dataset, and (3) the metric’s performance is
ultimately evaluated on MQM ratings (whether it
be our validation set, or the shared task’s test set).

Of all the four combinations of raw and z-
normalized DA and MQM ratings, we found, some-
what surprisingly, that using DA z-scores (aggre-
gated) in the first stage followed by raw MQM
ratings in the second stage leads to the best results.
Intuitively, using raw ratings in both stages, or z-
scores in both stages, should provide a smoother
learning process for the model, as it does not need
to relearn the label scales.12 Nevertheless, it ap-
pears that the neural model is not negatively af-
fected by the shift, and instead it prefers learning
from the DA and MQM data in their respective
most effective format.

Before diving into the two-stage experiment re-
sults, let us recap that, so far, MetricX achieved the
best segment-level performance when finetuned on
the MQM 20-21 dataset, and the best system-level
performance on the DA 15-20 dataset (in fact, sub-
stantially better than on the MQM dataset). The
top two rows in Table 3 show the performance of
models finetuned on these datasets individually,

12In the experiments with raw ratings in both stages, we
rescaled the DA ratings to the [−25, 0] range, so as to match
the MQM scale used then in the second stage.

762



SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson DEMETRen-de zh-en en-de zh-en en-de zh-en en-de zh-en

DAsyn 59.56 50.61 46.75 43.44 82.05 82.42 86.50 97.12 91.03
MQMsyn 60.96 52.93 49.98 56.12 73.08 83.88 73.49 85.72 98.57

DA→MQM 61.50 54.09 51.59 58.53 73.93 86.45 75.46 88.93 46.20
DA→MQMsyn 61.61 54.05 51.55 58.81 75.21 85.71 76.65 89.89 91.93
DAsyn →MQM 61.46 53.70 52.20 57.97 73.93 85.71 75.63 88.39 82.03

DAsyn →MQMsyn 61.35 53.61 52.30 57.57 75.64 86.08 77.18 89.35 97.53

DA21
syn →MQM 61.49 53.67 51.36 58.07 74.79 84.62 76.30 89.26 92.30

DA21
syn →MQMsyn 61.45 53.93 53.62 58.88 75.21 85.71 78.15 89.85 98.17

Table 3: Performance of MetricX initialized with mT5-XL, finetuned first on DA 15-20 clipped z-scores, and
subsequently on MQM 20-21 raw ratings, with synthetic data added at different stages. DAsyn denotes the DA
dataset with 1% of synthetic examples, and MQMsyn is the MQM dataset with 2% of synthetic examples. For
comparison, the first two rows show the performance of models finetuned on DAsyn and MQMsyn individually. The
last two rows correspond to models finetuned in the first stage on the DA dataset with the ’21 ratings added but
with all into-English language pairs excluded. Standard deviations are omitted in this table for better readability.

with synthetic data included, serving thus as base-
lines for the following experiments. Now, the third
row shows the scores for a model finetuned in the
two-stage fashion without any synthetic data. Com-
paring these results with those of a model finetuned
on the MQM dataset only (see row 3 in Table 2),
we see a dramatic improvement in performance
across the board. For example, the segment-wise
accuracy for zh-en increases from 52.72 to 54.09,
and Pearson’s r for en-de from 47.59 to 52.30. In
system-level metrics we see similar gains, such as
the accuracy going up from 83.52 to 86.45, and
Pearson’s r from 72.70 to 75.46 for zh-en. Simi-
larly, rows 2 and 4 in Table 3 can be compared to
see a similar difference, only this time for models
trained with synthetic data too. This demonstrates
a clear benefit of training our MetricX model on
both the DA and the MQM data over training it on
either of them individually. That being said, the
system-level performance still lags significantly be-
hind models finetuned on DA data only, so there
appears to be a trade-off between segment- and
system-level performance.

Next, we examine whether there is a difference
between including synthetic data in the first stage
or the second stage of finetuning. Rows 4 and 5 in
Table 3 correspond to these two experiments. The
scores show that using synthetic examples in the
second stage not only ensures a higher DEMETR
accuracy (91.93 vs. 82.03), but also higher correla-
tions with the human scores according to virtually
all of the other metrics. Moreover, compared to
not using synthetic data at all (see row 3 in the
table), combining it with the MQM data in the sec-
ond stage does not generally sacrifice the overall

performance, not to mention it almost doubles the
DEMETR accuracy.

Finally, we also tried including synthetic data in
both finetuning stages, but not until after the shared
task’s submission window has passed, hence, we
did not use this method in our final MetricX ver-
sion. The gains over using the synthetic data in the
second stage only are rather inconsistent, neverthe-
less the DEMETR score further increases to 97.53
(see row 6).

4.4 Additional Experiments

Although in Section 4.1 we concluded that adding
DA ratings from WMT21 to the training set
dragged the performance down, we noted that that
was the case for the zh-en language pair only. Re-
visiting this experiment after the submission, we
found that excluding the into-English DA data from
WMT21 and including the synthetic data as de-
scribed in Section 4.2 is, in fact, a potentially better
training set than the same with the WMT21 ratings
omitted altogether. As we can see in Table 3, the
model performs consistently better across most of
the metrics when finetuned with the WMT21 out-
of-English language pairs included (compare rows
7–8 with rows 5–6). So, while this seems to be the
best training recipe, it is not the one we followed
for the shared task submissions. Instead, we used
DA 15-20 (without synthetic data) in the first stage,
corresponding to row 4 in the table.

4.5 Scaling Analysis

Having arrived at our final MetricX training recipe
using mT5-XL (3.7B parameters) as the pretrained
model, we now briefly compare its performance
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SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
en-de zh-en en-de zh-en en-de zh-en en-de zh-en

mT5-L 59.63 53.98 50.82 55.91 76.07 87.55 79.92 93.63
±0.34 ±0.06 ±2.16 ±0.53 ±0.74 ±0.63 ±1.20 ±2.48

mT5-XL 61.61 54.05 51.55 58.81 75.21 85.71 76.65 89.89
±0.12 ±0.29 ±1.06 ±0.12 ±0.74 ±1.10 ±1.44 ±0.23

mT5-XXL 61.92 54.76 54.57 60.06 82.48 86.81 84.49 90.85
±0.19 ±0.13 ±0.36 ±0.50 ±0.74 ±1.10 ±0.30 ±0.31

Table 4: Performance of MetricX with different variants of mT5 as the initialization model, trained using our final
recipe, which involves first finetuning on DA 15-20 ratings and then on MQM 20-21 ratings with synthetic data.

with two other variants of mT5: one smaller (mT5-
Large with 1.2B parameters) and one larger (mT5-
XXL with 13B parameters). From Table 4 it is clear
that MetricX can benefit from a bigger pretrained
model for initialization, as mT5-XXL has a good
margin on mT5-XL across all metrics. The XXL
variant thus becomes our choice for all of our mT5-
based submissions to the shared task.

Interestingly, mT5-Large outperforms the two
bigger variants in system-level metrics on the zh-en
language pair, and that not by a negligible margin.
Combined with the results in the earlier sections
and our observation that the system-level perfor-
mance of MetricX is typically highest right at the
beginning of training, and quickly declines as the
model gradually improves on segment-level met-
rics, it appears it may be challenging to come up
with a single MT evaluation metric that excels
at both the segment and the system level. This
phenomenon can also be observed among several
of the top metrics in the WMT22 Metrics Shared
Task (Freitag et al., 2022), as well as in recent large
language model-based approaches to automatic MT
evaluation (Kocmi and Federmann, 2023).

4.6 Submission Summary

Throughout the whole of Section 4 thus far, we
were reporting results averaged across three inde-
pendent runs, so as to more reliably develop the
best training recipe for the reference-based version
of MetricX. Here, we present the performance of
our individual final submissions to the WMT23
Metrics Shared Task, described at the beginning of
this section, including our QE (or reference-free)
metric submissions. All of our submissions fol-
low the same recipe—i.e., are first finetuned on the
DA 15-20 aggregated and clipped z-scores, and
then further finetuned on MQM 20-21 ratings com-
bined with synthetic examples—but differ in (1) the

pretrained model used for initialization, (2) whether
they use reference or source segments in the input
(the latter being used for the QE submissions), and
(3) whether the second-stage training set includes
the ’22 MQM ratings or not. For the QE vari-
ants, we followed the same training recipe as the
reference-based version; we did not do a signifi-
cant amount of analysis into whether the design
choices we made for the reference-based metric
were also the correct decisions for the QE version.
For the models that do use the ’22 data for finetun-
ing (which we otherwise use as the validation set),
we do not report any scores. For these two submis-
sions, we picked the model checkpoint based on
the equivalent training runs without the ’22 ratings.

Our remaining four submissions have their
scores summarized in Table 5. Between the two
reference-based variants (rows 1–2), the mT5-
based MetricX is dominant in segment-level scores,
whereas the PaLM-2-based one has a strong lead
on the system level. The story is similar for the
two QE variants (rows 3–4), only the segment-level
score differences are less pronounced. Overall, on
the WMT22 MQM validation set, the QE variants
are not very far behind their reference-based coun-
terparts in performance.

5 Related Work

For many years, lexical-based metrics like BLEU
(Papineni et al., 2002) and ChrF (Popović, 2015)
were the standard method for automatically evalu-
ating MT output. However, as it was demonstrated
that learned evaluation metrics correlate to human
ratings significantly higher than lexical-based met-
rics (Freitag et al., 2022), the vast majority of re-
cent research on MT evaluation has used learned
metrics.

Learned MT metrics, such as BLEURT (Sel-
lam et al., 2020; Pu et al., 2021) and COMET
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MetricX Pretrained SEG p. acc. SEG Pearson SYS p. acc. SYS Pearson
variant model en-de zh-en en-de zh-en en-de zh-en en-de zh-en

23 mT5-XXL 62.09 54.84 54.21 60.06 82.05 86.81 84.19 91.20
23-c PaLM-2-Bison 61.56 54.17 51.62 52.24 76.92 92.31 91.41 98.61

23-QE mT5-XXL 60.64 54.04 49.78 56.41 78.21 87.91 81.29 91.32
23-QE-c PaLM-2-Bison 60.23 53.96 49.28 52.48 82.05 91.21 93.64 96.90

Table 5: Meta-evaluation scores of our four MetricX submissions that did not include the ’22 MQM data in the
training set. Note that these scores correspond to single runs, as opposed to all the previous results that were
averaged across 3 runs.

(Rei et al., 2020, 2022a), differ largely in their
network architecture and the specific tasks they
are trained to do. Our metric is most closely re-
lated to BLEURT. Like BLEURT, the MetricX
network architecture creates a joint encoding of
both the hypothesis and reference translations to-
gether, in contrast to COMET-style metrics that
encode them independently. Our network is trained
only to do either reference-based or reference-free
(QE) judgments of sentence-level translation qual-
ity, whereas some metrics like UniTE (Wan et al.,
2022) are trained to both tasks at the same time
or CometKiwi (Rei et al., 2022b), which learns to
predict both word-level quality scores in addition
to an overall sentence-level score. Other learned
metrics, such as MaTESe (Perrella et al., 2022),
take an alternative approach to regression-based
metrics and derive a sentence-level quality score by
identifying error spans in translations, like is done
in the human evaluations of MQM.

More recent approaches to MT evaluation lever-
age large language models (LLMs) to do zero-shot
scoring by either directly predicting scalar quality
scores or phrase-level error tagging (Kocmi and Fe-
dermann, 2023; Fernandes et al., 2023). These ap-
proaches typically leverage models that are orders
of magnitude larger than metrics that are trained
specifically for MT evaluation.

In comparison to the MetricX submission to the
WMT22 Metrics Shared Task, this year’s submis-
sion shares the same architecture, but we performed
a significantly larger number of experiments to ar-
rive at the final models, which are detailed in this
report. We also explore how metric performance
changes as a function of the number of parame-
ters, experiment with initializing with different pre-
trained language models, and include a QE submis-
sion.

6 Conclusion

In this report, we presented in detail our approach
to training MetricX-23, a regression-based MT
evaluation metric. We submitted six versions of
MetricX-23 to the WMT23 Metrics Shared Task,
including both reference-based and QE variants.
Some of our findings are that (1) training on di-
rect assessment (DA) ratings and subsequently
on MQM ratings leads to a significantly better
performance than training on either of the two
datasets alone, (2) z-normalization of DA ratings
helps achieve better segment-level performance,
but is not useful for high-quality MQM ratings,
and (3) adding a small amount of synthetic data to
the training set, targeting a challenge set, can also
boost the metric’s overall performance.

Throughout our experiments, we observed an
undesirable tension between segment- and system-
level performance, making it challenging to im-
prove our metric in both aspects at the same time.
Nevertheless, increasing the size of the model used
to pre-initialize the metric appears to be one reli-
able way to increase the overall performance, at
least to a certain point. Future work may benefit
from a better understanding of the trade-off be-
tween segment- and system-level performance, and
whether it would be better to focus on separate
metrics for these two types of MT evaluation.
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Abstract

This paper introduces GEMBA-MQM, a GPT-
based evaluation metric designed to detect
translation quality errors, specifically for the
quality estimation setting without the need
for human reference translations. Based on
the power of large language models (LLM),
GEMBA-MQM employs a fixed three-shot
prompting technique, querying the GPT-4
model to mark error quality spans. Compared
to previous works, our method has language-
agnostic prompts, thus avoiding the need for
manual prompt preparation for new languages.

While preliminary results indicate that
GEMBA-MQM achieves state-of-the-art
accuracy for system ranking, we advise
caution when using it in academic works to
demonstrate improvements over other methods
due to its dependence on the proprietary,
black-box GPT model.

1 Introduction

GEMBA-MQM builds on the recent finding that
large language models (LLMs) can be prompted to
assess the quality of machine translation (Kocmi
and Federmann, 2023a). We release the scoring
script.1

The earlier work Kocmi and Federmann (2023a)
(GEMBA-DA) adopted a straightforward method-
ology of assessing single score values for each
segment without specifying the scale in detail.
Employing a zero-shot approach, their technique
showed an unparalleled accuracy in assessment,
surpassing all other non-LLM metrics on the
WMT22 metrics test set (Freitag et al., 2022).

Next, Lu et al. (2023) (EAPrompt) investigated
prompting LLMs to assess individual error classes
from a multidimensional quality metrics (MQM)
framework (Freitag et al., 2021), where each error
can be classified into various error classes (such

1https://github.com/MicrosoftTranslator/GEMBA/

Metric Acc. Meta

GEMBA-MQM 96.5% (1) 0.802 (3)
XCOMET-Ensemble 95.2% (1) 0.825 (1)
docWMT22CometDA 93.7% (2) 0.768 (9)
docWMT22CometKiwiDA 93.7% (2) 0.767 (9)
XCOMET-QE-Ensemble 93.5% (2) 0.808 (2)
COMET 93.5% (2) 0.779 (6)
MetricX-23 93.4% (3) 0.808 (2)
CometKiwi 93.2% (3) 0.782 (5)
Calibri-COMET22 93.1% (3) 0.767 (10)
BLEURT-20 93.0% (4) 0.776 (7)
MaTESe 92.8% (4) 0.782 (5)
mre-score-labse-regular 92.7% (4) 0.743 (13)
mbr-bleurtxv1p-qe 92.5% (4) 0.788 (4)
KG-BERTScore 92.5% (5) 0.774 (7)
MetricX-23-QE 92.0% (5) 0.800 (3)
BERTscore 90.2% (7) 0.742 (13)
MS-COMET-QE-22 90.1% (8) 0.744 (12)
embed_llama 87.3% (10) 0.701 (16)
f200spBLEU 86.8% (11) 0.704 (15)
BLEU 85.9% (12) 0.696 (16)
chrF 85.2% (12) 0.694 (17)

Table 1: Preliminary results of the WMT 2023 Metric
Shared task. The first column shows the system-level
accuracy, and the second column is the Metrics 2023
meta evaluation. Metrics with gray background need
human references. The table does not contain the worst-
performing, non-standard metrics due to space reasons.

as accuracy, fluency, style, terminology, etc.), sub-
classes (accuracy > mistranslation), and is marked
with its severity (critical, major, minor). Segment
scores are computed by aggregating errors, each
weighted by its respective severity coefficient (25,
5, 1). While their approach employed a few-shot
prompting with a chain-of-thought strategy (Wei
et al., 2022), our GEMBA-MQM approach differs
in two aspects: 1) We streamline the process using
only single-step prompting, and 2) our prompts are
universally applicable across languages, avoiding
the need for manual prompt preparation for each
language pair.

Another notable effort by Fernandes et al. (2023)
paralleled the EAPrompt approach, also marking
MQM error spans. In contrast, their approach used
a PaLM-2 model, pooling MQM annotations to
sample a few shot examples for the prompt. Their
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(System) You are an annotator for the quality of machine translation. Your task is to identify
errors and assess the quality of the translation.

(user) {source_language} source:\n
```{source_segment}```\n
{target_language} translation:\n
```{target_segment}```\n
\n
Based on the source segment and machine translation surrounded with triple backticks, identify
error types in the translation and classify them. The categories of errors are: accuracy
(addition, mistranslation, omission, untranslated text), fluency (character encoding, grammar,
inconsistency, punctuation, register, spelling),

locale convention (currency, date, name, telephone, or time format)

style (awkward), terminology (inappropriate for context, inconsistent use), non-translation,
other, or no-error.\n
Each error is classified as one of three categories: critical, major, and minor.
Critical errors inhibit comprehension of the text. Major errors disrupt the flow, but what
the text is trying to say is still understandable. Minor errors are technically errors,
but do not disrupt the flow or hinder comprehension.

(assistant) {observed error classes}

Figure 1: The general prompt for GEMBA-MQM omits the gray part which performed subpar on internal data (we
include it in GEMBA-locale-MQM). The “(user)” and “(assistant)” section is repeated for each few-shot example.

fine-tuning experiments did not improve system-
level performance for the top-tier models.

2 Description

Our technique adopts few-shot learning with the
GPT-4 model (OpenAI, 2023), prompting the
model to mark quality error spans using the MQM
framework. The underlying prompt template is
modeled on guidelines for human annotators and
shown in Figure 1.

In contrast to other methods, we use three pre-
determined examples (see Appendix A), allowing
the method to be used with any language pair,
avoiding the need to create language pair specific
MQM few-shot examples. This was the original
limitation that prevented Fernandes et al. (2023)
from evaluating AutoMQM beyond two language
pairs. Our decision was not driven by a desire to en-
hance performance — since domain and language-
specific prompts typically boost it (Moslem et al.,
2023) — but rather to ensure our method can be
evaluated across any language pairs.

3 Experiments

To measure the performance of the GEMBA-MQM
metric, we follow the methodology and use test
data provided by the WMT22 Metrics shared task
(Freitag et al., 2022) which hosts an annual eval-
uation of automatic metrics, benchmarking them
against human gold labels.

We compare our method against the best-
performing reference-based metrics of WMT22:
MetrixX_XXL (non-public metric), COMET-22
(Rei et al., 2022), UNITE (Wan et al., 2022b),
BLEURT-20 (Pu et al., 2021), and COMET-20
(Rei et al., 2020). In addition, we also compare
against “classic” string-based metrics BLEU (Pa-
pineni et al., 2002) and ChrF (Popović, 2015).
Lastly, we compare against reference-less metrics
of WMT22: CometKIWI (Rei et al., 2022), Unite-
src (Wan et al., 2022a), Comet-QE (Rei et al.,
2021), MS-COMET-QE-22 (Kocmi et al., 2022b).

We contrast our work with other LLM-based
evaluation methods such as GEMBA-DA (Kocmi
and Federmann, 2023b) and EAPrompt (Lu et al.,
2023), conducting experiments using two GPT
models: GPT-3.5-Turbo and the more powerful
GPT-4 (OpenAI, 2023).

3.1 Test set

The main evaluation of our work has been done
on the MQM22 (Freitag et al., 2022) and internal
Microsoft data. Furthermore, a few days before the
camera-ready deadline, organizers of Metrics 2023
(Freitag et al., 2023) released results on the blind
test set, showing performance on unseen data.

The MQM22 test set contains human judgments
for three translation directions: English into Ger-
man, English into Russian, and Chinese into En-
glish. The test set contains a total of 54 machine
translation system outputs or human translations. It
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contains a total of 106k segments. Translation sys-
tems are mainly from participants of the WMT22
General MT shared task (Kocmi et al., 2022a). The
source segments and human reference translations
for each language pair contain around 2,000 sen-
tences from four different text domains: news, so-
cial, conversational, and e-commerce. The gold
standard for scoring translation quality is based on
human MQM ratings, annotated by professionals
who mark individual errors in each translation, as
described in Freitag et al. (2021).

The MQM23 test set is the blind set for this
year’s WMT Metrics shared task prepared in the
same way as MQM22, but with unseen data for all
participants, making it the most reliable evaluation
as neither participants nor LLM could overfit to
those data. The main difference from last year’s
iteration is the replacement of English into Russian
with Hebrew into English. Also, some domains
have been updated; see Kocmi et al. (2023).

Additionally, we evaluated GEMBA-MQM on
a large internal test set, an extended version of the
data set described by Kocmi et al. (2021). This test
set contains human scores collected with source-
based Direct Assessment (DA, Graham et al., 2013)
and its variant DA+SQM (Kocmi et al., 2022a).
This test set contains 15 high-resource languages
paired with English. Specifically, these are: Ara-
bic, Czech, Dutch, French, German, Hindi, Ital-
ian, Japanese, Korean, Polish, Portuguese, Russian,
Simplified Chinese, Spanish, and Turkish.

3.2 Evaluation methods

The main use case of automatic metrics is system
ranking, either when comparing a baseline to a new
model, when claiming state-of-the-art results, when
comparing different model architectures in ablation
studies, or when deciding if to deploy a new model
to production. Therefore, we focus on a method
that specifically measures this target: system-level
pairwise accuracy (Kocmi et al., 2021).

The pairwise accuracy is defined as the number
of system pairs ranked correctly by the metric with
respect to the human ranking divided by the total
number of system pair comparisons.

Formally:

Accuracy =
|sign(metric∆) == sign(human∆)|

|all system pairs|

We reproduced all scores reported in the
WMT22 Metrics shared task findings paper using

the official WMT22 script.2 Reported scores match
Table 11 of the WMT22 metrics findings paper
(Freitag et al., 2022).

Furthermore, organizers of Metrics shared task
2023 defined a new meta-evaluation metric based
on four different scenarios, each contributing to the
final score with a weight of 0.25:

– system-level pairwise accuracy;
– system-level Pearson correlation;
– segment-level Accuracy-t (Deutsch et al.,

2023); and
– segment-level Pearson correlation.

The motivation is to measure metrics in the most
general usage scenarios (for example, for segment-
level filtering) and not just for system ranking.
However, we question the decision behind the use
of Pearson correlation, especially on the system
level. As Mathur et al. (2020) showed, Pearson
used for metric evaluation is sensitive when applied
to small sample sizes (in MQM23, the sample size
is as little as 12 systems); it is heavily affected by
outliers (Osborne and Overbay, 2004; Ma et al.,
2019), which need to be removed before running
the evaluation; and it measures linear correlation
with the gold MQM data, which are not necessarily
linear to start with (especially the discrete segment-
level scores, with error weights of 0.1, 1, 5, 25).

Although it is desirable to have an automatic
metric that correlates highly with human annotation
behaviour and which is useful for segment-level
evaluation, more research is needed regarding the
proper way of testing these properties.

4 Results

In this section, we discuss the results observed on
three different test sets: 1) MQM test data from
WMT, 2) internal test data from Microsoft, and 3)
a subset of the internal test data to measure the
impact of the MQM locale convention.

4.1 Results on MQM Test Data from WMT
The results of the blind set MQM23 in Table 1
show that GEMBA-MQM outperforms all other
techniques on the three languages evaluated in the
system ranking scenario. Furthermore, when evalu-
ated in the meta-evaluation scenario it achieves the
third cluster rank.

In addition to the official results, we also test on
MQM22 test data and show results in Table 2. The

2
https://github.com/google-research/mt-metrics-eval

770



Metric Acc.

EAPrompt-Turbo 90.9%
GEMBA-DA-GPT4 89.8%

GEMBA-locale-MQM-Turbo 89.8%
EAPrompt-Turbo 89.4%
GEMBA-MQM-GPT4 89.4%
GEMBA-DA-GPT4 87.6%
GEMBA-DA-Turbo 86.9%
GEMBA-MQM-Turbo 86.5%
GEMBA-DA-Turbo 86.5%
MetricX_XXL 85.0%
BLEURT-20 84.7%
COMET-22 83.9%
COMET-20 83.6%
UniTE 82.8%

COMETKiwi 78.8%
COMET-QE 78.1%
BERTScore 77.4%

UniTE-src 75.9%
MS-COMET-QE-22 75.5%
chrF 73.4%
BLEU 70.8%

Table 2: The system-level pairwise accuracy results for
the WMT 22 metrics task test set. Gray metrics need
reference translations which are not the focus of the
current evaluation.

main conclusion is that all GEMBA-MQM variants
outperform traditional metrics (such as COMET
or Metric XXL). When focusing on the quality
estimation task, we can see that the GEMBA-
locale-MQM-Turbo method slightly outperforms
EAPrompt, which is the closest similar technique.

However, we can see that our final technique
GEMBA-MQM is performing significantly worse
than the GEMBA-locale-MQM metric, while the
only difference is the removal of the locale conven-
tion error class. We believe this to be caused by
the test set. We discuss our decision to remove the
locale convention error class in Section 4.3.

4.2 Results on Internal Test Data

Table 3 shows that GEMBA-MQM-Turbo outper-
forms almost all other metrics, losing only to
COMETKIWI-22. This shows some limitations
of GPT-based evaluation on blind test sets. Due
to access limitations, we do not have results for
GPT-4, which we assume should outperform the
GPT-3.5 Turbo model. We leave this experiment
for future work.

4.3 Removal of Locale Convention

When investigating the performance of GEMBA-
locale-MQM on a subset of internal data (Czech
and German), we observed a critical error in this
prompt regarding the "locale convention" error

15 langs Cs + De
# of system pairs (N) 4,468 734

COMETKiwi 79.9 81.3
GEMBA-locale-MQM-Turbo 78.6 81.3
GEMBA-MQM-Turbo 78.4 83.0
COMET-QE 77.8 79.8
COMET-22 76.5 79.2
COMET-20 76.3 79.6
BLEURT-20 75.8 79.7
chrF 68.1 70.6
BLEU 66.8 68.9

Table 3: System-level pairwise accuracy results for our
internal test set. The first column is for all 15 languages,
and the second is Czech and German only. All lan-
guages are paired with English.

Source Vstupné do památky činí 16,50 Eur.
Hypothesis Admission to the monument is 16.50 Euros.
GPT annot. locale convention/currency: "euros"

Table 4: An example of a wrong error class “locale
convention” as marked by GEMBA-locale-MQM. The
translation is correct, however, we assume that the GPT
model might not have liked the use of Euros in a Czech
text because Euros are not used in the Czech Republic.

class. GPT assigned this class for errors not re-
lated to translations. It flagged Czech sentences as
a locale convention error when the currency Euro
was mentioned, even when the translation was fine,
see example in Table 4. We assume that it was
using this error class to mark parts not standard for
a given language but more investigation would be
needed to draw any deeper conclusions.

The evaluation on internal test data in Table 4
showed gains of 1.7% accuracy. However, when
evaluating over 15 languages, we observed a small
degradation of 0.2%. For MQM22 in Table 2, the
degradation is even bigger.

When we look at the distribution of the error
classes over the fifteen highest resource languages
in Table 5, we observe that 32% of all errors for
GEMBA-locale-MQM are marked as a locale con-
vention suggesting a misuse of GPT for this error
class. Therefore, instead of explaining this class in
the prompt, we removed it. This resulted in about
half of the original locale errors being reassigned
to other error classes, while the other half was not
marked.

In conclusion, we decided to remove this class as
it is not aligned with what we expected to measure
and how GPT appears to be using the classes. Thus,
we force GPT to classify those errors using other
error categories. Given the different behaviour for
internal and external test data, this deserves more
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Error class GEMBA-locale-MQM GEMBA-MQM

accuracy 960,838 (39%) 1,072,515 (51%)
locale con. 808,702 (32%) (0%)
fluency 674,228 (27%) 699,037 (33%)
style 23,943 (1%) 41,188 (2%)
terminology 17,379 (1%) 290,490 (14%)
Other errors 4,126 (0%) 10615 (1%)

Total 2,489,216 2,113,845

Table 5: Distribution of errors for both types of prompts
over all segments of the internal test set for the Turbo
model.

investigation in future work.

5 Caution with “Black Box” LLMs

Although GEMBA-MQM is the state-of-the-art
technique for system ranking, we would like to
discuss in this section the inherent limitations of
using “black box” LLMs (such as GPT-4) when
conducting academic research.

Firstly, we would like to point out that GPT-
4 is a proprietary model, which leads to several
problems. One of them is that we do not know
which training data it was trained on, therefore any
published test data should be considered as part
of their training data (and is, therefore, possibly
tainted). Secondly, we cannot guarantee that the
model will be available in the future, or that it
won’t be updated in the future, meaning any results
from such a model are relevant only for the specific
sampling time. As Chen et al. (2023) showed, the
model’s performance fluctuated and decreased over
the span of 2023.

As this impacts all proprietary LLMs, we advo-
cate for increased research using publicly available
models, like LLama 2 (Touvron et al., 2023). This
approach ensures future findings can be compared
both to “black box” LLMs while also allowing
comparison to “open” models.3

6 Conclusion

In this paper, we have introduced and evaluated
the GEMBA-MQM metric, a GPT-based metric for
translation quality error marking. This technique
takes advantage of the GPT-4 model with a fixed
three-shot prompting strategy. Preliminary results
show that GEMBA-MQM achieves a new state of
the art when used as a metric for system ranking,

3Although LLama 2 is not fully open, its binary files have
been released. Thus, when used it as a scorer, we are using
the exact same model.

outperforming established metrics such as COMET
and BLEURT-20.

We would like to acknowledge the inherent limi-
tations tied to using a proprietary model like GPT.
Our recommendation to the academic community
is to be cautious with employing GEMBA-MQM
on top of GPT models. For future research, we
want to explore how our approach performs with
other, more open LLMs such as LLama 2 (Tou-
vron et al., 2023). Confirming superior behaviour
on publicly distributed models (at least their bina-
ries) could open the path for broader usage of the
technique in the academic environment.

Limitations

While our findings and techniques with GEMBA-
MQM bring promising advancements in translation
quality error marking, it is essential to highlight the
limitations encountered in this study.

– Reliance on Proprietary GPT Models:
GEMBA-MQM depends on the GPT-4 model,
which remains proprietary in nature. We do
not know what data the model was trained
on or if the same model is still deployed
and therefore the results are comparable.
As Chen et al. (2023) showed, the model’s
performance fluctuated throughout 2023;

– High-Resource Languages Only: As WMT
evaluations primarily focus on high-resource
languages, we cannot conclude if the method
will perform well on low-resource languages.
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A Three examples Used for Few-shot Prompting

English source: I do apologise about this, we must gain permission from the account holder to discuss
an order with another person, I apologise if this was done previously, however, I would not be able
to discuss this with yourself without the account holders permission.
German translation: Ich entschuldige mich dafür, wir müssen die Erlaubnis einholen, um eine Bestellung
mit einer anderen Person zu besprechen. Ich entschuldige mich, falls dies zuvor geschehen wäre, aber
ohne die Erlaubnis des Kontoinhabers wäre ich nicht in der Lage, dies mit dir involvement.
MQM annotations:
Critical:
no-error
Major:
accuracy/mistranslation - "involvement"
accuracy/omission - "the account holder"
Minor:
fluency/grammar - "wäre"
fluency/register - "dir"

English source: Talks have resumed in Vienna to try to revive the nuclear pact, with both sides
trying to gauge the prospects of success after the latest exchanges in the stop-start negotiations.
Czech transation: Ve Vídni se ve Vídni obnovily rozhovory o oživení jaderného paktu, přičemže obě
partaje se snaží posoudit vyhlídky na úspěch po posledních výměnách v jednáních.
MQM annotations:
Critical:
no-error
Major:
accuracy/addition - "ve Vídni"
accuracy/omission - "the stop-start"
Minor:
terminology/inappropriate for context - "partaje"

Chinese source: 大众点评乌鲁木齐家居商场频道为您提供高铁居然之家地址，电话，营业时间等最新商户信息，
找装修公司，就上大众点评
English translation: Urumqi Home Furnishing Store Channel provides you with the latest business
information such as the address, telephone number, business hours, etc., of high-speed rail, and
find a decoration company, and go to the reviews.
MQM annotations:
Critical:
accuracy/addition - "of high-speed rail"
Major:
accuracy/mistranslation - "go to the reviews"
Minor:
style/awkward - "etc.,"

Figure 2: Three examples used for all languages.
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Abstract

The Metric Score Landscape Challenge
(MSLC23) dataset aims to gain insight into
metric scores on a broader/wider landscape of
machine translation (MT) quality. It provides a
collection of low- to medium-quality MT out-
put on the WMT23 general task test set. To-
gether with the high quality systems submitted
to the general task, this will enable better in-
terpretation of metric scores across a range of
different levels of translation quality. With this
wider range of MT quality, we also visualize
and analyze metric characteristics beyond just
correlation.

1 Introduction

Under time and human resource constraints, auto-
matic metrics are often used as a proxy of manual
evaluation for machine translation (MT) quality.
The WMT Metrics shared task evaluates how well
a variety of automatic metrics correspond to human
judgments of MT quality, as evaluated on the WMT
General (formerly News) shared task data. Those
MT systems being evaluated are typically high-
performing systems, especially for high-resource
language pairs. However, in practice, the lessons
learned are applied to a broader range of systems
in development, including low-resource and low-
quality output.

This challenge set1 aims to gain insight into
metric scores across a broader MT quality land-
scape. It provides a collection of low- to medium-
quality MT output on the WMT23 general task test
set. This serves several purposes. Together with
the high quality systems submitted to the general
task, this will enable more thorough understand-
ing of metric scores across a range of different
levels of translation quality: useful knowledge for
researchers considering applying these metrics to
lower-resource language pairs or lower-performing

1Available at https://github.com/nrc-cnrc/MSLC23

domains. This challenge set also allows us to ex-
plore metric characteristics beyond just correlation,
which has been a main focus of past work. By ex-
panding the range of MT quality analyzed, we shed
light on some unexpected or under-explored proper-
ties of metrics, such as metrics that can distinguish
between high quality systems but are not able to
differentiate different levels of MT quality on the
lower end of the quality scale (or vice versa) and
metrics that use their space of scores in very differ-
ent ways (e.g., discretized, or with specific score
ranges with particularly large numbers of ties).

We focus on four language pairs:
Chinese→English (ZH→EN), Hebrew↔English
(HE↔EN), and English→German (EN→DE).
Three of these correspond to the focus languages
of the WMT 2023 Metrics shared task (EN→DE,
HE→EN, ZH→EN), and they also cover several
language families and aspects of translation
evaluation (i.e., the paragraph-level evaluation of
EN→DE), as well as including a sentence-level
out-of-English direction (EN→HE). We combine
source and reference data from the news portion of
the WMT 2023 General MT task test sets with our
challenge set, the low- and medium-quality MT
output that we generated to cover a range of MT
quality.

We begin by describing the training data (Sec-
tion 3.1) and models (Section 3.2) used in for con-
structing our challenge set (Section 3.3). We also
briefly describe the additional data (Section 4) and
metrics (Section 5) analyzed. In Section 6 we
analyze the distribution of different metrics over
the challenge set. We find that some metrics ex-
hibit strikingly different characteristics on the low-
quality systems as compared to the systems sub-
mitted to WMT, while others exhibit unexpected
characteristics (e.g., large numbers of tied scores)
that would not have been apparent from standard
correlational analysis or from high-quality WMT
submitted systems alone. We conclude by arguing
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that examining metric characteristics and perfor-
mance over a wider landscape of MT quality—or
indicating clearly when a metric has only been
tested on high-quality MT—is an important factor
for researchers to consider when building, present-
ing, and applying new metrics (especially if those
metrics will be applied to lower-quality outputs).

2 Related Work

Przybocki et al. (2009) outlined four objectives in
the search for new and improved automatic MT
evaluation metrics: 1) “high correlation with hu-
man assessments of translation quality”; 2) “ap-
plicable to multiple target languages”; 3) “ability
to differentiate between systems of varying qual-
ity” and finally, 4) “intuitive interpretation”. Over
the years, the WMT Metrics shared tasks (Callison-
Burch et al., 2007; Bojar et al., 2017b; Freitag et al.,
2021, 2022, i.a.) focused mainly on evaluating MT
evaluation metrics on the first two objectives.

Many other research efforts on meta-evaluation
of metrics also focused on their ability to corre-
late with human judgment. Graham and Baldwin
(2014) introduced Williams’ significance tests for
understanding the confidence of the correlation
analysis. Mathur et al. (2020) pointed out that Pear-
son’s correlation is sensitive to outliers and pro-
posed to remove outliers in Pearson’s correlation
analysis at system level. Kocmi et al. (2021) pro-
posed to use pairwise accuracy to evaluate metrics
based on whether the metric’s pairwise rankings of
two systems agrees with human pairwise rankings.
Deutsch et al. (2023) introduced a tie calibration
procedure enabling fair comparison between met-
rics that do and do not predict ties for pairwise ac-
curacy analysis at the segment level. Marie (2022)
and Lo et al. (2023) studied the relationship of met-
rics’ score differences and statistical significance of
ranking decision. Notably, these works are mostly
based on the data released by WMT Metrics shared
task. That means the translation output scored by
the metrics in these work were generated by the par-
ticipants of the WMT News/General Translation
shared task, typically consisting of high-quality
MT output.

There is growing interest in understanding met-
ric performance beyond correlation. Moghe et al.
(2023) note that neural metrics are not inter-
pretable at the segment level across different lan-
guage pairs. The WMT Metrics shared task intro-
duced the challenge sets subtask (Freitag et al.,

2021, 2022) to challenge metrics on particular
translation errors, including negation and polar-
ity, word/sentence addition/omission, tokenization,
punctuation, numeric expression, casing number
swapping, spelling, etc., in order to shed light on
metric strengths and weaknesses. The challenge
sets created by Macketanz et al. (2018); Avramidis
et al. (2020); Avramidis and Macketanz (2022)
were more linguistically motivated and covers more
than 100 phenomena, including tenses, relative
clauses, idioms, focus particles, etc. The ACES
challenge set (Amrhein et al., 2022) covers 146
translation directions and 68 types of errors, rang-
ing from simple perturbations to more complex er-
rors based on discourse and real-world knowledge.
The SMAUG challenge set (Alves et al., 2022) and
the HWTSC challenge set (Chen et al., 2022) fo-
cused on the robustness of metrics on translation
errors involving named entities, numeric/date/time
entities, etc.

We note that even as MT evaluation metrics be-
come better at correlating with human judgment
on translation quality for high-quality MT systems,
metric performance may be untested on low- to
medium-quality MT output. Hence, we design the
MSLC23 challenge set to gain insights of metric
behavior on a more complete landscape.

3 Challenge Set

The challenge set consists of data translated by
MT systems of varying quality. We describe the
training data used to build these systems as well as
the MT models.

3.1 Training Data

To build the lower-quality MT systems that we an-
alyze in this work, we use standard WMT datasets
from WMT 2023 (Kocmi et al., 2023) for EN→DE
and HE↔EN and from WMT 2017 (Bojar et al.,
2017a) for ZH→EN. For EN→DE and ZH→EN,
we used the newstest2020 data as our validation
set. For HE↔EN, we used a random sample of
2000 lines, ensuring no overlap between sentence
pairs in the training and validation set. For full de-
tails of training data, see Appendix A. Appendix B
describes the preprocessing and subword segmen-
tation performed.

3.2 MT Models

We build two main types of systems: baselines and
pseudo-low-resource systems. All systems were
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built using Sockeye-3.1.31 (Hieber et al., 2022),
commit 13c63be5, with PyTorch-1.12.1 (Paszke
et al., 2019). For more details on parameters and
training, see Appendix C.

The baselines are standard Transformer models
trained over the available data, but without any ad-
ditional components (e.g., backtranslation, factors,
tagging, etc.). The pseudo-low-resource systems
are produced using subsets of the training data, to
simulate lower-resource settings (see Appendix D
for details). We checkpoint all systems frequently
so that we can use output at various levels of train-
ing as representative of different levels of quality.

We note that the EN→DE 2023 shared task is
performed at the paragraph level. In our work we
do not perform paragraph-level MT; instead we use
as a baseline sentence segmentation, translation of
the individual sentences, and concatenation back
into paragraphs of the resulting translation output.

3.3 Translation Output

We use the news data portions of each of the
2023 General MT task test sets for these language
pairs. This consists of 139 paragraphs for EN→DE
(translated by 12 different systems), 516 lines for
EN→HE (translated by 6 different systems), 1558
lines for HE→EN (translated by 6 different sys-
tems), and 763 lines for ZH→EN (translated by 6
different systems).

We use checkpoints from each of the systems
we built to produce the low- and medium-quality
MT output. For ZH→EN and HE↔EN, all check-
points were selected from the baseline systems;
for EN→DE, they were selected from the baseline
system as well as the 50k, 200k, and 400k pseudo-
low-resource systems. These checkpoints were
selected to cover a range of BLEU scores from less
than 1 to between 20 and 30 (shown in Appendix E,
Tables 11 and 12; we assign the selected systems
the letters A through F, or through L in the case of
EN→DE, with A being the lowest quality system
in all cases),2 and were then spot-checked manually
to confirm that they did generally appear to repre-
sent incremental (but noticeable) improvements in
quality. We note that we did not perform a full or
extensive manual evaluation, and as such cannot

2Computed with sacreBLEU (Post, 2018) with signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|
version:2.3.1 For HE↔EN, the systems were selected
based on BLEU scores computed with refA as the reference,
as refB had not yet been released. The range of BLEU scores
remains similar, and we present all other HE↔EN results
based on scores with refB.

make claims of statistically significant human judg-
ment differences between the checkpoints. Another
potential limitation of this choice to select check-
points is that they may be more similar to one an-
other than separately-trained systems would be (cf.
the benefits of ensembling diverse sets of systems
or the potential minor drawbacks of ensembling
checkpoints rather than separately trained models
in Farajian et al. (2016); Sennrich et al. (2016), i.a.).
Nevertheless, we expect this should provide some
coverage of low- to mid-quality MT for scoring by
various metrics.

4 General MT Submissions

Our challenge set has aimed to cover the range of
low-quality MT systems, but to obtain a fuller pic-
ture, we also include the metric scores assigned
to the systems submitted to the WMT2023 Gen-
eral MT Task (Kocmi et al., 2023) in our analy-
sis. For these systems, we have human annotation
scores in the form of multidimensional quality met-
rics (MQM; Burchardt, 2013) scores for EN→DE,
HE→EN, and ZH→EN.

5 Metrics

There are dozens of metrics submitted by the task
organizers and participants in WMT23 Metrics
shared task. Under the time and space limitations,
we only examine the baseline metrics submitted by
the task organizers and the primary metrics submit-
ted by the participants. Due to the random shuffling
of items in the challenge sets before their delivery
to the scorers, we can only examine metrics that
produce scores at the segment level, as the system-
level scores returned do not correspond to the un-
derlying systems in our datasets. We describe the
metrics included in this work in Appendix F.

6 Analysis

We are interested in metric performance and char-
acteristics at both the segment level and the system
level. In the case of EN→DE, the segments are
paragraphs, while in all other cases they are typi-
cally sentences. For metrics that use the reference,
HE↔EN are scored against refB (a higher-quality
reference translation than refA), while EN→DE
and ZH→EN are scored against refA.

For EN→DE, HE→EN, and ZH→EN, we have
access to human scores for all submitted WMT
MT systems (but not for the challenge set systems).
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These take the form of MQM scores over a con-
sistent subset of the test set. For the remainder of
this work unless otherwise noted, in order to make
appropriate comparisons between metric scores on
the challenge set, metric scores on the submitted
WMT MT systems, and the human annotations, we
restrict our analysis to only those segments that are
in the news domain and that correspond to the set
for which we have human annotations (104 para-
graphs for EN→DE, 619 segments we use all 516
segments of the test set data that are in the news
domain because we do not have any human annota-
tions).

6.1 Segment Level

Since we only have human annotations for the
WMT MT submissions and not our challenge set,
we must be cautious in the conclusions that we
draw about metric performance from the scores
they assign to segments. However, we can observe
that different metrics exhibit different characteris-
tics, even as they score an identical set of segments
over an identical set of systems.

6.1.1 Distributions of Scores
As we see in the histograms along the diagonal
of Figure 1, showing a subset of the baseline and
submitted metrics, different metrics exhibit very
different score distributions. This can also be seen
in Figures 3, 4, 5, and 6 in Appendix G. Some
show a somewhat bimodal distribution of scores,
some are closer to normally distributed, and there
are a number of metrics whose score distributions
do not fall into either of those patterns. Addition-
ally, they differ in whether they exhibit a strong
separation between the segments produced by the
low-quality systems from our challenge set and the
segments produced by the WMT submissions or
whether they assign a range of low to high scores
to most systems (i.e., having clear overlap in score
range across all systems). While we cannot con-
clude that any of these metrics is more accurate,
we can note that their varied characteristics suggest
that they may be measuring different things and/or
that different metrics may have different strengths
and weaknesses across the translation quality land-
scape.

There are also metrics that use an approxima-
tion of a discrete score space, such as GEMBA-
MQM. This particular metric also scores nearly
all segments produced by our low-quality sys-
tems as the lowest available score, particularly

for EN→DE, meaning it would not be a suitable
metric to distinguish between low-to-mid quality
(e.g., low-resource) translation systems. XCOMET-
Ensemble assigns a wider range of scores to the
low-quality segments, but the range and distribu-
tion of those scores is fairly consistent across the
low-quality systems in our challenge set, meaning
that it also struggles to distinguish between system
quality levels at the lower end, albeit for a different
reason. We can also see this when we examine
system-level scores.

6.1.2 Universal Translations and Universal
Scores

In Yan et al. (2023), the authors observe what they
term “universal translations”: target language out-
put that receives high scores regardless of the refer-
ence to which they are compared. Here, we observe
what one might consider to be “universal scores”
instead. Some metrics, like Calibri-COMET22,
use a wide range of scores in general, but have a
very small subset of scores that appear a very large
number of times. For the set of annotated news
segments across all challenge set and WMT MT
systems for EN→DE, 1673 unique scores are as-
signed to segments. The vast majority occur only
once, but there are two non-minimum/maximum
scores that occur 210 and 206 times, respectively
(the score zero, i.e. the maximum score for perfect
translation in this case, also appears 206 times). In
contrast, COMET assigns 2446 unique scores over
the same subset of segments, with the most frequent
of those scores occurring 7 times. We note that
Calibri-COMET22 (and Calibri-COMET22-QE)
exhibit this frequently-appearing-score characteris-
tic across the different language pairs, though the
number and exact value of the extremely frequent
scores differs across language pairs. Importantly,
this is not explainable by the data itself: other met-
rics assign a wide variety of scores to the same
segments that receive these particularly common
scores, which makes the common scores visible in
the Calibri-COMET22 column as the apparent ver-
tical lines (most visible in comparison to COMET).
As is evident from both the histogram and the scat-
terplots, these common scores are most frequently
assigned to the segments in our challenge set, to
the extent that this unexpected characteristic is not
clearly visible when the plot is restricted to only the
WMT MT submissions rather than including the
challenge set (see Figure 10). This highlights the
importance of performing evaluation over a wide

779



Figure 1: A subset of the metrics (and MQM scores) for EN→DE. The diagonal entries show stacked histograms of
segment scores across the challenge set (cool colours/bottom) and submitted WMT systems (warm colours/top).
The off-diagonal entries are scatterplots where each point is a single segment positioned according to the score
assigned to it by row and column metrics; each point is coloured according to the MT system that produced it.
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range of MT quality, in order to discover unex-
pected issues like this prior to applying the metrics
to low-resource or otherwise low-quality MT.

The eBLEU metric exhibits a slightly more dis-
persed version of this, where a large number of
segments receive scores in a fairly narrow band
relative to the metric’s overall score distributions.
However, in the case of eBLEU, this is not specific
to the challenge set data, but is also observed in the
WMT MT data.

6.2 System Level

To analyze system-level scores, we produce them
as an average over all of the segment-level scores in
the restricted test set (news domain segments in the
set of segments for which WMT MT systems were
human-annotated) for a given MT system.3 These
system-level scores can also be used in order to
gain a better understanding of the overall range of
a metric’s scores, as well as what kind of scores are
assigned to very low quality machine translation
(e.g., the A and B systems from the challenge set).

In Figure 2 (as well as Figures 7, 8, and 9 in Ap-
pendix G), we observe that metrics show different
patterns of scores at the system level. We observe
that some metrics exhibit unexpected character-
istics on the low-quality data, such as MaTESe,
which ranks some of the low-quality systems in
reverse order.4

We do not have MQM scores for any of the data
in the challenge set, which means that we do not
know how much of a gap in quality there is be-
tween our best low-quality system and the lowest-
performing MT systems submitted to WMT. How-
ever, we can observe that metrics differ widely in
their estimates of the gap; embed_llama, for exam-
ple, shows error bar overlap between the highest
performing system from our challenge set and the
lowest-scored system from the submissions, while
GEMBA-MQM shows a very large gap between
the two groups of systems,5 with many of the other
metrics falling between these extremes.

Similarly, again examining characteristics with-
out making claims about metric performance, we

3This includes the baseline BLEU.
4Though we do not have extensive human evaluation, we

are confident that, e.g., system E should not be ranked below
system A.

5For EN→DE, in Figure 7, the Calibri-COMET22 metrics
both find several of the highest performing systems from our
challenge set to be better than several of the submitted systems,
while most other metrics rank the challenge set systems below
the submitted systems.

notice variety amongst the metrics in terms of the
range of scores they assigned to each group of sys-
tems, as seen in the slope of the system scores. In
some cases, there are quite similar slopes (e.g., em-
bed_llama), while in other cases there is a steep
slope for the challenge set as compared to the WMT
MT systems (e.g., BERTScore or COMET) mean-
ing that the challenge set covers a wide range of
(lower) scores while the WMT MT set covers a
smaller range of higher scores, and finally some
systems where the slopes are similar but both less
steep (e.g., Calibri-COMET22-QE and GEMBA-
MQM) and each set of systems covers a small
range of scores with a gap in between. Without
MQM scores for the challenge set, we do not know
whether one of these patterns is indicative of a met-
ric that more closely resembles human annotations
or not (i.e., we do not know whether the challenge
set covers a wider range of quality than the WMT
MT systems, which would support metrics having
a steeper slope/wider range in the scores assigned
to it).

We also note some variety across language pairs.
The reversal of scores seen in MaTESe is less ob-
vious in the EN→DE data, though that may be
related to greater overlap in the EN→DE challenge
set data quality.

In future work, obtaining MQM scores for one
or more of the systems in our challenge set would
permit us to draw conclusions about metric perfor-
mance in these areas (i.e., about whether there is
indeed quality overlap between the two sets, and
what appropriate ranges of scores might be for each
of the sets).

All of these observations about variation in met-
ric characteristics raise an important issue in the
evaluation and adoption of new metrics: since their
correlation with human rankings is often demon-
strated on the high-quality MT output being scored
at WMT, it is not necessarily appropriate to use
them for the evaluation of low-resource or lower-
quality MT output without additional study.

6.3 Additional Discussion

We briefly mention two other items of note from
our exploration of the data.

Outside of the set of data for which there are
human annotations (i.e., not appearing in our fig-
ures), for HE→EN there are 14 news domain seg-
ments for which the ZengHuiMT system output
an empty string. Different metrics handle this in
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Figure 2: System average scores (with error bars computed via bootstrap resampling 1000 times for p < 0.05)
for HE→EN across the challenge set (cool colours/left) and submitted WMT systems (warm colours/right). Our
challenge set systems are ordered from left to right with BLEU scores, while the submitted WMT systems are
ordered by MQM score on the news domain.
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Metric Score Range
BERTscore 0.000 (0.000, 1.000)
BLEU 0.000 (0.000, 100.000)
BLEURT-20 0.055 (0.000, 1.030)
Calibri-COMET22 0.328 (0.000, 0.990)
Calibri-COMET22-QE 0.083 (0.000, 1.000)
chrF 0.000 (0.000, 100.000)
COMET* 0.796 (0.287, 0.995)
CometKiwi* 0.647 (0.261, 0.902)
cometoid22-wmt22 0.597 (0.268, 0.994)
eBLEU 0.000 (0.000, 1.000)
embed_llama 0.510 (0.040, 1.000)
GEMBA-MQM -25.000 (-25.000, 0.000)
KG-BERTScore* 0.682 (0.285, 0.886)
MaTESe 0.000 (-25.000, 0.000)
mbr-metricx-qe 0.027 (-0.004, 0.998)
MEE4 0.000 (0.000, 1.000)
MetricX-23* -25.597 (-25.618, 0.198)
MetricX-23-QE* -24.546 (-24.557, 0.848)
mre-score-labse-regular* 0.772 (0.266, 0.965)
MS-COMET-QE-22* 59.243 (1.641, 94.075)
prismRef -5.256 (-8.685, -0.077)
prismSrc -6.829 (-10.027, -0.111)
spBLEU 0.000 (0.000, 100.000)
XCOMET-Ensemble* 0.917 (0.291, 0.994)
XCOMET-QE-Ensemble* 0.899 (0.290, 0.998)
XLsim 0.911 (0.569, 1.000)
YiSi-1 0.000 (0.000, 1.000)

Table 1: Average metric scores assigned to empty strings
in the HE→EN news data, shown with the full range of
metric scores assigned to the news data. Metrics with
asterisks by their name did not assign the same scores to
all the empty strings, though the differences were quite
small.

different ways; some assign a score of 0 (or the
metric’s lower bound score), while others assigned
relatively high scores due to the fact that the source
and reference were very short (each source and
reference consisted only of a single period). Ta-
ble 1 shows the scores assigned by metrics to these
empty strings as well as the range of scores over the
full HE→EN news data (including segments that
were not human-annotated, as the empty strings
were also not included for human annotation).

We also observe two examples of systems that
receive noticeably lower scores from a number of
metrics than would be expected based on their hu-
man ranking: NLLB_Greedy (EN→DE, Figure 3)
and Samsung_Research_Philippines (HE→EN,
Figure 5). We leave this as an area for future inves-
tigation.

7 Conclusions

This challenge set expands the range of system
quality scored by metrics at the shared task. This
expanded range of MT quality reveals interesting
characteristics and limitations of some new metrics

when applied to a broader range of systems. The
smaller variations in segment-level scores given by
some metrics at the low end of quality could indi-
cate that these metrics struggle to discriminate low-
quality MT systems. This is further shown by the
observation that some metrics rank the low-quality
systems in reverse order at the system level. We
have discovered a “universal score" phenomenon
for some metrics, where a small subset of non-
minimum/maximum distinct scores are assigned to
a variety of translation output. This characteristic
was not visible in the high-quality MT output alone,
highlighting the importance of this type of testing.
We also observe diverse behaviors from different
metrics on empty string translation.

Our challenge set serves as a complement to
the standard correlation-based analyses and also
provides useful information to researchers who are
considering using these metrics in low-resource or
low-quality domains. We recommend that metric
researchers check their metrics’ performance on a
wider landscape of translation quality or be clear
about the limitations of their metrics’ testing.

Limitations

A major limitation of this work is our choice to
select low-quality systems on the basis of BLEU
scores, which was done for reasons of time and cost.
We attempted to mitigate this by spot-checking to
confirm that we saw noticeable differences between
various pairs of low-quality systems, but a more
thorough human annotation would be beneficial.
We are also limited in the set of languages we have
explored, using only four language pairs, as well
as the limited news domain.
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A Corpora Sizes

Corpora are from WMT23 (Kocmi et al., 2023) and
WMT17 (Bojar et al., 2017a).

A.1 EN→DE

From the download table at EMNLP 2023: General
Machine Translation, we retrieved all EN→DE cor-
pora. The train corpus is composed of airbaltic,
czechtourism, ecb2017, EESC2017, EMA2016,
rapid2016, europarl-v10, news-commentary-v18,
WikiMatrix.v1.de-en.langid and wikititles-v3. We
chose newstest2020 as our validation. Corpora
statistics are described in Table 2.

Name # lines # de words # en words
train 14,227,278 234,635,104 246,351,534

validation 1418 45,855 44,018

Table 2: Corpora sizes for EN→DE, computed on raw
text (not tokenized) using wc.

A.2 HE↔EN

From the instructions of EMNLP 2023: General
Machine Translation, we retrieved all HE→EN
corpora.6 Then, using wmt23-heen/train.{heb,eng}
and WikiMatrix.en-he, we sampled sentence pairs
for the validation and test sets and the remaining
pairs were used for train making sure that all three
are mutually exclusive. Corpora statistics are de-
scribed in Table 3.

Name # lines # en words # he words
train 2,227,830 38,307,579 30,943,929

validation 2000 20,459 16,620

Table 3: Corpora sizes for EN→HE, computed on raw
text (not tokenized) using wc.

A.3 ZH→EN

We used corpora from WMT2017.7 train
is composed of all 20 Books, casia2015,
casict2015, casict-A, casict-B, datum, NEU,

6mtdata get-recipe -ri wmt23-heen -o wmt23-heen
7https://www.statmt.org/wmt17/

translation-task.html

news-commentary-v18.en-zh, WikiMatrix.v1.en-
zh.langid and wikititles-v3. We chose newstest2020
as our validation. Corpora statistics are described
in Table 4.

Name # lines # en words # zh words
train 12,995,613 218,659,998 43,676,661

validation 2000 65,561 3716

Table 4: Corpora sizes for ZH→EN, computed on raw
text (not tokenized) using wc.

B Subword Segmentation

After some light normalization consisting of con-
verting non-breaking hyphen, normalizing spaces,
replacing control characters with spaces and col-
lapsing multiple spaces,8 we trained a 32k to-
kens, bilingual sentencepiece unigram subtokenizer
using HuggingFace’s tokenizers (Moi and Patry,
2022) for each language pair. The corpora used for
training the subword model were:

• EN→HE uses all of wmt23-
heen/train.{eng,eng}

• EN→DE uses our concatenated train

• ZH→EN uses our concatenated train

C System Descriptions

For all systems, we used Sockeye-3.1.31 (Hieber
et al., 2022), commit 13c63be5 with PyTorch-
1.12.1 (Paszke et al., 2019). Training was per-
formed on 4 Tesla V100-SXM2-32GB GPUs for
EN→DE and ZH→EN and 4 Tesla V100-SXM2-
16GB GPUs for EN→HE and HE→EN. Training
times are shown in Table 5.

Name Time (h)
ende 6 - 35
enhe 10.3
heen 6.5
zhen 83.5

Table 5: Training times in hours.

Table 6 describes the differences with Sockeye’s
default parameters. Note that we kept all interme-
diate checkpoints (from which we later select the
outputs used for the challenge set) and used the
entire validation during checkpoint evaluation.

8https://github.com/nrc-cnrc/
PortageTextProcessing/blob/main/bin/
clean-utf8-text.pl
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Name Value

amp True
grading clipping type abs
max sequence length 200:200

batch type max-word
checkpoint interval 10
initial learning rate 0.06325

learning rate scheduler type inv-sqrt-decay
learning rate warmup 4000

max checkpoints 110
max epochs 1000

max num checkpoint not improved 32
optimizer Adam

optimizer Betas 0.9, 0.98
optimized metric BLEU

update interval 10
attention heads 16:16

shared vocabulary True
transformer FFN 4096:4096

transformer model size 1024:1024
weight tying True

Table 6: Differences from Sockeye’s default parameters.

On top of the changes from Table 6, for
EN→HE and HE→EN, we lowered the batch
size to 6144 and changed max checkpoints to 330.

For all language pairs, we have trained a baseline
system using the entire train corpus. Additionally,
for EN→DE, we also trained systems that use a
uniformly random subsample of train namely, 50k,
200k and 400k (the pseudo-low-resource systems).

D Pseudo-Low-Resource Corpora

Due to human error in the sampling code, the
pseudo-low-resource training data used for the
EN→DE systems trained on 50k, 200k, and 400k—
intended to be a random sample from the full train-
ing data—instead primarily consists of data from
the first four corpora shown in Table 7. Table 8
shows the small number of differences between
these subsampled corpora and simply selecting the
first n lines of the full training corpus. The main
consequence of this is that these systems may be
skewed towards particular domains.

E Checkpoints in Challenge Set

In Table 9 we see the checkpoint IDs for systems
included in the challenge set for HE↔EN and
ZH→EN. Table 10 shows the same for EN→DE.
The corresponding BLEU scores are shown in Ta-
bles 11 and 12, respectively.

Corpus Name # Sentences
airbaltic 839
czechtourism 6758
ecb2017 4147
EESC2017 2,857,850
EMA2016 347,631
rapid2016 1,030,808
europarl-v10 828,473
news-commentary-v18 203,744
WikiMatrix.v1 2,579,106
wikititles 1,474,203
total 14,227,278

Table 7: (EN→DE) Sub-corpora sizes in the order they
were merged to create the final sampled train.

Sample Size # Differences # lines EESC2017
50k 282 38,256
200k 70 188,256
400k 34 388,256

Table 8: EN→DE; Number of sentences that are differ-
ent from the original train’s head and how many sen-
tences from EESC2017 that were used.

System EN→HE HE→EN ZH→EN
A 68 58 61
B 98 87 91
C 115 102 115
D 135 117 139
E 171 140 222
F 392 219 480

Table 9: Checkpoint IDs for systems included in chal-
lenge set (HE↔EN and ZH→EN).

System EN→DE
A 54
B (50k) 1
C 79
D (50k) 7
E (200k) 2
F 91
G (200k) 27
H (400k) 4
I (400k) 43
J 102
K 129
L 313

Table 10: Checkpoint IDs for systems included in chal-
lenge set (EN→DE); parenthetical numbers indicate one
of the pseudo-low-resource systems rather than the full
training data system.
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System EN→HE HE→EN ZH→EN
A 0.6 0.7 0.9
B 3.1 4.3 5.0
C 7.2 7.3 9.3
D 11.4 11.4 13.1
E 16.6 16.0 18.5
F 26.2 23.9 23.2

Table 11: BLEU scores for systems included in chal-
lenge set over the full news data in the challenge set
(HE↔EN computed with refB).

System EN→DE
A 0.7
B (50k) 2.5
C 4.2
D (50k) 4.7
E (200k) 4.7
F 8.9
G (200k) 9.5
H (400k) 10.4
I (400k) 12.0
J 12.8
K 18.7
L 29.9

Table 12: BLEU scores for systems included in chal-
lenge set (EN→DE) over the full news data in the chal-
lenge set; parenthetical numbers indicate one of the
pseudo-low-resource systems rather than the full train-
ing data system.

F Metrics

Table 13 shows a summary of the human annota-
tions and metrics included in this work and the
translation directions they participated in. In the
following, we briefly describe the key characteristic
of each metric.

F.1 Baseline Metrics

BLEU (Papineni et al., 2002) is the (clipped) preci-
sion of word n-grams between the MT output and
its reference weighted by a brevity penalty.

spBLEU (Team et al., 2022) is BLEU computed
with subword tokenization done by the Flores-
200 Sentencepiece Model (Kudo and Richardson,
2018).

chrF (Popović, 2015) uses character n-grams to
compare the MT output with the reference and it is
a balance of precision and recall.

BERTScore (Zhang et al., 2020) uses cosine
similarity of contextual embeddings from pre-

trained transformers to compute F-scores of sen-
tence level similarity.

BLEURT-20 (Sellam et al., 2020) is fine-tuning
RemBERT to predict direct assessment (DA; Gra-
ham et al., 2013, 2014, 2016) scores for a MT-
reference pair.

COMET (COMET-22) (Rei et al., 2022) is an
ensemble of two models: COMET-20 and a mul-
titask model jointly predicting sentence-level mul-
tidimensional quality metrics (MQM) and word-
level translation quality annotation, where COMET-
20 is fine-tuning XLM-R to predict DA scores for a
MT-source-reference tuple. CometKiwi is a qual-
ity estimation metric that is similar to COMET,
except it scores the MT output against the source,
instead of the reference translation.

MS-COMET-QE-22 (Kocmi et al., 2022) is a
COMET-QE-20 based quality estimation metric
trained on a larger and filtered set of human judge-
ments, covering 113 languages and 15 domains.

prismRef (Thompson and Post, 2020) uses a
neural paraphrase model to score the MT output
against the reference translation. prismSrc is the
quality estimation version, which scores the MT
output against the source, instead of the reference
translation.

YiSi-1 (Lo, 2019) measures the semantic simi-
larity between the MT output and reference by the
IDF-weighted cosine similarity of contextual em-
beddings extracted from pretrained language mod-
els, e.g. RoBERTa, CamemBERT, XLM-R, etc.,
depending on the target language in evaluation.

F.2 Primary submissions

Calibri-COMET22 uses isotonic regression on the
COMET-22 output scores to predict the fraction
of translations with no error produced by the MT
system. Calibri-COMET22-QE is a quality esti-
mation metric that is similar to Calibri-COMET22,
where it uses COMETKiwi as base model.

cometoid22-wmt22 (Gowda et al., 2023) is a
quality estimation metric that uses COMET-22 as a
teacher metric and trains a student model to predict
the teacher scores without using reference transla-
tion.

eBLEU (ElNokrashy and Kocmi, 2023) uses
non-contextual word embeddings and relative
meaning diffusion tensors to approximate the token
similarity in the MT output and reference and com-
putes translation quality scores similar to BLEU.

embed_llama (DREANO et al., 2023) is the
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Metric Name EN→DE EN→HE HE→EN ZH→EN Reference-based
Human annotation
MQM ✓ ✓ ✓
Metrics
BERTScore ✓ ✓ ✓ ✓ ✓
BLEU ✓ ✓ ✓ ✓ ✓
BLEURT-20 ✓ ✓ ✓ ✓ ✓
Calibri-COMET22 ✓ ✓ ✓ ✓ ✓
Calibri-COMET22-QE ✓ ✓ ✓ ✓
chrF ✓ ✓ ✓ ✓ ✓
COMET ✓ ✓ ✓ ✓ ✓
CometKiwi ✓ ✓ ✓ ✓
cometoid22-wmt22 ✓ ✓ ✓ ✓
eBLEU ✓ ✓ ✓ ✓ ✓
embed_llama ✓ ✓ ✓ ✓ ✓
GEMBA-MQM ✓ ✓ ✓ ✓
KG-BERTScore ✓ ✓ ✓ ✓
MaTESe ✓ ✓ ✓ ✓
mbr-metricx-qe ✓ ✓ ✓
MEE4 ✓ ✓ ✓ ✓ ✓
MetricX-23 ✓ ✓ ✓ ✓ ✓
MetricX-23-QE ✓ ✓ ✓ ✓
mre-score-labse-regular ✓ ✓ ✓ ✓ ✓
MS-COMET-QE-22 ✓ ✓ ✓ ✓
prismRef ✓ ✓ ✓ ✓ ✓
prismSrc ✓ ✓ ✓ ✓
spBLEU (flores-200) ✓ ✓ ✓ ✓ ✓
XCOMET-Ensemble ✓ ✓ ✓ ✓ ✓
XCOMET-QE-Ensemble ✓ ✓ ✓ ✓
XLsim ✓ ✓ ✓ ✓ ✓
YiSi-1 ✓ ✓ ✓ ✓ ✓

Table 13: Human annotation and metrics included in this work, with their coverage of language pairs. Metrics that
are not marked as reference-based are reference-free (a.k.a quality estimation) metrics.
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cosine similarity of the MT output and reference
based on Llama 2 sentence embeddings.

GEMBA-MQM (Kocmi and Federmann, 2023)
uses three-shot prompting on the GPT-4 model with
a single prompt and no language specific example.

KG-BERTScore (Wu et al., 2023) is the linear
combination of KGScore and COMET-QE based
BERTScore, where KGScore is incorporating mul-
tilingual knowledge graph into BERTScore.

MaTESe (Perrella et al., 2022) trains Deberta
(for English) and InfoXLM (for German and Rus-
sian) encoders to identify MQM error spans and
severity using WMT22 Metrics shared task MQM
data.

mbr-metricx-qe (Naskar et al., 2023) uses the
underlying technique of minimum bayes risks
(MBR) decoding to develop a quality estimation
metric. It uses an evaluator machine translation
system and a reference-based utility metric (specif-
ically BLEURT and MetricX) to calculate a quality
estimation score of a model.

MEE4 (Mukherjee and Shrivastava, 2023) is
an unsupervised, reference-based metric that is a
weighted combination of syntactic similarity based
on a modified BLEU score, lexical, morphological
and semantic similarity using unigram matching
and contextual similarity with sentence similarity
scores from multilingual BERT.

MetricX-23 (Juraska et al., 2023) is a regression
metric that finetunes the mT5-XXL checkpoint us-
ing direct assessment data from 2015-2020 and
MQM data from 2020 to 2021 as well as synthetic
data. MetricX-23-QE is the quality estimation
variant that uses the source, instead of the refer-
ence, for scoring.

mre-labse-regular (Viskov et al., 2023) is a
trained metric that is based on the encoder part
of mT0-large model and contextual embeddings
from LaBSE. It concatenates the source, reference
and MT output as input.

XCOMET-Ensemble (Guerreiro et al., 2023) is
an ensemble of a XCOMET-XL and two XCOMET-
XXL checkpoints that result from the different
training stages. XCOMET is similar to COMET
but is trained for both regression and sequence tag-
ging for identifying MQM error spans, where the
intent is to make it a more interpretable learnt met-
ric. XCOMET-QE-Ensemble is the quality esti-
mation version.

XLsim (Mukherjee and Shrivastava, 2023) is a
supervised reference-based metric that regresses

on human scores provided by WMT (2017-2022)
based on XLM-RoBERTa using a Siamese network
architecture with CosineSimilarityLoss.

G Additional Figures

Here we show additional figures, including the full
set of histograms for EN→DE (Figure 3), EN→HE
(Figure 4), HE→EN (Figure 5) and ZH→EN (Fig-
ure 6) as well as the system scores for EN→DE
(Figure 7), EN→HE (Figure 8), and ZH→EN (Fig-
ure 9).

791



Figure 3: Stacked histograms (one subplot per metric) of segment scores for EN→DE across the challenge set
(cool colours/bottom of the stacked histograms) and submitted WMT systems (warm colours/top of the stacked
histograms).

792



Figure 4: Stacked histograms of segment scores for EN→HE across the challenge set (cool colours/bottom) and
submitted WMT systems (warm colours/top).
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Figure 5: Stacked histograms of segment scores for HE→EN across the challenge set (cool colours/bottom) and
submitted WMT systems (warm colours/top).
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Figure 6: Stacked histograms of segment scores for ZH→EN across the challenge set (cool colours/bottom) and
submitted WMT systems (warm colours/top).
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Figure 7: System average scores (with error bars computed via bootstrap resampling 1000 times for p < 0.05)
for EN→DE across the challenge set (cool colours/left) and submitted WMT systems (warm colours/right). Our
challenge set systems are ordered from left to right with BLEU scores, while the submitted WMT systems are
ordered by MQM score on the news domain.
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Figure 8: System average scores (with error bars computed via bootstrap resampling 1000 times for p < 0.05) for
EN→HE across the challenge set (cool colours/left) and submitted WMT systems (warm colours/right). All systems
are ordered from left to right by BLEU scores (as direct assessment scores were not yet available for EN→HE).
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Figure 9: System average scores (with error bars computed via bootstrap resampling 1000 times for p < 0.05)
for ZH→EN across the challenge set (cool colours/left) and submitted WMT systems (warm colours/right). Our
challenge set systems are ordered from left to right with BLEU scores, while the submitted WMT systems are
ordered by MQM score on the news domain.
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Figure 10: A subset of the metrics (and MQM scores) for EN→DE, showing only the high-quality WMT MT
system submissions. The diagonal entries show stacked histograms of segment scores. The off-diagonal entries are
scatterplots where each point is a single segment positioned according to the score assigned to it by row and column
metrics; each point is coloured according to the MT system that produced it.
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Abstract
This paper presents our contributions to the
WMT2023 shared metrics task, consisting of
two distinct evaluation approaches: a) Unsu-
pervised Metric (MEE4) and b) Supervised
Metric (XLSim). MEE4 represents an unsu-
pervised, reference-based assessment metric
that quantifies linguistic features, encompass-
ing lexical, syntactic, semantic, morphologi-
cal, and contextual similarities, leveraging em-
beddings. In contrast, XLsim is a supervised
reference-based evaluation metric, employing
a Siamese Architecture, which regresses on Di-
rect Assessments (DA) from previous WMT
News Translation shared tasks from 2017-2022.
XLsim is trained using XLM-RoBERTa (base)
on English-German reference and mt pairs with
human scores. Here are the links for MEE4 1

and XLsim2 metrics.

1 Introduction

In recent times, there has been a growing interest in
Neural Machine Translation (NMT) systems, lead-
ing to significant improvements in machine trans-
lation (MT) quality. Over the past few years, the
field of MT evaluation has seen substantial advance-
ments. Each year, the WMT conference hosts a
metrics-shared task, where new evaluation metrics
are introduced and those demonstrating a strong
correlation with human judgments are highlighted
from the array of newly devised metrics. In the
last three years of the WMT Metrics Task (Freitag
et al., 2022, 2021; Mathur et al., 2020), neural-
based metrics have predominantly taken the lead.
Nevertheless, n-gram-based and lexical-based met-
rics (Papineni et al., 2002; Popović, 2015) continue
to be favored as automatic MT evaluation tools due
to their flexibility and efficiency.

As a result, this year we participated in the met-
rics shared task, evaluating machine translation out-

1https://github.com/AnanyaCoder/
WMT22Submission

2https://github.com/AnanyaCoder/XLsim

puts using two types of metrics: an unsupervised
metric and a supervised metric.

Unsupervised Metric: Our unsupervised met-
ric, MEE4 (Mukherjee and Shrivastava, 2022),
relies on a combination of lexical and embed-
ding similarity measures. Notably, MEE4 demon-
strated strong performance in the previous year’s
shared task (Freitag et al., 2022), surpassing sev-
eral baseline metrics such as BERTscore (Zhang*
et al., 2020), BLEU (Papineni et al., 2002),
F101SPBLEU (Goyal et al., 2022) , and CHRf
(Popović, 2015). In our efforts to improve its per-
formance further this year, we conducted experi-
ments with two different sentence embedding mod-
els: LaBSE (Feng et al., 2022) and the stsb-xlm-
r-multilingual 3. Interestingly, our findings indi-
cated that MEE4, when equipped with LaBSE as
the sentence embedding model, exhibited superior
performance compared to the alternatives.

Supervised Metric: Unlike the existing neural
models which are huge in size, our goal was to
build a more compact supervised training model
(XLsim) that offers improved performance. To
achieve this, we created a SentenceTransformer
model by combining a pre-trained transformer
model with a pooling layer. This hybrid approach
enables the generation of sentence embeddings,
which can be compared using cosine similarity to
assess similarity between sentences.

2 MEE4

MEE4 is an improved version of MEE focusing on
computing contextual and syntactic equivalences,
along with lexical, morphological, and semantic
similarity. The goal is to comprehensively evalu-
ate the fluency and adequacy of MT outputs while
also considering the surrounding context. Fluency
is determined by analyzing syntactic correlations,
while context is evaluated by comparing sentence

3https://huggingface.co/sentence-transformers/
stsb-xlm-r-multilingual
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similarities using sentence embeddings. The ul-
timate score is derived from a weighted amalga-
mation of three distinct similarity measures: a)
Syntactic similarity, which is established using a
modified BLEU score. b) Lexical, morphologi-
cal, and semantic similarity, quantified through ex-
plicit unigram matching. c) Contextual similarity,
gauged by sentence similarity scores obtained from
the Language-Agnostic BERT model (Feng et al.,
2022).

In our experiments this year, we made adjust-
ments to MEE4 while maintaining the same under-
lying architecture. Specifically, we computed the
evaluation scores using a different sentence embed-
ding model.

In addition to our previous choice, we utilized
the stsb-xlm-r-multilingual model. This particular
sentence-transformers model is designed to map
sentences and paragraphs into a 768-dimensional
dense vector space, making it suitable for various
tasks such as clustering and semantic search. It’s
worth highlighting that the version of XLM-R (Con-
neau et al., 2020) we employed is considered a
state-of-the-art model for multilingual Semantic
Textual Similarity (STS) (Reimers and Gurevych,
2020).

2.1 Multilingual Sentence Encoders

Numerous multilingual sentence encoders, includ-
ing mBERT (Devlin et al., 2018), consist of sin-
gle self-attention networks. These models are pre-
trained on monolingual corpora in over 100 lan-
guages and are optimized for masked language
modeling. Here, the model is tasked with predict-
ing randomly selected tokens in the original text
that have been replaced by a placeholder.

However, these pretrained multilingual sentence
encoders often exhibit limited sensitivity to cross-
language semantic similarity. To address this issue,
Reimers and Gurevych employed human Semantic
Textual Similarity (STS) annotations to enhance a
pretrained multilingual sentence encoder, specif-
ically BERT resulting in stsb-xlm-r-multilingual
model .

In contrast, LaBSE differs slightly as it has been
trained not only for masked language modeling but
also for translation language modeling.

Figure 1: Illustration of our methodology using siamese
network architecture
En: English IL- Indian Langauge

3 XLSim: MT Evaluation Metric based
on Siamese Architecture

XLsim is a supervised reference-based metric that
regresses on human scores provided by WMT
(2017-2022). Using a cross-lingual language model
XLM-RoBERTa-base4 (Conneau et al., 2020), we
train a supervised model using a Siamese network
architecture with CosineSimilarityLoss.

3.1 Training Data

The WMT DA human evaluation data5 (WMT17-
WMT22) (Kocmi et al., 2022; Akhbardeh et al.,
2021; Barrault et al., 2020, 2019; Bojar et al., 2018,
2017) contains raw score and z-score; we consid-
ered z-score for our training purpose by normaliz-
ing it to a range of 0-1.

3.2 Siamese Network Architecture

Similar to SBERT, we train the network with
a Siamese Network Architecture (Reimers and
Gurevych, 2019). In this siamese network, for each
sentence pair, we pass reference translation (ref)
and hypothesis translation (mt) through our net-
work which yields the embeddings u und v. The
similarity of these embeddings is computed us-
ing cosine similarity and the result is compared
to the gold similarity score (score). This allows our
network to be fine-tuned and recognize sentence
similarity. Figure 1 illustrates our XLsim training
architecture.

While training, we used CosineSimilarityLoss,
which automatically ensures training in a siamese
network structure.

4https://huggingface.co/xlm-roberta-base
5https://huggingface.co/datasets/RicardoRei/

wmt-da-human-evaluation
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ref
I believe that financially, automakers are
doing very well now, maintaining
high sales margins.

mt
I believe car manufacturers are
feeling very good financially right now,
maintaining high sales margins.

score 0.77

Table 1: Input Example

3.3 CosineSimilarityLoss

CosineSimilarityLoss expects that the input consist
of two texts and a float label. Refer Table 1.

It computes the vectors u = model(input[0])
and v = model(input[1]) and measures the
cosine-similarity between the two. By default, it
minimizes mean squared error loss.

3.4 Training Details

In our experiment, we focused on the en-de6 lan-
guage pair and utilized specific columns from the
wmt-da-human-evaluation dataset, which included
translation (mt), reference translation (ref), and
z-score (score). Among the total 125,992 en-de
samples available, we partitioned them as follows:
105,992 samples were used for training, 10,000 for
validation, and another 10,000 for testing.

We employed a SentenceTransformer architec-
ture to train our model, leveraging a multilingual
pre-trained transformer model, XLM-RoBERTA
base model. XLM-RoBERTa (Conneau et al.,
2020) model is pre-trained on 2.5TB of filtered
CommonCrawl data containing 100 languages.

We utilized the CosineSimilarityLoss function
for a total of 4 training epochs. Our training setup
involved a batch size 16, employing the Adam op-
timizer with a learning rate 2e-5 and a linear learn-
ing rate warm-up strategy over 10% of the training
data. The entire training process was carried out
on NVIDIA GPUs, specifically T4 x2.

3.5 Inference

To assess translation quality based on reference,
our trained model generates embeddings for ref-
erence and translation sentences and subsequently
calculates the cosine similarity between these em-
beddings. This similarity measure serves as a met-
ric for evaluating the quality and similarity between
the translation and reference text (refer figure 2).

6we chose the language-pair having a more significant
number of samples than other language-pairs.

Figure 2: XLsim architecture at inference (to compute
segment-level scores)

Model COMET XLsim
Size 2.32 GB 1.1 GB
Training
Samples# 1,027,155 105,992

Pearson
correlation 0.68 0.52

Table 2: Comparison with the SOTA neural metric based
on Pearson Correlation with human scores.

Table 2 reports the comparison of our trained
metric with the existing state-of-the-art metric,
COMET (Rei et al., 2022) in terms of model size,
total training samples and pearson correlation on
the 10000 en-de samples (test samples see 3.4). It
is worth noticing that the difference in correlation
is 0.16 which is minute and model is 50% lesser in
size.

4 WMT23 Metric Shared Task
Submission

4.1 Segment Level Evaluation

For Segment-level task, we submitted the sentence-
level scores obtained by our reference-based unsu-
pervised metrics namely MEE4 (primary metric)
and MEE4_stsb_xlm.

For the same Segment-level task, we also sub-
mitted the sentence-level scores obtained by our
reference-based supervised evaluation metric (XL-
sim).

4.2 System Level Evaluation

To calculate the system-level score for each system,
we take the average of the segment-level scores that
we’ve derived. We employ a similar approach when
computing system-level scores based on segment-
level human annotations, such as DA’s and MQM.
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testset lp #sentences XLsim MEE4 MEE4_stsb_xlm

generaltest2023
en-de 6684 0.67 0.64 0.47
zh-en 29640 0.68 0.74 0.59
he-en 22920 0.76 0.78 0.62

challengeset
en-de 33470 0.73 0.71 0.64
zh-en 6996 0.86 0.91 0.89
he-en 9466 0.80 0.86 0.85

Table 3: Pearson correlation of evaluated scores on WMT23 submissions with COMET metric.

This suggests that a metric with a strong correlation
at the segment level should also exhibit a robust
correlation at the system level.

4.3 Results

Table 3 provides the details of the WMT23 Metric
Shared Task test-set for the language pairs we in-
vestigated. However, it’s important to note that the
final and most comprehensive analysis will rely on
the official results, where metric submissions are
thoroughly compared to human judgments.

In our preliminary assessment, we have reported
Pearson correlation scores for the submitted met-
rics when compared to COMET at the segment-
level. This analysis helps us gauge the performance
of the three metrics in relation to the state-of-the-
art metric. In case of Unsupervised metrics, it
appears that MEE4, which utilizes LaBSE, outper-
forms MEE4_stsb_xlm, which employs stsb-xlm-
r-multilingual as its sentence embedding model.
This difference in performance may be attributed
to the training techniques applied to LaBSE, which
involve both masked language modeling and trans-
lation language modeling, making it more effective
for the task. Indeed, it’s evident that XLsim ex-
hibits a relatively strong correlation with COMET,
almost exceeding 0.7. However, when compared
to MEE4, there is a mild decrease in performance,
particularly in the zh-en (Chinese to English) and
he-en (Hebrew to English) language pairs, where
the correlation drops by approximately 0.06.

This slight decline in performance for XLsim
in certain language pairs could be attributed to the
fact that even though XLsim utilizes the pre-trained
multilingual XLM-Roberta model, the training data
(ref, mt) was primarily in the German (de) lan-
guage.

5 Conclusion and Future Work

In this paper, we describe our submissions to the
WMT23 Metrics Shared Task. Our submission in-

cludes segment-level and system-level translation
evaluation scores for sentences of three language
pairs English-German (en-de), Chinese-English
(zh-en) and Hebrew to English (he-en). We eval-
uate this year’s test set using: a)two unsupervised
metrics, MEE4 and MEE4_stsb_xlm. These met-
rics are based on lexical and embedding similar-
ity match that evaluates the translation on various
linguistic features (syntax,lexical, morphology, se-
mantics and context) ; b) a supervised metric, XL-
sim that learns on en-de WMT DA human evalu-
ation data from 2017-2022. It is observed that all
the three metrics displayed a positive correlation
(>0.5) with the baseline metric COMET.

Certainly, there are promising research direc-
tions to explore, especially in the realm of metric
enhancement. In our future work, we intend to
delve deeper into these areas:

MEE4 Metric Improvement: One of our pri-
mary objectives is to refine and enhance MEE4,
seeking more efficient approaches that can better
estimate translation quality while achieving higher
agreement with human judgments. This might in-
volve exploring novel techniques in sentence em-
bedding, fine-tuning, or leveraging additional lin-
guistic information.

XLsim Enhancement: For XLsim, we plan to
boost its performance by optimizing the training
data. This involves ensuring that it is trained on a
more diverse set of languages and data to improve
its cross-lingual capabilities. Simultaneously, we
aim to maintain its compactness and ensure it re-
mains trainable with fewer computational require-
ments.

These future research directions hold the poten-
tial to contribute significantly to the field of ma-
chine translation evaluation, ultimately leading to
more robust and accurate metrics that align closely
with human assessments.
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Abstract

This report describes the Minimum Bayes
Risk Quality Estimation (MBR-QE) submis-
sion to the Workshop on Machine Transla-
tion’s 2023 Metrics Shared Task. MBR decod-
ing with neural utility metrics like BLEURT is
known to be effective in generating high qual-
ity machine translations. We use the underly-
ing technique of MBR decoding and develop
an MBR based reference-free (quality estima-
tion) metric. Our method uses an evaluator ma-
chine translation system and a reference-based
utility metric (specifically BLEURT and Met-
ricX) to calculate a quality estimation score of
a model’s output. We report results related to
comparing different MBR configurations and
utility metrics.

1 Introduction

The task of quality estimation (QE) is to assign a
sentence- or word-level quality score to a machine
translation (MT) output without the use of a ref-
erence translation. In this paper, we describe the
methodology used in our sentence-level QE met-
ric submission to the 2023 Workshop on Machine
Translation’s Metrics Shared Task.

Minimum Bayes Risk (MBR) decoding has been
widely used in machine translation to address the
limitation of MAP decoding (Kumar and Byrne,
2004; Eikema and Aziz, 2020; Müller and Sen-
nrich, 2021). Freitag et al. (2021b) showed apply-
ing MBR decoding using BLEURT (Sellam et al.,
2020) as a utility function can out-perform beam
search decoding.

MBR decoding can be viewed as a method for
reranking candidate outputs from an MT system. It
first samples a set of hypothesis translations from
the model, scores each hypothesis against a set of
pseudo-references (generally, the same set of sam-
ple hypotheses) with a utility metric, then selects
the hypothesis with the highest average score to be
the final translation.

Central to MBR is assigning a quality score to
a hypothesis translation without the use of a refer-
ence. Because this decoding procedure has been
successful in improving the quality of translations
from an MT system, in this work, we explore how
MBR could be repurposed as a QE metric.

Our proposed metric uses an MT system in con-
junction with a utility metric to assign a quality
score to a translation without using a reference.
The metric assigns a score to a hypothesis trans-
lation by using the utility metric to evaluate the
hypothesis against a set of pseudo-references that
are sampled from the MT model.

In this work, we experiment with creating a met-
ric that uses different MT systems, utility functions,
and different pseudo-reference pool sizes. Our
experiments demonstrate that (1) a better utility
function results in better MBR-QE scores, (2) the
choice of MT system can have significant impact
on QE metric performance, and (3) the size of the
pseudo-reference pool does not have a significant
impact on overall metric quality.

Based on our experiments, we chose our primary
MBR-QE submission to be an in-house encoder-
decoder model with MetricX (Freitag et al., 2022)
as the utility function with a pseudo-reference pool
size of 256.

2 Metric Descriptions

MBR decoding has two components: an MT
system and a utility function. The MT model
Pmodel(y|x) estimates the probability of target seg-
ments y given a source segment x. The utility func-
tion estimates the quality of a translation h given
a reference translation r. The best hypothesis is
selected using the expected utility with respect to a
finite sample generated by the model. The under-
lying assumption is that the model provides good
approximation for the true distribution of human
translations.

We adopt that assumption to develop an MBR-
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based quality estimation metric. The MBR-QE
metric uses an MT system P to generate the set
of pseudo-references, denoted R̂. Then, the utility
function defines the quality of a translation h given
R̂ as the average score over all of R̂:

MBR-QE(h) =
1

|R̂|
∑

r̂εR̂

u(h, r̂) (1)

This methodology has multiple potential pitfalls.
First, because the distribution P is used to substi-
tute for the distribution of human translations, any
significant divergence between these two distribu-
tions will lead to the QE score becoming inconsis-
tent because the pool of pseudo-references will not
resemble human references. This can be mitigated
by using a high quality MT system. Arguably, the
MT system should have better performance com-
pared to the MT models that are being evaluated.

Second, our QE metric is dependent on the qual-
ity of the utility function. If it has limitations
or biases, they will affect the predicted quality
scores and introduce inconsistencies between the
QE score and ground-truth human quality scores.

We next discuss the experimental setup for ana-
lyzing our proposed QE metric.

3 Experimental Setup

3.1 Pseudo-Reference Generation

Our MBR-QE metric relies on the assumption
that if the MT system that generates the pseudo-
references can be used as an approximation for
the distribution of human translations, then the ag-
gregated utility metric score can be used a quality
estimate for hypothesis. Therefore, the MT model
and method for generating pseudo-references is
critical for the effectiveness of this metric.

MT Systems. The MT system used for our
shared task submission is an in-house encoder-
decoder translation model that is similar to the
Google Translate production model. In this re-
port, we also experiment with generating pseudo-
references from the PaLM 2 (Bison) large language
model (Anil et al., 2023) using 5-shot prompting.

Sampling Method. We generate pseudo-
references from the MT system using epsilon
sampling (Hewitt et al., 2022; Freitag et al., 2023)
with p = 0.02 and sampling temperature 1.0.
We experiment with using a different number of
pseudo-references.

3.2 Utility Functions

Freitag et al. (2021b) showed that MBR decoding
works well with neural evaluation metrics. We
experiment with 2 neural metrics as the utility func-
tion in MBR-QE.

BLEURT v0.2 (Sellam et al., 2020; Pu et al.,
2021): BLEURT v0.2 is a learned regression-based
metric that is trained to predict the quality of a
translation given a reference. It is pre-initialized
with RemBERT (Chung et al., 2020) and finetuned
using a combination of WMT human evaluation
data from 2015-2019 and synthetic data.

MetricX (Freitag et al., 2022): MetricX is a
learned regression-based metric that is based on
mT5 (Xue et al., 2021). It is trained on a combina-
tion of direct assessment and MQM (Lommel et al.,
2014; Freitag et al., 2021a) data that was collected
by WMT. We use the reference-based version that
uses mT5-XXL.

3.3 Meta-Evaluation

We use four different correlations to calculate the
metrics’ agreements with human judgments. At
the system-level, we use pairwise accuracy (Kocmi
et al., 2021) and Pearson’s r. System-level Pear-
son’s r captures how strong the linear relationship
is between the metric and human scores for MT
systems. Pairwise accuracy evaluates a metric’s
ranking of MT systems by calculating the propor-
tion of all possible pairs of MT systems that are
ranked the same by the metric and human scores.

At the segment-level, we use group-by-item
pairwise accuracy with tie calibration (Deutsch
et al., 2023) and no-grouping Pearson’s r. The no-
grouping Pearson’s r calculates the linear relation-
ship between the metric and human scores across
translations from every system and document. The
group-by-item pairwise accuracy calculates the pro-
portion of all possible pairs of translations for the
same input segment that are ranked the same or tied
by the metric and human. Then the accuracy scores
are averaged over all possible input segments. We
use tie calibration (Deutsch et al., 2023) that auto-
matically introduces ties into metric scores based
on a threshold. This tie calibration is required as
regression-based metrics rarely predict ties.

Our experiments are performed using the
WMT’22 English-to-German (en-de) and Chinese-
to-English (zh-en) MQM ratings (Freitag et al.,
2022). These datasets are commonly used for meta-
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evaluation and are the latest available from the Met-
rics Shared Task. We did not evaluate using en-ru
since it is not included as a language pair in the
WMT’23 evaluation.

4 Experimental Results

The main experimental results are shown in Ta-
bles 1 and 2. Table 1 compares the two utility
functions with various pseudo-reference pool sizes
when using the in-house MT system, and Table 2
does the same but for the PaLM 2-based system.

Comparing Utility Functions. For both MT sys-
tems and all pseudo-reference pool sizes, the MBR-
QE metric that uses MetricX as a utility function in
general has higher correlations than when BLEURT
is used. This result is expected since MetricX was
the best performing metric in the WMT’22 eval-
uation. This is evidence that the quality of the
utility function is important for the quality of the
MBR-QE score.

Comparing MT Systems. When comparing
whether the encoder-decoder MT system or PaLM
2 is used to generate the pool of pseudo-references,
there is no clear winner between the two. The
MBR-QE score has a higher correlation at the
segment-level with the encoder-decoder model, but
the correlations are higher at the system-level with
PaLM 2. It is not clear why this is the case.

Pseudo-Reference Pool Size. Overall, the corre-
lations are surprisingly stable for each of the dif-
ferent numbers of pseudo-references. Most of the
differences comes between pairwise accuracy at the
system-level, but this correlation can be sensitive;
there are not many system pairs, so if one or two
system rankings change, it can have a large impact
on the overall accuracy. In the future, we could
explore decreasing the pseudo-reference pool size
even further to understand its impact on the overall
MBR-QE metric quality.

Comparing to Other Metrics. Table 3 shows
the comparion between our submission, denoted
MBR-QE, to other QE metrics that were the top-
performing QE metrics in the WMT’22 Metrics
Shared Task, COMETKIWI (Kepler et al., 2019; Rei
et al., 2022b) and UNITE-SRC (Wan et al., 2022).
The table additionally contains results for the best
reference-based metrics MetricX and COMET-22
(Rei et al., 2022a).

Compared to the QE metrics, MBR-QE in gen-
eral has the best-performance across most evalua-
tion settings, demonstrating that it is a state-of-the-
art QE metric. In some cases, it even out-performs
the reference-based metrics, namely in the system-
level Pearson correlation.

MBR-QE leverages MetricX as the utility func-
tion. MBR-QE still under-performs with respect to
MetricX, demonstrating that the human references
are still valuable and that the pseudo-references
do not perfectly match the distribution of human
translations, which is expected given that the MT
system is not perfect. However, the gap in perfor-
mance between the two metrics is relatively small
in some settings.

4.1 Submission Summary

Both of our submissions to the Metrics Shared
task use the in-house MT system to generate 256
pseudo-references with epsilon sampling (p = 0.02
and temperature 1.0). Our primary submission uses
MetricX as the utility function, and the contrastive
submission uses BLEURT.

5 Related Work

Incorporating evaluation metrics into reranking the
outputs from MT systems has been very successful.
For example, the Freitag et al. (2021b) showed
that reranking translations with BLEURT as part
of MBR produced higher-quality translations. This
work served as the inspiration for our QE metric
submission.

Research on quality estimation focuses on pre-
dicting word- and sentence-level quality scores
(Zerva et al., 2022). The most successful
approaches to predicting sentence-level scores
are learned regression-based metrics that are
trained to predict ground-truth quality scores, like
COMETKIWI (Kepler et al., 2019; Rei et al., 2022b)
or UNITE-SRC (Wan et al., 2022). Our metric is
quite different from these approaches in that it is
not directly trained to predict quality scores, but
rather it leverages a reference-based metric com-
bined with an MT system to score a translation. To
the best of our knowledge, ours is the first metric
that uses MBR to build a QE metric.

6 Conclusion

In this report, we proposed a new QE metric called
MBR-QE that repurposes an MT system in combi-
nation with MBR to score a translation without ac-
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Utility Pseudo-Ref SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
Metric Pool Size en-de zh-en en-de zh-en en-de zh-en en-de zh-en

BLEURT 64 0.5772 0.5142 0.4750 0.4628 0.7692 0.7802 0.6773 0.8907
128 0.5777 0.5145 0.4752 0.4631 0.7692 0.7802 0.6749 0.8899
256 0.5782 0.5151 0.4747 0.4626 0.7692 0.7692 0.6751 0.8901

MetricX 64 0.5986 0.5292 0.4891 0.4513 0.7564 0.8132 0.8654 0.8654
128 0.5944 0.5300 0.4873 0.4519 0.7821 0.8132 0.8391 0.9579
256 0.5979 0.5306 0.4897 0.4524 0.7692 0.8132 0.8647 0.9586

Table 1: MBR-QE correlations on the WMT’22 MQM data comparing when BLEURT and MetricX are used as
utility functions with different pseudo-reference pool sizes are sampled from the in-house encoder-decoder model.

Utility Pseudo-Ref SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
Metric Pool Size en-de zh-en en-de zh-en en-de zh-en en-de zh-en

BLEURT 64 0.5614 0.4824 0.4261 0.4153 0.8077 0.7802 0.7636 0.9253
128 0.5612 0.4827 0.4246 0.4143 0.8077 0.7802 0.7631 0.9250
256 0.5616 0.4831 0.4249 0.4152 0.8077 0.7692 0.7635 0.9249

MetricX 64 0.5764 0.5022 0.4574 0.4259 0.7949 0.8571 0.9154 0.9846
128 0.5737 0.5000 0.4621 0.4339 0.8333 0.8242 0.9145 0.9844
256 0.5767 0.5021 0.4626 0.4265 0.8077 0.8571 0.9212 0.9845

Table 2: MBR-QE correlations on the WMT’22 MQM data comparing when BLEURT and MetricX are used as
utility functions with different pseudo-reference pool sizes are sampled from using PaLM 2 as a translation system
with 5-shot propmting.

SEG pairwise acc. SEG Pearson SYS pairwise acc. SYS Pearson
Metric en-de zh-en en-de zh-en en-de zh-en en-de zh-en

Quality Estimation (Reference-Free) Metrics
MBR-QE 0.598 0.531 0.490 0.452 0.769 0.813 0.865 0.959
COMETKIWI 0.572 0.509 0.432 0.509 0.692 0.758 0.674 0.866
UNITE-SRC 0.582 0.508 0.397 0.404 0.742 0.708 0.509 0.874

Reference-Based Metrics
MetricX 0.605 0.544 0.549 0.581 0.829 0.867 0.847 0.920
COMET-22 0.594 0.536 0.512 0.585 0.790 0.886 0.771 0.942

Table 3: A comparison of our submission, denoted MBR-QE (scoring translations with MetricX against trans-
lations generated by our in-house MT system) to other QE metrics (top) and reference-based metrics (bottom).
MBR-QE is overall the best-performing metric amongst the QE metrics, and it even improves over the reference-
based metrics in system-level Pearson.
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cess to a reference. Our experiments demonstrated
that the choice of MBR utility function is important,
the choice of MT system can impact downstream
metric correlations, and the pseudo-reference pool
size does not have a significant impact on results.
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Abstract

We describe our submission of a new metric,
SLIDE (Raunak et al., 2023), to the WMT 2023
metrics task. SLIDE is a reference-free quality-
estimation metric that works by constructing
a fixed sentence-length window over the docu-
ments in a test set, concatenating chunks and
then sending them for scoring as a single unit
by COMET (Rei et al., 2022a). We find that
SLIDE improves dramatically over its context-
less counterpart on the two WMT22 evaluation
campaigns (MQM and DA+SQM).

1 Introduction

Reference-based metrics such as COMET typically
perform far above their source-based quality es-
timation (QE) counterparts. One explanation is
that the human reference provides an answer or
grounding to many types of translation ambiguities,
such as pronoun selection, that may be impossible
to predict from just a single input sentence alone.
A handful of approaches have looked at extend-
ing metrics with source- and target-side context
(Vernikos et al., 2022; Deutsch et al., 2023; Rau-
nak et al., 2023) in hopes of providing stronger
correlation with human judgments. We base our
submission on SLIDE (Raunak et al., 2023), which
explicitly postulates and provides evidence for the
claim that source-side context may work to provide
the same information as human references.

2 Metric settings

SLIDE is parameterized by (w, s), a window and
a stride. The window, w, is a fixed-size sentence
window that is moved across each document in
a test set. The sentences in the window are con-
catenated on the source and system systems with
a space, and then sent directly to the underlying
QE model, COMETKiwi (Rei et al., 2022b) in our
submission, for evaluation as a single chunk. The
window is then incremented by s sentences, and

Metric MQM DA+SQM

® metricx_xl_DA_2019 0.865 0.850
® metricx_xxl_MQM_2020 0.850 0.861
® BLEURT-20 0.847 0.827
® metricx_xl_MQM_2020 0.843 0.859

SLIDE(6, 6) 0.843 0.838
® COMET-22 0.839 0.839
® COMET-20 0.836 0.823
® Doc-COMET 0.836 0.810
® UniTE 0.828 0.847
® MS-COMET-22 0.828 0.830
® UniTE-ref 0.818 0.838
® MATESE 0.810 -
® YiSi-1 0.792 0.782

COMETKiwi (WMT-22) 0.788 0.832
COMETKiwi (public) 0.770 0.816
Doc-COMET 0.752 0.810

® chrF 0.734 0.758
® BLEU 0.708 0.704

Table 1: Pairwise system accuracy against the WMT22-
MQM and DA+SQM annotations. Metrics that use a
reference are marked with ®. We mark our entries in
bold. COMETKiwi (public) uses no context. Our entry
to the WMT23 task, SLIDE (6,6), improves over it in
both settings.

a new value computed. These values are treated
independently, summed and averaged over a test
set in typical fashion. Documents that are shorter
than the window size, and the “remainder” portions
of documents that cannot be perfectly tiled by the
window and stride, are skipped.

In practice, we used a (w, s) value of (6, 6) for
all languages except EN-DE and DE-EN. For those
languages, the data was provided at the paragraph
level. We therefore simply took the provided seg-
mentations one-by-one, without providing a win-
dow or stride. We chose this value because it had
some of the best reported results in Raunak et al.
(2023, Figure 1). Table 1 repeats Table 2 from
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their paper, depicting results on the WMT22 tasks
with the pairwise accuracy (Kocmi et al., 2021).
Our entries are marked in bold. SLIDE improves
dramatically over its context-less counterpart. We
also call attention to COMETKiwi (WMT-22); this
is the number from the official submission to the
task, which performs much better than the publicly
available model.

3 Results

The WMT23 test set (Freitag et al., 2023; Kocmi
et al., 2023) for each language pair comprises a set
of documents containing between 1 and 173 lines,
with a mean of 9.7 and a median of 7 across 14
language pairs.

At the time of publication, official results were
not available, so we cannot comment on how well
the strong results from Raunak et al. (2023) gener-
alized to the new settings in WMT23.

We note also that we discovered after the sub-
mission that a bug in our code resulted in debug-
ging output appearing in the data to be scored by
COMET. This unfortunately affects the scores and
means that SLIDE’s placement in the official rank-
ings are incorrect.

4 Conclusion

In this system description, we presented our sub-
mission to the WMT 2023 metrics task. SLIDE

is designed as a reference-free quality-estimation
metric which leverages the strength of contextual
information by constructing a fixed sentence-length
window over documents in a test set. The ini-
tial findings from Raunak et al. (2023) showcased
the potential of SLIDE to deliver enhanced perfor-
mance over context-less metrics, particularly in the
WMT22 evaluation campaigns.

While we anticipate the official results from the
WMT23 metrics task, bug in our code might have
affected SLIDE’s standing in the rankings.

We believe that SLIDE is a step forward in our
collective endeavor to create metrics that align
more closely with human judgments. Future works
may explore optimizing window and stride con-
figurations or integrating advanced algorithms to
further exploit the potential of context in quality
estimation tasks.
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Abstract

Machine translation is a natural language gener-
ation (NLG) problem that involves translating
source text from one language to another. Like
every task in the machine learning domain, it
requires an evaluation metric. The most ob-
vious one is human evaluation; however, it is
expensive, time-consuming, and not easily re-
producible automatically. In recent years, with
the introduction of pretrained transformer ar-
chitectures and large language models (LLMs),
state-of-the-art results in automatic machine
translation evaluation have significantly im-
proved in terms of correlation with expert as-
sessments. We introduce MRE-Score, which
stands for seMantically-informed Regression
Encoder Score. It is an approach that constructs
an automatic machine translation evaluation
system based on a regression encoder and con-
trastive pretraining for the downstream prob-
lem.

1 Introduction

WMT Metrics Shared Task (Freitag et al., 2022)
is a machine learning competition where partici-
pants have to construct an automatic evaluation sys-
tem for machine translation for several language
pairs. For WMT23 Metrics Shared Task1, three lan-
guage pairs are considered: English-German (en-
de), Chinese-English (zh-en), and Hebrew-English
(he-en). For each source sentence, there is a cor-
responding target machine-translated text and a
reference human translation. The main goals of
this competition are:

1. To achieve the strongest correlation with hu-
man judgment of translation quality over a
diverse set of machine translation systems.

2. To illustrate the suitability of an automatic
evaluation metric as a surrogate for human
evaluation.

∗Equal contribution
1https://wmt-metrics-task.github.io

Figure 1: Final model architecture. Blocks in blue rep-
resents static components that were not trained. Blocks
in yellow represent trained parts of the model.

3. To test the robustness of metrics when evalu-
ating domains other than news data.

4. To create high-quality datasets for developing
and evaluating metrics.

Within the WMT23 Metrics competition, our in-
vestigation focuses on the approach of constructing
evaluation models to solve the regression problem
based on expert degrees. Specifically, we construct
regression models using a pretrained transformer
encoder from the mT0 model family (Muennighoff
et al., 2022), both vanilla models and with addi-
tional contrastive representation tuning. mT0 is
finetuned version of mT5 (Xue et al., 2020), mul-
tilingual transformer model, which demonstrated
capabilities of crosslingual generalization to unseen
tasks and languages. Similar approaches demon-
strated the best results in WMT21 (Freitag et al.,
2021) and WMT22 (Freitag et al., 2022) Shared
Tasks.

We release our code and pre-trained models
openly to foster further research.2

2 Related Work

Evaluation metrics In NLG evaluation, one can
differentiate four types of approaches for model

2https://github.com/v-vskv-v/WMT23-MRE-Score
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construction: (1) classical lexical overlap mod-
els, on the one hand, and LLM-based approaches
based on (2) unsupervised matching, (3) regression,
and (4) zero-shot prompting, on the other hand.
Classical lexical overlap methods measure overlap
between source, reference, and target sentence n-
grams (Papineni et al., 2002; Lin, 2004; Banerjee
and Lavie, 2005). Modern unsupervised matching-
based approaches use large language model (LLM)-
based encoders such as BERT to compute the se-
mantic similarity between reference and hypothe-
sis texts (Zhang et al., 2019; Zhao et al., 2019) or
between source and hypothesis texts (Zhao et al.,
2020). In modern regression approaches, models
are fine-tuned to predict human evaluation scores.
Generally, they consist of a transformer encoder
model and a regression head. As input, they can use
late binding with source, reference, and target texts
or different concatenation combinations (Sellam
et al., 2020; Rei et al., 2020). LLM-based zero-
shot approaches use prompt engineering for LLMs
with the expectation of a score in the generation
output (Kocmi and Federmann, 2023). In some
research, attempts are made to predict evaluation
scores as a weighted sum of digit tokens, where
the weights are token probabilities from a Markov
chain probability model (Liu et al., 2023).

The previous winner of the WMT Metrics
Shared Task competition was the proprietary Met-
ricX(Freitag et al., 2022) model, which used a
regression approach. One of the state-of-the-art
models in machine translation is GPT-4 with zero-
shot scoring. However, due to the time consump-
tion of its inference and the closeness of regres-
sion approaches with relatively small backbones
(e.g., COMET used the base version of XLM-
RoBERTa (Conneau et al., 2019) with 2.5B pa-
rameters), task-specific NLG evaluation with so-
phisticated tricks with vector representation and
training datasets may provide better results.

Contrastive Learning Contrastive learning for
NLP problems is a popular pretraining approach
for improving results in downstream tasks. For ex-
ample, the recent E5 model (Wang et al., 2022) is
pretrained in a contrastive manner using a curated
large-scale text pair dataset to solve various tasks
that require a single-vector representation of texts,
both after finetuning and in a zero- or few-shot
manner. Another work that investigated contrastive
learning for extrapolating vector representations for
different tasks is InstructOR (Su et al., 2022). This

model incorporates instructions in contrastive learn-
ing and achieved good results for tasks that were
unseen during pretraining. The idea of knowledge
transfer in the latent space may provide improve-
ments with clean datasets and an appropriate fitting
process.

Figure 2: Architecture of the base model.

3 Method

3.1 Architecture

The main essence of our approach is to use vec-
tor representations from the encoder of the Big
Science mT0 (Muennighoff et al., 2022) model as
input for the Feed-Forward layer. This idea has al-
ready been proven successful in other approaches,
such as COMET (Rei et al., 2020) and BLEURT
(Sellam et al., 2020), and we have attempted to
further improve upon it in various ways.

All our experiments use the same basic structure,
as illustrated in Figure 2. First, the source text is
presented as a prompt and is tokenized using the
mT0 tokenizer. The resulting tokens are then pro-
cessed by the mT0 encoder to obtain vector repre-
sentations. Subsequently, mean pooling is applied
to these vectors, and the resulting representations
are passed through a Multilayer Perceptron (MLP).
Prompting is necessary to present the data (source,
reference, hypothesis) in a convenient format. In
our approach, the prompt consists of concatenat-
ing the source, reference, and hypothesis with a
separator token [sep]. It is worth noting that the
mT0 tokenizer does not have a specific separator
token, so another token can be selected for this
purpose. Mean pooling is used to obtain sentence
embeddings from the mT0 encoder representations,
which are then suitable for further processing by a
fully connected layer.

During the process, we tested various configura-
tions of Multilayer Perceptron (MLP). We experi-
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mented with the number of linear layers, activation
functions between layers and at the end, as well as
with dropouts. Insufficient linear layers resulted
in a deterioration of metrics as they were unable
to extract all the necessary information from the
embeddings. On the other hand, adding too many
layers did not have any significant impact on the
results. Hence, we settled on using 4 layers. We
tested Tanh and ReLU as activation functions be-
tween layers, and found that Tanh yielded slightly
better results. This observation is likely due to the
fact that Tanh is commonly used in neural networks
for working with text embeddings. For the activa-
tion function at the end, we compared two options:
sigmoid and a simple threshold approach (rounding
to 100 if the result is >100 and to 0 if < 0). The use
of sigmoid resulted in significantly better outcomes.
In addition, we experimented with the inclusion of
dropouts and found that it made sense to add only
one dropout before the first linear layer after mean
pooling. Otherwise, too much useful information
was deleted and the MLP did not have sufficient
time to extract it.

We also explored the possibility of incorporating
an external «hint» in addition to the embeddings
of the mT0 encoder. This approach is illustrated in
scheme 1. For obtaining additional representations,
we chose LaBSE (Feng et al., 2020), a state-of-the-
art model in the bitext mining task, which serves
as a proxy task for machine translation. In our ar-
chitecture, we included an additional component
responsible for preprocessing LaBSE embeddings.
After obtaining these representations, they were
passed through a linear layer, and the resulting vec-
tors were concatenated with the outputs from mT0
passed through Mean Pooling. The inclusion of
the linear layer after LaBSE serves as an additional
degree of freedom and helps reduce the dimension-
ality of the vectors.

In the end, we selected a configuration that uti-
lized a pre-trained approach combining contrastive
learning mT0 and LaBSE to submit our results.
This configuration demonstrated the best metrics
on our test data.

3.2 Contrastive pretraining

To enhance the vector representation and address
the specific characteristics of the Hebrew language,
which is not as widely studied as English or Ger-
man, we experimented with tuning encoder embed-
dings using contrastive learning. For each source

text, we created two contrastive loss components:
one for the reference translation and one for the
machine translation. To implement this approach,
we needed to specify negative examples that we
wanted to be dissimilar to the source text in terms
of vector representations. We used the Sentence-
T5 model (Ni et al., 2021) to embed each source
text and its two translations. Additionally, we con-
structed two ANN (Approximate Nearest Neigh-
bor) indexes (Johnson et al., 2019): one for human
references and another for machine translations.
These indexes allowed us to find the K furthest
points from the source texts based on the dot prod-
uct. Note that for normalized vectors:

∥𝑥 − 𝑦∥2
2 = 2 − 2𝑥𝑇 𝑦 →

min
𝑥

(
𝑥𝑇 𝑦

)
= max

𝑥

(
(−𝑥)𝑇 𝑦

)
= min

𝑥

(
∥(−𝑥) − 𝑦∥2

2

)
(1)

The loss function is defined as the negative log
likelihood with an arbitrary similarity function
sim(𝑥, 𝑦) (we used sim(𝑥, 𝑦) =< 𝑥, 𝑦 >) and a
temperature parameter 𝜏. Our goal is to incorpo-
rate scaled target values of three types: SQM, DA,
and MQM, with different prioritization weights in
the loss function. For a given source text 𝑠, its
reference translation 𝑟, and machine translation 𝑡,
we have an expert degree 𝑎𝑐𝑠,𝑡 ∈ [0, 1] of type 𝑐
with a prioritization weight 𝛾𝑐. Each source text
𝑠 is embedded as 𝑒𝑠, the reference translation 𝑟 is
embedded as 𝑒+𝑟 , and the machine translation 𝑡 is
embedded as 𝑒+𝑡 . In the case of reference transla-
tions, we denote the K furthest points from 𝑠 as{
𝑒−𝑟 ,𝑘

}𝐾
𝑘=1

. Similarly, in the case of machine trans-
lations, we denote the K furthest points from 𝑠 as{
𝑒−𝑡 ,𝑘

}𝐾
𝑘=1

.

The component for human reference:

L
(
𝑒𝑠, 𝑒

+
𝑟 ,

{
𝑒−𝑟 ,𝑘

}𝐾
𝑘=1

)
= − log 𝑝𝑠,𝑟 (2)

𝑝𝑠,𝑟 =
exp

(
sim(𝑒𝑠 ,𝑒+𝑟 )

𝜏𝑟

)

exp
(

sim(𝑒𝑠 ,𝑒+𝑟 )
𝜏𝑟

)
+

𝐾∑
𝑘=1

exp
(

sim(𝑒𝑠 ,𝑒−𝑟,𝑘 )
𝜏𝑟

)
(3)

This formula is general negative log-likelihood
(NLL) with temperature for self-supervised learn-
ing (Wang and Isola, 2022).
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The component for machine translation:

L
(
𝑒𝑠, 𝑒

+
𝑡 ,

{
𝑒−𝑡 ,𝑘

}𝐾
𝑘=1

)
= − log 𝑝𝑠,𝑡 ,𝑐 (4)

𝑝𝑠,𝑡 ,𝑐 =
exp

(
𝛼𝑡

sim(𝑒𝑠 ,𝑒+𝑡 )
𝜏𝑡

)

exp
(
𝛼𝑡

sim(𝑒𝑠 ,𝑒+𝑡 )
𝜏𝑡

)
+

𝐾∑
𝑘=1

exp
(

sim(𝑒𝑠 ,𝑒−𝑡,𝑘 )
𝜏𝑡

)
(5)

𝛼𝑡 = 𝛾𝑐𝑎
𝑐
𝑠,𝑡 (6)

Here we have a modified version of previous loss
where we use target scores and their prior weights
as temperature, but only for positive object.

Consider the derivative of the temperatured NLL
loss w.r.t. to source text dot product as similarity
function:

(
1 − exp(𝑒𝑇𝑠 𝑒+/𝜏)

𝑍 (𝑒𝑠 )

)
𝑒+𝜏

−
∑︁
𝑒−

exp(𝑒𝑇𝑠 𝑒−/𝜏)
𝑍 (𝑒𝑠 )
𝑒−𝜏

We have two separate additives with actually
independent temperature coefficients. Increasing
them removes the gradient changing effect and pro-
vides a pipeline for reducing the gradient step for
bad and noisy translations. We can model such
effect with human degrees with prioritizing ones
over others.

Having a batch of quadruplets{(
𝑠, 𝑟, 𝑡, 𝑎𝑐𝑠,𝑡

)
𝑛

}𝑁
𝑛=1

and using formulas above, the

total loss can be written as:

L
({(

𝑠, 𝑟, 𝑡, 𝑎𝑐𝑠,𝑡

)
𝑛

}𝑁
𝑛=1

)
=

1
𝑁

∑︁
𝑛

L
((
𝑠, 𝑟, 𝑡, 𝑎𝑐𝑠,𝑡

)
𝑛

)

(7)

L
((
𝑠, 𝑟, 𝑡, 𝑎𝑐𝑠,𝑡

)
𝑛

)
=

= L
(
𝑒𝑠𝑛 , 𝑒

+
𝑟𝑛 ,

{
𝑒−𝑟𝑛 ,𝑘

}𝐾
𝑘=1

)
+ L

(
𝑒𝑠𝑛 , 𝑒

+
𝑡𝑛 ,

{
𝑒−𝑡𝑛 ,𝑘

}𝐾
𝑘=1

)
(8)

Here we have an empirical risk over the batch,
for each point we have two additive components
for human reference and machine translation corre-
spondingly.

3.3 Synthetic data
In this year’s WMT Metrics Shared Tasks, the

organizers presented us with a novel language pair:
Hebrew-English. This language pair is not included
in any of the available training data for MT eval-
uation metrics. Consequently, we believe that it
was intended to test the ability of novel metrics for
zero-shot transfer. To address this challenge, we
made the decision to create a synthetic dataset for
the Hebrew-English language pair, following the
approach proposed by Rei et al. (2022b).

First, we selected a subset of English-Hebrew
translations from the publicly available OPUS
dataset (Tiedemann, 2012). From a total of ap-
proximately 1 million translations, we randomly
chose 60,000 translations (Hebrew texts) and trans-
lated them back from Hebrew to English. To ensure
a diverse range of translation quality, we selected
three translation models of different sizes from the
NLLB project (Costa-jussà et al., 2022): models
with 600M and 1.3B parameters, which were dis-
tilled from 54B Mixture-of-Experts teacher mod-
els, as well as a 3.3B model that was trained from
scratch. Each model was used to generate trans-
lations for an equally-sized portion of the dataset.
Synthetic quality scores for these translations were
computed as the average of scores calculated by
the COMET-22 (Rei et al., 2022a) and BLEURT-20
(Sellam et al., 2020) metrics.

4 Experiments

4.1 Data
For our experiments, we utilize datasets from

the previous year’s WMT Metrics Shared Tasks as
both training and evaluation data. These datasets
provide three types of scores:

• MQM - Multidimensional Quality Metrics
(Burchardt, 2013): This metric encompasses
a wide range of issues that occur with transla-
tion.

• SQM - Scalar Quality Measure: This met-
ric provides segment-level scalar ratings with
document context.

• DA - Direct Assessment: This metric mea-
sures the quality of a translation on a scale
from 0 to 100, based on the adequacy and
fluency of the sentence.

We utilize all the available data and apply min-
max scaling to rescale the score values, ensuring
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they fall within the range of 0 to 1. For DA and
SQM scores, we used dataset-level statistics for
scaling. However, for MQM scores, we adapted
the scaling to accommodate different score ranges.
Specifically, the English-German and Chinese-
English pairs had a range of −25 to 0, while the
English-Russian pair had a range of −∞ to 100.

The resulting composition of the training dataset
for our experiments is as follows:

• MQM scores for WMT competitions from the
years 2020 and 2021, covering 3 language
pairs (en-ru, zh-en, en-de).

• SQM scores for the year 2022, covering 12
language pairs.

• DA scores for the years 2017-2022, covering
41 language pairs.

For the test set, we selected the MQM scores for
the year 2022 to ensure comparability with existing
metrics.

Furthermore, we included synthetic data for the
Hebrew-English language pair, as described in Sec-
tion 3.3. Out of the total 60,000 examples, we ran-
domly chose 50,000 examples for the training set
and the remaining 10,000 examples for the test set.
Since the scores for the synthetic data were com-
puted using existing metric models, they naturally
fell within the range of 0 to 1, and no additional
re-scaling was required. In total, we had 1,527,567
examples in the training set and 77,575 in the test
set.

4.2 Experimental settings
All experiments were conducted with a fixed

random seed. For the base of the generic model,
we chose the encoder part of the mT0-large model
introduced in Muennighoff et al. (2022). An MLP
on top of the encoder consists of three layers with
hidden sizes of 384, 96, and 1, using the hyperbolic
tangent activation function. We also apply dropout
with a rate of 𝑝 = 0.1. For models that utilize
embeddings, we include a resizing dense layer that
projects the concatenated embeddings vector into
vectors with a size of 512.

For contrastive pretraining, we once again uti-
lize the encoder part of the mT0-large model. Con-
trastive examples are collected into a total batch
size of 128 examples. Furthermore, we accumulate
batches across four iterations, resulting in an effec-
tive batch size of 512 for each training process.

Pipeline en-de zh-en en-ru he-en
Comet-22 0.281 0.395 0.330 NA
CometKiwi 0.266 0.343 0.297 NA
Base 0.276 0.179 0.350 0.796
Base + Emb. 0.255 0.173 0.331 0.785
CL Base 0.223 0.101 0.307 0.786
CL Base +
Emb.

0.222 0.105 0.315 0.792

Table 1: Experimental results on WMT22 Test Set along
with our synthetic test set for He-En. Base model rep-
resents model that only consits of mT0-large encoder
and MLP head. CL Base represents model that was
pretrained with contrastive loss before fine-tunning.

The first two models, which are based on the
original mT0-large encoder, were trained for 3
epochs with an aggressive learning rate of 2×10−4.
The other two models, which utilize a contrastively-
pretrained encoder, were trained for 1 epoch with a
learning rate of 5 × 10−5. In both cases, the batch
size was set to 8 due to the substantially larger
sequence sizes.

All our experiments were conducted in a dis-
tributed data-parallel setting across 4 GPUs. The
learning rate was scaled accordingly based on the
number of processes.

4.3 Hardware, Computational Budget and
Environmental Impact

For our experiments, we utilized the CITEC com-
putational cluster hosted at Bielefeld University.
Each node in the cluster consists of 4xA40 GPUs
with 48GB of VRAM, 1xAMD EPYC 7713 64-
Core CPU, and 512GB of RAM.

The total computational budget for our exper-
iments is 175 GPU-hours (4̃3.75 hours per node
× 4 GPUs). Considering that the A40 GPU has
a power draw of 300W under full load, and the
current carbon intensity of the German power grid
is 510gCO2eq/kWh 3, our estimated total carbon
footprint is approximately 26.775 kgCO2eq. It is
important to note that this number should be con-
sidered a lower bound, as we have not accounted
for the power draw of other components of the
computing node, such as the CPU and cooling.
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5 Results and Discussion

We trained and tested each configuration on our
test data using the Kendall-𝜏 correlation metric.
The results in Table 1 show that the base configura-
tion has the best performance in most language
pairs. However, adding external semantically-
informed embeddings improves the quality for the
model version with the contrastive loss. We didn’t
manage to get better results relatively to the base
model, even for the rare language pair. We think
that it’s due to choice of negative sampling strategy,
lack of theoretical approach analysis and hyperpa-
rameter tuning. Temperature is sensitive parameter,
the wrong choice of it could lead to permanent
overfitting and noisy results. We need to test more
natural approach with adding scaled human degrees
as general temperature for all softmax components.
Also we should test other approaches with metric
learning, e.g. Multi-Class N-pair loss (Sohn, 2016).

6 Conclusion

This paper presents our experiments with se-
mantically informed architectures with a regression
head. This led us to conclude that the additional
awareness of the encoder and extra pretraining may
positively affect the model quality in these condi-
tions. In the future, it would be possible to explore
other ways to inform the model and conduct ex-
periments with larger versions of our implemented
architectures.

Limitations

While we examine a novel approach to NLG
evaluation, it is important to note limitations in our
research.

Firstly, due to time and computational resource
constraints, we have not conducted hyperparameter
search. This opens up a possibility of finding better
results for reported model configurations. Addi-
tionally, we have only made one experiment with
one fixed random seed for each configuration. In-
creasing the number of runs would improve result
stability.
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Abstract

This paper presents the submission of Huawei
Translation Service Center (HW-TSC) to the
WMT23 metrics shared task, in which we sub-
mit two metrics: KG-BERTScore and HWTSC-
EE-Metric. Among them, KG-BERTScore
is our primary submission for the reference-
free metric, which can provide both segment-
level and system-level scoring. While HWTSC-
EE-Metric is our primary submission for the
reference-based metric, which can only pro-
vide system-level scoring. Overall, our metrics
show relatively high correlations with MQM
scores on the metrics tasks of previous years.
Especially on system-level scoring tasks, our
metrics achieve new state-of-the-art in many
language pairs.

1 Introduction

Due to the expensive cost of human evaluation,
automatic metrics (Freitag et al., 2022) for ma-
chine translation (MT) (Wei et al., 2021, 2022a)
is critically important for MT research and devel-
opment. While human evaluation is still very im-
portant, automatic metrics allow the rapid eval-
uation and comparison of MT systems on large
collections of text and facilitate expansion to low
resource languages (Li et al., 2022) and domains
(Yang et al., 2021; Wu et al., 2022a). Depending
on whether the references are required or not, auto-
matic metrics are categorized into two categories:
(1) reference-based metrics like BLEU (Papineni
et al., 2002), METEOR (Lavie and Agarwal, 2007),
BERTScore (Zhang et al., 2020) and BLEURT (Sel-
lam et al., 2020), which evaluate the hypothesis by
referring to the references; (2) reference-free met-
rics like YiSi-2 (Lo, 2019) and COMET-QE (Rei
et al., 2020, 2021), which are also referred to as
quality estimation (QE). These metrics estimate the
quality of hypothesis based solely on the sources,
without relying on the references.

*These authors contributed equally to this work.

The WMT23 metrics shared task invites submis-
sions of reference-free metrics and reference-based
metrics to find automatic metric scores for transla-
tions at the segment-level and system-level. This
paper presents the contribution of HW-TSC to the
WMT23 metrics shared task. Slightly different
from our participation last year (Liu et al., 2022a),
we only submit two metrics this year. Details of our
metrics (KG-BERTScore and HWTSC-EE-Metric)
are illustrated in Table 1.

Metric Category Segment-level System-level
KG-BERTScore reference-free ! !

HWTSC-EE-BERTScore reference-based % !

Table 1: Details of our metrics

KG-BERTScore (Wu et al., 2022b) incorporates
multilingual knowledge graph (Chen et al., 2017)
into BERTScore (Zhang et al., 2019) and generates
the final evaluation score by linearly combining the
results of KGScore and BERTScore. Our efforts
this year build on findings and observations from
our participation in the WMT22 metrics shared
task (Liu et al., 2022a) to further improve the accu-
racy of KGScore and BERTScore. The choice of a
named entity (NE) annotator (Marrero et al., 2013)
is critical to KGScore. With the emergence of large
language models (LLMs) (Wei et al., 2022b; Kas-
neci et al., 2023) such as ChatGPT (Ding et al.,
2022), the NE annotator seems to have one more
option. Therefore, we try to use ChatGPT1 for NE
annotation and find that LLM-assisted NE annota-
tion can empower the metric. At the same time, the
selection of a QE model is crucial for BERTScore.
Since COMET-QE (Rei et al., 2022) has proven
to be the state-of-the-art QE model, we use it to
calculate BERTScore this year.

The HWTSC-EE-Metric (Liu et al., 2022b) is
developed using existing metrics with the goal of
creating a more balanced scoring system at the sys-

1https://platform.openai.com
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Figure 1: A Calculation Example of KGScore on English-Chinese Language Pair

tem level. This is achieved by assigning weights
to segment-level scores obtained from backbone
metrics. The weights are determined based on the
difficulty of each segment, which is determined
by the entropy of a hypothesis-reference pair. Seg-
ments with higher entropy values, indicating higher
difficulty, receive larger weights in the aggregation
of system-level scores by HWTSC-EE-Metric.

2 Metrics

This section introduces our metrics for WMT23
metrics shared task, including KG-BERTScore and
HWTSC-EE-Metric.

2.1 KG-BERTScore

KG-BERTScore (Wu et al., 2022b) is a reference-
free metric we proposed last year, which generates
the final evaluation score by linearly combining
the results of KGScore and BERTScore. For a
given KGScore FKG and BERTScore FBERT , KG-
BERTScore FKG−BERT is defined as:

FKG−BERT = α ·FKG + (1−α) ·FBERT , (1)

where α is an adjustable weight parameter.
We have made some improvements to the im-

plementation details of KGScore and BERTScore,
which will be described in detail below.

2.1.1 KGScore
KGScore refers to scoring based on the matching
rate of NE. Figure 1 is a calculation example of
KGScore on English-Chinese language pairs. The
calculation process includes three steps:

Firstly, we utilize a NE Annotator to annotate
NEs in the source and hypothesis sentences. Last
year we used spacy2 (Algamdi et al., 2022) as the
NE annotator, but it didn’t work very well. This
year we try to use ChatGPT to annotate NE, and
find that its effect is better than spacy, which means
that LLM-assisted NE annotation is feasible.

Secondly, we match cross-lingual NE pairs by
querying multilingual knowledge graphs. Google
Knowledge Graph3 (Google KG) is a general-
purpose multilingual knowledge graph that we have
chosen to use as always for querying NE IDs. Since
same-meaning NEs in different languages share the
same NE ID in Google KG, we can match cross-
lingual NE pairs by NE ID. One more thing to be
noted is that an NE without an ID is considered
invalid and will not participate in the subsequent
calculation of KGScore.

Finally, we explore using NE’s matching rate to
score. For a given test set with n sentence pairs,
assuming that Si is the NE numbers in the i-th
source sentence, Hi is the NE numbers in the i-
th hypothesis sentence, and SHi is the number of
matched cross-lingual NE pairs. The segment-level
NE matching rates of the i-th source sentence and
hypothesis sentence are respectively defined as:

FKGSi =
SHi

Si
if Si ̸= 0 else 1 (2)

FKGHi =
SHi

Hi
if Mi ̸= 0 else 1 (3)

2https://spacy.io/models
3https://developers.google.com/

knowledge-graph
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Then the segment-level calculation formula of
KGScore is defined as:

FKGi =
FKGSi + FKGHi

2
(4)

For the system-level KGScore, we first calculate
the system-level NE matching rates of source sen-
tences and hypothesis sentences are respectively
defined as:

FKGS =

∑n
i=1 SHi∑n
i=1 Si

(5)

FKGH =

∑n
i=1 SHi∑n
i=1Hi

(6)

Then the system-level calculation formula of
KGScore is defined as:

FKG =
FKGS + FKGH

2
(7)

2.1.2 BERTScore
BERTScore (Zhang et al., 2020) refers to scor-
ing based on semantic similarity. We initially use
Sentence-BERT (Reimers and Gurevych, 2019) to
calculate the semantic similarity score between
the source and hypothesis. Last year we used a
reference-free HWTSC-teacher-Sim metric (Zhang
et al., 2022) as BERTScore to make the score more
relevant to MQM score (Lommel et al., 2014). As
COMET-QE has been proven to be the state-of-the-
art reference-free metric on WMT22 metrics shared
task, we use the COMET-QE model4 to score and
serve as BERTScore this year.

2.2 HWTSC-EE-Metric

The HWTSC-EE-Metric, also known as the
entropy-enhanced (EE) Metrics (Liu et al., 2022b),
was employed in system-level shared tasks this year.
Unlike traditional methods of acquiring system-
level scores, EE metrics deviate from the normal
approach of obtaining system-level scores via arith-
metic average. EE metrics assign higher weights
to difficult samples present in the evaluation set,
as opposed to treating all source-reference pairs
equally, as human scorers tend to do in MT evalua-
tion. It is worth noting that simple samples can be
easily translated, leading to similar human scores
for different hypotheses. Conversely, challenging
samples within the evaluation set play a crucial role

4https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

in differentiating top candidates from inferior sys-
tems. Consequently, MT evaluation metrics should
encourage systems that excel in translating diffi-
cult samples. Contrary to concerns about incorrect
scoring, the use of challenging segments to evalu-
ate MT systems has actually shown potential for
improving metric performance. EE metrics, in par-
ticular, place a strong emphasis on the translation
quality of difficult hypotheses and allocate higher
weights to them in system-level scores.

2.2.1 Working Process of EE Metrics
EE metrics use the average qualities of hypotheses
to determine the difficulty of a segment. One key
measure used in this process is chunk entropy (Yu
et al., 2015), which quantifies the quality of trans-
lation between the reference and the hypothesis.
Higher chunk entropy indicates higher uncertainty
in translation, while lower entropy suggests good
confidence in the hypothesis. By calculating the
entropy, easy and difficult samples can be classified
accordingly through a threshold value h. In the pro-
cess of aggregating scores, hypotheses are assigned
weights based on their group, whether they belong
to the easy or difficult category. Easy samples
receive a lower weight denoted as w/Ne, while dif-
ficult samples receive a higher weight (1−w)/Nd.
The reason for such a weight discrepancy lies in
the larger number of easy hypotheses compared to
difficult ones. The balance coefficient w may vary
depending on the language pairs and evaluation
datasets utilized. This weight assignment strategy
ensures that the weights of easy samples remain
significantly lower than those of difficult samples,
considering the different samples in each category.

2.2.2 Enhancements to HWTSC-EE-Metric
The earlier version of EE metrics incorporates two
adjustable hyperparameters, h and w, which are
responsible for selecting difficult samples and as-
signing weights to each group, respectively. How-
ever, the presence of these hyperparameters ham-
pers the practical application of EE metrics. Fur-
thermore, these hyperparameters often vary across
different language pairs and evaluation datasets,
as evidenced by our preliminary experiment that
involved up to 10 different parameters using the
WMT19 evaluation set. Consequently, it becomes
challenging to identify a suitable combination of
hyperparameters for real-world scenarios. To ad-
dress this issue, in last year’s WMT metrics shared
tasks (Liu et al., 2022a), we simplified the com-
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putation of the system-level score by employing a
normal distribution fitting approach to determine
the threshold h for each translation direction. This
year, we further simplified the estimation of w by
using a fixed value of 0.8, as opposed to the three
different configurations of w used last year. Based
on the results of WMT22, we observed that the
value 0.8 corresponds to an appropriate balance of
weights between difficult and easy groups, as it ex-
hibits a high correlation with human MQM scores
on recent WMT test sets. Another modification in
this year’s HWTSC-EE-Metric is the replacement
of our backbone metric from BERTScore (Zhang
et al., 2019) to COMET score (Rei et al., 2022).
Specifically, we adopted the model wmt22-comet-
da5, which is known for its robust segment-level
MT evaluation capabilities, as the segment-level
backbone metric for HWTSC-EE-Metric this year.

3 Experiments

This section introduces the experimental results of
KG-BERTScore and HWTSC-EE-Metric on previ-
ous metrics shared tasks.

3.1 Experiment of KG-BERTScore

In order to verify the feasibility of the improved
KG-BERTScore, we conduct experiments on the
WMT22 metrics shared task data. Since it is time-
consuming and expensive to query ChatGPT and
Google Knowledge Graph API, we only verify the
effect of KG-BERTScore on Chinese-English lan-
guage pair. In the experiment, we first calculate
FKGS and FKGH through NE annotation and NE
pair matching, and then calculate KGScore. Next,
we use COMETKiwi-22 as BERTScore to calcu-
late the final KG-BERTScore.

We calculate the correlation of the scores of each
stage (including FKGS , FKGH , KGscore and KG-
BERTScore) with the MQM scores without con-
sidering human translation. To facilitate compari-
son with the official results of the WMT22 metrics
shared task, the segment-level correlation adopts
Kendall correlation, and the system-level correla-
tion adopts Pearson correlation.

3.1.1 Segment-level Correlation
Table 2 shows Kendall Tau correlation of reference-
free metrics with segment-level MQM scores for
the WMT22 Chinese-English language pair, which
is calculated without human translation. We find

5https://huggingface.co/Unbabel/wmt22-comet-da

that KGScore has a relatively low segment-level
correlation with MQM scores, while COMETKiwi-
22 has a relatively high segment-level correlation
with MQM scores. Therefore, when calculating
KG-BERTScore, we set α to a smaller value (i.e.,
0.1). Overall, the segment-level correlation be-
tween KG-BERTScore and MQM scores is only
slightly higher than that of COMETKiwi-22.

Metric Correlation
KG-BERTScore-22 0.219
COMETKiwi-22 0.364
FKGS 0.017
FKGH 0.055
KGScore 0.061
KG-BERTScore (α=0.1) 0.365

Table 2: Kendall Tau correlation of reference-free met-
rics with segment-level MQM scores for the WMT22
Chinese-English language pair, which is calculated with-
out human translation.

3.1.2 System-level Correlation

Table 3 shows Pearson correlation of reference-
free metrics with system-level MQM scores for the
WMT22 Chinese-English language pair, which is
calculated without human translation. The system-
level correlation between KGScore and MQM
scores is relatively close to that of COMETKiwi-
22, so we set α to a larger value (i.e., 0.9). Sur-
prisingly, the system-level correlation between
KG-BERTScore and MQM scores is significantly
higher than that of COMTKiwi-22.

In addition, the segment-level and system-level
correlations of KGScore with MQM scores are
higher than those of FKGS and FKGH , which in-
dicates that both source and hypothesis NE pair
matching rates should be considered when calcu-
lating KGScore.

Metric Correlation
KG-BERTScore-22 0.743
COMETKiwi-22 0.866
FKGS 0.660
FKGH 0.376
KGScore 0.697
KG-BERTScore (α=0.9) 0.947

Table 3: Pearson correlation of reference-free metrics
with system-level MQM scores for the WMT22 Chinese-
English language pair, which is calculated without hu-
man translation.
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Metric En→ De (w/o Human) Zh→ En (w/o Human) En→ Ru (w/o Human) En→ De (with Human) Zh→ En (with Human) En→ Ru (with Human)

r τ ρ r τ ρ r τ ρ r τ ρ r τ ρ r τ ρ

WMT21-news WMT21-news
BERTScore 0.911 0.795 0.945 0.577 0.308 0.484 0.776 0.538 0.692 0.181 0.441 0.500 0.382 0.295 0.439 0.540 0.417 0.485
COMET 0.812 0.590 0.819 0.545 0.359 0.401 0.774 0.538 0.688 0.349 0.559 0.804 0.425 0.333 0.386 0.751 0.617 0.782
EE-BERTScore-0.3 0.874 0.846 0.945 0.637 0.487 0.626 0.621 0.451 0.622 0.182 0.485 0.512 0.384 0.410 0.521 0.569 0.317 0.435
EE-BERTScore-0.5 0.898 0.846 0.945 0.595 0.359 0.511 0.717 0.495 0.701 0.183 0.500 0.517 0.382 0.352 0.457 0.562 0.383 0.491
EE-BERTScore-0.8 0.919 0.769 0.923 0.526 0.256 0.462 0.809 0.604 0.754 0.184 0.456 0.532 0.380 0.276 0.429 0.548 0.467 0.526
HWTSC-EE-Metric 0.816 0.615 0.819 0.474 0.359 0.462 0.814 0.582 0.727 0.380 0.574 0.806 0.427 0.333 0.454 0.761 0.683 0.821

WMT21-tedtalks WMT21-tedtalks
BERTScore 0.465 0.256 0.319 0.634 0.055 0.134 0.826 0.626 0.793 0.541 0.363 0.455 -0.634 -0.086 -0.079 0.659 0.676 0.832
COMET 0.764 0.436 0.604 0.620 0.143 0.196 0.878 0.692 0.868 0.626 0.516 0.684 -0.638 -0.010 -0.029 0.784 0.733 0.893
EE-BERTScore-0.3 0.560 0.333 0.473 0.321 0.055 0.125 0.687 0.451 0.626 0.553 0.429 0.578 -0.775 -0.086 -0.086 -0.568 0.219 0.289
EE-BERTScore-0.5 0.558 0.333 0.445 0.534 0.077 0.143 0.750 0.495 0.679 0.549 0.429 0.556 -0.719 -0.067 -0.071 -0.538 0.276 0.361
EE-BERTScore-0.8 0.495 0.359 0.478 0.645 0.077 0.134 0.829 0.692 0.829 0.543 0.451 0.582 -0.617 -0.067 -0.079 0.805 0.714 0.857
HWTSC-EE-Metric 0.799 0.538 0.742 0.633 0.143 0.213 0.869 0.851 0.692 0.653 0.604 0.793 -0.593 -0.010 -0.014 -0.005 0.467 0.504

Table 4: Correlations with system-level human MQM scores on datasets of WMT21 news and WMT21 tedtalks.
EE-BERTScore-∗ represents our last year’s submission in WMT22. HWTSC-EE-Metric represents our submission
in WMT23. With Human indicates evaluation on MT systems and human translations, and w/o Human indicates
MT systems only. Best correlations are marked in bold.

3.1.3 Effect of Different Weights
KG-BERTScore generates the final evaluation
score by linearly combining the results of KGScore
and BERTScore. α is an adjustable weight param-
eter in the linear combination formula, which af-
fects the correlation between KG-BERTScore and
MQM scores. To analyze the effect of α value, we
calculate the segment-level and system-level corre-
lations of KG-BERTScore and MQM scores under
different α values for the WMT22 Chinese-English
language pair. The result is shown in Figure 2. The
segment-level correlation between KG-BERTScore
and MQM scores is highest when the α value is
0.1, and the system-level correlation between KG-
BERTScore and MQM scores is the highest when
the α value is 0.9. That is to say, when the corre-
lation between KGScore and MQM scores is rela-
tively low, α should take a smaller value, otherwise,
α should set a larger value.

On the WMT23 metrics shared task, we cannot
know the MQM score in advance. Therefore, we
refer to the above experimental settings, and set
α to 0.1 and 0.9 on the segment-level and system-
level metrics shared tasks, respectively. In addition,
we do not calculate KG-Score and set α to 0 on
non-MQM language pairs due to the slow speed of
accessing ChatGPT.

3.2 Experiment of HWTSC-EE-Metric

To evaluate the performance of the HWTSC-EE-
Metric, a series of experiments were conducted
primarily on the WMT21 test sets using the MQM
scores as the human scoring standard. To investi-
gate the impact of using human translations as part
of the system, the results obtained from two sets of
systems for each language pair are compared. The
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Figure 2: The segment-level and system-level correla-
tions between KG-BERTScore and MQM scores under
different α values for the WMT22 Chinese-English.

evaluation was based on three coefficients: Pear-
son’s correlation coefficient (r), Kendall’s τ , and
Spearman’s ρ, which are used to assess the system-
level correlations with human evaluations.

Table 4 presents a performance comparison be-
tween the HWTSC-EE-Metric (our submission
in WMT23), EE-BERTScore (our submission in
WMT22), and two standard metrics (BERTScore
and COMET). The HWTSC-EE-Metric demon-
strates higher overall correlations with human
MQM evaluations compared to its backbone, the
standard COMET score. Furthermore, out of
the 36 comparison terms, the HWTSC-EE-Metric
achieves the best performance in 20 cases. This
strong performance indicates the effectiveness of
our entropy-based enhancing strategy and parame-
ter estimation approach.

As EE metrics evaluate a system based not only
on the individual system itself but also on other
participating systems, the inclusion of human trans-
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lations may influence the performance of EE met-
rics. As shown in Table 4, most metrics exhibit a
decline in performance when human translations
are included. The improvements of the HWTSC-
EE-Metric in correlations with MQM are not con-
sistently steady, which aligns with the findings of
(Freitag et al., 2021) that most metrics struggle to
accurately score translations that differ from MT
systems. However, we observed that the HWTSC-
EE-Metric mitigates the performance reduction of
COMET in some cases (e.g., En→ De in WMT21
datasets), but there are also instances where the
HWTSC-EE-Metric does not improve COMET in
terms of correlations (e.g., En→ Ru in WMT21
TED talks). Overall, when human translations are
included as additional outputs, EE metrics tend to
be less robust and provide a less significant im-
provement over standard metrics.

4 Conclusion

This paper presents HW-TSC’s submission to the
WMT23 metrics shared task, in which we sum-
mit a reference-free metric (KG-BERTScore) and a
reference-based metric (HWTSC-EE-Metric). We
have made some improvements to these two met-
rics compared to last year’s submission. One of the
most critical improvements is on KG-BERTScore,
we empower the metric with LLM-assisted NE an-
notations, significantly improving its correlation
with MQM scores. The experimental results on
previous WMT metrics tasks show great effective-
ness of our research direction and the superiority
of our metrics.
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Abstract

We introduce the submissions of the NJUNLP
team to the WMT 2023 Quality Estimation
(QE) shared task. Our team submitted pre-
dictions for the English-German language pair
on all two sub-tasks: (i) sentence- and word-
level quality prediction; and (ii) fine-grained
error span detection. This year, we further
explore pseudo data methods for QE based
on NJUQE framework1. We generate pseudo
MQM data using parallel data from the WMT
translation task. We pre-train the XLMR large
model on pseudo QE data, then fine-tune it
on real QE data. At both stages, we jointly
learn sentence-level scores and word-level tags.
Empirically, we conduct experiments to find
the key hyper-parameters that improve the per-
formance. Technically, we propose a simple
method that covert the word-level outputs to
fine-grained error span results. Overall, our
models achieved the best results in English-
German for both word-level and fine-grained
error span detection sub-tasks by a considerable
margin.

1 Introduction

Quality Estimation (QE) of Machine Translation
(MT) is a task to estimate the quality of transla-
tions at run-time without access to reference trans-
lations (Specia et al., 2018). There are two sub-
tasks in WMT 2023 QE shared task2: (i) sentence-
and word-level quality prediction; and (ii) fine-
grained error span detection. We participated in
all two sub-tasks for the English-German (EN-DE)
language pair. The annotation of EN-DE is multi-
dimensional quality metrics (MQM) 3, aligned with
the WMT 2023 Metrics shared task. The MQM
annotation provides error spans with fine-grained
categories and severities by human translators.

∗* Corresponding Author.
1https://github.com/NJUNLP/njuqe
2https://wmt-qe-task.github.io
3https://themqm.org

Inspired by DirectQE (Cui et al., 2021) and
CLQE (Geng et al., 2023), we further explore
pseudo data methods for QE based on the NJUQE
framework. We generate pseudo MQM data us-
ing parallel data from the WMT translation task.
Specifically, we replace the reference tokens with
these tokens sampled from translation models. To
simulate translation errors with different severities,
we sample tokens with lower generation probabil-
ities for worse errors (Geng et al., 2022). We pre-
train the XLMR (Conneau et al., 2020) large model
on pseudo MQM data, then fine-tune it on real QE
data. At both stages, we jointly learn sentence-
level scores (MSE loss and margin ranking loss)
and word-level tags (cross-entropy loss).

For task (i), the QE model outputs the sentence
scores and the “OK” probability of each token. For
task (ii), we set different thresholds for the “OK”
probability to predict fine-grained severities. We
regard consecutive “BAD” tokens as a whole span
and take the worse severity of each token as the
result. We train different models with different
parallel data and ensemble their results as the final
submission.

Overall, we summarize our contribution as fol-
lows:

• Empirically, we conduct experiments to find
the key hyper-parameters that improve the per-
formance.

• Technically, we propose a simple method that
converts the word-level outputs to fine-grained
error span results.

Our system obtains the best results in English-
German for both word-level and fine-grained error
span detection sub-tasks with an MCC of 29.7 (+4.1
than the second best system) and F1 score of 28.4
(+1.1) respectively. We rank 2nd place on sentence-
level sub-tasks with a Spearman score of 47.9 (-0.4
than the best system).
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Source Government Retires 15 More Senior Tax Officials On Graft Charges
Translation Regierung zieht 15 weitere leitende Steuerbeamte wegen Graft-Vorwürfen zurück
Translation Back Government withdraws 15 more senior tax officials over graft allegations
Tags OK BAD OK OK OK OK OK BAD OK
MQM Score 0.3333
Annotation ID Character-level Indices of Error Span Severity
Span 1 10:15 Major
Span 2 55:70 Minor

Table 1: An example from the WMT2023 English-German MQM dataset. We mark the error span with red color.
The translation back is generated by Google Translate.

2 Background

Given a source language sentence X and a target
language translation Ŷ = {y1, y2, . . . , yn} with n
tokens, the MQM annotation provides error spans
with fine-grained categories and severities (minor,
major, and critical) by human translators. The
MQM score sums penalties for each error sever-
ity and then normalizes the result by translation
length:

MQM = 1− nminor + 5nmajor + 10ncritical

n
, (1)

where nseverity denotes the number of each error
severity and n denotes the translation length.

As shown in table 1, participating systems are re-
quired to predict tags G = {g1, g2, . . . , gn} of each
word and MQM score m for sub-task (i), where the
binary label gj ∈ {OK,BAD} is the quality label
for the word translation yj . For sub-task (ii), we
need to predict both the character-level start and
end indices of every error span as well as the cor-
responding error severity. The primary metrics of
sentence-level, word-level, and span detection sub-
tasks are Spearman’s rank correlation coefficient,
Matthews correlation coefficient (MCC)4, and F1-
score respectively5.

3 Methodology

Generally, we unite the sub-tasks (i) and (ii) as
follows:

• We generate pseudo MQM data for sub-task
(i) using parallel data and translation models
as shown in the left of figure 1.

4https://github.com/sheffieldnlp/
qe-eval-scripts/tree/master

5https://github.com/WMT-QE-Task/
wmt-qe-2023-data/blob/main/task_2/evaluation

• We pre-train the QE model with pseudo data
and fine-tune it with real QE data for sub-task
(i) as shown in the right of figure 1.

• We ensemble the results of models trained
with different parallel data for sub-task (i).

• We convert word-level probabilities for sub-
task (i) to error span and fine-grained severi-
ties for sub-task (ii).

3.1 Pseudo MQM Data

We adopt the pseudo MQM data method described
in (Geng et al., 2022).

3.1.1 Corrupting
Given a parallel pair (X,Y ), we corrupt the refer-
ence Y as shown in figure 2:

• We sample the number of spans t according
to the distribution of WMT2022 QE EN-DE
valid set (Zerva et al., 2022a).

• According to the distribution of WMT2022
QE EN-DE valid set, we sample the length
of each span ni one by one to ensure that the
total length is less than reference length n.

• We randomly sample the start indices for i-th
span in [EOLi, n −

∑t
j=i nj ] to ensure each

span lie in the sentence, where EOLi is the
end indices of last span (EOL0 = 0).

• We sample the severity of each span according
to the distribution of a WMT2022 QE EN-DE
valid set.

• We randomly insert or remove some tokens
in each span to simulate over- and under-
translations.
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Figure 1: Illustration of the whole procedure.

• We tag tokens on the right of the omission
errors and tokens that are not aligned with ref-
erence tokens as “BAD”. The rest tokens are
tagged as “OK”. We calculate the MQM score
using Eq. 1 based on the sampled severities.

3.1.2 Fixing
To generate pseudo translations, we replaced these
error tokens with the “mask” symbol and sam-
pled these tokens with neural machine translation
(NMT) model (Vaswani et al., 2017) or transla-
tion language model (TLM) (Conneau and Lample,
2019). For the NMT model, we generate these
error tokens from left to right with teacher forc-
ing, while the TLM model generates these tokens
parallel. To simulate errors of different severities,
we sample tokens with lower generation probabili-
ties for graver pseudo errors. To generate diverse
pseudo translations, we random sample one of the
tokens with the top k generation probability as the
error token. In practical, we use k = 2, 10, 100 for
minor, major, and critical errors, respectively.

3.2 Pre-training and Fine-tuning
3.2.1 QE Model
Since the pre-train models significantly improve
MT evaluation performance (Rei et al., 2022; Zerva
et al., 2022b), we use the XLMR large model (f )
as the model backbone. To obtain the features
conditioned on source sentences, we input the con-
catenation of source sentences and translations:

HX , HŶ = f(X, Ŷ ). (2)

Then, we average the representations HŶ of all
target tokens as the sentence score representation
Hsent.

Hsent = Average(HŶ ) (3)

The sentence score representation passes through
one linear layer and an optional activation function
σ to output the score prediction m̂.

m̂ = σ(FFN(Hsent)), (4)

where we set σ as the Sigmoid function or null. We
average sub-tokens’ representations as the repre-
sentation of the whole word. We input the word
representations Hword to one linear layer and soft-
max function to predict binary labels:

Ĝ = softmax(FFN(Hword)). (5)

3.2.2 QE Loss
Following the multi-task learning framework for
QE (Zerva et al., 2021), we joint learn the sentence-
and word-level tasks. We use two loss functions
for the sentence-level task: the margin ranking loss
and the mean square error (MSE) loss. The margin
ranking loss is defined as follows:

LRank = max(0,−r(m̂i − m̂j) + ϵ), (6)

where m̂i and m̂j denote the output scores of i-th
and j-th translations from current batch; r denotes
the rank label, r = 1 if mi > mj , r = −1 if
mi < mj ; ϵ denotes the margin, we set ϵ = 0.03
for all experiments. As shown in (Geng et al.,
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Sample the number of spans:

Sample the length of each span:

Sample the position of each span:

Sample the severity of each span:

Over- and under-translations:

Minor

Major

Critical

Omission

OK

Figure 2: Illustration of the pseudo MQM data method (Geng et al., 2022). The word-level tags of this pseudo
translation are annotated as “OK BAD OK OK BAD BAD BAD BAD OK BAD” and the MQM score is -0.6.

2022), the ranking loss is critical to achieving good
performance. And the MSE loss is defined as:

LMSE = MSE(m, m̂). (7)

We use cross-entropy (CE) loss for the word-level
task:

LCE =
n∑

i=1

CE(gi, ĝi), (8)

where ĝi denotes the tag predicted for i-th word.
The final QE loss function is the weighted sum of
previous loss functions:

LQE = LCE + αLMSE + βLRank, (9)

where α and β denote the weights for different loss
functions. We use the Eq. 9 for both pre-training
and fine-tuning.

3.3 Ensemble

We generate one pseudo MQM data for each paral-
lel pair. We train different QE models with different
pseudo MQM data and ensemble their results as
the final submission. For the sentence-level task,
we calculate the z-scores of each output and the
average of these z-scores as the predictions. For
the word-level task, we use QE models to output
“OK” probabilities P = {p1, p2, . . . , pn}, where
pi denotes the “OK” probability for i-the word in
the translation. Then, we average “OK” probabili-
ties and set a threshold ϵBAD to decide whether the
word is “BAD”:

ĝi =

{
OK if pi > ϵBAD

BAD if pi ≤ ϵBAD
(10)

3.4 Sub-task (ii)

To unite the word-level sub-task and fine-grained
error span detection sub-task, we propose a simple

method that covert the word-level outputs to fine-
grained error span results. Based on the ensemble
“OK” probabilities, we set two thresholds ϵmajor and
ϵminor. Then, we can output the fine-grained error
tags S = {s1, s2, . . . , sn}, where pi as follows:

ŝi =





OK if pi > ϵminor

Minor if ϵMajor < pi ≤ ϵMinor

Major if pi ≤ ϵMajor

(11)

Finally, we regard consecutive error tokens as a
whole span and take the worst severity of error to-
kens as the span severity. As recommended by the
reviewer, we also try to take the majority category
as the span severity. However, we found that only
one prediction changed from“major” to “minor".
That may be because the task is imbalanced and
there are more “major” errors. As a result, this
strategy achieves the same F1-score as the previous
one.

4 Experiments

4.1 Implementation Details

We use parallel data from the WMT translation
task to generate the pseudo MQM data. We use the
WMT2022 QE EN-DE dataset and the WMT2022
Metric EN-DE dataset for fine-tuning. We also
incorporate the post-editing annotation EN-DE
datasets (WMT17, 19, and 20) to warm up the
QE model.

We implement our system based on the NJUQE
framework, which is built on the Fairseq(-py) (Ott
et al., 2019) toolkit. We use NVIDIA V100 GPUs
to conduct our experiments. To search the hyper-
parameters, we utilize the grid search method. All
experiments set the random seed as 1. We set α = 1
and β = 1000 for both pre-training and fine-tuning.
When pre-training, we use four GPUs. We set
the learning rate to 1e-5, the maximum number of
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σ Spearman
w/o σ 50.02

sigmoid 52.41

Table 2: Results on the validation set of WMT2022 QE
EN-DE task with different normalize function σ.

tokens in a batch to 1400 and update the param-
eters every four batches. We evaluate the model
every 600 updates and perform early stopping if
the validation performance does not improve for
the last ten runs. When fine-tuning, we use one
GPU. we set the learning rate to 1e-6, the maxi-
mum number of sentences in a batch to 20. We
evaluate the model every 300 updates and perform
early stopping if the validation performance does
not improve for the last ten runs.

4.2 Results

We achieve the best results on EN-DE for both
word-level and fine-grained error span detection
sub-tasks with an MCC of 29.7 (+4.1 than the sec-
ond best system) and F1 score of 28.4 (+1.1) re-
spectively. We rank 2nd place on sentence-level
sub-tasks with a Spearman score of 47.9 (-0.4 than
the best system).

5 Analysis

In this section, we show some key hyper-
parameters that improve the performance.

5.1 The normalize function σ

Although the MSE loss improves sentence-level
performance, we need to avoid the over-fitting of
score predictions. We set the normalize function
σ as the sigmoid function to provide smooth gra-
dients. As shown in table 2, we achieve better
sentence-level performance by using the sigmoid
function.

5.2 Dropout Rate of the Output Layers

We also use the dropout method (Gal and Ghahra-
mani, 2016) on the output layers to avoid over-
fitting. Table 3 shows that the QE model obtains
better performance when we set the dropout rate as
0.2.

6 Conclusion

We present NJUNLP’s work to the WMT 2023
Shared Task on Quality Estimation. In this work,
we generate pseudo MQM data using parallel data.

Dropout Rate Spearman
0 52.41

0.1 52.93
0.2 53.11
0.3 52.15

Table 3: Results on the validation set of WMT2022 QE
EN-DE task with different dropout rate.

We pre-train the XLMR large model on pseudo
MQM data, then fine-tune it on real QE data. At
both stages, we jointly learn sentence-level scores
and word-level tags. Empirically, we conduct ex-
periments to find the key hyper-parameters that
improve the performance. Technically, we propose
a simple method that covert the word-level outputs
to fine-grained error span results. Overall, our mod-
els achieved the best results in English-German for
both word-level and fine-grained error span detec-
tion sub-tasks by a considerable margin.
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Abstract

Quality estimation (QE) is an essential tech-
nique to assess machine translation quality
without reference translations. In this paper, we
focus on Huawei Translation Services Center’s
(HW-TSC’s) submission to the sentence-level
QE shared task, named Ensemble-CrossQE.
Our system uses CrossQE, the same model ar-
chitecture as our last year’s submission, which
consists of a multilingual base model and a
task-specific downstream layer. The input is
the concatenation of the source and the trans-
lated sentences. To enhance the performance,
we finetuned and ensembled multiple base mod-
els such as XLM-R, InfoXLM, RemBERT and
CometKiwi. Moreover, we introduce a new
corruption-based data augmentation method,
which generates deletion, substitution and inser-
tion errors in the original translation and uses
a reference-based QE model to obtain pseudo
scores. Results show that our system achieves
impressive performance on sentence-level QE
test sets and ranked the first place for three
language pairs: English-Hindi, English-Tamil
and English-Telegu 1. In addition, we partic-
ipated in the error span detection task. The
submitted model outperforms the baseline on
Chinese-English and Hebrew-English language
pairs.

1 Introduction

Quality estimation (QE) involves automatically
scoring machine translation outputs without de-
pending on reference translations (Specia et al.,
2018). In the WMT 2023 QE shared task, there
are two subtasks — quality estimation and fine-
grained error span detection and each task involves
several language pairs. Our team — Huawei Trans-
lation Services Center (HW-TSC) — participated
in the sentence-level quality prediction and the fine-
grained error span detection tasks over all language

1http://www2.statmt.org/wmt23/
quality-estimation-task_results.html

pairs except the zero-shot language pair. Fine-
tuning pre-trained language models, which offers
abundant semantic information, has become the
paradigm for QE tasks (Rei et al., 2020). In this
paper, we describe Ensemble-CrossQE, HW-TSC’s
system for sentence-level QE task, which leverages
multiple pre-trained language models and data aug-
mentation technique. Our system designs can be
summarized as follow:

• Model: We employed our previous year’s ar-
chitecture, CrossQE (Tao et al., 2022), as the
foundation. For every language pair, models
were individually fine-tuned. Additionally, we
used CometKiwi (Rei et al., 2022), a multi-
lingual QE model and fine-tuned it for single
language pairs.

• Data augmentation: The original train-
ing dataset was augmented with a novel
corruption-based approach. A reference-
based QE model was used to generate pseudo
scores for corrupted translations by taking
the original translation as reference and a cor-
rupted translation as the new translation.

• Ensemble: For each language pair, 12 check-
points were considered for the final ensemble.
These checkpoints originated from four base
models: XLM-R (Conneau et al., 2020), In-
foXLM (Chi et al., 2021), RemBERT (Chung
et al., 2020), and CometKiwi (Rei et al.,
2022), and three training dataset configura-
tions: original dataset, augmented dataset, and
augmented dataset followed by the original
dataset. The ensemble weight for each check-
point was optimized with Optuna (Akiba et al.,
2019). On average, eight checkpoints were
used per language pair after optimization.

Our system achieves remarkable results and out-
performs the baseline given by the competition or-
ganizer by a large margin. Additionally, we provide
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detailed results of each model with and without
data augmentation in Table 1. To analyze the im-
portance of each model in the ensemble, we present
the ensemble weights in Figure 1 and 2. It is worth
noting that the models fine-tuned with the proposed
data augmentation technique were assigned higher
weights in the ensemble.

2 Background

2.1 Task Description 2

Sentence-level QE with direct assessment (DA)
anotations: The goal is to predict the quality
score for each source-target sentence pair. The
golden-truth quality scores were obtained from hu-
man translators who rated each translation from
0 to 100. The scores from three or four transla-
tors were normalized and averaged to get the final
score. This year’s QE shared task has five language
pairs with DA quality scores: English-Marathi (en-
mr), English-Hindi (en-hi), English-Tamil (en-ta),
English-Telegu (en-te) and English-Gujarati (en-
gu). Only en-mr has 26,000 training samples, while
the other languages have just 7,000 training sam-
ples each.

Sentence-level QE with multi-dimensional
quality metrics (MQM) anotations: The goal
is to predict the quality score for each source-target
sentence pair. MQM can be used to identify quality
issues in translation products, classify them against
a shared, open and standardized error typology, and
generate quality measures that can be used to gauge
how well the translation product meets quality re-
quirements. Calculating different scores by error
type, the summing penalties for each MQM error
category are +1 point for minor errors +5 points
for major errors, and +10 points for critical errors.
This year’s QE shared task has two language pairs
with MQM quality scores: English-German(en-de)
and Chinese-English(zh-en). The en-de has 28900
training samples and zh-en has 35300 training sam-
ples.

Fine-grained error span detection: Partici-
pants of this task need to identify the error span
(start and end indices) and the error severity (major
or minor).

2.2 Base Models

• XLM-R (Conneau et al., 2020): A
transformer-based masked language model

2https://wmt-qe-task.github.io/

trained on a massive multilingual corpus with
more than two terabytes of data.

• InfoXLM (Chi et al., 2021): A cross-lingual
pre-trained model that leverages multilingual
masked language modeling, translation lan-
guage modeling and cross-lingual contrast
learning.

• RemBERT (Chung et al., 2020): A rebal-
anced mBERT model with factorization of the
embedding layers. The input embeddings are
smaller and kept for fine-tuning, while the out-
put embeddings are larger and discarded after
pre-training.

• CometKiwi (Rei et al., 2022): A multilingual
reference-free QE model that uses a regres-
sion approach and is built on top of InfoXLM.
It has been trained on direct assessments from
WMT17 to WMT20 and the MLQE-PE cor-
pus.

3 Method

3.1 Model Architecture
3.1.1 Task1: Sentence-level QE with direct

assessment (DA) and multi-dimensional
quality metrics (MQM) anotations

As shown in Equation 1 and 2, the embeddings of
source sentence s and translated sentence t are con-
catenated in both orders [s, t] and [t, s] to form the
input of pre-trained model fbase. The output token-
level embedding sequences are processed by an av-
erage pooling layer to obtain vector reprsentations
hs1 and ht1 for source and translation respectively.
These feature vectors are enhanced by taking their
absolute difference and element-wise multiplica-
tion, as shown in Equation 3 and 4. Finally, all
feature vectors are concatenated and fed into a re-
gression head that predicts the final score y (Equa-
tion 5). This architecture enables information ex-
change between source and translated sentences at
an early stage of the network and has proven to be
significantly more effective than combining cross-
lingual information after the pre-trained model.

hs1,ht1 = fbase([s, t]) (1)

ht2,hs2 = fbase([t, s]) (2)

f1 = [hs1,ht1, |hs1 − ht1|,hs1 ⊙ ht1] (3)

f2 = [hs2,ht2, |hs2 − ht2|,hs2 ⊙ ht2] (4)

y = fscore([f1, f2]) (5)
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3.1.2 Task2: Error span detection

Our model was adapted from CometKiwi (Rei
et al., 2022). The original binary classification
was changed to three-way classification with the
following labels: major error, minor error, no error.
We disabled the sentence-level prediction head by
setting the weight of the original sentence module
to 0.

3.2 Corruption-based Data Augmentation

Algorithm 1 Corruption-based data augmentation

Require: source s, translation t, DA score
Ensure: score > 70

1: n← min(randint(0, 5), len(t))
2: i← 0
3: t̂← t
4: while i < n do
5: t̂← corrupt(t̂)
6: i← i+ 1
7: end while
8: scorenew ← score× fQE(s,t̂,t)

fQE(s,t,t)

9: return s, t̂, scorenew

This year’s QE shared task primarily focuses on
low-resource languages. The scarcity of training
data poses a challenge of overfitting. We tried to
overcome this problem by augmenting the dataset
with various types of noise, including deletion, in-
sertion and substitution errors. Our approach is
described in Algorithm 1. We first selected source-
translation pairs (s and t) that had a score above 70.
We did not use low quality translations for augmen-
tation, as our approach was designed to generate
translation with lower scores compared to the orig-
inal translation. Then, we randomly sampled the
number of corruptions and iteratively incorporated
these corruptions into the translation, resulting in a
new translation (t̂). The corruption types are listed
as follows:

• Deletion: A random word in the translation
was deleted.

• Insertion: A random word in the translation
was selected and inserted in a random posi-
tion.

• Substitution: A random word was replaced
with another word in the translation.

To generate a pseudo score for each new transla-
tion, we employed a reference-based QE model 3

fQE . The key idea is to use the original translation
as the reference and the corrupted translation as
the new translation. Since the output of the QE
model is in the range between 0 and 1, we can
use this value to scale the original score to obtain
the pseudo score. However, we observed that even
when the reference and translation are the same, the
model will not generate a score close to 1, which is
inconsistent with the assumption that if there is no
corruption, the score should be unchanged. There-
fore, we constructed the scaling factor as the ratio
between the corrupted translation score and the un-
corrupted translation score (fQE(s,t̂,t)

fQE(s,t,t) ). This data
augmentation method can be viewed as distilling
knowledge from a pre-trained reference-based QE
model and it has the potential to increase model
generalisability and provide diverse checkpoints
for ensemble.

4 Experiments

4.1 Experimental setups

4.1.1 Task1
Our system is built on top of the COMET package 4.
We fine-tuned four pre-trained models, namely
XLM-R, InfoXLM, RemBERT and CometKiWi 5,
on a single Nvidia Tesla V100 GPU with a batch
size of 4, gradient accumulation of 8 and mean
square error loss function. We stopped the training
when there was no improvement in terms of Spear-
man correlation on the dev set for five test runs. For
each language pair, the augmented dataset, which
contains more than ten times data than the origi-
nal dataset, was pre-generated instead of generated
on-the-fly to improve training efficiency. We con-
sidered three schedules: training the model with
the original dataset; training it with the augmented
dataset (only DA training set); and first training
it with the augmented dataset and then finetuning
it on the original dataset. The training step took
around 3 hours and 10 hours with the original and
the augmented dataset respectively.

With four base models and three schedules, we
obtained twelve checkpoints for each language pair.
We ensembled these checkpoints by taking the

3https://huggingface.co/Unbabel/
wmt22-comet-da

4https://github.com/Unbabel/COMET
5https://huggingface.co/Unbabel/

wmt22-cometkiwi-da
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Figure 1: The ensemble weights for each base model.

weighted-average of predicted scores. The weights
were optimized using Optuna, an automatic hyper-
parameter search framework. We used the Spear-
man correlation as the objective, set the step to
0.05, and ran 1000 trials on the dev set.

4.1.2 Task2
We fine-tuned two pre-trained models, XLM-R and
CometKiwi, for 10 epochs with batch size of 32.
We created two training subsets using the anno-
tated data from 2020 to 2022. Consequently, four
checkpoints were obtained for each language pair.
We combined the results of these checkpoints by
using the union of the predicted spans, which out-
performed token-level majority voting.

4.2 Results
4.2.1 Task1
Results of sentence-level QE in terms of Spear-
man correlation are shown in Table 1. Without
data augmentation, CometKiwi has the best aver-
age correlation of 0.597, while XLM-R, InfoXLM
and RemBERT are close behind with around 0.585.
Figure 1 reveals the importance of each model in
the ensemble. CometKiwi has the highest weight
for four language pairs, meaning it contributes most
to the final prediction. Other base models perform
similarly, with XLM-R being most important for
en-hi language pair.

The corruption-based data augmentation ap-
proach has the most notable benefits for the en-
mr language pair. The performance of models
based on XLM-R, InfoXLM and CometKiwi are
improved significantly. It is worth noting that these
models do not need to be fine-tuned on the original

Figure 2: The ensemble weights for different training
dataset configurations. ‘w/o aug’ and ‘+ aug’ mean
using the original or augmented dataset respectively. ‘+
aug & finetune’ means training on augmented dataset
and then finetuning on the original one.

training set to achieve comparable or better results
than no augmentation, even when more than 90%
of the targets are pseudo labels. For other language
pairs, data augmentation has limited benefits when
used with a single base model. One possible reason
is that the reference-based model did not produce
high-quality pseudo labels for language pairs with
limited resources. However, we did observe that
models with data augmentation played important
roles in the ensemble. As shown in Figure 2, on
average, models without data augmentation were
assigned a weight of only 20%, whereas models
that were trained purely on augmented data or pre-
trained on augmented data had a total weight of
80%, indicating that data augmentation can im-
prove the performance of the ensemble and prevent
overfitting.

Our final ensemble consists of 12 checkpoints,
but some of them have zero weight after optimiza-
tion. Therefore, the average number of models in
the ensemble for each language pair is eight. The
ensemble outperforms any single model on the dev
set by a noticeable margin. On the test set, the
ensemble achieves outstanding results, with Spear-
man scores higher than 0.69 for three language
pairs (en-mr, en-ta, en-gu) and the Spearman of
en-ta even reached 0.775. Our submissions are
much better than the organizer’s baseline. The as-
sessment results of MQM are shown in Table 2.
With the model ensemble methods, the assessment
results have been significantly improved.
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Method en-mr en-hi en-ta en-te en-gu Avg.
XLM-R 0.541 0.614 0.663 0.464 0.644 0.585

+augmentation 0.554 0.613 0.663 0.435 0.608 0.575
+augmentation & finetune 0.554 0.615 0.658 0.442 0.624 0.579

InfoXLM 0.527 0.600 0.663 0.461 0.654 0.581
+ augmentation 0.565 0.607 0.671 0.447 0.635 0.585

+ augmentation & finetune 0.557 0.612 0.669 0.454 0.651 0.589
RemBERT 0.549 0.603 0.663 0.436 0.682 0.587

+ augmentation 0.547 0.587 0.668 0.416 0.622 0.568
+ augmentation & finetune 0.532 0.598 0.659 0.417 0.633 0.568

CometKiwi 0.557 0.598 0.689 0.452 0.689 0.597
+ augmentation 0.580 0.583 0.673 0.458 0.660 0.591

+ augmentation & finetune 0.579 0.588 0.690 0.464 0.677 0.600
Ensemble 0.592 0.636 0.707 0.481 0.699 0.623

baseline (test set) 0.392 0.281 0.507 0.193 0.337 0.342
Ensemble (test set) 0.692 0.644 0.775 0.394 0.691 0.639

Table 1: Results for sentence-level QE in terms of Spearman correlation. Ground-truth annotations were derived
from Direct Assessment. Except for the last two rows which shows the results on test set, other results were based
on the dev set.

Method en-de zh-en
XLM-R 0.529 0.293

InfoXLM 0.520 0.213
RemBERT 0.525 0.178
CometKiwi 0.468 0.243
Ensemble 0.582 0.343

baseline (test set) 0.340 0.447
Ensemble (test set) 0.437 0.460

Table 2: Results for sentence-level QE in terms of
Spearman correlation. Ground-truth annotations were
derived from Multi-dimensional Quality Metrics.

4.2.2 Task2
The results for error span detection are displayed
in Table 3. Our system achieved an F1 score of
0.235 on the zh-en language pair, which is signifi-
cantly higher than the baseline. Moreover, for the
language pair without supervised data (he-en), our
system achieved a relative improvement of 33%
over the baseline.

5 Conclusion

This paper mainly presents HW-TSC’s sentence-
level QE system called Ensemble-CrossQE. Using
our previous year’s model CrossQE as the foun-
dation, we carried out comprehensive experiments
with different pre-trained models. To further im-
prove the robustness for low-resource language
pairs and provide various checkpoints for model

Method zh-en en-de he-en
XLM-R 0.169 / /

InfoXLM 0.176 0.143 0.085
+CometKiwi 0.187 0.151 0.095

baseline (test set) 0.219 0.167 0.227
Ensemble (test set) 0.235 0.166 0.266

Table 3: Results for error span detection in terms of F1
score.

ensemble, we introduced a corruption-based data
augmentation method. For sentence-level QE task,
our system delivers a good performance on all
language-pairs with DA annotations. In the future,
we will investigate distillation method to transfer
the knowledge of the ensemble to a single model
to improve efficiency and we plan to leverage ex-
ternal parallel data and translation models for data
enhancement. Additionally, in this paper, we only
present brief investigations of the error span detec-
tion task. Therefore, we plan to further explore
word-level QE tasks, which can improve the inter-
pretability of QE.
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Abstract

We present the joint contribution of Unbabel
and Instituto Superior Técnico to the WMT
2023 Shared Task on Quality Estimation (QE).
Our team participated on all tasks: sentence-
and word-level quality prediction (task 1) and
fine-grained error span detection (task 2). For
all tasks, we build on the COMETKIWI-22
model (Rei et al., 2022b). Our multilingual ap-
proaches are ranked first for all tasks, reaching
state-of-the-art performance for quality estima-
tion at word-, span- and sentence-level granular-
ity. Compared to the previous state-of-the-art,
COMETKIWI-22, we show large improvements
in correlation with human judgements (up to
10 Spearman points). Moreover, we surpass
the second-best multilingual submission to the
shared-task with up to 3.8 absolute points.

1 Introduction

Quality Estimation (QE) is the task of automati-
cally assigning a quality score to a machine trans-
lation output without depending on reference trans-
lations (Specia et al., 2018). This paper details the
collaborative effort of Unbabel and Instituto Supe-
rior Técnico (IST) in the WMT23 Quality Estima-
tion shared task, which encompassed two primary
tasks: (i) sentence- and word-level quality predic-
tion and (ii) fine-grained error span detection.

As of last year, some language pairs in the test
set were absent from the training data. To address
this, following a similar approach to the previous
year, our systems were developed to achieve good
multilingual generalization and to accommodate
previously unseen languages. To achieve this, we
start by leveraging the direct assessments (DA) la-
beled data obtained from the WMT Metrics shared
task from 2017 to 2020, the MLQE-PE dataset
(Fomicheva et al., 2022), and the training data (DA)
specifically annotated for Indian languages in the
2023 shared task edition. In total, these datasets

∗Equal contribution. � ricardo.rei@unbabel.com

encompass close to 1M annotations covering 38
language pairs. We start by constructing generic
models using this corpus. These generic QE mod-
els were subsequently fine-tuned for this year’s
subtasks.

For Task 1 – sentence-level, we fine-tuned our
generic models exclusively with this year’s DA
data. The architecture of these models remains con-
sistent with our submission from the previous year,
but we employ XLM-R XL and XXL as pretrained
encoders (Conneau et al., 2020). For the word-level
quality prediction task, we follow the successful
approach of combining the sentence- and word-
level signals into one loss during the finetuning
step, which has yielded positive results in previ-
ous iterations (Rei et al., 2022b). For fine-grained
error span detection, we conducted experiments
exploring various approaches that build upon our
word-level and sentence-level strategies. In terms
of contrasting systems, we explored UnbabelQi1

and GPT-4 (OpenAI, 2023). For GPT-4, we used
a prompt designed to predict both the location and
severity of errors in each translation, akin to the ap-
proach used in AutoMQM (Fernandes et al., 2023).

Overall, our main contributions are: (i) we in-
troduce approaches for multilingual machine trans-
lation quality estimation that are consistently first-
ranked at word-, span-, and sentence-level gran-
ularity; (ii) we explore different approaches to
predict the span of problematic translations along
with their error severities (OK, MINOR, MAJOR);
(iii) we publicly release two of our best models for
research purposes (COMETKIWI -XL2 and -XXL3).
To the best of our knowledge, these are the largest
open-source QE models publicly released.

Our submitted systems attain the top multi-
lingual results in all tasks: For Task 1 sentence-

1https://qi.unbabel.com/
2https://huggingface.co/Unbabel/

wmt23-cometkiwi-da-xl
3https://huggingface.co/Unbabel/

wmt23-cometkiwi-da-xxl
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level prediction, our multilingual system achieves
59.4 Spearman correlation points, surpassing the
second-best system by nearly 4 absolute points. For
word-level, our system achieves a 31.7 MCC score,
outperforming the second-best system by almost
2 absolute MCC points. For error span prediction,
our multilingual system achieves a 22 F1.0 score,
beating the second-best system by more than 5 F1

points.

2 Overview of the shared-task

QE systems are designed according to the granular-
ity in which predictions are made (e.g., sentence-
or word-level QE). In sentence-level QE, the goal
is to predict a single quality score ŷ ∈ R given the
whole source and its translation as input. Word-
level QE works at a lower granularity level, with
the goal of predicting binary quality labels ŷi ∈
{OK, BAD} for all 1 ≤ i ≤ n machine-translated
words, indicating whether that word is a translation
error. In fine-grained error span detection, systems
are tasked with flagging which parts of the segment,
i.e., sequences of consecutive characters, contain
errors. If an error span is found, the system has
to point out its severity; in this shared task, an er-
ror span’s severity can be classified as MINOR or
MAJOR. We sometimes refer to the parts of the seg-
ment that do not belong to an error span as being
labelled as OK. We participated on all tasks of this
year’s shared-task. We specify the language pairs
and the released data below:

Task 1 – Sentence-level quality prediction:
Submissions for this task were evaluated
based on their correlation with Direct Assess-
ment (DA) annotations for five language pairs:
English→Marathi (en-mr), English→Hindi (en-hi),
English→Tamil (en-ta), English→Telugu (en-te),
and English→Gujarati (en-gu). Furthermore,
they were evaluated using Multidimensional
Quality Metrics (MQM) annotations for three
language pairs: English→German (en-de),
Chinese→English (zh-en), and English→Hebrew
(he-en). Training data was made available for all
language directions except for he-en.

Task 1 – Word-level quality prediction: Sub-
missions for this task underwent evaluation
based on tags inferred from post-editions for
English→Farsi (en-fa) and English→Marathi (en-
mr). Additionally, they were assessed using MQM
annotations for en-de, zh-en, and he-en. No addi-

[cls] target [sep] source [eos]

Pre-trained Encoder

Layer Pooling

[cls] Target Embeddings

Feed Forward Feed Forward

Sentence score
ŷ ∈ R

Word labels
ŷi ∈ YWL

Figure 1: Our model follows COMETKIWI for sentence-
level (left part) and word-level QE (right part). We
represent the output space of the word-level head by
YWL.

tional training or development data with word-level
tags were made available. To the best of our knowl-
edge, no word-level data is available for en-fa and
he-en.

Task 2 – Fine-grained error span detection:
submissions were evaluated on error spans obtained
via MQM annotations for 3 language pairs (en-de,
zh-en and he-en). No training nor development
data is available for he-en.

3 Implemented Systems

We largely follow the architecture of
COMETKIWI (Rei et al., 2022b) – see Fig-
ure 1 for an illustration. We concatenate the
machine translated sentence t = ⟨t1, ..., tn⟩ and
its source sentence counterpart s = ⟨s1, ..., sm⟩ to
serve as input to the encoder. This encoder then
produces hidden state matrices H0, ...,HL for
each layer 0 ≤ ℓ ≤ L, where Hℓ ∈ R(n+m)×d,
where ℓ = 0 corresponds to the embedding layer
and d is the hidden size. Following this, all hidden
states are fed to a scalar mix module (Peters et al.,
2018) that learns a weighted sum of the hidden
states of each layer of the encoder, producing a
sequence of aggregated hidden states Hmix as
follows:

Hmix = λ
L∑

ℓ=0

βℓHℓ. (1)

Here λ is a scalar trainable parameter, β ∈ △L

is given by β = sparsemax(ϕ) using a sparse
transformation (Martins and Astudillo, 2016), with
ϕ ∈ RL as learnable parameters, and where we
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denote by △L := {β ∈ RL : 1⊤β = 1,β ≥ 0}
the probability simplex.4

For sentence-level models, we use the hidden
state of the <cls> token as the sentence represen-
tation, which, in turn, is passed to a 2-layered feed-
forward module in order to get a sentence score pre-
diction ŷ ∈ R. For word-level and error span detec-
tion models, we first retrieve the hidden state vec-
tors associated with each each token in t, and then
pass them to a linear projection to get word-level
predictions ŷi ∈ YWL, ∀1≤i≤n. The output space of
the word-level predictions is different depending on
whether the models are constructed for word-level
quality prediction (YWL = {OK, BAD}), or error
span detection (YWL = {OK, MINOR, MAJOR}).

Pretrained multilingual encoders. Similarly
to (Rei et al., 2022b), we employ InfoXLM L (Chi
et al., 2021).5 Additionally, we experiment with
scaled-up multilingual encoders, including XLM-R
XL,6 and XLM-R XXL.7 InfoXLM L comprises
24 encoder blocks with 16 attention heads each,
totaling 550M parameters. XLM-R XL and XLM-
R XXL have 32 attention heads for each encoder
block, 36 and 48 encoder blocks and a total of 3.5B
and 10.7B parameters, respectively.

Generic models for all tasks. We create, for
each model size, a generic model that will then be
further adapted to each separate task. To train these
models, we use the collective corpora from 2017
to 2019 DA annotations of the WMT Translation
shared task, and the MLQE-PE corpus (Fomicheva
et al., 2022). We include the human annotations re-
spective to the language pairs of this year’s shared
task for 7 different language pairs: DA annotations
for en-mr, en-hi, en-ta, en-te, en-gu, and MQM an-
notations for en-de and zh-en. Overall, the generic
models are trained on sentence-level quality pre-
diction with over 940k samples with source, trans-
lation and quality score on 38 different language
pairs. When presented with multiple DA scores
for the same sentence pair, we used the z-score
of the DAs for training but we first normalize the
DAs between 0 and 1, where 1 represents a perfect

4As it has been shown in (Rei et al., 2022a) not all layers
are relevant and thus, using sparsemax we learn to ignore
layers that do not help in the task at hands.

5https://huggingface.co/microsoft/
infoxlm-large

6https://huggingface.co/facebook/
xlm-roberta-xl

7https://huggingface.co/facebook/
xlm-roberta-xxl

translation and 0 a random one.

Task adaptation. After having obtained the
generic models, we will train models for each sep-
arate stream of the shared-task, i.e., sentence-level,
word-level or error span prediction. To do so, we
consider the multi-task optimization from Rei et al.
(2022b) wherein sentence scores can be used along-
side supervision from word-level tags. Formally,

LSL(θ) =
1

2
(y − ŷ(θ))2 (2)

LWL(θ) = −
1

n

n∑

i=1

wyi log pθ(yi) (3)

L(θ) = λSLLSL(θ) + λWLLWL(θ), (4)

where w ∈ R|YWL| represents the class weights
given for the word-level tags,8 and λSL, λWL ∈ R+

are used to weigh the sentence and word-level
losses, respectively. Note that λSL = 1 and λWL =
0 yields a fully sentence-level model, whereas
λSL = 0 and λWL = 1 yields a word-level model.

Using unconstrained models. For error span de-
tection, we evaluate UnbabelQi, an Unbabel demo
QE system, alongside GPT4 (OpenAI, 2023). We
prompt GPT4 to produce an MQM annotation for
each source-target pair, based on five-shot exam-
ples which vary across language pairs but are con-
sistent within segments of the same language pair.
We also apply this system in Task 1, deriving a
sentence-level score from error spans, in alignment
with the MQM framework. This approach bears
similarity to AutoMQM (Fernandes et al., 2023).

3.1 Task 1: Quality prediction
After the pretraining phase, we further separately
adapt the generic models to the released DA and
MQM data for this year’s shared task.

3.1.1 Sentence-level quality prediction
Adaptation for Sentence-level. In order to tailor
our models to the language pairs featured in this
year’s shared task, we conducted full fine-tuning
until convergence on the released validation set.
This fine-tuning exclusively leveraged the recently
released Direct Assessment (DA) annotations for
this year’s task. This approach yields additional im-
provements for those languages. In the case of the
MQM language pairs, our preliminary experiments
revealed that attempting significant performance

8These parameters help control how much we penalize the
different granularities of word-level errors.
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improvements on the MQM data led to noteworthy
drops in correlations for the other language pairs
using DAs. Consequently, for the MQM language
pairs, we opted to employ the generic models as
they are.

Ensembling models. Similarly to Rei et al.
(2022b), we use Optuna (Akiba et al., 2019) to
assemble four models – two XL and two XXL –
into a single system. We do so by finding the op-
timal weights for each language pair among these
four multilingual models, and combining their pre-
dictions according to those weights. Notably, the
XXL models are generic models, whereas the two
XL checkpoints were further optimized with this
year’s shared task data. As expected, the XL mod-
els carry more weight for Indian languages, while
the XXL generic models were deemed more crucial
for MQM languages.

3.1.2 Word-level quality prediction
For the word-level QE tasks, we experimented with
both the multi-task setting and word-labels only.

Training word-level models. This year, no train-
ing or development data with word-level tags were
made available. As such, the training data for our
models consists of the training data used in Rei
et al. (2022b), combined with the development sets
from the 2022 WMT Shared Task. As the word-
level task was going to be tested in a zero-shot
scenario for two out of five language pairs (en-fa,
he-en), contrary to Rei et al. (2022b), we do not
prepend a language prefix to the beginning of the
source and target segments during training. More-
over, for the post-edit (PE) models, we removed
samples from two language pairs (ps-en and en-cs)
from the training data. We did so to assess, during
validation, the models’ capability to generalise in a
zero-shot scenario. For the MQM models, we used
all available annotations, including those in en-ru.

Ensembling models. For word-level we fol-
lowed a similar ensembling technique used for
sentence-level. Specifically, we combined multi-
ple systems trained with different hyperparameters,
encoder size and pre-training setups. In the case
of word-level predictions, we aggregate multiple
predictions into OK/BAD tags by following the
ensemble-tags procedure from Rei et al. (2022b).
In this approach, we combine the predicted tags
of each model: for every input segment, we get a
combined tag, α

∑
i∈Mwici, where ci is the tag

predicted by the model and α is the weight for the
BAD tag. We use Optuna to determine the optimal
weights wi for each model and the optimal BAD

weight α for each LP. In the final submission, we
combine six models (five PE models and one MQM
model). Five of these models use InfoXLM as the
encoder model, and one PE model uses XLM-R
XL.9 Refer to Table 2 for the test set results.

3.2 Task 2: Fine-grained error span detection

In this task, we investigated three distinct ap-
proaches. The first approach extends word-level
models by modifying their output predictions.
More precisely, it involves transforming consecu-
tively predicted BAD tags into character-level error
spans, rather than categorizing individual words
based on the first subword. To determine the er-
ror severities of these spans, we considered two
options: labeling all the subwords within the span
as either MINOR or MAJOR. Our best results were
achieved with the latter approach.

The second approach leverages XCOMET (Guer-
reiro et al., 2023) in conjunction with a pseudo-
reference obtained from DeepL or Google Trans-
late.10 Similar to our models from Task 1 word-
level, XCOMET is trained with a multitask objec-
tive. Additionally, XCOMET is simultaneously
optimized for both reference-free and reference-
based evaluation, following UNITE (Wan et al.,
2022). During inference, XCOMET can leverage
a reference translation to enhance error identifi-
cation. Since we employ a pseudo-reference that
may contain translation errors, we initially assess
the quality of the pseudo-reference using a generic
QE system from Task 1 (reference_score). For
all pseudo-references with a score below 0.5, we
run XCOMET with QE-only input. For pseudo-
references scoring above 0.5, the input weights for
XCOMET are determined as follows:

diff = 1− reference_score

src_weight = 2 · diff

ref_weight = (1− src_weight) · 0.4
uni_weight = (1− src_weight) · 0.6

Here, src_weight represents the weight as-
signed to the source-only input, ref_weight de-

9We found it hard to obtain performance boosts by scaling
up to XLM-R XL on the word-level task. As such, we did not
experiment with XLM-R XXL.

10We choose the best translation using the generic XXL
model from task 1.
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DA MQM

Encoder en-mr en-hi en-ta en-te en-gu en-de zh-en he-en† avg.

2nd place (Yan et al., 2023) 0.556
CometKiwi-22 (Rei et al., 2022b)

InfoXLM L 0.625 0.394 0.549 0.229 0.577 0.413 0.476 0.619 0.485

Generic models
InfoXLM L 0.661 0.505 0.641 0.282 0.661 0.422 0.448 0.610 0.529
XLM-R XL 0.664 0.536 0.607 0.335 0.637 0.422 0.469 0.624 0.537
XLM-R XXL 0.685 0.520 0.670 0.326 0.655 0.443 0.476 0.662 0.555

Further adapted models for sentence-level
XLM-R XL 0.684 0.583 0.682 0.386 0.683 0.434 0.441 0.696 0.574
XLM-R XXL 0.693 0.555 0.738 0.359 0.701 0.434 0.457 0.661 0.575

Final Ensemble
Ensemble 4x 0.702 0.598 0.739 0.389 0.714 0.448 0.493 0.668 0.594

GPT4-based model
GPT4-QE 0.379 0.212 0.146 0.174 0.297 0.442 0.412 0.488 0.319

Table 1: Results for sentence-level QE in terms of Spearman correlation. We represent zero-shot LPs with †.

notes the typical metric input (reference-only in-
put), and uni_weight represents a unified input
where the model receives all three sentences (trans-
lation, source, and reference). Notably, for pseudo-
references with a QE score of 1, we rely solely on
a reference-only input and the unified input. We
refer to this approach as xCOMET-PS-REF.

We also contrast the aforementioned approaches
with two unconstrained QE systems: UnbabelQi
and GPT-4, as mentioned in Section 3. We refer to
these approaches as UNBABELQI and GPT4-QE,
respectively.

4 Experimental Results

We present the results on the official test set for
each of the tasks for multiple model/data configura-
tions. Sentence-level submissions were evaluated
using the Spearman rank correlation. Pearson and
Kendall correlation were also used as secondary
metrics, but here we report only Spearman since
it was the primary metric used to rank systems.
word-level submission were evaluated using MCC,
F1-OK, and F1-BAD, but we report only MCC as
it was considered the main metric. Error span de-
tection was evaluated using F1 score in which the
positive labels are all the characters belonging to
erroneous spans. Furthermore, each true positive is
downweighted to half if the system failed to clas-
sify the error span’s severity (e.g., MINOR instead
of MAJOR). The submitted systems were indepen-
dently evaluated on in-domain and zero-shot LPs
for direct assessments and MQM.

4.1 Quality Estimation

Sentence-level. Results for sentence-level are
presented in Table 1. Results indicate that retrain-
ing the system from the previous year, specifically
COMETKIWI with InfoXLM, using data that en-
compasses this year’s DA, leads to significant im-
provements. Remarkably, this improvement in cor-
relations is achieved while maintaining the same
level of correlations for en-de (a high-resource lan-
guage pair for which both models share the same
data) and he-en, a language pair that both models
had not seen during training. Surprisingly, there
was a drop in correlations for zh-en even though
both models saw the same zh-en data. Neverthe-
less, the overall performance of the newly retrained
version improved by 4.4 Spearman points.

As anticipated, among the three backbone trans-
formers, the XXL model is the top performer, with
significant improvements across all language pairs
when compared to InfoXLM. Moreover, additional
finetuning on this year’s training data results in fur-
ther improvements for the Indian languages. No-
tably, concerning the MQM data, this supplemen-
tary finetuning step not only preserves performance
but sometimes even increases it. Similar to last
year, the ensemble of high-performing models once
again makes up our best submission.

Finally, despite performing well in Task 2,
GPT4-QE shows poor correlations at sentence-
level prediction with the exception of the en-de for
which GPT4-QE, although lagging behind the en-
semble approach, surpasses our individual models.
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Post-edit MQM

Method en-fa† en-mr en-de zh-en he-en† avg.

Baseline (Rei et al., 2022b) 0.293 0.287 0.179 0.225 0.275 0.226
2nd place (Yan et al., 2023) 0.298

Adapted models for word-level
PE model (InfoXLM L) 0.343 0.343 0.227 0.253 0.382 0.310
PE model (XLM-R XL) 0.325 0.344 0.255 0.197 0.306 0.285
MQM model (InfoXLM L) 0.296 0.252 0.215 0.269 0.334 0.273

Final Ensemble
Ensemble PE + MQM 0.345 0.347 0.246 0.302 0.402 0.317

Table 2: Results for word-level QE in terms of MCC for the post-edit and MQM LPs. The ensemble is composed by
multiple post-edit and MQM models. We represent zero-shot LPs with †.

Word-level. We report the best individual sys-
tems Table 2. Our best individual systems were
trained on top of the InfoXLM L generic model.
For PE models, we used multi-task objective in
Eq. 4, as we found that combining the sentence-
level and word-level loss was beneficial. However,
for MQM models, we trained word-level only mod-
els, by setting λSL = 0.0 and λWL = 1.0.

Interestingly, we found that PE models are very
competitive on MQM language pairs. For example,
the best overall performance for he-en was actually
obtained with a PE word-level model. This is also
reflected on the Optuna weights obtained for our
final ensemble, wherein the weights of the PE mod-
els are significantly higher than those of the MQM
models for all language pairs but en-de. In fact,
our final ensemble for en-zh and en-he consists
solely of PE models trained with different learning
rates, λSL, λWL and w. Further investigation on two
different vectors may lead to improved word-level
models: (i) balancing DA and MQM word-level
annotations, and (ii) appropriately leveraging the
larger capacity of scaled up encoder models.

Fine-grained error span detection. Results for
fine-grained error span detection are shown in Ta-
ble 3. Using a word-level model to obtain error
span predictions leads to reasonable performance,
comparable to our unconstrained submission, UN-
BABELQI, a model directly tasked with error span
detection. That said, xCOMET-PS-REF, an error
span detection model, surpassed both of the pre-
vious approaches. We attribute the improved per-
formance to this system being an ensemble of two
significantly larger models, and to the usage of a
pseudo-reference. We found the latter to be particu-
larly beneficial on he-en, a language pair for which
we had no training data.

Method en-de zh-en he-en† avg.

2nd place (Li et al., 2023) 0.165
Baseline 0.167 0.219 0.083 0.156

WORD-LEVEL 0.235 0.272 0.105 0.204
xCOMET-PS-REF 0.259 0.270 0.125 0.218
UNBABELQI 0.249 0.227 0.111 0.196
GPT4-QE 0.273 0.265 0.121 0.220

Table 3: Results for fine-grained error span detection
(Task 2). Evaluation metric is F1 score. We repre-
sent zero-shot LPs with †. The first two systems are
constrained while the other two are unconstrained sub-
missions.

The best approach in terms of average F1 was
GPT4-QE, mostly due to the improved perfor-
mance on en-de. While this is a promising finding
for LLM-based quality estimation systems, there
are limitations. First, obtaining a sentence-level
score from the error spans (as per the MQM frame-
work) leads to poor correlations with human judge-
ments derived from DA (see Table 1) and with low-
resource language-pairs like he-en. Second, despite
being useful in practice and leading to gains in F1,
it is hard to control GPT’s precision and recall. We
found that the number of examples included in the
prompt, their ordering, and the number of errors
within each example led to noticeable changes in
the system’s propensity to flag errors. Thirdly, run-
ning QE with a system such as GPT-4 is expensive
and slow even for a shared task exercise.

5 Final Remarks

We describe Unbabel and IST joint submission to
WMT23 QE shared task. Our approaches correlate
well with human judgements for all the three gran-
ularities of translation quality prediction, ranking
first in all multilingual tasks and surpassing the pre-
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vious state-of-the-art model, COMETKIWI-22, by
up to 10 Spearman correlation points. Overall, our
models follow the same architecture of last year’s
participation, COMETKIWI. However, this year we
leverage more data and larger encoder models. Our
best final systems are ensembles of different mod-
els trained on DA, post-edits or MQM scores that
complement each other. Interestingly, our best sys-
tems surpass GPT-4 by a large margin for sentence-
level translation quality prediction, and they are
comparable to GPT-4 at error span detection.
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Abstract
Quality Estimation (QE) systems are important
in situations where it is necessary to assess
the quality of translations, but there is no
reference available. This paper describes
the approach adopted by the SurreyAI team
for addressing the Sentence-Level Direct
Assessment shared task in WMT23. The
proposed approach builds upon the TransQuest
framework, exploring various autoencoder
pre-trained language models within the
MonoTransQuest architecture using single and
ensemble settings. The autoencoder pre-
trained language models employed in the
proposed systems are XLMV, InfoXLM-large,
and XLMR-large. The evaluation utilizes
Spearman and Pearson correlation coefficients,
assessing the relationship between machine-
predicted quality scores and human judgments
for 5 language pairs (English-Gujarati, English-
Hindi, English-Marathi, English-Tamil and
English-Telugu). The MonoTQ-InfoXLM-
large approach emerges as a robust strategy,
surpassing all other individual models proposed
in this study by significantly improving over the
baseline for the majority of the language pairs.

1 Introduction

The primary objective of quality estimation (QE)
systems is to assess the quality of a translation
without relying on a reference translation. This
make QE valuable within translation processes,
as it enables the determination of whether an
automatically generated translation is sufficiently
accurate for a specific purpose. This aids in
deciding whether the translation can be used as
is, requires human intervention for full translation,
or necessitates post-editing by a human translator
(Kepler et al., 2019b). Quality estimation can
be conducted across various levels: word/phrase
level, sentence level and document level. This
paper considers only the sentence-level QE and
presents our participation in the WMT23 Sentence-
level direct assessment (DA) shared task. In

the context of this task, participating systems are
required to predict the DA score for a given (source,
target) pair. This score serves as a measure of the
translation quality.

Building upon the ideas presented in TransQuest
by Ranasinghe et al. (2020b), our investigation
explores the use of various pre-trained models
within the MonoTransQuest architecture for the
sentence-level quality estimation shared task.
The architecture employs autoencoder pre-trained
language models to fine-tune the QE data to predict
a score which indicates the quality of translation.
Using the MonoTransQuest architecture as the
base we employ the pre-trained transformers
separately to implement the systems MonoTQ-
XLMV, MonoTQ-InfoXLM-large and MonoTQ-
XLMR-large. In addition, we propose ensembleTQ
which combines the output of MonoTransQuest
when using different pre-trained models. All
the proposed systems achieve a significantly
higher Spearman correlation score compared to
the baseline.

The paper is structured as follows. Section 2
briefly presents related work on quality estimation.
Section 3 provides a concise overview of the
dataset used in the sentence-level QE shared
task. Moving on to Section 4, we introduce
the autoencoder pre-trained language models
and proposed systems and detail the training
methodology. Section 5 is dedicated to the
evaluation and Section 6 comprises the result and
discussion. The paper concludes by summarizing
findings, highlighting conclusions, and suggesting
potential avenues for future research in the final
section.

2 Related work

Quality estimation in machine translation has
evolved significantly throughout the years. Initially,
it relied on feature engineering and conventional
machine learning techniques like SVM and basic
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neural networks (Specia et al., 2015; Scarton and
Specia, 2014). However, Neural Networks has
since become central to quality estimation, where
there is no more need of feature engineering,
and the models can be trained directly on the
data (Kepler et al., 2019b,a; Specia et al., 2018).
Recently, Transformer-based architectures have
arisen as robust solutions for machine translation
and quality estimation. Notably, there are two
widely recognized frameworks that leverage this
transformative approach for QE tasks: TransQuest
(Ranasinghe et al., 2020a) and CometKIWI (Rei
et al., 2022).

Ensemble methods have also been explored
extensively in Quality Estimation tasks (Bao
et al., 2022; Geng et al., 2022; Kepler et al.,
2019b; Ranasinghe et al., 2020b; Rei et al.,
2022). The ensemble approach from Lim and Park
(2022) using K-folds consistently outperformed the
standard method, underscoring the prevalent belief
that ensemble strategies enhance performance
outcomes. However, some of the research
studies (Ranasinghe et al., 2020b; Bao et al., 2022;
Rei et al., 2022) show that combining multi-lingual
models through ensembling yields better results
than the traditional k-fold ensemble technique.
Geng et al. (2022) suggest an alternative ensemble
method that merges the results from models trained
using various sentence-level metrics.

Our study delves into the performance of cutting-
edge pre-trained transformer-based approaches
when applied to sentence-level Quality Estimation
tasks.

3 Dataset

We focus on Sentence-Level Direct Assessment
tasks which comprise datasets for 5 language pairs
which has English on the source side and Indian
languages on the target side: English-Gujarati (En-
Gu), English-Hindi (En-Hi), English-Marathi (En-
Mr), English-Tamil (En-Ta) and English-Telugu
(En-Te). Among these language pairs, En-Hi
language pair is considered mid-resourced and all
the other language pairs are low-resourced. Each
language pair includes around 7,000 sentence pairs
in the training set, as well as around 1,000 sentence
pairs in both the development and testing sets. Each
translation was evaluated by three professional
translators who assigned a score between 0 and
100. These Direct Assessment (DA) scores were
normalized using the z-score. The final score for

the sentence-level task requires predicting the mean
DA z-scores for the test sentence pairs. More
details on this can be found in Zerva et al. (2022).

4 Methodology

This section outlines the approach taken to
formulate our quality estimation techniques. We
begin by detailing the autoencoder pre-trained
language models employed in our architecture.
Then we explain the architecture and the strategy
employed to train these network architectures in
detail.

4.1 Pre-trained models for fine-tuning

1. XLMR-large

XLM-Roberta (Conneau et al., 2020) is
a pre-trained transformer-based language
model which is a part of the Cross-lingual
Language Model (XLM). This model
employs large-scale cross-lingual pre-
training to capture contextual information
and representations across 100 languages.
The model is trained on 2.5TB of filtered
CommonCrawl data from multiple languages,
allowing it to effectively learn cross-lingual
and language-specific patterns. The XLM-R
architecture takes sequences as input, with a
maximum token limit of 512, and generates
contextualized embeddings for each token,
enabling it to perform well on various natural
language processing tasks across different
languages (Ranasinghe et al., 2020b, 2021).

2. XLMV

XLMV is a multilingual language model with
a one million token vocabulary trained on
2.5TB of data from Common Crawl (same as
XLM-R) (Liang et al., 2023). In the context
of large multilingual language models, a
common practice involves employing a
single vocabulary shared across a diverse
set of languages. Even with the expansion
in model complexity, including parameter
count and depth, the vocabulary size has
remained relatively static. This constraint
in vocabulary hampers the potential of
multilingual models such as XLM-R to
capture nuanced representations effectively
(Wang et al., 2019).
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Figure 1: Architecture diagram of the proposed approaches

XLMV introduced an innovative strategy
addressing this issue by achieving scalability
to extensive multilingual vocabularies.
XLMV involves prioritizing vocabulary
allocation based on language-specific lexical
overlap, ensuring sufficient coverage for each
language. The outcome is tokenizations that
hold enhanced semantic significance and are
generally more concise compared to those
generated by XLM-R.

3. InfoXLM-large

InfoXLM-large (Chi et al., 2021), is
an information-theoretic framework for
cross-lingual language model pre-training.
It extends the XLM-R architecture by
formulating cross-lingual pre-training to
maximize mutual information between
multilingual texts at different granularities.
This approach enhances the model’s capability
to learn effective cross-lingual representations
by capturing shared information across
languages. InfoXLM-large introduces a
novel pre-training task based on contrastive
learning, treating bilingual sentence pairs
as views of the same meaning. By jointly
training on monolingual and parallel corpora,
the model improves the transferability of
its representations for various downstream
cross-lingual tasks (Rei et al., 2022; Bao
et al., 2022).

4.2 Architecture

The proposed architecture of MonoTransQuest
employs a pre-trained language model as shown
in Figure 1. The MonoTransQuest architecture in
TransQuest (Ranasinghe et al., 2020b) considers
only the XLMR transformer model. In our
proposed system, we train multiple multilingual
QE models by fine-tuning autoencoder pre-trained
language models (PTLMs) and report mean z-
scores. The PTLMs are namely XLMV, InfoXLM-
large, and XLMR-large which we have explained
in section 4.1. The model’s input consists of
the original sentence (source) and its translation
(target) concatenated, with a [SEP] token. This
token marks the separation of the original sentence
and the translated sentence. The pre-trained auto-
encoder accepts input sequences with a token limit
of 512 and produces a sequence representation as
output. The initial token of the sequence is [CLS]
token, encompassing a distinctive embedding
to signify the entire sequence. Subsequently,
embeddings are assigned to each word in the
sequence. Ranasinghe et al. (2020b) highlights the
superiority of the CLS-strategy over the MEAN-
strategy (calculating the mean of all output vectors
corresponding to the input words) and MAX-
strategy (determining the maximum value across
the output vectors of input words) for pooling
within the MonoTransQuest framework. We
have used the CLS-strategy (using the output of
the [CLS] token) to extract the output from the
transformer model. Consequently, we employed
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En-Gu En-Hi En-Mr En-Ta En-Te

Method ρ r ρ r ρ r ρ r ρ r

I Baseline 0.337 0.307 0.281 0.245 0.392 0.427 0.507 0.402 0.193 0.153

II MonoTQ-XLMV 0.673 0.536 0.572 0.687 0.642 0.425 0.670 0.559 0.464 0.642

III MonoTQ-InfoXLM-large 0.713 0.656 0.624 0.726 0.470 0.030 0.726 0.662 0.462 0.719

IV MonoTQ-XLMR-large 0.438 0.299 0.440 0.430 0.395 -0.117 0.482 0.454 0.345 0.211

V ensembleTQ 0.649 0.700 0.551 0.668 0.596 0.668 0.674 0.710 0.349 0.376

Table 1: Spearman (ρ) and Pearson (r) correlation between the proposed approach predictions and human DA
judgments. The best Spearman score obtained for each language pair (any method) is marked in bold. Rows II,
III, and IV indicate the single-configuration settings of MonoTransQuest architecture with different pre-trained
transformer models as explained in Section 5.1, and ensembleTQ in row V is explained in Section 5.2. The baseline
results are in Row I.

the [CLS] token’s embedding as input for a
softmax layer. The softmax layer predicts the
translation’s quality score. The mean-squared-error
loss function was used as the objective function for
training.

4.3 Training and Implementation Details

We started the training with MonoTQ-XLMV
which incorporates the XLMV-base model with
MonoTransQuest for all 5 language pairs. We
had the batch size as 8. We have used Adam
Optimizer (Kingma and Ba, 2014) with a
learning rate of 2e-5. The model is trained
using 3 epochs. The training process exclusively
utilized the training data. Early stopping was
enforced if the evaluation loss failed to show
improvements over ten consecutive evaluation
rounds. We continued the training with the same
set of configurations for MonoTQ-InfoXLM-large
and MonoTQ-XLMR-large separately. MonoTQ-
XLMV and MonoTQ-InfoXLM-large required
twice the training time compared to MonoTQ-
XLMR-large which required approximately 40
minutes of training on a GPU with 48GB of
memory.

The proposed systems are built upon the most
up-to-date version of TransQuest1 framework
and executed using Python 3.9 and PyTorch 2.0.1.
The integration of pre-trained encoders (XLMV2,
XLMR-large3 and InfoXLM-large4) into
the MonoTransQuest architecture was facilitated

1https://github. com/tharindudr/transQuest
2https://huggingface.co/facebook/xlm-v-base
3https://huggingface.co/xlm-roberta-large
4https://huggingface.co/microsoft/infoxlm-large

through the application of HuggingFace’s
Transformers library.

5 Evaluation

In this section, we outline the evaluation outcomes
of our models. We assess the performance of the
proposed models under two circumstances: single
model configuration and ensembleTQ.

The primary evaluation criterion employed was
Spearman’s rank correlation coefficient (Sedgwick,
2014), which is a statistical measure used to
evaluate the strength and direction of association
between two variables. Also, we have calculated
the Pearson correlation coefficient (Cohen et al.,
2009) as a secondary metric for the evaluation.
In the context of Quality Estimation (QE) for
machine translation, it is used to evaluate the
correlation between the machine-predicted quality
scores and the gold standard labels provided by
human annotators in the test dataset. Spearman’s
rank correlation coefficient assesses the monotonic
relationship between the two variables, unlike
the Pearson correlation (Cohen et al., 2009),
which measures the linear relationship between
two variables. It is calculated by first ranking
the values of both variables in ascending or
descending order and then computing the Pearson
correlation coefficient between the two sets of
ranks. Spearman’s rank correlation coefficient is
often preferred because it is less sensitive to outliers
and non-linear relationships between the predicted
scores and human scores.
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En-Gu En-Hi En-Mr En-Ta En-Te

Team ρ r ρ r ρ r ρ r ρ r

1 Unbabel-IST 0.714 0.745 0.598 0.667 0.704 0.735 0.739 0.733 0.388 0.362

2 IOL Research 0.695 0.742 0.6 0.667 0.505 0.372 0.74 0.742 0.376 0.344

3 HW-TSC 0.691 0.714 0.644 0.72 0.692 0.718 0.775 0.778 0.394 0.35

4 MMT 0.54 0.581 0.494 0.57 0.65 0.663 0.547 0.531 0.337 0.281

5 Baseline 0.337 0.307 0.281 0.245 0.392 0.427 0.507 0.402 0.193 0.153

6 SurreyAI-ensembleTQ 0.649 0.700 0.551 0.668 0.596 0.668 0.674 0.710 0.349 0.376

Table 2: Spearman (ρ) and Pearson (r) correlation between the predictions from the participated systems in WMT23
sentence-level QE shared task and human DA judgments. The best Spearman and Pearson score obtained for each
language pair is marked in bold. Even though we have experimented with the single model configurations, we only
submitted our ensembled approach (SurreyAI-ensembleTQ) for the shared task competition.

5.1 Single model configurations

Initially, our evaluation focused on the single
model configurations of the proposed framework.
This involved training a quality estimation model
using a single autoencoder pre-trained language
model on the training data for each language
pair separately. Subsequently, we assessed each
model’s performance (MonoTQ-XLMV, MonoTQ-
InfoXLM-large, MonoTQ-XLMR-large) on the
corresponding test set for each language pair. The
outcomes of this evaluation for the single model
configuration are presented in Table 1.

5.2 EnsembleTQ

Recently, ensemble techniques have demonstrated
their efficacy in enhancing transformer-based
models’ performance (Xu et al., 2020). Following
this approach, we employed an ensemble strategy
to experiment further to see whether it enhance
the performance. For every input within the
test set, we aggregate the output scores from
various distinct pre-trained models integrated into
the MonoTransQuest architecture. Subsequently,
we calculate the average of the cumulative score,
divided by the number of pre-trained models,
resulting in the ensembleTQ score. Finally, we
compute the Spearman and Pearson correlation
scores for the ensembleTQ score, providing
a comprehensive evaluation of our ensemble
approach.

6 Result and Discussion

The research is divided into two distinct settings,
as outlined in Sections 5.1 and 5.2. The primary
evaluation metric employed in this study is the
Spearman correlation coefficient.

As shown in Table 1, is notable that the baseline
model does not surpass our proposed approaches
in terms of Spearman correlation scores in most
cases. This outcome underscores the specific
strengths and limitations associated with different
model architectures. Complementing the Spearman
correlation analysis, the examination of Pearson
correlation scores further enriches the assessment.
The MonoTQ-InfoXLM-large model consistently
exhibits superior Pearson correlation scores across
a majority of the language pairs, accentuating its
robust performance characteristics.

From our experiment results, as shown in Table
1, it’s notable that the single-model configuration
of MonoTQ-InfoXLM-large and MonoTQ-XLMV
outperform ensemble-TQ for the majority of the
language pairs. Observing the results outlined in
both Table 1 and Table 2, it becomes evident that
MonoTQ-InfoXLM-large and MonoTQ-XLMV
not only outperform other systems among our
own proposed approaches, they also exhibit a
competitive performance with the best-performing
system in the WMT23 sentence-level shared-
task. MonoTQ-InfoXLM-large shows a very
close Spearman correlation score with the winning
system of the WMT23 sentence-level task for the
En-Gu, En-Hi and En-Ta language pairs. Also,
MonoTQ-XLMV shows the highest Spearman
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No. Name DiskFootPrint
(Bytes)

1 Unbabel-IST 42,868,104,221

2 IOL Research 2,357,242,105

3 HW-TSC 27,730,527,504

4 MMT 2,448,132,038

5 SurreyAI-
ensembleTQ

7,945,689,496

6 SurreyAI-MonoTQ-
XLMV

3,221,225,472

7 SurreyAI-MonoTQ-
InfoXLM-large

2,362,232,012

8 SurreyAI-MonoTQ-
XLMR-large

2,254,857,830

Table 3: Rows 1-5 display the disk footprint of
ensemble model submissions related to the sentence-
level task for WMT23. Meanwhile, Rows 6-8 present
the disk footprint of our TQ models with single model
configuration.

correlation score for the En-Te language pair. This
observation raises the question that do the practice
of ensembling always guarantees performance
enhancement. Table 3 presents the memory
requirements of both ensemble approaches and
single-model configurations. Interestingly, in most
cases ensemble models demand significantly more
memory space than single-model setups, despite
only offering a marginal boost in performance.
This observation prompts us to reconsider the
efficiency of employing ensemble models.

The conducted experiments across mid-
resourced and low-resourced language pairs
unravel intricate performance dynamics among
various models.

7 Conclusion

This paper comprehensively evaluates the
proposed architecture within the context
of sentence-level direct quality assessment,
employing diverse encoder-based pre-trained
models. Our investigation notably highlights
the enhanced performance attributed to the
MonoTQ-InfoXLM-large, which surpasses
the other configuration approaches, namely
MonoTQ-XLMV, ensembleTQ strategy and

MonoTQ-XLMR-large. While our outcomes in the
WMT23 sentence-level Direct Assessment task
did not attain peak performance, they nevertheless
exhibited a marked improvement over the baseline
and showed notable performance scores close to
the winning systems.

Looking ahead, our research trajectory
anticipates a continued exploration of quality
estimation employing large language models. This
involves further experimentation encompassing
a broader spectrum of low-resourced language
pairs. These forthcoming endeavours aspire to
deepen our insights into the intricacies of direct
quality assessment and contribute to advancing
the frontiers of natural language processing. Also,
we are focused on continuing the experimentation
of pre-trained language models incorporated into
different QE frameworks.
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Abstract

This paper presents our submission to the
WMT 2023 Quality Estimation (QE) shared
task 1 (sentence-level subtask). We propose a
straightforward training data augmentation ap-
proach aimed at improving the correlation be-
tween QE model predictions and human quality
assessments. Utilising eleven data augmenta-
tion approaches and six distinct language pairs,
we systematically create augmented training
sets by individually applying each method to
the original training set of each respective lan-
guage pair. By evaluating the performance gap
between the model before and after training
on the augmented dataset, as measured on the
development set, we assess the effectiveness
of each augmentation method. Experimental
results reveal that synonym replacement via
the Paraphrase Database (PPDB) yields the
most substantial performance boost for lan-
guage pairs English-German, English-Marathi
and English-Gujarati, while for the remaining
language pairs, methods such as contextual
word embeddings-based words insertion, back
translation, and direct paraphrasing prove to be
more effective. Training the model on a more
diverse and larger set of samples does confer
further performance improvements for certain
language pairs, albeit to a marginal extent, and
this phenomenon is not universally applicable.
At the time of submission, we select the model
trained on the augmented dataset constructed
using the respective most effective method to
generate predictions for the test set in each
language pair, except for the English-German.
Despite not being highly competitive, our sys-
tem consistently surpasses the baseline perfor-
mance on most language pairs and secures a
third-place ranking in the English-Marathi1.

1 Introduction

Quality Estimation (QE) strives to assess the output
of Machine Translation (MT) systems without the

1Our code and data are available at https://github.
com/Yulong-W/DataAug-QE.

availability of a reference translation of known high
quality (Blatz et al., 2004; Specia et al., 2009, 2013;
Kanojia et al., 2021). This capability serves as a
valuable asset for expediting and cost-effectively
facilitating the evaluation phases throughout the
development cycle of MT systems.

In this paper, we describe our contribution to
the QE shared task at the Eighth Conference on
Machine Translation (WMT23). We participate
in the Task 1 of the shared task and we specifi-
cally focus on the sentence-level subtask, which
centers on predicting the quality score of neural
MT outputs at the sentence level without access to
reference translations. Our study encompasses six
language pairs: English-German (En-De), English-
Marathi (En-Mr), English-Hindi (En-Hi), English-
Tamil (En-Ta), English-Telegu (En-Te), English-
Gujarati (En-Gu), with annotations derived in two
different ways: multi-dimensional quality metrics
(MQM) (Freitag et al., 2021) and direct assess-
ments (DA) (Fomicheva et al., 2022). Participat-
ing systems are assigned the task of predicting the
quality score (MQM or DA) for each source-target
sentence pair, and their performance is evaluated
using Spearman’s rank correlation coefficient as
the primary metric, supplemented by the Kendall
and Pearson coefficients as secondary metrics for
assessment.

Our approach investigates the potential to en-
hance the performance of QE models by exposing
them to a diverse range of training examples. To
this end, we identify eleven different data augmen-
tation methods and apply each of them individu-
ally to augment the training set for each language
pair. Our results reveal that, for most language
pairs, these methods result in varying degrees of
performance improvement, with the most effec-
tive methods being synonym substitution using the
PPDB, words insertion guided by contextual word
embeddings, back-translation, and direct paraphras-
ing. We also show that for some language pairs, it
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is feasible to further enhance the model’s perfor-
mance by training it on an augmented set formed
through the amalgamation of part or all of the said
augmentation methods; however, the extent of im-
provement remains constrained. For each language
pair except English-German, we generate predic-
tions utilising the model trained on the augmented
dataset constructed through the respective most
effective method. Although our submission may
not be considered highly competitive, they consis-
tently achieve significantly improved performance
compared to the organisers’ baseline for the ma-
jority of language pairs. Notably, for the English-
Marathi pair, our submission ranks third place with
the Spearman score of 0.650. This observation indi-
cates that the training data augmentation approach
may hold particular promise and offer advantages
when applied to the English-Marathi language pair.

2 Methodology

As mentioned above, we identified a total of eleven
distinct data augmentation methods, as detailed in
Table 1. For all the given source sentences and
their corresponding MT hypothesis in the train-
ing dataset for each language pair, each method
is independently applied only to the source sen-
tences, leading to the creation of the respective
transformed source-target sentence pairs. Our hy-
pothesis posits that training the QE model on the
augmented training set, which incorporates these
transformed instances, holds the potential to bol-
ster its performance. For each original instance, we
generated one augmented sample per method and
assigned to the augmented data the same quality
score as the original translation hypothesis. How-
ever, it is noteworthy that certain methods, such
as AS and RD, possess the potential to alter the
meaning of the source-side sentence (Kanojia et al.,
2021), consequently inducing changes in MT out-
put and, by extension, the assigned quality label.
In such instances, there is a likelihood of introduc-
ing noises to the augmented training dataset. A
systematic exploration of the meaning-preserving
capacity of these perturbation methods and the im-
pact of those introduced noises at training time on
the performance of the model necessitates further
investigation.

3 Experiments

In this section, we describe our experimental set-
tings, present the results achieved on the develop-

Data Augmentation Method
m1 WordNet-based Synonym Substitution

(WSS): Substitute words by WordNet’s
synonym (Fellbaum, 1998)

m2 PPDB-based Synonym Substitution
(PSS): Substitute words with synonyms
from English PPDB (Pavlick et al., 2015)

m3 Antonym Substitution (AS): Substitute
random words with their antonyms

m4 Random Swap (RS): Swap words in the
sentence randomly

m5 Random Deletion (RD): Delete words
in the sentence randomly

m6 Spelling Mistake Substitution (SMS):
Substitute content words randomly by
spelling mistake words dictionary

m7 GloVe Similarity-based Substitution
(GSS): Substitute words based on GloVe
similarity (Pennington et al., 2014)

m8 Contextual Words Insertion (CWI): In-
sert words using contextual word embed-
dings from the RoBERTa-base

m9 Contextual Words Substitution
(CWS): Substitute words by contextual
word embeddings from the RoBERTa-
base (Liu et al., 2019)

m10 Back Translation (BT)
m11 Direct Paraphrasing (DP)

Table 1: Various data augmentation methods.

ment and test sets, and perform analysis derived
from our experimental findings. We additionally
offer insights into the influence of the quantity of
augmented training examples on the performance
of the QE model.

3.1 Experimental Settings

Language Pairs (LPs). We conducted experiments
on six language pairs. The training, development,
and test datasets for each language pair utilised in
our study are accessible via the shared task web-
site2, and we present the dataset statistics in Table
2. We applied each data augmentation method on
the source sentences in the training set of each lan-
guage pair.

Models. Our training methodology adheres to
the PyTorch-based COMET framework (Rei et al.,
2020), with the foundational pre-trained model be-

2https://wmt-qe-task.github.io/subtasks/
task1/
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LPs Training Development Test

MQM

En-De 28909 1005 1897

DA

En-Mr 26000 1000 1086
En-Hi 7000 1000 1074
En-Ta 7000 1000 1075
En-Te 7000 1000 1075
En-Gu 7000 1000 1075

Table 2: Number of examples in the training, develop-
ment and test set, respectively, for each language pair.

ing XLM-RoBERTa-large (Conneau et al., 2020).
We fine-tuned the pre-trained XLM-RoBERTa-
large model on the original and the augmented train-
ing sets for each language pair, respectively and
evaluated them on the development set. The best-
performing model was chosen from those trained
on the corresponding augmented training datasets
(in the case of English-German, the chosen model
was trained on the augmented dataset created by
applying the top four3 effective data augmentation
techniques to each source sentence) to generate the
predictions on the test set. All experiments were
conducted using 2 16GB Nvidia v100 GPUs.

Data Augmentation Methods. Methods WSS
to BT: We utilised the NLPAug library (Ma, 2019)
to perform the augmentation. In method PSS, we
used the small size English PPDB (Pavlick et al.,
2015). In the absence of any synonymous expres-
sions documented for all the words within a source-
side sentence in methods WSS and PSS, the aug-
mented sample will persist unaltered in comparison
to its original version. For methods WSS to CWS,
the percentage of word will be augmented is set
to the default value of 0.3, as in the implementa-
tion of the NLPAug library (Ma, 2019). In method
BT, a sentence is translated from English to Ger-
man, then back to English to obtain its paraphrased
version (Ng et al., 2019). Method DP: Direct para-
phrasing was performed by soliciting a Generative
Pre-trained Transformer (GPT) (Brown et al., 2020)
series model, specifically GPT-3.5-turbo, to gener-
ate responses for the prompt: Generate a similar

3At the time of results submission, this number (i.e., 4)
was randomly set. However, as illustrated in Figure 1, aug-
menting the training dataset for the English-German language
pair using the best two methods yielded the most optimal
performance.

paraphrase for this sentence: [source sentence],
using the OpenAI ChatGPT API.

3.2 Evaluation Results and Discussion

Table 3 illustrates the performance gap of the QE
model on the development set before and after train-
ing on each augmented dataset created through the
respective data augmentation method for each ex-
amined language pair. As can be seen from Table
3, in the majority of instances, the training data
augmentation approaches demonstrated their effec-
tiveness in enhancing the performance of the QE
model. In the following, we discuss the observa-
tions for all the studied language pairs.

English-German. Method PSS exhibited the
most significant performance improvement across
all three evaluation metrics. Augmenting the train-
ing set with method CWI yielded the same improve-
ments in terms of Spearman and Kendall correla-
tions compared to augmenting it with PSS, albeit
resulted a lower Pearson score. However, it was
observed that presenting the model with modified
training examples generated using method WSS
and RS did not contribute to the enhancement of
Spearman correlation. In fact, it even had an ad-
verse effect, causing a slight reduction (0.3%) in
the Kendall score.

English-{Marathi, Gujarati}. Training the
model on the augmented set incorporating exam-
ples generated by substituting words with syn-
onyms from PPDB (method PSS) proved to be
the most effective approach in enhancing the cor-
relation between the predictions of the model and
human judgments of quality, with Spearman cor-
relation increased by 6.8% and 7.1%, respectively.
Other types of approaches also resulted in varying
degrees of performance improvement.

English-{Hindi, Tamil}. For the English-Hindi
language pair, augmenting the training set with
both CWI and DP has been observed to yield
identical improvements in terms of Spearman and
Kendall correlations, emerging as the most effec-
tive approach. In the case of English-Tamil, the
most notable enhancement was achieved by para-
phrasing the source sentences in the original train-
ing dataset using the GPT-3.5-turbo model (method
DP), as measured by Spearman and Kendall cor-
relations. However, concerning the Pearson met-
ric, method BT (back-translation) led to the most
substantial improvements for both language pairs,
amounting to 12.6% and 10.8%, respectively.
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Method En-De En-Mr En-Hi En-Ta En-Te En-Gu Average

Spearman/Kendall/Pearson

orig. 0.433/0.328/0.393 0.499/0.349/0.593 0.479/0.336/0.476 0.541/0.379/0.604 0.449/0.302/0.365 0.524/0.373/0.523

WSS 0.433/0.327/0.404 0.518/0.363/0.607 0.492/0.346/0.512 0.548/0.386/0.652 0.430/0.291/0.362 0.536/0.384/0.579
0.0/-0.3/+2.8 +3.8/+4.0/+2.4 +2.7/+3.0/+7.6 +1.3/+1.8/+7.9 -4.2/-3.6/-0.8 +2.3/+2.9/+10.7 1.0

PSS 0.451/0.342/0.438 0.533/0.376/0.624 0.501/0.352/0.522 0.558/0.395/0.659 0.435/0.293/0.367 0.561/0.401/0.596
+4.2/+4.3/+11.5 +6.8/+7.7/+5.2 +4.6/+4.8/+9.7 +3.1/+4.2/+9.1 -3.1/-3.0/+0.5 +7.1/+7.5/+14.0 3.8

AS 0.442/0.335/0.408 0.516/0.364/0.616 0.503/0.354/0.528 0.542/0.382/0.662 0.431/0.294/0.360 0.547/0.392/0.586
+2.1/+2.1/+3.8 +3.4/+4.3/+3.9 +5.0/+5.4/+10.9 +0.2/+0.8/+9.6 -4.0/-2.6/-1.4 +4.4/+5.1/+12.0 1.8

RS 0.433/0.327/0.400 0.517/0.364/0.617 0.496/0.349/0.527 0.549/0.388/0.654 0.430/0.293/0.365 0.550/0.394/0.588
0.0/-0.3/+1.8 +3.6/+4.3/+4.0 +3.5/+3.9/+10.7 +1.5/+2.4/+8.3 -4.2/-3.0/0.0 +5.0/+5.6/+12.4 1.6

RD 0.442/0.335/0.424 0.507/0.356/0.601 0.494/0.347/0.526 0.551/0.389/0.648 0.437/0.296/0.373 0.552/0.397/0.591
+2.1/+2.1/+7.9 +1.6/+2.0/+1.3 +3.1/+3.3/+10.5 +1.8/+2.6/+7.3 -2.7/-2.0/+2.2 +5.3/+6.4/+13.0 1.9

SMS 0.435/0.329/0.404 0.517/0.363/0.604 0.500/0.351/0.525 0.547/0.386/0.656 0.439/0.300/0.369 0.552/0.396/0.590
+0.5/+0.3/+2.8 +3.6/+4.0/+1.9 +4.4/+4.5/+10.3 +1.1/+1.8/+8.6 -2.2/-0.7/+1.1 +5.3/+6.2/+12.8 2.1

GSS 0.440/0.333/0.417 0.521/0.366/0.610 0.500/0.352/0.522 0.555/0.392/0.653 0.435/0.298/0.369 0.547/0.392/0.578
+1.6/+1.5/+6.1 +4.4/+4.9/+2.9 +4.4/+4.8/+9.7 +2.6/+3.4/+8.1 -3.1/-1.3/+1.1 +4.4/+5.1/+10.5 2.4

CWI 0.451/0.342/0.430 0.518/0.364/0.619 0.509/0.358/0.535 0.546/0.385/0.661 0.450/0.308/0.384 0.554/0.397/0.590
+4.2/+4.3/+9.4 +3.8/+4.3/+4.4 +6.3/+6.5/+12.4 +0.9/+1.6/+9.4 +0.2/+2.0/+5.2 +5.7/+6.4/+12.8 3.5

CWS 0.444/0.337/0.412 0.513/0.359/0.609 0.506/0.355/0.525 0.554/0.392/0.656 0.442/0.302/0.377 0.543/0.387/0.588
+2.5/+2.7/+4.8 +2.8/+2.9/+2.7 +5.6/+5.7/+10.3 +2.4/+3.4/+8.6 -1.6/0.0/+3.3 +3.6/+3.8/+12.4 2.6

BT 0.441/0.334/0.423 0.522/0.366/0.612 0.504/0.354/0.536 0.559/0.397/0.669 0.435/0.295/0.373 0.552/0.395/0.593
+1.8/+1.8/+7.6 +4.6/+4.9/+3.2 +5.2/+5.4/+12.6 +3.3/+4.7/+10.8 -3.1/-2.3/+2.2 +5.3/+5.9/+13.4 2.8

DP 0.440/0.333/0.418 0.514/0.361/0.601 0.509/0.358/0.534 0.568/0.400/0.607 0.439/0.296/0.360 0.539/0.384/0.562
+1.6/+1.5/+6.4 +3.0/+3.4/+1.3 +6.3/+6.5/+12.2 +5.0/+5.5/+0.5 -2.2/-2.0/-1.4 +2.9/+2.9/+7.5 2.8

Table 3: The performance (%) of the QE model trained on the original, and the augmented training sets generated
through applying the data augmentation methods, when evaluated on the development set for the examined language
pairs. Values shown in the shaded areas are changes (%) relative to the original performance of the model, with the
rightmost column shows their averages in terms of Spearman correlation. We highlight the values that denote the
most substantial performance improvements across the Spearman, Kendall, and Pearson metrics.

English-Telegu. Our experimental training data
augmentation approach was found to be notably in-
effective when applied to the language pair English-
Telegu. As shown in Table 3, in regard to Spearman
and Kendall correlations, only method CWI yielded
slight performance improvements, while the other
approaches predominantly resulted in a decrease in
the performance of the model. Indeed, these alter-
native approaches led to varying degrees of perfor-
mance decline, with the most significant decrease
being 4.2% in Spearman and 3.6% in Kendall, re-
spectively. This may be attributed to the heightened
sensitivity of English to Telegu translation concern-
ing modifications applied to the source sentences.
Consequently, noises might be introduced during
the process of augmenting the training set, thereby
contributing to a decline in the performance of the
QE model.

Overall, our investigation revealed that, for the
examined language pairs, method PSS yielded a
relative performance increase of 3.8% on average,
establishing itself as the most effective, with the
second-best being CWI (3.5%). Interestingly, both
method BT and method DP, designed for paraphras-

ing purposes, exhibited an identical average perfor-
mance improvement of 2.8%. Conversely, the av-
erage increase was only 1.0% for method WSS,
despite sharing the same objective of synonym
substitution with method PSS. This suggests that
employing synonym substitution via the English
PPDB confers greater benefits to enhancing the per-
formance of the QE model compared to performing
it via WordNet. Furthermore, potential meaning
alternation methods, such as AS and RD (Kanojia
et al., 2021), yielded a lower average enhancement
compared to some meaning-preservation methods
like BT and DP. However, additional experimental
confirmation is requisite.

3.3 Official Test Results

Based on the insights derived from Table 3, we sys-
tematically selected the most efficacious approach
to augment the training set for each language pair
and trained the respective model. Subsequently,
we utilised each resulting model to generate predic-
tions on the corresponding test dataset. For English-
German language pair, it was observed that the
performance of the QE model (0.303 Spearman),
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when trained on the augmented dataset generated
by applying PSS, was inferior to the baseline score
determined during our initial test phase. There-
fore, we took the initiative to curate a new train-
ing set wherein four augmented examples were
generated for each original sample, employing the
top four data augmentation methods identified as
correspondingly effective. We then employed the
re-trained model to generate quality predictions
for English-German pair. The performance of our
submitted models is presented in Table 44.

LPs Spearman Kendall Pearson

MQM

En-De 0.316 0.237 0.221

DA

En-Mr 0.650 0.466 0.663
En-Hi 0.494 0.345 0.570
En-Ta 0.547 0.384 0.531
En-Te 0.337 0.228 0.281
En-Gu 0.540 0.386 0.581

Table 4: Official results of our submission to the WMT
sentence-level QE shared task 2023.

Our most promising results were observed in
language pair English-Marathi, where our submis-
sion ranked third among the six participating teams.
This highlights the effectiveness of the training
data augmentation approach in improving the ca-
pability of the QE model to precisely predict the
quality score of English-Marathi translation pairs
in the absence of a reference. However, when
considering English-German, despite training the
model on an augmented dataset with larger and
more diverse samples, its performance still falls
below the baseline score (0.340 Spearman). This
discrepancy suggests that data augmentation ap-
proach may not be as efficient in enhancing the
QE performance for this specific language pair.
Nevertheless, we observed that this performance
(0.316 Spearman) remains slightly superior to that
achieved with the training set containing fewer aug-
mented samples (0.303 Spearman), which indicates
that increasing the number of augmented training
examples might contribute to enhancing the perfor-

4A comparison of our results with the organiser’s
baseline and submissions from other participating
teams is available at http://www2.statmt.org/wmt23/
quality-estimation-task_results.html.

mance of the model, and we provide further elab-
oration in Section 3.4 below. In contrast, for the
remaining four language pairs we investigated, the
performance of our submitted models consistently
outperformed the baseline score. Specifically, our
submission demonstrated a notable enhancement
over the baseline score in Spearman correlation for
English-Hindi (+0.213), English-Telugu (+0.144),
and English-Gujarati (+0.203), while the improve-
ment for English-Tamil was comparatively less pro-
nounced. Despite the above-baseline performance
achieved, our submission is presently ranked fifth
in these language pairs, signifying the necessity
for additional investigation and refinement of our
approach to attain elevated performance levels.

3.4 Impact of Training Example Quantity
Thus far, a singular augmented example has been
generated corresponding to each defined augmen-
tation method for every original training sample
in our studied language pairs, with the exception
of English-German. To examine the impact of the
number of augmented samples on the performance
of the QE model and to explore potential comple-
mentarity among these augmentation techniques,
we trained the models for each language pair on
augmented training sets of varying sizes, generated
by employing the respective top N effective aug-
mentation methods (where N ranges from 1 to 11),
and then assessed their performance, as shown in
Figure 1.

Figure 1: The performance of the QE models on the
development set across six language pairs, trained on
augmented datasets generated utilising the respective
best N data augmentation methods. The optimal per-
formance was denoted by encircling the respective data
point with a black circle.

It can be seen from Figure 1 that for five lan-
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guage pairs English-{Tamil, Gujarati, Marathi,
Hindi, German}, increasing the number of aug-
mented training samples can enhance the model’s
performance, although this phenomenon is not uni-
versal for certain language pairs, such as English-
Tamil. However, we observed that there was a neg-
ligible degree of performance improvement across
these five language pairs, with the most notable
enhancement being merely 0.03 (from 0.358 to
0.388), as demonstrated in the case of English-
Hindi. Even worse, for the language pair English-
Telegu, exposing the model to a more diverse set
of training examples resulted in a decline in per-
formance. Notably, training the model on an aug-
mented set comprising eleven augmented samples
per original instance led to the nadir in perfor-
mance, recording a value of 0.283. This under-
scores the constraints of current data augmenta-
tion methods in boosting the efficacy of the QE
model, emphasizing the imperative to devise more
effective approaches. Nonetheless, a positive in-
sight has been discerned; the language pair English-
Hindi appears to derive particular benefits from
the augmentation of training examples. As the
number of applied top N augmentation methods
increased, the performance of the model consis-
tently surpassed that of the model with only the best
one applied, notwithstanding fluctuations in perfor-
mance. Finally, based on the empirical findings
depicted in Figure 1, definitive conclusion regard-
ing the complementarity of specific data augmenta-
tion approaches cannot be drawn, as it is inherently
specific to each language pair. For instance, the
efficacy of combining the best two augmentation
methods was observed in the English-{Marathi,
German} pairs, whereas for English-{Tamil, Gu-
jarati, Hindi}, optimal performance was attained
through the amalgamation of the top 10, 7, and 11
training data augmentation methods, respectively.

4 Conclusion

In this paper, we proposed a training data augmenta-
tion approach to the WMT 2023 sentence-level QE
shared task. We systematically identified eleven
various data augmentation methods and applied
each of them individually on the source-side sen-
tences to generate augmented training samples for
the six studied language pairs. The experimen-
tal results demonstrated that in most cases, these
methods can enhance the correlation between the
predictions of the QE model and human-provided

quality scores to varying degrees, albeit not to a sig-
nificant extent. In addition, we show that training
the model on the augmented set, generated through
the combination of these methods, contributed fur-
ther to performance enhancement, although this
phenomenon was not universally observed and the
degree of improvement was at a negligible level.
Our methodology yielded a third-ranking outcome
for English-Marathi and a fifth-place ranking for
other DA annotated language pairs, among the sub-
missions from the six teams. In terms of future
work, we intend to explore other more effective
augmentation approaches and extend our study to
encompass a more diverse array of language pairs
and QE models.

Limitations

The work presented in this paper should be con-
sidered preliminary, given that we exclusively con-
ducted experiments employing a training data aug-
mentation approach and assessed its impact solely
on the original development set. There is ample
room for further exploration into the robustness of
the QE model without any augmentation interven-
tions on the studied perturbations and the impact of
these proposed perturbations, when applied during
training, on the capability of the QE systems to
identify critical errors in translation resulting from
modifications to the source sentences. Moreover,
the extent to which the introduced perturbations
may alter the meaning of the source-side sentences
remains unclear, necessitating further investigation.
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Abstract

This paper presents the submissions of IOL Re-
search in WMT 2023 quality estimation shared
task. We participate in task 1 Quality Estima-
tion on both sentence and word levels, which
predicts sentence quality score and word qual-
ity tags. Our system is a cross-lingual and mul-
titask model for both sentence and word levels.
We utilize several multilingual Pretrained Lan-
guage Models (PLMs) as backbones and build
task modules on them to achieve better predic-
tions. A regression module on PLM is used to
predict sentence level score and word tagging
layer is used to classify the tag of each word
in the translation based on the encoded repre-
sentations from PLM. Each PLM is pretrained
on quality estimation and metrics data from the
previous WMT tasks before finetuning on train-
ing data this year. Furthermore, we integrate
predictions from different models for better per-
formance while the weights of each model are
automatically searched and optimized by per-
formance on Dev set. Our method achieves
competitive results.

1 Introduction

Quality Estimation (QE) is the task of predicting
the quality of a target machine translation without
using reference texts or human inputs (Specia et al.,
2018). Since machine translation is in high demand
nowadays, the development of QE system becomes
crucial for the broad application of machine trans-
lation. In WMT 2023 Quality Estimation shared
task, there are two tasks: quality estimation and
fine-grained error span detection. This paper de-
scribes our submission to task 1 quality estimation
in both sentence and word levels in detail.

Considering the powerful capability and widely
used in previous QE tasks of pretrained language
models (PLMs) (Zerva et al., 2022; Specia et al.,
2021), our method utilizes different multilingual
PLMs to encode source-translation sentence pairs
and predict sentence-level scores or word-level tags.

Such PLMs are pretrained on various languages
which could show incredible ability when trained
QE models are transferred to unseen language pairs.
Meanwhile, extra task modules are added to PLMs
to boost the interaction between source and trans-
lation sentences to make better predictions. Also,
it is common that using other task data similar to
QE can further improve the performance of QE.
According to the results from previous years’ QE
tasks, we use the data from QE and Metrics tasks
from previous years’ WMT tasks, as well as Auto-
matic Post-Editing (APE) data, to pretrain PLMs
before training on data of this year.

Moreover, ensemble methods of different mod-
els are explored in sentence and word level tasks.
For sentence level, we sum scores with weights
from different models which are filtered by the per-
formance on the Dev set. As for word level, we
use voting or weighted sum of tag probabilities to
get the final predicted tags. Taking zero-shot lan-
guage pairs into account, we choose the best model
evaluated on other language pairs to test if they can
generalize to unseen language pairs.

2 Quality Estimation Task

2.1 Task description

WMT 2023 Quality Estimation task 1 contains two
tasks. The sentence level task aims at predicting
a quality score for translation and the word level
task is to classify a quality tag for each word in
translation. Both tasks have zero-shot language
pairs to test the generalization ability of QE models
and use the same source-translation pairs for each
language pair.

Sentence level There are two types of quality
scores. One is the Direct Assessments (DA) score
which is given by human annotators for each
source-translation pair. The other is the Multi-
dimensional Quality Metrics (MQM) score which
is defined and computed under MQM methodology.
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train_sent train_word train_mtl
224195 263184 105992

Table 1: The statistics of train data

Dev Test
En-De 511 1897
Zh-En 505 1677
En-Mr 1000 1086
En-Gu 1000 1075
En-Hi 1000 1074
En-Ta 1000 1075
En-Te 1000 1075
He-En - 1182
En-Fa - 1000

Table 2: The statistics of dev and test data

A regression model is always employed to predict
quality scores.

Word level The tags of words in translation are
annotated by human annotators according to the
MQM or DA annotations. This task requires pre-
dicting an OK or BAD for each word in translation
given source-translation pairs. HTER (Specia and
Farzindar, 2010)-like scores for translations can be
collected by calculating the ratio of ’BAD’ tags in
tag sequence of translations. For example, given a
tag sequence "OK OK BAD BAD OK", an HTER-
like score is deduced by computing 2/5=0.4.

Data QE task provides official train and dev
datasets gathered from competitions of previous
years and the statistics are shown in Table 1 and
Table 2. On account of the task similarity to
QE, we also collect the MQM data (Freitag et al.,
2021a,b) from previous WMT Metrics tasks1 and
APE data from QT21 (Specia et al., 2017) and
APE-QUEST (Depraetere et al., 2020) to do fur-
ther pretraining. We calculate HTER-like score for
each source-translation pair in APE data for the
purpose of merging with those of DA and MQM.

3 Method

3.1 Model architecture

We design distinct task modules on top of encoders
for regression on sentence level and sequence tag-
ging on word level. Source and translation texts
are concatenated and input into the encoder and

1https://github.com/Unbabel/COMET

then task modules to get scores or tags. Our model
architecture is illustrated in Fig.1.

Figure 1: Model architecture with task modules for
sentence-level scoring and word-level tagging

Sentence regression module Inspired by
ESIM (Chen et al., 2017) and RE2 (Yang et al.,
2019), the cross attention between source and
translation reflects the similarity between words in
different languages. Also considering that different
layers in a transformer (Vaswani et al., 2017) based
PLM catch different granularities of features of
source and translation (Jawahar et al., 2019), we
determine to combine these two kinds of methods
to strengthen the representations of source and
translation. In detail, for source s and translation
t respectively, mixed layer-wise representations
smix and tmix from a PLM with L layers are
computed in Eq. 1~Eq. 4.

sl = mean_pooling([sl1, s
l
2, ..., s

l
m]), (1)

tl = mean_pooling([tl1, t
l
2, ..., t

l
n]), (2)

smix =
L∑

l=1

wl
s ∗ sl, where

L∑

l=1

wl
s = 1 (3)

tmix =

L∑

l=1

wl
t ∗ tl, where

L∑

l=1

wl
t = 1 (4)

Then cross attention outputs sca and tca from the
last layer of PLM are calculated to get token level
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interactions between source and translation as
shown in Eq. 5 ~Eq. 9.

eij = sTi tj (5)

scai =

n∑

j=1

exp(eij)∑n
k=1 exp(eik)

tj , ∀i ∈ [1, 2, ...,m]

(6)

tcaj =

m∑

i=1

exp(eij)∑m
k=1 exp(ekj)

si, ∀j ∈ [1, 2, ..., n]

(7)
sca = mean_pooling([sca1 , sca2 , ..., scam ]) (8)

tca = mean_pooling([tca1 , tca2 , ..., tcan ]) (9)

Next, features of source and translation are fused
separately to transform into a combined representa-
tion through feedforward network (FFN) layer by
Eq. 10 and Eq. 11.

scomb = FFN([sca; smix; |sca−smix|; sca∗smix])
(10)

tcomb = FFN([tca; tmix; |tca− tmix|; tca ∗ tmix])
(11)

Finally, the sentence-level score is obtained by an-
other FFN layer in Eq. 12.

score = FFN([scomb; tcomb]) (12)

Word tagging module We choose two distinct
modules to generate tags for words after encoded
by PLM. A Bidirectional-LSTM (Hochreiter and
Schmidhuber, 1997) (BiLSTM) layer is added to
enhance the interaction between the representations
of source and translation, and a FFN layer on it to
predict tags in translation. Another kind of module
only adopts a FFN layer to generate tag predictions
to avoid overfitting on training data.

Multitask combination In order to boost the in-
dividual performance of sentence level and word
level models, we propose a multitask training ap-
proach. Both the regression module and tagging
module are added to the encoder which predicts the
sentence score like DA or MQM and word tags si-
multaneously. For language pairs that have no DA
or MQM data but only word tags, we take HTER
scores as sentence scores. We train word-level mod-
els by optimizing the prediction of HTER scores
and word tags simultaneously. To not damage the
potentiality of tagging module, some simple re-
gression modules are used when doing multitask
training, including

score = FFN(mean_pooling(t[1:n])) (13)

and

score = FFN([s̄; t̄; |s̄− t̄|; s̄ ∗ t̄]) (14)

where t[1:n] is the list of word representations of
translation from tagging module, and s̄ and t̄ are
the mean representations of words’ representations
of source and translation from the encoder.

Loss The losses for score regression, word tag-
ging and multitask training are described as fol-
lows:

Lsent = (scorepred − scoretrue)
2 (15)

Lword = − 1

n

n∑

i=1

log p(yi) (16)

Lmultitask = Lsent + Lword (17)

where p(yi) is the probability of OK/BAD tag from
the model.

3.2 Score refinement

According to the similar definitions and score inter-
vals of DA and MQM, we transform the score s out
of [-1, 1] as close to [-1,1] as possible while keep-
ing the Spearman correlation coefficient unchanged
using Eq. 18 to lessen the need for predicting ex-
treme values during training.

s′ =





(s+1)*0.1-1, s < −1
s, -1 ≤ s ≤ 1
(s-1)*0.1+1, s > 1

(18)

3.3 Encoder selection

QE requires texts from different languages as in-
put, so we take multilingual PLMs as encoders
which are pretrained on colossal multilingual cor-
pus. The following PLMs are selected as encoders:
XLM-Roberta-Large (Conneau et al., 2020)2, Rem-
Bert (Chung et al., 2021)3, InfoXLM-Large (Chi
et al., 2021)4 and mDeBERTa (He et al., 2021)5.
Each PLM is combined with different task modules
for training.

2https://huggingface.co/xlm-roberta-large
3https://huggingface.co/google/rembert
4https://huggingface.co/microsoft/infoxlm-large
5https://huggingface.co/microsoft/mdeberta-v3-base
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3.4 Model Training

We first pretrain encoders with a simple regression
head to do regression on WMT Metrics and HTER
data while retaining the checkpoints of encoders
with the best performance on Dev set. When us-
ing WMT Metrics data, we train two versions of
models where one uses DA data only and the other
uses a mix of DA and MQM data. Subsequently,
we drop the regression head and then finetune the
pretrained encoder with different task modules on
multilingual QE data. In order to eliminate the pos-
sible side effect of position variation in translation,
we swap the input order of source and translation
as a comparison. We conduct single-task and mul-
titask training for both sentence and word levels.

3.5 Ensemble methods

Sentence level For each language pair having
training data, we randomly search weights for the
weighted sum of the top 10 models in accordance
with the Spearman correlation coefficient on Dev
set. As for zero-shot language pairs, we pick the
best two or three trained models from those lan-
guage pairs having training data individually then
predict and average the scores from them.

Word level We propose three strategies of tag
prediction ensemble for each word. At first, for
each language pair having training data, the top 10
models with the best Matthews Correlation Coef-
ficient on Dev set are picked out. Therefore each
word in translation has 10 predicted tags or 10 prob-
ability pairs of (OK, BAD) from different models.
The final tag of one word is acquired in one of three
ways:

1 if one of 10 tags is BAD, the final tag is BAD;

2 if one of 10 tags is OK, the final tag is OK;

3 if the weighted sum of probabilities of OK is
larger than that of BAD, the final tag is OK,
and vice versa.

When utilizing the third one, the weights of models
are searched randomly as in sentence-level ensem-
ble. As for zero-shot language pairs, we pick the
best two trained models from those language pairs
having training data individually and apply one of
the above strategies to get final predictions.

4 Experiments

4.1 Settings

All our models are completed with PyTorch and
transformers (Wolf et al., 2020)6 and trained on
NVIDIA GeForce RTX 3090 24G for the pre-
training and finetuning described in 3.4. Models
are trained with AdamW (Loshchilov and Hutter,
2017) with learning rate of 1e-5, max sequence
length of 230, batch size of 16 and 3 epochs. Mod-
els with different task modules are optimized by
selecting the checkpoint with the best Spearman
correlation coefficient or Matthews Correlation Co-
efficient (MCC) on Dev set for each language pair
separately. Three versions of PLM are pretrained
as described in 3.4 for each combination of lan-
guage pair and PLM, which are listed in the order
of "DA-only, DA+MQM, HTER" in Table 4, Ta-
ble 7 and Table 8 while Table 3 are only "DA-only,
DA+MQM" for each language pair. Optuna (Akiba
et al., 2019) is used to search the weights of model
ensembles described in 3.5.

4.2 Results and Analysis

Sentence level For results in Table 3 of Dev set
with MQM annotations, results based on mDe-
BERTa perform best in all settings. Models with
PLMs pretrained on "DA-only" data achieve better
results than those "DA+MQM" models which indi-
cates that the difference in score range between DA
and MQM has a great effect. For Table 7 of Dev set
with DA annotations, models pretrained on "DA-
only" data perform best among different combina-
tions of PLMs and language pairs. Also, InfoXLM
and XLM-Roberta-Large show higher correlations
than other PLMs. Meanwhile, the score refinement
defined in 3.2 has a positive impact in both Table 3
and Table 7 which suggests the necessity to unify
the range of different scores. However, correlations
of different PLMs vary a lot for each language pair
which suggests we still have room for improvement.
Also, when using multitask training, the Spearman
correlation coefficient increases compared to only
training on sentence-level data. The "DA+MQM"
data improves the performance of En-De while be-
coming worse on Zh-En.

Word level The results in Table 4 indicate that
pretraining data, PLM and task modules affect
the model performance to varying degrees. Since
HTER data is most related to word-level task, the

6https://github.com/huggingface/transformers
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sentence level MQM
En-De Zh-En

DA-only
XLM-Roberta-Large 0.5162 0.4219 0.3424 0.3028
mDeBERTa 0.5467 0.5281 0.3310 0.3717
RemBert 0.5040 0.4231 0.3048 0.2948
InfoXLM 0.5295 0.3786 0.3670 0.2881

DA+MQM
XLM-Roberta-Large 0.5346 0.4459 0.2889 0.2495
mDeBERTa 0.5668 0.5470 0.3110 0.3597
RemBert 0.5141 0.4323 0.3042 0.2822
InfoXLM 0.5342 0.4451 0.3039 0.2793

DA-only w/ score_refine
XLM-Roberta-Large 0.5218 0.4277 0.3254 0.2772
mDeBERTa 0.5435 0.5202 0.3319 0.3594
RemBert 0.5144 0.4092 0.2894 0.3080
InfoXLM 0.5266 0.4047 0.3734 0.2945

DA+MQM w/ score_refine
XLM-Roberta-Large 0.5386 0.4561 0.3005 0.2473
mDeBERTa 0.5728 0.5494 0.3227 0.3547
RemBert 0.5092 0.4302 0.2973 0.2840
InfoXLM 0.5309 0.4599 0.3037 0.2863

Table 3: Spearman correlation on Dev of sentence
level on combinations of training data and score re-
finement(optional)

results based on pretraining on HTER data are best.
Besides, models with RemBert or InfoXLM on En-
De give bad results while models with BiLSTM
as task module on Zh-En overfit on Dev set when
submitting to test. In addition, swapping the order
of source and translation has no improvement. For
En-De and En-Mr, training on word-level data only
is better than multitask training.

Multitask As shown in Table 8, multitask train-
ing improves the correlation of sentence-level task
on all language pairs while only MCC of Zh-En
grows. The score refinement method raises the cor-
relation of word-level task obviously compared to
models without applying score refinement. Yet, it
does not always have a positive effect on sentence-
level task. The multitask training for Zh-En avoids
overfitting on Dev set and using BiLSTM as task
module surpasses using FFN. Different PLMs will
perform better if combined with specific task mod-
ules, which needs further experiments.

Ensemble The official results of models ensem-
ble on dev and test for sentence level and word
level are shown in Table 5 and Table 6 respectively.
The ensemble method outperforms single model
performance by a large margin. Our models have
competitive results on all language pairs.

5 Conclusion

This paper describes our work for WMT 2023
Quality Estimation Task 1 on both sentence level
and word level. With the help of PLMs and extra
data, we can train better representations of source
text and its translation for quality estimation task.
We also experiment with diverse combinations of
PLMs, task modules, and pretraining datasets. We
find that QE systems for certain language pairs
need to adopt particular combinations to acquire
improvement, which reveals that there are distinct
characteristics between languages. Such features
make it hard to build one model for all languages,
especially those without labeled data. The mul-
titask training approach shows obvious improve-
ments and prevents models from overfitting. Be-
sides, the score refinement trick does not always
give us positive feedback which suggests the num-
ber range is not the only factor to train on DA and
MQM data properly. As expected, the ensemble
method makes the predictions have a higher corre-
lation with the ground truth. For future work, we
will explore more profitable pretraining techniques
for quality estimation and efficient modules that
work well for various language pairs.

Limitations

Although our method has shown competitive re-
sults on most language pairs, evaluation results on
zero-shot language pairs suggest that the model
is not so powerful in generalization and relies on
manual adjustment to some extent like choosing
the weights among different models in the ensem-
ble. Such operations could affect the model perfor-
mance when transferring to unseen language pairs.
Furthermore, we only designed two kinds of mod-
ules to generate tags in word-level task with slight
improvement over baselines. It will be a potential
research area to design more efficient prediction
modules that can predict more accurate tags and
we leave it as future work.

Also, other training configurations like weight
decay and layer-wise learning rate decay were not
experimented with sufficiently. Due to the discrep-
ancy between training loss and evaluation metric,
the choice of loss was a critical factor in model
performance which was unexplored. Lastly, the
limited amount of data constrained the improve-
ment of models and overfitting on Dev set still has
a great effect on optimization. We hope these analy-
ses can promote the research of quality estimation.
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word level En-De Zh-En En-Mr
BiLSTM + regression(Eq. 13)

mDeBERTa 0.3354 0.3364 0.3388 0.4483 0.4868 0.4447 0.3443 0.3500 0.3566
RemBert 0.0370 0.0160 0.0076 0.4842 0.4140 0.4736 0.3657 0.3601 0.3637
InfoXLM 0.0327 0.0456 0.0288 0.5491 0.4656 0.5249 0.3466 0.3385 0.3603

FFN + regression(Eq. 14)
mDeBERTa 0.3206 0.3306 0.3315 0.4666 0.5013 0.4727 0.3399 0.3396 0.3443
RemBert 0.3213 0.2477 0.3313 0.4715 0.4993 0.4575 0.3724 0.3158 0.3504
InfoXLM 0.2972 0.2905 0.3042 0.5411 0.4860 0.5230 0.3554 0.3407 0.3601

FFN + regression(Eq. 14) w/ swap_order
mDeBERTa 0.3167 0.3451 0.3306 0.5252 0.4951 0.4506 0.3305 0.3339 0.3469
RemBert 0.3123 0.2752 0.3023 0.4547 0.4513 0.4715 0.3610 0.3448 0.3153
InfoXLM 0.2969 0.2851 0.2957 0.5167 0.5032 0.5549 0.3520 0.3277 0.3626

Table 4: Spearman correlation on Dev of word level on combinations of tagging modules(BiLSTM/FFN) and
regression modules with swapping orders(optional)

Dev Test
En-De 0.612 0.483
Zh-En 0.403 0.482
En-Mr 0.626 0.505
En-Gu 0.706 0.695
En-Hi 0.603 0.600
En-Ta 0.708 0.740
En-Te 0.474 0.376
He-En - 0.575
Multilingual - 0.513

Table 5: Spearman correlation of sentence level on Dev
and Test

Dev Test
En-De 0.343 0.256
Zh-En 0.221 0.250
En-Mr 0.398 0.334
He-En - 0.359
En-Fa - 0.351
Multilingual - 0.298

Table 6: MCC of word level on Dev and Test
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Abstract

Word-level auto-completion (WLAC) plays a
crucial role in Computer-Assisted Translation.
In this paper, we describe the SJTU-MTLAB’s
submission to the WMT23 WLAC task. We
propose a joint method to incorporate the ma-
chine translation task to the WLAC task. The
proposed approach is general and can be ap-
plied to various encoder-based architectures.
Through extensive experiments, we demon-
strate that our approach can greatly improve
performance, while maintaining significantly
small model sizes.

1 Introduction

In recent years, more and more researchers have
studied computer-aided translation (CAT) that aims
to assist human translators to translate the input
text (Alabau et al., 2014; Knowles and Koehn,
2016; Hokamp and Liu, 2017; Santy et al., 2019;
Huang et al., 2021; Weng et al., 2019). The word-
level auto-completion (WLAC) task (Casacuberta
et al., 2022) is the core function of CAT, which in-
volves predicting the word being typed by the trans-
lator given the translation context, as illustrated in
Figure 1. Effective auto-completion has the poten-
tial to reduce keystrokes by at least 60% during
the translation process (Langlais et al., 2000). A
user survey indicates that 90.2% of participants
find the word-level auto-suggestion feature help-
ful (Moslem et al., 2022). Therefore, WLAC plays
an important role in CAT.

There are many existing methods for modeling
WLAC, and they mainly differ in model architec-
tures (Li et al., 2021; Yang et al., 2022b; Moslem
et al., 2022; Yang et al., 2022a; Ailem et al., 2022).
For example, Li et al. (2021); Yang et al. (2022a)
design a BERT-like architecture to directly predict
the target word while Yang et al. (2022b) employ a
model similar to the auto-regressive NMT to pre-
dict the BPE tokens of the target word.

Figure 1: An example of word-level auto completion.
Assume the human translator is going to input the
Golden Translation. The auto-completion suggests the
possible word candidates given the typed characters. It
can be more accurate with the help of translation hy-
pothesis from MT models.

The WLAC task comes from a real translation
scenario: a human translator is translating a source
sentence, who has already translated part of the
sentence, and is typing a new word. The input
contains three parts: the source sentence s, the par-
tial translation c, and the typed sequence t. The
WLAC task is to predict the word w that the trans-
lator is going to input (Li et al., 2021; Casacu-
berta et al., 2022). Rooted in the translation nat-
ural, we consider a fundamental question: what
defines a correct word w? Theoretically, a good w
should appear in the reference translation, as illus-
trated in Figure 1. Therefore, we attempt to incor-
porate knowledges from machine translation into
the WLAC task. We presents two novel approach
to enhance WLAC systems, called joint-inference
and joint-training, to combine the MT task and the
WLAC task during inference and training, respec-
tively.

The effectiveness of our proposed method is
validated through experiments conducted on the
four language directions of the WLAC shared task
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in WMT2023 (§4). Remarkably, our approach
achieves substantial improvements across two dis-
tinct backbone models.

2 Backbone Models for WLAC

In this section, we introduce two types of back-
bone models for the WLAC task. These backbone
models serve as the foundation for our proposed
techniques and experiments in subsequent sections.

Word-level Model The first backbone is called
All-In-One Encoder (AIOE), which adopts a BERT-
like(Devlin et al., 2019) Transformer Encoder ar-
chitecture for word prediction similar to Li et al.
(2021). The AIOE takes the concatenation of the
source sentence, context, and typed sequence as
its input. The input format is: s <sep> cl <tip> t
<mask> cr, where cl is the left context to the input
and cr is the right context. Specifically, we append
a <mask> token at the end of the typed sequence
and leverage the final hidden state of the <mask>
token for word prediction.

Despite its simplicity and efficiency, the AIOE
model suffers from the out-of-vocabulary (OOV)
problem, which can significantly hinder its perfor-
mance. To this end, we introduce a variance of
AIOE model that predicts word in sub-word level.

Sub-word-level Model Extending the word-level
AIOE model to sub-word-level is straightforward:
we consider the task of predicting a sequence of
sub-words as a generation problem, and introduce
a Transformer Decoder to the AIOE model to per-
form the generation. We use Byte-Pair Encoding
(BPE) (Sennrich et al., 2016) for the sub-word tok-
enization, and call this model AIOE-BPE.

Due to the difficulty of labeling the WLAC data,
we generate training data from parallel corpus for
training the WLAC models, following the standard
practice (Li et al., 2021; Casacuberta et al., 2022).

3 Enhancing WLAC by incorporating
MT task

In this section, we propose two different ap-
proaches to improve the WLAC task.

3.1 Joint Inference with MT Model

This approach is to jointly consider the WLAC
predictions and machine translation results during
inference. We begin by generating the top-k predic-
tions from the WLAC model. Next, we examine

each word in the predictions and check if it is in-
cluded in the translation. The first word in the top-k
list that exists in the translation is selected as the
final prediction. This strategy manually align the
prediction with translation in a flexible way: the
choice of WLAC model and translation model is
arbitrary. The final performance is closely related
to the choices of models.

However, this approach heavily relies on the
quality of translation. A preliminary analysis show
that for a naive MT model, only 44.6% of the
WLAC labels exist in the translation. One pos-
sible solution is to enhance the input of MT model.
We propose a Context MT model, which takes ad-
ditional translation context and typed sequence as
input, and generates full target sentence. The input
of Context MT is the same as WLAC, so it’s a better
approximation of the golden translation model.

3.2 Joint Training with MT Task
One drawback of joint inference method is that the
WLAC model isn’t aware of the translation task
during training, which means that the top-k pre-
dictions may deviate from the ground truth. To
overcome this limitation, we propose a joint train-
ing approach, wherein the WLAC model and the
MT model are trained together using a shared back-
bone encoder. Specifically, we extend the backbone
model by introducing an MT decoder, transforming
the whole model into an MT model. Here the MT
model is the same as Context MT model described
in §3.1. We define the training loss of the joint
training model as the combination of the WLAC
loss and the translation loss, represented as follows:

L = α · LWLAC + (1− α) · LMT, (1)

where α is a hyper-parameter controlling the bal-
ance between the two losses. To enhance the inter-
action between two tasks, we also share the final
word prediction layer between the backbone model
and the decoder. As described in section 4.1, the
training data of WLAC is generated from parallel
corpus, so there will be a full agreement between
WLAC label and ground truth translation. This
agreement enables the WLAC model to learn how
to accurately predict words within the translations.
Besides, the MT model can learn to generate trans-
lations based on the context provided by the WLAC
predictions. By jointly training the two models, we
enable them to mutually benefit from each other’s
knowledge and improve their respective tasks.
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Model #Parameters zh-en en-zh en-de de-en
AIOE 80M 46.71 54.82 51.75 50.64
AIOE-BPE 74M 50.79 53.48 57.23 61.96
AIOE+Joint Training 80M(105M) 51.40 58.70 56.22 54.57
AIOE-BPE+Joint Training 74M(100M) 56.93 61.16 67.27 68.16

Table 1: Experiment results on WMT23 WLAC test set. Results are reported as accuracy. The number of parameters
in brackets means parameters in training stage.

The key advantage of joint training is that once
the training is completed, we can only keep the
backbone model and discard the MT decoder. Note
that the backbone encoder can receive optimization
signals from both the WLAC task and the trans-
lation task, so the backbone model has acquired
the skill to agree with translation during training
process. This enables us to maintain the agreement
capabilities while preserving a small and efficient
inference model.

4 Experiment

4.1 Datasets

We conduct evaluations of our model on two lan-
guage pairs: English-Chinese and English-German.
The zh-en dataset we used is the UN Parallel Cor-
pus V1.0 from WMT17. For en-de, we use the
training data from WMT14. We adopt the fol-
lowing strategy on parallel sentences to generate
WLAC training data: firstly, we sample a target
word w from the target language sentence, then we
sample spans respectively from the left and right
context of the target word, denoted as cl and cr.
Additionally, we sample a typed sequence from the
target word. To sample typed sequence from Chi-
nese words we use the pypinyin1 tool. All models
are trained on the generated training data, with data
generated from the test set of WMT21 translation
task serving as the validation set. For evaluation,
we utilize the test set from the WMT22 WLAC
shared task.

4.2 Experiment Details

For all AIOE model, we use a Transformer En-
coder for 6 layers. The embedding size is 512, the
dimension for feed-forward layer is 2048. Each
layer has 8 attention heads. For AIOE-BPE model,
we additionally add a Transformer Decoder with 6
layers. The MT decoder for joint training models
are also 6 layers.

1https://github.com/mozillazg/python-pinyin

For AIOE model, we use a joint-vocabulary with
the size of 120000. For AIOE-BPE model, the
vocabulary size is 66630 for English-Chinese pair
and 59918 for English-German pair.

The learning rate for training is 5e-4. We opti-
mize the model for 200000 steps with a batch size
of 32000 tokens. We average five checkpoints for
better performance.

4.3 Comparison among Joint Methods

We firstly compare the performance of joint infer-
ence method and joint training method. For joint
inference method, we use the word-level backbone
AIOE model for the WLAC model, and consider
two kinds of machine translation model: translation
model trained on parallel corpus (MT) and transla-
tion model trained on WLAC input and translation
output (Context MT). For the joint training method,
we use AIOE-Joint model. All the experiments are
conduct in zh-en direction. We conduct prelimi-
nary experiments on the WLAC22 test set and the
result is reported in Table 2.

Method Acc.
AIOE 53.87
AIOE+MT 54.20
AIOE+CMT 56.01
AIOE+JT 59.75

Table 2: Comparison of joint-methods. Acc. is the ac-
curacy of WLAC22 task. AIOE+MT and AIOE+CMT
is joint-inference method combined with different MT
models. AIOE+JT is the joint training method.

It is observed that joint inference methods
greatly outperform the baseline model, and the joint
training method further improves the performance.
The Context MT model is better than normal MT
model for joint-inference, suggesting that more
translation context is beneficial for the WLAC pre-
diction. However, the overall performance of joint-
inference is hindered by the quality of MT models,
and the joint-training method can incorporate MT
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Model #Parameters zh-en en-zh en-de de-en
GWLAN(Li et al., 2021) 105M 51.11 48.90 40.69 53.87
HW-TSC(Yang et al., 2022b) 526M 59.40 - 63.82 62.06
AIOE+Joint Training 80M(105M) 59.75 56.59 44.67 62.77
AIOE-BPE+Joint Training 74M(100M) 61.08 58.09 64.59 66.91

Table 3: Experiment results on WMT22 WLAC test set. We implement the GWLAN model report the performance.
The scores of HW-TSC model are copied from Yang et al. (2022b)

.

knowledge with WLAC more effectively. Based on
these findings, we only focus on the joint training
method for the subsequent experiments.

4.4 Main Results

The evaluation result on WLAC shared task is re-
ported on Table 1. Our BPE-level methods have
obtained better performance than word-level model
except for en-zh, which indicates the word-level
model may suffer from the OOV problem. No
matter which backbone is used, our joint training
method can greatly improve the backbone perfor-
mance, indicating that our method is a general
framework and has the potential to be applied to
more encoder based models. Another obvious ad-
vantage of our model is its superior parameter ef-
ficiency. Our AIOE-BPE+Joint Training model
achieves the best performance with only 100M
training parameters and 74M parameters for in-
ference.

4.5 Comparison with other models

We further compare our methods with existing sys-
tems. The experiment result on the WLAC22 test
set is shown in Table 3. Compared to HW-TSC,
our word-level methods have obtained better per-
formance on zh-en and de-en. One exception is
en-de, the word-level model performed badly be-
cause it suffers from OOV problem, where about
17% labels are OOV. After replacing the backbone
with BPE-level model, our method show superior
performance in all directions, while maintaining a
much smaller size.

4.6 The impact of MT task

The influence of the hyper-parameter α on the
model performance, as outlined in equation 1, di-
rectly reflects the impact of translation task. By
setting α to 0, the model is essentially a transla-
tion model with additional context input. If α = 1,
the model corresponds to the AIOE model without

joint training. In Figure 2, we present the accu-
racy achieved at varying values of α. Notably, as
α increases from 0 to 0.75, the accuracy increases
rapidly. This observation highlights the difference
between the translation task and the WLAC task,
emphasizing the necessity of optimizing the model
specifically for the WLAC task to achieve better
performance. Interestingly, even with α set to 0.99,
the performance remains comparable to the best
achieved performance. This finding is remarkable,
as it suggests that even a small signal from the trans-
lation task can greatly enhance the WLAC task’s
performance when compared to the model with α
set to 1. Consequently, our proposed joint train-
ing method effectively integrates the translation
task into the WLAC task, resulting in substantial
improvements.

Figure 2: The impact of different α on the AIOE accu-
racy. Red dashed line is the best performance and the
green represents the accuracy without joint training.

5 Conclusion

This paper proposes an effective approach to im-
prove WLAC performance by combining the MT
task and the WLAC task. We inject the transla-
tion knowledge into the WALC model by jointly
train the two tasks. Extensive experiments show
that the proposed approach surpasses several strong
baselines with much smaller model size.
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Abstract

This paper describes our submission to
the Word-Level AutoCompletion shared
task of WMT23. We participated in the
English–German and German–English
categories. We extended our last year
segment-based interactive machine translation
approach to address its weakness when
no context is available. Additionally, we
fine-tune the pre-trained mT5 large language
model to be used for autocompletion.

1 Introduction

Despite its improvement in recent years with the
emergence of neural machine translation (NMT),
machine translation (MT) still cannot assure high-
quality translations for all tasks (Toral, 2020). As a
consequence, it is critical for professional transla-
tors to manually validate the translations generated
by the NMT system for those scenarios with rig-
orous translation quality requirements. Computer-
aided translation (CAT) tools emerged to improve
the validation and editing process carried out by
translators. With the aim of reducing the human
effort of correcting the automatic translations, re-
searchers approached CAT tools from many direc-
tions. Among CAT tools such as translation mem-
ory (Zetzche, 2007), augmented translation (Lom-
mel, 2018) and terminology management (Ver-
plaetse and Lambrechts, 2019); we can find au-
tocompletion tools, which help professional trans-
lators by providing new partial translations accord-
ing to the validated parts they have supplied to the
system.

Word level autocompletion (WLAC) (Lin et al.,
2021) was introduced as a shared task in WMT22
(Casacuberta et al., 2022). Its aim is to complete
a target word given a source sentence, a sequence
of characters typed by the human translator and
a translation context. Four types of context are
possible:

Zero-contex: no context is given.

Suffix: a sequence of translated words located af-
ter the word to autocomplete.

Prefix: a sequence of translated words located
prior to the word to autocomplete.

Bi-contex: A combination of the suffix and the
prefix type. That is, there is a sequence of
translated words located after the word to auto-
complete, and a sequence of translated words
located prior to the word to autocomplete.

Note that, in all cases, the word to autocomplete
is not necessarily consecutive to these contexts.

Approaches to WLAC include modeling the task
as a structured prediction (generation) task (Yang
et al., 2022b; Ailem et al., 2022), modeling it as
a segment-based interactive machine translation
(IMT) task (Navarro et al., 2022), using pre-trained
NMT models and available libraries (Moslem et al.,
2022), and using a generator-reranker framework
(Yang et al., 2022a).

In this work, we extended the segment-based
IMT approach from Navarro et al. (2022) by adding
a module based on a statistical dictionary that tack-
les zero-context completions—which are the cases
in which, not having any feedback, the IMT sys-
tem performs at its worst. Additionally, since this
year edition allowed the use of pre-trained large
language model (LLM), we experimented using
the mT5 model (Xue et al., 2021).

2 Segment-based interactive machine
translation

Segment-based IMT establishes a framework in
which a human translator works together with
the MT system to produce the final translation.
This collaboration starts with the system propos-
ing an initial translation hypothesis yI1 of length
I . Then, the user reviews this hypothesis and vali-
dates those sequence of words which they consider
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to be correct (f̃1, . . . , f̃N ; where N is the number
of non-overlapping validated segments). After that,
they are able to merge two consecutive segments
f̃i, f̃i+1 into a new one. Finally, they correct a
word—which introduces a new one-word validated
segment, f̃i, which is inserted in f̃N1 . This correc-
tion can also consist in a partially typed word f̃ ′i , in
which case the system would complete it as part of
its prediction.

The system’s reacts to this user feedback by gen-
erating a sequence of new translation segments
ĝN
1 = ĝ1, . . . , ĝN ; where each ĝn is a subsequence

of words in the target language. This sequence com-
plements the user’s feedback to conform the new
hypothesis:

{
ŷI1 = f̃1, ĝ1, . . . , f̃

′
i ĝi, . . . , f̃N , ĝN if f̃ ′i ∈ f̃N1

ŷI1 = f̃1, ĝ1, . . . , f̃N , ĝN otherwise
(1)

The word probability expression for the words
belonging to a validated segment f̃n was formalized
by Peris et al. (2017) as:

p(yin+i′ | yin+i′−1
1 , xJ1 , f

N
1 ; Θ) = y>in+i′pin+i′ ,

1 ≤ i′ ≤ l̂n
(2)

where ln is the size of the non-validated segment
generated by the system, which is computed as
follows:

l̂n = arg max
0≤ln≤L

1

lN + 1

in+ln+1∑

i′=in+1

log p(yi′ | yi′−1
1 , xJ

1 ; Θ)

(3)

3 Approaches

In this work, we extended Navarro et al. (2022)’s
segment-based IMT approach by adding a new
module that handles zero-context completions,
which are harder for the IMT system to deal with
(since there is no user feedback).

Additionally, we designed a new approach based
on the mT5 LLM (Xue et al., 2021).

3.1 Segment-based IMT
Given a source sentence xJ1 , a sequence of
typed characters sK1 = s1, . . . , sK and a con-
text c = {cl, cr}, where cl = cl1, . . . , clS
and cr = cr1, . . . , crR; WLAC aims to au-
tocomplete sK1 to conform the word wW

1 =

s1, . . . , sK , wK+1, . . . , wW . If we consider the
context as the sequence of segments validated by
the user (f̃N1 = cl, cr) and the sequence sK1 as the
partially-typed word correction (which would be
inserted in f̃N1 as a new one-word validated seg-
ment; leading to f̃N1 = cl, s

K
1 , cr), we can view

WLAC as a simplification of segment-based IMT.
With that in mind, we can rewrite Eq. (1) as:

ŷI1 = cl, ĝ1, s
K
1 ĝ2, cr, ĝ3 (4)

which, knowing that the prediction of the partially-
typed correction corresponds to the first word of
ĝ2, can be rewritten as:

ŷI1 = cl, ĝ1, s
K
1 wW

K+1, ĝ
′
2, cr, ĝ3 (5)

Therefore, we can obtain the autocompleted
word (wW

1 = sK1 wW
K+1) by performing a single

step of the segment-based IMT protocol, discard-
ing the rest of the translation prediction.

Zero-context
Since the core idea of IMT is reacting to a user feed-
back, not having any context results in the segment-
based IMT approach performing at its worst. Thus,
in this work we decided to create a special module
dedicated to perform this kind of completion, using
a variation of a statistical dictionary.

To that end, we computed IBM’s model 1 (Och
and Ney, 2003) to obtain word alignments from
source and target of the training set. Then, for
each source word xj , we compute the most prob-
able translation ta that starts with the sequence to
complete sK1 (ta = s1, . . . , sK , tK+1, . . . , tT ):

t̂j = arg max
ta

p(ta|xj) (6)

where ta belongs to the set of target words aligned
with xj that starts with sK1 ; and p(ta|xj) is the
alignment probability given by IBM’s model 1.

Finally, we obtain the autocompleted word wW
1

as the most probable translation:

wW
1 = arg max

tJ1

p(tJ1 |xJ1 ) (7)

3.2 mT5

mT5 (Xue et al., 2021) is a multilingual variant of
T5 (Raffel et al., 2020), pre-trained on a new Com-
mon Crawl-based dataset covering 101 languages.
We choose to use this LLM since it has been pre-
trained without any supervised training and, thus,
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{
"src": "Indonesischer Lehrerin droht Haftstrafe wegen Dokumentation von sexueller Belästigung",
"context_type": "prefix",
"target": "school",
"typed_seq": "sch",
"left_context": "Indonesian",
"right_context": "",
"segment_id": "ref0"
},

(a) Original sentence in json format.

Indonesischer Lehrerin droht Haftstrafe wegen Dokumentation
von sexueller Belästigung ||| Indonesian ||| ||| sch

(b) mT5 source sentence.

school
(c) mT5 target sentence.

Figure 1: Example of adapting a training sentence for fine-tuning mT5.

can be easily adapted to any downstream task by
simply fine-tuning the model.

Therefore, this approach consists in fine-tuning
mT5 for WLAC. To do so, we created a new paral-
lel dataset in which source sentences are the con-
catenation of the original source sentence, the left
context, the right context and the typed sequence
(using a special token as a delimiter); and target
sentences are the autocompletion. Fig. 1 shows an
example.

4 Experimental setup

In this section, we present the details of our experi-
mental session.

4.1 Evaluation

The WLAC 23 shared task selected accuracy as the
automatic metric with which to report the evalua-
tion of the different systems. This metric is com-
puted as the total number of correctly predicted
words normalized by the total number of words to
complete:

Acc = Nmatch/Nall (8)

where Nmatch is the number of predicted words
that are identical to the human desired word, and
Nall is the total number of testing words.

4.2 Corpora

We conducted our experiments using the En-
glish–German corpus provided by the organizers,
which is a version of the WMT14’s dataset, prepro-
cessed by Stanford NLP Group.

Table 1: Statistics of the WLAC 2023 corpus. Run.
stands for running, K for thousands and M for mil-
lions.

Partition Characteristic De En

Training

Sentences 4M
Run. Words 110M 116M
Vocabulary 1.6M 800K

Validation
Sentences 2000
Run. Words 53K 53K
Vocabulary 10.5K 7.5K

For fine-tuning mT5 (see Section 3.2), we pro-
cessed the training data using the provided script1

in order to create the simulated data. We repeated
this process multiple times to increase the number
of samples. Table 2 presents the data statistics.

Table 2: Statistics of the synthetic corpus generated for
fine-tuning the mT5 model. Run. stands for running,
K for thousands and M for millions.

Partition Characteristic De En

Training
Sentences 50M
Run. Words 1627.6M 1677.6M
Vocabulary 1.6M 800K

Validation
Sentences 2000
Run. Words 53K 53K
Vocabulary 93.4K 144.9K

1https://github.com/lemaoliu/WLAC/raw/main/
scripts/generate_samples.py.
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Table 3: Experimental results, measured in terms of accuracy.

Approach Language Overall Prefix Suffix Bi-context Zero-context

Segment-base IMT
De–En 0.400 0.453 0.151 0.395 0.570
En-De 0.371 0.433 0.144 0.377 0.491

mT5
De–En 0.436 0.432 0.458 0.490 0.363
En–De 0.374 0.373 0.389 0.431 0.301

4.3 Systems
The MT systems from our segment-based IMT
approach were trained using OpenNMT-py (Klein
et al., 2017). We selected a Transformer (Vaswani
et al., 2017) architecture, with a word embedding
size of 512. The hidden and output layers were
set to 2048 and 512, respectively. Each multi-head
attention layer has eight heads, and we stacked six
encoder and decoder layers. We used Adam as the
learning algorithm, with a learning rate of 2.0, b1
of 0.9 and b2 of 0.998. We set the batch size to
4096 tokens.

Additionally, we made use of the byte pair encod-
ing (BPE) (Sennrich et al., 2016) algorithm, which
was jointly trained on both languages of the dataset,
applying a maximum number of 10.000 merges. Fi-
nally, we used our own implementation (based on
OpenNMT-py) of segment-based IMT, which we
adapted for WLAC. This implementation is openly
available2 for the benefit of the community.

For the mT5 approach, we made use of Hug-
gingFace’s Transformer (Wolf et al., 2019). Due to
computing constrains, we selected Google’s mT5-
base model3.

5 Results

Table 3 presents the official results of our ap-
proaches. We can see how both approaches yielded
similar results. The main advantage of the segment-
base IMT approach is that we can leverage an MT
model for autocompletion by simply performing
minor changes at the decoding step. However, look-
ing at the results, while our zero-context proposal
has successfully solved the problem of having no
feedback, the system’s performance significantly
drops when the only available context is a suffix.
In future works we shall address this behavior.

Regarding the mT5 approach, its main advan-
tage is that we can adapt an already pre-trained
mT5 model by simply performing fine-tuning with

2https://github.com/PRHLT/OpenNMT-py/tree/
word-level_autocompletion.

3https://huggingface.co/google/mt5-base.

a WLAC dataset. With the exception of having
no context, its behavior is constant for all kind of
context. Additionally, it is worth remembering that
we used Google’s mT5-base model due to comput-
ing constrains. In a future work, we shall test how
“bigger” mT5 models behave for this task.

6 Conclusions

In this work, we have presented our submis-
sion to WLAC shared task from WMT23. Our
first proposal extended Navarro et al. (2022)’s
segment-based IMT approach by adding a zero-
context—based on a statistical dictionary—that
handles separately the cases in which no context is
given. This approach yielded satisfactory results
for all cases except when the given context consists
in a suffix.

Our second proposal consisted in leverage the
pre-trained LLM model mT5 by performing a sim-
ple fine-tuning that enables the model to be used
for WLAC, achieving satisfactory results for all
type of contexts.

As a future work, we would like to study the be-
havior of the segment-based IMT approach when
dealing with suffixes. Additionally we would like
to consider the use of other LLM, as well as differ-
ent versions of the mT5 model.
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Abstract

The NLP community has recently witnessed
the success of Large Language Models (LLMs)
across various Natural Language Processing
(NLP) tasks. However, the potential of LLMs
for word-level auto-completion in a multilin-
gual context has not been thoroughly explored
yet. To address this gap and benchmark the
performance of LLMs, we propose an LLM-
based system for the WMT23 Word-Level
Auto-Completion (WLAC) task. Our system
utilizes ChatGPT to represent LLMs and evalu-
ates its performance in three translation direc-
tions: Chinese-English, German-English, and
English-German. We also study the task under
zero-shot and few-shot settings to assess the
potential benefits of incorporating exemplars
from the training set in guiding the LLM to
perform the task. The results of our experi-
ments show that, on average, our system attains
a 29.8% accuracy on the test set. Further anal-
yses reveal that LLMs struggle with WLAC
in the zero-shot setting, but performance sig-
nificantly improves with the help of additional
exemplars, though some common errors still
appear frequently. These findings have impor-
tant implications for incorporating LLMs into
computer-aided translation systems, as they
can potentially enhance the quality of trans-
lations. Our codes for evaluation are available
at https://github.com/ethanyiwu/WLAC.

1 Introduction

Recent advancements in machine translation, es-
pecially due to the development of transformers
and pre-trained language models, have been signif-
icant (Kong and Fan, 2021; Sun et al., 2023; Mo-
hammadshahi et al., 2022). These methods have
yielded impressive results in traditional sentence-
level translation tasks (Bahdanau et al., 2015).
However, challenges still exist that hinder the
further progress of Computer-Aided Translation
(CAT) (Esplà-Gomis et al., 2022) systems. Among
various components that constitute CAT, Word-

𝒙
1991 年和 1992 年该区域有 2 , 000 多万人被确定受到干旱的严重

影响。

𝒄𝒍

this region
𝒄𝒓

drought affected
𝒔

defi

𝒘
defined

Target Output

Input

Figure 1: Illustration of the WLAC task for translating
from Chinese to English, including various components
involved in the translation process. The inputs consist
of the source sentence x, the left context in the target
sentence cl, the right context in the target sentence cr,
and the pre-typed character sequence of the word to be
predicted s. The task aims to predict the target output
word w accurately.

level AutoCompletion (WLAC) stands out as a core
function (Li et al., 2021; Casacuberta et al., 2022).
As shown in Figure 1, WLAC aims to suggest
the correct word translation in the target language
based on a sequence of human-typed characters
and bidirectional context.

While this task might seem straightforward for
seasoned human translators, existing deep-learning
approaches struggle to handle it effectively. This
can be attributed to the fact that performant transla-
tion methods, which rely on pre-trained language
models, cannot effectively interpret the typed se-
quence of characters as they are pre-trained at the
token level. Other related studies have either only
considered the source contextualization (Huang
et al., 2015) or have been unable to handle mul-
tilingual translations effectively (Huang et al.,
2018). Previous works have demonstrated that
transformer-based frameworks, when trained with
carefully designed masking or context transforma-
tion strategies, can efficiently tackle this task (Yang
et al., 2022a,b; Navarro et al., 2022). Yet, these
frameworks require extensive training, and their
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ability to transfer across different languages re-
mains questionable.

With the recent progress made by Large Lan-
guage Models (LLMs), such as ChatGPT (OpenAI,
2022), researchers have conducted extensive stud-
ies regarding their performances on various NLP
tasks (Laskar et al., 2023; Liu et al., 2023; Li et al.,
2023a; Yu et al., 2023). These LLMs possess ad-
vantages, such as ease of deployment and robust
multilingual reasoning ability, making them partic-
ularly suitable for tasks like WLAC. However, a
detailed study of LLMs’ application in this context
is lacking, and the systematic use of LLMs to as-
sist CAT, especially in performing WLAC, remains
unexplored.

This paper addresses these gaps by introducing a
system that employs LLMs, specifically ChatGPT,
for the WLAC task. ChatGPT has been chosen
for its exceptional performance in general natural
language tasks, negating the need for deploying
or fine-tuning other models. Our approach uses a
prompt-engineering-based method to convert all
WLAC task inputs into comprehensible natural
language sentences. Following this, we synthe-
size exemplars from the existing training set to
facilitate in-context learning with ChatGPT (Wei
et al., 2022b). The generations are subsequently
parsed using carefully crafted rules to yield the fi-
nal “predictions” from ChatGPT (Section 3). We
then conduct comprehensive experiments using our
system, covering scenarios from zero-shot to five-
shots. Our experimental results indicate that our
system achieves an average accuracy of 29.8% on
the testing set. Through error analysis and case
studies, we found that LLMs face challenges with
WLAC in the zero-shot setting and identified four
common types of mistakes that can be particularly
addressed in the future. However, ChatGPT’s per-
formance significantly improves when provided
with additional exemplars, highlighting the crucial
role of in-context learning in tackling WLAC for
LLMs (Section 4). We will make all codes publicly
available upon acceptance of this paper.

2 Preliminaries

2.1 Task Definition

Formally, the objective of the WLAC task (Li et al.,
2021) is to predict the target word w using three
parts of inputs, which are denoted as the source
sequence x, the human-typed characters s, and the
translation context c, where c = (cl, cr). The trans-

Training Validation Test

zh-en 39,473 29,051 16,386
de-en 40,000 29,596 14,564
en-de 40,000 29,895 14,539

Table 1: Statistics regarding the number of data across
three translation languages in each split.

lation context consists of left context cl and right
context cr, where cl is a sub-sequence of the trans-
lated context on the left side of s, and cr is a sub-
sequence of the translated context on the right side
of s. A running example is shown in Figure 1.

Specifically, a notable challenge in training a
masked language model for the WLAC task is the
incomplete nature of the left and right contexts.
These contexts may not necessarily constitute com-
plete sentences; they can consist of partial words
or even be empty. As a result, the context c and
the typed sequence s do not necessarily provide
a fully translated result of the source sequence.
Moreover, the training data for this task does not in-
clude the complete translated result as a reference.
This lack of complete supervision further compli-
cates the establishment of robust training signals
for masked language modeling (Li et al., 2023b),
especially when compared to traditional translation
tasks (Navarro et al., 2022).

2.2 Large Language Models

The emergence of large language models (LLMs)
has recently gained the spotlight in the NLP com-
munity. GPT3.5 (Brown et al., 2020; Ouyang
et al., 2022), ChatGPT (OpenAI, 2022), and
LLaMA (Touvron et al., 2023) are some of the
notable LLMs that have been well-developed, each
boasting an exceptionally vast number of parame-
ters. These LLMs are trained on massive corpora
using advanced techniques, such as instruction tun-
ing (Wei et al., 2022a) and reinforcement learning
from human feedback (Christiano et al., 2017), on
large computational infrastructures. As a result, re-
cent studies have shown that LLMs excel at various
downstream tasks, including causal reasoning and
grounding (Chan et al., 2023; Wang et al., 2023c;
Ou et al., 2023), commonsense reasoning (Fang
et al., 2023, 2021b,a; Bian et al., 2023; Wang et al.,
2023b), question-answering (Wang et al., 2023a;
Qin et al., 2023), translation (Peng et al., 2023;
Lu et al., 2023), and data mining tasks (Jin et al.,
2023a,b,c). Since the WLAC task demands sub-
stantial reasoning and generation capabilities that
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WLAC 
Prediction Data

WLAC Data

𝒙: 各国在帮助脆弱群
体方面也取得了一定
成功。
𝒄𝒍: have
𝒄𝒓 : reaching groups in
𝒔: s
𝒘: [UNKONWN]

src: xxx
lc: xxx
rc: xxx
ts: xxx

src: xxx
lc: xxx
rc: xxx
ts: xxx

𝒙: 这些服务现在已可
用于以往由于其地理
位置、地势、天气
或人口因素而被认
为无法利用的地区。
𝒄𝒍: These services
𝒄𝒓 :location, terrain, 
weather or 
demography.
𝒔: c
𝒘: considered

Translate this Chinese sentence to English by 
replacing [MASK] with only one word, one 
punctuation or nothing.
Source: 这些服务现在已可用于以往由于
其地理位置、地势、天气或人口因素而
被认为无法利用的地区。
Target: These services [MASK] location, 
terrain, weather or demography.
Answer prefix: c
Answer: considered
Translate this Chinese to English by replacing 
[MASK] with only one word, one punctuation 
or nothing. 
Source: 现在越来越多的备灾活动在区域
一级进行。
Target: [MASK] basis
Answer prefix: regiona
Answer: regional
…
Translate this Chinese to English by replacing 
[MASK] with only one word, one punctuation 
or nothing. 
Source: 各国在帮助脆弱群体方面也取得
了一定成功。
Target: have [MASK] reaching groups in
Answer prefix: s
Answer: 

sampled 𝑛 examples 𝒆

…

successful

prediction Input 𝒊

prompt input  𝒑𝒓𝒐𝒎𝒑𝒕𝒆(𝒊) prompt input  𝒑𝒓𝒐𝒎𝒑𝒕𝒆(𝒊) and output 𝒚

1. Exem
plar 

Construction

Choose 1

Translate this Chinese sentence to English by 
replacing [MASK] with only one word, one 
punctuation or nothing.
Source: 这些服务现在已可用于以往由于
其地理位置、地势、天气或人口因素而
被认为无法利用的地区。
Target: These services [MASK] location, 
terrain, weather or demography.
Answer prefix: c
Answer: considered
Translate this Chinese to English by replacing 
[MASK] with only one word, one punctuation 
or nothing. 
Source: 现在越来越多的备灾活动在区域
一级进行。
Target: [MASK] basis
Answer prefix: regiona
Answer: regional
…
Translate this Chinese to English by replacing 
[MASK] with only one word, one punctuation 
or nothing. 
Source: 各国在帮助脆弱群体方面也取得
了一定成功。
Target: have [MASK] reaching groups in
Answer prefix: s
Answer: 
Answer: been successful in

Final Prediction

3. Generation Parsing

2. Prompt 
Design

ChatGPT

Figure 2: An overview of our framework when dealing with WLAC in translating from Chinese to English (zh-en).
The input sentences (marked in blue) are concatenated with pre-constructed exemplars (marked in gray) to form
a unified prompt. A large language model (ChatGPT) is then deployed to generate the response (marked in red),
which is subsequently parsed to obtain the final prediction y.

rely on bidirectional contexts to accurately predict
the target word, LLMs make for an ideal choice
to perform WLAC due to their exceptional natu-
ral language understanding abilities and ease of
deployment.

2.3 Dataset

We use the dataset provided by (Casacuberta et al.,
2022) as our primary evaluation benchmark. We
select three translation language pairs from the
dataset: Chinese to English (zh-en), German to
English (de-en), and English to German (en-de).
To maintain consistency, we follow the trn/dev/test
split released in the original dataset. Detailed statis-
tics on the number of data are shown in Table 1.

3 Method

Figure 2 shows an overview of our framework,
which consists of three steps: exemplar sampling,
prompt design, and generation parsing.

3.1 Exemplar Sampling and Construction

To generate the input prompt for the LLM, we be-
gin by employing random sampling to choose k
data instances from the training split of the dataset.
These selected instances serve as in-context learn-
ing exemplars. In our experiments, we explore

different values of k ∈ {0, 1, 5} to evaluate the
performance of the LLM in both zero-shot and few-
shot scenarios. The aim is to improve the model’s
familiarity with the task and its capacity to deliver
precise answers by incorporating the provided ex-
emplars into its learning process.

3.2 Prompt Design
We then design a natural language prompt to sys-
tematically combine both sampled exemplars and
every testing data entry from the testing split, which
serves as the input for the LLM. To assist the LLM
in distinguishing different components of the input
and the desired output, we introduce instructive
tokens such as “Source” (the source sentence to
be translated), “Target” (the target sentence with
context cl and cr provided), “Answer prefix” (the
pre-typed sequence s indicating the target word
to be predicted at [MASK]), and “Answer” (repre-
senting the target prediction word w). For each
testing data entry, we construct such a prompted
sentence with the “Answer” for the testing entry
left blank, awaiting completion. Combining all
these prompted sentences creates a comprehensive
paragraph of sentence input, as illustrated in Fig-
ure 2. This transforms the task into a blank-filling
exercise, wherein the model fills in the missing
word, the last word in our case.
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Figure 3: The fault rate and accuracy under different settings. (a) refers to the accuracy. (b) refers to the proportion
of instances that don’t start with the typed sequence s. (c) refers to the ratio of the generations which contain a
sequence of words.

3.3 Generation Parsing

Since the generated content is in free-text form,
it requires parsing to identify the predicted word
as the final output of the WLAC task. The first
step is to remove the cue word, such as “Answer,”
and separate the remaining sequence of tokens into
individual words by splitting at blank spaces. To
ensure that the selected word satisfies the constraint
of the pre-typed sequence, we search for the first
word that starts with the pre-typed sequence s as
the final prediction. If such a word does not exist,
the first word in the sequence is chosen as the final
prediction. For example, if the generated content is
“Answer: Hello World” and the pre-typed sequence
is “Wo,” the word “World” is the final prediction
after parsing.

4 Experiments

4.1 Setup

We utilize the official ChatGPT API1 to access
the large language model for sentence completion.
The model code employed is gpt-3.5-turbo, and
the access date is July 2023. The temperature is
set to 0.7 when generating to ensure consistent
generation, while other control parameters are set
to their default values.

4.2 Results

Our experimental results are presented in Table 2.
We observe that five-shot prompting yielded the
best performance, while not incorporating any train-
ing exemplar led to the worst performance. This
outcome is reasonable, considering the model may
not clearly understand the task objective and rea-
soning process. Importantly, incorporating just one

1https://chat.openai.com/

Task Shot #

0-shot 1-shot 5-shot

Zh - En 11.15 22.66 29.21

En - De 10.26 15.45 22.51

De - En 8.12 15.99 23.66

Table 2: Evaluation results (Accuracy %) on the testing
sets of three translation directions.

additional exemplar had a significantly positive im-
pact. This suggests that ChatGPT can quickly learn
from provided exemplars and develop a sufficient
understanding of the task. The accuracy improve-
ment trends across the three translation directions
are consistent, leading us to conclude that Chat-
GPT can achieve acceptable performance on the
WLAC task with the help of training exemplars
and in-context learning. However, even with five-
shot prompting, the performance is only around
25% in terms of accuracy, leaving a large space
for future improvements. Therefore, leveraging
more advanced or meticulously designed prompts
should be considered further to enhance ChatGPT’s
performance on the WLAC task.

4.3 Error Analysis

Upon further analysis of the results, we identify
two common types of mistakes where the gener-
ated output deviates from the targeted answer. The
first type of mistake occurs when the generated
output fails to begin with the specified sequence s,
while the second type of mistake involves the pres-
ence of multiple words in the generated output after
removing the cue word. As depicted in Figure 3,
the overall performance improves significantly as
the number of shots increases. Nevertheless, there
is a remarkably high rate of faults in generating
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Source Context Generation Target

CORRECT EXAMPLES
据报道，受重伤的维和人员得以继续飞行，并与其他机组人员一起成功降落
在北基伍省会戈马机场 。

It was reported that [MASK] Answer: seriously seriously

他要求刚果（金）当局对这起令人发指的袭击事件展开调查，尽快将肇事者
绳之以法。

The congo [MASK] Answer: authorities authorities

GRAMMATICAL MISTAKE
她说： “我谴责这次袭击，必须以最坚定的态度起诉犯罪者。 ” attack and the perpetrators must be

prosecuted with the utmost [MASK]
Answer: firmly firmness

报告说，迫使巴勒斯坦人背井离乡的 “胁迫性环境 ”使巴勒斯坦社会四分五裂，
阻碍了自决权的实现。

&quot; coercive environment
&quot; that forced the [MASK]

Answer: Palestinian Palestinians

BOTH CORRECT?
委员会呼吁联合国大会要求国际法院就占领的法律后果发表紧急咨询意见。 The [MASK] Answer: committee called

专家们注意到，欧盟反欺诈办公室就对独立人权组织哈克进行了审查，其结
论是： “没有发现受怀疑的违规和 (或 )欺诈行为来影响欧盟的资金 ”。

experts [MASK] Answer: noticed noted

DON’T START WITH TYPED SEQUENCE
另据报道，在 8月 18日及 21日，以色列国内安全局审问了 7个团体中的巴勒斯
坦妇女委员会联盟、独立人权组织哈克和保卫儿童 -巴勒斯坦组织的负责人，
据称还对这三人加以威胁。

It was also reported that , on 18 and
21 [MASK]

Answer: August Actions

谭德塞说 : “自那时以来，世卫组织已报告了 3200多例猴痘确诊病例和一例死
亡，这些病例来自包括尼日利亚在内的 48个国家和 5个世卫组织地区 。 ”

, WHO has reported more than 3200
confirmed [MASK]

Answer: cases regions

GENERATE A SEQUENCE OF WORDS
委员会成员克里斯 ·西多蒂（ Chris Sidoti）表示 ，以色列政府的行动构成了一种
非法占领和吞并制度，必须加以解决。

Chris Sidoti said the [MASK] Answer: Israeli govern-
ment

Israeli

委员会的成员不是联合国工作人员，他们的工作没有报酬。 The members of the Committee
[MASK]

Answer: are not UN
staff, their work is vol-
untary.

not

Table 3: Case studies of generations from ChatGPT. We select generation results from the 5-shot scenario.

word sequences that violate the instruction of using
only a single word in the zero-shot approach. The
transition from zero-shot to one-shot learning re-
sults in a considerable reduction in both fault rates.
This indicates that the language model adheres to
instructions more accurately by adding a single
example. Moreover, the fault rate also further de-
creases in the five-shot setting.

4.4 Case Studies

To further demonstrate the difficulty of the task
and the performance of ChatGPT, we select some
generation results in the Chinese-English transla-
tion split, as shown in Table 3. Among these cases,
we observe four types of tricky but common mis-
takes. Firstly, although the generated output and
the target share the same semantic meaning, the
generation is syntactically incorrect. We exemplify
two generations that contain grammatical mistakes.
Secondly, our approach may generate semantically
accurate output that deviates from the target, par-
ticularly in cases where the input lacks detailed
context. Moreover, the model may generate the
content immediately after the context instead of
following instructions to find a semantically cor-
rect word that matches the typed sequence. Finally,
the model does not always comply with the instruc-
tions that require it to generate only one word. It
may give a phrase or part of a sentence to combine

the context into a complete sentence.

4.5 Discussions
While our system achieves acceptable performance,
it falls significantly short of the performance
achieved by systems last year (Casacuberta et al.,
2022). This suggests that additional efforts are re-
quired to enhance ChatGPT’s performance on the
WLAC task, which might include: (a) Incorporat-
ing more training exemplars. For instance, increas-
ing the number of training shots to ten or even more
could be beneficial. (b) Reframing the exemplar
selection problem as a subset selection problem.
This approach involves selecting training exem-
plars based on their similarity to the testing entry or
their diversity in relation to other exemplars, as pro-
posed by Ye et al. (2023). (c) Improving the prompt
to better leverage both left and right contexts. Addi-
tionally, advanced prompting techniques like chain-
of-thought (Wei et al., 2022b) could be explored.
(d) Incorporating external knowledge for reason-
ing, such as complex knowledge (Bai et al., 2023),
conceptualization (He et al., 2022), and graph rea-
soning (Liu and Song, 2022; Liu et al., 2022, 2020).

5 Conclusions

In conclusion, this paper presents a novel LLM-
prompting system to address the WLAC task. Our
findings demonstrate that LLMs are highly capable
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problem solvers and adept at learning in context
for this particular task, albeit with performance that
falls short of previous supervised learning systems.
A detailed analysis uncovers several error types that
contribute to the limited performance of ChatGPT.
Therefore, we urge researchers to devote additional
attention to the WLAC task using LLMs.

Acknowledgements

The authors would like to thank the committee of
WMT2023, the organizers of the WLAC task, and
the anonymous reviewers. The authors of this pa-
per were supported by the NSFC Fund (U20B2053)
from the NSFC of China, the RIF (R6020-19
and R6021-20), and the GRF (16211520 and
16205322) from RGC of Hong Kong. We also
thank the support from the UGC Research Match-
ing Grants (RMGS20EG01-D, RMGS20CR11,
RMGS20CR12, RMGS20EG19, RMGS20EG21,
RMGS23CR05, RMGS23EG08).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Jiaxin Bai, Xin Liu, Weiqi Wang, Chen Luo, and
Yangqiu Song. 2023. Complex query answering on
eventuality knowledge graph with implicit logical
constraints. CoRR, abs/2305.19068.

Ning Bian, Xianpei Han, Le Sun, Hongyu Lin, Yaojie
Lu, and Ben He. 2023. Chatgpt is a knowledgeable
but inexperienced solver: An investigation of com-
monsense problem in large language models. CoRR,
abs/2303.16421.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Francisco Casacuberta, George Foster, Guoping Huang,
Philipp Koehn, Geza Kovacs, Lemao Liu, Shum-

ing Shi, Taro Watanabe, and Chengqing Zong. 2022.
Findings of the word-level autocompletion shared
task in WMT 2022. In Proceedings of the Seventh
Conference on Machine Translation, WMT 2022, Abu
Dhabi, United Arab Emirates (Hybrid), December
7-8, 2022, pages 812–820. Association for Computa-
tional Linguistics.

Chunkit Chan, Jiayang Cheng, Weiqi Wang, Yuxin
Jiang, Tianqing Fang, Xin Liu, and Yangqiu Song.
2023. Chatgpt evaluation on sentence level relations:
A focus on temporal, causal, and discourse relations.
CoRR, abs/2304.14827.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan
Martic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 4299–4307.

Miquel Esplà-Gomis, Víctor M. Sánchez-Cartagena,
Juan Antonio Pérez-Ortiz, and Felipe Sánchez-
Martínez. 2022. Cross-lingual neural fuzzy matching
for exploiting target-language monolingual corpora
in computer-aided translation. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages
7532–7543. Association for Computational Linguis-
tics.

Tianqing Fang, Quyet V. Do, Sehyun Choi, Weiqi Wang,
and Yangqiu Song. 2023. CKBP v2: An expert-
annotated evaluation set for commonsense knowl-
edge base population. CoRR, abs/2304.10392.

Tianqing Fang, Weiqi Wang, Sehyun Choi, Shibo Hao,
Hongming Zhang, Yangqiu Song, and Bin He. 2021a.
Benchmarking commonsense knowledge base pop-
ulation with an effective evaluation dataset. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 8949–8964. Association
for Computational Linguistics.

Tianqing Fang, Hongming Zhang, Weiqi Wang,
Yangqiu Song, and Bin He. 2021b. DISCOS: bridg-
ing the gap between discourse knowledge and com-
monsense knowledge. In WWW ’21: The Web Con-
ference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, pages 2648–2659. ACM / IW3C2.

Mutian He, Tianqing Fang, Weiqi Wang, and Yangqiu
Song. 2022. Acquiring and modelling abstract com-
monsense knowledge via conceptualization. CoRR,
abs/2206.01532.

Guoping Huang, Jiajun Zhang, Yu Zhou, and Chengqing
Zong. 2015. A new input method for human transla-
tors: Integrating machine translation effectively and
imperceptibly. In Proceedings of the Twenty-Fourth

887



International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015, pages 1163–1169. AAAI Press.

Yafang Huang, Zuchao Li, Zhuosheng Zhang, and Hai
Zhao. 2018. Moon IME: neural-based chinese pinyin
aided input method with customizable association. In
Proceedings of ACL 2018, Melbourne, Australia, July
15-20, 2018, System Demonstrations, pages 140–145.
Association for Computational Linguistics.

Yiqiao Jin, Yunsheng Bai, Yanqiao Zhu, Yizhou Sun,
and Wei Wang. 2023a. Code recommendation for
open source software developers. In Proceedings of
the ACM Web Conference 2023, WWW 2023, Austin,
TX, USA, 30 April 2023 - 4 May 2023, pages 1324–
1333. ACM.

Yiqiao Jin, Yeon-Chang Lee, Kartik Sharma, Meng
Ye, Karan Sikka, Ajay Divakaran, and Srijan Kumar.
2023b. Predicting information pathways across on-
line communities. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD 2023, Long Beach, CA, USA,
August 6-10, 2023, pages 1044–1056. ACM.

Yiqiao Jin, Xiting Wang, Yaru Hao, Yizhou Sun, and
Xing Xie. 2023c. Prototypical fine-tuning: Towards
robust performance under varying data sizes. In
Thirty-Seventh AAAI Conference on Artificial Intelli-
gence, AAAI 2023, Thirty-Fifth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI
2023, Thirteenth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2023, Wash-
ington, DC, USA, February 7-14, 2023, pages 12968–
12976. AAAI Press.

Yawei Kong and Kai Fan. 2021. Probing multi-modal
machine translation with pre-trained language model.
In Findings of the Association for Computational Lin-
guistics: ACL/IJCNLP 2021, Online Event, August
1-6, 2021, volume ACL/IJCNLP 2021 of Findings
of ACL, pages 3689–3699. Association for Computa-
tional Linguistics.

Md. Tahmid Rahman Laskar, M. Saiful Bari, Mizanur
Rahman, Md Amran Hossen Bhuiyan, Shafiq Joty,
and Jimmy X. Huang. 2023. A systematic study and
comprehensive evaluation of chatgpt on benchmark
datasets. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, Toronto, Canada, July
9-14, 2023, pages 431–469. Association for Compu-
tational Linguistics.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, and
Yangqiu Song. 2023a. Multi-step jailbreaking pri-
vacy attacks on chatgpt. CoRR, abs/2304.05197.

Haoran Li, Mingshi Xu, and Yangqiu Song. 2023b. Sen-
tence embedding leaks more information than you
expect: Generative embedding inversion attack to
recover the whole sentence. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 14022–
14040. Association for Computational Linguistics.

Huayang Li, Lemao Liu, Guoping Huang, and Shuming
Shi. 2021. GWLAN: general word-level autocomple-
tion for computer-aided translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 4792–4802. Associa-
tion for Computational Linguistics.

Xin Liu, Jiayang Cheng, Yangqiu Song, and Xin Jiang.
2022. Boosting graph structure learning with dummy
nodes. In International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, volume 162 of Proceedings of
Machine Learning Research, pages 13704–13716.
PMLR.

Xin Liu, Haojie Pan, Mutian He, Yangqiu Song, Xin
Jiang, and Lifeng Shang. 2020. Neural subgraph
isomorphism counting. In KDD ’20: The 26th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, CA, USA, August 23-27,
2020, pages 1959–1969. ACM.

Xin Liu and Yangqiu Song. 2022. Graph convolutional
networks with dual message passing for subgraph
isomorphism counting and matching. In Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2022, The
Twelveth Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2022 Virtual Event, Febru-
ary 22 - March 1, 2022, pages 7594–7602. AAAI
Press.

Xin Liu, Yuan Tan, Zhenghang Xiao, Jianwei Zhuge,
and Rui Zhou. 2023. Not the end of story: An evalu-
ation of chatgpt-driven vulnerability description map-
pings. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 3724–3731. Association for
Computational Linguistics.

Qingyu Lu, Baopu Qiu, Liang Ding, Liping Xie, and
Dacheng Tao. 2023. Error analysis prompting en-
ables human-like translation evaluation in large lan-
guage models: A case study on chatgpt. CoRR,
abs/2303.13809.

Alireza Mohammadshahi, Vassilina Nikoulina, Alexan-
dre Berard, Caroline Brun, James Henderson, and
Laurent Besacier. 2022. Small-100: Introducing shal-
low multilingual machine translation model for low-
resource languages. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 8348–8359.
Association for Computational Linguistics.

Ángel Navarro, Miguel Domingo, and Francisco
Casacuberta. 2022. Prhlt’s submission to WLAC
2022. In Proceedings of the Seventh Conference on
Machine Translation, WMT 2022, Abu Dhabi, United
Arab Emirates (Hybrid), December 7-8, 2022, pages

888



1182–1186. Association for Computational Linguis-
tics.

OpenAI. 2022. Chatgpt: Optimizing language models
for dialogue. OpenAI.

Jiefu Ou, Adithya Pratapa, Rishubh Gupta, and Teruko
Mitamura. 2023. Hierarchical event grounding. In
Thirty-Seventh AAAI Conference on Artificial Intelli-
gence, AAAI 2023, Thirty-Fifth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI
2023, Thirteenth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2023, Wash-
ington, DC, USA, February 7-14, 2023, pages 13437–
13445. AAAI Press.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Keqin Peng, Liang Ding, Qihuang Zhong, Li Shen,
Xuebo Liu, Min Zhang, Yuanxin Ouyang, and
Dacheng Tao. 2023. Towards making the most
of chatgpt for machine translation. CoRR,
abs/2303.13780.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver? CoRR, abs/2302.06476.

Simeng Sun, Maha Elbayad, Anna Sun, and James
Cross. 2023. Efficiently upgrading multilingual ma-
chine translation models to support more languages.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, EACL 2023, Dubrovnik, Croatia, May
2-6, 2023, pages 1505–1519. Association for Com-
putational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Weiqi Wang, Tianqing Fang, Wenxuan Ding, Baixuan
Xu, Xin Liu, Yangqiu Song, and Antoine Bosse-
lut. 2023a. CAR: conceptualization-augmented rea-
soner for zero-shot commonsense question answer-
ing. CoRR, abs/2305.14869.

Weiqi Wang, Tianqing Fang, Baixuan Xu, Chun
Yi Louis Bo, Yangqiu Song, and Lei Chen. 2023b.
CAT: A contextualized conceptualization and instan-
tiation framework for commonsense reasoning. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 13111–13140. Association for Computa-
tional Linguistics.

Zhaowei Wang, Quyet V. Do, Hongming Zhang, Jiayao
Zhang, Weiqi Wang, Tianqing Fang, Yangqiu Song,
Ginny Y. Wong, and Simon See. 2023c. COLA: con-
textualized commonsense causal reasoning from the
causal inference perspective. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pages 5253–
5271. Association for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022b. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Cheng Yang, Siheng Li, Chufan Shi, and Yujiu Yang.
2022a. IIGROUP submissions for WMT22 word-
level autocompletion task. In Proceedings of the
Seventh Conference on Machine Translation, WMT
2022, Abu Dhabi, United Arab Emirates (Hybrid),
December 7-8, 2022, pages 1187–1191. Association
for Computational Linguistics.

Hao Yang, Hengchao Shang, Zongyao Li, Daimeng
Wei, Xianghui He, Xiaoyu Chen, Zhengzhe Yu, Ji-
axin Guo, Jinlong Yang, Shaojun Li, Yuanchang Luo,
Yuhao Xie, Lizhi Lei, and Ying Qin. 2022b. Hw-
tsc’s submissions to the WMT22 word-level auto
completion task. In Proceedings of the Seventh Con-
ference on Machine Translation, WMT 2022, Abu
Dhabi, United Arab Emirates (Hybrid), December
7-8, 2022, pages 1192–1197. Association for Com-
putational Linguistics.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars
for in-context learning. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 39818–39833.
PMLR.

Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai,
Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao,
and Bing Yin. 2023. Folkscope: Intention knowledge
graph construction for e-commerce commonsense
discovery. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 1173–1191. Association for
Computational Linguistics.

889



Proceedings of the Eighth Conference on Machine Translation (WMT), pages 890–896
December 6–7, 2023. ©2023 Association for Computational Linguistics

Terminology-Aware Translation with Constrained Decoding
and Large Language Model Prompting

Nikolay Bogoychev* Pinzhen Chen*

School of Informatics, University of Edinburgh
n.bogoych@ed.ac.uk, pinzhen.chen@ed.ac.uk

Abstract

Terminology correctness is important in the
downstream application of machine translation,
and a prevalent way to ensure this is to inject
terminology constraints into a translation sys-
tem. In our submission to the WMT 2023 ter-
minology translation task, we adopt a translate-
then-refine approach which can be domain-
independent and requires minimal manual ef-
forts. We annotate random source words with
pseudo-terminology translations obtained from
word alignment to first train a terminology-
aware model. Further, we explore two post-
processing methods. First, we use an align-
ment process to discover whether a terminol-
ogy constraint has been violated, and if so, we
re-decode with the violating word negatively
constrained. Alternatively, we leverage a large
language model to refine a hypothesis by pro-
viding it with terminology constraints. Results
show that our terminology-aware model learns
to incorporate terminologies effectively, and
the large language model refinement process
can further improve terminology recall.

1 Introduction

One of the major obstacles encountered by neural
machine translation (NMT) systems pertains to the
utilization of suitable domain-related words when
translating specialized content not present in the
training data. An illustrative instance of this chal-
lenge arises when translating “transformer” from
English into another language, where the accurate
translation depends on the context or the preference
of the audience (Figure 1). A straightforward lit-
eral translation approach often leads to suboptimal
outcomes, prompting human translators unfamiliar
with domain-specific knowledge to resort to ref-
erence materials for terminology precision. This
issue is prevalent in the translation industry, with
many commercial translation service providers of-
fering paid solutions to address it. Furthermore, it

*Equal contribution.

Translate "transformer" to Chinese?

变压器 (electric transformer)
变形金刚 (the Transformer character)
变换器 (something that changes)

Figure 1: Terminology hints can help disambiguate pol-
ysemantic words when translating with limited context.

is a popular area in machine translation research,
indicated by efforts such as WMT shared tasks or-
ganization and participation focusing on terminol-
ogy and domain-specific translations (Alam et al.,
2021; Bawden et al., 2019, 2020, inter alia).

This year’s WMT terminology translation task
features three language directions: German-to-
English, Chinese-to-English, and English-to-Czech.
In addition to reading in a source sentence, partic-
ipating systems need to employ a provided dic-
tionary, which contains source-target terminology
word mappings, to incorporate into the target trans-
lation. For each source sentence in the test set,
there are three modes of applying terminology con-
straints:

1. Terminology constraint: Dictionaries of real
terminology words are provided, to be incor-
porated in the translations.

2. Random constraint: Random (but presumably
correct) word mappings are obtained using a
word alignment tool and provided as a pseudo-
terminology dictionary.

3. No constraint: Source sentences can be freely
translated without external information.

We interpret that the no-constraint setting al-
lows us to measure the competing systems’ quality
and understand to what degree the systems effec-
tively utilize the provided random and terminol-
ogy dictionaries. Our baseline approach is to train
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a terminology-aware translation (TAT) system in-
spired by Dinu et al. (2019), where, in the training
data, source words are tagged with desired transla-
tions inline on the source side. Then we propose
two separate refinement strategies on top of it to
aggressively encourage the appearance of termi-
nologies:

1. We use a neural word aligner to identify ter-
minology constraints missed by the baseline
system, and use the same system to re-decode
the source by negatively constraining (disal-
lowing) previously incorrectly translated to-
kens.

2. We also investigate the capability of a large
language model to simultaneously paraphrase
an existing translation to include the desired
terminology constraints via curated prompts.

Our proposed techniques can incorporate target
terminology words with around 80% recall, using
automatic and soft constraints in a two-step refine-
ment process. We observe that for German-English,
our terminology-aware training and negatively con-
strained decoding perform better, whereas, for
Chinese-English and English-Czech, LLM-based
refinement achieves higher scores. In terms of over-
all translation accuracy, we find that negatively
constrained decoding could lead to a tiny drop and
LLMs are able to maintain or improve quality ac-
cording to a reference-free neural metric.

2 Related Work

Previous research on terminology translation could
be divided into two categories: soft constraint and
hard constraint, depending on whether the resulting
translation system will enforce the appearance of
desired target translations. In the soft constraint set-
ting, the convention is to train a model that is able to
ingest the target terminology words inline, directly
placing them after the corresponding source words
in the source input (Dinu et al., 2019). Many later
implementations stem from this to include new ele-
ments such as additional lemmatization (Bergmanis
and Pinnis, 2021) or grammatical error correction
(Pham et al., 2021) as a post-processing step in
order to achieve a more fluent output. Instead of
placing the target constraint words inline, some
other works train a system that takes the terminol-
ogy constraint as either a prefix or a suffix (Jon
et al., 2021; Turcan et al., 2022).

Most hard constraint work involves post-
processing a translation with desired terminologies.
Post et al. (2019) inserted untranslatable tokens
(also known as placeholders) into the source, which
will remain unchanged through the translation pro-
cess. Then the placeholders are replaced with ter-
minology words in the target language. This is
entirely performed as a post-processing step. Such
terminology replacement could also be done by
keeping and replacing the source word at inference
time, and it is also feasible to run target word re-
placement as post-processing (Molchanov et al.,
2021). A hard constraint method guarantees that
the chosen terminology token will appear, but often
results in less fluent output, especially for morpho-
logically rich languages because the context is not
taken into consideration during replacement. It also
mandates more complicated post-processing than
the soft constraint approaches.

Our first post-processing proposal relies on con-
strained decoding, which refers to either allowing
certain tokens or blocking specific tokens during
inference time (Hokamp and Liu, 2017). It has
been applied to terminology injection, paraphras-
ing, parallel sentence mining, etc (Hasler et al.,
2018; Kajiwara, 2019; Chen et al., 2020). We opt
for negatively constraining the tokens that violated
the given terminology alignments by preventing
them from entering the hypothesis beam in the re-
finement stage. These alignments are computed
using word alignment tools (Dyer et al., 2013; Dou
and Neubig, 2021).

Another post-processing method in our study
prompts an LLM to refine a translation and incorpo-
rate terminology terms simultaneously. Whilst pre-
vious studies have explored the translation capabil-
ity of LLMs (Vilar et al., 2023; Zhang et al., 2023),
the works closely relevant to us are from Moslem
et al. (2023) and Ghazvininejad et al. (2023). We
adopt the paradigm from the latter, which re-words
a constraint dictionary as a natural text and affixes
it into a translation prompt. While they focused on
rare words without directly benchmarking on ter-
minology translation, our post-processing step can
be seen as an extension of word-level controlled
prompting to terminology translation with large lan-
guage models. Both of our post-processing meth-
ods should be categorized as soft constraint ap-
proaches since there is no guarantee that negatively
constrained decoding or an LLM will necessarily
incorporate the constraints in a re-generation.
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3 Terminology-Aware Training

The goal of our system implementation is to create
a general-purpose terminology-aware translation
system that is unsupervised and domain-agnostic,
and requires the minimum effort of pre- and post-
processing.

3.1 Terminology creation
Inspired by Dinu et al. (2019), we applied terminol-
ogy constraints during training, but a key difference
is that, unlike their approach, we assume that we
have no access to downstream domain or terminol-
ogy constraints during training, in order to build
a general-purpose domain-agnostic system. Con-
sequently, we have no curated terminology data to
use. Therefore, we generate (pseudo-)terminology
information using word alignments. Our workflow
can be detailed as:

1. We compute the word alignment information
for the entire training set using fast_align
(Dyer et al., 2013).

2. For each sentence, we select all bijective
source-target mappings as our terminology
candidates. We also filter out trivial mappings
where the source and target tokens are the
same (e.g. numbers, names), because those
mappings are simple and hence likely to be
correctly translated by a translation system
even without any terminology awareness.

3. In the training data, we replace srcwordi in
the source sentence with:
srcwordi __target__ trgwordj __done__
where the srcwordi is the i-th source word in-
side the sentence, and trgwordj is the word
inside the target sentence, corresponding to
srcwordi according to word alignment infor-
mation. This replacement occurs with around
10% probability for each candidate source-
target pair. For a sentence that does not have
an associated terminology constraint, the data
is the same as normal NMT.

4. At inference time, we process the test data sim-
ilarly to above, except that the source-target
word mapping comes from a supplied termi-
nology dictionary.

In practice, our translation system is trained with
a mix of normal translation data and terminology-
injected data. The advantage of this strategy is that

the trained models are general-purpose, so they can
translate normal texts without terminology injec-
tion. Further, they have been exposed to a wide
variety of constraints during training, making them
robust to potentially unseen domain constraints.

Overall, our method is very similar to Bergmanis
and Pinnis (2021)’s work, except that we use whole
words but not lemmas to ease pre-processing. We
presume that the language model will be able to
adjust the terminologies accordingly, especially for
morphologically rich languages on the target side.
This enables our method to be trivially transferable
across languages.

Finally, our systems could easily be turned into
hard-constrained by replacing the source word with
the desired target terminology word. This could
be feasible because our terminology-aware training
installs the copying behaviour in the neural transla-
tion model, although in this mode the model would
produce markedly less fluent output.

3.2 Model architecture

We trained Transformer-style machine translation
models (Vaswani et al., 2017) using the Marian
NMT toolkit (Junczys-Dowmunt et al., 2018). We
used the Transformer-Big preset which is a 6 en-
coder, 6 decoder architecture with 1024 hidden size,
and 4096 feedforward size.1

3.3 Data

The terminology task uses the same data as the
constrained condition in the WMT23 general trans-
lation task. We carefully cleaned, filtered, and de-
duplicated the available WMT training sets pro-
vided by the organisers, as well as the available
back-translation data. After preprocessing we were
left with the following:

• German-to-English (de-en): 199M lines
of parallel data and 29.5M lines of back-
translated data.

• Chinese-to-English (zh-en): 21.8M lines
of parallel data and 15.6M lines of back-
translated data.

• Czech-to-English (cs-en): 61.8M lines of par-
allel data and 57M lines of back-translated
data.

1https://github.com/marian-nmt/marian/blob/
master/src/common/aliases.cpp#L114

892



Query Prompt template

Translation
Source: ${source}
Please give me a translation in ${lang} without any explanation.

Refinement

Source: ${source}
Translation: ${translation}
Please give me a better ${lang} translation without any explanation.
“${srcword0}” should be translated as “${trgword0}”;
“${srcword1}” should be translated as “${trgword1}”;
...
“${srcwordk}” should be translated as “${trgwordk}”. (with k >= 0)

Table 1: Large language model prompt templates for unconstrained and constrained translation.

3.4 General quality

The quality of our models without terminology
translation is shown in Table 2, where we report
BLEU (Papineni et al., 2002) and COMETDA

2 (Rei
et al., 2020) scores on test sets from the WMT22
general translation task. We note that terminology
augmentation during training could result in a slight
quality drop.

BLEU COMETDA

de-en 31.3 0.8334
en-cs 39.5 0.8715
zh-en 20.3 0.7559

Table 2: Performance of our terminology-aware transla-
tion systems in the WMT22 general translation task.

4 Post-Translation Terminology Injection

Despite training our model with terminology aware-
ness, there is no mechanism to ensure that the de-
sired terminology constraint will appear on the tar-
get side. The neural network decoding behaviour
is not entirely predictable, especially given the as-
sumption of no additional domain adaptation. Be-
low, we present two distinct strategies to try harder
to promote the terminology constraints, via auto-
matic post-editing through constrained beam search
and large language models.

4.1 Negatively constrained decoding

While it is easy enough to notice when a target
terminology term is not generated as per a given
constraint, it is not trivial to understand which word

2wmt22-comet-da. This is a reference-based metric which
requires the source input, hypothesis, and reference.

has been produced in place of the desired term. In
order to do this, we make use of awesome-align, a
neural multilingual word aligner (Dou and Neubig,
2021), with the following procedure:

1. For each source-translation pair, we check if
all required terminology terms appear on the
target side. If they do, then we stop processing
more rules.

2. Then, we use awesome-align to compute word
alignments and detect the word(s) that have
been generated in place of the desired terms
according to the provided terminology con-
straints.

3. We decode the source sentence again, penal-
ising the words that violated the terminology
constraint, by forbidding the decoder from
generating them at each generation step, un-
less they carry more than 95% of the probabil-
ity mass at a certain step.

In practice, this procedure can be repeated in-
finitely, until all terminology constraints are ful-
filled, but we decided to limit it to only one itera-
tion, to keep this a realistic production scenario in
terms of computational budget.

4.2 Large language models
Recent years saw the rise of large language models
(LLMs), which have a strong capability in various
NLP tasks. In this paper, we investigate the effec-
tiveness of using a large language model to gener-
ate terminology terms during translation by adding
constraints to Chen et al. (2023)’s translation re-
finement prompts. We use two distinct prompts:
free translation and translation refinement queries.
The translation query sends a source sentence and
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Mode Model Refine de→en zh→en en→cs
Recall COMETQE Recall COMETQE Recall COMETQE

terminology
constraints

TAT - 82.30 .0797 49.98 -.0896 73.75 .0601
TAT NCD 82.01 .0775 50.42 -.0903 73.26 .0588
TAT LLM 64.35 .1197 83.06 .0185 76.00 .0866
LLM - 41.86 .1244 46.63 .0191 48.14 .0913
LLM LLM 70.48 .1180 81.01 .0201 78.94 .0882

no
constraint†

TAT - 39.82 .1085 13.64 -.1163 48.11 .0712
TAT LLM 39.59 .1251 42.76 .0203 47.31 .0955
LLM - 41.86 .1244 46.63 .0191 48.14 .0913
LLM LLM 39.65 .1258 46.72 .0228 46.22 .0943

random
constraints

TAT - 76.17 .0716 81.55 -.1105 57.10 .0502
TAT NCD 75.79 .0698 82.03 -.1123 56.42 .0465
TAT LLM 61.46 .1206 63.17 .0175 70.97 .0875
LLM - 38.70 .1244 52.49 .0191 39.34 .0913
LLM LLM 66.74 .1188 67.10 .0196 73.37 .0867

no
constraint‡

TAT - 35.60 .1085 36.18 -.1163 37.35 .0712
TAT LLM 37.58 .1251 49.48 .0203 39.03 .0955
LLM - 38.70 .1244 52.49 .0191 39.34 .0913
LLM LLM 37.62 .1258 49.00 .0228 38.42 .0943

†Recall computed against terminology constraints.
‡Recall computed against random constraints.

Table 3: Terminology recall and translation quality measured by COMETQE of our systems on the blind test set.
TAT: terminology-aware translation; NCD: negatively constrained decoding; LLM: large language model.

requests a translation in the target language with-
out any other information. On the other hand, the
refinement query feeds back an unconstrained trans-
lation together with terminology constraints to re-
quest a new translation. This essentially forms
an LLM version of the constrained beam search
discussed in Section 4.1. The constraints are en-
forced through natural language instructions in the
prompts, under the situation where the softmax dis-
tribution from an LLM is not accessible by users.

The LLM we use is OpenAI’s GPT-3.5.3 It is a
closed-source commercial system, where the model
weights and the inference states are not available
to users. The model has a context window of 4096
which is sufficient to cover an instruction, a source
sentence, several terminology constraints, as well
as the target translation. It is public to all users
at a relatively cheap cost. In our settings, each
translation is carried out in a new query session.

In Table 1 we outline the two prompt templates
we used. During querying, the placeholder vari-
ables are substituted with corresponding string val-

3gpt-3.5-turbo-0613, a snapshot of the GPT-3.5 model
on 13 June 2023

ues. For the refinement query, when a terminology
dictionary is supplied, the source and target words
are fed to the LLM via the prompt (Ghazvininejad
et al., 2023); if there is no terminology dictionary,
the query simply asks for a refined translation. The
two-step experiment with LLMs can be summa-
rized as follows:

1. We obtain an initial unconstrained translation,
which may or may not fulfil all the terminol-
ogy constraints. It can come from either the
LLM itself or the terminology-aware transla-
tion model built in Section 3.1.

2. We query the LLM with the constrained trans-
lation prompt to obtain a refined translation
with terminology incorporated in the prompt.

5 Results and Discussions

We present our blind test results in Table 3, which
include both terminology recall and COMETQE
scores computed by us.4 We used COMETQE in
particular because it does not require references

4wmt21-comet-da-qe
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which are not accessible to us. We assess the ef-
fectiveness of our methods by comparing the ter-
minology recall of our systems with and without
applying terminology constraints, in both random
and real terminology scenarios.

5.1 Translation quality

In terms of translation quality reflected in
COMETQE, we observe that the LLM rows attain
superior results, which is not surprising considering
that we use an unconstrained commercial model
GPT-3.5. By comparing TAT with TAT+NCD, or
comparing LLM with LLM+LLM under a con-
strained scenario, we conclude that applying ter-
minology constraints usually lead to a sacrifice in
translation quality regardless of the language direc-
tion or the systems involved. Nonetheless, as a con-
trasting experiment with no constraint, LLM+LLM
achieves a slightly better COMETQE score than
using an LLM to translate without refinement.

Our model performed poorly on the zh-en task
in terms of COMETQE scores. We suspect that
this is because of the domain mismatch between
the translation data from the general domain and
the Chinese terminology test set. Upon manual
inspection, we found that the latter includes web
novels and literal writing which are likely to be
under-represented in the generic training data.

5.2 Terminology recall

Focusing on terminology generation, compared
with TAT or LLM in unconstrained settings, TAT
marks 30-40 higher recall of terminology terms in
the constrained terminology and random settings.
This indicates that our terminology-aware training
is effective in teaching translation models to follow
customized source-target word alignments.

Next, as a post-processing step, negatively con-
strained decoding seems to be disappointing in
practice. TAT+NCD often produces worse results
than TAT alone in terms of both quality and ter-
minology recall, except for zh-en with random
constraints. We hypothesize that this could be due
to two problems: (1) word alignment errors could
propagate into this process, and (2) by applying
NCD, we might capture a missed terminology term
but at the cost of mis-translating other words. Our
constraining procedure might be improved by per-
forming shortlisting, namely positively constrained
decoding, as opposed to negatively limiting the
beam search in an iterative approach.

We find the results promising when using LLMs
for terminology injection. Looking at LLM+LLM
versus LLM alone in various constrained condi-
tions, terminology recall improves significantly
with very little drop in overall quality. Also by
comparing TAT+LLM with TAT alone, we observe
that TAT and LLMs each have their own merits de-
pending on the language direction. In terms of re-
call, TAT wins in de-en, TAT+LLM wins in zh-en,
and they are close in en-cs. However, TAT+LLM
is way ahead if measured by COMETQE. How-
ever, we must note that an LLM costs significantly
more resources than a dedicated translation model
at both training and inference time.

6 Conclusion and Future Work

We participated in all tracks of the WMT 2023 ter-
minology shared task with a terminology-aware
translation baseline, and two distinct refinement
procedures using negatively constrained beam
search and large language models separately. The
results we produced gave us insights into the pros
and cons of our systems. In future work, we could
explicitly enforce the generation of the terminol-
ogy token by identifying the appropriate time step
and manipulating the probability distribution after
softmax computation, even in an open-source large
language model. This is not entirely trivial due to
the presence of subwords but could be achievable.
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Abstract

This paper presents Lingua Custodia’s submis-
sion to the WMT23 shared task on Terminol-
ogy shared task. Ensuring precise translation of
technical terms plays a pivotal role in gauging
the final quality of machine translation results.
Our goal is to follow the terminology constraint
while applying the machine translation system.
Inspired by the recent work of terminology
control, we propose to annotate the machine
learning training data by leveraging a synthetic
dictionary extracted in a fully non supervised
way from the give parallel corpora. The model
learned with this training data can then be then
used to translate text with a given terminology
in a flexible manner. In addition, we introduce a
careful annotated data re-sampling step in order
to guide the model to see different terminology
types enough times. In this task we consider
all the three language directions: Chinese to
English, English to Czech and German to En-
glish. Our automatic evaluation metrics with
the submitted systems show the effectiveness
of the proposed method.

1 Introduction

It is well proven that modern Neural Machine
Translation (NMT) systems (Sutskever et al., 2014;
Bahdanau et al., 2014; Luong et al., 2015; Vaswani
et al., 2017) achieve generally satisfying translation
results. Nonetheless, the performance of transla-
tion with terminology control remains to be im-
proved. This paper describes our submission to the
WMT23 Terminology translation task in Chinese to
English, English to Czech and German to English
direction. The task aims to develop and evaluate
machine translation systems which can translate
domain specific terms in an accurate and consis-
tent way with some extra terminology information.
Note that the terminology is provided only in the
inference phase, for the training there’s no existing
resources about the terminology.

Previous works on machine translation with ter-
minology control can be grouped into two cate-
gories according to whether the method needs train-
ing the model with terminology information. One
group incorporates the constraint during the infer-
ence time(Hokamp and Liu, 2017; Post and Vilar,
2018; Susanto et al., 2020). These methods can
typically satisfy most of the constraints but suffer
from high computational cost and sometimes low
translation quality because it always tries to strictly
apply the terminology constraint regardless of the
correctness of the whole sentence. The other group
integrates lexical constraints during training (Dinu
et al., 2019; Crego et al., 2016; Song et al., 2019)
by annotating the data with special tags in order
to guide the model to learn the enforcement of the
translation constraints. The main disadvantage of
these methods is the lack of guarantee of all con-
straints in the translations. Another limitation of
these works is that they usually requires a term dic-
tionary to augment the data, such extra resource is
not always trivial to obtain for some domains in
some languages.

Our work follows the second line of methods
which incorporate terminology in the training by
inserting special tags. Upon the recent works of
(Dinu et al., 2019; Ailem et al., 2021), our system
has made several improvements:

1. a terminology extracted from the given train-
ing corpus in a full non supervised manner
rather than from a supervised approach or a
given dictionary like in (Ailem et al., 2021).

2. only use special tags without source fac-
tors(Dinu et al., 2019) to annotate source and
target terms in parallel sentences.

3. use a careful tag sentence re-sampling process
to represent various constraint scenarios.

We evaluate our work on all the WMT23 ter-
minology task including the blind test. Since the
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reference is not released by the time of writing this
paper, we evaluate our system by a simple naive
strict match with respect to the target constraint.
Our results show the effectiveness of the proposed
method.

2 Method

In this section we present out system for the termi-
nology task. Our approach is inspired by Ailem
et al. (2021) and is further developed and adapted
to this task.

2.1 Non supervised bilingual dictionary
extraction

Approaches incorporating the constraints during
the training time require some pre-built terminolo-
gies or dictionaries such as in the terminology task
of WMT2021. The idea is to create training sam-
ples to guide the model to integrate the constraints
when generating the output. However, in this year’s
shared task, terminology is not provided. Previ-
ous approaches such as Hazem and Morin (2016)
and Liu et al. (2018) require heavy computation.
Artetxe et al. (2016) can only learn single word
bilingual lexicon. In this work, since our goal is to
annotate the training data, having some noise in the
extracted dictionary is affordable but the the num-
ber of the dictionary entries should be high enough
to cover as much as possible different terminology
constraint scenarios. Thereby we propose a simple
yet efficient non supervised bilingual dictionary ex-
traction approach which yields a large amount of
aligned single and multi word items.

Our approach consists in extracting entries from
two aspects: first we extract exact matching ngrams
which contains more than 50% of non stop word
or punctuation tokens from the two language texts,
to prevent this process from being unnecessarily
long, we limit the ngrams to five; the second aspect
consists in extracting a whole sequence which is
entirely included in another sequence of the corpus.
The final dictionary contains both invariable and
long sequence entries.

2.2 Data annotation

Following the work of Dinu et al. (2019) and Ailem
et al. (2021), sentences matching source and target
contraint terms are annotated with some special
tags as illustrated in Figure 1.

Note that we also use mask tokens for the source
term since this this provides a more general pattern

Source His critics state that this will just increase the
budgetary deficit .

Constraint budgetary deficit → Haushaltsdefizit
term anno-
tation

His critics state that this will just increase the
<S> budgetary deficit <C> Haushaltsdefizit
</C> .

+MASK His critics state that this will just increase the
<S> MASK MASK <C> Haushaltsdefizit
</C> .

Figure 1: Training data annotation.

for the model to learn to perform the copy operation
every time it encounters the tag <S> followed by
the MASK token. Moreover, this makes the model
more apt to support conflicting constraints, i.e.,
constraints sharing the same source part but which
have different target parts. This may be useful
if some tokens must be translated into different
targets for some specific documents and contexts
at test time. Our preliminary experiments have
shown the effectiveness of adding masks after data
annotation.

2.3 Annotated data resampling
After the automatic data annotation, several fil-
ters are applied to construct a final tagged data set
which equals to 20% of the original data. The goal
is to cover different constraint contexts so that the
model can learn all possible cases. The criterions
of the filters are as follows:

Constraint length. Oversample constraints with
more composing tokens.

Constraint occurrence. Oversample con-
straints with low occurrence.

Constraint number. Oversample sentences
with different constraint numbers.

Constraint position. Make sure that constraints
at the beginning, middle and end of a sentence
follow a distribution of 10%, 80% and 10%.

For all the oversampling, we apply a modified
version of the temperature sampling with a temper-
ature equal to 5:

Pts(t) =
P (t)1/T

∑
i P (t

1/T
i )

where Ptst is the temperature sampling probabil-
ity for term t. T is the hyper-parameter temperature.
P (t) is the probability of term t, we assume it can
be calculated by the following:
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P(t) =
N(t)∑
iN(ti)

where N(t) is the frequency of term t in the
training corpus. So

∑
iN(ti) represents actually

the sum frequency of all terms. Finally the over-
sample size for term t, Noversample(t) will be the
rounded up value of:

Noversample(t) = Pts(t) ∗
N(tmax)

Pts(tmax)

where tmax is the term having the highest fre-
quency.

3 Experiments

3.1 Data

We participate in all three language pairs: Chi-
nese to English (noted as zh2en), English to Czech
(noted as en2cs) and German to English (noted as
de2en). We use the corresponding parallel data
provided by the general translation task and the de-
velopment data of the terminology task. Since the
given development set has only 100 sentences, we
first oversample these 100 sentences by 10 times,
then we randomly take 4000 sentences from given
general data and add them to the oversampled data.
This results in a final development set of 5000 sen-
tences.

Regarding the training data annotation dictionar-
ies, we extract invariable ngrams from one million
random sentences. In addition, we follow what
we have described in 2.1: sentences which are in-
cluded in other longer sequences are added to the
dictionary. An overview of the data is shown in 1.

Data size(sentence/item)
zh2en train 33 892 215
zh2en dictionary 445 727
en2cs train 130 023 715
en2cs dictionary 559 063
de2en train 288 591 578
de2en dictionary 769 915

Table 1: Data used in the task

3.2 Settings

For all our translation models, we use a Trans-
former (Vaswani et al., 2017) with 6 stacked en-
coders/decoders and 8 attention heads as a building
block for our systems. We also tie the source and
target embeddings with the softmax layer with a
shared source and target vocabulary. The model
size is 512 for the source and target embeddings,
2048 for the inner layers of the fully connected
feed-forward network and a dropout rate of 0.15.

Training batch size is set to 4000 tokens per itera-
tion and we evaluate the model on the development
set for every 5 000 iterations. The model is trained
with an initial learning rate of 10−5 and 10 000
warm up steps. Training stop condition is 15 con-
secutive checkpoints without improvement. We use
a length penalty of 0.65 and a beam size of 5 during
inference for all models. All models are trained on
two NVIDIA Geforce 2080Ti.

Before annotating the training data, we apply
Moses tokenizer (Koehn et al., 2007)and we train a
truecaser for each language and then truecase each
language pair data. We also use subword nmt1 to
train a BPE (Sennrich et al., 2016) model of 50k
merges.

3.3 Results

We evaluate our systems on the translation con-
straint success rate by a simple strict match because
by the time of our naive evaluation, the reference
was not available. We report our results on the test
set in Table 2 with two settings: with and without
terminology control.

Accuracy% † Accuracy% ‡

German to English 92.59 69.29
English to Czech 94.15 47.43

Chinese to English 83.77 22.21
†: with terminology, ‡: without terminology applied

Table 2: Term strict match accuracy (%) on the WMT23
testset with and without using extra terminology.

As shown in Table 2, our system achieves more
than 90% accuracy on German to English and En-
glish to Czech test set. While the accuracy is obvi-
ously lower (roughly 10 points lower) on the Chi-
nese to English test set, we think this might be
related to the higher difficulty of the Chinese to
English test set. In the test set, there are some

1https://github.com/rsennrich/subword-nmt
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constraints which are basically named entity tran-
scribed in Pinyin2 script. For example,段凌天−→
Duan Ling Tian (Person),武宗学府 −→ the mar-
tial arts training institute (Association). The model
needs to somehow learn the transcription from Chi-
nese character to Pinyin or a specific alignment on
which there aren’t much train data in the provided
parallel corpus. As a whole, our system shows sat-
isfying results when the terminology is provided.
To study whether the high accuracy results are ob-
tained by our terminology control system or not,
we also evaluate our system but without giving any
terminology during the inference. We should ex-
pect a big gap between the two settings (with and
without terminology during the inference). The
results confirm our assumption: an average of 40+
points of difference for the three directions.

For the blind test, we present our strict match
accuracy in Table 3. The data in the blind test is
provided in three different modes: the first one
corresponds to general machine translation and the
second one has the terminology dictionary added.
The data is provided in three different modes. The
last one has random, though correct, translations
of words, which are not terminologies. The idea
is to see if we obtain improvement between the
different modes, in which case it means that the
model is good at terminology control not because
that it has learned the specific way of translating
those terms but has learned how to make good use
of terminology information.

Accuracy% † Accuracy% § Accuracy% ‡

German to English 97.35 98.18 36.16
English to Czech 94.76 94.50 45.06

Chinese to English 93.26 74.20 48.45
†: with correct terminology; §: with random terminology; ‡: without

terminology applied

Table 3: Term strict match accuracy (%) on the WMT23
blind testset with correct and random term, and without
using extra terminology.

On all the language directions, our system
achieve more than 90% accuracy when the termi-
nology information is provided. When a random
constraint is given, we consider the given random
constraint term as the reference translation. In this
case, we observe that our system can still obtain a
high accuracy score. This means that the model is
able to generalize the behavior of outputting any
constraint. Finally, in the general translation set-
ting, we see a sharp decreasing of the accuracy,

2en.wikipedia.org/wiki/Pinyin

40+ points lower compared to the terminology set-
ting. This phenomenon shows that the model is not
just good on its own but can make good use of the
terminology.

4 conclusion

This paper describes our submission to the termi-
nology shared task. We participate in three lan-
guage directions, German to English, English to
Czech and Chinese to English. We extract a bilin-
gual dictionary for the three language directions
in a fully non supervised way and train a neural
machine translation model with augmented data for
each direction. Our term strict match evaluation
shows the effectiveness our proposed system for all
the three directions.

5 Limitations

Since we pursue the line of works which incor-
porate terminology control by adding special tags
during the training. This system has also the limit
of not being able to guarantee the constraints to
be present in the output because of the soft nature.
This is mainly concertized by two cases:

• No constraint. The constraint is not presented
at all in the translation.

• Variant constraint. The exact format of the
constraint is not presented but a variant is pro-
posed in the output.

We observe that for most of the time when the
model fails to generate the target constraint, the sce-
nario belongs to the second case which proposes
a variant of the constraint. This translation is ac-
ceptable in a human evaluation context from time
to time.

To address this main limit, we would like to ex-
ploit assembling our method with other techniques
such as a post processing step to force the constraint
if the constraint is not presented in the output.
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Abstract

This paper discusses the methods that we
used for our submissions to the WMT 2023
Terminology Shared Task for German-to-
English (DE-EN), English-to-Czech (EN-CS),
and Chinese-to-English (ZH-EN) language pairs.
The task aims to advance machine translation
(MT) by challenging participants to develop
systems that accurately translate technical
terms, ultimately enhancing communication
and understanding in specialised domains.
To this end, we conduct experiments that
utilise large language models (LLMs) for
two purposes: generating synthetic bilingual
terminology-based data, and post-editing
translations generated by an MT model through
incorporating pre-approved terms. Our system
employs a four-step process: (i) using an LLM
to generate bilingual synthetic data based on the
provided terminology, (ii) fine-tuning a generic
encoder-decoder MT model, with a mix of the
terminology-based synthetic data generated in
the first step and a randomly sampled portion
of the original generic training data, (iii)
generating translations with the fine-tuned MT
model, and (iv) finally, leveraging an LLM for
terminology-constrained automatic post-editing
of the translations that do not include the
required terms. The results demonstrate the
effectiveness of our proposed approach in
improving the integration of pre-approved
terms into translations. The number of terms
incorporated into the translations of the blind
dataset increases from an average of 36.67%
with the generic model to an average of 72.88%
by the end of the process. In other words,
successful utilisation of terms nearly doubles
across the three language pairs.

1 Introduction

The primary goal of the WMT 2023 Terminology
Shared Task is to evaluate the ability of MT sys-
tems to accurately translate technical terminology.

§Correspondence: first_name.last_name@adaptcentre.ie

The task aims to assess the extent to which MT
models can utilise additional information regard-
ing the translation of terminology. The shared task
requires the participants to provide three transla-
tions, one without terms and the others with two
individual sets of terms.

There have been several advancements in the
area of MT domain adaptation, where an MT model
is expected to follow the style and terminology
of a certain domain or client (Chu et al., 2017;
Kobus et al., 2017). Moreover, some researchers
give special focus to terminology while training
and fine-tuning MT systems (Dinu et al., 2019; Hu
et al., 2019b; Haque et al., 2020; Michon et al.,
2020; Nayak et al., 2023). However, forcing an
MT model to adhere to certain terminology at infer-
ence time is among the most challenging aspects of
MT. Hence, several researchers have investigated
approaches to terminology-constrained decoding
at translation time (Hokamp and Liu, 2017; Hasler
et al., 2018; Post and Vilar, 2018; Hu et al., 2019a;
Exel et al., 2020). The goal is to ensure that the
MT system can accommodate unseen terminology
while retaining translation accuracy and fluency.

Recently, since the emergence of advanced
LLMs such as GPT-3 (Brown et al., 2020),
BLOOM (Le Scao et al., 2022), PaLM (Chowdhery
et al., 2022), Falcon (Penedo et al., 2023), Llama 2
(Touvron et al., 2023), and Jais (Sengupta et al.,
2023) to mention just a few, researchers have been
exploring the capabilities of these models for a
number of tasks including MT (Bawden and Yvon,
2023; Hendy et al., 2023; Jiao et al., 2023; Moslem
et al., 2023; Vilar et al., 2023). Some work inves-
tigates whether it is possible to utilise LLMs for
terminology-constrained MT using a pre-defined
glossary (Moslem et al., 2023) or even a dictio-
nary (Ghazvininejad et al., 2023). They found the
approach is generally effective in increasing the
number of terms used in the translation, even for
low-resource languages.
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We highlight our key contributions with the sys-
tems that we submitted for the WMT 2023 Termi-
nology Shared Task as follows:

• LLMs for domain-specific data augmenta-
tion: In our previous work (Moslem et al.,
2022), we employed LLMs, namely GPT-J
(Wang and Komatsuzaki, 2021) and mGPT
(Shliazhko et al., 2022), to generate domain-
specific datasets based on the target sentences
in a small authentic dataset, then generated
the source sentences with back-translation
(Sennrich et al., 2016; Poncelas et al., 2019),
and finally fine-tuned an encoder-decoder MT
model on this data. In this work, we take
a couple of steps forward by instructing an
LLM, namely ChatGPT (Brown et al., 2020;
Ouyang et al., 2022), to generate terminology-
based bilingual synthetic data. In other words,
the LLM will generate both the source and
target sides of translation pairs, making sure
the pre-approved target terms provided by the
organisers are used in the translations.

• LLMs for terminology-constrained MT
and MT post-editing: In our previous work,
we utilised an LLM for translation and pro-
vided it with a list of terms to support in-
context learning, which improved adherence
to the required terminology at inference time
(Moslem et al., 2023). We also investigated
whether we could use an LLM for post-editing
MT generated by other systems. In this work,
we prompt ChatGPT to insert missing terms
into translations generated by an encoder-
decoder MT system. In other words, if some
of the translations generated by a fine-tuned
MT model still do not include the terms pro-
vided by the organisers, we feed these transla-
tions into an LLM, namely ChatGPT, instruct-
ing it to incorporate these terms while using
the same translation.

2 Method

In our submissions to the WMT 2023 Terminology
Shared Task, we followed these steps:

(i) Generate bilingual synthetic data based on the
pre-approved terms, using an LLM, namely
ChatGPT.

(ii) Fine-tune a generic model, OPUS (Tiede-
mann and Thottingal, 2020), on a mix of the

terminology-based synthetic data generated
in (i) and a randomly sampled portion of the
original generic training data.

(iii) Generate translations of the dev, test, and
blind datasets provided by the organisers with
the fine-tuned model from (ii).

(iv) Apply terminology-constrained automatic
post-editing using ChatGPT to incorporate
missing terms into translations that do not yet
include the required terminology.

2.1 Synthetic Data Generation
We used ChatGPT “gpt-3.5-turbo”2 to generate
bilingual sentence pairs, using the terms provided
by the organisers. So, given a target term, the
model was asked to generate multiple translation
pairs, including both the source (e.g. German) and
the target (e.g. English). For parameters of Chat-
GPT’s API, we used top_p 1 and temperature val-
ues 0 and 0.3 to generate diverse outputs.

Example prompt: Terminology-based generation

Please use the “Federal Ministry of Science” to generate just 20 numbered

sentences in German-English in one Python dictionary format.

To filter the generated data, we first removed
duplicate sentences from the whole dataset, based
on both the source and target. Then, we applied
language detection of both sides of the data using
fastText3 and pycld24 libraries to ensure that the
generated sentences were in our desired languages.
We excluded any sentences whose scores were be-
low a certain threshold, namely 0.9 for fastText and
90 for pycld2.

The filtering step removed less than 1% of the
generated data. However, due to computational
resource and time limitations, we could not use all
the generated data. Table 1 reports the number of
generated, filtered, and used translation pairs.

Initially, we only had the development and test
datasets, so we used them for the German-to-
English language pair. Later, when the organisers
released the blind dataset, we used the develop-
ment, test and blind datasets for the Chinese-to-
English and English-to-Czech language pairs.

2The model “gpt-3.5-turbo” is a relatively efficient and
cost-effective option, so we wanted to understand the quality
we can achieve with it.

3https://fasttext.cc/docs/en/
language-identification.html

4https://github.com/aboSamoor/pycld2
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Lang Raw Filtered Used

DE-EN 124,215 104,318 68,265
EN-CS 187,471 103,797 64,218
ZH-EN 90,538 72,695 49,001

Table 1: Terminology-based bilingual data generated by
ChatGPT for fine-tuning the OPUS model

To assess the quality of the bilingual data gen-
erated by ChatGPT, we computed cross-entropy
scores (Moore and Lewis, 2010) of the synthetic
translation pairs based on the strong encoder-
decoder MT model, NLLB-200 3.3B (Costa-jussà
et al., 2022). For scoring, we used CTranslate25

(Klein et al., 2020) score_batch() method with the
parameters batch_type “tokens” and max_batch_-
size 2024. We scored each synthetic translation
pair generated by ChatGPT, and then calculated the
average score for the whole dataset. Computing
dual cross-entropy scores according to two inverse
translation models trained on clean data is an ef-
fective method to evaluate data quality (Junczys-
Dowmunt, 2018). Hence, we computed the scores
of both directions of each language pair according
to the multilingual MT model NLLB-200 3.3B be-
cause both directions are generated by ChatGPT.
To produce a baseline for translation quality, we
generated the translations of the same datasets us-
ing NLLB-200 3.3B for each language direction
with beam_size 4, and then scored these transla-
tions with the same model. As the scores are in the
form of negative log probabilities, we converted
them to their exponential equivalents for readabil-
ity, which are reported in Table 2. It is normal that
the model NLLB-200 generates higher scores for
its own translations; however, we wanted to know
to what extent such scores are comparable to those
of ChatGPT’s synthetic translation pairs. Accord-
ing to the scores, the German↔English language
pair had the most comparable quality, followed by
Czech↔English, and Chinese↔English language
pairs.

Among the approaches that can be employed
for assessing the quality of synthetic bilingual data
is semantic similarity between the two sides of
each translation pair (e.g. with mUSE (Yang et al.,
2020)). However, the scoring approach that we
previously described and used achieves a similar
goal while comparing the quality of the synthetic
bilingual data to the translation quality of a strong
MT baseline model, namely NLLB-200 3.3B.

5https://github.com/OpenNMT/CTranslate2

Lang ChatGPT NLLB Diff.
DE-EN 0.59 0.68 0.09
EN-DE 0.56 0.64 0.08

Avg. 0.58 0.66 0.08

CS-EN 0.58 0.70 0.12
EN-CS 0.49 0.58 0.09

Avg. 0.54 0.64 0.10

ZH-EN 0.39 0.56 0.17
EN-ZH 0.09 0.34 0.25

Avg. 0.24 0.45 0.21

Table 2: Scores of translation pairs generated by ChatGPT
based on the NLLB-200 3.3B model

2.2 Fine-tuning

Using the term-based synthetic bilingual data gen-
erated in the previous step, we fine-tuned encoder-
decoder Transformer-based MT models (Vaswani
et al., 2017). In particular, we fine-tuned OPUS
MT models, with Hugging Face Transformers.6

We applied mixed fine-tuning (Chu et al., 2017);
in other words, we fine-tuned the baseline model
with a mix of the terminology-based synthetic data
generated from the previous step (cf. Section
2.1) and a randomly sampled portion of the orig-
inal generic data used to train the OPUS baseline
model. The numbers of segments taken from the
OPUS generic data are as follows: CS: 372,928,
DE: 419,881, ZH: 462,780. We over-sampled the
synthetic terminology-based data to make it the
same size as the used portion of generic data. The
fine-tuning parameters are as follows: train = 0.9,
val = 0.1, batch_size = 32, learning_rate = 2e-5,
accumulate_gradient = 4, weight_decay = 0.01,
num_train_epochs = 1, max_input_length = 256,
max_target_length = 256. Finally, we used the
fine-tuned model to generate translations for the
development, test, and blind sets.

At first glance, the fine-tuning step might look
redundant if the LLM can achieve the same trans-
lation quality directly, either via zero-shot transla-
tion or few-shot in-context learning (Moslem et al.,
2023). However, domain-specific or terminology-
based knowledge distillation (Treviso et al., 2023)
from a massive LLM to a compact task-oriented
MT model can help boost efficiency at inference
time while enhancing domain adaptation and ter-
minology adherence. Obviously, when authentic
in-domain data is available, it can be used for fine-
tuning instead of synthetic data for domain adap-
tation of the MT model. In production workflows,

6https://github.com/huggingface/transformers
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only segments that do not meet specific quality
criteria are passed to either human or automatic
post-editing. Hence, deployment of a model fine-
tuned on in-domain data can reduce the number of
translations that need post-editing.

2.3 Terminology-constrained Automatic
Post-Editing

For the shared task, the organisers provided two
term sets for each source sentence in the test and
blind datasets, and expected the participants to gen-
erate two translations that use one term set each.
In this step of terminology-constrained automatic
post-editing, we aim to refine the translations gen-
erated by an MT system by inserting the required
terminology. To this end, we checked the transla-
tions generated by the fine-tuned model from the
previous step (cf. Section 2.2). For each term set
provided for the sentence, if the translation does
not include all the terms, we ran this step of termi-
nology insertion into the translation.

This step involves instructing ChatGPT to post-
edit the translation by making sure it includes all
the terms without changing the rest of the transla-
tion. For the API’s parameters, we used top_p 1
and temperature values 0 and 0.2, and then chose
the generation that fixed more terms.

Example prompt: Terminology-constrained post-editing

In the following <tgt_lang> translation, use the <tgt_term> to translate

the <src_lang> term <src_term>, and the...7 Leave everything else

the same.\n\n

<src_lang>: <src_segment>\n

<tgt_lang>: <tgt_segment>

3 Evaluation

To assess the effectiveness of our process, we con-
ducted two types of evaluation: (i) term-level eval-
uation in order to measure the level of adherence to
the required terminology, and (ii) sentence-level
evaluation in order to see whether the process
affected the quality of the overall translation.

3.1 Term-level Evaluation
In Tables 3 and 4, we report the number of terms
used in the translations of the test and blind
datasets, respectively, in respect to the two term sets
provided by the organisers. The results show the ef-
fectiveness of our proposed process, increasing the

7We can add more terms, if needed.

integration of the required terms in the final transla-
tions of the blind dataset from an average of 36.67%
with the baseline generic model to an average of
72.88% after the LLM-based post-editing, across
the three language pairs. Interestingly, prompt-
ing an LLM to integrate the required terms into
the translations generated by a fine-tuned encoder-
decoder MT model was more effective than solely
using the fine-tuned model.

Lang System Total [1] Used [1] Total [2] Used [2] Avg %

DE-EN
Baseline 432 291 317 168 60.18

Fine-tuned 432 302 317 165 60.98
Term APE 432 397 317 239 83.65

EN-CS
Baseline 550 221 313 139 42.30

Fine-tuned 550 135 313 108 29.53
Term APE 550 466 313 283 87.57

ZH-EN
Baseline 1779 498 1938 491 26.66

Fine-tuned 1779 854 1938 570 38.71
Term APE 1779 1137 1938 886 54.81

Avg. %
Baseline 43.05

Fine-tuned 43.07
Term APE 75.34

Table 3: For the test dataset, the number of terms used in the
translations from the first term set [1] and the second term
set [2]. According to the results, terminology-constrained au-
tomatic post-editing (“Term APE”) using ChatGPT achieved
the best adoption of the required terminology.

Lang System Total [1] Used [1] Total [2] Used [2] Avg %

DE-EN
Baseline 11357 4120 11202 4623 38.77

fine-tuned 11357 4130 11202 4621 38.81
Term APE 11357 6257 11202 5893 53.85

EN-CS
Baseline 10626 3964 10563 5122 42.90

Fine-tuned 10626 3397 10563 4412 36.87
Term APE 10626 8727 10563 8681 82.16

ZH-EN
Baseline 2892 1375 2908 265 28.33

Fine-tuned 2892 1422 2908 970 41.26
Term APE 2892 2471 2908 2322 82.65

Avg. %
Baseline 36.67

Fine-tuned 38.98
Term APE 72.88

Table 4: For the blind dataset, the number of terms used in
the translations from the first term set [1] and the second term
set [2]. According to the results, terminology-based automatic
post-editing (“Term APE”) using ChatGPT achieved the best
adoption of the required terminology.

3.2 Sentence-level Evaluation

After the end of the submission phase, the organ-
isers released the references for the participants to
conduct automatic evaluation. The main purpose of
this sentence-based evaluation process is to deter-
mine whether terminology integration affected the
overall quality of translation. In general, as demon-
strated in Table 4 and Table 5, this terminology-
constrained automatic post-editing step signifi-
cantly increased the inclusion of the necessary
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terms into the final translation while improving
translation quality across the three language pairs.

For the automatic evaluation of each MT system,
we used the BLEU (Papineni et al., 2002), chrF++
(Popović, 2017), and COMET (Rei et al., 2020)
metrics. Since many of the Chinese-to-English
segments in the blind dataset did not have two term
sets, we evaluated only those that had two term sets
(1629 segments out of 2640 segments). We observe
that the evaluation scores of the Chinese-to-English
translation task are much lower than those of the
two other language pairs. This can be due to the
literary nature of the blind dataset extracted from
Chinese novels, which might be difficult for both
the MT model and automatic evaluation metrics.

Lang Count System BLEU chrF++ COMET

DE-EN 2963

Baseline 19.81 48.04 21.81
Fine-tuned 19.27 47.75 21.51

Term APE [1] 32.36 60.84 40.25
Term APE [2] 27.84 56.84 33.20

Term APE Avg. 30.10 58.84 36.73

EN-CS 3005

Baseline 29.13 53.11 50.90
Fine-tuned 24.54 49.14 33.78

Term APE [1] 45.65 67.36 79.84
Term APE [2] 37.88 61.19 63.64

Term APE Avg. 41.77 64.28 71.74

ZH-EN 1629

Baseline 6.95 27.95 -50.90
Fine-tuned 7.76 29.26 -38.83

Term APE [1] 9.56 32.80 -18.96
Term APE [2] 11.93 35.30 -13.51

Term APE Avg. 10.75 34.05 -16.24

Table 5: Automatic evaluation of the overall translation quality
across the three language pairs based on the blind dataset.
The “Baseline” refers to the OPUS model without fine-tuning,
while “Fine-tuned” refers to the model after domain adaptation
with the bilingual terminology-based synthetic data generated
by an LLM. Finally, the three last rows for each language pair
refer to using ChatGPT for terminology-constrained automatic
post-editing (“Term APE”) of the MT output generated by the
fine-tuned model. In other words, “Term APE [1]” indicates
the results when the first term set was used to prompt ChatGPT
to integrate terms of this set into the translation generated by
the fine-tuned model, while “Term APE [2]” refers to using
the second term set. Finally, “Term APE Avg.” is the average
of “Term APE [1]” and “Term APE [2]” for each language
pair. Terminology-constrained automatic post-editing with
ChatGPT achieves the best results across the three language
pairs in terms of the overall translation quality. As reported
in Table 4, the number of terms integrated after the automatic
post-editing step also increased.

Moreover, it is worth noting that we used the
English term while generating bilingual synthetic
data (cf. Section 2.1) for the three language pairs.
However, English is the target language for both
Chinese-to-English and German-to-English lan-
guage directions, while it is the source language
for the English-to-Czech language direction. This
can explain the performance degradation after the

fine-tuning step in the English-to-Czech language
direction (cf. Tables 4 and 5). In other words, it
is recommended in the step of bilingual synthetic
data generation to either use the target term or both
the source and target terms while prompting the
LLM to generate translation pairs.

As explained in Section 2.3, our final step of
terminology-constrained automatic post-editing in-
volves instructing an LLM to insert terms that were
missing from the output of the fine-tuned model.
This significantly increased term usage across
all the Chinese-to-English, English-to-Czech, and
German-to-English language pairs (cf. Table 4).
Furthermore, as demonstrated in Table 5, this step
had no detrimental effects on translation quality. In
fact, integrating the necessary terms into the trans-
lation using ChatGPT improved translation quality
according to our automatic evaluation.

4 Conclusion and Future Work

In this work, we showed that applying a multistep
process of mixed fine-tuning on terminology-based
synthetic bilingual data and then terminology-
constrained automatic post-editing with an LLM
can increase the adherence to the pre-approved
terms in the generated translations. By the end
of the process, the use of the required terms has
increased in the translations of the blind dataset
across the three language pairs from an average of
36.67% with the baseline generic model to an aver-
age of 72.88% after instructing an LLM to integrate
the required terms into the translations.

Due to the task restrictions, we had to fine-tune
OPUS models only. We would like to experiment
with fine-tuning NLLB models, and probably the
new SeamlessM4T (Barrault et al., 2023), Mistral
(Jiang et al., 2023), and MADLAD-400 models
(Kudugunta et al., 2023), on the same data and
compare the output quality. In our experiments,
we employed ChatGPT “gpt-3.5-turbo” for both
terminology-based synthetic data generation and
terminology-constrained automatic post-editing, as
it is a relatively efficient and cost-effective option.
In the future, we would like to repeat the same
experiments with GPT-4 in order to assess the ben-
efit of using a stronger language model on overall
performance. We observe that BLOOM can be
used as an alternative LLM for data generation;
however, one-shot generation might work better
than zero-shot generation. In this case, the prompt
can consist of a term, a bilingual sentence pair,
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and then another term. Interestingly, the model
will predict a new translation pair including the
second term. While certain open-source models
such as Llama 2 and Falcon might be employed for
the terminology-constrained automatic post-editing
step for certain languages, we suspect that they will
need fine-tuning before being reliably usable for
most languages.

In future work, we will carry out a deeper analy-
sis of the generated synthetic data together with the
outputs of the fine-tuned models in order to under-
stand how the properties of the synthetic data affect
the fine-tuning results. It is important also to test
the same approach for other languages, especially
low-resource language pairs.

Moreover, it would be interesting to exclude the
fine-tuning step and assess the overall translation
quality after LLM-based post-editing. It is pos-
sible that domain adaptation through fine-tuning
the baseline MT model either on authentic or syn-
thetic data would still be beneficial. It can lead
to domain-specific improvements in the overall
translation quality that may not be achievable by
the baseline model or the terminology-constrained
post-editing step. Again, deploying a model fine-
tuned on in-domain data into production can en-
hance terminology adherence in initial translations.
As there is no need to send the translations that
already include the pre-approved terms to the LLM
for terminology-constrained post-editing, this can
reduce the number of translations that require post-
editing. Such an efficient workflow can allow us
to save resources, and minimise latency at infer-
ence time. Similarly, there are potential advantages
of employing an LLM for post-editing rather than
for direct translation. Instead of solely relying on
the translation quality of the LLM, quality estima-
tion can be performed to select the best MT model
in general or for the current source text segment.
Ultimately, only segments that do not meet quality
criteria are then passed to the LLM for post-editing.
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Abstract
This paper describes the submission of the
OPUS-CAT project to the WMT 2023 termi-
nology shared task. We trained systems for
all three language pairs included in the task.
All systems were trained using the same train-
ing pipeline with identical methods. Support
for terminology was implemented by using the
currently popular method of annotating source
language terms in the training data with the
corresponding target language terms.

1 Introduction

OPUS-CAT (Nieminen, 2021) is a collection of
open source software consisting of a local neural
machine translation (NMT) engine and plugins for
computer-assisted translation (CAT) tools, such as
Trados, memoQ and OmegaT. OPUS-CAT enables
the use of NMT models trained in the OPUS-MT
project (Tiedemann and Thottingal, 2020) in profes-
sional translation. As OPUS-CAT is aimed at pro-
fessional translators, it is designed to be integrated
into normal translation workflows. Multilingual
term bases are one part of those workflows, so we
have decided to implement a functionality for utiliz-
ing term bases in OPUS-CAT. This paper describes
the methods used in OPUS-CAT for enforcing the
use of terminology in machine translation output
and the results of applying these methods to the
data provided in the shared task. We trained new
models for all three language pairs in the shared
task. The shared task results were not available at
the time of the submission of this paper.

2 Related work

Most published methods of constraining an NMT
model to generate terminologically correct transla-
tions fall into three categories.

2.1 Constrained decoding
Hokamp and Liu (2017); Hasler et al. (2018): The
beam search algorithm is modified to enforce the

generation of target terms for each source term
identified in the source sentence. The main advan-
tage of constrained decoding is that it can be used
with any model. The main disadvantages are slower
decoding speed, and quality degradation due to the
unconditional prioritizing of target terms, even in
inappropriate contexts (such as generating the tar-
get term multiple times in the translation).

2.2 Pass-through term placeholders

Michon et al. (2020): Source terms identified in
the source sentence are replaced by placeholders,
which the NMT model passes through to the trans-
lation. The placeholders generated in the trans-
lation are then replaced by corresponding target
terms. In order for the model to learn the correct
pass-through behaviour, the model has to be trained
with data that has been augmented with sentence
pairs containing aligned placeholders on source
and target sides. The main advantage of this ap-
proach is that the target terms are usually generated
in correct positions. The disadvantage is that the
information in the source term is discarded, which
may degrade the quality of the overall translation.
Generating morphological features for the target
term may also be difficult.

2.3 Injecting target terms as soft constraints

Dinu et al. (2019): Source terms identified in the
source sentence are annotated with target term in-
formation, and the NMT model uses these target
term annotations to generate the term translations.
Similar to the pass-through placeholder method,
the training data of the model needs to be aug-
mented with sentence pairs, where the source sen-
tence has been annotated with target term informa-
tion that also occurs in the target sentence. This
will induce the model to generate translations that
conform to the target term information present in
the source text. While the constrained decoding
and pass-through placeholder methods uncondition-
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ally enforce the use of the specified terminology
in the generated translation (they place hard con-
straints on the output), in this method terms are
soft constraints on the output: contextual factors
may cause the model to not use the specified term
in the translation. This is the desired behaviour,
since terms are often polysemous, and the speci-
fied term translation is usually only appropriate for
one sense of the term. For instance, a terminology
might specify a translation for the word file, but the
translation would only be relevant for the sense of
file meaning an individual file in a computer file
system, instead of e.g. a physical file, a wood file,
or the imperative of the verb to file.

The terminology support in OPUS-CAT is based
on the soft constraint method as it is the simplest
to implement and has performed best in previous
evaluations (Alam et al., 2021b).

3 Model training

The models were trained using a modified version
of Mozilla’s firefox-translations-training1, an end-
to-end pipeline for building NMT models, based
on the Snakemake workflow management system
(Mölder et al., 2021). The pipeline loads, pre-
processes, cleans and filters the training data, and
trains and evaluates the NMT models. For this
shared task, a terminology annotation workflow
has been added to the pipeline2.

3.1 Data

The models were trained using the data provided
for the constrained track of WMT23. Since suffi-
cient parallel data was available for each language
pair, we did not include any back-translated mono-
lingual data in the training corpus. This simplifies
and speeds up training, and from the point of view
of terminological correctness there does not appear
to be any obvious benefit to using back-translated
data, even though it would almost certainly increase
general output quality.

3.2 Data cleaning

The data was cleaned and filtered using the stan-
dard firefox-translations-training workflow, which
consists of monolingual cleaning of source and tar-
get corpora, followed by the filtering of parallel
sentences with Bicleaner or Bicleaner-AI. Data for

1https://github.com/mozilla/firefox-translations-training
2https://github.com/GreenNLP/firefox-translations-

training/tree/develop

en-cs and de-en were filtered with Bicleaner-AI,
while no parallel cleaning was performed for zh-en,
as no Bicleaner-AI model for zh-en was available
to the pipeline.

3.3 Terminology annotation
A part of the cleaned and filtered data
was annotated with artificial term informa-
tion (the annotation script is available from
https://github.com/TommiNieminen/soft-term-
constraints). First, artificial term data is generated
from the parallel data:

1. POS tagging and dependency parsing:
Stanza (Qi et al., 2020) was used to identify
the parts-of-speech (POS) and dependency re-
lations of the tokens in the source and target
sentences.

2. Chunking: The POS and dependency data
from step 1 was used to identify noun and
verb phrase chunks in the source and target
sentences.

3. Word alignment: The filtered parallel corpus
was aligned on word-level using FastAlign
(Dyer et al., 2013).

4. Chunk alignment: Source chunks that were
aligned with target chunks were identified
based on the word alignment from step 3.

The above method is identical to the one in
Bergmanis and Pinnis (2021) except for the ad-
dition of chunking.

As analyzing sentences with Stanza is quite slow,
only a small portion of the parallel data was ana-
lyzed (approximately one in ten sentences). The
noun and verb phrase chunks identified on the basis
of the analysis were saved and used to annotate the
data using two different annotation methods (see
table 2 for examples):

1. Append: The target language chunk was ap-
pended to the aligned source language chunk,
with the source and target chunks separated
with a special separator tag. A start tag was
also added before the start of the source chunk,
and an end tag was added after the end of the
target chunk.

2. Replace: The source language chunk was re-
placed with the aligned target language chunk.
The target chunk in the source sentence was
tagged with start and end tags.
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Language pair Raw Cleaned Annotated
Chinese to English 35,452,884 28,840,867 2,884,058
German to English 294,331,299 182,977,635 18,297,581
English to Czech 56,288,239 35,046,151 2,704,588

Table 1: Amount of parallel sentences available for each language pair. Base model is trained with cleaned data,
and the terminology models are fine-tuned with a combination of clean and annotated data or just annotated data
(-omit models).

Source This product is no longer available

Append This <term_start> product <term_end> produkt <trans_end> is no
longer available.

Replace This <term_start> produkt <term_end> is no longer available.

Table 2: Examples of append and replace annotation methods

These methods are identical to the ones in Dinu
et al. (2019) except for the use of tags instead of
factors to identify terms (similar to Ailem et al.
(2021).

Since a source sentence can potentially have any
number of source terms, the training data needs to
contain source sentences with different amounts of
annotated terms. The annotation algorithm keeps
track of how many sentences with n terms have
been annotated so far, and tries to ensure that the
sentence counts approximate a geometric series,
where the amount of sentences gets halved for ev-
ery extra term. For instance, the annotated corpus
for en-cs contains 1,353,810 sentences with one
term, 676,895 sentences with two terms, 338,414
sentences with three terms and so forth. The jus-
tification for the ratio is that most sentences will
contain only few terms, so the lower counts should
be emphasized in training.

4 Observations on the shared task

This year’s terminology task differs in from real-
world use of terminology in machine translation in
two important aspects:

1. Source terms have been unambiguously iden-
tified.

2. Target terms are specified in an already in-
flected form. This inflected form has been
extracted from a reference translation, and
therefore has a high probability of being a
correct form to use in a translation.

In actual use cases, the NMT system would have
to identify the source terms based on a lemma form
provided in a term base, and only the lemma form

of the target term would be available. The probabil-
ity of the lemma term occurring as such in a correct
translation is much lower than for the inflected
term from a reference translation. The shared task
is therefore much easier than the real-world task of
translating with a term base.

Due to the use of inflected terms, the shared
task also favours soft constraint models where the
model is trained on surface forms of terms in-
stead of lemma forms. Because of this, the mod-
els we have submitted for the shared task all use
surface forms of the terms. However, this will in-
duce the models to learn a simple copy behaviour
(Dinu et al., 2019), instead of the more desirable
copy-and-inflect behaviour (Bergmanis and Pinnis,
2021). In our OPUS-CAT production models, we
intend to use lemma-based constraints, since we
expect them to perform better in real-world sce-
narios, especially with morphologically complex
target languages.

5 Models

Five different models were trained for each lan-
guage pair. All of the models were trained with
Marian (Junczys-Dowmunt et al., 2018) using
the transformer-big model architecture (Vaswani
et al., 2017). For each language pair, a combined
SentencePiece (Kudo and Richardson, 2018) vo-
cabulary (32,000 symbols, out of which ten sym-
bols were reserved as potential term tags by using
the user-defined symbol functionality of Sentence-
Piece) was trained and used for both source and
target languages. As transformer-big models are
costly to train, a single base model was trained for
each language pair using just the filtered corpus,
and the base model was then fine-tuned with data
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that had been augmented with the terminological
annotations. Another motivation for using fine-
tuning is the reuse of models: OPUS-CAT uses
the OPUS-MT model collection that contains thou-
sands of pre-trained models, and fine-tuning those
models to support the use of terminology instead
of training terminology models from scratch saves
time and resources.

Yet another advantage of fine-tuning is that it
makes it possible to quickly test the performance of
different term annotation schemes. As mentioned,
we experimented with the append and replace
methods. For both methods, two models were
trained, one where the annotated sentences were
combined with the unannotated sentences when
fine-tuning (add), and one where the unannotated
sentences were omitted (omit). The expectation is
that the omit model will specialize better to term
translation, while the add model will retain better
generic translation capabilities. In production use it
may be best to use a specialized term model when
terms are detected in the source sentence, and re-
vert back to a generic model when no terms are
detected.

The zh-en base model was trained until conver-
gence (chrF validation metric did not improve for
20 consecutive validation steps). For the en-cs and
de-en base models the training did not have time
to converge before the deadline for shared task sub-
mission, but both models were trained sufficiently
long to obtain competitive evaluation scores (on
par with scores published for existing OPUS-MT
models). The terminology models were trained by
fine-tuning the base model with annotated data for
one epoch.

When translating with a terminology model and
a term base, a script is used to identify terms in
the source text and to annotate the terms in the
source sentence before translation, using the same
annotation scheme as in the training data. Since the
target side of the training data was not modified,
the translation does not need to be post-processed.

5.1 Model n-best combination and reranking

For the submission to the shared task, we combine
the outputs of the different types of models using a
simple n-best reranking method (this is referred to
as the mixture model in the tables):

1. An n-best list of size 8 is generated for each
source sentence by each model.

2. Term occurrences are counted for each trans-
lation in the n-best lists.

3. The translation containing the most terms in
all n-best lists is chosen as the final translation.

4. If translations from different models have the
same amount of terms, the final translation is
picked based on the following model hierar-
chy: base, append, replace, append-omit,
replace-omit (the assumption is that the qual-
ity is best for the base model and worst for the
omit models).

5. If there are multiple translations with the same
amount of terms in a model’s n-best list, trans-
lations higher in the n-best list are preferred.

The motivation for using this reranking method
is that since the models use different approaches
to generate translations, their combined n-best lists
will be diverse, which increases the probability of
finding a translation with correct terms. Also, in
general it makes sense to rerank n-best lists in termi-
nology translation, since the criteria for reranking is
so clear (the highest amount of term occurrences).

6 Evaluation

6.1 Evaluation methods

General model performance was evaluated with
BLEU and chrF metrics using sacreBLEU (Post,
2018).

Terminological correctness was evaluated by
simply counting what percentage of the specified
terms actually occur in the translation in the surface
form in which they are defined. This naive method
ignores two important issues: the correct placement
of the term within the translation, and the match-
ing of all other inflected forms of the term. Alam
et al. (2021a) introduces more sophisticated term
accuracy metrics to alleviate these issues, but we
decided against applying them. Since we use eval-
uation mainly for sanity checking soft constraint
models, which generally place terms correctly (and
do not place terms at all if no plausible position is
found for them), evaluating the correct placement is
not crucial. Likewise, matching all inflected forms
is not crucial in the context of this shared task, since
the terminology is provided in an already inflected
form, and our models have been trained with sur-
face term annotations, and will likely have learned
to copy the single inflected form provided to them.
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DE-EN flores-dev wmt13 wmt16 wmt18 wmt20
base 37.6/64.7 32.4/59.1 34.7/61.0 32.5/58.6 23.3/51.6
append 37.6/64.6 32.4/58.9 34.5/60.9 32.5/58.5 23.0/51.6
append-omit 37.1/64.5 32.3/59.0 34.5/60.9 32.6/58.7 21.8/49.9
replace 37.6/64.6 32.1/58.7 34.3/60.7 32.3/58.4 23.5/51.8
replace-omit 37.2/64.5 32.2/58.9 34.2/60.7 32.5/58.6 22.0/50.4

ZH-EN flores wmt20 wmt21 wmt22
base 25.9/55.8 25.7/55.7 20.4/50.2 18.6/48.6
append 27.2/56.7 27.8/57.3 22.2/51.7 19.9/49.9
append-omit 26.8/56.2 27.0/56.5 21.6/51.0 19.3/49.2
replace 27.0/56.6 27.7/57.1 22.2/51.8 19.5/49.6
replace-omit 26.9/56.3 27.0/56.6 21.6/51.1 19.2/49.1

EN-CS flores wmt13 wmt16 wmt18 wmt20
base 34.1/60.6 27.0/53.5 29.3/56.6 24.2/52.3 20.5/50.4
append 33.4/60.1 26.8/53.3 29.2/56.5 23.8/51.9 20.6/50.4
append-omit 33.6/60.3 27.0/53.3 29.0/56.3 24.0/52.0 19.7/49.4
replace 33.5/60.3 26.8/53.4 29.2/56.5 24.1/52.1 20.4/50.2
replace-omit 33.6/60.2 26.8/53.2 29.0/56.2 23.9/51.9 20.2/49.7

Table 3: General translation performance measured as BLEU/chrF. Note that the input to the term models was not
annotated with terms when translating these test sets, they translated the same unannotated input as the base model.
Therefore it is to be expected that the term models perform worse in this evaluation.

Exact term
accuracy

DE-EN base 0.618
(100) append 0.911

append-omit 0.854
replace 0.886
replace-omit 0.902

ZH-EN base 0.367
(100) append 0.933

append-omit 0.933
replace 0.900
replace-omit 0.967

EN-CS base 0.496
(100) append 0.837

append-omit 0.756
replace 0.829
replace-omit 0.772

Table 4: Term translation accuracy with the shared task
dev set (sentence count is in parentheses under the lan-
guage pair). In this scenario, the terms have been an-
notated to the input of the term models, and the term
models perform better than the base model, as is to be
expected.

6.2 Evaluation data

Models were evaluated against a selection of test
sets allowed for the constrained track of WMT23
(see table 3 for results). Terminological correctness
was evaluated using the development sets provided
in the shared task (see table 4 for results). As
the shared task development sets were quite small,
we also created artificial terminology test sets for
each language pair from the constrained track test
sets, using the same annotation script that was used
to annotate the training data (we did not use pre-
existing terminologically annotated corpora due to
the constrained track restrictions). Aligned noun
and verb phrase chunks were identified in the test
set sentences, and converted into sentence-level
dictionaries similar to those in the shared task de-
velopment sets (see table 5 for results).

Most NMT models trained on parallel data will
exhibit some degree of copy behaviour, since
source texts often contain target language words
(this is especially common when the target lan-
guage is English, due to its dominant position as
a world language). Therefore it is plausible that
the base models are already capable of copying
target terms injected into the source sentence to the
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DE-EN Exact term BLEU/
(6550) accuracy chrF
base 0.732 42.5/65.9
append 0.973 46.8/69.2
append-omit 0.942 46.9/69.2
replace 0.977 46.7/69.2
replace-omit 0.958 46.8/69.2
mixture 0.997 46.4/69.1
base-term 0.945 44.3/67.9

ZH-EN Exact term BLEU/
(5687) accuracy chrF
base 0.656 22.9/53.1
append 0.949 26.1/55.9
append-omit 0.899 24.9/54.8
replace 0.940 25.9/55.9
replace-omit 0.892 25.0/55.0
mixture 0.985 26.1/56.2
base-term 0.884 22.7/53.6

EN-CS Exact term BLEU/
(8204) accuracy chrF
base 0.651 28.3/55.5
append 0.902 31.4/58.4
append-omit 0.803 30.2/57.3
replace 0.909 31.2/58.3
replace-omit 0.861 30.2/57.6
mixture 0.959 32.0/59.0
base-term 0.827 29.0/56.8

Table 5: Term translation accuracy with the artificial
term test set (test set sentence count is in parentheses
under the language pair). Note that mixture will al-
ways have the best term accuracy, since it combines the
output of other models based on term accuracy. Target
terms have been added to the input for all models expect
base. base-term is a base model translating input where
source terms have been replaced with target terms.

translation. To determine the extent of this innate
copying ability of the base model and the actual
improvement brought by fine-tuning, a separate
base-term test set was created from the artificial
term test set by replacing the source terms in the
source sentences with corresponding target terms.

6.3 Interpretation of the evaluation results

Results of the evaluation mostly conform to ex-
pectations. All soft constraint models outperform
the base model in term translation, with the ap-
pend and replace models performing best. This is

somewhat surprising, since the append-omit and
replace-omit models were expected to specialize
better to term translation.

It is also surprising that the general translation
quality of the soft constraint models is comparable
to that of the base models. Strangely, the zh-en
soft constraint models clearly outperform the base
model even in general translation. This may be due
to the zh-en base model converging early, after only
6 epochs of training. Still, it is counter-intuitive that
fine-tuning with the small omit data sets consist-
ing only of annotated sentences should noticeably
improve general translation quality.

The results also confirm that the base models are
quite capable of copying exact terms from the input
sentence into the translation, especially the de-en
model. However, injecting terms directly into the
base model input seems to noticeably lower the
overall translation quality.

7 Conclusion

Our submission for the shared task confirms that
soft terminology constraint methods work with a
variety of language pairs. We also demonstrate that
soft constraint models can be created by fine-tuning
base transformer models, which speeds up training
and the investigation of different soft constraint
methods and parameters. The results also indicate
that fine-tuned soft constraint models have accept-
able general translation quality, and do not require
a back-off base model in production use.

Limitations

The soft constraint methods discussed assume
terms are inflected, which is not usually the case
when actually working with term bases. This lim-
its the usability of the methods, especially with
morphologically complex target languages. How-
ever, the annotation script also supports the use
of lemma forms of terms. The reranking method
used to produce the best term accuracy is compu-
tationally heavy, as it requires decoding with five
separate transformer-big models.
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Abstract

A lack of consistency in terminology trans-
lation undermines quality of translation from
even the best performing neural machine trans-
lation (NMT) models, especially in narrow
domains like literature, medicine, and video
game jargon. Dictionaries containing termi-
nologies and their translations are often used
to improve consistency but are difficult to con-
struct and incorporate. We accompany our sub-
missions to the WMT ’23 Terminology Shared
Task with a description of our experimental
setup and procedure where we propose a frame-
work of terminology-aware machine transla-
tion. Our framework comprises of an auto-
matic terminology extraction process that con-
structs machine translation datasets with termi-
nology dictionaries in low-supervision settings
and two model architectures with terminology
constraints. Our models outperform baseline
models by 21.51%p and 19.36%p in terminol-
ogy recall respectively on the Chinese to En-
glish WMT’23 Terminology Shared Task test
data.

1 Introduction

The WMT’23 Terminology Shared Task aims to as-
sess machine translation models’ abilities to lever-
age additional information. A terminology dic-
tionary is provided with each line of source text.
This is particularly useful for terminology consis-
tency. The WMT’23 Terminology Shared task in-
cludes the language pairs Chinese-English, English-
Czech, and German-English. We focus our submis-
sion on the Chinese-English pair. The task consists
of three modes, as shown in Table 1.

Mode 1 assesses translation quality without ad-
ditional terminology information. Mode 2 assesses
translation quality with additional terminology in-
formation. Mode 3 assesses translation quality with
a glossary containing random non-terminology.

In this paper, we describe our model building
process for terminology translation from data pre-

processing to model evaluation. We present two
Transformer-based encoder-decoder models: Ter-
minology Self-selection Neural Machine Trans-
lation (TSSNMT) and ForceGen Transformer
(ForceGen-T). TSSNMT uses a shared encoder
with a gating mechanism (Bapna and Firat, 2019),
allowing the model to determine the weights of
the source sentence and terminologies to use dur-
ing generation. ForceGen-T enforces a decoder
to generate the terminologies via force decoding
(Reheman et al., 2023) and copy mechanism (Song
et al., 2019), which enables the model to attend
to terminologies during generation. Both models
significantly outperform the baseline model.

2 Related works

Previous work on enhancing machine translation
with pre-defined terminology encompasses three
primary approaches.

First, a data-driven approach where terminolo-
gies are appended to input sentences (Dinu et al.,
2019; Song et al., 2019). Song et al. (2019) sug-
gest using copy mechanism to instruct the model
to replicate the target terminology during the gen-
eration process.

Second, an alternative approach focuses on ma-
nipulating the model architecture. Bapna and Firat
(2019) have used input sentences and their corre-
sponding retrieved translation pairs to encode con-
ditional source target memory. This approach uses
a gated multi-source attention mechanism, which
takes the encoded representation and the hidden
state of the source as input, thereby steering the
model toward the generation of the intended trans-
lation.

Third, efforts have been directed at tailoring
the decoding process to incorporate terminologies.
Hokamp and Liu (2017) and Post and Vilar (2018)
have introduced constrained decoding techniques
that reinforce the translated output’s pre-specified
terminologies.
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Mode Source Input Glossary Input Target Output

1 脱离这些影响的建筑,
17世纪的建筑师伊尼戈琼斯和
克里斯托弗·雷恩牢固确立了
在英国的古典主义.

-
Architects Inigo Jones and Christopher Ren strongly
established classicalism in England in the 17th century,
free from these influences.

2
{“en”: “Christopher Wren”,
“zh”: “克里斯托弗·雷恩”}

Inigo Jones and Christopher Wren, two architects from
the 17th century, strongly established classical architecture
in England, free from these influences.

3
[“en”: “firmly”, “zh”: “牢固”,
“en”: “free”, “zh”: “脱离”]

Building designs that were free from these influences,
17th century architects Inigo Jones and Christopher Ren
firmly established classical architecture in England.

Table 1: Different Mode Scenarios

3 Data Process

The WMT’23 Terminology Shared Task is a con-
strained track, following the same rules of data
usage as the WMT’23 General MT Task, forbid-
ding the use of external data. However, unlike the
WMT’21 Terminology Task, the provided training
data lacks terminology information, and need to be
artificially constructed.

3.1 Data Filtering

We first filter noisy data. We referenced the data
cleaning methods described in the WMT’21 Termi-
nology submissions (Molchanov et al., 2021; Wang
et al., 2021).

1. Remove pairs that contain sentences that:

(a) are empty, too short, too long.
(b) are contain only symbols.
(c) are at least 3 times longer than their coun-

terpart.

2. Delete text pairs identified to be the wrong lan-
guage. We used a combination of our in-house
language detector for short texts and LangID
(Lui and Baldwin, 2012) for long texts.

3. Remove pairs outside of a selected cosine sim-
ilarity scope of latent vectors constructed by
the LaBSE model (Feng et al., 2022).

See Appendix A for the amount of data filtered and
the resulting performance comparison.

3.2 Word Alignment

After filtering data, we tokenize and word-align the
text to extract desired terminology pairs for Modes
2 and 3. The overall process is described in Fig-
ure 1. We use our in-house tokenizer, referring to
the tagging schema from Luo et al. (2019) for Chi-
nese and the Moses (Koehn et al., 2007) tokenizer
for English. Next, the tokenized parallel data is

fed into a LaBSE (Feng et al., 2022) based word
aligner, AccAlign (Wang et al., 2022). AccAlign
generates pairs of indices for words from the source
and target text, which are then utilized in extracting
terminology pairs.

3.3 Terminology Extraction: Mode 2

The terminology extracted for Mode 2 are named
entities, excluding time and number expressions.
We use SpaCy’s (Honnibal and Montani, 2017)
zh core web lg as the Chinese NER model and
en core web md as the English NER model. Fur-
thermore, we consider Chinese four-character id-
ioms extracted by our in-house tokenizer. The id-
ioms are added as additional Mode 2 candidates.
Next, we reference our word alignment results from
Section 3.2 to map candidates to their correspond-
ing targets.

AccAlign occasionally fails to align multi-word
terminology completely, which poses an issue for
Chinese idioms. To account for this, we implement
a soft matching strategy to interpret AccAlign’s
output indices, where we extract the entire phrase
if the aligner maps the beginning and end indices,
even when alignment is not complete in the middle
of the phrase. We use strict matching for named
entities, which only extracts words that appear in
the alignment results.

To guarantee that our extracted terminology is ac-
curate and exhaustive, we repurpose the provided
training data source WikiTitles as an additional
resource for terminology pairs. For each pair in
WikiTitles, we check whether a term and its trans-
lation were present on both sides of the parallel
text and add the relevant term pairs into the Mode
2 glossary.

3.4 Terminology Extraction: Mode 3

The terminology extracted for Mode 3 is intended
to be relatively random yet accurate pairs from
the parallel text. For simplicity, we exclusively
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Figure 1: Data Construction Process

processed from the English side when generating
Mode 3 candidates. We extracted n-grams (1 ≤
n ≤ 4) with high TF-IDF scores (Sparck Jones,
1988), as well as noun phrases (Loria, 2018), as the
Mode 3 candidates. We take all Mode 3 candidate
pairs that contain an appropriately aligned terminol-
ogy, stem the English terms using nltk (Bird et al.,
2009), and then randomly select of a maximum of
ten term pairs for the Mode 3 glossary.

3.5 Development Data

The official Chinese-English development data is
relatively small, thus we supplement it with a sub-
set of the allowed data. We construct a supplemen-
tal development data with a random proportional
sample from each provided training data source,
which consists of 1,000 identical sentences through-
out the three modes. Furthermore, we construct
terminology for the different modes according to
the above mentioned process. Additionally, we fil-
ter stop words and terms in neither the source nor
target texts.

4 Models

This section presents two distinct models designed
to incorporate terminologies into NMT models.
The first model, Terminology Self-selection Neural
Machine Translation (TSSNMT), employs a shared
encoder architecture featuring a gating mechanism.
This mechanism empowers the model to make de-
cisions regarding the proportion of the source sen-
tence and the terminologies to be processed during

generation. The second model, ForceGen Trans-
former (ForceGen-T), takes a more straightforward
approach, utilizing a standard Transformer model
with force decoding (Reheman et al., 2023) and
copy mechanism (Song et al., 2019). This approach
enforces the model to initially generate the pre-
defined terminologies before generating the remain-
der of the sentence. Copy mechanism is applied
to replicate source-side target terminologies in the
output.

4.1 TSSNMT

Figure 2: TSSNMT Model Structure. x, y, and c denote
source, target and corresponding terminology respec-
tively.

We have implemented the TSSNMT model with
minor changes to the transformer architecture. The
model has two encoders, as shown in Figure 2.
Each encoder receives input in source sentences
and source-target pair terminologies. These two en-
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Figure 3: ForceGen model structure. x, y, and c denote
source, target and corresponding terminology respec-
tively.

coders share parameters and encode both the source
sentences and the terminologies. The decoder cal-
culates cross-attentions with these two encoder hid-
den states separately and then projects them to a
gating mechanism (Bapna and Firat, 2019). Shar-
ing parameters allows the model to decide weight
distribution across the source and the terminology
during generation.

4.2 ForceGen Transformer

We tailor a Transformer-based model to ensure the
appearance of given terminologies in the generated
output. Modifying the input format and decod-
ing process incorporates copy mechanism on the
source side, allowing it to copy the target terminol-
ogy from the provided terminology pairs. Table 2
refers to the input sentence for this purpose.

During decoding, the model is reinforced to gen-
erate the given terminologies in a teacher-forcing
manner. This approach aligns with findings by Re-
heman et al. (2023), who force a model to generate
Translation Memory (TM) to enhance model per-
formance. Instead, we provide the model with the
terminologies, expecting it to consider them atten-
tively during the decoding process. Once the termi-
nologies are successfully generated, the model de-
codes the remainder of the input text. Copy mech-
anism enforces the source-side target constraints
into the output. This approach is inline with that
of Song et al. (2019), where copy mechanism sig-
nificantly improves the ratio of terminology occur-
rences in the output.

We conduct preliminary experiments by train-
ing our models using the IWSLT17 (Cettolo et al.,
2017) Chinese-English data and MUSE dictionary
(Conneau et al., 2017) to assess the impact of the
copy mechanism and force decoding. The pri-
mary objective is to determine whether the copy

mechanism and the force decoding technique could
complement each other. The outcomes, as pre-
sented in Table 3, reveal that the model yields the
most favorable results when both the copy mecha-
nism and force decoding are concurrently applied.
This finding underscores the benefit of replicating
source-side target terminology during the genera-
tion process, as it significantly aids in generating
pre-specified terminologies during the force decod-
ing phase. Consequently, when generating output
after force decoding, the model effectively focuses
on the target terminologies generated during decod-
ing, facilitating successful incorporation of these
terminologies into the final production. We apply
both methods to our model, ForceGen-T.

5 Experiments

5.1 Evaluation setting

5.1.1 Pseudo test data
Both the provided WMT Terminology test data and
blind data for the Chinese-English language pair
contain only Chinese source lines and no target, so
to evaluate the model, we constructed artificial tar-
get answers using ChatGPT (Ouyang et al., 2022)
and reviewed the produced data manually. We then
use this data as the test data to evaluate the model.

5.1.2 Evaluation metrics
The evaluation criteria for this translation task in-
clude overall terminology translation, terminol-
ogy usage, and translation quality. We chose
SacreBLEU (Post, 2018) , COMET (Rei et al.,
2020), chrF (Popović, 2015) and Copy Success
Rate (CSR). SacreBLEU and COMET scores are
commonly used metrics in machine translation
quality. For terminology translation and usage, we
utilize CSR, which we define as the appearance
rate of the desired terminology in the inferred text.

5.2 Experimental details

We use sentencepiece (Kudo and Richardson, 2018)
to learn a joint byte pair encoding with a vocab-
ulary size of 32K. Our preprocessing strategy in-
volves pre-tokenizing Chinese data through an in-
house Chinese tokenizer, while English data is ex-
clusively tokenized using the Sentencepiece model.
Please note that the training data tokenization pro-
cess slightly differs from the data construction de-
scribed in Section 3.

For all the experiments, we build upon the scale
of the Transformer Big model (Vaswani et al.,
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Source 郝仁,人如其名,是一个好人。
Term {“en”: “Hao Ren”, “zh”: “郝仁” }
Modified source 郝仁<C> Hao Ren </C>郝仁,人如其名,是一个好人
Modified target Hao Ren </C> Hao Ren, as his name suggests, is a good man

Table 2: ForceGen training data sample.
<C>, </C> are the separation token that distinguishes the source sentence from the terminologies.

Model COMET SacreBLEU chrF CSR
Baseline 0.7274 18.78 42.09 78%
+Copy 0.7347 19.44 42.16 92%
+Force decoding 0.7371 20.10 43.31 94%

Table 3: Preliminary experiment results of ForceGen-T
trained with IWSLT17 Chinese-English data.

Test data Model COMET SacreBLEU chrF CSR

Test data
Baseline 0.6932 17.13 45.13 54.35%
TSSNMT 0.7205 23.04 48.68 75.86%
ForceGen-T 0.7380 22.02 51.00 73.71%

Blind data
Baseline 0.6918 16.55 45.88 65.07%
TSSNMT 0.7181 23.26 49.18 83.45%
ForceGen-T 0.7336 20.96 51.57 89.38%

Table 4: Experiment results. Please note that the scores
are measured with Chat-GPT generated references.

2017) architecture implemented using our propri-
etary toolkit. This model consists of 12 encoder
layers and 6 decoder layers, providing a strong
foundation for effectively integrating specified ter-
minologies into the output. The specific config-
uration of each approach varies according to the
respective model specifications. We list detailed
configurations in Appendix B.

6 Results

Table 4 shows the Chinese-English translation re-
sults on the WMT’23 Terminology Task. We com-
pare two approaches - TSSNMT and ForceGen-T
against the baseline Transformer Big model. Both
TSSNMT and ForceGen-T significantly outper-
form the baseline model in all automatic evaluation
metrics. Highly elevated CSR scores underscore
the successful integration of provided terminolo-
gies into the translated output. In contrast, higher
scores in various syntactic and semantic metrics
(COMET, SacreBLEU, and chrF) indicate the flu-
ency and adequacy of the generated translations.
Within the test data, both TSSNMT and ForceGen-
T exhibit similar performance levels. However,
when evaluating based on the CSR score, TSSNMT
surpasses ForceGen-T by approximately 2%p. In
contrast, within the blind data, ForceGen-T consis-
tently demonstrates superior scores compared to

TSSNMT, with particularly notable advantages in
CSR scores.

7 Conclusion

This paper presents the comprehensive procedure
of our submissions for the WMT’23 Terminology
Shared Task. Our approach involves meticulous
refinement and pre-processing of the provided data,
subsequently used to train our models. We inves-
tigate and implement two strategies for effectively
integrating the given terminologies into the out-
put, demonstrating their superior performance com-
pared to the baseline. The result shows that our
approach can significantly improve translation ac-
curacy by increasing the recall of terminologies. As
a future endeavor, we aim to extend the validation
of our approach to other languages.

8 Limitations

In this paper, we propose two successful terminol-
ogy integration approaches in NMT. We confirm
that our models achieve significant performance
gains over the baseline model. Still, it is essential to
note that these observed improvements are specific
to a particular language pair, Chinese to English.
Therefore, further experiments on a wide range of
language pairs, including those with morphologi-
cally complex structures, are needed to validate the
broader efficacy of our approaches.

It is worth noting that the inference speed of
ForceGen-T linearly correlates with the number of
terminologies that need to be generated. ForceGen-
T is forced to generate the given terminologies
first in decoding, inevitably requiring additional
inference time. Consequently, the inference speed
of ForceGen-T is slower than that of the baseline
Transformer model.
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A Appendix

Data Num of raw data Num of filtered data ratio
Back-translated news 16,943,688 16,349,073 96.49%
CCMT Corpus(casia2015) 1,048,400 1,046,410 99.81%
CCMT Corpus(casict2011) 1,512,478 952,259 62.96%
CCMT Corpus(casict2015) 2,019,011 1,968,537 97.50%
CCMT Corpus(datum2017) 718,025 656,980 91.50%
CCMT Corpus(neu2017) 1,967,605 1,894,805 96.30%
News Commentary v18.1 311,904 309,410 99.20%
ParaCrawl v9 10,508,286 6,599,206 62.80%
UN Parallel Corpus v1.0 12,354,729 12,206,477 98.80%
WikiMatrix 2,276,736 1,035,916 45.50%

Total 49,660,862 43,019,073 86.63%

A.1: Data Filtering

Train data COMET sacreBLEU chrF CSR
raw data 0.5829 12.36 34.41 72.54%
filtered data 0.6445 15.04 40.58 73.64%

A.2: Comparison of WMT’23 raw data and filtered data
on the test data

B Appendix

Training configuration Hyper-parameters
embedding size 1024
num of encoder layers 12
num of decoder layers 6
num of heads 16
hidden size 1024
bottleneck size 4096
dropout rate 0.15
optimizer fusedadam
learning rate 1.8
lr scheduler noam
warm up step 4000
strategy deepspeed stage 2(Rajbhandari et al., 2020)

B.1: Training Configure
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Abstract

The paper presents the submission by HW-
TSC in the WMT 2023 Automatic Post Edit-
ing (APE) shared task for the English-Marathi
(En-Mr) language pair. Our method encom-
passes several key steps. First, we pre-train
an APE model by utilizing synthetic APE data
provided by the official task organizers. Then,
we fine-tune the model by employing real APE
data. For data augmentation, we incorporate
candidate translations obtained from an exter-
nal Machine Translation (MT) system. Further-
more, we integrate the En-Mr parallel corpus
from the FLORES-200 dataset into our training
data. To address the overfitting issue, we em-
ploy R-Drop during the training phase. Given
that APE systems tend to exhibit a tendency of
‘over-correction’, we employ a sentence-level
Quality Estimation (QE) system to select the fi-
nal output, deciding between the original trans-
lation and the corresponding output generated
by the APE model. Our experiments demon-
strate that pre-trained APE models are effective
when being fine-tuned with the APE corpus
of a limited size, and the performance can be
further improved with external MT augmen-
tation. Our approach improves the TER and
BLEU scores on the development set by -2.42
and +3.76 points, respectively.

1 Introduction

Automatic Post-Editing (APE) is a post-processing
task in a Machine Translation (MT) workflow, aim-
ing to automatically identify and correct errors in
MT outputs (Chatterjee et al., 2020a). WMT has
been holding APE task competitions in different
languages and fields since 2015. Similar to WMT
2022, WMT 2023’s APE task still focuses on the
En-Mr language pair. Participants are provided
with a training set comprising 18,000 instances,
a development set, and a test set, with each con-
taining 1,000 instances. Each dataset consists of

∗Work done during internship at Huawei

triplets — the source (src) sentences, the corre-
sponding machine-translation (mt) outputs, and
the human post-edited versions (pe) of the transla-
tions. In this task, the source sentences have been
translated into the target language by using a state-
of-the-art neural MT system to get the machine-
translation data. The provided data encompasses
diverse domains, such as healthcare, tourism, and
general/news. In addition, the synthetic training
data is offered to participants, which is created by
taking a parallel corpus, where the source data is
translated using an MT system, and the references
are considered as post-edits. Furthermore, partic-
ipants are permitted to utilize any additional data
for systems training.

Typically, training an APE model requires large
amount of training data. However, obtaining pe is
an expensive task in terms of time and money. As
a result, there exists a scarcity of large-scale APE
datasets.

To address this challenge, numerous data aug-
mentation techniques have been proposed (Junczys-
Dowmunt and Grundkiewicz, 2016; Negri et al.,
2018; Lee et al., 2020; Wei et al., 2020; Zhang
et al., 2023). Wei et al. (2020) augment the APE
training data with translations generated using a
different MT system. Huang et al. (2022) train
an external MT to obtain more datasets consistent
with APE tasks. They also use Google translation
to back translate the post-edits in the training set.
Deoghare and Bhattacharyya (2022) augment the
APE data by generating phrase-level APE triplets
using SMT phrase tables. To ensure the quality
of the synthetic data, they employe the LaBSE
technique (Feng et al., 2022) to filter low-quality
triplets.

In our method, we use Google translation to back
translate the post-edits in the training set. Subse-
quently, our dataset is structured as follows: the
concatenation of source sentence, back translation
and machine translation as the input, while the
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post-edits serve as the reference output. Addition-
ally, we incorporate En-Mr parallel sentences from
FLORES-200 (Costa-jussà et al., 2022) dev and
test data to our training set. Given that we have an
En-Mr parallel corpus only and lack machine trans-
lation data, we directly utilize English sentences as
the source input and Marathi sentences as the post-
edits. Furthermore, we use R-Drop (Liang et al.,
2021), which regularizes the training inconsistency
induced by dropout and has been proven beneficial
for different kinds of models.

Chatterjee et al. (2020b) have proven that APE
systems often make unnecessary edits to translation
output. To mitigate this issue of over-correction,
we employ a sentence-level QE system to deter-
mine the final output, selecting between the APE
system’s output and the original machine-translated
(mt) version.

When being evaluated on the development set,
our approach improves the TER (Snover et al.,
2006) by -2.42 points and the BLEU score (Pa-
pineni et al., 2002) by +3.76 points.

The contributions of our work are as follows:

• We employ two approaches for data augmen-
tation: (1) We utilize Google translation to
back translate the post-edits to get src’. (2)
We add English and Marathi data from the
FLORES-200 dataset to our training set.

• We utilize R-Drop to address over-fitting con-
cerns and enhance the generalization capabili-
ties of our model.

• We employ a sentence-level QE system to se-
lect the most appropriate output, choosing be-
tween the APE-generated output and the orig-
inal translation.

2 Related Work

Last year’s WMT22 APE shared task mainly fo-
cuses on transfer learning and data augmentation.
Huang et al. (2022) employ the existing data to
train an En-Mr translation model as a data augmen-
tation method. Additionally, they utilize an exter-
nal MT system to generate back-translations, which
can be used to add a set of parallel corpora for the
model to learn the rules of post-edits. Adapters
are also incorporated into the APE model, allowing
the training data to be steered to different adapters
based on the output of a trained classifier. This
facilitates the model in learning post-editing rules
specific to different translations.

Deoghare and Bhattacharyya (2022) use two sep-
arate encoders to generate representations for src
and mt. They also employ a pre-trained language
model to initialize the weights for both our en-
coders. For data augmentation, they leverage exter-
nal MT candidates and generate phrase-level APE
triplets using SMT phrase tables. Furthermore, they
filter low-quality APE triplets from the synthetic
data using LaBSE-based filtering. They also use a
sentence-level QE system to select the final output
between the APE-generated output and the original
translation.

With experience in previous competitions, we
also utilize an external MT system to generate back-
translations. Additionally, we adopt a sentence-
level QE system for selecting the final output.

3 Dataset

3.1 Data source
We use the WMT22 official En-Mr APE dataset,
which consists of a training set and a development
set. The training set consists of 18,000 APE triplets
across domains, such as healthcare, tourism, and
general/news. We first use synthetic data with
2.57M instances to pre-train our model, which
was prepared as a part of the 2022 APE shared
task. Furthermore, we enrich our training set by
incorporating 2,000 En-Mr parallel sentences from
the FLORES-200 dataset. FLORES-200 is a high
quality, many-to-many benchmark dataset, which
contains about 204 languages. In our approach, we
specifically extract the English and Marathi parallel
corpus from this dataset for training purposes.

4 Model

Figure 1 shows the architecture of our APE model.
In this section, we provide the details of our ap-
proach.

4.1 Fine-tuned Transformer
We basically treat the APE task as an NMT-like
problem, which takes src and mt as input and gener-
ates pe autoregressively. Following previous works,
we use a special token <s> to concatenate src
and mt to generate the input sentence: [src, <s>,
mt], while the target sentence is pe. Initially, we
pre-train the APE model using the standard Trans-
former (Vaswani et al., 2017) structure on 2.57M
synthetic training data. However, since there is
a mismatch between the synthetic data and the
real data in our task, we further fine-tune the APE
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Figure 1: This figure shows the architecture of our
model, where mt and augmented src’ are concatenated
with src before being input into the encoder, and post-
edits are generated with the decoder.

model using the APE dataset. To further solve the
problem of data scarcity, following (Huang et al.,
2022), we use the Google translation system to cre-
ate the src’ from the provided pe text. We simply
concatenate the src’ with the original src and mt
to form the new input: [src, <s>, src’, <s>, mt].
Then, we use it in the same way as before, aiming
to have the model learn complementary informa-
tion from src and src’. During inference, the same
input [src, <s>, src’, <s>, mt] is employed to gen-
erate the output, thereby enabling the utilization of
the external information derived from src’.

We also employ R-Drop during the fine-tuning
stage to mitigate overfitting and enhance the gener-
alization capabilities of our model.

4.2 Sentence-Level Quality Estimation

We use wmt22-cometkiwi-da (Rei et al., 2022) as
our sentence-level QE model, which is a COMET
quality estimation model. This model can be used
for reference-free MT evaluation. It receives a
source sentence and the respective translation and
returns a single score between 0 and 1 that reflects

the quality of the translation, where 1 represents
a perfect translation. We use this model to rate
both the original machine translation and the output
generated by our APE system. We then compare
the ratings for both sequences and select the one
with a higher rating as the final output.

5 Experiment

5.1 Settings

Our model is implemented with fairseq (Ott
et al., 2019). Note that the vocabulary and en-
coder/decoder embeddings of our model are shared
between two languages and contain 30K subtokens.
All models are trained on a Nvidia Tesla V100
GPU with 32GB memory. We use the batch size of
30,720 tokens in the pre-training stage and 8,192 to-
kens in the fine-tuning stage. We leverage the FP16
(mixed precision) training technique to accelerate
the training process. In all stages, we apply the
Adam optimizer(Kingma and Ba, 2015) with β1 =
0.9, β2 = 0.98 to train the model, where the inverse
square root schedule algorithm and warmup strat-
egy are adopted for the learning rate. Concretely,
We use a learning rate of 5e-4 with 20k warm-up
steps in the pre-training stage and a learning rate
of 5e-5 with 4k warm-up steps in the fine-tuning
stage. Besides, we set the dropout to 0.1 in the
pre-training stage, 0.3 in the fine-tuning stage, and
the value of label smoothing to 0.1 in all stages.
Early stopping is adopted with patience 10 and 30
epochs during pre-training and fine-tuning, respec-
tively. During inference, we use beam search with
a beam size of 10. Finally, we employ BLEU to
evaluate the model performance. TER and newly
added evaluation metric chrF (Popovic, 2015) are
also used to evaluate the model output.

System BLEU↑ TER↓
Baseline (Do nothing) 64.62 22.93

+APE Data Fine-tuning 66.20 22.82

+External MT 66.46 22.12

+Flores data 66.83 22.01

+R-Drop 67.76 21.12

+Sentence-level QE 68.38 20.51

Table 1: Results on the WMT23 APE development set.
A situation with a higher BLEU score but lower TER
indicates a better result.
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5.2 Result

Table 1 shows the experimental results evaluated on
the dev set, where the baseline result is produced
by directly calculating scores between the provided
MT and PE.

The first experiment is performed by fine-tuning
all parameters of the pre-trained Transformer on the
official training set, which obtains 2+ performance
gains compared with the baseline. This demon-
strates that fine-tuning the pre-trained NMT model
on the limited dataset can be useful. The experi-
ment of adding external MT for data augmentation
shows significant improvements in performance.
The third row in Table 1 shows the results of the
experiment where we add FLORES-200 data. In
the fourth row, we show the results when R-Drop is
adopted in our training stage. Toward the end, we
utilize a sentence-level QE system to rate both the
original translation and the APE output. We then
select one of them with a higher rating as the final
output of our APE system. With the combination
of the APE model and sentence-level QE system,
we see that the TER decreases to 20.50, and the
BLEU score increases to 68.38 points.

6 Conclusion

This paper presents our APE system submitted to
the WMT 2023 APE English-Marathi shared task.
In our approach, we initially employ the data aug-
mentation method to build the [src, <s>, src’, <s>,
mt] additional training datasets. We augment our
training data by incorporating the En-Mr parallel
sentences from Flores-200 dataset. We mitigate
overfitting by employing R-Drop during the train-
ing phase. Moreover, we explore the sentence-level
QE system to discard low-quality APE outputs.
Evaluation of our APE system shows that our ap-
proach achieves significant gains on the WMT-22
APE development sets.

Limitations

One limitation of our approach is that while we
utilize a sentence-level QE system to assess the
quality of the APE output and the original transla-
tion, the APE system itself does not directly benefit
from this evaluation process. While the QE system
helps us identify and discard poor-quality APE out-
puts, it does not contribute to the improvement of
the APE system itself.
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Abstract

The internet is a vast repository of valuable in-
formation available in English, but for many
people who are more comfortable with their
regional languages, accessing this knowledge
can be a challenge. Manually translating this
kind of text, is a laborious, expensive, and time-
consuming operation. This makes machine
translation an effective method for translating
texts without the need for human intervention.
One of the newest and most efficient translation
methods among the current machine translation
systems is neural machine translation (NMT).
In this WMT23 shared task: low resource in-
dic language translation challenge, our team
named ATULYA-NITS used the NMT trans-
former model for the English to/from Assamese
and English to/from Manipuri language trans-
lation. Our systems achieved the BLEU score
of 15.02 for English to Manipuri, 18.7 for Ma-
nipuri to English, 5.47 for English to Assamese,
and 8.5 for Assamese to English.

1 Introduction

In countries like India, linguistic diversity is a
significant aspect, with a multitude of languages
varying across different regions. India officially
recognizes 23 languages (Das et al., 2020) (e.g.,
Hindi, Sanskrit, Assamese, Odia, etc.), and along-
side these, there are several hundred unofficial local
languages spoken by communities. Despite India’s
vast population of approximately 1.4 billion, only
about 11% of the population is proficient in English
(Azam et al., 2013).

This language barrier becomes crucial when con-
sidering the abundance of valuable resources avail-
able on the internet, mostly in English, as a signifi-
cant proportion of people in India cannot fully com-
prehend this content. Consequently, there arises a
pressing need to translate such valuable informa-
tion into local languages to facilitate knowledge
sharing among the population. Such knowledge

dissemination is crucial not just for business pur-
poses but also for enabling the exchange of feelings,
opinions, and actions, thereby fostering better com-
munication and understanding among people from
diverse linguistic backgrounds.

Manual translation of such copious amounts of
content would be extremely laborious and time-
consuming, making automatic machine translation
an indispensable solution. However, machine trans-
lation for Indian languages presents its own set
of challenges (Singh et al., 2021). One key chal-
lenge is the scarcity of parallel corpora, as there are
fewer resources available for Indian languages com-
pared to more widely spoken foreign languages.
Moreover, the structural differences between In-
dian languages and English, particularly in terms
of morphological richness and word order, pose
significant obstacles to accurate translation. For
instance, English follows a Subject-Verb-Object
(SVO) word order, whereas Indian languages like
Assamese and Manipuri, follow a Subject-Object-
Verb (SOV) word order (Bora, 2015). Furthermore,
English is a fusional language, while Assamese
and Manipuri are agglutinative languages (Singh
and Singh, 2022; , leading to distinct syntactic and
morphological complexities that further complicate
the translation process.

We participated in the Low-Resource Indic Lan-
guage Translation task on translating two language
pairs i.e. English to/from Assamese, and English
to/from Mizo. We did the preprocessing of the
given dataset and applied a neural machine transla-
tion technique i.e. transformer model. The perfor-
mance was evaluated using the widely used eval-
uation metric BLEU. The rest of the paper is or-
ganized as follows: Section 2 discusses the exist-
ing machine translation systems and techniques
tailored to Indian languages. In Section 3, we
present details about the dataset, preprocessing of
the dataset, and transformer model. In section 4, we
discussed about the result. Finally, in Section 5, we
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conclude with a discussion of the future prospects.

2 Literature Survey

Over the past few decades, machine translation
(MT) has been the subject of extensive research.
Researchers have explored various approaches
in this field, including rule-based MT (Das and
Baruah, 2014; Forcada et al., 2011), corpus-based
MT, also known as data-driven MT (Laskar et al.,
2022; Laitonjam and Singh, 2021; Singh and
Bandyopadhyay, 2010), and hybrid-based MT
(Laitonjam and Singh, 2022). Each of these ap-
proaches has its own advantages and disadvantages.

In rule-based MT, systems analyze the source
text to create an intermediate representation, and
depending on this representation, it can be fur-
ther categorized into transfer-based (TBA) and
interlingua-based (IBA) approaches. The corpus-
based approach, on the other hand, relies on large
parallel corpora consisting of text and their trans-
lations to acquire translation knowledge and is
sub-divided into two sub-types, i.e. statistical ma-
chine translation (SMT) and example-based ma-
chine translation (EBMT). SMT generates trans-
lations using statistical models that combine lan-
guage models and translation models with decod-
ing algorithms. In contrast, EBMT uses exist-
ing translation examples to generate new transla-
tions. Hybrid-based machine translation combines
aspects of both rule-based and corpus-based ap-
proaches to address their respective limitations.

The machine translation performance for Indian
language pairs (e.g., Hindi, Bengali, Tamil, Pun-
jabi, Gujarati, and Urdu) into English achieves
an average accuracy of only 10%, (Khan et al.,
2017) highlighting the need for improved machine
translation systems for these languages. Neural
Machine Translation (NMT) has emerged as a
novel and promising technique for various lan-
guages, exhibiting remarkable results (Devi and
Purkayastha, 2023; Laskar et al., 2022, 2021). In
this paper, we have applied the transformer model
to the English-Assamese and English-Manipuri lan-
guage pair (Laskar et al., 2021; Singh and Singh,
2022)

3 Methodology and Evaluation

3.1 Dataset Details

The English-Assamese parallel corpus (Pal et al.,
2023) comprised a grand total of 53,000 sentence

pairs, while the Assamese monolingual corpus con-
tained nearly 2.6 million sentences. Moving over
to the English–Manipuri parallel corpus (Pal et al.,
2023), it included a substantial 24,300 aligned
sentence pairs. As for the Manipuri monolingual
dataset, it contained roughly 2.1 million sentences.

3.2 Data Preprocessing
The dataset may contain repetition of sentences
with the same source and the same target transla-
tion, sentences with the same source but different
translations, sentences with different source text
but the same translation. To address these issues,
a solution was implemented by selecting unique
sentence pairs from all available sentences and re-
moving the duplicates. Sentences repeated more
than once were completely removed to avoid am-
biguity in determining the correct translation for
a given source and vice versa. This preprocessing
step aimed to ensure that the training and test sets
did not contain the same sentences, which could
result in better predictions for the test set but incor-
rect predictions for new sentences. Some additional
preprocessing steps were carried out, including re-
moving sentences with a length greater than 50,
removing noisy translations and unwanted punctu-
ations, filtering out sentences in other languages
by applying language identification, and filtering
out sentences containing HTML tags, illegal char-
acters, and invisible characters. Finally, the dataset
was split into training, testing, and validation sets,
following shuffling. The English-Assamese paral-
lel corpus was segregated into 49,500 for training,
2,000 for validation, and 1,000 for testing. Sim-
ilarly, the English-Manipuri parallel corpus was
divided into 21,000 for training, 2,000 for valida-
tion, and 1000 for testing.

3.3 Transformer Model
The Transformer model(Vaswani et al., 2017) is a
powerful architecture used in tasks like machine
translation. It excels in natural language process-
ing, employing a technique called "self-attention"
to process sequential data effectively. Unlike tra-
ditional models, it considers the context of the en-
tire sequence, using multiple self-attention mech-
anisms known as "attention heads" to capture dif-
ferent relationships between words. Positional en-
coding is added to understand the word order. In
machine translation, it consists of an encoder and a
decoder communicating through attention mecha-
nisms.
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For the task of the English-Assamese language
pair, along with the provided parallel corpus (Pal
et al., 2023), we also used the monolingual cor-
pus to create the vocabulary for the English and
Assamese languages. The vocabulary extracted
from the monolingual corpus generated a total of
107483 unique tokens in the Assamese language.
The vocabulary size of the English language was
35487.

We used the transformer model to train the data.
For the whole process, we used Google Colab and
trained the model using a T4 GPU provided by Co-
lab. We trained the model for 2000 training steps
and 250 validation steps. We set the word vector
size to 512 and used 6 layers of 512 hidden nodes.
We set the transformer feed-forward size to 2048
and used 8 attention heads. We set the learning rate
to 1 while using Adam optimization(Kingma and
Ba, 2014). We used a batch size of 2048 with a
dropout probability of 0.1 and used a label smooth-
ing regularization technique to prevent overconfi-
dence. The whole training process took around 4
hours when we used the batch size of 2048.

The vocabulary extracted from the monolingual
corpus generated a total of 84072 unique tokens in
the Manipuri language. For the English-Manipuri
language pair, we trained the model for 1500 train-
ing steps and 150 validation steps, and all the re-
maining were similar to English-Assamese. The
whole training process took around 3 hours.

4 Evaluation

4.1 Evaluation Metric

The Bilingual Evaluation Understudy (BLEU)
score is a useful tool for determining the differ-
ences between translations produced by machines
and those created by human translators (Papineni
et al., 2002). This assessment method compares
and aligns the number of n-grams in the translated
output with the number of n-grams in the source
text. In this context, a bigram comparison entails
analyzing every word pair, while a unigram com-
parison relates to each individual token. It’s sig-
nificant to notice that this evaluation ignores the
comparison’s precise wording. This methodology
is an improved version of a simple precision-based
evaluation strategy.

4.2 Result

BLEU, chrf2, RIBES, and TER evaluation metrics
on both language pairs are shown in Table 1.

Language
Pair

BLEU Chrf2 RIBES TER

English-
Assamese

5.47 21.66 0.21 0.5

Assamese-
English

8.5 24.26 0.25 0.47

English-
Manipuri

15.02 35.96 0.28 0.43

Manipuri-
English

18.7 38.49 0.32 0.41

Table 1: The experimental result of language pairs on
different evaluation metrics

5 Conclusion

In this paper, we applied NMT to the two most diffi-
cult language pairs (English-Assamese and English-
Manipuri). We showed that the transformer model
performs better for Indian languages. We achieved
a fairly good BLEU score for the English-Manipuri
language pair. So, this model can be used for do-
mains such as tourism and education. Moreover,
this transformer model is useful for various English-
Indian language pair translations.
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Abstract

This paper describes the submission of the
GUIT-NLP team in the "Shared Task: Low Re-
source Indic Language Translation" focusing
on three low-resource language pairs: English-
Mizo, English-Khasi, and English-Assamese.
The initial phase involves an in-depth explo-
ration of Neural Machine Translation (NMT)
techniques tailored to the available data. Within
this investigation, various Subword Tokeniza-
tion approaches, model configurations (explor-
ing differnt hyper-parameters etc.) of the gen-
eral NMT pipeline are tested to identify the
most effective method. Subsequently, we ad-
dress the challenge of low-resource languages
by leveraging monolingual data through an in-
novative and systematic application of the Back
Translation technique for English-Mizo. Dur-
ing model training, the monolingual data is
progressively integrated into the original bilin-
gual dataset, with each iteration yielding higher-
quality back translations. This iterative ap-
proach significantly enhances the model’s per-
formance, resulting in a notable increase of
+3.65 in BLEU scores. Further improvements
of +5.59 are achieved through fine-tuning using
authentic parallel data.

1 Introduction

Work on Machine Translation (MT) involving in-
digenous languages is on the rise to provide such
languages a global existence rather than limiting
its scope to regional geographical boundaries. But
such a work is quite challenging owing to its typ-
ical characteristic being limited (low) resourced
as NMT models are data hungry which tend to
degrade with limited data input. Established meth-
ods like Back Translation (Sennrich et al., 2015b),
Transfer Learning (Kim et al., 2019; Zoph et al.,
2016), Multilingual Neural Translation (MNT)
(Lakew et al., 2018; Ngo et al., 2020), Dual Learn-
ing (He et al., 2016; Wang et al., 2018) and such
do exist to tackle the low-resource challenge. With

the monolingual and limited parallel data provided
to the teams to work with, Back Translation (BT)
seemed to be an appropriate choice. In BT, a target
to source model translates the target side mono-
lingual data to generate a substantial amount of
synthetic parallel data which could be augmented
with the limited authentic parallel data to increase
the volume of training data. Previous experiments
(Sennrich et al., 2015a; Edunov et al., 2018), (Pon-
celas et al., 2018; Wu et al., 2019) have shown
improved results in such scenarios.

The general NMT pipeline comprises of vari-
ous stages like tokenization, subword tokenization,
NMT model training, inference and post-editing. It
should be noted that several methods are available
for every stage making it difficult for the researcher
to select the one that would suit the data best as
each method has its own influence on the model
performance. We, therefore, perform an initial in-
vestigation on two popular subword tokenization
methods to find the best choice. The rest of the pa-
per is organized as follows: Section 2 describes the
methods applied for the task, Section 3 presents the
experimental setup and the results obtained for the
three language pairs: English-Mizo, English-Khasi
and English-Assamese. Section 4 concludes the
paper.

2 Methodology

The following section describes the methodology
used for the task for each of the language pairs.

2.1 Data Exploration
In this section, we delve into the data used for the
task, which encompasses two primary categories:

1. Parallel Data: This data category consists of
two distinct, non-overlapping sets, specifically
the training and validation set.

2. Monolingual Data: This category encom-
passes an extensive corpus with monolingual
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Language Pair Train Set Dev. Set
English-Mizo 50,000 1,500
English-Khasi 24,000 1,000

English-Assamese 50,000 2,000

Table 1: Parallel Data Statistics.

Language Sentences(in millions)
Mizo 1.9
Khasi 0.18

Assamese 2.6

Table 2: Monolingual Data Statistics.

sentences. It is imperative to underscore that
all participating teams are expressly instructed
to rely exclusively on the provided data, re-
fraining from any utilization of external re-
sources.

Upon conducting a preliminary manual analysis
of the data, several noteworthy observations have
come to light:

(i) Instances exist within the corpus wherein sen-
tences commence with multiple spaces.

(ii) Instances within the corpus also manifest
where multiple spaces occur between words.

(iii) The corpus exhibits a mixture of both tok-
enized and untokenized sentences.

After having these disparities removed from the
data, the sets are tokenized with Moses (Koehn
et al., 2007) tokenizer for English, Mizo and Khasi
as they share the same Roman script while As-
samese is tokenized with IndicNLP1. Prior to tok-
enization of the English, Mizo and Khasi text, all
characters are normalized to lowercase for consis-
tency. With no difference in case for Assamese,
this step is not required for the language. Addition-
ally, a fundamental filtering routine is applied as
part of the data preprocessing process as described
below:

(a) Removal of Empty Lines: (Source, target)
pairs containing empty lines on either the
source or target side are systematically elimi-
nated from the dataset.

(b) Elimination of Duplicate Lines: (Source, tar-
get) pairs characterized by duplicate lines in

1https://anoopkunchukuttan.github.io/indic_
nlp_library/

both the source and target segments are sys-
tematically removed. Duplicate content can
introduce redundancy and skew the training
process, hence necessitating their exclusion.

(c) Relative Length-Based Filtering: To maintain
a balanced and coherent dataset, pairs where
the length of the target sentence significantly
exceeds that of the source sentence (or vice
versa), exceeding a predetermined threshold
(typically set at twice the length), are judi-
ciously omitted.

2.2 Subword Tokenization
In the context of developing NMT models for low-
resource Indian languages, subword tokenization
emerges as a critical technique as it addresses
out-of-vocabulary (OOV) challenge, morpholog-
ical richness, facilitates cross-lingual transfer of
knowledge, reduces the vocabulary size substan-
tially. Two popular schemes are explored namely:

1. Byte Pair Encoding (BPE): BPE (Sennrich
et al., 2015c) is a data compression technique
designed to systematically merge the most
common pair of character sequences. Conse-
quently, frequent substrings are unified into
single symbols, while rare words are seg-
mented into smaller constituents. BPE is ex-
perimented in two forms:

(a) Independent Vocabulary: This involves
creating separate and independent sub-
word vocabularies for both the source
and target languages.

(b) Shared Vocabulary: When dealing with
closely related languages a shared sub-
word vocabulary is a popular choice as
it aligns (sub)words from source and tar-
get sentences into the same embedding
space so as to strengthen the semantic
correlation between them.

2. Sentencepiece (Kudo and Richardson, 2018):
Though Sentencepiece (SP) has the capabil-
ity to directly train subword models from raw
text, eliminating the need for prior tokeniza-
tion, we pre-tokenize it as (Kudo and Richard-
son, 2018) has shown better results with to-
kenized input. Also, SP supports subword
regularization, which dynamically enhances
the training data with on-the-fly tokenization
during NMT model training. This process
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contributes to the construction of a robust and
accurate model, and it is not tied to any spe-
cific architectural configuration. Our experi-
mentation with SentencePiece, implemented
with independent vocabularies for English and
Mizo, involves two main approaches:

(a) With subword regularization: With this
method the model encounters different
variations of subword splitting of the
same word which could in turn be ben-
eficial in producing a robust model for
agglutinative languages. We have set the
number of nbest candidates to 16 and the
smoothing parameter to 0.1.

(b) Without subword regularization.

2.3 Using Monolingual Data
A relatively large monolingual data have been pro-
vided which could be made to use in various ways
like constructing embeddings or for data augmen-
tation. Back translation (Sennrich et al., 2015a)
is a popular data augmentation method that ex-
ploits the target side monolingual data to create
synthetic parallel corpus. Back Translation uses a
base target→source model (initially trained on the
limited genuine bitext) to translate the target side
monolingual data. The synthetic data thus gener-
ated can serve as supplementary resource and could
be explored in various ways.

Re-training the model on the manifold synthetic
data is expected to boost up the model producing
better translations. Two obvious assumptions can
be made on the performance of an NMT model for
low-resource scenario:

1. Data augmentation could boost up the model.

2. Also, more error-free the training data is, bet-
ter is its performance.

Based on these assumptions and inspired by the
previous reports on back-translation with iterations
such as (Cotterell and Kreutzer, 2018; Hoang et al.,
2018), we use an innovative twist to improvise
model by using back translated data iteratively
rather than using all in one go. In every iteration,
the model is trained with increased data back trans-
lated by the previous iterations’s improved model
along with the original bitext thereby producing
better translations for the next iteration. As the
synthetic data is prone to error which could in turn
hamper model performance (Poncelas et al., 2018),

we add the back translated data proportionate to
the size of the genuine bitext. Also, the trained
model is followed by finetuning on the genuine
bitext for further improvement (Tonja et al., 2023).
Our method could be summarized by the following
algorithm:

Algorithm 1 An innovative usage of Back Transla-
tion
Require: Authentic parallel corpus(S0, T0), target

monolingual corpus(M), number of splits (n)
M0 ← Train(Target→Source)(S0, T0)
C1, C2, ..., Cn ← Split(M,n)
such that |Ci| ∝ |S0|
i← 1
while i ≤ n do

(Si, Ti) = (S0, T0)
⋃

(Mi−1(
i∑

1

Ci),
i∑

1

Ci)

Mi ← Train(Target→Source)(Si, Ti)

Mi ← FinetuneMi(S0, T0)

i← i+ 1
end while

2.4 Post-Editing

The predicted translations (for English, Mizo and
Khasi) have been post-edited in the following ways:

1. Truecasing: A truecaser model has been
trained on the training set with the Moses’
truecaser script.

2. Capitalizing the first character of every predic-
tion.

3. As the text in the test set is not completely
detokenized with several punctuation markers
space separated, adjustments have been made
to replicate the reference translations.

3 Experiments and Results

Experimental Setup: All the experiments
have been conducted on the opensource NMT
toolkit, OpenNMT (Klein et al., 2017). Subword
vocabulary size is kept at 8000. The Transformer
(Vaswani et al., 2017) has been customized to
work on the small-scale dataset by simplifying the
standard model. After conducting experiments
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Table 3: Experimentation setup for English-Assamese

Model En/Dec
Lay-
ers

Attention
Heads

Dimensions Batch
Size

Model 1 6 8 512 512
Model 2 3 4 256 256
Model 3 6 4 256 256
En/Dec : Encoder/Decoder

Table 4: Experimentation setup for English-Khasi

Model Batch
Size

BPE Vo-
cab Size

En/Dec
Layer

Attention
Heads

M1 256 6000 3 4
M2 512 6000 3 4
En/Dec : Encoder/Decoder

with various parameter sets (including encoder
and decoder layers, heads, embedding size, and
feed-forward nodes), we have determined that
the optimal configuration for English-Mizo data
consists of 3 encoder and 3 decoder layers, a
word vector size of 512, and 2048 nodes in
the feed-forward layer. For English Assamese
pair, three models have been built with varying
hyperparameters and training is performed in both
the directions. For English Khasi, two models have
been built and trained. The model descriptions for
English-Assamese and English Khasi are shown in
Table 3 and Table 4 respectively. All the models
are trained using the Adam optimizer with an
initial learning rate of 2, incorporating Noam decay
and 8,000 warm-up steps. The training process
continues for 200,000 steps, with validation
performed every 10,000 steps. Additionally,
checkpoints are saved at 10,000-step intervals, and
early stopping is implemented with a patience
of 4 based on validation perplexity and accuracy.

Checkpoint Selection: Throughout training,
checkpoints are saved every 10,000 steps. Among
all the checkpoints generated, the model with the
best validation perplexity and validation accuracy
is chosen as the model for testing purposes.

3.1 Results

In Table 5 we report our results on the initial experi-
ments using various subword tokenization schemes
for English-Mizo. Our results have been evaluated
by four evaluation metrics as provided by the orga-
nizers. It is clear from the results that Byte Pair En-

Table 5: Results obtained with various Subword mecha-
nisms (English-Mizo).

English→Mizo
Method BLEU CHRF TER RIBES
SPwo_reg 22.63 44.93 58.07 0.75
SPw_reg 23.78 48.06 58.07 0.75
BPEsh 23.29 46.72 59.93 0.75
BPEind 25.58 48.19 57.35 0.76

Mizo→ English
SPwo_reg 20.65 40.98 72.8 0.67
SPw_reg 18.51 41.32 73.7 0.67
BPEsh 18.81 40.33 73.65 0.66
BPEind 20.95 41.38 72.43 0.67
SPwo_reg : SentencePiece without Subword regularization

SPw_reg : SentencePiece with Subword regularization

BPEsh : Byte Pair Encoding with shared vocabulary

BPEind : Byte Pair Encoding with independent vocabulary

coding using independent vocabularies works best
for this data. Hence, for all the future experiments,
BPE with independent vocabularies is selected as
the standard format. Also, it should be noted that
we have reported the results obtained with BPE
(shared vocabulary) as the primary results for both
En→Mizo and Mizo→ En directions.

Table 6 summarizes the result obtained by our
method of using proportionate back translated data
which is in turn generated by the model developed
in the previous iteration. The baseline scores are
obtained by using 1M back translated data (trans-
lated by SPw_reg model) which acheives a BLEU
of value of 16.77 for En → Mz. In the 1st itera-
tion, equal size of back translated data is added to
the genuine bitext and the model is trained from
scratch. It is able to achieve a BLEU score of 20.42.
This shows the negative impact of adding a large
size synthetic data, which is not error-free, relative
to the authentic parallel data. Also, a significant im-
provement is noticed after fine-tuning on the given
authentic data. Similar results are also seen in the
2nd iteration. The successive improvement is a
successful implementation of our novel usage of
back translation method.

The English-Assamese and English-Khasi ex-
periments have been conducted using various con-
figuration of the Transformer model as shown in
Table 3 and Table 4 respectively. This is done to
find the optimal model configuration for the lan-
guages. Though English and Khasi share the same
script, the morphologies are completely different
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Table 6: English-Mizo BLEU scores with our novel
usage of Back Translation (BT)

Method BT Data Size En->Mz Mz ->En
Baseline 1M 16.77 14.40

1st Iter.
50K 20.42 16.20

FineTuned 26.01 20.06

2nd Iter.
100K 22.04 18.19

FineTuned 26.63 20.81

and as Table 5 clearly manifests, appropriate hyper-
parameter values can bring about significant impact
in the performance. The results obtained for En-
glish → Assamese is shown in Table 7 and As-
samese→ English is shown in Table 8. From both
the tables, we see that Model 1 has shown the best
results in both English→ Assamese and Assamese
→ English translation. We, therefore, select the
results obtained for Model 1 as the primary score.
For English-Khasi, the results for model (M1) is
submitted as the primary score.

Table 7: Results for English→ Assamese

Model BLEU CHRF TER RIBES
Model 1 4.89 25.16 87.21 0.46
Model 2 4.27 24.59 90.13 0.43
Model 3 3.75 22.65 93.57 0.42

Table 8: Results for Assamese→ English

Model BLEU CHRF TER RIBES
Model 1 5.5 25.81 80.1 0.56
Model 2 4.7 24.96 81.53 0.55
Model 3 4.14 23.73 83.41 0.53

4 Conclusion

In this study, we have provided a comprehen-
sive overview of our Neural Machine Translation
(NMT) system developed for three language pairs:
English-Assamese, English-Khasi, and English-
Mizo, encompassing both translation directions.
Our research delved into the intricacies of model
configurations (Transformer layers, heads, batch
sizes, etc.) and subword tokenization schemes
(Byte Pair Encoding and SentencePiece and its
variants). Through rigorous experimentation, we
identified and adopted the optimal configurations
for each language pair.

Challenged by the inherent scarcity of data in
these low-resourced language pairs, we innova-

Table 9: Results for English Khasi pair.

English→ Khasi
Model BLEU CHRF RIBES TER
M1 10.41 33.31 0.63 71.67
M2 10.27 32.63 0.63 70.71

Khasi→ English
M1 8.74 30.54 0.63 79.64

tively leveraged monolingual data to augment our
translation models. We have presented a novel vari-
ation of a well-established technique for address-
ing the challenges of low-resourced NMT systems:
Back Translation. This adaptation yielded remark-
able results, surpassing the performance of conven-
tional Back Translation methods by a substantial
margin.

5 Limitation

We use the standard tokenization implementation
(Moses) for English, Mizo and Khasi. Though
Moses seems to work fine for English, certain dis-
parities (associated with language-specific charac-
ters) are observed for Mizo and Khasi, both mor-
phologically rich languages. Similar observations
are also noted for Assamese. Using a customized
tokenizer for these languages is believed to enhance
the results which needs further investigation.

The dataset given was too small for Neural
Machine Translation trainingespecially for Khasi.
Though Back Translation is a well known method
for low-resource setting, merely translating and
using it as a pseudo-parallel corpus may not help
as the monolingual data quality also has an im-
pact. We have not used any mechanism to judge
the quality. With our method, we iteratively use
incremented back translations which is observed
to boost the model. But the translation data is pro-
portional to the original parallel corpus size which
hinders leveraging fully the large monolingual cor-
pus. We would like to explore ways to fully ex-
ploit the large availability of monolingual corpus
for data augmentation or linguistic embellishments.
Monolingual data usage is not explored (due to
time constraint as we joined late) for the English-
Assamese and English-Khasi which we plan to
investigate in future. Our overall system lags in
producing correct translations for long sentences.
Semi-automatic post editing is utilized which needs
further investigations in automatising the process.
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Abstract

In this paper, we (Team NICT-AI4B) describe
the MT systems that we submit to the Indic
MT task in WMT 2023. Our primary system
consists of 3 stages: Joint denoising and MT
training using officially approved monolingual
and parallel corpora, backtranslation and, MT
training on original and backtranslated parallel
corpora. We observe that backtranslation leads
to substantial improvements in translation qual-
ity up to 4 BLEU points. We also develop 2
contrastive systems on unconstrained settings,
where the first system involves fine-tuning of
IndicTrans2 Data Augmentation (DA) models
on official parallel corpora and seed data used
in Gala et al. (2023), and the second system
involves a system combination of the primary
and the aforementioned system. Overall, we
manage to obtain high-quality translation sys-
tems for the 4 low-resource North-East Indian
languages of focus.

1 Introduction

The increasing online presence1 of the Indian popu-
lation along with the economic growth2 of India has
necessitated the development of translation systems
for Indian languages. There have been substantial
efforts towards collecting monolingual and parallel
corpora, as well as developing machine translation
systems using them (Ramesh et al., 2022; Doddapa-
neni et al., 2023). Most recently, IndicTrans2 (Gala
et al., 2023), an MT system, and its accompanying
parallel corpus BPCC, were released. This corpus
covers all 22 Indian languages covered in the 8th
schedule3 of the Constitution of India.

While IndicTrans2 has achieved comparable or
better results compared to existing systems like

1https://datareportal.com/reports/
digital-2023-india

2https://www.cnbc.com/2023/07/26/
imf-raises-2023-economic-growth-forecast-for-india.
html

3https://www.mha.gov.in/sites/default/files/
EighthSchedule_19052017.pdf

NLLB (Costa-jussà et al., 2022), a major limitation
is that there is no specific focus on language sub-
groups. One of such subgroups is the North-East
Indian languages, which this shared task focuses
on. The task focuses on translation to/from English
and the following 4 North-East Indian languages:
Assamese, Manipuri, Mizo and Khasi. We submit
constrained as well as unconstrained MT systems
for the 8 translation directions in this task. For fur-
ther details on the shared task, kindly refer to (Pal
et al., 2023).

We leveraged ideas such as joint multilingual
denoising and MT training followed by back-
translation at scale. First, due to the small size
of the official parallel corpora, we utilized avail-
able and permitted monolingual corpora for all
languages involved and trained on a combination
of text-infilling and MT objectives to train an ini-
tial MT system. We used this system to generate
large back-translated corpora, which were com-
bined with the official parallel corpora to train the
final primary system. The back-translated corpora,
due to their scale, led to improvements up to 4
BLEU as measured on the development set. We
also submitted two contrastive systems: the first
one was obtained via fine-tuning IndicTrans2 DA
models (Gala et al., 2023) and the second one was
a system combination of the primary and the afore-
mentioned contrastive system. We observed that
our first contrastive system outperformed the pri-
mary for some language pairs due to the utilization
of a strong pretrained MT model as initialization
and additional high-quality data being used to fine-
tune them. As for our second contrastive system,
we observed improvements for directions where
there was a small performance gap between the
primary and the first contrastive system.

2 Related Work

Our submissions leverage ideas from topics such as
multilingualism (Dabre et al., 2020), denoising pre-
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training (Lewis et al., 2020; Dabre et al., 2022),
backtranslation (Sennrich et al., 2016), transfer
learning (Zoph et al., 2016) and system combina-
tion (Heafield and Lavie, 2010, 2011).

The North-East Indian languages of focus in this
shared task are all low-resource languages, and
transfer learning via multilingualism is a reliable
solution in this case. Transfer learning can be
achieved by fine-tuning a pre-trained model (Zoph
et al., 2016) but this involves two stages. On the
other hand, multilingual training (Johnson et al.,
2017; Dabre et al., 2020) involves implicit transfer
via joint training. We explore both strategies when
developing our systems.

Backtranslation (Sennrich et al., 2016) involves
taking intermediate translation systems and trans-
lating monolingual corpora into another language.
The synthetic-source and original target parallel
corpora, can typically be orders of magnitude larger
than the parallel corpora used to train the interme-
diate systems and when used at scale, such back-
translated corpora are known to help improve trans-
lation quality (Edunov et al., 2018) and therefore
we attempt to use as much monolingual corpora as
possible for backtranslation. While there are itera-
tive backtranslation (Hoang et al., 2018) strategies
where the process of model training and backtrans-
lation is performed repeatedly, their computational
complexity makes them a less attractive solution to
us.

An alternative to backtranslation is denoising
pretraining using monolingual corpora (Lewis et al.,
2020; Dabre et al., 2022) and when combined with
MT training as a joint objective (Kamboj et al.,
2022) is known to significantly improve MT quality.
Since backtranslation and denoising pre-training
are known to be orthogonal (Liu et al., 2020), we
leverage the joint denoising and MT training ap-
proach only for intermediate models which are used
for backtranslation.

3 Our Systems

We submit 3 systems, one primary (constrained)
and two contrastive (unconstrained).

3.1 Primary System

To create our primary system, we do the following:

1. Augment official monolingual data with the
external monolingual corpora for the 4 North-
East Indian languages and English.

2. Train a many-to-many encoder-decoder Trans-
former (Vaswani et al., 2017) model with the
joint text-infilling (denoising) (Lewis et al.,
2020; Dabre et al., 2022) and the MT objec-
tives, using the augmented monolingual and
official parallel corpora, respectively. To pre-
vent the model from over-adapting to the in-
filling objective, we oversample the parallel
corpora.

3. Use the aforementioned model to back-
translate the monolingual corpora.

4. Combine the backtranslated and official paral-
lel corpora while oversampling the latter, and
then train a many-to-many MT model.

3.2 Contrastive System #1
For our contrastive system, we investigate the po-
tential of leveraging strong pretrained IndicTrans2
DA En-Indic and Indic-En models (Gala et al.,
2023) for adaptation to newer languages and do-
mains. It is important to note that we utilize off-the-
shelf IndicTrans2 DA models trained on large-scale
general-purpose corpora comprising both original
and augmented backtranslated data. We refrain
from using final models that are already fine-tuned
with the same seed data that we use in this study,
making them redundant in this context.

A trivial solution would be to adapt IndicTrans2
DA models to target languages and domains. How-
ever, this solution can often lead to catastrophic for-
getting of translation ability on existing languages
and domains. As a result, we explore approaches
that satisfy two-fold objectives: 1) maximize the
performance on a specific set of target languages
and domains in the context of WMT shared task
and 2) retain the overall performance on existing
languages supported by the IndicTrans2 DA mod-
els. Our experiments involve a comparison of either
of the approaches for adaptation of IndicTrans2
DA models to a specific set of few known and few
unseen languages. We explore the following ap-
proaches:

1. A1: Direct fine-tuning of IndicTrans2 DA
models on a combination of official paral-
lel corpora and seed data used in Gala et al.
(2023) for a set of languages under considera-
tion for WMT Indic MT shared task.

2. A2: Direct fine-tuning of IndicTrans2 DA
models on a combination of official paral-
lel corpora and seed data used in Gala et al.
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Parallel Monolingual

lang pair # lines lang # lines (Org) # lines (Aug)

as-en 50K as 2.6M 8.05M
mz-en 50K mz 1.9M 8.8M
kha-en 24K kha 0.18M 0.73M
mni-en 21.6K mni 2.14M 2.20M

en 0 20M

Table 1: Parallel and monolingual data statistics. For the
primary system, we only use the organizers’ provided
parallel data. We use monolingual data provided by the
organizers as well as from Gala et al. (2023) and indicate
the organizers’ (Org) and augmented (Aug) sizes.

(2023) for all the languages supported by the
IndicTrans2 DA models and WMT Indic MT
shared task.

3. A3: Two-stage fine-tuning of IndicTrans2 DA
models on 1) a combination of official paral-
lel corpora and seed data used in Gala et al.
(2023) for a set of languages under consid-
eration for WMT Indic MT shared task, fol-
lowed by 2) on a combination of official par-
allel corpora and seed data used in Gala et al.
(2023) for all the languages supported by the
IndicTrans2 DA models and WMT Indic MT
shared task.

3.3 Contrastive System #2

Our second contrastive system combines the pri-
mary and first contrastive systems using a system
combination approach called Multi-Engine Ma-
chine Translation (MEMT) (Heafield and Lavie,
2010, 2011). MEMT involves aligning 1-best out-
puts from each system using the METEOR aligner
(Denkowski and Lavie, 2011), identifying candi-
date combinations by forming left-to-right paths
through the aligned system outputs, and scoring
these candidates using a battery of features. MEMT
does not leverage any neural networks. We refer
the readers to Heafield and Lavie (2010, 2011) for
additional details.

4 Experiments

In this section, we describe the datasets, implemen-
tation and evaluation settings.

4.1 Datasets

We use the official parallel corpora and monolin-
gual corpora provided by the organizers. We aug-
ment the monolingual corpora with those used in

# langs / script # samples
†BPCC seed 23 654,806
NLLB seed 3 18,579
WMT 4 145,321

Total 27 818,706

Table 2: Statistics of the parallel corpora used for train-
ing contrastive #1 system. † indicates that the BPCC
seed also includes transliterated Sindhi (Arabic) data as
released by Gala et al. (2023).

Gala et al. (2023). Particularly, we sample 20M
English sentences, since the organizers did not pro-
vide any English monolingual data. The parallel
and augmented monolingual corpora statistics are
described in Table 1. For our first contrastive sys-
tem, we also use a combination of BPCC seed
corpora (Gala et al., 2023) and NLLB-seed cor-
pora (Costa-jussà et al., 2022; Maillard et al., 2023)
which was used in Gala et al. (2023) along with the
official parallel corpora provided by the organizers
for adaptation / fine-tuning IndicTrans2. Table 2
reports the statistics of different subsets used for
training contrastive #1 system. For the languages
primarily under consideration for the WMT Indic
MT shared task, namely Assamese, Manipuri (Ben-
gali), Khasi and Mizo, we use a total of ~196K
bitext pairs encompassing seed and official parallel
data.

4.2 Implementation

Our primary systems are trained using YANMTT
(Dabre et al., 2023). We train a single sentence-
piece (Kudo and Richardson, 2018) tokenizer of
64K subwords for the Indic languages and English.
We use 1M sentences per language, taken from the
parallel and monolingual corpora. The model hy-
perparameters and optimizer details are described
in Table 3. We ensure that the ratio of the official
parallel and monolingual/backtranslated corpora re-
mains balanced via temperature sampling (T=5.0)
(Arivazhagan et al., 2019). We train our models till
convergence with early stopping criteria with a pa-
tience of 5 and save separate checkpoints for each
direction that exhibit best results for that direction
based on BLEU (Papineni et al., 2002) metric on
the development set. We use a fixed beam size of 4
and a length penalty of 0.8 when doing backtrans-
lation.

For our first contrastive system, we fine-tune
IndicTrans2 DA models with the standard fine-
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Hyperparameter Value

#Layers 12 (6)
Hidden size 1024 (512)
FFN hidden size 4096 (2048)
#Heads 16 (8)
Positional Encoding Embedding
Batch size 1024 (4096)
Parameters 420M (77M)
Dropout 0.1
Label smoothing 0.1
Optimizer Adam
#GPUs 64 (8)
GPU Type V100
Learning rate 0.0005 (0.001)
Warmup steps 16,000
Data sampling temperature 5.0
#Train steps ∼380K (225K)

Table 3: Hyperparameter settings for primary systems.
The values in round brackets, if at all, indicate those
used for training smaller models, which only leverage
organizers’ parallel corpora.

tuning hyperparameter settings following Gala et al.
(2023). Our first contrastive system is based on
fine-tuning of IndicTrans2 DA models (Gala et al.,
2023) which uses the fairseq library4 (Ott et al.,
2019). We train our systems till convergence on
the development set and use the BLEU metric for
early checkpointing. Furthermore, the vocabulary
of IndicTrans2 DA models (Gala et al., 2023) lacks
coverage for Mizo and Khasi. To address this, we
extend the vocabulary and randomly initialize the
newly added tokens in the embedding matrix of the
IndicTrans2 DA models to incorporate represen-
tation for these languages. The expanded models
serve as the base for fine-tuning.

For our second contrastive system using MEMT,
we train 5-gram language models using KenLM
(Heafield, 2011) and use default settings for system
combination. Instead of taking only the best beam
search output of each system being combined, we
take the top 2 best translations in the beam, which
simulates a combination of 4 systems.

For local evaluation, we use BLEU score (Pap-
ineni et al., 2002) measured using sacrebleu (Post,
2018), however, organizers additionally report
chrF2 (Popović, 2017), RIBES (Isozaki et al., 2010)
and TER (Snover et al., 2006). Human evaluation is
not performed, but the organizers release COMET
(Rei et al., 2022) scores as an approximation. For
test set decoding, we identify optimal decoding hy-

4https://github.com/facebookresearch/fairseq

Pair
Primary Contrastive

beam penalty beam penalty

as-en 16 1.4 16 1.2
kha-en 16 0.6 8 0.6
mz-en 16 1.4 16 1.4
mni-en 8 1.4 16 1.2

en-as 8 1.4 8 1.4
en-kha 16 1.4 8 1.4
en-mz 16 1.4 8 1.4
en-mni 16 1.2 8 0.8

Table 4: Optimal decoding hyperparameters settings
(beam size and length penalty) obtained by performing
grid search on the development set for both primary and
contrastive #1 systems.

perparameters (beam size and length penalty) by
grid searching on the development set and list said
hyperparameters in Table 4 for our primary and
first contrastive system.

5 Results

In this section, we describe the results we obtained
on the test sets.

5.1 Primary

Main result. Table 5 shows the results of our
primary many-to-many system. For the Indic-En
direction, Manipuri and Mizo to English exhibit
reasonably high translation quality, at BLEU/chrF2
scores of 39.40/64.70 and 32.47/51.33 respectively.
Assamese to English translation is the next best at
27.02/50.71. However, Khasi to English has the
lowest translation quality among all. A critical ob-
servation is that there is no particular correlation
between the sizes of the corpora and the MT qual-
ity. For example, Manipuri-English has the small-
est parallel corpus (21,687 lines) and the second-
smallest monolingual corpus (2.2M lines) but still
exhibits the best translation quality for Manipuri to
English. This could mean that the evaluation set
is either easier for this pair or that it is easier to
translate the pair compared to others.

For the reverse direction, once again Mizo and
Manipuri exhibit the best translation quality, fol-
lowed by Khasi and Assamese. Despite Assamese
having more than 8 million monolingual sentences
that were used for backtranslation, its translation
quality is at 17.03 and 45.31 (BLEU and chrF2)
which is not particularly high. The same decorrela-
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Pair BLEU chrF2 RIBES TER COMET

Primary

as-en 27.02 50.71 0.71 62.46 0.76
mz-en 32.47 51.33 0.69 60.56 0.67
kha-en 17.80 39.22 0.66 74.10 0.60
mni-en 39.40 64.70 0.77 51.27 0.79

en-as 17.03 45.31 0.58 76.57 0.78
en-mz 33.18 56.73 0.73 55.68 0.70
en-kha 19.95 43.30 0.68 66.47 0.67
en-mni 27.36 61.60 0.74 58.28 0.76

Contrastive #1

as-en 37.28 59.97 0.72 58.81 0.81
mz-en 28.47 47.93 0.61 67.54 0.69
kha-en 20.06 40.33 0.58 78.44 0.60
mni-en 46.06 69.96 0.80 47.44 0.83

en-as 18.09 51.98 0.57 73.41 0.82
en-mz 26.47 50.60 0.66 65.97 0.69
en-kha 20.77 43.82 0.65 69.51 0.68
en-mni 24.17 62.95 0.70 62.85 0.76

Contrastive #2

as-en 36.97 59.82 0.72 58.53 0.81
mz-en 33.30 52.74 0.70 60.87 0.68
kha-en 20.02 39.82 0.59 77.50 0.59
mni-en 43.35 69.27 0.80 47.43 0.82

en-as 21.07 51.71 0.58 73.03 0.81
en-mz 33.64 56.88 0.72 57.71 0.71
en-kha 21.05 46.06 0.65 73.80 0.68
en-mni 27.40 61.55 0.74 58.16 0.76

Table 5: Our primary and contrastive system results
for Indic-En and En-Indic translation on the test set.
These scores for all the metrics are directly reported as
provided by organizers.

tion between corpora sizes and translation quality
that existed for translation into English holds for
the reverse direction. In addition, we report the
BLEU scores for NLLB 54B MoE model on test
set in Table 8.

Ablations. Although we report test set results
only using the final system, we also report the
BLEU scores on the organizer’s official dev set
of the intermediate and final models in Table 6.
Additionally, we report the results of a model that
is trained only using the organizers’ official paral-
lel corpora. It is clear that the intermediate model
using joint denoising and MT training leads to a
vast improvement in translation quality, indicat-
ing that the monolingual corpus brings substantial
benefits. This is especially the case for Indic-En
direction since we use around 20M monolingual
English sentences. We observe that the En-Indic
direction also has some performance gains (around
3 BLEU) but not as much as compared to the gains
in the Indic-En direction (around 6 BLEU). This
implies that the scale of monolingual data is an

Pair WMT PC
Stage

Intermediate Final

as-en 17.63 24.06 26.11
mz-en 22.36 25.98 28.34
kha-en 11.03 13.22 14.68
mni-en 31.70 36.73 40.43

en-as 13.23 16.62 17.51
en-mz 21.54 24.25 26.12
en-kha 14.72 15.99 17.60
en-mni 20.35 23.72 24.62

Table 6: Greedy search BLEU scores on the develop-
ment set for Indic-En and En-Indic direction for the
various models we trained in the process of getting to
our final model. The “WMT PC" model uses only the
parallel corpus for training. The “Intermediate" model
is trained using the joint text infilling and MT objective
and the “Final" model is trained with the backtranslated
and organizers’ parallel data. All models are many-to-
many. Please note that we use the IndicNLP tokenizer
(Kunchukuttan, 2020) instead of standard tokenizer pro-
vided in sacrebleu (Post, 2018) for computing scores
locally.

important factor, however, we are limited by the
scale of monolingual data available for the Indic
languages.

Furthermore, the final model, which uses back-
translated data from the intermediate model further
shows improvements of approximately 4 BLEU.
This indicates that in low-resource settings similar
to ours, leveraging monolingual corpora first via
denoising followed by backtranslation leads to the
best models. Iterative backtranslation (Hoang et al.,
2018) would be the ideal next step, but we chose
to not pursue it because of compute constraints.

5.2 Contrastive

Contrastive #1: Main Result. Table 5 shows the
results of our contrastive #1 system. We observe
superior performance for the languages that are al-
ready covered in the off-the-shelf IndicTrans2 mod-
els (Assamese, Manipuri (Bengali)) as compared
to the primary system. For Indic-En direction, As-
samese and Manipuri to English exhibit reasonably
high translation quality, achieving BLEU scores of
37.28 and 46.06 respectively. Furthermore, we also
find mixed results between both systems for newly
introduced languages such as Mizo and Khasi. For
Khasi, the contrastive #1 system outperforms the
primary system on both directions, whereas for
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Model variants
FLORES-200 (18 lang) WMT (all langs) WMT (new langs)

En-Indic Indic-En En-Indic Indic-En En-Indic Indic-En

IT2-DA 19.03 37.25 - - - -
A1 3.85 35.81 24.70 32.50 23.20 24.40
A2 19.46 37.62 20.90 24.60 18.95 13.00
A3 18.68 38.07 25.80 32.30 24.50 24.20

Table 7: BLEU scores of different ablations described in Section 3.2 explored under contrastive #1 system on
FLORES-200 devtest set (covers 18 languages) and WMT dev set (4 languages). Please note that we use the
IndicNLP tokenizer (Kunchukuttan, 2020) instead of standard tokenizer provided in sacrebleu (Post, 2018) for
computing scores locally.

Primary Contrastive #1 Contrastive #2 NLLB 54B MoE

en-xx xx-en en-xx xx-en en-xx xx-en en-xx xx-en

as 17.03 27.02 18.09 37.28 21.07 36.97 19.60 26.8
mz 33.18 32.47 26.47 28.47 33.64 33.30 27.50 38.50
mni 27.36 39.40 24.17 46.06 27.40 43.35 14.90 31.50

Table 8: Comparison of BLEU scores of all our systems - Primary, Contrastive #1, Contrastive #2 with massively
multilingual NLLB 54B MoE model (Costa-jussà et al., 2022).

Mizo, the primary system outperforms the con-
trastive #1 system across both directions.

Contrastive #1: Ablations. In order to iden-
tify the optimal configuration for training the Con-
trastive #1 system, a series of ablations were con-
ducted, involving a comparative analysis of three
distinct approaches for fine-tuning the IndicTrans2
model (Gala et al., 2023), as detailed in Section 3.2.
The baseline approach, denoted as A1, focuses
solely on optimizing performance across 4 lan-
guages under consideration for WMT languages.
However, this approach exhibits catastrophic for-
getting on the existing supported languages. This
is evident in the significant drop in average BLEU
scores on the FLORES-200 test set (Goyal et al.,
2022; Costa-jussà et al., 2022). Specifically, when
fine-tuning IndicTrans2 DA model (Gala et al.,
2023) to obtain A1 for the En-Indic language direc-
tion, the average BLEU score significantly dropped
from 19.03 to 3.85. However, for the Indic-En di-
rection, the drop is relatively modest, shifting from
37.25 to 35.81, although this drop can be made
even lower.

To prevent catastrophic forgetting on existing
supported languages, an alternative approach, la-
beled as A2, was experimented. This approach
involves a joint fine-tuning on a combined set in-
volving all the existing supported languages along
with the newly introduced ones. Notably, this

approach averts the issue of catastrophic forget-
ting. On the FLORES-200 benchmark (Goyal et al.,
2022; Costa-jussà et al., 2022), the models result-
ing from this joint fine-tuning slightly surpass the
performance of the IndicTrans2 DA models in both
translation directions, showing an improvement of
approximately 0.4 points. However, despite this
improvement, the performance on the newly added
languages such as Khasi and Mizo is suboptimal,
significantly trailing behind the scores obtained us-
ing the A1 approach. We observe respective drops
of 3.8 and 7.9 points in the En-Indic and Indic-En
directions over A1.

Although approach A2 successfully resolved the
issue of catastrophic forgetting, it did not fully
meet our objective of optimizing for the newly in-
troduced languages. As a result, we explored ap-
proach A3 which involves a two-stage fine-tuning
procedure, wherein A1 is initially employed, fol-
lowed by A2. As previously discussed, A1 resulted
in a sharp decline in performance across the exist-
ing languages, but optimized to the newly intro-
duced languages. However, we observe that this
performance drop can be rectified by introducing
an additional stage of fine-tuning involving a com-
bined set of all languages, as seen in approach
A2. A3 results in a fair retention of performance
in terms of BLEU scores across the existing lan-
guages for both translation directions, Indic-En
(with scores of 37.24 for IndicTrans2 DA and 36.68
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for A3) and En-Indic (with scores of 19.03 for In-
dicTrans2 DA and 18.68 for A3). Moreover, on the
newly introduced languages, models trained using
the A3 approach demonstrate an improvement of
nearly 8 points in the Indic-En direction and 4.9
points in the En-Indic direction on average, when
compared to A2, as observed on the WMT 2023 In-
dicMT dev set. Notably, A3 achieves performance
on par with A1 (optimized for four languages) in
the Indic-En direction and even outperforms A1 by
a margin of +1.1 in the En-Indic direction. There-
fore, A3 achieves both the outcomes: performance
retention on existing languages as well as optimiza-
tion in performance for newer languages.

Contrastive #2: Main Result. Having obtained
the best primary and contrastive systems, we com-
bine them via MEMT. Table 5 contains the result of
the system combination on the test set. For Indic-
En direction, only Mizo to English benefits from
system combination, where the best BLEU score
improves from 32.47 to 33.30. For the En-Indic
direction, we see improvements for all directions.
Most notable is the improvement for English to
Assamese, whose best BLEU score improves from
18.09 to 21.07. For other directions, the improve-
ments are relatively smaller. One important obser-
vation is that when the performance gaps between
the primary and contrastive #1 system is larger,
the gains are smaller or are negative. Overall, it
is important to note that such word level system
combination still works despite the idea being over
a decade old, however, the use of n-gram based
LMs might be a limitation and replacing said LMs
with neural LLMs might bring large benefits. We
leave this for future work.

5.3 Lessons Learned

• In low-resource settings, leverage monolin-
gual data first via denoising and then via back-
translation.

• A two-stage fine-tuning approach (introduc-
ing new languages first, followed by a com-
bination of new and existing languages) is an
effective approach when considering extend-
ing a pre-trained translation model to newer
languages without catastrophic forgetting.

• System combination is still effective despite
working at a word level.

6 Conclusion

In this paper, we have described our systems sub-
mitted to the WMT 2023 Indic translation task.
We leveraged ideas ranging from joint denoising
and MT training, backtranslation, fine-tuning pre-
trained models, and system combination. We re-
ported our results, which show the benefits of the
various ideas we explored. Finally, we recommend
best practices.

7 Limitations

We identify the following limitations of our sub-
missions:

• We did not perform ensembling or checkpoint
averaging, which could boost our results by
another 1-2 BLEU.

• Iterative backtranslation (Hoang et al., 2018)
was not adopted due to compute constraints
and can potentially boost quality even further.

• Although we reached the monolingual cor-
pora limit for the Indic languages of focus, we
could have used much larger English mono-
lingual corpora but opted not to, once again,
due to compute constraints. This would also
require us to increase model sizes which was
also not feasible.

• We have not leveraged any LLMs for our ex-
periments, mainly because we are not sure if
they have been trained on any of the test data,
a common concern in recent times.

• MEMT is an old idea and does not use any
neural language models, especially LLMs,
which could enhance its performance.
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Abstract
Machine translation for low-resource Indian
languages has long been a challenge due to the
scarcity of high-quality parallel corpora, de-
manding the development of effective transla-
tion models. The WMT23 Low-Resource Indic
Language Translation task encourages us to uti-
lize creative techniques to address this issue
and enhance the performance of machine trans-
lation systems for these languages. We focused
on the translation of two low-resource Indic lan-
guages: Assamese and Manipuri, enabling bidi-
rectional translation between English and these
languages. This paper presents CFILT-IITB’s
submission to WMT23, highlighting our explo-
ration of transfer learning-based methodologies.
Our experiments produced notable results of
47.54 BLEU on MNI→EN, 18.15 BLEU on
EN→ASM and 35.24 BLEU on ASM→EN,
26.36 BLEU on EN→MNI test sets. These
results not only demonstrate the effectiveness
of transfer learning-based techniques but also
contribute to advancing machine translation ca-
pabilities for low-resource Indian languages,
addressing a critical need in bridging language
barriers and facilitating cross-cultural commu-
nication.

1 Introduction

In the realm of machine translation, the WMT23
IndicMT shared task emerges as an arena where the
boundaries of translation technology are stretched
to their limits. Our efforts revolve around the trans-
lation of the ‘En-X’ pair in both directions, where
‘En’ signifies English and ‘X’ encompasses As-
samese, a member of the Indo-Aryan language
family, and Manipuri, a representative of the Tibeto-
Burman family. As the task focused on English to
and from low-resource Indian languages, we were
provided with a small parallel corpus for each ‘En-
X’ pair. Furthermore, participants had access to
a substantial amount of monolingual data for As-
samese and Manipuri, creating an ideal setting for
trying out new and creative approaches.

In the realm of Machine Translation, the Neural
Machine Translation paradigm has emerged as a
dominant force, as evidenced by seminal works
such as (Bahdanau et al., 2014) and the compre-
hensive survey by (Dabre et al., 2020). However,
Neural Machine Translation models are notoriously
data-hungry, leading to performance degradation
when confronted with low-resource languages, as
highlighted by (Dewangan et al., 2021). To tackle
this challenge, we turn to the promising technique
of transfer learning, a well-established approach in
machine learning where knowledge gained from
one task is leveraged to enhance performance in a
related task. In our pursuit of improving translation
capabilities for low-resource languages, we harness
the multilingual IndicTrans2 model, as introduced
by (AI4Bharat et al., 2023). Our methodology in-
volves fine-tuning this model using the ‘En-X’ par-
allel data provided for the task. By adopting this
approach, we aim to capitalize on the acquired
knowledge during training to significantly bolster
the performance of the model in the specific trans-
lation task at hand.

IndicTrans2 is rooted in the transformer-
based encoder-decoder architecture pioneered by
(Vaswani et al., 2017). It was trained on the exten-
sive Bharat Parallel Corpus Collection (BPCC), a
publicly accessible repository encompassing both
pre-existing and freshly curated data for all 22
scheduled Indian languages, this model boasts a
comprehensive understanding of the linguistic di-
versity within the Indian subcontinent. To enhance
its linguistic prowess, IndicTrans2 has undergone
auxiliary training utilizing the rich resource of back-
translated monolingual data. The model was then
trained on human-annotated data to achieve further
improvements. We used this model and fine-tuned
it on the training data provided by WMT23.

The fine-tuned IndicTrans2 achieves good
scores; hence we are using it for our final submis-
sion. We hypothesize that its stellar performance
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can be attributed to the amalgamation of language
knowledge acquired during its initial training, cou-
pled with the domain-specific expertise gleaned
from the fine-tuning process, facilitated by the train-
ing data made available through WMT23.

2 Data

We use the IndicTrans2 model and fine-tune it on
the WMT23. The original IndicTrans2 was trained
on the Bharat Parallel Corpus Collection (BPCC)
corpus. They have used FLORES-200 as their val-
idation set for Assamese and extended FLORES-
200 (Team et al., 2022) for Manipuri. For auxiliary
training which includes back-translated monolin-
gual sentences, they have used IndicCorp v2 (Kak-
wani et al., 2020) and one side of NLLB data as
monolingual corpus. They have used standard test
sets like FLORES-200, but they have also created a
new benchmark called the IN22 test set which is an
n-way parallel corpus for all 22 Indian scheduled
languages.

We have fine-tuned the model using the WMT23
parallel corpus. The ‘English-Assamese’ pair has
50K parallel sentences, and the ‘English-Manipuri’
pair has around 21.6K sentences. The validation set
consisted of the WMT23 validation set. The size
of the validation set for the ‘English-Assamese’ is
2K sentences; for the ‘English-Manipuri’ pair, it
was 1k sentences. The test set for both pairs was
the WMT23 test set.

3 System Overview

In the pursuit of enhancing machine translation
for low-resource languages, various approaches
have emerged, such as Phrase-Pair injection and
Back-translation, aimed at enhancing performance.
Our system, on the other hand, takes a distinct
path and relies on the knowledge gained from the
multilingual training of IndicTrans2 and applies it
to different low-resource languages.

Phrase-Pair Injection (PTI) (Sen et al., 2021),
(Dewangan et al., 2021) and (Banerjee et al., 2021)
utilized a technique to combine both Statistical
Machine Translation (SMT) and Neural Machine
Translation (NMT). The utilization of the phrase
table during training is pivotal in Statistical Ma-
chine Translation (SMT) as it probabilistically
maps phrases from the source to the target language.
By incorporating these phrase mappings from the
table into the existing parallel corpora, the training

dataset for the Neural Machine Translation (NMT)
model is significantly enriched. Consequently, this
enrichment empowers the NMT model to excel in
its translation performance.

Back-translation Back-translation (Sennrich
et al., 2016; Conneau et al., 2020) is a technique
that is used to improve the performance of
low-resource translation systems using monolin-
gual data. In this technique, a reverse model is
employed to generate a parallel corpus from a
monolingual corpus. This is a clever way to use
the monolingual corpus to improve the translation
performance of the NMT models. We do not
include Back-translated sentences for training
since we could not see any significant performance
improvement.

Transfer Learning Transfer learning is a ma-
chine learning technique where a model trained
on one task is adapted for a second related task.
Instead of starting the training of a new model
from scratch, transfer learning leverages the knowl-
edge learned from the first task to improve learning
on the second task. We have used IndicTrans2
(AI4Bharat et al., 2023), a powerful model that
performs well for English-to-Indic and Indic-to-
English translation for 22 scheduled Indian lan-
guages. This knowledge can be used to translate
other Indian languages to and from English. Our ap-
proach entailed the fine-tuning of this model, lever-
aging the parallel corpus provided by the WMT23
for the IndicMT task. This fine-tuning process
equipped the model with the expertise required to
proficiently translate Assamese and Manipuri to
and from English, ultimately yielding the most out-
standing results. We do not inject phrase pairs since
for such a low resource setting, it is difficult to see
performance improvements even with phrase pair
injections due to the inability of NMT models to
capture the low resource language.

4 Experiments

4.1 Settings

All the experiments are conducted using two
NVIDIA A100 GPUs each having 80GB of mem-
ory. Our models apply Adam (Kingma and Ba,
2015) as optimizer to update the parameters with
β1 = 0.9 and β2 = 0.98. We employ a warm-up
learning rate of 10−7 for 2000 update steps and a
learning rate of 3 ∗ 10−5. For normalization, we
use a dropout value of 0.2 and normalize the proba-
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Models ASM→EN EN→ASM MNI→EN EN→MNI
BLEU ChrF2 BLEU ChrF2 BLEU ChrF2 BLEU ChrF2

Baseline-1 (val) 2.32 - 1.64 - 3.12 - 2.67 -
IndicTrans2 (val) 25.60 47.20 14.70 41.40 33.40 58.50 11.90 43.50
FT IndicTrans2 (val) 34.60 52.40 24.00 46.00 47.00 67.30 34.10 62.20
FT IndicTrans2 (test) 35.24 57.73 18.15 50.16 47.54 70.41 26.36 63.48

Table 1: Comparison of results of Fined-tuned IndicTrans2 (AI4Bharat et al., 2023) on the test and val set. We
compare val and test set results because we see that the EN-Indic model has overfitted for both languages and
therefore we see a decrease in BLEU for EN-Indic models. We recommend readers to decrease the number of
updates for better scores when the source is English.

bilities using smoothed label cross-entropy. We use
GeLU activations (Hendrycks and Gimpel, 2016)
for better learning. We train separate models for
each language pair to avoid data imbalance and
learn better low-resource representations.

We use the scareBLEU library1 to calculate our
BLEU (Papineni et al., 2002) and ChrF (Popović,
2015) scores with a word order of 2. We choose
the checkpoint with the highest validation BLEU
score.

4.2 Results
Table 1 shows that the highest translation quality
achieved is via the use of large monolingual and
parallel corpora. Since IndicTrans2 is trained in
many Indian languages, it enhances the translation
quality via the power of multilingualism. With
only some minor tuning of the model over the
training and validation set, IndicTrans2 achieves
remarkable performance on Indic-En translations.
Our baseline-1 system is a WMT-14 En-De fairseq
model trained that utilizes only the parallel data
and shows substandard BLEU scores over all the
language pairs. With our experiments, we see that
with even the monolingual corpora and back trans-
lation, the translation models only see minor im-
provements. We realized the power of multilingual-
ism and switched to pre-trained models which have
been trained on a substantial amount of data like
IndicTrans2 (AI4Bharat et al., 2023) and NLLB
(Team et al., 2022). We analyze their vocabulary
and merge it with a new vocabulary learned over
the monolingual corpora provided in the task. Even
for languages that are not seen by the model like
Mizo and Khasi in the latin script, the IndicTrans2
model with its pre-trained English vocabulary gives
a BLEU score of an average of 7.2 on the val set
over these language pairs. We see that when we

1https://github.com/mjpost/sacrebleu/blob/
master/sacrebleu/metrics/bleu.py

fine-tune the pre-trained model, we see large gains
over both the val and the test set. Finally, after
many experiments, we submit a fine-tuned ver-
sion of a very powerful multilingual model for the
shared task.

5 Conclusion

In this paper, we present how CFILT-IITB utilized
the power of multilingual models for the WMT23
IndicMT Low-Resource Machine Translation of
Indian Languages Shared Task. Since, the data
for low-resource languages is scarce, utilizing pre-
trained multilingual translation models is very cru-
cial. But to have reasonable to good performance
over these models, it is helpful to have a model that
is trained on similar languages. For this task, In-
dian languages like Assamese and Manipuri share
similar structure and vocabulary with many Indian
languages like Bengali which can be considered a
high resource language for India. Training mod-
els over similar language does boost performance
although to cover a wide variety of low-resource
languages, one must face the curse of multilingual-
ism. Our most proficient system attains an average
BLEU score of 41.39 for Indic-English translation
and 22.25 for English-Indic language pairs, specifi-
cally Assamese and Manipuri.

Limitations

Limitations of such powerful multilingual models
are data extraction, enormous computing, and good
data filtration techniques. Overcoming these obsta-
cles is an open research problem.
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Abstract

The WMT 2023 Shared Task on Low-Resource
Indic Language Translation featured to and
from Assamese, Khasi, Manipuri, Mizo on one
side and English on the other. We submitted
systems supervised neural machine translation
systems for each pair and direction and ex-
perimented with different configurations and
settings for both preprocessing and training.
Even if most of them did not reach competi-
tive performance, our experiments uncovered
some interesting points for further investigation,
namely the relation between dataset and model
size, and the impact of the training framework.
Moreover, the results of some of our prelimi-
nary experiments on the use of word embed-
dings initialization, backtranslation, and model
depth were in contrast with previous work. The
final results also show some disagreement in
the automated metrics employed in the evalua-
tion.

1 Introduction

This paper describes our systems to the WMT 2023
Shared Task on Low-Resource Indic Language
Translation. The task featured four low-resource
languages indigenous to the northeastern regions of
the Indian subcontinent. The translation was to be
done to and from Assamese (Indo-Aryan), Khasi
(Austroasiatic), Manipuri, Mizo (Sino-Tibetan) on
one side and English on the other. We submit-
ted supervised neural machine translation systems
for each pair and direction and experimented with
different configurations and settings for both pre-
processing and training. We did not use large pre-
trained models, but trained transformers (Vaswani
et al., 2017) of different size and with different
parameters for each direction, both on bilingual
and multilingual data. Even if most of our final
systems did not reach a satisfactory or competitive
performance, settling for the middle to low part
of the scoreboard, we argue that our experiments
brought up some interesting points that call for a

deeper investigation. Chiefly, these are the relation
between dataset and model size, and the impact of
the training framework. Moreover, the final results
seem to confirm recent research on the reliability of
automatic evaluation metrics, with several cases of
disagreements in the ranking of the systems, rang-
ing from one to several places in the leaderboard.

2 Datasets

In the following Section, we first briefly present
the languages involved, then we give a summary of
the datasets, their contents, domains, and structure.

2.1 Languages

Assamese (Asamiya) is an Indo-Aryan language
mainly spoken by more than 15 million people in
the Indian state of Assam, where it is also the offi-
cial language. Assamese is also one of the 22 offi-
cial languages recognized by the Republic of India
at the federal level. It is influenced by several other
regional languages, mostly Tibeto-Burman vari-
eties, and Bengali, another Indo-Aryan language,
with which shares the Bengali-Assamese writing
script, an abugida system. Assamese serves as a
quasi lingua franca for the region and functions
as one of the source languages for some pidgins
and creoles of the area, such as Nefamese and
Nagamese. Assamese is an inflected language with
eight grammatical cases and a large collection of
classifiers. It follows the subject-object-verb order.

Khasi (Ka Ktien Khasi) is an Austroasiatic lan-
guage with 1 million speakers (the Khasi people)
in the Indian state of Meghalaya. It is official in
some districts of the state, but not in the state as
a whole, and it is considered as "vulnerable". It
is related with the other languages in the Khasian
group native to the Shillong Plateau, and it is sur-
rounded by unrelated languages such as Assamese,
Bengali, Manipuri, and others. It is written both
in the Latin, as is the case with this task’s data,
and the Bengali scripts. Khasi is a stress language
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Language ISO-639-3 Family Script Num. of Speakers Official at: Vitality
Assamese asm Indo-Aryan Bengali 15M Federal -
Khasi kha Austronesian Latin 1M Local VUL
Mizo lus Sino-Tibetan Latin 1.8M State -
Manipuri mni Sino-Tibetan Meitei, Bengali 0.85M Federal VUL

Table 1: Summary of the Indic languages involved in the task. For each language, the columns give its ISO code, its
language family, the writing system(s) it employs, the number of its speakers and its status, both in terms of official
recognition and conservation according to the UNESCO. Khasi and Manipuri are listed as "Vulnerable".

without tones. It has nine grammatical cases and
follows the subject-verb-object word order.

Mizo (Mizo t.awng) is a Tibeto-Burman language
spoken by around 850 thousand Mizo people, pri-
marily in the Indian state of Mizoram, where it is
an official language. It is written in a modified ver-
sion of the Latin script. Mizo is a tonal language
with eight tones, it follows the object-subject-verb
order, and it has six grammatical cases.

Manipuri (Meiteilon) is a Tibeto-Burman lan-
guage official in the Manipuri state of India and
also at federal level. It is spoken natively by 1.8
million people, the Meitei, both in Manipur and
in small communities in the neighboring states. It
is considered "vulnerable" by the UNESCO. Ma-
nipuri employs a wide array of writing systems, the
official ones being the Meitei script and the Bengali
script.1 The Latin script is also used. Manipuri is a
tonal language, It follows the subject-object-verb
word order.

Table 1 summarizes the main facts about this
task’s Indic languages.

2.2 Composition

Table 2 gives, for each language pair, the size of the
datasets. The parallel datasets made available for
this task are small, with the biggest being asm and
lus, at 50k sentence pairs. Of the Indic languages,
two are written in Bengali script (asm and mni), and
two in their own variations of the Latin script (kha
and lus). Following the notation of the Flores-200
benchmark dataset (Goyal et al., 2022), we denote
the collation of data in Bengali script with Beng,
and in Latin script with Latn.

Monolingual data was released for all Indic lan-
guages: asm,lus, and mni have around 2/2.5M sen-
tences each, while kha has only 180k. While we did
not look at the domains for these data, we sampled
the content of the parallel datasets.

1This is the writing system used in the task’s Manipuri
dataset.

Table 3 gives an outline of the contents of each
split of each dataset. For asm, both the valid and
test set differ from the training data. The former is
composed mainly by dictionary definitions, while
the latter mostly contains religious content. The
kha dataset is consistent in terms of domains. The
lus train split has almost exclusively religious con-
tent, the validation split contains both religion and
instances of single words, and the test split is quite
mixed in content. The mni data is almost entirely
composed by news or otherwise informative text.

3 Methodology

This Section describes our methodology and the
baselines we moved from.

3.1 Baselines
For our experiments, we set as our baseline a stan-
dard Transformer (Vaswani et al., 2017) with the
hyperparameters in Table 4. We wanted to experi-
ment with ways to make the most out of the training
data given, and thus we did not use pre-trained mod-
els in our work. Almost all models were trained
with Fairseq (Ott et al., 2019). The two final sub-
missions to and from Assamese were trained with
TorchScale (Ma et al., 2022).

3.2 Preprocessing
The preprocessing for our models was done with
SentencePiece (Kudo, 2018), both BPE (Sennrich
et al., 2016) and Unigram (Kudo, 2018), and HFT
(Signoroni and Rychlý, 2022a). We chose these
three segmentation algorithms either for their pop-
ularity, as it is the case with BPE and Unigram,
or for their stated application, in the case of HFT.
For all these algorithms, we set as our baseline pa-
rameters a vocabulary size of 2000, with separate
dictionaries for source and target language, and a
frequency threshold of 100. For other experimental
and final runs, we explored different values and set-
tings of segmentation algorithm, vocabulary size
and learning, and frequency threshold.
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Dataset Train Valid Test Monolingual Script
eng-asm 50,000 2,000 2,000 2,624,715 Beng
eng-kha 24,000 1,000 1,000 182,737 Latn
eng-lus 50,000 1,500 2,000 1,909,823 Latn
eng-mni 21,687 1,000 1,000 2,144,897 Beng
eng-Beng 71,687 200 - - Beng
eng-Latn 74,000 200 - - Latn
eng-all 145,687 400 - - Both

Table 2: Size of the dataset for each language pair. Languages are given in ISO-639-3 codes. Train, valid, and test
splits are in number of sentence pairs, whereas monolingual data are in number of sentences for the target language.
To denote the collation of languages that in the task data are written in Bengali script (asm and mni) and Latin script
(kha and lus), we use Beng and Latn, respectively. all denotes the collation of all train splits.

Dataset Domain
Train Valid Test

eng-asm rel,news misc,news misc
eng-kha rel rel rel
eng-lus rel rel,misc misc,rel
eng-mni news news news,misc

Table 3: Domains contained in each split of each dataset.
Our investigation was conducted on a random sample
of each split. rel(igion) denotes Bible text and religious
news; news stands for all non-religious news and in-
formation; and misc indicates all other miscellaneous
domains, e.g. short conversational phrases, dictionary
definitions, words.

Parameters
encoder/decoder layers 6
enc/dec embedding dim 512
enc/dec feed forward dim 2048
enc/dec attention heads 8
optimizer adam
learning rate 1e-3
warmup updates 4000
dropout 0.3
label smoothing 0.1
max tokens 16384

Table 4: Hyperparameters for our baseline models. Here
encoder and decoder parameters are set at the same
value.

3.3 Experiments

We explored several ideas and aspects of training
during our experiments, which we summarize be-
low.

3.3.1 System Architecture
We tried several configurations of encoder/decoder
layers, inspired by previous work such as Araabi

and Monz (2020) and van Biljon et al. (2020) which
finds that shallower transformers work better in a
low-resource scenario. This was the case also for
most of our experiments, where smaller models
always outperformed the baseline. This holds true
even when training on multilingual data. Apart
from the baseline, we tested bigger and deeper
models, inspired by work such as (Narang et al.,
2021; Wei et al., 2022; Wang et al., 2022), on mni-
eng, which we considered as the "easiest" direction
for the models. Preliminary results show degrad-
ing performance with the increase of number of
encoder layers. We trained on data tokenized with
Unigram and a jointly learned vocabulary of 2000,
since this was the best performing setup on the
validation split. The results of this experiment are
given in Table 6, in terms of BLEU score.

One outlier is the translation to and from As-
samese, where baseline models, albeit with a
dropout of 0.1, outperformed the smaller ones. In
these directions, our final systems turned out to be
18/6 models with an embedding dimension of 384
and a feedforward dimension of 1536. However,
it should be noted that these final systems were
trained in a parallel line of experiments and with a
different framework, TorchScale (Ma et al., 2022),
which provides further optimization options, such
as DeepNorm. Whether the difference in model
behavior is due to the difference in training frame-
work is still not clear and could be explored in
future work.

3.3.2 Multilingual Training
We trained parent systems on two different multilin-
gual configurations: using all languages in the task,
and using only the ones which shared the script.
We called these collated dataset eng-all, eng-Beng,
and eng-Latn respectively. The intuition here is
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BLEU ChrF RIBES TER COMET Place
eng-asm 7.96 27.31 0.31 91.38 0.59 10/13
eng-kha 13.90 37.31 0.61 73.99 0.65 7/11*
eng-lus 20.48 45.60 0.73 61.22 0.68 9/10
eng-mni 19.65 53.26 0.66 69.70 0.72 12/14
asm-eng 11.29 30.13 0.64 73.39 0.64 9/13*
kha-eng 12.71 34.55 0.65 78.15 0.56 6/11*
lus-eng 23.16 43.02 0.72 62.31 0.63 6/10*
mni-eng 32.18 58.71 0.76 56.35 0.74 8/14*

Table 5: Summary of the scores of our best submissions reported in the final evaluation. A star (*) denotes the
subtasks in which we scored above the organizers’ baseline.

enc/dec BLEU Increment
4/4 25.89 +15.41
6/6 10.48 baseline
8/4 9.52 -0.96
12/4 2.95 -7.53
16/4 3.08 -7.4

Table 6: An example of the effect of changing the depth
of the Transformer on the quality of mni-eng translation.
4/4 and 6/6 share the same parameters as the final and
baseline systems respectively, while other models have
an embedding dimension of 384 and a feedforward di-
mension of 1536.

to leverage script and language relatedness, which
we assumed to be present if not for typology, than
for script or geographical closeness, in order to ob-
tain better representations of shared subwords and
tokens.

We then fine-tuned child systems for each direc-
tion, using eng-Beng for Assamese and Manipuri,
and eng-Latn for Khasi and Mizo. eng-all was a
parent for systems in all directions. We did not
specify any language tag or direction for the par-
ent training, since we did not intend to use them
for multilingual translation directly. And since the
child systems operate only in one direction, we did
not need to specify any language tag for fine-tuning
either.

Pretraining on all languages proved to be better
than standard supervised training for translating
into English from Khasi and Mizo, while transla-
tion from Manipuri had better performance with
the same script parent.

3.3.3 Backtranslation
We experimented with backtranslation in the eng-
mni direction, by normalizing and deduplicating
the provided monolingual data down to around

300k sentence pairs. We then backtranslated the
other side with our best available system for the
mni-eng direction, which had a BLEU score of
32.18. Despite this decent performance, the sys-
tems we trained on the backtranslated data, both
transformers with 4/4 encoder/decoder layers, em-
bedding dimension of 256 and 384, and feedfor-
ward dimension of 1024 and 1536, did not outper-
form the previous best system. The bigger of the
two models had a roughly 2.5 BLEU points on the
smaller one, indicating that bigger architectures
could have had even better performance. However,
we did not test this at this point.

We also tried other back translation approaches,
such as Data Diversification (Nguyen et al., 2020),
which proved to be effective in the WMT22 Low-
resource shared task for Lower/Upper Sorbian and
German (Signoroni and Rychlý, 2022b). How-
ever, our results using the baseline systems were
inconclusive and we decided to explore other ap-
proaches.

3.3.4 Word Embeddings Initialization
Previous work (Qi et al., 2018; Edman et al., 2021)
showed that using word embeddings to initialize
the model’s weights improves, sometimes greatly,
the performance for low-resource machine transla-
tion systems. We tested this in the eng-mni direc-
tion, training source side word embeddings on the
train split with FastText (Bojanowski et al., 2017)
in the skipgram setting. While training new base-
line systems with the word embedding initialization
we observed tiny gains of <0.5 BLEU, however
the models converged faster, with 15 to 35 fewer
epochs elapsed.

3.3.5 Tokenization Settings
We wanted to explore different settings for the vo-
cabulary size and frequency threshold of the tok-
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enizer, as well as for the segmentation algorithm
itself, with the objective to find the best settings for
each language pair and direction.

Jointly training the vocabulary never resulted
in the best system when translating from English,
however it gave the best performance for bilin-
gual training of lus-eng and kha-eng. Nevertheless,
these were not the best models overall. With re-
spect to vocabulary size and frequency threshold,
in all cases apart from eng-mni where we found
size 500 and threshold of 200 as best settings, the
baselines of 2000 and 100 for these parameters
resulted in the best systems. Overall, the picture
regarding tokenization and preprocessing settings
is not clear and warrants for more investigation.

4 Final Systems

After the experimental phase, we submitted our
best performing systems. Table 7 gives their set-
tings and parameters, while Table 5 summarizes the
final scores and our placements. Firstly, it should
be highlighted that the systems were ranked accord-
ing to BLEU (Papineni et al., 2002) score. Other
metrics, such as ChrF (Popović, 2015), RIBES
(Isozaki et al., 2010), TER (Snover et al., 2006),
and COMET (Rei et al., 2020), were computed.
Looking at the final scores, one can spot several
instances in which the metrics do not agree with
each other. As a matter of example, the best system
for English-Manipuri has 51.96 BLEU, against our
twelfth place with 19.65; however our "low-tier"
system beats the first one in ChrF (53.26 > 52.61),
RIBES (0.66 > 0.51), and COMET (0.72 > 0.57).
Recent work has argued for the abandonment of
BLEU as a metric of machine translation perfor-
mance (Kocmi et al., 2021; Mathur et al., 2020;
Tan et al., 2015; Sai et al., 2023) in favor of neural
metrics which correlate better with human judge-
ments, however this is not always possible when
under-resourced languages are involved. While we
did not conduct a full and systematic analysis and
comparison of the final scores, cases such as the
one cited above call for a deeper investigation on
automatic evaluation in machine translation.

As our final systems, we obtained roughly two
kinds of models: the ones trained on bilingual par-
allel data, and the ones fine-tuned from a multilin-
gual pair. The former were our best for translating
English to the all the Indic languages, and also to
translate from Assamese into English. Multilingual
pretraining and fine-tuning performed better for the

remaining directions, Khasi, Mizo, and Manipuri
into English. kha-eng and lus-eng were fine-tuned
from a parent trained on all the parallel dataset,
while mni-eng was fine-tuned from an Assamese
and Manipuri parent. Parent models were trained
according to the settings in Table 7, with a patience
of 20. fine-tuning was done on only the data for the
final translation direction, again with a patience of
20.

Regarding the preprocessing configuration, the
settings varied across all the directions. In some
cases, such as eng-kha and eng-lus, sticking to
separate source and target vocabulary of size 2000
with a frequency filter of 100 resulted still in the
best system. However, for eng-mni we found our
best system with separate vocabularies of size 500
and a threshold of 200. For multilingual systems,
we set the vocabulary size for the Indic side to
750 to try and force the learning of more shared
subwords. For the English side, we left the value
at 2000. There is no clear winner with respect to
segmentation algorithm.

System architecture is the same for all systems,
apart from English to and from Assamese. The best
architecture was almost always a Transformer with
4 encoder/decoder layers, embedding dimension
of 256, feedforward dimension of 1024, and 4 at-
tention heads. For the models involving Assamese,
we found that a deeper model of 18 encoder and 6
decoder layers, embedding dimension of 384, feed-
forward dimension of 1536, and 4 attention heads
performed the best.

Other hyperparameters were not investigated ex-
tensively, so all of our models were trained with
the adam optimizer, a learning rate of 1e-3, 4000
warmup updates, a dropout of 0.3, a label smooth-
ing of 0.1, and max tokens for each batch at 16384.

5 Conclusions

This paper describes our experiments and the result-
ing supervised neural machine translation systems
we submitted to WMT23 Low-resource Indic Ma-
chine Translation shared task. We trained systems
for all directions in the task and experimented with
hyperparameter tuning and multilingual training.
We did not use transfer learning from pretrained
systems, and thus our models were not competitive
for some directions. Nonetheless, we argue that
our investigation and preliminary analysis on the
behavior of different architecture and preprocess-
ing configuration can be useful to other researchers
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eng-asm eng-kha eng-lus eng-mni asm-eng kha-eng lus-eng mni-eng
training data bilingual fine-tuned multilingual
tokenization hft unigram hft bpe
src/tgt vocab. size 2000 500 2000 750/2000
freq. threshold 100 200 100
enc/dec layers 18/6 4/4 18/6 4/4
embedding dim. 384 256 384 256
feedforward dim. 1536 1024 1536 1024
attention heads 4
optimizer adam
learning rate 1e-3
warmup updates 4000
dropout 0.3
label smoothing 0.1
max tokens 16384

Table 7: Summary of the systems for our final submission. The columns give the values for various settings and
parameters for preprocessing and training. bilingual training denotes a standard supervised training on parallel data,
fine-tuned multilingual stand for a system fine-tuned on bilingual parallel data, from a parent system trained on
more parallel corpora combined. kha-eng and lus-eng were fine-tuned from a parent trained on all languages, while
mni-eng parent was trained only on asm and mni data, which shared the same writing system.

in the field and exposed some interesting points to
be explored in future work. Some of our prelimi-
nary experiments, such as the use of word embed-
dings for initialization and backtranslation, did not
give the expected results, thus prompting further
inquiry.

Limitations and Future Work

As already mentioned above, some instances of
disagreement between metrics in the final ranking
signal the need for a deeper analysis of the auto-
mated evaluation of machine translation. Here, we
did not conduct a methodical study on the matter in
this instance, this should be the subject for future
studies.

The disagreement between metrics notwithstand-
ing, it could be said that overall the performance
of our systems was limited. Supervised training
showed all its limitations with the small amount of
parallel data made available for training. A care-
ful choice of hyperparameters and techniques may
ameliorate the situation, but these factors are de-
pendent on the specific dataset involved. Further
research must be carried out to uncover clearer con-
nections between the features of the dataset and
the choice of parameters and methods to be used.
This would cut experimental costs in terms of re-
sources and time, and could lead to better and more
efficient models.

However, even if the final systems did not reach
competitive levels of performance in some of the

cases, our experiments brought up some points that
warrant for a deeper investigation. First, the per-
formance of a certain configuration of settings may
depend on the framework used for training. The ex-
periments with transformer depth for mni-eng con-
tradicts our best systems for Assamese. Whether
this discrepancy depends on the languages or on the
fact that we used different framework for different
translation directions has to be clarified.

Moreover, the connection between dataset and
model size has to be investigated further. As-
samese worked better with bigger models, even
if its dataset was smaller than the multilingual
datasets. This goes against the common under-
standing that a model with fewer parameters is best
to deal with fewer data, which will not be enough
to train a bigger model. Why this happens only for
the Assamese dataset, and not for others, should be
better understood.

Ethics Statement

As with any other system trained on real-world data,
our models may be biased. These must be taken
into account, especially in light of the complex
ethnic and religious situation of the region. 2

Following Lacoste et al. (2019), we report that
the experiments and the research that led to the
results presented in this paper were conducted

2https://www.bbc.com/news/world-asia-india-66086142
(retrieved Aug 31 2023)
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on a private server infrastructure consisting of an
NVIDIA Tesla T4, A40, and A100 for around 300
hours of training at an efficiency of 0.59 kg/kWh3

for a total of 44.25 kg CO2 eq.
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Abstract

This paper describes the transformer-based
Neural Machine translation (NMT) system for
the Low-Resource Indic Language Translation
task for the English-Manipuri language pair
submitted by the Centre for Natural Language
Processing in National Institute of Technol-
ogy Silchar, India (NITS-CNLP) in the WMT
2023 shared task. The model attained an over-
all BLEU score of 22.75 and 26.92 for the
English to Manipuri and Manipuri to English
translations respectively. Experimental results
for English to Manipuri and Manipuri to En-
glishmodels for character level n-gramF-score
(chrF) of 48.35 and 48.64, RIBES of 0.61
and 0.65, TER of 70.02 and 67.62, as well as
COMET of 0.70 and 0.66 respectively are re-
ported.

1 Introduction

Our team from Centre for Natural Language
Processing at National Institute of Technology
Silchar, India (NITS-CNLP) participated in Low-
Resource Indic Language Translation task for
English-Manipuri language pair in the WMT 2023
shared task (Pal et al., 2023). The shared task in-
volves developing Machine Translation (MT) sys-
tems with relatively small parallel datasets. Neu-
ral Machine translation (NMT) has been a trend-
ing topic for the last few years for translating hu-
man languages. Manipuri’sMT task is still in its in-
fancy because of the limited resources. Singh and
Bandyopadhyay (2011a) conducted a study on su-
pervised statistical methods in which the authors
present a convincing study of the impact of mor-
phosyntactic information and dependencies in the
context of statistical machine translation. In an-
other work, Singh and Bandyopadhyay (2011b)
showed that the expression grounded Statistical
Machine translation (SMT) system improves by in-
corporating verbal features including named enti-
ties and reduplicated multiword expressions. De-

spite the advancement in MT tasks, its investiga-
tion in low-resource languages is limited. MT re-
searchers have introduced several approaches to
overcome this bottleneck such as data augmenta-
tion using back-translation (Sennrich et al., 2016a),
multilingual approach (Singh and Singh, 2022a),
semi-supervised approach (Cheng et al., 2016;
Singh and Singh, 2022b) and exploiting cues from
multiple modalities (Gain et al., 2021;Meetei et al.,
2023). There are also reports of a comparative
study of MT systems on the low resource machine
translation focusing on Indian languages such as
Assamese (Baruah et al., 2021) and Mizo (Devi
et al., 2022; Thangkhanhau and Hussain, 2023).
Driven by the benefits of NMT over tradi-

tional MT systems and the encouraging outcomes
achieved by NMT in recent times, a study to as-
sess its efficacy in the domain of Indian languages
is conducted. Specifically, we have developed and
assessed NMT models for translating English to
Manipuri and Manipuri to English. The predicted
translations are evaluated using automatic evalua-
tion metric and qualitative analysis.

1.1 About the language

Manipuri is the lingua franca of Manipur and
has been in existence since 2000 years back till
present times with records preserved in the clas-
sical cultural heritage of literature. Manipuri
is a language of Tibeto-Burman sub-family of
the Sino-Tobentan languages family which is lo-
cally called as Meeiteilon/Meiteilon (hereon Meit-
eilon). It is one of the 22 official languages
of the India included in the 8th schedule of the
Indian constitution1. Meiteilon had its original
script namedMeitei/Meetei Mayek (hereonMeitei
Mayek) which was in use up to the 18th cen-
tury and was replaced later with the Bengali
script. However, the wave of revivalist movement

1https://rajbhasha.gov.in/en/languages-included-eighth-
schedule-indian-constitution
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emerged later leading to the formation of Meitei
Mayek Advisory committee in the year 1973. In
1982, the Government of Manipur announced its
decision to include Manipuri in the school educa-
tion and efforts to revive the Meitei Mayek are still
on.

2 System Overview

2.1 Dataset

Language Sentence Word Avg
Eng-Training 21687 390730 18
Man-Training 21687 330319 15
Eng-Validation 1000 16905 16
Man-Validation 1000 14469 14
Eng-Testing 1000 14886 14
Man-Testing 1000 12775 12

Table 1: Statistics of the experimental dataset. (Avg =
Average Sentence length

The Manipuri text is written in Bengali script.
Statistics of the training dataset are shown in Table
1.

2.2 Data preparation

Training the dataset is pre-processing with sub-
word tokenization. For subword based tokeniza-
tion we use a source and target BPE of 10000
subword tokens or vocabularies using sentences
pieces over the parallel training dataset and applied
to the remaining testing and validation dataset.
The subword tokenization (Sennrich et al., 2016b)
is carried out using the subword-nmt tool 2.

2.3 MT model

Our MT models are trained using OpenNMT
toolkit (Klein et al., 2017) and is based on the trans-
former model (Vaswani et al., 2017).

2.4 Model parameter

Our models are trained for 300000 steps and vali-
dated after every 5000 steps. We set the parameter
of batch type to tokens and batch size to 2048. The
models are trained using Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 2 and the
dropout set to 0.1. Early stopping mechanism is
employed where the training is stopped when the
accuracy does not improve for 30 consecutive val-
idations.

2https://github.com/rsennrich/subword-nmt

In our transformer-based model, each source en-
coder has 4 layers and decoder also has 4 layers,
with a word vector size of 512 and a shared en-
coder and decoder embedding. We measure the
performance of our models by using BLUE (Pap-
ineni et al., 2002) and chrF (Popović, 2015).

3 Results and Discussion

In this section, we discuss the experimental re-
sults and the performance of models. The reported
BLEU score is calculated upon the de-tokenized
text using sacrebleu (Post, 2018) while remaining
score such as chrF, RIBES, TER and COMET are
calculated using tool provided by the organizer3.
The scores of the system are given in Table 2. The
Manipuri to English translation model obtained a
BLUE score of 26.92 while English to Manipuri
obtained 22.75.

3.1 Qualitative analysis
Automated evaluation metrics such as BLEU mea-
sures the precise lexical matches between the trans-
lated output and the reference sentences. How-
ever, it is inevitable for a natural language to ex-
hibit linguistic variations in terms of synonyms and
transformations between active and passive mode
of communication. As a result, despite preserv-
ing the intended meaning of the source sentence in
the translation output, the automated score based
on the n-gram match suffers. Manipuri is a lan-
guage of considerable linguistic diversity and the
automated scores for English to Manipuri transla-
tions are typically lower than those for Manipuri
to English despite the provision of a translation
output of acceptable quality. Therefore, we enlist
the services of a bilingual native speaker of Ma-
nipuri with fluency in English to evaluate the trans-
lation outputs for the English to Manipuri task. Ta-
ble 3 and Table 4 present four randomly selected
source sentences from the test set for each of the
Manipuri to English and English toManipuri trans-
lation models along with their corresponding out-
put sentences with reference sentences to carry out
subjective evaluation.
In Table 3, the difference between the refer-

ence and MT results are reported. For Source1,
Source2 and Source4, the Manipuri to English
MT system outputs (OutputE1, OutputE2 and Out-
putE4) are close to the reference sentence. In Out-
putE2, the sentence formation is incorrect where

3http://www2.statmt.org/wmt23/indic-mt-task.html
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MT system BLEU chrF RIBES TER COMET
en-mni 22.75 48.35 0.61 70.02 0.70
mni-en 26.92 48.64 0.65 67.62 0.66

Table 2: BLEU score and the character n-gram F-score (chrF), RIBES, TER and COMET values of the
English→Manipuri (en-mni) and Manipuri→English (mni-en) translation model.

Result Samples
Source1: েদা�র অমা খদু�া েকৗবীয়ু , নত্ýগা অনাবদু েহািƗটালদা পনুবা এřুেলı অমা েথৗরাং

েতৗবীয়ু ।
References1: call a doctor immediately , or arrange for an ambulance to take the casualty to

hospital
OutputE1: send for a doctor immediately , arrange for an ambulance to take the causality

to hospital.
Source2: ই-েবা¬ অিস িশিজĭবদা য়াŔা লাই অমসংু কমেļġ অদগুী অেরান-অথপু অদু ঙা�ুনা

থřদা মেতং পাংগিন ।
References2: e-box is very simple to operate and will help to maintain the confidentiality of the

complaint.
OutputE2: the e-box will help you protect and will help with regard to confidentiality of the

complaint.
Source3: মিস েবÄেলার েমথদগী ওĭ-ৈতনবিন ।
References3: it is the reverse in bangalore method.
OutputE3: it is to be done from bangalore method.
Source4: ভারøা অহল ওইরবা মীওইশীংগী মীশীং অিস েলĳনা েহনগৎলি¥ ।
References4: there has been a steady rise in the population of older persons in india.
OutputE4: the number of older persons has been increasing

Table 3: Sample input and output of the Manipuri to English MT system.

Result Samples
Source1: encouraging the appropriate government to assume the fullest responsibility for the

administration of occupational safety , health and environment at workplace
References1: েসফিট , েহলথএĞএনভাইরনেমěএট ৱাকর্ েļসকী মতাংদা মিতক চাবা েলিজেơসনঅমা

েশমবা
OutputM1: েসফিট , েহলথএĞএনভাইরনেমěএট ৱাকর্ েļসকী মতাংদা মিতক চাবা েলিজেơসনঅমা

েশমগৎপা ।
Source2: the chairperson of the national authority shall preside over the meetings of the na-

tional authority .
References2: েনসেনল ওেথািরিটগী িচয়ারপসর্ননা েনসেনল ওেথািরিটগী িমিটংশীংগী েথৗরম মপু ওইগিন

।
OutputM2: েনসেনলওেথািরিটগী িচয়ারপসর্ননা েনসেনলওেথািরিটগী মীিটং অদগুী মীফম পাংেথা�িন

।
Source3: this causes pain .
References3: মিসনা নাবা ফাউহিű ।
OutputM3: মিসনা নাবা েথাকহিűবা মরমশীং
Source4: compensation for accredited social health activist
References4: এে¤িদেতদ েসািসএল েহলথ এি�িভƀ গী কেŕেıসনট
OutputM4: এে¤িদেতদ েসািসএল েহলথ এি�িভƀ গীদমক কেŕেıসন পীবা

Table 4: Sample input and output of the English to Manipuri MT system.
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the words such as “maintain” and “operate” are
incorrectly translated. In OutputE1, we observe
a case where the word “call” is translated to its
antonym “send” and “casualty” to “causality”. In
OutputE4, “steady rise” is translated as “increas-
ing” which could be considered as a synonym of
the phase. Apart from the missing words “in in-
dia”, the output sentence preserve the meaning of
the source sentence. In OutputE3, the MT output
is not able to retain the intended meaning of the
source sentence.
The Table 4 shows the results of the MT sys-

tem for translating English to Manipuri. The Out-
putM1, OutputM3 and OutputM4 give a close
meaning to the reference sentence. In OutputM1,
the word “েশমবা” (meaning “build”) is translated
to its infinitive form of the verb “েশমগৎপা” (mean-
ing “to build”). The word “causes” has multi-
ple translations in Manipuri such as “ফাউহিű”,
“েথাকহিűবা”and “মরমশীং” which are used in dif-
ferent context. In OutputM3, we observe that the
translations of the word “causes” is repeated show-
ing the challenges of the MT model in translat-
ing such words. In OutputM4, we observe a case
where a word as multiple translation in Manipur
but can be used in the same context. The word
“for” can be translated as “গী” or “গীদমক” in Ma-
nipuri. Apart from the extra verb “পীবা” (mean-
ing “give”), OutputM4 is grammatically correct de-
spite not having a perfect n-gram match. In the
case of OutputM2, the sentence is observe to have
a poor adequacy with the incorrect translation for
the word “chairperson” but the structure of sen-
tences is well formed and grammatically correct.

4 Conclusion

Enabling MT for low-resource languages poses
several challenges due to the lack of parallel re-
sources available for training. In this work, we
report the performance of the MT systems trained
on low resource setting for English to Manipuri
andManipuri to English using a transformer-based
encoder and decoder architecture. The automatic
evaluation shows that English toManipuri MT sys-
tem achieved 22.75 BLEU and Manipuri to En-
glish MT system achieved 26.92 BLEU. The auto-
mated scoring mechanism is inadequate in captur-
ing the linguistic nuances of the morphologically
complexManipuri languagewhich requires the use
of multiple references. Based on the subjective
evaluation, we observed that the translation qual-

ity is deemed satisfactory and fluent in some cases,
given the relatively small size of the dataset and
the utilization of a single test reference.

Limitations

Translation model performs better for short sen-
tences as compared to the longer sentences. There
are several out of vocabulary words due to the fact
that the model is built on a constraint environment.
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Abstract

Even though, machine translation has seen
huge improvements in the the last decade, trans-
lation quality for Indic languages is still un-
derwhelming, which is attributed to the small
amount of parallel data available. In this pa-
per, we present our approach to mitigate the
issue of the low amount of parallel training
data availability for Indic languages, especially
for the language pair English-Manipuri and
Assamese-English. Our primary submission for
the Manipuri-to-English translation task pro-
vided the best scoring system for this language
direction. We describe about the systems we
built in detail and our findings in the process.

1 Introduction

The ability to overcome linguistic barriers has
emerged as the most critical issue in a society that
is becoming increasingly interconnected. These
linguistic barriers can be eliminated enabling ef-
fective communication among various linguistic
communities, machine translation (MT) systems
are not only capable of translating common lan-
guages but also less widely spoken or even endan-
gered languages, ensuring that even marginalized
communities can participate in the global conver-
sation. The use of machine translation for regional
Indian languages is both an intriguing and chal-
lenging application. India has an intricate mix of
languages and dialects spoken all over its broad
territory, making it a linguistically diverse nation
(Mandal et al., 2021). Despite being culturally stim-
ulating, this diversity poses substantial obstacles to
effective communication. By automating the trans-
lation process and opening up content to speakers
of different regional Indian languages, machine
translation presents a viable remedy.

Due to deep learning, neural networks, and nat-
ural language processing developments, machine
translation technology has made significant strides
in recent years (Slocum, 1985). However, there

are particular difficulties that must be overcome
in order to adapt these technologies to the intri-
cate linguistic features of Indian languages (Pal
et al., 2013a). These difficulties include, among
other things e.g., multi-word expressions (Pal et al.,
2013b), the complexity of morphology, syntactic
changes, and the scarcity of parallel training data
(Pal, 2018). The challenge of producing accurate
and relevant translations is further complicated
by the requirement to preserve cultural nuances
and context-specific meanings (Appicharla et al.,
2023).

However, the translation problem for Indian re-
gional languages is compounded by:

• Morphological complexity:
Indian languages often exhibit rich morphol-
ogy, leading to variations in word forms and
sentence structures.

• Low-resource languages:
Limited parallel training data is available for
many Indian language pairs, leading to chal-
lenges in training accurate translation models.

• Cultural and context preservation:
Accurate translation must account for context-
specific meanings, idiomatic expressions, and
cultural nuances.

So working on Indic languages has the challenge
of designing translation models and techniques that
address these complexities and constraints while
achieving high-quality translations between Indian
regional languages, contributing to effective cross-
lingual communication and content accessibility in
India’s diverse linguistic landscape.

2 Related Work

Parul and Garg (2022) provides a survey of dif-
ferent approaches to Machine Translation (MT)
for Indian languages, including Rule-based Ma-
chine Translation (RBMT), Corpus-based Machine
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Translation (CBMT), and Neural Machine Trans-
lation (NMT). Researcher (Parul and Garg, 2022)
highlights the initial slow progress in MT research
and the subsequent popularity of NMT. The paper
emphasizes that while there has been significant
research on MT for top-level languages, there is a
scarcity of research for low-level languages spoken
by fewer people. It discusses the use of differ-
ent MT models, such as Anusaarka for direct MT,
AnglaHindi for Interlingual translation, and CBMT
for translation using stored data corpus.

Jha et al. (2023) presents the development and
evaluation of a multilingual neural machine trans-
lation system for Indian languages using the mT5
transformer. The system was trained on the modi-
fied Asian Language Treebank multilingual dataset
to translate text between English, Hindi, and Ben-
gali. The system achieved acceptable Bilingual
Evaluation Understudy (BLEU) scores, with the
English-to-Bengali system achieving a maximum
BLEU score of 49.87 and the Bengali-to-English
system achieving an average BLEU score of 42.43.
Jha et al. (2023) claims that the field of Natural Lan-
guage Processing (NLP) research in low-resource
languages has been expanding rapidly, with trans-
formers being the latest state-of-the-art systems.

Jayanthi et al. (2020) states that India is a mul-
ticultural and multilingual country, with a large
number of regional languages. English is provided
as the second extra official language in India, but
its usage is limited, leading to a communication
gap. Machine translation can help minimize this
gap by translating languages. Jayanthi et al. (2020)
focuses on translating Indic languages, specifically
Telugu, using a sequence-to-sequence framework
with an encoder-decoder attention mechanism of
neural machine translation. The proposed frame-
work aims to convert the Telugu language into En-
glish and vice versa. Their approach framework
was trained using a Telugu parallel corpus and
achieved good accuracy. It overcomes the limita-
tion of reduced accuracy when faced with unknown
words by using an attention mechanism. As per
the author, the sequence-to-sequence model used
in this paper allows for the conversion of the na-
tive language into the desired language, and the
attention mechanism helps handle rare words.

S. and Bhattacharyya (2020) claims the use of In-
dowordnet helped handle ambiguity during transla-
tion and improved the performance of the machine
translation systems. The author presents a compar-

ative study of 440 phrase-based statistically trained
models for 110 language pairs across 11 Indian lan-
guages and also discusses the principles followed
in constructing the synsets, such as the minimal-
ity principle, coverage principle, and replaceability
principle.

Research involving Indian languages is not very
common due to the scarcity of parallel corpora.
Baruah et al. (2014) using Statistical Machine
Translation (SMT) with a small corpus ( 2,500 sen-
tences), the Assamese-English bidirectional MT
system for Assamese to English and English to As-
samese obtained BLEU scores of 9.72 and 5.02,
respectively. Das and Baruah (2014) investigated
and reported a BLEU score of 11.32 for Assamese
to English using SMT using 8,000 Tourism domain
parallel sentences.

3 Method

3.1 Problem Definition
Given a source sentence in an Indian regional
language, represented as S = {s1, s2, . . . , sn},
and a target sentence in a different Indian re-
gional language or English, represented as T =
{t1, t2, . . . , tm}, the objective of machine transla-
tion for Indian regional languages is to find the
optimal translation function f that maximizes the
translation quality while considering linguistic nu-
ances, morphological complexities, and contextual
information:

f⋆ = argmax f(P (T | S)) (1)

In equation 1, f⋆ represents the optimal transla-
tion function that produces the highest probability
of the target sentence given the source sentence.
P (T | S) is the conditional probability of the tar-
get sentence T given the source sentence S, which
is modelled using statistical or neural machine
translation approaches. S = {s1, s2, . . . , sn} de-
notes the sequence of words in the source sen-
tence. T = {t1, t2, . . . , tm} denotes the sequence
of words in the target sentence. n is the length
of the source sentence, and m is the length of the
target sentence.

3.2 Dataset Description
Table 1 represents the Datasets for the language
pair of Assamese-English and Manipur-English
language pair in the WMT 2023 IndicMT1 shared

1http://www2.statmt.org/wmt23/indic-mt-task.
html
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Language Pair Train Validation Test
Assamese-English 50,000 2,000 2,000
English-Manipuri 21,686 1,000 1,000

Table 1: Dataset statistics for Workshop on Machine
Translation (WMT) 23

task. As per the organizers’ guidelines, no addi-
tional parallel data was allowed for training with
only constrained submissions.

3.3 Experimental Setup

IndicBART (Dabre et al., 2022) and mbart-large-50
(Tang et al., 2020) have been adjusted for the bidi-
rectional Assamese-English and English-Manipuri
language pairs in our suggested study. We fixed
the source and target lengths in both scenarios to
“128”. With batch sizes of “16” and “8”, respec-
tively, and learning rates of “2 × 10−5” for both
scenarios, we improved our suggested IndicBART
and mbart-large-50 models, We applied weight de-
cay of “0.01” for both scenarios.

3.4 Corpus Pre-processing

We used IndicBART (Dabre et al., 2022) devel-
oped by AI4Bharat2 for some of the models. Using
IndicBART for Indic languages other than Hindi
or Marathi requires the language to be transliter-
ated into the Devanagari script. Hence, we had
to transliterate the data given into the Devanagari
script to use those models.

3.5 Experiments

3.5.1 Bidirectional Assamese-English
Language Pair

We first experimented by using IndicTrans
(Ramesh et al., 2022) from AI4Bharat to get the re-
sponses on the Validation Set provided, but the
BLEU scores on the same were unsatisfactory.
We experimented by finetuning IndicBART from
AI4Bharat on the Training Set and evaluating the
responses on the given Validation Set. This gave
us better results so we decided that these responses
would be our Primary Submissions. IndicBART is
a multilingual, sequence-to-sequence pre-trained
model focusing on Indic Languages and English.
Currently, it supports 11 Indian languages, As-
samese, Bengali, Gujarati, Hindi, Marathi, Odia,
Punjabi, Kannada, Malayalam, Tamil, and Telugu
based on mBART (Liu et al., 2020) architecture.

2https://ai4bharat.iitm.ac.in/

We used the transliteration module from the In-
dicNLP library (Kunchukuttan, 2020) for transliter-
ations from Assamese to Devanagari, an example
is shown in Figure 1.

Figure 1: Transliteration from Assamese to Hindi

These experiments are discussed below:

• Primary Submission
We took the training data and fine-tuned it on
IndicBART for the translation settings from
Assamese to English. This model gave good
BLEU scores on the Validation set hence, this
model was selected as the Primary System.

• Contrastive - 1
Here, it was considered that since Assamese
and Bengali share linguistic similarities, it
may be that IndicBART fine-tuned on the
training dats but this time for translations from
English-Bengali, did give results, surprisingly
similar to the Primary System

• Contrastive - 2
Here we used IndicTrans from AI4Bharat, the
translator was built and the responses on the
Test Set were calculated. Note, that for this
system no Transliteration was required.

For the models that used IndicBART, we had
to transliterate the data from Assamese to Hindi
using the IndicNLP transliterator. Moreover, the
responses generated by these models, when the
target language was Assamese also had to be back-
transliterated from Hindi to Assamese for the eval-
uation of the Validation Set.

3.5.2 Bidirectional English-Manipuri
Language Pair

Since resources available for the Manipuri lan-
guage are very scarce, we decided to use existing
models available for Bengali and Assamese. This
was because Manipuri shares its script with As-
samese and Bengali, so even with morphological
differences the models gave good scores for Ma-
nipuri. We used mbart-large-50 (Tang et al., 2020)
from Facebook and IndicBART by AI4Bharat.

For the language pair English-Manipuri there
were no existing transliteration tools that we found,
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Framework BLEU ChrF RIBES TER COMET
English-to-Assamese

Primary 34.82 56.58 0.87 55.10 0.77
Contrastive-1 34.71 56.59 0.87 54.75 0.78
Benchmark 8.57 25.24 0.44 86.14 0.59
Contrastive-2 6.57 39.71 0.45 86.26 0.79

Assamese-to-English
Primary 66.36 75.88 0.93 37.44 0.84
Contrastive-1 66.33 75.88 0.93 37.38 0.84
Contrastive-2 23.19 48.42 0.61 71.79 0.75
Benchmark 11.28 28.70 0.53 83.10 0.56

English-to-Manipuri
Primary 25.78 49.94 0.84 60.43 0.71
Contrastive-1 25.82 49.93 0.84 60.57 0.71
Benchmark 21.58 45.97 0.61 69.76 0.69
Contrastive-2 9.69 40.45 0.54 81.18 0.67

Manipuri-to-English
Primary 69.75 78.16 0.94 32.08 0.84
Contrastive-1 69.75 78.16 0.94 32.10 0.84
Benchmark 24.86 46.37 0.64 70.26 0.63
Contrastive-2 22.10 48.03 0.63 72.19 0.70

Table 2: Results of Primary, Contrastive-1, and Contrastive-2 submissions evaluated on Benchmark results for the
language pair Assamese-English and English-Manipuri.

Figure 2: Transliteration from Manipuri to Hindi

but it was thought that, since Manipuri has script
similarities with Bengali and Assamese we can ex-
periment with transliteration tools from Bengali
and Assamese to Hindi with the expectation for
good results and it turns out it does give good re-
sults. For this task too we used the transliteration
tools from the IndicNLP library, an example is
shown in Figure 2.

We discussed in detail about these experiments
as follows:

• Primary Submission
The data was first transliterated into Hindi
using the transliteration from Bengali to Hindi,
then we finetuned IndicBART on the Training
Data and evaluated the responses given for the
Validation Set. This model gave the highest

score on the Validation Set and hence, was
picked as the Primary model.

• Contrastive - 1 Submission
This model was similar to the Primary model,
but instead of the transliteration and Transla-
tion settings, Bengali was the Indic language
instead of Assamese.

• Contrastive - 2 Submission
For this model, we fine-tuned mbart-large-50
with the Bengali-English configuration. This
model gave a lesser score on the validation set
than the models discussed before, even though
this was a larger model.

Similar, to the Primary and Contrastive - 1 system
for Task 1, responses from the models that used In-
dicBART had to be back-transliterated from Hindi
to the Indic language, when the Indic language was
the target language.

3.6 Post-processing

Along with the back-transliteration that was re-
quired for the models using IndicBART when the
target language was the Indic language. We also
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had to do some post-processing of the responses re-
ceived, we saw that often the responses had random
Chinese characters and emoticons in the responses.
The emoticons were chalked up to encoding errors
while saving the responses to a text file, on the other
hand, the Chinese characters were something that
we think were errors because of the model itself.
These noisy characters were manually removed to
ensure that they don’t affect the accuracy.

4 Results and Analysis

Table 2 lists the findings of our experiments. We
list our observations here:

• As we discussed in section 3.6 we believe
that there might be noise in the responses
saved that we missed or couldn’t manually
find, which can contribute to a lesser score
even though the translations are accurate.

• We also believe that there might be some is-
sues in translation because of transliteration
problems while back-transliterating we often
came across responses that still had some
words in Hindi. Due to this we also believe
that there might have been errors in transliter-
ation from the Assamese/Manipuri to Hindi.

• For task 4, we also consider that the transliter-
ation and translation models used were config-
ured to Assamese and Bengali, so even though
the models were fine-tuned on the data but still
we assume that because of the morphological
differences, there might be gaps in the under-
standing and generating of language by the
model.

• An interesting observation that can be made
is that there exists a large gap in the scores
for when English is the target language and
when the target language is the Indic language.
This error can be attributed to the model un-
derstanding the target languages morphologi-
cally well, but not being able to generate the
language that well.

5 Conclusion and Future Work

In this paper, We discussed the models and pro-
cedures our team used for the language pairs
Assamese-English and English-Manipuri. Accord-
ing to our experiments, we claimed that Using lan-
guage models like IndicBART and mbart-large-50

results in improvement for the low-resourced in-
dividual languages results. We hope that this will
enable us to develop more precise and superior
translation models for languages and domains with
limited resources specially for Indian Languages
where there is a presence of large language diver-
sity. We also believe that, as seen with Manipuri,
a language with very few resources for processing
we can use languages close and similar to it to aid
in its processing and create a better way of pro-
cessing those low-resource languages. In future,
we will include our models in online post-editing
platforms (Pal et al., 2016; Nayak et al., 2015; Vela
et al., 2019).
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Abstract

This paper describes the IOL Research team’s
submission systems for the WMT23 low-
resource Indic language translation shared task.
We participated in 4 language pairs, including
en↔as, en↔mz, en↔kha, en↔mn. We use
transformer based neural network architecture
to train our machine translation models. Over-
all, the core of our system is to improve the
quality of low resource translation by utilizing
monolingual data through pre-training and data
augmentation. We first trained two denoising
language models similar to T5 and BART using
monolingual data, and then used parallel data to
fine-tune the pretrained language models to ob-
tain two multilingual machine translation mod-
els. The multilingual machine translation mod-
els can be used to translate English monolin-
gual data into other multilingual data, forming
multilingual parallel data as augmented data.
We trained multiple translation models from
scratch using augmented data and real parallel
data to build the final submission systems by
model ensemble. Experimental results show
that our method greatly improves the BLEU
scores for translation of these four language
pairs.

1 Introduction

This paper describes our submissions for the
WMT23 low-resource Indic language translation
shared task. We participated in 4 language
pairs, including English↔Assamese (en↔as),
English↔Mizo (en↔mz), English↔Khasi
(en↔kha), and English↔Manipuri (en↔mn).

Our core approach is based on denoising lan-
guage model pre-training(Devlin et al., 2019; Lam-
ple and Conneau, 2019; Song et al., 2019; Raf-
fel et al., 2019; Lewis et al., 2020) and back-
translation(Sennrich et al., 2016a) based data aug-
mentation. Neural machine translation methods
are almost the first choice for implementing trans-
lation systems at present, but they have certain

requirements on the amount of parallel corpora.
Low-resource or even zero-resource neural ma-
chine translation has been a daunting challenge
due to the lack of adequate parallel corpora. Pre-
training methods are popular solutions for low-
resource cases. When the model parameter scale
is large enough and there is enough training data,
this method can even perform well in zero resource
situations. For the machine translation task, as
early as around 2019, XLM(Lample and Conneau,
2019) and MASS(Song et al., 2019) were able to
build unsupervised machine translation systems
with near-supervised effects using only monolin-
gual data. Now, more advanced pre-training meth-
ods like BART(Lewis et al., 2020) and T5(Raffel
et al., 2019) are popular choices for training ma-
chine translation models in low-resource situations.
Therefore, in this paper, referring to the training
methods of BART and T5, we trained a T5-style
pre-training model and a BART-style pre-training
model from scratch using monolingual data. Back-
translation is a commonly used method in the field
of machine translation. Whether it is low-resource,
medium-resource or high-resource, this approach
can almost help the model to obtain further im-
provements on the original basis. Therefore, we
also use back-translation to help us further improve
the translation quality.

The layout of the subsequent paper is as follows:
In Section 2 We introduce the data source and pro-
cessing strategy; In Section 3 we describes the im-
plementation process of our translation systems; In
Section 4 we describe the experimental settings and
results; Finally, the conclusion is drawn in Section
5.

2 Data

2.1 Data Source

Bilingual corpus We just used the official en↔as,
en↔mz, en↔kha, and en↔mn parallel data(Pal
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Data en↔as en↔mz en↔kha en↔mn
Bilingual Data 49808 49575 23996 20990

Table 1: Statistics of bilingual data

Data en as mz kha mn
Monolingual Data 60598321 2206328 1864322 178036 298072

Table 2: Statistics of monolingual data

et al., 2023).
Monolingual corpus of Indic languages We also
used only official monolingual data for Assamese,
Mizo, Khasi and Manipuri.
English monolingual corpus Since the official
did not provide English monolingual data, we ob-
tained English monolingual data from the WMT23
general task. Specifically, we used the English
side of bilingual data (English↔German and
English↔Japanese) in the WMT23 general task
as English monolingual data.

2.2 Data Preprocessing
For English monolingual data, we first filter out
noisy sentences according to following rules:

• Remove invisible characters.

• Remove sentences containing too more than
300 words or more than 1000 characters or
less than 3 characters.

• Remove English sentences containing words
exceeding than 40 characters.

• Remove sentences that contain too many punc-
tuation marks.

• Remove sentences that contain repeated sub-
strings, which refers to a string composed of
a single character that repeats more than 10
times, or two or more character that repeat
more than 5 times.

• Remove sentences that contain HTML tags.

• Convert full-width characters to half-width
characters.

• Remove duplicated sentence pairs.

Since all the officially provided data have been
tokenized, we used the Moses scripts1 to do to-
kenization for English monolingual data. Then

1https://github.com/moses-smt/mosesdecoder/

we use an n-gram language model trained with
KenLM(Heafield, 2011)2 to calculate the perplex-
ity of English monolingual data and remove sen-
tences with high perplexity(more than 10 000). We
just did deduplication for the official data, because
the size of the official data is relatively small and
the quality is high enough. The amount of data
after processing is shown in Table 1 and 2.

We used the Sentencepiece(Kudo and
Richardson, 2018) tool to train a multilin-
gual BPE(Sennrich et al., 2016b) model for
subword segmentation. Its training data includes
all official training data and 2.5 million random
samples from English monolingual data. The
vocabulary size is set to 48 000.

3 System Overview

We chose Transformer(Vaswani et al., 2017) with
pre-norm as our base translation model. In general,
our procedure for improving the quality of low-
resource translations is divided into two phases, an
improvement phase based on pre-training methods
and an improvement phase based on data augmen-
tation. Instead of using the pre-trained model to
initialize the parameters of the translation model,
the pre-training phase merely provides synthetic
data for the data augmentation phase, which means
that the translation model in the data augmentation
phase is trained from scratch. In addition to this, we
also used model ensemble in the final submissions.

3.1 Pre-training

The pre-training phase is divided into two steps. In
the first step, pre-training for the denoising auto-
encoder tasks are performed using monolingual
data. In the second step, the pre-trained models
are fine-tuned using bilingual data. We trained
two denoising pre-training models, namely the T5-
style(Raffel et al., 2019) model and the BART-
style(Lewis et al., 2020) model. The training details

2https://github.com/kpu/kenlm
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Original sentence Since their articles appeared , the price of gold has moved up still further .
T5-style input sentence Since their articles appeared , <span> gold has moved up still further <span>
T5-style target sentence <span> the price of <span> .
BART-style input sentence Since their <span> of gold has up still moved further .
BART-style target sentence Since their articles appeared , the price of gold has moved up still further .

Table 3: Examples of T5-style and BART-style training data

of the two models are as follows.
As shown in Table 3, Both T5-style and BART-

style models are trained by recovering original sen-
tences from corrupted sentences, which are pro-
duced by randomly replacing some fragments in
the sentences with the <span> mark. The most
important difference is that the T5-style target sen-
tence, that is, the label contains only the replaced
part, while the BART-style label is the entire orig-
inal sentence. Another difference is that in this
paper we also randomly swap the two words that
are not masked in BART-style input sentences. For
both models, the proportion of replaced words is
0.15, and the length of replaced segments is 3. We
randomly swap words in BART-style input sen-
tences with a probability of 0.5.

We used monolingual data containing 5 lan-
guages to train the pre-training models, and then
fine-tuned the pre-trained models using parallel cor-
pora containing 4 language pairs in 8 translation
directions. In order to keep the number of all lan-
guages balanced, we only used 3 million additional
English monolingual data at this phase.

3.2 Data Augmentation

The pre-training phase is also divided into two
steps, pre-training on synthetic data and fine-tuning
on the real bilingual data. We employed the ap-
proach inspired by the back-translation(Sennrich
et al., 2016a) and Zan et al. (2022) to generate
synthetic data. Since we planed to train a multilin-
gual translation model, in order to share knowledge
across multiple languages, the synthetic data we
generated contains 5 languages and 20 translation
directions. In detail, by beam search, we trans-
lated an English monolingual sentence into 4 other
languages, where any two sentences in different
languages are also aligned as they are both trans-
lated from the same English sentence. To ensure
the quality of the synthesized data, we also calcu-
lated the translation perplexity score from Indic lan-
guages to English direction via a multilingual trans-
lation model from pre-training phase and removed

sentence pairs with high perplexity scores. For
data diversity, we used both T5-style and BART-
style pre-trained models to generate synthetic data,
and leveraged the other model to compute the per-
plexity score, for example, the data generated by
the T5-style pre-trained model is scored using the
BART-style pre-trained model.

3.3 Model Ensemble

A well-known model ensemble trick is to increase
the diversity between different models. However,
we did not train multiple translation models from
scratch due to time and computational resource
constraints. Instead, we fine-tuned the three mod-
els, many-to-many, one-to-many, and many-to-one,
based on model trained on synthetic data, and then
selected the many-to-many and one-to-many or
many-to-one models to complete the final submis-
sion by model ensemble.

4 Experiments

4.1 Experiment Settings

All of our translation models were implemented
based on fairseq(Ott et al., 2019) and trained on 8
NVIDIA A100 GPUs. During training, we used
the Adam(Kingma and Ba, 2014) optimizer with
β1 = 0.9, β2 = 0.98, the learning rate scheduling
strategy of inverse sqrt, the number of warmup
step set to 4000, the maximum learning rate set to
0.0005 and FP16 to accelerate the training process.

We trained three models, Many2Many(M2M),
One2Many(O2M), Many2One(M2O), with 12-
encoder, 12-decoder transformer-big model as base-
lines. They were trained only on a real parallel
corpus, with a batch size set at 13,000 tokens. For
the models in the Pre-training phase, we used the
same model structure as the baselines but with a
batch size of 1 million. For the models in the data
augmentation phase, we changed the number of
layers of models to 10, and the embedding size to
1536.

980



System en→as en→kha en→mni en→mz as→en kha→en mni→en mz→en
O2M Baseline 5.1 11.8 9.1 15.0 - - - -
M2O Baseline - - - - 14.3 10.6 19.8 18.8
M2M Baseline 7.0 14.8 13.4 19.2 15.9 11.7 23.3 20.6
BART-style Pre-training 11.4 19.3 20.1 25.2 22.4 15.1 35.4 26.5
T5-style Pre-training 12.0 19.6 21.5 26.3 23.6 16.4 35.6 26.9
O2M Data Augmentation 13.0 21.3 23.3 27.4 - - - -
M2O Data Augmentation - - - - 28.2 20.1 42.1 31.8
M2M Data Augmentation 12.8 21.0 23.4 27.3 25.2 18.0 40.6 29.1
Model Ensemble 13.4 21.6 23.9 27.8 28.6 20.8 42.9 32.4

Table 4: BLEU scores of all translation direction on validation sets

4.2 Results

All experiments were evaluated using the sacre-
bleu(Post, 2018) tool to calculate BLEU(Papineni
et al., 2002) scores on the official validation sets,
and we did not detok before calculating the BLEU
scores. We used beam search with beam size=5
to decode all models and the results are shown in
Table 4.

According to Table 4, it can be seen that the
many-to-many baseline preforms better than one-
to-many and many-to-one. I believe this is because
the parallel corpus size is too small where the many-
to-many model can share knowledge across dif-
ferent languages. Both BART-style and T5-style
pre-training significantly improved BLEU scores
in all directions, with T5-style slightly better than
BART-style. All translation directions are further
improved after data augmentation. When English is
the source language, the improvement is small, and
when English is the target language, the improve-
ment is larger. This is because this phase is mainly
based on a large amount of real English mono-
lingual data. The one-to-many and many-to-one
models perform equally or better than the many-
to-many model at this phrase, as there is no longer
a severe lack of linguistic knowledge. Finally, the
model ensemble helps the system to obtain further
improvements.

5 Conclusion

In this paper, we describe IOL Research’s submis-
sion to the WMT2023 low-resource Indic language
translation shared task. We participated in four
sub-tasks with a total of eight translation directions.
Our system mainly improves the translation quality
of these languages in the low-resource case through
pre-training and data augmentation. Experimental
results show that we achieved large improvements

in all directions.
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Abstract

Neural metrics trained on human evaluations
of MT tend to correlate well with human judg-
ments, but their behavior is not fully under-
stood. In this paper, we perform a controlled
experiment and compare a baseline metric that
has not been trained on human evaluations
(Prism) to a trained version of the same met-
ric (Prism+FT). Surprisingly, we find that
Prism+FT becomes more robust to machine-
translated references, which are a notorious
problem in MT evaluation. This suggests that
the effects of metric training go beyond the in-
tended effect of improving overall correlation
with human judgments.

1 Introduction

While trained evaluation metrics for machine trans-
lation (MT) tend to have a high correlation with
human judgments (Freitag et al., 2022b), they re-
main black boxes, sometimes behaving in unex-
pected ways (Amrhein and Sennrich, 2022; Rei
et al., 2023). This calls into question whether a
metric’s utility can be measured solely by its corre-
lation with human judgments.

In this paper, we intentionally provide MT met-
rics with machine-translated reference translations,
as opposed to human-created references, and inves-
tigate how this factor influences the behavior of
a metric. In MT evaluation research, the human
translators who create reference translations are
usually asked to produce them from scratch, in or-
der to avoid references that are machine-translated
or post-edited (Kocmi et al., 2022). Nevertheless,
traces of MT have been detected in some reference
sets (Kloudová et al., 2021; Akhbardeh et al., 2021;
Kocmi et al., 2022). It is therefore important to
understand how metrics behave under such refer-
ences.

In our experiments, we use a surrogate for real
post-edited references in the form of error-free out-

∗Work done during an internship at Amazon.
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Figure 1: Metrics for MT quality have a lower segment-
level correlation with human judgments when provided
with machine-translated references. However, trained
metrics, such as our Prism+FT, become more robust to
the use of machine translations as references.

put by various systems from the WMT 2021 news
translation task (Akhbardeh et al., 2021). Our re-
sults show that there is a stark difference between
trained and non-trained metrics: While trained met-
rics maintain most of their accuracy when provided
with such MT-derived references, non-trained met-
rics exhibit a substantial drop in accuracy.

To corroborate this observation, we perform a
controlled experiment involving Prism (Thompson
and Post, 2020), a metric that is based on a multilin-
gual MT system. The original version of Prism can
be considered non-trained, since it learns from par-
allel sentences without human judgments. We then
fine-tune Prism on a dataset of human judgments,
using a bidirectional pairwise ranking approach.

As expected, the segment-level correlation of
Prism increases during fine-tuning, indicating that
the metric learns to better predict human judg-
ments (Figure 1). Moreover, we find that fine-
tuning narrows the gap in performance between
human-created and machine-translated references.
Our experiment thus indicates that training a metric
on human evaluation data can influence its behavior
in a way that is not captured by global correlation
with human judgments. Code to reproduce our
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findings will be made available.1

To summarize, the paper makes the following
contributions:

• We propose a metric evaluation setup that
intentionally uses machine-translated refer-
ences, and demonstrate that non-trained met-
rics perform poorly in this setup.

• We present an approach for fine-tuning Prism
on human judgments that significantly im-
proves segment-level correlation on unseen
test data.

• We show that fine-tuning Prism on human
judgments makes it more robust to the use
of machine-translated references.

2 Background

2.1 Reference-based Evaluation
Automatic evaluation of MT is often performed
by comparing the system output with one or more
reference translations, using an evaluation metric.
Evaluation metrics can be roughly divided into
trained and non-trained metrics. Trained metrics
receive supervision from human judgments of past
machine translations. For example, Sellam et al.
(2020) and Rei et al. (2020; ‘COMET’) fine-tuned
a pre-trained sentence encoder on such human judg-
ments, using regression or ranking objectives.

Non-trained metrics, on the other hand, rely on
a heuristic to make the comparison. Metrics such
as BLEU (Papineni et al., 2002) and chrF (Popović,
2015) are based on the overlap of words or char-
acters between the system output and the refer-
ence. Thompson and Post (2020) use the perplexity
of a neural sequence-to-sequence model, called
Prism, that has been trained on multilingual MT.
Systematic comparisons of evaluation metrics (Fre-
itag et al., 2022b) have shown that trained metrics
tend to correlate better with human judgments than
non-trained metrics do, especially if the latter are
based on overlap heuristics.

2.2 Quality of Reference Translations
The reliability of reference-based evaluation met-
rics also depends on the quality of the references
they are provided with (Freitag et al., 2021b). A
notorious source of noise in references is transla-
tionese, which is characterized by monotonicity

1https://github.com/amazon-science/
prism-finetuned

with respect to the source sequence and a high
n-gram overlap with system translations (Freitag
et al., 2020). Freitag et al. (2020) have shown that
translationese references cause BLEU scores to be
higher, and the scores are dominated by matches of
common, unspecific n-grams. They find that BLEU
scores under non-translationese references tend to
be lower, but more precise.

Agarwal et al. (2023) observed that post-edited
references for spoken language translation seem to
inflate BLEU scores, but not the scores of COMET.
However, the relationship between metric training
and the quality of reference translations has not
been studied in detail. In this paper, we hypothesize
that robustness to machine-translated references
may partially explain why trained metrics are more
accurate in practice.

3 Experimental Setup

3.1 Measuring Global Correlation

For measuring the overall correlation of a metric
to human judgments, we follow the WMT 2021
metrics task (Freitag et al., 2021b) and use MQM
annotations of submissions to the 2021 WMT news
translation task (Akhbardeh et al., 2021). The eval-
uation data cover two domains, news and TED
talks. Table A5 reports statistics for these data.

We closely replicate the methodology of the
WMT 2021 metrics task. On the segment level, we
report Kendall’s tau coefficient across all segments
and systems; on the system level, we report pair-
wise accuracy (Kocmi et al., 2021), i.e., the ratio of
system pairs that a metric ranks in the same order as
human annotators have. Following the shared task,
we only consider system translations and exclude
human translations from the evaluation. We then
perform perm-both hypothesis tests (Deutsch et al.,
2021) to validate metrics comparisons at α = 0.05.

3.2 Measuring the Effect of
Machine-translated References

In the context of our analysis, we use error-free sys-
tem translations from the WMT 2021 news trans-
lation task as a surrogate for real post-edited ref-
erences. Specifically, we randomly select system
translations that have been annotated according to
the MQM standard and in which no annotator has
marked an error. This approach allows us to sim-
ulate a post-editing process without the cost and
noise incurred by actual post-editing.
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Source sequence (English)

Face masks are mandatory across the state of California, even in fresh air.

Human-created reference (German)

Gesichtsmasken sind im ganzen Bundesstaat Kalifornien vorgeschrieben, auch im Freien.

Machine-translated reference (German)

Gesichtsmasken sind im gesamten Bundesstaat Kalifornien Pflicht, auch an der frischen Luft.

Figure 2: Example of a machine-translated reference compared to the standard reference created by a human
translator. The machine-translated reference is more literal (an der frischen Luft ‘in fresh air’).

Figure 2 and Appendix F juxtapose some exam-
ples of error-free system translations and the stan-
dard, human-created reference translations. The
former tend to be more literal and more aligned to
the source, both in terms of syntax and content.

It should be noted that when we evaluate a met-
ric in this analysis, we draw from the same set of
systems and human annotations as we do for ex-
tracting the references. We take care to properly
separate the system translations used as a refer-
ence from those that are evaluated based on that
reference.

To calculate segment-level correlation, we sam-
ple a random error-free translation from an unre-
lated system, for each system output.2 To calculate
system-level pairwise accuracy, we use different
sets of references depending on the pair of sys-
tems that is compared. Figure 3 shows that our
approach is comparable to cross-validation. For
every pair of systems that we consider when calcu-
lating the pairwise accuracy of a metric, we select
one reference translation from an unrelated system,
independently per segment. As a consequence, we
use slightly different reference sets for ranking dif-
ferent pairs of systems.

We then compare the accuracy of a metric when
provided with the machine-translated references to
its accuracy when using the standard references.
To ensure comparability, we skip all the segments
where no machine-translated reference is available
(which is either because the segment has not been
part of the annotation study or because annotators
have found an error in every system translation).
The metric accuracies for both refstd and refmt are

2Segment-level correlation is calculated jointly across all
segments and systems, and as a consequence, using different
references to evaluate the translations of different systems
adds some noise to the correlation. However, we expect that
the correlation is dominated by the segment axis and not by the
system axis. Our findings on the segment level are consistent
with our findings on the system level.

refmt

A B C

refmtsys1 sys2

sys1

sys1 sys2

refstd

refstd

refstd

Seg.

1
2

n

...
System pair D

(A, B)
sys2

refmt

refmt

refmtsys1 sys2

sys1

sys1 sys2

refstd

refstd

refstd

1
2

n

...

(A, C)
sys2

refmt...

(C, D)

human

Pairwise accuracy based on refstd

Pairwise accuracy based on refmt

Figure 3: To measure the effect of machine-translated
references, we use error-free output from other, unre-
lated MT systems as references. For example, when
comparing system A to system B, we use a translation
from either system C, D, etc. as a reference for each
segment.

thus calculated based on a subset of the segments
used to calculate global correlation. Table A5
shows that only for one language pair a substantial
number of segments need to be skipped (Chinese–
English news). For the other language pairs, be-
tween 0% and 4.5% of the segments are skipped.

4 Fine-tuning the Prism Metric

Prism (Thompson and Post, 2020) is a reference-
based evaluation metric that relies on the paraphras-
ing probability between a system translation and a
reference. The probability is estimated by a mul-
tilingual NMT model as a zero-shot translation
direction. The model is expected to prefer mere
copies of the source sequence to more creative para-
phrases, which is especially useful for reference-
based evaluation.

The NMT model uses the reference as a source
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sequence x and the system translation as a hypoth-
esis y, or vice versa. The segment-level score S is
then calculated from token-level log-probabilities:3

S(y|x) = 1

|y|

|y|∑

t=1

log p(yt|yi<t, x).

By default, Prism uses the average of both para-
phrasing directions:

Prism(sys, ref) =
1

2
S(sys|ref) +

1

2
S(ref|sys).

An overall score for a system can then be calculated
as an average over a collection of segments.

4.1 Training Objective
In order to fine-tune Prism, we combine a standard
cross-entropy objective and a bidirectional pairwise
ranking objective.

For the cross-entropy objective, we use the
source sequence (src) and the reference transla-
tion (ref) of the training examples to continue the
cross-entropy training:

Lsrc→ref = −S(ref|src).

Our goal in using this objective is to familiarize
Prism with the segments to which the human judg-
ments refer, and to prevent catastrophic forgetting
during the fine-tuning stage.

In addition, we propose a bidirectional pairwise
ranking objective. In the forward direction, we
train Prism to correctly rank two system transla-
tions (sys+ and sys−), conditioned on the refer-
ence (forward ranking):

Lref→sys = max{0, ϵ− S(sys+|ref)

+ S(sys−|ref)},
where ϵ is a margin value. We add a second rank-
ing loss for the reverse paraphrasing direction, i.e.,
for reconstructing the reference from either of the
system translations (backward ranking):

Lsys→ref = max{0, ϵ− S(ref|sys+)

+ S(ref|sys−)}.
The complete fine-tuning objective is:

L = αLsrc→ref + (
1

2
Lref→sys +

1

2
Lsys→ref),

where α is a scalar to balance the two terms.
Figure 4 is a schematic illustration of the objec-

tives for pre-training, fine-tuning, and inference.
3This score is called H in the original definition. We use S

instead, to avoid confusion with cross-entropy (which is −S).

A. Pre-training

C. Inference ref sysde de

B. Fine-tuning

src refen dede

src ref rude

src refzh de

src refen de

refde de
sys

sys

ref dede
sys

sys

Figure 4: Schematic illustration of the sequences used
for pre-training, fine-tuning, and applying the Prism
model to MT evaluation. Prism has been (A) pre-trained
on multilingual translation to and from 39 languages as
described by Thompson and Post (2020); inference (C)
makes use of the zero-shot paraphrasing capability ac-
quired by the model during pre-training. We add a
fine-tuning stage (B) with data derived from human
evaluations of MT. In this illustration, Prism is fine-
tuned on English–German examples.

4.2 Training Data

For fine-tuning Prism, we use human judgments
of submissions to the 2020 WMT news translation
tasks (Barrault et al., 2020), collected by Freitag
et al. (2021a).4 These annotations are based on the
Multidimensional Quality Metrics (MQM) frame-
work (Lommel et al., 2014) and have been shown
to correlate better with automatic metrics than pre-
vious direct assessments, especially when the eval-
uation concerns high-quality translations (Freitag
et al., 2021a,b). Specifically, we train Prism on hu-
man judgments for English–German and Chinese–
English translations of news. We train a single
model jointly on both language pairs.

To use the human judgments for training on pair-
wise ranking, the direct MQM assessments need to
be converted into relative rankings of translation
pairs. In previous work, direct (non-MQM) assess-

4Submission data are available at https://github.com/
google-research/mt-metrics-eval and the MQM an-
notations are available at https://github.com/google/
wmt-mqm-human-evaluation
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ments have been normalized and aggregated across
annotators before being compared (Ma et al., 2019).
Since MQM ratings are known to have low inter-
annotator agreement on the segment level (Freitag
et al., 2021b), we opt for intra-annotator pairing
instead. Specifically, we only pair translations that
have been rated by the same annotator, and we do
not compare MQM scores across annotators. Rel-
ative rankings are created independently for each
annotator and then concatenated. Furthermore, we
only pair translations that have a score difference
greater than 0.1, which would correspond to a mi-
nor fluency or punctuation error. Taken together,
these criteria should ensure there is a noticeable
difference between the quality of two system trans-
lations sys+ and sys− in the eyes of at least one
annotator. We hold out 5000 relative rankings from
the resulting training data as a validation set and
use it to select hyperparameters. Detailed statistics
for the training data are provided in Table A4.

4.3 Implementation Details

The fine-tuning was implemented in Fairseq (Ott
et al., 2019). We start with the original Prism39
model released by Thompson and Post (2020).5

We then fine-tune the model for a single pass over
the training data, using Adam. The initial learning
rate is set to 1e-4 without any warm-up steps. We
use half-precision training and an effective batch
size of 360k tokens. Other settings match the pre-
training setup of Prism.

We set the margin hyperparameter ϵ to 0.1,
and the cross-entropy weight α to 0.1 as well.
The hyperparameters have been selected based
on segment-level correlation on the validation set.
Since we jointly train on two language pairs, we
iterate over batches for each language pair in a
round-robin fashion, upsampling the smaller lan-
guage pair. Fine-tuning takes about one hour on
a p3.8xlarge AWS instance, which has 4 Tesla
V100 GPUs with 16 GB of memory.

5 Results

Effect of fine-tuning Prism Table 1 shows that
fine-tuning Prism has the intended effect: Fine-
tuning Prism on human judgments of machine
translations significantly improves correlation with
human judgments on an unseen test set. The ef-
fect of fine-tuning is especially pronounced for the
English–German and Chinese–English language

5https://data.statmt.org/prism/

EN–DE EN–RU ZH–EN

Prism 19.3 22.4 28.8
Prism+FT 25.3 23.7 31.5

Table 1: In-domain accuracy of Prism on WMT 2021
news translation submissions. We report segment-level
Kendall’s tau correlation to human judgments. Bold
font denotes that the improvement achieved through fine-
tuning is significant with α = 0.05. Note that Prism+FT
has not been fine-tuned on the EN–RU language pair.

EN–DE EN–RU ZH–EN

Prism 24.2 21.9 19.6
Prism+FT 26.9 22.3 21.9

Table 2: Out-of-domain accuracy of Prism on WMT
2021 system translations of TED talks in terms of
segment-level Kendall’s tau. Bold indicates that the
improvement is significant with α = 0.05.

pairs, since the metric was fine-tuned on those
pairs. Interestingly, we also observe positive cross-
lingual transfer to the English–Russian language
pair, which was not seen during fine-tuning. Ta-
ble 2 shows that the positive effect of fine-tuning
extends to the TED Talks domain, even though the
metric was not fine-tuned on this domain.

Effect of using machine-translated references
Table 3 reports the segment-level correlation of
different metrics when using either standard refer-
ences or machine-translated references. Note that
the values for Prism slightly differ from Tables 1
and 2 because this analysis is based on a subset of
the segments. We find that the correlation of met-
rics to human judgments tends to decrease under
machine-translated references. For the Chinese–
English dataset the relative decline is smaller than
average, but is still noticeable for most metrics.

In Table 3, when comparing the non-trained met-
rics (above the horizontal line) to the trained met-
rics (below the line), we observe that the decline in
correlation is smaller for the trained metrics. An
especially interesting comparison is between Prism
and Prism+FT, given that the two metrics differ
only in the training data. Prism+FT is consistently
more robust to machine-translated references than
Prism, indicating that the metric learns to cope
with such references during the fine-tuning stage.

With respect to system-level pairwise accu-
racy (Table 4), we observe a similar trend.
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EN–DE EN–RU ZH–EN Average
refstd refmt refstd refmt refstd refmt refstd refmt

BLEU 8.4 7.0 (-16.7%) 12.1 11.8 (-2.5%) 15.2 14.8 (-2.6%) 11.9 11.2 (-5.9%)
chrF 11.1 8.3 (-25.2%) 19.3 13.8 (-28.5%) 16.7 15.7 (-6.0%) 15.7 12.6 (-19.7%)
Prism 18.9 18.2 (-3.7%) 22.4 20.6 (-8.0%) 24.2 23.5 (-2.9%) 21.8 20.8 (-4.9%)

Prism+FT 24.9 24.4 (-2.0%) 23.7 22.3 (-5.9%) 26.6 26.8 (0.8%) 25.1 24.5 (-2.3%)
COMET 25.1 24.6 (-2.0%) 27.6 25.4 (-8.0%) 32.1 32.1 (0.0%) 28.3 27.4 (-3.2%)

Table 3: Segment-level correlation of MT metrics when provided with the standard references (refstd) of the WMT21
metrics news subtask (Freitag et al., 2021b), and with machine-translated references (refmt). The percentages
denote the relative change in correlation when falling back to machine-translated references. The trained metrics,
Prism+FT and COMET (wmt21-comet-mqm), have a more favorable relative change than the non-trained metrics,
which indicates higher robustness to machine-translated references.

EN–DE EN–RU ZH–EN Average
refstd refmt refstd refmt refstd refmt refstd refmt

BLEU 89.7 74.4 (-17.1%) 70.3 58.2 (-17.2%) 61.5 61.5 (0.0%) 73.8 64.7 (-12.4%)
chrF 87.2 71.8 (-17.7%) 74.7 56.0 (-25.0%) 60.3 56.4 (-6.5%) 74.1 61.4 (-17.1%)
Prism 85.9 73.1 (-14.9%) 83.5 62.6 (-25.0%) 61.5 56.4 (-8.3%) 77.0 64.0 (-16.8%)

Prism+FT 89.7 80.8 (-9.9%) 80.2 61.5 (-23.3%) 61.5 61.5 (0.0%) 77.1 67.9 (-11.9%)
COMET 79.5 84.6 (6.4%) 68.1 65.9 (-3.2%) 60.3 55.1 (-8.6%) 69.3 68.5 (-1.1%)

Table 4: System-level pairwise accuracy of MT metrics when provided with the standard references of the WMT21
metrics news subtask (Freitag et al., 2021b), and with machine-translated references. Again, the trained metrics,
Prism+FT and COMET (wmt21-comet-mqm), tend to be more robust to machine-translated references.

Prism+FT does not show significantly higher pair-
wise accuracy than Prism when using standard ref-
erences, which is explained by the high statisti-
cal variance of the pairwise accuracy metric. But
again, Prism+FT appears more robust to machine-
translated references than Prism. Finally, Ap-
pendix B reports results for the TED talks domain,
where the same patterns can be observed.

Ablation Study We perform an ablation study
to measure the influence to the three terms in the
Prism fine-tuning objective. Appendix A shows
that removing either of the three terms decreases
segment-level correlation. The ablation shows that
the cross-entropy objective has the additional effect
of stabilizing the model: Without cross-entropy,
the average probability scores output by Prism shift
from 0.47 to 0.35 after a single epoch of fine-tuning,
and the BLEU achieved by the Prism translation
model on an unseen test set clearly declines.

6 Related Work

Machine translations as references Popovic
et al. (2016) first investigated the potential of us-

ing post-edited machine translations as references,
finding that post-edited translations stemming from
high-quality systems are better references than
those from low-quality systems. Toral (2019) ar-
gued that post-edited machine translations can be
seen as an exacerbated form of translationese (post-
editese). Combined with the finding of Freitag et al.
(2020) that translationese references are less favor-
able than intentionally paraphrased references, this
suggests that machine translations, even if post-
edited, are a challenge for MT evaluation.

Albrecht and Hwa (2007) propose to train an
evaluation metric using non-annotated translations
of other systems as pseudo-references. They hy-
pothesize that a metric can learn to detect and to
constructively utilize any errors in these references.
Yoshimura et al. (2019) instead use a paraphrase
identifier to filter pseudo-references based on their
paraphrastic similarity to a human-created refer-
ence. Finally, minimum Bayes risk decoding (Ku-
mar and Byrne, 2004) employs pseudo-references
for generating translations, and has been shown to
depend on robust metrics as well (Freitag et al.,
2022a; Amrhein and Sennrich, 2022).
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Training a sequence-to-sequence model on pair-
wise ranking Pairwise ranking has commonly
been used to train SVM (Ye et al., 2007; Duh,
2008; Stanojević and Sima’an, 2014) and neural
network encoders (Guzmán et al., 2015; Dušek
et al., 2019). A more recent approach has been to
fine-tune pre-trained sentence encoders so that the
embedding similarities of two hypotheses and the
reference and/or source are optimized for pairwise
ranking (Rei et al., 2020; Zhang and van Genabith,
2020), in which case the max-margin loss reduces
to a triplet margin loss (Schroff et al., 2015). In this
paper, we do not rely on the similarity of sentence
embeddings but use the perplexity of a sequence-
to-sequence model as a metric.

Since we optimize perplexity given positive
and negative examples, our fine-tuning approach
becomes very similar to contrastive learning for
NMT. Typical applications of contrastive learning
try to eliminate specific translation error types by
creating perturbed versions of the training refer-
ences (Yang et al., 2019; Hwang et al., 2021). A
similar objective has been used for discriminative
re-ranking of translation candidates (Shen et al.,
2004; Yu et al., 2020). In this paper, however, the
goal is not to improve translation output but to train
an evaluation metric on human judgments.

7 Conclusion

We have shown that metrics without supervision by
human judgments, such as BLEU and chrF, tend to
be inaccurate under machine-translated references,
while trained metrics are more robust. In order to
methodically examine this phenomenon, we have
trained the Prism evaluation metric on a dataset
of human judgments. Our experiments show that
fine-tuning improves the segment-level accuracy
of Prism on an unseen test set across multiple lan-
guage pairs and domains, and clearly increases its
robustness to machine-translated references.

One conclusion to draw from our findings is that
post-edited references likely diminish the accuracy
of reference-based metrics and should be avoided.
A second conclusion is that if it cannot be ruled out
that references originate from MT, as is often the
case in practice, trained metrics are to be preferred.
Fine-tuning a metric such as Prism on reference-
based evaluation can thus be seen as a technique
to let the metric make the best out of reference
translations in the wild.

Limitations

Our study is mainly limited by the data we use for
fine-tuning and evaluating Prism. The experiments
are based on three language pairs only. Automatic
MT evaluation is relevant for many more language
pairs and language families, including and maybe
especially so for low-resource settings.

Secondly, it should be mentioned that the ma-
chine translations we use in our analysis have been
generated by systems based on a similar technol-
ogy. Almost all of the systems seem to use the
Transformer architecture, and they have all been
trained on similar data (Akhbardeh et al., 2021).
It is possible that our findings do not generalize
to the evaluation of other varieties of MT, such as
rule-based systems, or to reference-based evalua-
tion metrics that use large language models (Kocmi
and Federmann, 2023).
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dalena Biesialska, Ondřej Bojar, Rajen Chatter-
jee, Vishrav Chaudhary, Marta R. Costa-jussa,

989



Cristina España-Bonet, Angela Fan, Christian Fe-
dermann, Markus Freitag, Yvette Graham, Ro-
man Grundkiewicz, Barry Haddow, Leonie Harter,
Kenneth Heafield, Christopher Homan, Matthias
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp
Koehn, Nicholas Lourie, Christof Monz, Makoto
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-
cos Zampieri. 2021. Findings of the 2021 conference
on machine translation (WMT21). In Proceedings of
the Sixth Conference on Machine Translation, pages
1–88, Online. Association for Computational Linguis-
tics.

Joshua Albrecht and Rebecca Hwa. 2007. Regression
for sentence-level MT evaluation with pseudo refer-
ences. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
296–303, Prague, Czech Republic. Association for
Computational Linguistics.

Chantal Amrhein and Rico Sennrich. 2022. Identifying
weaknesses in machine translation metrics through
minimum Bayes risk decoding: A case study for
COMET. In Proceedings of the 2nd Conference
of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1125–1141, Online
only. Association for Computational Linguistics.

Loïc Barrault, Magdalena Biesialska, Ondřej Bo-
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A Ablation Study

Variant
Segment-level
Kendall’s tau

Pairwise
accuracy

Magnitude
of scores

BLEU (newstest21)

EN–DE ZH–EN

Prism (no fine-tuning) 23.5 78.7 0.47 25.6 18.7

Prism+FT 26.8 76.7 0.37 23.0 21.0
– without cross-entropy 26.6 74.6 0.35 10.2 9.6
– without forward ranking 26.0 79.2 0.40 21.9 20.1
– without backward ranking 25.6 77.7 0.39 21.1 20.3

Table A1: Ablation study for the proposed fine-tuning objective, based on the in-domain meta-evaluation set-
ting (WMT 2021 news translations). In every row we remove one aspect of the fine-tuning setup. Meta-metrics are
averaged across three language pairs. Magnitude of scores refers to the average segment-level scores predicted by
the Prism model, converted to probability space via 2x.

B Evaluation on TED Talks

EN–DE EN–RU ZH–EN Average
refstd refmt refstd refmt refstd refmt refstd refmt

BLEU 13.4 7.1 (-47.0%) 16.0 12.8 (-20.0%) 11.0 9.1 (-17.3%) 13.5 9.7 (-28.2%)
chrF 14.3 7.9 (-44.8%) 18.9 12.8 (-32.3%) 11.4 9.0 (-21.1%) 14.9 9.9 (-33.4%)
Prism 23.6 17.7 (-25.0%) 22.0 17.5 (-20.5%) 18.0 15.9 (-11.7%) 21.2 17.0 (-19.7%)

Prism+FT 26.4 24.2 (-8.3%) 22.2 21.6 (-2.7%) 20.2 19.4 (-4.0%) 22.9 21.7 (-5.2%)
COMET 27.3 24.6 (-9.9%) 25.8 23.2 (-10.1%) 20.8 20.7 (-0.5%) 24.6 22.8 (-7.3%)

Table A2: Segment-level correlation of MT metrics when provided with the standard references and with machine-
translated references. The percentages denote the relative change in correlation when falling back to machine-
translated references.

EN–DE EN–RU ZH–EN Average
refstd refmt refstd refmt refstd refmt refstd refmt

BLEU 66.7 35.9 (-46.2%) 83.5 58.2 (-30.3%) 64.1 65.4 (2.0%) 71.4 53.2 (-25.6%)
chrF 65.4 46.2 (-29.4%) 85.7 53.8 (-37.2%) 61.5 66.7 (8.5%) 70.9 55.6 (-21.6%)
Prism 69.2 44.9 (-35.1%) 82.4 48.4 (-41.3%) 67.9 66.7 (-1.8%) 73.2 53.3 (-27.1%)

Prism+FT 66.7 51.3 (-23.1%) 81.3 61.5 (-24.4%) 62.8 70.5 (12.3%) 70.3 61.1 (-13.0%)
COMET 84.6 53.8 (-36.4%) 78.0 74.7 (-4.2%) 67.9 75.6 (11.3%) 76.8 68.0 (-11.5%)

Table A3: System-level pairwise accuracy of MT metrics when provided with the standard references and with
machine-translated references.
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C Training Data Statistics

Language pair EN–DE ZH–EN

Number of systems (including sets of human translations) 10 10

Number of annotated segments 1 418 2 000
– used for relative rankings 1 411 1 985

Number of annotated system translations 14 110 19 994
– used for relative rankings 14 110 19 850

Number of relative rankings 126 217 164 137
– training split 121 217 159 137
– validation split 5 000 5 000

Table A4: Statistics for the WMT 2020 MQM ratings (Freitag et al., 2021a) and for the relative rankings that we
derive using an intra-annotator pairing approach.

D Meta-Evaluation Data Statistics

News TED Talks

EN–DE EN–RU ZH–EN EN–DE EN–RU ZH–EN

Number of systems (without human) 13 14 13 13 14 13

Number of MQM-annotated segments 527 527 650 529 512 529

Number of segments with machine-translated
reference (on average across system pairs) 518 527 461 517 511 505

Table A5: Statistics for the WMT 2021 MQM ratings (Freitag et al., 2021b) we use for evaluating the metrics.

E Model Hyperparameters

Model N dmodel dffn h Parameters Vocabulary size

Prism (Thompson and Post, 2020) 16 1280 12288 20 745M 64k
wmt21-comet-mqm (Rei et al., 2021) 24 1024 4096 16 581M 250k

Table A6: Hyperparameters of the Transformer-based metrics.

994



F Additional Examples of Human-created and Machine-translated References

English–German News Example
Source sequence:
Face masks are mandatory across the state of California, even in fresh air.

Standard reference:
Gesichtsmasken sind im ganzen Bundesstaat Kalifornien vorgeschrieben, auch im Freien.

Randomly sampled error-free system translation (Nemo):
Gesichtsmasken sind im gesamten Bundesstaat Kalifornien Pflicht, auch an der frischen Luft.

Chinese–English News Example
Source sequence:
他已承认，是自己在教堂里点火。

Standard reference:
The parish volunteer has admitted that he had started the fire in the church.

Randomly sampled error-free system translation (metricsystem5):
He has admitted that it was himself who set the fire in the church.

English–German TED Talks Example
Source sequence:
Today I’d like to show you the future of the way we make things.

Standard reference:
Ich möchte Ihnen heute zeigen, wie wir in Zukunft Dinge herstellen werden.

Randomly sampled error-free system translation (Online-W):
Heute möchte ich Ihnen die Zukunft der Art und Weise zeigen, wie wir Dinge herstellen.

Chinese–English TED Talks Example
Source sequence:
今天我想向各位展示未来我们制作东西的方式。

Standard reference:
Today I’d like to show you the ways we make things in the future.

Randomly sampled error-free system translation (metricsystem1):
Today I want to show you how we will make things in the future.
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Abstract

As research on machine translation moves to
translating text beyond the sentence level, it
remains unclear how effective automatic eval-
uation metrics are at scoring longer trans-
lations. In this work, we first propose a
method for creating paragraph-level data for
training and meta-evaluating metrics from ex-
isting sentence-level data. Then, we use these
new datasets to benchmark existing sentence-
level metrics as well as train learned metrics at
the paragraph level. Interestingly, our experi-
mental results demonstrate that using sentence-
level metrics to score entire paragraphs is
equally as effective as using a metric designed
to work at the paragraph level. We speculate
this result can be attributed to properties of
the task of reference-based evaluation as well
as limitations of our datasets with respect to
capturing all types of phenomena that occur in
paragraph-level translations.

1 Introduction

Automatic evaluation metrics have always been
a critical component to the progress of research
on machine translation (MT). As the field of MT
moves beyond translating individual sentences to
translating full paragraphs, book chapters, or doc-
uments (Tu et al., 2018; Sun et al., 2022; Thai
et al., 2022; Jiang et al., 2023; Post and Junczys-
Dowmunt, 2023), automatic metrics need to be
designed to work on these longer texts.

Currently, how well automatic metrics agree
with human judgments of paragraph translation
quality is an open question.1 Few studies have
meta-evaluated metrics on longer texts, and those
that have are focused on the literary domain and
are limited in the size of the evaluation dataset

1Translation beyond the sentence level is often referred to
as document-level MT. However, there is no clear definition
for the term “document.” We use “paragraph” in this work
because we feel it most accurately describes the length of text
in our datasets. See §2 for more details on this.

(Jiang et al., 2022; Thai et al., 2022; Karpinska and
Iyyer, 2023). In this work, we investigate training
and meta-evaluating metrics for scoring paragraph
translations using the benchmark Workshop on Ma-
chine Translation (WMT) datasets that are widely
used for metric development (Freitag et al., 2022).

Due to the scarcity of human ratings of para-
graph translations, we propose a method to cre-
ate paragraph-level training and meta-evaluation
datasets from the existing WMT sentence-level
datasets (§3). Although these ratings are typically
only used at the sentence level, they were collected
on contiguous paragraphs and performed with doc-
ument context, so they can be used as paragraph-
level datasets. We repurpose these datasets to
benchmark existing sentence-level metrics as well
as train new paragraph-level metrics for scoring
paragraph translations (§4).

Our experimental results are somewhat surpris-
ing. We find that there appears to be little evidence
that training on paragraph-level data is beneficial—
at least given the limitations of our experimental
setup. Using metrics trained on sentence-level
data only to directly score full paragraphs achieves
comparable agreement to human ratings as metrics
trained on paragraph-level data (§6.1). Sentence-
level metrics appear to generalize well to inputs
much longer than they were trained on (§6.2).

We hypothesize these observations can be ex-
plained by the nature of evaluating translations and
characteristics of our paragraph-level dataset (§7).
We speculate that long range dependencies—which
paragraph-level metrics can model but sentence-
level likely do not—may not be too important for
achieving high agreement with human ratings. Fur-
ther, due to the fact that our training and evaluation
datasets assume a sentence alignment between the
reference and hypothesis paragraphs, certain trans-
lation phenomena that sentence-level metrics may
struggle to handle, like sentence or information re-
ordering, are not well represented in the dataset,
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limiting our ability to show the benefits of training
on paragraph-level ratings.

The contributions of our work include (1) a
method for constructing paragraph-level training
and meta-evaluation datasets from sentence-level
ratings, (2) an experimental study that demon-
strates the comparable performance of sentence-
and paragraph-level metrics, and (3) an analysis
that aims to provide an explanation for our experi-
mental observations.

2 Terminology

Throughout this paper, we use terms like segment,
sentence, paragraph, and document to refer to dif-
ferent lengths of text. To the best of our knowledge,
there are no agreed upon definitions for these terms
in the MT literature, so here we define how they
are used for the rest of the paper.

We refer to the input text to an MT system or
evaluation metric as a segment, irrespective of its
length. Traditionally, segments in MT have been
roughly equivalent to one sentence, although some-
times they can be short phrases or even longer than
a single sentence. Regardless, we use sentence to
refer to this unit of text since it accurately describes
the most common text length that is widely used in
MT.

Our work investigates evaluating paragraphs of
text, which we define to be multi-sentence seg-
ments. We do not require that the paragraphs used
in this work obey the traditional definition of a para-
graph (i.e., a unit of text separated by a newline
character). We refrain from calling this unit of text
a document—which we consider to be all of the
possible input text—since each document can be
broken down into multiple paragraphs and the term
paragraph more accurately describes the length of
text we use.

3 Paragraph-Level Datasets

The two main sources for training and meta-
evaluating MT metrics are the direct assess-
ment (DA) and Multi-dimensional Quality Metrics
(MQM; Lommel et al., 2014; Freitag et al., 2021a)
datasets that the Workshop on Machine Translation
(WMT) has collected as part of the yearly metrics
shared task (Freitag et al., 2022). The DA ratings
were done by a mixture of expert and non-expert
raters (depending on whether the translation direc-
tion is into or out of English) who assigned a qual-
ity score in the range 0-100 to translated sentences.
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Figure 1: The number of contiguous paragraphs for the
given number of sentences per paragraph where each
sentence is rated by the same rater. Actual values are
included in Appendix A.

Because of differences in rater behavior, the DA
scores are z-normalized per rater.2 In MQM, expert
raters identify error spans in translated sentences
and assign each error a category and severity level,
which are used to calculate a score for that error. A
sentence’s MQM score is defined as the sum of the
errors’ scores.

Training and meta-evaluating metrics at the para-
graph level requires a collection of translated para-
graphs and paragraph-level quality scores. Luckily,
the DA data since 2019 and the MQM data can
be considered to be paragraph-level ratings. The
ratings were performed on contiguous blocks of
sentences that were translated by the same system
(e.g., the first k sentences per document are rated
for a system). Although the scores were collected
at the sentence level, the ratings were done in con-
text, meaning the raters had access to the document
context for a sentence, so the scores should reflect
paragraph- or document-level phenomena like dis-
course errors. Therefore, we use the sentence-level
DA and MQM data to construct paragraph-level
datasets as follows.

For each document translated by a system, we
run sliding window of size k sentences from the
start to the end. If all k sentences in the window
have been rated, those k sentences are concatenated
together to become a paragraph instance and the
window shifts by k. Otherwise, the sliding window
shifts by 1 and the process repeats. To maintain
consistency between the sentence scores within a
paragraph, we additionally require that every sen-

2The methodology for collecting DA ratings has changed
throughout the years. See Barrault et al. (2020) for the de-
scription in 2020, the most recent year used in this work.
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Figure 2: The distribution of paragraph lengths in SPM
tokens (i.e., sub-word tokens; Kudo and Richardson,
2018) on the WMT’22 MQM dataset for different num-
bers of sentences per paragraph. Additional datasets’
distributions are included in Appendix A.

tence is scored by the same rater. Then, we define
the paragraph-level scores to be the average DA
z-score or sum of MQM scores for each sentence
in the paragraph.3 The result is a dataset of rated
paragraph translations of k sentences each.

We apply this dataset construction approach to
the DA and MQM data for k = 1, 2, . . . , 10 sen-
tences per paragraph. The number of paragraphs
is shown in Figure 1 and the distribution of the
lengths of the new translated paragraphs is shown
in Figure 2. As k increases, the number of para-
graphs decreases because there are fewer candidate
paragraphs, while the length of the paragraphs in-
creases, roughly by an expected factor of k.

These paragraph-level DA and MQM datasets
are used to train and meta-evaluate paragraph-level
metrics for the rest of this paper.

4 Paragraph-Level Metrics

We explore two different methods for creating para-
graph metrics: directly applying sentence-level
metrics to paragraphs (§4.1) and training metrics
on paragraph-level data (§4.2).

4.1 Applying Sentence-Level Metrics on
Paragraphs

Although automatic metrics that have been used
to evaluate sentence-level MT were not explicitly
designed to evaluate paragraphs, they can be repur-
posed to score paragraphs in different ways.

First, the input paragraph can be treated as if it
were one long segment and passed to the metric

3Summing MQM scores was done to generalize an MQM
rating for paragraphs since a sentence’s MQM score is the
total error weight for that sentence. The choice of summing or
averaging does not matter for metric meta-evaluation because
the correlations are scale invariant.

to calculate a score. For metrics that use bag-of-n-
grams representations, like BLEU (Papineni et al.,
2002), there is no input length limitation. How-
ever, some learned metrics, like BLEURT (Sellam
et al., 2020), have a maximum possible sequence
length due to restrictions related to neural network
architectures. Therefore, the length of the input
paragraph is restricted in some cases.

Then, if there is assumed to be an alignment
between the source, reference, and hypothesis sen-
tences within a paragraph (as is in the case with
our datasets), a paragraph score can be calculated
by averaging the sentence-level metric’s score for
each of the k individual sentences. While this slid-
ing window approach more closely aligns how the
metrics are being used to how they were designed,
we argue this approach is less than ideal because
the 1:1 sentence alignment between the source and
hypothesis translations will not always exist. How-
ever, this approach is useful for understanding and
analyzing the behavior of metrics when they are
used to score full paragraphs directly.

4.2 Learning Paragraph-Level Metrics

While sentence-level metrics can be repurposed
to score paragraphs, the lengths of the input para-
graphs are significantly longer than the lengths of
individual sentences (compare k = 1 to k > 1
in Figure 2) and there may be cross-sentence de-
pendencies that are not learned by sentence-level
metrics. Therefore, we explore creating a metric
specifically for paragraph-level data.

To do so, we train a BLEURT-style regression
model on the paragraph-level datasets: The ref-
erence and hypothesis paragraphs are tokenized
and concatenated together (separated by a special
token), then passed as input to a neural network.
The network is then trained to predict the hypoth-
esis paragraph’s ground-truth quality score. Sec-
tions 5.2 and 5.4 contain more information about
the model’s architecture and implementation de-
tails.

It is desirable for the paragraph-level metric
to be able to score paragraphs of any length, so
we train the metric on paragraphs composed of
k = 1, 2, . . . , 10 sentences. Because the number of
paragraph instances decreases significantly as k in-
creases (see Figure 1), longer paragraphs will rarely
be seen during training. Therefore, we explore two
different techniques for weighting training data:
one that selects paragraphs uniformly at random
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and one that performs a stratified sample so the
training data is composed of an equal number of
paragraphs for each value of k.

Next, we describe the experimental setup to eval-
uate the paragraph-level metrics.

5 Experimental Setup

5.1 Datasets

The paragraph-level datasets used in our experi-
ments are described in Section 3. The WMT’19
(Ma et al., 2019) and ’20 (Mathur et al., 2020)
paragraph-level DA data is used for training the
metrics described in this work, and all metrics are
evaluated on the WMT’21 (Freitag et al., 2021b)
and WMT’22 (Freitag et al., 2022) paragraph-level
MQM data. For both DA and MQM, we use
k = 1, 2, . . . , 10 sentences per paragraph. The
different paragraph lengths are combined during
training but separated for evaluation.

We additionally analyze the behavior of the met-
rics that we train on judgments collected by Karpin-
ska and Iyyer (2023) on literary translations. Their
dataset contains human preference judgments be-
tween paragraph translations. The translations
come from translation models that translated the
input one sentence a time in isolation, one sentence
at a time in context, the full paragraph directly,
and Google Translate. We evaluate how frequently
the metrics agree with the human preference judg-
ments.

5.2 Metrics

Paragraph-Level Metrics. We train two differ-
ent paragraph-level metrics, one for each of the
different weighting techniques, uniform and strati-
fied sampling (see §4.2). We refer to these metrics
as PARA-UNIF and PARA-STRAT.

Our metric uses the same architecture as the
Metric-X WMT’22 metrics shared task submis-
sion (Freitag et al., 2022). The metric builds on
the mT5 encoder-decoder language model (Xue
et al., 2021), which was originally designed to be a
sequence-to-sequence language model. We repur-
pose the model for our regression task as follows.
The inputs to the encoder are the hypothesis and
reference translations separated by a special token,
and a single dummy token is passed as the first
input to the decoder. We arbitrarily selected a re-
served vocabulary token, then trained the model
so that token’s output logit in the first decoding
step becomes the score for the input hypothesis

translation. This modification of the sequence-to-
sequence architecture for regression allows us to
utilize all of the pre-trained weights from mT5.

The maximum input sequence length to our met-
ric is 1024 SPM tokens (Kudo and Richardson,
2018). The inputs are truncated during training or
inference if the input is larger than 1024.4 In the
worst case, this happens up to 27% of the time on
the MQM data for 10 sentences per paragraph (see
Appendix A for specific statistics.)

Sentence-Level Baseline. In addition to the
paragraph-level metrics, we train a sentence-level
version that is trained on the same DA data but
only k = 1 sentences per paragraph. This base-
line metric can be used to directly compare to the
paragraph-level metrics that we train because the
model architecture, training procedure, etc., are
identical. The only difference is the training data.
This metric is referred to as SENT-BASE.

Other Metrics. In addition to the metrics de-
scribed in this paper, we evaluate BLEU (Pap-
ineni et al., 2002), COMET-22 (Rei et al., 2020,
2022), and PaLM-2 from Fernandes et al. (2023) as
sentence-level metrics applied to paragraphs (i.e.,
§4.1) and document-level metric BlonDE (Jiang
et al., 2022). BLEU scores translations using lex-
ical n-gram overlap, and COMET-22 is a learned
regression metric that first embeds the input hy-
pothesis, reference, and source, combines them to
a joint representation, then finally predicts a score.

The metric from Fernandes et al. (2023) is based
on the PaLM-2 large language model (Anil et al.,
2023). We evaluate both the zero shot version, in
which PaLM-2 is prompted to score a translation
on a scale from 0 to 100, and the regression version
that finetunes PaLM-2 on MQM ratings to predict
a floating point quality score, similar to COMET.
Our analysis includes the Bison variant of PaLM-2.

BlonDE evaluates discourse phenomena in doc-
ument translations via a set of automatically ex-
tracted features. It was designed to evaluate texts
longer than paragraphs, like book chapters, but we
compare against it in this work. BlonDE is avail-
able in English only.

We use the SacreBLEU (Post, 2018) implementa-
tion of BLEU and the Unbabel/wmt22-comet-da
COMET-22 model that was trained on sentence-
level WMT DA data from 2017-2020.5

4We experimentally saw no benefit from removing se-
quences longer than 1024 tokens during training.

5Note that the COMET-22 scores we report come from
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Figure 3: As the number of sentences per paragraph increases, the pairwise accuracy scores (y-axis) of the metrics
appears to either not decrease (system-level, left) or increase (segment-level, right). This suggests that accurately
scoring a paragraph is an easier task than an individual sentence, even for metrics that are not trained on paragraph-
level examples. The results of metrics trained in this work presented here are an average of 5 different runs. Results
for other language pairs follow the same trend and are included in Appendix B.

5.3 Meta-Evaluation Metrics

The quality of an evaluation metric is quantified by
measuring the correlation of its scores to human
ratings of translation quality, a process known as
meta-evaluation. In this work, we meta-evaluate
metrics using pairwise accuracy at both the system
and segment levels.6 A brief overview of how these
accuracy statistics are calculated follows.

At the system-level, an automatic metric and
human score is calculated per system by averag-
ing scores over paragraphs. The system-level pair-
wise accuracy is then computed by enumerating all
possible pairs of systems and then calculating the
proportion of those pairs for which the automatic
metric and human ground-truth ratings agree on
their ranking (Kocmi et al., 2021). Thus, the accu-
racy score can be interpreted as the proportion of
pairs of systems that the metric ranked correctly.

At the segment-level, we report segment-level
pairwise accuracy using the group-by-item vari-
ant of the segment-level correlation in combination
with tie calibration (Deutsch et al., 2023). In con-
trast to system-level accuracy, the group-by-item
segment-level correlation calculates the proportion
of pairs of translations of the same source segment
that the metric ranks correctly, then averages that
accuracy score over all source segments. The seg-
ments used in this evaluation are paragraphs, thus

only the reference-based regression model, not the ensemble
that was submitted to the WMT’22 metrics shared task.

6The segment-level correlation could be referred to as a
paragraph-level correlation in this work because the segments
we evaluate on are paragraphs. However, to be consistent with
the evaluation literature, we still use the term segment-level
correlation.

the interpretation of this accuracy score is the pro-
portion of pairs of translations of the same source
paragraph that are ranked correctly by the metric.

Because humans frequently assign the same
score to translations and regression-based evalu-
ation metrics almost never predict two translations
are tied, we follow Deutsch et al. (2023) and run
tie calibration before calculating the segment-level
accuracy. This procedure automatically introduces
ties in the metrics’ scores by searching for an ε dif-
ference in metric score that, when two translations
are considered to be a tie if they differ by less than
ε, achieves the highest accuracy score. We report
the accuracy score that corresponds to the best ε.

Results using Pearson’s correlation follow simi-
lar trends to the accuracy results and are available
in Appendix B.

5.4 Implementation Details

Our learned metrics are implemented with Ten-
sorFlow (Abadi et al., 2015) in the T5X library
(Roberts et al., 2022). They are initialized with
the XXL version of mT5, which contains 13B pa-
rameters. It is trained for a maximum of 20k steps
and a batch size of 128 using Adafactor (Shazeer
and Stern, 2018) on 64 v3 TPUs. Checkpoint se-
lection was done by selecting the step that has the
highest average segment-level pairwise accuracy
across language pairs and all values of k sentences
per paragraph after applying tie calibration. In gen-
eral, we observed the specific checkpoint selection
strategy was not too important.
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6 Results

First, we directly evaluate how well metrics per-
form when used to directly score paragraphs (§6.1),
then we further examine the behavior of different
paragraph-level metrics by analyzing their perfor-
mances with the context of their sentence-level
counterparts (§6.2).

6.1 Paragraph-Level Evaluation

Figure 3 plots the system- and segment-level corre-
lation results for different numbers of k sentences
per paragraph. Each metric is used to directly score
a full paragraph even if the metric was not designed
to do so (e.g., SENT-BASE or COMET-22). There
are several interesting observations.

Paragraph-Level Performance. First, as the
length of the paragraphs increases, the system-level
correlations remain relatively steady or increase
and the segment-level correlations clearly improve
for all metrics, except for PaLM-2 zero-shot. This
is evidence that scoring paragraphs is an easier task
than scoring individual sentences, a result that is
counterintuitive; scoring more text should seem-
ingly be a harder task. We hypothesize this result
is explained by the fact that some noise in the hu-
man and metric scores is averaged away, leaving
more reliable signals as the paragraphs get longer.
If the metric scores are unbiased estimators, their
agreement with human rating should then increase.

PaLM-2 zero-shot is an outlier in this case be-
cause it predicts a large number of ties between
translations. Prompting large language models for
MT evaluation is known to result in the model pre-
dicting a small number of unique scores, resulting
in many ties (Kocmi and Federmann, 2023; Fernan-
des et al., 2023). As the length of the paragraph in-
creases, the number of MQM ties decreases. Since
pairwise accuracy penalizes incorrect tie predic-
tions, the zero shot model has worse performance
on longer texts. See Figure 4 for a visualization of
the number of ties in the PaLM-2 output and MQM
scores.

Sentence vs. Paragraph Level. Then, there
appears to be little evidence that training on
paragraph-level examples results in better corre-
lations to human ratings on paragraph-level test
data. For instance, increasing the weight of the
paragraph-level data during training does not help
compared to uniformly sampling data (compare
PARA-STRAT to PARA-UNIF). Further, the base-
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Figure 4: There are fewer MQM ties as the number
of sentences per paragraph increases. The finetuned
PaLM-2 model outputs a very small number of ties,
whereas the zero-shot model consistently predicts a
large number of ties. Since the pairwise accuracy meta-
evaluation metric penalizes metrics for incorrect tie pre-
dictions, the zero-shot model will have worse perfor-
mance as the inputs get longer.

Dataset 1 Sent. per Para. 10 Sent. per Para.

25th 50th 75th 25th 50th 75th

WMT’19 DA 20 31 47 300 362 431
WMT’20 DA 24 38 58 318 410 524
WMT’21 MQM 28 41 57 370 433 516
WMT’22 MQM 15 27 43 265 333 426

Table 1: The SPM token lengths for the given per-
centiles are in general around 10 times larger with 10
sentences per paragraph compared to a single sentence.
Visualizations of the distributions for every paragraph
length can be found in Appendix A.

line metric SENT-BASE that shares the same archi-
tecture as our paragraph-level metrics but is only
trained on sentence-level data (k = 1) performs
just as well as the paragraph-level metrics. This
observation is additionally supported by COMET-
22’s results. The difference between the metrics
we train versus COMET is relatively constant for
all values of k, demonstrating that COMET is not
systematically worse on longer inputs.

The generalization of sentence-level metrics on
paragraph-level data is rather surprising. The
length of the inputs for scoring paragraphs is up
to 10x longer than those for scoring sentences (see
Table 1). Even though the length of the test data is
out-of-distribution with respect to the training data,
the sentence-level metrics predict reliable scores on
the paragraph-level data. Next, we further analyze
the sentence-level metrics to better understand their
scores.
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Figure 5: Metrics that score a paragraph directly (solid
line) versus those that assume an alignment between
the reference and hypothesis and calculate a score by
averaging across the k sentence-level values (dashed
line) perform very similarly. The drop from 1 sentence
to 2 sentences per paragraph is likely due to the fact
that a large number of ties in the ground-truth get bro-
ken, so introducing more ties via tie calibration is less
helpful since doing so is right less often. This phe-
nomenon does not happen with Pearson correlations
(see Appendix B).

6.2 Understanding Sentence-Level Metrics

To further analyze the performance of the sentence-
level metrics on paragraph-level data, we compare
the two versions of applying a sentence-level met-
ric to paragraphs discussed in §4.1. One version
directly scores a full paragraph (thus, making no
assumption about an alignment between the hy-
pothesis and reference), whereas the other averages
the scores of evaluating the individual k hypothesis
sentences against the corresponding reference sen-
tence (thus, assuming a sentence-level alignment
exists).

Figure 5 shows that for two sentence-level met-
rics, the baseline trained in this work and BLEU,
the performance of the two paragraph scoring vari-
ants is very similar. Then, Figure 6 shows that the
Pearson correlation between the scores for those
two variants is very high (≥ 0.85).

Together, these results point to the fact that there
is little difference between these two methods. Di-
rectly scoring a paragraph or scoring individual sen-
tences yield both similar scores and similar agree-
ment to human ratings. The sentence-level metrics
appear to be scoring full paragraphs in a desirable
way—by calculating some average score across
sentences.

This result is not obvious. As the length of
the input increases, the bag-of-n-grams representa-
tion used by lexical matching metrics like BLEU
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Figure 6: The plot shows the Pearson correlation on en-
de between directly predicting a score for a paragraph
of k sentences and calculating a paragraph score by av-
eraging over k sentence-level scores. The correlations
are quite high, demonstrating that the both methods re-
sult in very similar scores.

have an increased potential for erroneous matches
between the hypothesis and reference sentences,
which could result in misleading scores. Learned
metrics, like the ones trained in this work, have not
been trained on a significant amount of very long
data, so it is not clear that the scoring functions
they learn would generalize well to longer inputs.
Despite this, the sentence-level metrics appear to
predict high-quality scores for paragraphs.

In Section 7, we propose a hypothesis for why
this is the case and why training on paragraph-level
data does not appear to result in a better metric.

6.3 Literary Translation Evaluation

We compared how frequently SENT-BASE and
PARA-STRAT agree with the 540 pairwise human
preference judgments between paragraph literary
translations from Karpinska and Iyyer (2023). We
found that the two models agreed 285 and 305
times, respectively. While it is a positive signal
that the paragraph-level model appears to be bet-
ter aligned with human preferences of longer texts,
the difference was not quite statistically significant
under a pairwise permutation test with α = 0.05
(p = 0.09). Future work should perform a more
in-depth analysis of this data and collect a larger
number of paragraph translations and judgments.

7 Discussion

In theory, training on paragraph-level data should
have advantages compared to training on sentence-
level data. The metric (1) should be able to handle
longer input sequences, (2) it should be able to cap-
ture long range dependencies, and (3) it should be
able to model different paragraph-level phenomena
like information or sentence reordering. However,
we were not able to demonstrate these advantages
in practice, and we theorize why as follows.
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Source Context: Maria said no.
Source: She did not slap the green witch.

Reference Context: Maria dijo no.
Reference: No le dió una bofetada a la bruja verde.

Hypothesis: Ella(3)/Él(7) no le dió una bofe-
tada a la bruja verde.

Figure 7: An English-to-Spanish translation example
where the reference translation does not have enough
information to correctly evaluate the hypothesis. Gen-
der in Spanish is marked on pronouns, and Spanish
is a pro-drop language, which means the pronoun can
be omitted if the context is clear. In this example,
the pronoun is dropped from the reference, so deter-
mining whether the pronoun used in the hypothesis re-
quires taking into account the previous reference sen-
tence. We suspect such examples are not frequent, and
if they do exist, the information required to resolve the
ambiguity is relatively local to the reference sentence.

First, the analysis in §6.2 shows that sentence-
level metrics generalize well to significantly longer
input, so advantage (1) may not be so relevant. We
hypothesize that the scoring function learned by
sentence-level metrics like SENT-BASE or COMET
could score a token in the hypothesis based on some
alignment to the reference using its relative position
in the translation. This function would be agnostic
with respect to the global positioning, and thus the
scoring function would generalize well to longer
inputs. If this were true, training on paragraph-
level data would not be necessary to obtain good
performance on long sequences.

Second, evaluating translation quality seems to
be a very “local” problem in the sense that model-
ing long range dependencies is not frequently nec-
essary for evaluation. Often, the reference phrase
that aligns to a hypothesis phrase has enough in-
formation to accurately evaluate the hypothesis. If
it does not, the information is likely nearby, not
several sentences away (see Figure 7). Although
the sentence-level metrics were not trained on mul-
tiple sentences, we suspect they are able to capture
nearby dependencies across sentences when eval-
uating paragraphs. In theory, a paragraph-level
metric would have the ability to model long range
dependencies since it could observe them during
training. However, if they are infrequent, advantage
(2) over sentence-level metrics may be small.

Finally, the ability for our learned paragraph met-
rics to capture phenomena like sentence reorder-
ing is limited by our dataset construction method.

Since the paragraphs in our training and test sets
come from MT systems that translated one sentence
at a time, there are no phenomena like sentence re-
ordering present in the datasets. Therefore, the
paragraph-level metric cannot learn to model such
cases, and the metrics are never evaluated on them
either. Thus, the limitations of the dataset mean
that we cannot demonstrate advantage (3).

We believe that paragraph-level metrics are nec-
essary for evaluating true paragraph translations,
where MT systems can be more creative with how
a full paragraph is translated, rather than paragraph
translations that are created by translating individ-
ual sentences. We hypothesize that sentence-level
metrics will not generalize well when there is no
sentence alignment or there is significant informa-
tion reordering. To accurately evaluate actual para-
graph translations, metrics need to be trained on
similar data. Future work should invest in collect-
ing human ratings for paragraph-level translations
so that new metrics can be trained and evaluated.

8 Related Work

The vast majority of research on MT evaluation has
worked at the sentence level (Papineni et al., 2002;
Banerjee and Lavie, 2005; Snover et al., 2006;
Popović, 2015, 2017; Lo, 2019; Sellam et al., 2020;
Rei et al., 2020, 2022; Thompson and Post, 2020;
Wan et al., 2022), although there has been recent
interest in moving beyond sentence-level evalua-
tion. Vernikos et al. (2022) propose a method to
incorporate document-level context into a sentence-
level metric by using the additional context when
computing the representations for the hypothesis
and reference sentences. Although they use docu-
ment context in their metric, it is still scores single
sentences at a time, in contrast to the paragraph-
level metrics in our work that predict a score for
entire paragraphs at once. Then Jiang et al. (2022)
propose a document-level metric called BlonDE
that targets evaluating discourse phenomena as op-
posed to overall translation quality (i.e., they do
not model translation accuracy errors). To the best
of our knowledge, ours is the first study aimed at
training a learned metric that directly scores entire
paragraphs.

Other studies that have evaluated sentence-level
metrics beyond the sentence-level have done so in
the literary domain. Thai et al. (2022) show that
automatic metrics prefer MT output over human
translations, and Karpinska and Iyyer (2023) show
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that metrics prefer actual translations of paragraphs
over sentence-by-sentence translations. Our work
is complementary to theirs as we focus on the news
domain, train metrics on paragraph-level data, and
evaluate on a much larger set of human ratings.
It is not clear whether conclusions reached about
metrics in the news domain will apply to the literary
domain or vice versa.

Some researchers have developed challenge sets
that can be used to probe how well metrics cap-
ture discourse phenomena that appear when trans-
lating more than one sentence at a time (Bawden
et al., 2018; Müller et al., 2018; Lopes et al., 2020).
However, these challenge sets can be trivial for
reference-based metrics because the reference of-
ten resolves the ambiguity in the translation. To the
best of our knowledge, a challenge set that forces
reference-based metrics to use context outside of
a single reference sentence during evaluation (see
Figure 7) does not exist.

Research on generating translations of text
longer than single sentences directly use sentence-
level metrics to score translations (Tiedemann and
Scherrer, 2017; Miculicich et al., 2018; Ma et al.,
2020; Wu et al., 2023; Post and Junczys-Dowmunt,
2023). Our work can be viewed as a justification
for doing so.

9 Conclusion

In this work, we proposed a method for construct-
ing paragraph-level datasets for training and meta-
evaluating MT evaluation metrics from sentence-
level data. Our experimental results showed that
metrics trained on paragraph-level data do not nec-
essarily out-perform those trained on sentence-
level data, potentially due to the fact that sentence-
level metrics seem to generalize well to longer in-
puts and limitations of our paragraph-level datasets.
Future work should invest in collecting human judg-
ments for paragraph translations generated by MT
systems that directly translate full paragraphs in-
stead of translating one sentence at a time. Such a
dataset would be more likely to contain phenomena
that do not exist at the sentence level, which we hy-
pothesize would be more likely to require metrics
designed to work at the paragraph level.

Limitations

There are a couple of limitations related to our
dataset construction approach that are worth enu-
merating.

As discussed in Section 7, our ability to evaluate
metrics’ performances on all types of paragraph-
level translations is limited by our dataset construc-
tion method. Our translated paragraphs are gener-
ated by MT systems that translate one sentence at
time, which results in sentence aligned data. There-
fore, we are unable to evaluate metrics on true
paragraph-level translations that might have sen-
tence or information reordering.

Then, the WMT data no longer contains infor-
mation about the white space between the original
source sentences. Therefore, the DA and MQM
paragraph-level datasets do not contain the para-
graph breaks that were in the original document.
Each of the k sentences is concatenated together
and separated by a space in our work, so it is very
likely that the artificially constructed paragraphs
do not perfectly resemble real paragraphs.
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A Dataset Statistics

The exact number of paragraph-level instances by
WMT year and language pair that we generaetd
from our dataset construction procedure (see §3)
can be found in Table 2 for DA and Table 3 for
MQM. Figure 8 visualizes the distribution of the
lengths of the hypotheses in the paragraph-level
datasets based on mT5 SPM tokens. Then, Table 4
contains the number of paragraph examples that
are too long to fit into the 1024 SPM maximum
context length that is used by the metrics trained in
this work.

B Additional Results

Figure 9 contains the system- and segment-level
accuracy correlations on the en-de and en-ru lan-
guage pairs from WMT’22 MQM that were not
presented in the main body of the paper. Figure 10
contains the correlations for all 3 language pairs
but uses Pearson correlation instead of pairwise
accuracy.

Figure 11 shows the correlation between the two
ways to apply a segment-level metric to paragraph-
level data, directly scoring the paragraph or averag-
ing the k segment scores, on the en-ru and zh-en
WMT’22 MQM dataset.
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Figure 8: The distribution of the length of the hypoth-
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MQM datasets for a given number of sentences per
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Figure 9: System- and segment-level accuracy results for the en-de and en-ru language pairs on the paragraph-level
WMT’22 MQM data for different numbers of k sentences per paragraph. In general, the system-level correlations
are relatively flat and the segment-level correlations increase as the number of sentences per paragraph increases.
BlonDE is not included because it only supports English.
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Year LP Sentences per Paragraph

1 2 3 4 5 6 7 8 9 10

2019 de-cs 16900 1032 95 12 1 0 0 0 0 0
2019 de-en 34756 16754 10896 7735 5976 4660 3947 3147 2730 2345
2019 de-fr 6700 173 5 0 0 0 0 0 0 0
2019 en-cs 27445 13241 8710 6152 4834 3865 3215 2607 2371 1967
2019 en-de 45131 21777 14311 10124 7932 6363 5274 4285 3906 3232
2019 en-fi 20618 9937 6557 4611 3628 2910 2419 1945 1799 1482
2019 en-gu 10151 4890 3229 2267 1774 1423 1221 964 884 722
2019 en-kk 12922 6221 4115 2888 2253 1813 1562 1223 1112 910
2019 en-lt 13217 6363 4219 2963 2319 1863 1603 1257 1137 944
2019 en-ru 22600 10902 7180 5069 3974 3185 2650 2137 1966 1633
2019 en-zh 26530 12810 8434 5944 4673 3758 3102 2520 2308 1904
2019 fi-en 20286 362 21 2 0 0 0 0 0 0
2019 fr-de 4000 87 3 0 0 0 0 0 0 0
2019 gu-en 14860 550 40 2 0 0 0 0 0 0
2019 kk-en 15763 705 77 10 0 0 0 0 0 0
2019 lt-en 16046 489 32 2 0 0 0 0 0 0
2019 ru-en 24247 785 83 10 1 0 0 0 0 0
2019 zh-en 50722 15164 9347 6774 5030 4087 3312 2714 2226 1797

2020 cs-en 9381 4322 2628 1797 1323 940 685 404 241 138
2020 de-en 12541 5825 3451 2422 1808 1220 927 652 507 378
2020 en-cs 34180 16371 10324 7358 5591 4501 3474 2749 2270 2035
2020 en-de 17393 8337 5253 3723 2859 2283 1729 1362 1138 1033
2020 en-iu 6145 3028 1990 1479 1152 937 801 693 600 538
2020 en-ja 21999 10672 6769 5036 3907 3093 2513 2109 1812 1635
2020 en-pl 18342 8891 5636 4192 3266 2569 2089 1756 1514 1377
2020 en-ru 19543 9494 6058 4433 3477 2750 2279 1847 1602 1468
2020 en-ta 9175 4439 2825 2100 1634 1301 1035 875 746 680
2020 en-zh 41965 20069 12656 9034 6843 5510 4260 3371 2782 2483
2020 iu-en 12172 75 0 0 0 0 0 0 0 0
2020 ja-en 9879 4710 3047 2103 1715 1321 1053 845 759 639
2020 km-en 6951 72 0 0 0 0 0 0 0 0
2020 pl-en 12435 6048 3871 2857 2184 1708 1445 1265 1030 844
2020 ps-en 7138 110 2 0 0 0 0 0 0 0
2020 ru-en 11244 5369 3408 2405 1832 1488 1179 952 785 604
2020 ta-en 7842 3762 2406 1723 1322 1065 847 694 572 473
2020 zh-en 30325 14567 9253 6674 5106 4078 3374 2811 2223 1824

Table 2: The number of paragraphs with the given number of sentences per paragraph from the direct assessment
data from WMT’19 and WMT’20. Each paragraph is required to a contiguous block of sentences that are rated by
the same rater.
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Dataset LP Sentences per Paragraph

1 2 3 4 5 6 7 8 9 10

WMT’21 en-de 7905 3825 2460 1800 1395 1140 870 765 660 585
WMT’21 en-ru 7905 3825 2460 1800 1395 1140 870 765 660 585
WMT’21 zh-en 9058 4340 2814 1974 1596 1190 994 770 658 644

WMT’22 en-de 18410 8932 5236 3486 3080 1610 1568 1470 1372 1330
WMT’22 en-ru 19725 9570 5610 3735 3300 1725 1680 1575 1470 1425
WMT’22 zh-en 28110 13005 7935 5655 4245 3285 2670 2160 1935 1710

Table 3: The number of paragraphs with the given number of sentences per paragraph from the MQM data from
WMT’21 and WMT’22. Each paragraph is required to a contiguous block of sentences that are rated by the same
rater.

Dataset Sentences per Paragraph

1 2 3 4 5 6 7 8 9 10

WMT’19 DA 2 (0%) 3 (0%) 4 (0%) 15 (0%) 48 (0%) 196 (1%) 440 (2%) 702 (3%) 1349 (7%) 1944 (11%)
WMT’20 DA 4 (0%) 179 (0%) 667 (1%) 1148 (2%) 1598 (4%) 2222 (6%) 2879 (10%) 3389 (15%) 4041 (22%) 4688 (29%)
WMT’21 MQM 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (0%) 23 (1%) 103 (4%) 245 (11%) 295 (15%) 488 (27%)
WMT’22 MQM 0 (0%) 0 (0%) 6 (0%) 11 (0%) 56 (1%) 74 (1%) 110 (2%) 202 (4%) 266 (6%) 450 (10%)

Table 4: The number (and percent) of paragraphs for which the number of SPM tokens in the reference and
hypothesis combined is larger than the maximum allowable input length by our metric, 1024. If the input is too
long, it is truncated.
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Figure 10: The system- and segment-level correlation results when using Pearson correlation follow very simi-
lar trends to those that use pairwise accuracy. The segment-level Pearson uses the “no grouping” variant from
Deutsch et al. (2023) to avoid the NaN problem that happens with the “group-by-item” variant, which was used in
combination with pairwise accuracy in the main body of the paper.
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Figure 11: The correlation between metric scores for
directly scoring paragraphs and averaging the score of
evaluating the k sentences per paragraph independently
on the WMT’22 MQM data.
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Abstract

Behavioral testing in NLP allows fine-grained
evaluation of systems by examining their lin-
guistic capabilities through the analysis of
input-output behavior. Unfortunately, existing
work on behavioral testing in Machine Transla-
tion (MT) is currently restricted to largely hand-
crafted tests covering a limited range of capabil-
ities and languages. To address this limitation,
we propose to use Large Language Models
(LLMs) to generate a diverse set of source sen-
tences tailored to test the behavior of MT mod-
els in a range of situations. We can then verify
whether the MT model exhibits the expected
behavior through matching candidate sets that
are also generated using LLMs. Our approach
aims to make behavioral testing of MT systems
practical while requiring only minimal human
effort. In our experiments, we apply our pro-
posed evaluation framework to assess multiple
available MT systems, revealing that while in
general pass-rates follow the trends observable
from traditional accuracy-based metrics, our
method was able to uncover several important
differences and potential bugs that go unnoticed
when relying only on accuracy.1

1 Introduction

Automatic evaluation metrics such as BLEU (Pa-
pineni et al., 2002) and COMET (Rei et al., 2020)
are the primary means of measuring the translation
quality of MT systems. Researchers and practi-
tioners rely on them for comparing systems, detect-
ing regressions, and making deployment decisions.
This poses an important concern: such metrics typ-
ically aggregate the performance of systems across
a set of sentences into single scores. Unfortunately,
these metrics by design tend to overlook specific
infrequent but important error cases, making it dif-
ficult to reliably detect such issues in practice.

∗ Work done during an internship at Apple.
1Prompts and generated data are available at https://gi

thub.com/apple/ml-behavioral-testing-for-mt.

Property Translation Errors

Integers 7000000→ 70.000.000
Decimals 500.75→ 500.75
Large Numbers 1.366 billion→ 1.366 Milliarden
Idioms ins and outs→ Ins und Outs
Currencies BRL→ RL
Physical Units miles→ km

Web Terms
www.onlinegrocery.com→
www.onlineegrocery.com

... ...

Table 1: Subset of linguistic properties tested with our
proposed method, and examples (source→ translation)
of translation errors found in En→De MT models.

Behavioral testing, originally developed as a
type of software testing (Beizer and Wiley, 1996),
has been proposed as an approach that can alleviate
such kinds of problems in natural language process-
ing (Ribeiro et al., 2020). Behavioral tests focus
on assessing a system’s fine-grained linguistic ca-
pabilities by validating input-output behavior in a
controlled fashion.

Table 1 shows examples of typical issues of MT
systems that could be covered by behavioral tests.
We argue that the availability of a comprehensive
behavioral test suite for MT would be of high prac-
tical value: It would allow understanding how ex-
actly two MT models differ, or to block an MT
system from being deployed if a passing threshold
for a certain linguistic capability is not met.

However, there are currently two major limita-
tions that arise when attempting to apply behavioral
testing to MT. First of all, behavioral testing was
originally designed for evaluating systems char-
acterized by a relatively small output space. For
instance, Ribeiro et al. (2020) investigate sentiment
classification, duplicate question detection, and ma-
chine comprehension. In contrast, the output space
of MT systems grows exponentially as tokens are
generated. Secondly, behavioral testing often re-
quires rigid templates to create examples and their
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Figure 1: Pipeline of the proposed approach. Left: For each property type, a test set is created via a LLM, composed
of source sentences x with property values xv (§3). Subsequently, a candidate set of valid translations of each
property value Cxv is generated (§4). Right: During evaluation, the translation ŷ generated by an MT model is
compared against the candidate sets, and a pass-fail decision is made (§5).

corresponding labels, which involves a costly hu-
man effort to develop and expand to additional use
cases. Otherwise, the diversity of sentences in the
resulting test suite is too limited.

Several recent works have partially addressed
these limitations. For example, Wang et al. (2021);
Raunak et al. (2022) propose MT-specific test sets
which include the ability to handle large output
space. Yang et al. (2022) address the limitation of
rigid templates. To the best of our knowledge, no
prior work has addressed both limitations for MT.

In this study, we aim to bridge this gap by lever-
aging LLMs with in-context learning to automate
the creation of behavioral tests in MT for the first
time. Our main contributions are as follows:

• We use LLMs to automate the generation of a
diverse set of source sentences for behavioral
testing. Sentences are generated to exhibit the
specific language property that is being tested.

• We verify whether an MT system’s output con-
tains an accurate translation of the language
property that is being tested. To this end, we
propose using LLMs to generate candidate
sets of ground-truth translations of the prop-
erty values in cases where exhaustive candi-
date sets are plausible. Otherwise, we gen-
erate contrastive candidates and evaluate via
semantic similarity measures.

• We present an evaluation framework to ro-
bustly compute pass rates of MT models
across various language properties, and show
results for widely used open-source models
on three language pairs.

2 Behavioral Testing for MT

Behavioral testing, as proposed by Ribeiro et al.
(2020), uses input-output pairs tailored to evalu-

ate a model capability to correctly handle certain
language properties. The goal is to complement tra-
ditional aggregated accuracy scores, which, while
useful by themselves, often fail to capture long-
tail phenomena. In practice, manual inspection
of system outputs is often crucial to make up for
this shortcoming. Automated behavioral testing
provides a more reliable and less cumbersome al-
ternative that can reduce or eliminate the need for
manual inspection, provided that a sufficient range
of language properties is tested. Test results are
presented in the form of a table of pass rates (one
pass rate for each tested property) that is informa-
tive to decide on consequent steps, e.g. whether
bugs must be addressed before deployment. Note
that the creation of a sufficiently comprehensive be-
havioral test suite depends crucially on whether its
creation can be automated to a high degree, which
is also our main design goal in this work.

We are particularly interested in a specific type
of behavioral tests, minimal functionality tests
(MFTs) (Ribeiro et al., 2020).2 In the context
of MT, an MFT measures a model’s ability to trans-
late particular property values that appear naturally
embedded in some given source sentences.

Figure 1 illustrates our proposed framework.
First, a source sentence x = {x1 · · · ,x|x|} that
contains a tagged property value xv⊆x is generated
(§3). For instance, if our test property is physical
unit translation, we might have x=“I ran 3 miles.”
and xv=miles. A main challenge comes from
the fact that there is a potentially large space of
correct translations. However, note that by de-
sign MFTs only need to check whether the prop-
erty under test is translated correctly, while un-

2 Ribeiro et al. (2020) also propose directional and in-
variance tests which check how model outputs change under
certain input perturbance, but these appear less applicable to
MT given the potentially large space of correct translations.
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You are an assistant that generates sentences where only appears one B = {property}.
Don't be repetitive, change the topic and B between sentences. Write every B inside [].
B must happen only once in each sentence and can only contain {property}.

Write 3 examples.

- {Source sentence demonstration #1}
- {Source sentence demonstration #2}
- {Source sentence demonstration #3}

Now write 10 more diverse sentences itemizing them with '-':

Figure 2: General template of the prompt used for generating batches of source sentences.

related translation errors should be ignored. In
many cases, this reduces the space of correct trans-
lations to a manageable size. We therefore pro-
pose to automatically generate a candidate set
Cxv (either exhaustive or contrastive; see §4) and
then apply a pass-fail detector that uses either
string matching or semantic similarity measures
(§5). In our example, we might generate an ex-
haustive candidate set Cxv={Meilen,mi} for the
case of translating into German. We now aim
to evaluate an MT model f : x 7→ ŷ. To do so,
we compare ŷ against Cxv . A correct translation
ŷ=“Ich lief 3 Meilen.” would match the candidate
set and therefore pass the test, while a typical incor-
rect translation ŷ=“Ich lief 3 km.” does not match
the candidate set and therefore fails the test.

Given this general overview of our method, we
now turn to a more precise description of each
proposed step in the following sections.

3 Source Sentence Generation

To create source sentences for testing a certain lan-
guage property, we pose several desiderata: Sen-
tences should be diverse (e.g. not rely only on a
handful of templates), natural, numerous enough to
yield statistical significance, and contain a property
value associated with our tested property.

Note that existing approaches often struggle
to generate diverse test sets due to the reliance
on hand-crafted templates (Wang et al., 2021).
To overcome this shortcoming, we design a gen-
eral template for prompting LLMs, in our case
ChatGPT3, OpenAI’s model built on InstructGPT
(Ouyang et al., 2022). This allows us to gener-
ate diverse source language sentences that contain
property values suitable for testing different capa-
bilities (see prompt4 in Figure 2). We instantiate
the prompt once for every language property that

3gpt-3.5-turbo API accessed on May 2023.
4We set temperature=0.9, presence_penalty=2.

Candidates Examples

kilometers→ kilómetros, km
watts→ vatios, W
meters per second→ metros por segundo, m/s

Table 2: Examples of En→Es set of candidates gener-
ated by ChatGPT.

we wish to include in our test suite.
To simplify the later verification step, we gener-

ate sentences that contain exactly one such prop-
erty value xv.5 We generate source sentences with
brackets around the property value for easy pars-
ing. A possible test sentence for the property of
translating decimal numbers might look as follows:

The company received [

property value

4200.4 ]C. (1)

Note that brackets are removed before passing the
sentence to the MT model.

We apply basic filters to remove duplicated sen-
tences, examples with more than one property
value, or those composed of more than one sen-
tence. We repeatedly feed the same prompt to the
LLM, and stop the generation process when reach-
ing 1,000 sentences after filtering. Our experiments
(§9) indicate that ChatGPT is able to generate sen-
tences of adequate quality and diversity.

4 Candidates Generation

Next, in order to be able to verify whether an MT
system correctly translated the property value in the
source sentence, we automatically generate valid
translation candidate sets for each property value.
For some properties, such as number translation,
we create exhaustive or near-exhaustive candidate
sets. For other properties where the number of valid
translations would be too big to do so, we instead

5For some types of properties, multiple property values
may be more appropriate. This is left for future work.
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create contrastive candidate pairs that demonstrate
desired and undesired behavior. Note that candi-
date sets only need to be created once and can then
be re-used for every tested system.

4.1 Near-Exhaustive Candidate Sets

In this approach, we follow Raunak et al. (2022)
in creating a set of all valid translations of each
property value in the test (see example in Table 2).
However, instead of manually designing candi-
date sets, we propose using the in-context learn-
ing (Brown et al., 2020) and multilingual capabil-
ities of instruction-tuned LLMs (Wei et al., 2022)
to accomplish the task. For each property value
xv, we generate a set of translation candidates Cxv

with ChatGPT (gpt-3.5-turbo) (see prompt6 in
Figure 3). We tried to design demonstrations to
encompass both correctness and completeness, in-
cluding possible inflections. An example of demon-
strations used for the currencies test can be seen in
Appendix B. Note that while we aim for complete-
ness, i.e. all valid translations should be included
in the candidate set, in practice we found that some
rare translation choices may not be included in the
automatically generated candidate sets. However,
this will not impact pass-rates much because by
nature rare translation choices appear in the MT
system’s output only in rare situations. In §9 we
perform a human assessment of the reliability of
the generated candidate sets.

4.2 Contrastive Candidate Pairs

Some property values can span multiple words on
the source side, potentially increasing the number
of valid translations drastically. An example is id-
iomatic expressions, where there is an increased
risk that the candidate set cannot exhaust all pos-
sibilities. To mitigate this issue, we propose using
contrastive candidate sets an alternative approach.

Given a source property value, we generate a
contrastive candidate set Cxv

contra formed by a correct
translation cxv

corr, and a foil (incorrect) translation
cxv

foil. Appendix C shows an example prompt. Intu-
itively, an MT model should pass the test sentence
if its translation is closer to cxv

corr than it is to cxv
foil.

5 Pass-Fail Detector

Equipped with these candidate sets, we now wish to
mark every MT-translated sentence as either pass or

6We use the same set of parameters as for the source sen-
tence generation.

Algorithm 1: Similarity score between
translation and contrastive candidate.
Input: ŷ: model translation; c: candidate

translation; e: encoder
Output: max_sim(ŷ, c)
max_sim← −∞
n← |c|
Gŷ ← n-gram(ŷ, n)
cemb ← e(c)
for g ∈ Gŷ do

gemb ← e(g)
if sim(gemb, cemb) > max_sim then

max_sim← sim(gemb, cemb)

return max_sim

fail. Depending on whether near-exhaustive or con-
trastive candidate pairs are used, we design pass-
fail detectors based on string matching or semantic
similarity, respectively.

As it is our goal to design tests that target spe-
cific language properties, our pass-fail detectors
should only detect cases where the property value
under the test is translated incorrectly. Unrelated
translation errors should not cause a sentence to be
marked as incorrect.7

5.1 String Matching for Near-Exhaustive
Candidate Sets

For the near-exhaustive candidate sets, we define a
pass-fail function c(ŷ, Cxv) ∈ {0, 1} that takes the
model’s translation ŷ, and the candidates set Cxv ,
and returns 1 (pass) if ŷ has a valid translation of
the property value, i.e. if it has an element in Cxv ,
and 0 (fail) otherwise:

c(ŷ, Cxv) =

{
1 if ŷ ∩ Cxv ̸= ∅
0 otherwise.

(2)

Specifically, we consider as pass an exact case-
insensitive substring matching. Following Example
1, where xv = 4200.4, if we are evaluating the
En→De decimal numbers translation capabilities
of the model, we would consider the model passes
the test if it outputs ‘4200,4’, or ‘4.200,4’.8

7For our purposes, we do not consider whether the trans-
lated property is placed at the correct position in the target
sentence, but only whether it is correct when considered in
isolation. We argue that errors related to fluency and reorder-
ing are better evaluated through established accuracy-based
metrics.

8Note that this involves a design decision: The test case
writers must make a decision whether or not the added decimal
point is acceptable for their particular use cases.
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You are a {source_lang}-{target_lang} translator. Given a {property}, write as many valid {target_lang}
translations as you can. Use "|" to separate between valid translations.
Write "NA" if unable to accomplish the task.

{Source property demonstration #1}
{Candidates set source property demonstration #1}
{Source property #2}
{Candidates set source property demonstration #2}
{Source property #3}
{Candidates set source property demonstration #3}

{Source property}

Figure 3: General template of the prompt used for generating near-exhaustive sets of candidate translations.

Estaba en la luna cuando me aceptaron en la escuela de mis sueños.

I was over the moon when I got accepted into my dream school.

muy emocionado

sim = 0.12

sim = 0.03

sim = 0.91
sim = 0.21

...

sim = -0.12
sim = -0.2

...
sim = 0.02

sobre la luna

Figure 4: Example of the Contrastive Candidate Pairs approach, where sim indicates the semantic similarity between
the correct candidate (‘muy emocionado’) and the 2-grams (in green), and the foil candidate (‘sobre la luna’) and
the 3-grams of the MT translation (in red).

5.2 Semantic Similarity for Contrastive
Candidate Pairs

For measuring the closeness of the property value
translation to the contrastive candidates, we pro-
pose relying on the semantic similarity of word se-
quences representations extracted by a multilingual
encoder (Reimers and Gurevych, 2019, 2020).9

However, directly measuring the similarity between
the translation of the property value and the can-
didate sets may be unreliable since they may dif-
fer in length and the location of the translation is
unknown due to lack of word-level alignment. In-
stead, we propose that, for each candidate cxv

corr or
cxv

foil, we split the model’s translation into n-grams,
where n is the number of words of the current can-
didate. Then, we measure the similarity between
each of the n-grams and the candidates.

Given a translation and the contrastive candidate
set Cxv

contra formed by the correct and foil candidates,

9Employing LLMs is also possible but not explored here
because it needs to be applied for every evaluated MT system,
incurring higher computational costs.

we define the pass-fail function as:

c(ŷ, Cxv
contra) =

{
1 if max_sim(ŷ, cxv

corr) ≥ max_sim(ŷ, cxv
foil)

0 otherwise.
(3)

Algorithm 1 formalizes the computation of
max_sim function, Figure 4 shows an example.

6 Evaluation Metrics

Having established pass-fail detection for individ-
ual sentences, the final step is to compute aggre-
gated pass rates across test sets. Appealingly, pass
rates are naturally expressed as percentages, mak-
ing them intuitive to interpret.

6.1 Macro Pass Rate
Let us assume that we have computed pass-fail
results across a behavioral test set consisting of N
test cases (sentences). From a statistical viewpoint,
we have access to a sample X = {c(ŷn, Cxn

v )}Nn=1,
drawn from some unknown distribution over test
cases, F . The expectation of the true pass rate can
be computed as follows:

PR(X ) =
1

N

N∑

n

c(ŷn, Cxn
v ) (4)
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Model En→De En→Es En→Ja

spBLEU ChrF COMET-22 spBLEU ChrF COMET-22 spBLEU ChrF COMET-22

M2M 418M 31.08 57.22 79.49 25.33 51.26 80.63 23.57 32.22 84.84
M2M 1.2B 39.37 62.51 85.35 29.06 53.85 84.22 27.46 35.25 87.63

NLLB 600M 38.88 61.85 85.89 30.65 54.76 85.34 18.75 29.62 86.72
NLLB 3.3B 44.41 65.26 87.98 32.69 56.09 86.39 20.76 32.5 88.12

OPUS MT (Bil) 40.96 63.49 84.61 30.57 54.97 84.9 - - -
WMT21 (En-X) 49.38 68.94 88.76 - - - 39.89 44.95 91.95

Commercial system 49.34 68.84 89.34 34.43 57.58 86.92 41.05 47.06 92.19

Table 3: Translation scores of the different models used in FLORES-200 devtest set.

One issue that arises in practice is that property
values themselves follow a long tail pattern: Cer-
tain values appear relatively frequently, while many
other values appear only once across the generated
test set. This can make pass rates overly sensi-
tive to whether models happen to perform well for
these particular values. To mitigate this issue, we
assume a generative story in which property values
are drawn from a uniform distribution, and con-
sequently compute the expected pass rate as the
macro average across property values:

MPR(X ) =
1

|V|
∑

v∈V

1

Nv

Nv∑

i

c(ŷi, Cxi
v) (5)

where V refers to the set of distinct property values,
and Nv to the number of examples associated with
each specific property value.

6.2 Confidence Intervals

Although previous work performing behavioral
testing for MT shows point estimate scores, confi-
dence intervals provide a more reliable approach
to statistical analysis, as they quantify the uncer-
tainty associated with that estimate, and ensure
the sample size is large enough. To compute con-
fidence intervals for our estimator MPR we use
the Bootstrap method (Efron, 1979), which per-
forms sampling with replacement from X , gen-
erating K resamples {Y1, · · · ,YK}, from which
we compute their corresponding macro pass rates
{MPR(Y1), · · · ,MPR(YK)} to construct the boot-
strap distribution MPRboot. Assuming the distribu-
tion of X is a reasonable approximation of the pop-
ulation distribution F , confidence intervals can be
derived from MPRboot. For that purpose, we com-
pute the percentile bootstrap interval for α = 0.05
provided by SCIPY library (Virtanen et al., 2020).

6.3 Paired Bootstrap

The paired bootstrap is a statistical resampling tech-
nique used to assess the uncertainty and make in-
ferences about the difference between two sam-
ples. Paired bootstrap allows us to compare the
property’s sample of passes/fails for two different
models (Koehn, 2004). By following the resam-
pling process outlined in the previous section, if a
model consistently outperforms the other in 95%
of the iterations, we can assert with 95% statistical
significance that it is superior.

7 Properties to Test

We design a number of tests and use our proposed
framework to evaluate MT models in multiple prop-
erties. The chosen properties, also studied in the
literature (Wang et al., 2021; Raunak et al., 2022),
have two important qualities that make them useful
for evaluating translation systems: vital for produc-
ing high-quality translations, yet posing a challenge
when assessing through conventional evaluation
metrics.

Numbers. We conduct independent assessments
for integers (e.g. 1887), decimals (e.g. 154.32),
and large numbers (e.g. 200 billion). Large
numbers have the format “integer/decimal mil-
lion/billion/trillion”. We create near-exhaustive
candidate sets of valid number translations and
check if the translation matches any candidate.

Physical Units. We build near-exhaustive candi-
date sets for evaluating the translations of diverse
units including those related to weight, length, time,
or temperature inter alia (e.g. inches). Translations
are evaluated by string matching.

Emojis, Names, and Web Terms. Via string
matching we check whether the translated text re-
tains the same property instantiation found in the
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source text. Candidate sets for these tests are thus
considered to be exhaustive.

Currencies. We consider currencies appearing
in the ISO code format (e.g. EUR). Near ex-
haustive candidate sets are built allowing transla-
tions into the same ISO code, variations of the
currency name or its symbol (e.g. for En→Es:
EUR/euro/euros/C), then a string matching pass-
fail detection is employed.

Idioms. Idiomatic expressions pose significant
challenges for MT systems due to their non-literal
nature and potential large sequence length. We use
idioms as a test bench for the use of contrastive
candidate pairs (incorrect literal translation candi-
date vs. correct meaning translation) and semantic
similarity detection procedure.

8 Models Comparison

In this section, we introduce the tested models and
present results obtained via standard metrics as
well as our proposed framework.

8.1 Experimental Setup
We test widely-used open-source MT models, as
well as a commercial system. We aim to select
models that perform very strongly, while also dif-
fering in some important aspects (e.g. bilingual vs.
multilingual).

In the multilingual domain, we experiment with
the 600M and the 3.3B parameters models of No
Language Left Behind project (NLLB) (Team et al.,
2022), and the Many-to-Many (MLM-100) family
of Multilingual models (Fan et al., 2021) (418M
and 1.2B parameters models). Additionally, we
evaluate the WMT21: multilingual (7 En→X direc-
tions) 4.7B dense model (Tran et al., 2021), part of
Meta’s WMT-21 News Translation task participa-
tion (Barrault et al., 2021). We also assess OPUS-
MT (Tiedemann and Thottingal, 2020) En→Es
and En→De bilingual models trained on OPUS
dataset (Tiedemann, 2012). Lastly, we included
results from an anonymous commercial system.

Besides our proposed metrics, we also eval-
uate the models on FLORES-200 (Team et al.,
2022) in En→De, En→Es, and En→Ja via string-
based metrics spBLEU10 (Papineni et al., 2002)
and ChrF11 (Popović, 2015) as implemented in

10SACREBLEU signature: nrefs:1|case:mixed|eff:no|
tok:flores101|smooth:exp|version:2.3.1

11SACREBLEU signature: nrefs:1|case:mixed|eff:yes|
nc:6|nw:0|space:no|version:2.3.1

Model Source Sentence Translation

OPUS
MT (Bil)

The article I read on
www.scientificjo
urnal.org was very
informative.

El artículo que leí en
www.cientificojo
urnal.org fue muy
informativo.

Commercial
system

... our town’s popula-
tion was counted as
12,577.

... población de nues-
tra ciudad se contabi-
lizó en 12,577.

Table 4: Examples flagged as failed translations.

SACREBLEU (Post, 2018), as well as the neural-
based metric COMET-2212 (Rei et al., 2020).

8.2 General Translation Accuracy

We first measure general translation performance
across language pairs for standard reference-based
metrics (Table 3). The commercial system per-
forms best across the board, followed by the
WMT21 model. In the following sections, we dive
deeper into the different capabilities.

8.3 Behavioral Tests Results

As an illustrative example, macro pass rate confi-
dence intervals across property types and models
for the En→De direction are presented in Figure 5.
The complete results can be found in Appendix E.

Commercial system is most consistent across
properties. This is especially true for emoji trans-
lations, where open-source models lack most emo-
jis in their vocabulary. However, it is noteworthy
that its performance is subpar in the context of
En→Es integers and En→Ja large numbers. After
manual inspection (see examples in Table 4), we
attribute the lower integers translation performance
to the fact that it uses the comma as the thousands
separator. Note that this behavior can be acceptable
depending on the country; behavioral tests must be
designed to reflect the intended behavior.

Bilingual models struggle with web terms. Al-
though the multilingual models mostly manage to
preserve web terms without alteration, both tested
bilingual models (for En→Es and En→De) under-
perform in that property (see Figure 5 and Figure 6
top). Most fail cases contain Spanish words inside
the translated web terms (Table 4). We hypothesize
that this occurs because they are trained to exclu-
sively translate into Spanish, which consequently
hinders their ability to generate content in other

12Unbabel/wmt22-comet-da
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Figure 5: En→De macro pass rates and confidence intervals across tested systems.
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Figure 6: From top to bottom, En→Es Confidence Intervals after each annotation iteration (see §9).

languages, and is therefore an intrinsic limitation
of bilingual models.

Scaling models help increase capabilities. In
most of the settings, scaling the model of the same
family shows increased performance, for instance,
physical units and idioms in Figure 5. However,
there are some counter-examples, like in the case

of En→Ja decimals and integers tests.

WMT21 is the strongest open-source model.
The WMT21 model consistently exhibits superior
performance compared to other open-source mod-
els in both En→De and En→Ja tests. In Table 5
we show how paired bootstrap enables model com-
parison, revealing that WMT21 outperforms other
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Model A Model B Winner p-value

M2M 418M M2M 1.2B M2M 1.2B 0.0
M2M 418M NLLB 600M NLLB 600M 0.0
M2M 418M NLLB 3.3B M2M 418M 0.476
M2M 418M WMT21 (En-X) WMT21 (En-X) 0.0
M2M 418M OPUS MT (Bil) OPUS MT (Bil) 0.106
M2M 418M Commercial system Commercial system 0.0
M2M 1.2B NLLB 600M NLLB 600M 0.461
M2M 1.2B NLLB 3.3B M2M 1.2B 0.0
M2M 1.2B WMT21 (En-X) WMT21 (En-X) 0.001
M2M 1.2B OPUS MT (Bil) M2M 1.2B 0.004
M2M 1.2B Commercial system Commercial system 0.102

NLLB 600M NLLB 3.3B NLLB 600M 0.0
NLLB 600M WMT21 (En-X) WMT21 (En-X) 0.003
NLLB 600M OPUS MT (Bil) NLLB 600M 0.005
NLLB 600M Commercial system Commercial system 0.142
NLLB 3.3B WMT21 (En-X) WMT21 (En-X) 0.0
NLLB 3.3B OPUS MT (Bil) OPUS MT (Bil) 0.118
NLLB 3.3B Commercial system Commercial system 0.0

WMT21 (En-X) OPUS MT (Bil) WMT21 (En-X) 0.0
WMT21 (En-X) Commercial system WMT21 (En-X) 0.024
OPUS MT (Bil) Commercial system Commercial system 0.0

Table 5: Paired Bootstrap En→De Integers test results.
We make a 95% statistically significant conclusion that
the WMT21 system is better than the rest of the models.

models in the integers En→De test.

Idioms. Results for the Idioms property test are
presented in Appendix D. The ability to translate
idioms is generally low (i.e. overly literal), in accor-
dance with recent findings (Dankers et al., 2022). It
is worth noting that results are similar in the three
language directions, with the commercial system
and NLLB 3.3B showing comparable performance.

9 Reliability of the Proposed Approach

To assess the reliability of the proposed approach,
in this section we analyze the robustness of source
sentence generation and pass-fail detection.

9.1 Analysis of Source Sentence Generation

One potential concern with the proposed method is
whether the generated source sentences are diverse
enough and do not become repetitive after a few
rounds of generation.13 A standard method for
quantifying the diversity in a corpus is distinct n-
grams (Li et al., 2016), which computes the ratio
of unique n-grams to the total number of n-grams
present. In our case, we are interested in assessing
the diversity of each generated source sentence
compared to the previous generations. To that end,
we propose a metric to measure this aspect. Given
the set of unique n-grams generated up to sentence
xt (Gnx<t

), we measure the proportion of unique

13The naturalness of outputs, another potential concern, has
been extensively dealt with elsewhere (Ouyang et al., 2022).
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Figure 7: 3-gram diversity scores (div3(xt)) along gen-
eration steps across different properties.

Property Sentences kept Unique values

Web Terms 79.3% 92.5%
Decimals 74.1% 76.9%
Integers 62.1% 39.3%
Physical Units 83.3% 15.9%
Large Numbers 66.1% 37.1%
Idioms 83.8% 69.0%
Names 86.1% 17.9%
Emojis 88.5% 29.7%
Currencies 66.8% 5.2%

Table 6: Percentage of source sentences that pass filter-
ing, and percentage of filtered sentences that introduce
a new property value.

n-grams in each newly generated sentence (Gnxt
)

that are not present in Gnx<t
:

divn(xt) =
Gnxt
\ Gnx<t

Gnxt

(6)

Figure 7 shows 3-gram diversity along 1000 gen-
erated sentences after fitting a polynomial regres-
sion. We observe that the diversity drop is mild
even after 500 sentences, where for most of the
tests, 60% of newly generated 3-grams are novel.

Furthermore, we observe that the sentence gen-
erator produces sentences that comply with instruc-
tions, indicated by the high proportion of the origi-
nal sentences that pass filtering. In the majority of
cases, over 70% of the LLM-generated sentences
successfully pass the filtering steps outlined in §3,
as seen in Table 6 (middle column). The right col-
umn shows the percentage of unique values, which
naturally vary strongly depending on the property.

9.2 Analysis of Pass-Fail Detection
The reliability of the proposed pass-fail detection
depends mainly on whether candidate sets are (1)
complete and (2) do not contain wrong candidates.

We analyze this by sampling 100 random test
cases that were marked as pass (positives), and an-
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Figure 8: Error rates detected in two rounds of annota-
tions on En→Es.

other 100 examples marked as fail (negatives). We
manually annotate whether test results were correct
or incorrect. Figure 8 shows false positives and
false negatives (FP initial and FN initial). We ob-
serve that while for most properties these were low,
for some test cases (namely physical units, large
numbers, currencies) there were a significant num-
ber of FNs, which would lead to underestimated
pass rates. We argue that erring on the side of FNs
is generally preferable, because it prevents us from
overestimating the strength of models, and because
it would trigger a debugging effort which would
quickly surface issues stemming from FNs.

To obtain more accurate pass-rates for all prop-
erties, we can manually remove candidates causing
a FP and add missing candidates producing a FN.
We do this for the test cases analyzed above, and
then draw another random sample from both pass
and fail categories. Figure 8 shows that the updated
FPs and FNs are now negligible.

While in our experience, human intervention as
outlined above is only a minor effort, the issue re-
mains as to whether systems can be compared to
one another without the need for human interven-
tion, even in the presence of existing FNs. To un-
derstand this better, we plot macro pass rates with
confidence intervals across annotation iterations in
Figure 6. As expected, for physical units, large
numbers, and currencies, pass rates move upwards.
However, the effect is general across models, sug-
gesting that relative ordering between models can
be reasonably approximated in the initial attempt,
i.e. without human intervention.

In addition, we assess the pass-fail detection of
idioms. Given that the decision is made via se-
mantic similarity for contrasting pairs, addressing
issues in the candidate sets is more challenging.
Consequently, we conducted a single evaluation
iteration with 100 pass/fail examples, respectively,
on two language pairs. For En→De, we observed
59 FPs / 16 FNs; En→Es had 50 FPs / 11 FNs. We
hypothesize high FPs are caused by idiom and its

figurative meaning being present within the source
sentence, interfering with the n-grams comparison.
We leave further investigation for future research.

10 Related Work

Recent works have applied behavioral testing for
evaluating machine translation systems. Wang et al.
(2021) designed tests for numerical translation ca-
pabilities by relying on fixed templates for source
sentence generation. Raunak et al. (2022) proposed
SALTED, a set of manually designed error detec-
tors that are applied to millions of sentences from
standard datasets. Beyond behavioral testing, a
large number of challenge sets have been devel-
oped for machine translation (Popović and Castilho,
2019). Although useful, most of these evaluation
tools require major human efforts for creation, eval-
uation, or expanding to other languages. Although
there have been attempts to automatize the creation
of behavioral tests (Yang et al., 2022), this has been
limited to simple NLP tasks.

Our work also relates to the use of LLMs as eval-
uators for Machine Translation systems (Kocmi
and Federmann, 2023), as well as for text genera-
tion in a broader sense (Liu et al., 2023; Xu et al.,
2023), which extend the growing body of research
on multi-dimensional text generation evaluation
(Zhong et al., 2022; Yuan et al., 2021).

Behavioral testing aims to evaluate the behavior
of systems under realistic conditions, contrasting it
from the literature on adversarial data generation
(Belinkov and Bisk, 2018; Zhang et al., 2021).

11 Conclusions

In this work, we have presented a method that au-
tomates the creation of behavioral tests to perform
fine-grained evaluation of MT systems capabilities.
We use Large Language Models to generate source
sentences composed of fragments of specific lan-
guage properties (integers, web terms, etc.), as well
as translations of these properties. For property
types formed by multiple words, we further extend
the proposed method into a contrastive setting and
show its usefulness in evaluating idiomatic expres-
sions. To the best of our knowledge, our research
represents the first attempt to develop MT behav-
ioral tests by leveraging LLMs. Finally, we apply
the proposed framework to evaluate open-source
models on three language pairs.
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A Limitations

While the proposed evaluation framework seeks to address a broad spectrum of languages, the experiments
conducted in this study are limited to three language pairs. Due to its reliance on the capacity of LLMs
to produce high-quality candidate translations, we cannot guarantee accurate results when applied to
language pairs involving a low-resource language using current LLMs. Moreover, the method is designed
to work only on properties that appear as a continuous chunk of text in both source and target languages
and are not scattered across a sentence.
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B Example of Demonstrations for Exhaustive Candidate Set Generation

You are a {src_lang}-{tgt_lang} translator. Given a {property}, write as many valid
{target_lang} translations as you can. Use "|" to separate between valid translations.
Write "NA" if unable to accomplish the task.

EUR
=C|EUR|Euro

GBP
£|GBP|Pfund|Pfund Sterling|britisches Pfund|Pound Sterling

USD
$|USD|Dollar|US Dollar|amerikanischer Dollar|amerikanische Dollar|US-Dollar

{Source property}

Figure 9: General template of the prompt used for generating a set of candidate translations.

C Example of Demonstrations for Contrastive Candidate Pairs Generation

Foil:

You are an {src_lang}-{tgt_lang} literal translator. Given a sequence of words,
you have to write only a literal translation. Use "|" to separate alternatives.
Write "NA" if unable to accomplish the task.

break a leg
brich dir ein Bein|breche dir ein Bein|breche dein Bein|breche dir dein Bein

hit the ground running
im Laufen hinfallen|beim Laufen hinfallen|beim Laufen auf den Boden knallen|beim Laufen
auf den Boden fallen

put all your eggs in one basket
alle Eier in einen Korb tun|alle Eier in einen Korb setzen|alle Eier in einen Korb legen

{Source property}

Correct:

You are an {src_lang_name}-{tgt_lang_name} translator of idiomatic expressions. Given an
idiomatic expression, you have to write the translation of the figurative meaning of the
idiomatic expression. Use "|" to separate alternatives. Write "NA" if unable to accomplish the task.

She told him to “break a leg” just before he went up on stage.
figurative translation of: break a leg
viel Glück|alles Gute|viel Erfolg|du schaffst das|Sie schaffen das

He hit the ground running, so his employer was really happy.
figurative translation of: hit the ground running
voller Begeisterung angehen|enthusiastisch angehen|hart und erfolgreich arbeiten

{Source property}

Figure 10: Prompt used for generating contrastive candidate pairs for the case of idioms. For the literal translation
(foil) we prompt ChatGPT with the idiom in isolation. Conversely, in order to facilitate the ‘understanding’ of the
idiom’s figurative connotation, for generating correct candidates we present it within the full sentence.
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D Idioms Test Results
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Figure 11: Idioms Test Confidence Intervals across language pairs.
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E Pass Rate Confidence Intervals
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Figure 12: Macro pass rate confidence intervals for En→Es tests.

Property
Macro Pass Rate (%)

M2M 418M M2M 1.2B NLLB 600M NLLB 3.3B OPUS MT (Bil) Commercial system

Web terms [0.993, 0.998] [0.995, 1.0] [0.992, 0.998] [1.0, 1.0] [0.95, 0.97] [1.0, 1.0]

Decimals [0.236, 0.278] [0.551, 0.602] [0.615, 0.665] [0.401, 0.451] [0.576, 0.625] [0.719, 0.764]

Integers [0.939, 0.966] [0.979, 0.993] [0.943, 0.969] [0.935, 0.963] [0.959, 0.98] [0.838, 0.88]

Physical Units [0.824, 0.879] [0.905, 0.952] [0.915, 0.96] [0.93, 0.972] [0.933, 0.975] [0.952, 0.987]

Large Numbers [0.736, 0.787] [0.834, 0.878] [0.824, 0.868] [0.795, 0.842] [0.898, 0.935] [0.863, 0.907]

Emojis [0.014, 0.027] [0.027, 0.048] [0.035, 0.058] [0.05, 0.075] [0.0, 0.0] [0.996, 1.0]

Names [0.991, 0.994] [0.977, 0.994] [0.986, 0.996] [0.978, 0.993] [0.983, 0.993] [0.978, 0.993]

Currencies [0.973, 0.999] [0.982, 0.997] [0.985, 0.992] [0.992, 0.998] [0.93, 0.985] [0.999, 1.0]

Idioms [0.125, 0.159] [0.114, 0.148] [0.153, 0.192] [0.225, 0.271] [0.129, 0.166] [0.247, 0.294]

Figure 13: Macro pass rate confidence intervals for En→Es tests.
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Figure 14: Macro pass rate confidence intervals for En→De tests.
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Property
Macro Pass Rate (%)

M2M 418M M2M 1.2B NLLB 600M NLLB 3.3B WMT21 (En-X) OPUS MT (Bil) Commercial system

Web terms [0.995, 1.0] [0.998, 1.0] [0.991, 0.998] [1.0, 1.0] [0.998, 1.0] [0.967, 0.982] [0.995, 1.0]

Decimals [0.471, 0.519] [0.651, 0.696] [0.882, 0.912] [0.889, 0.919] [0.973, 0.987] [0.769, 0.809] [0.961, 0.978]

Integers [0.936, 0.964] [0.97, 0.987] [0.97, 0.989] [0.935, 0.963] [0.99, 1.0] [0.948, 0.973] [0.978, 0.994]

Physical Units [0.775, 0.84] [0.83, 0.89] [0.781, 0.847] [0.807, 0.871] [0.848, 0.905] [0.827, 0.885] [0.853, 0.909]

Large Numbers [0.952, 0.977] [0.97, 0.989] [0.98, 0.995] [0.981, 0.995] [0.984, 0.997] [0.976, 0.993] [0.978, 0.995]

Emojis [0.02, 0.038] [0.037, 0.06] [0.018, 0.039] [0.046, 0.071] [0.006, 0.018] [0.0, 0.0] [0.994, 1.0]

Names [1.0, 1.0] [0.993, 1.0] [0.992, 1.0] [0.999, 1.0] [0.986, 1.0] [1.0, 1.0] [0.993, 1.0]

Currencies [0.998, 1.0] [0.976, 1.0] [0.962, 0.997] [0.976, 0.998] [0.999, 1.0] [0.977, 1.0] [0.998, 1.0]

Idioms [0.268, 0.313] [0.272, 0.319] [0.311, 0.36] [0.328, 0.377] [0.298, 0.346] [0.277, 0.324] [0.403, 0.453]

Figure 15: Macro pass rate confidence intervals for En→De tests.
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Figure 16: Macro pass rate confidence intervals for En→Ja tests.

Property
Macro Pass Rate (%)

M2M 418M M2M 1.2B NLLB 600M NLLB 3.3B WMT21 (En-X) Commercial system

Web terms [0.991, 0.998] [0.992, 0.998] [0.973, 0.987] [0.989, 0.997] [1.0, 1.0] [0.982, 0.992]

Decimals [0.685, 0.73] [0.58, 0.629] [0.878, 0.908] [0.871, 0.902] [0.9, 0.929] [0.893, 0.922]

Integers [0.795, 0.84] [0.749, 0.798] [0.891, 0.926] [0.865, 0.904] [0.882, 0.918] [0.885, 0.922]

Physical Units [0.56, 0.635] [0.553, 0.627] [0.591, 0.666] [0.615, 0.687] [0.648, 0.718] [0.649, 0.717]

Large Numbers [0.4, 0.454] [0.469, 0.523] [0.363, 0.419] [0.422, 0.479] [0.45, 0.505] [0.165, 0.209]

Emojis [0.002, 0.012] [0.005, 0.015] [0.015, 0.032] [0.064, 0.093] [0.008, 0.022] [0.984, 0.998]

Names [0.814, 0.868] [0.844, 0.896] [0.811, 0.868] [0.882, 0.925] [0.909, 0.947] [0.915, 0.949]

Currencies [0.854, 0.922] [0.845, 0.934] [0.782, 0.866] [0.831, 0.902] [0.789, 0.885] [0.883, 0.957]

Idioms [0.284, 0.331] [0.264, 0.311] [0.313, 0.362] [0.418, 0.469] [0.368, 0.419] [0.433, 0.485]

Figure 17: Macro Pass Rate confidence intervals for En→Ja tests.
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Abstract

The Transformer architecture has two main
non-embedding components: Attention and
the Feed Forward Network (FFN). Attention
captures interdependencies between words re-
gardless of their position, while the FFN non-
linearly transforms each input token indepen-
dently. In this work we explore the role of the
FFN, and find that despite taking up a signif-
icant fraction of the model’s parameters, it is
highly redundant. Concretely, we are able to
substantially reduce the number of parameters
with only a modest drop in accuracy by remov-
ing the FFN on the decoder layers and sharing a
single FFN across the encoder. Finally we scale
this architecture back to its original size by in-
creasing the hidden dimension of the shared
FFN, achieving substantial gains in both accu-
racy and latency with respect to the original
Transformer Big.

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
has become the de facto paradigm in many Nat-
ural Language Processing (NLP) tasks, includ-
ing Machine Translation (MT). Several studies
have shown that Transformers exhibit impressive
scaling-law properties (Gordon et al., 2021; Bansal
et al., 2022; Ghorbani et al., 2022), wherein in-
creasing the number of model parameters leads
to further accuracy gains. In parallel with this ar-
chitecture’s impressive scaling of the numbers of
parameters (Chowdhery et al., 2022), there is a
growing trend towards reducing model footprints
for real-world deployment, to satisfy practical con-
straints like latency requirements as well as mem-
ory and disk space limitations. In turn, researchers
are actively exploring parameter sharing (Ge et al.,
2022; Takase and Kiyono, 2023; Lou et al., 2022),
reducing the dimensionality of Transformer compo-

*Equal contribution.
†
Work conducted while at Apple.

nents, and pruning components like attention heads
(Voita et al., 2019; Michel et al., 2019).

Although the role of attention in learning pair-
wise dependencies between tokens is relatively well
understood (Voita et al., 2019; Clark et al., 2019;
Vig and Belinkov, 2019), the role of the Feed For-
ward Network (FFN) remains under-explored. Re-
cently, Geva et al. (2021) established a connection
between the FFN and attention by positing that
the FFN corresponds to learnable key-value pairs
where the weights of the first layer of the FFN cor-
responds to the keys and those of the second to the
values. They find that the keys are able to cap-
ture salient textual patterns at each layer, and they
notice that the classes of patterns tend to overlap
between neighboring layers, indicating redundancy
in the representation.

This observation motivates our work, where we
revisit the conventional practice of allocating an
individual FFN per layer. We investigate the effect
of sharing and dropping the FFN across different
layers on MT models. We conduct thorough exper-
iments with different configurations of the Trans-
former, across different language pairs, including
a low resource language pair and multilingual. In
addition, we investigate the effect of the FFN in a
decoder-only Transformer-based model. We find
that a considerable level of redundancy exists be-
tween the encoder and decoder FFNs. As a result,
we are able to eliminate the decoder FFN and share
a single FFN across the encoder without signifi-
cantly compromising the model’s accuracy. This
step leads not only to significant parameter savings
but also opens up opportunities for further improve-
ments. We also suggest using wider FFNs in the
encoder while dropping the decoder’s FFN, which
results in a model with a similar size, but improved
accuracy and reduced latency.

Finally we conduct a fine-grained analysis of
the representational similarity between the origi-
nal model, using one independent FFN per layer,
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and various models with shared FFNs. Our results
reveal that both model accuracy and the internal
representation of Transformer blocks remain stable
when sharing the FFN.

2 Background and Methodology

2.1 Transformer

The Transformer architecture has two main compo-
nents: attention and the FFN, which are connected
via a residual connection (He et al., 2016) and layer
normalization (Ba et al., 2016). In an encoder-
decoder model, there are two types of attention:
self-attention and cross-attention. Self-attention is
used in both the encoder and the decoder, allowing
the model to focus on relevant information within
the same sequence. Cross-attention is exclusive to
the decoder and allows it to attend to the encoder’s
output. Attention takes as input a set of queries,
keys and values, projected using four Rdmodel×dmodel

matrices (one for the queries, keys, values, and
final output) where dmodel is the model’s hidden
dimension. It then applies the SOFTMAX function
to allow it to focus on the most relevant values.

The FFN is applied after attention on both the en-
coder and the decoder and consists of the following
2-layer linear transformation:

FFN(x) = max(0,xW1 + b1)W2 + b2, (1)

where a RELU non-linearity is applied to the trans-
formation of the input sequence (x). At each
layer, the FFN is parameterized with two matrices,
W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodel where dff
is the FFN dimension and is usually set to 4×dmodel
(Vaswani et al., 2017).

Recent work has drawn a significant link be-
tween attention and the FFN (Geva et al., 2021),
wherein W1 and W2 assume roles akin to the keys
and values to an unnormalized attention where the
input (x) acts as the query. Unlike regular attention,
the FFN employs a RELU, which allows multiple
keys to significantly contribute to the final output
(Geva et al., 2021). Additionally, these keys cor-
respond to an inventory of salient patterns that are
learned from the training data. Geva et al. (2021)
suggest that at the lower layers the FFN learns
shallow syntactic patterns and progressively learns
deep semantic patterns on the deeper layers. More-
over, the authors find that there’s a substantial over-
lap between patterns captured by adjacent layers,
indicating that there are redundancies in the FFNs

and suggesting a better allocation of these parame-
ters might be beneficial for performance.

2.2 Sharing and Widening the FFN
The vanilla Transformer allocates one FFN for each
layer of the encoder and decoder, i.e. FFNenc

i or
FFNdec

i , respectively. Excluding embedding pa-
rameters, these FFNs occupy around two thirds
of the parameter budget, while attention occupies
the remaining third1. Earlier work found that con-
straining the parameterization of the decoder FFNs
causes no degradation in accuracy (Ge et al., 2022).
In this work, we share the parameters of the FFN
across layers and/or across the encoder and decoder
to minimize redundancy between FFNs.

Let Nenc, Ndec be the numbers of encoder and
decoder layers, respectively. We consider multiple
configurations for parameter sharing as follows:

• One FFNenc
all for the whole encoder:

FFNenc
i (·) tied

= FFNenc
all (·),∀i : 1 ≤ i ≤ Nenc

• One FFNdec
all for the whole decoder:

FFNdec
j (·) tied

= FFNdec
all (·), ∀j : 1 ≤ j ≤ Ndec

• One FFNencdec
all for both the encoder and the

decoder:

FFNenc
i (·) tied

= FFNdec
j (·) tied

= FFNencdec
all (·),

∀i, j : 1 ≤ i ≤ Nenc, 1 ≤ j ≤ Ndec

Additionally, we explore modifying the dimen-
sion of the shared FFN, which we denote as dff′ .
Setting dff′ > dff widens the shared FFN while
dff′ < dff narrows it. We also consider the extreme
cases of setting dff′ to 0 or to (Nenc +Ndec)× dff
(and beyond). Setting dff′ = 0 is equivalent to
dropping the FFN2 while setting dff′ = (Nenc +
Ndec)× dff is akin to sharing the concatenation of
all individual FFNs.

Sharing the FFNs directly affects the number of
parameters and, to a certain extent, latency. For
instance, sharing FFNenc

all for the whole encoder re-
duces the number of parameters by (Nenc − 1)×
2×dmodel×d′ff

3; whereas removing the FFN on the
1Ignoring layer normalization, there are 4×dmodel ×dmodel

parameters for attention vs 2×dmodel×dff = 8×dmodel×dmodel
parameters for the FFN, assuming dff = 4× dmodel.

2In our experiments without the FFN (i.e., dff′ = 0) we
remove the residual connection and layer normalization asso-
ciated with it, as they become redundant.

3Plus the layer normalization parameters, which we are
ignoring for simplicity.
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decoder, i.e., setting dff′ = 0 for FFNdec
all , reduces

the parameters by (Ndec)× 2× dmodel× d′ff and re-
duces the amount of computation to be done. This
is particularly important during inference since the
forward pass of the decoder is autoregressive, and
changing the decoder’s FFN dimension has a higher
latency impact than on the encoder.

Since different configurations have different im-
pacts, we analyse the trade-off between model size,
latency, and accuracy: (i) How many parameters
can be shared/pruned with negligible (if any) accu-
racy degradation? (ii) Are the encoder and decoder
FFNs affected similarly? (iii) Keeping the same
model size, can the FFN parameters be allocated
more efficiently?

We propose a novel configuration, which we call
the One Wide FFN model, consisting of a single
shared wide FFN on the encoder and no FFN on
the decoder. To keep the number of parameters
the same as in the baseline, we increase the shared
FFN dimension accordingly: FFNenc

all with dff′ =
(Nenc +Ndec)× dff.

For completeness, we include similar experi-
ments on the attention mechanism in Appendix B.
These experiments show that, contrary to the FFN,
individual layer-specific attention weights are more
important and not as redundant, as sharing the at-
tention leads to significant accuracy drops.

2.3 Representational Similarity
Besides investigating the impact on accuracy, we
study the similarity between different models in
terms of their internal representations and the se-
mantic space they produce.

We use Linear Centered Kernel Alignment (CKA,
Kornblith et al., 2019) to measure the similarity be-
tween the internal representations of different mod-
els. CKA uses inner products to estimate how simi-
lar the kernel matrices of two different representa-
tions are, and is based on the Hilbert-Schmidt Inde-
pendence Criterion (HSIC, Gretton et al., 2005), a
statistical measure of independence of two random
variables. Linear CKA uses the dot product as a
kernel and can be written as:

CKA(A,B) =
||ABT||2F

||ATA||F||BTB||F
,

where || · ||F is the Frobenius norm while A and
B are mean-centered (i.e., we subtract the mean)
feature matrices of the layers under comparison,
computed on the same dataset. Both matrices are
n × d, where n is the number of sentences in the

dataset and d is the output dimension of the compo-
nent, and are obtained by averaging the activation
of all tokens in each sentence4. The linear kernel
is straightforward to compute and Kornblith et al.,
2019 report strong empirical performance of linear
CKA compared to other kernels and methods.

To measure the similarity between the semantic
spaces of different models, we use Local Neighbor-
hood Similarity (LNS, Boggust et al., 2022). Lo-
cal neighborhood similarities have been previously
been used in analyzing semantic shifts in word em-
beddings (Hamilton et al., 2016). The premise of
LNS is that two semantic spaces are similar if a
sentence has similar neighbors in the two spaces.
The LNS of a sentence s between models 1 and 2
is defined as:

LNS(s) = Sim(k-NN1(s), k-NN2(s)),

where k-NN(s) is the set of k nearest neighbors of
sentence s for a model and Sim is the intersection-
over-union (Jaccard similarity) of the two sets of
neighbors. For each pair of components (attention
and FFN) in models 1 and 2 we compute the LNS

of all sentences in the evaluation dataset and take
the mean LNS as our layer similarity measure. The
smaller the value of k the more local the neigh-
borhoods we are comparing, and the more specific
the retrieval task. We pick k to be small enough
to visually inspect sentence neighborhoods if nec-
essary. In our analysis, we use cosine distance as
the distance metric between activations and set k
to 5% of the dataset size (∼ 100 sentences).

3 Experimental Setup

Data In our experiments, we show results on
WMT22 English (EN) → German (DE) (296M
pairs), which we obtained using the provided
mt-data scripts5, WMT16 EN→ Romanian (RO)
(610K pairs), and for the multilingual setup of Pires
et al. (2023), consisting of 10 languages: German,
English, Spanish, French, Italian, Japanese, Ko-
rean, Portuguese, Swahili, and Chinese. In our
analysis, we mostly focus on WMT22 EN→DE.

Following Schmidt et al. (2022), we use
WMT’16 provided scripts to normalize the RO side.
EN→RO keeps diacritics for producing accurate
translations. For more details refer to Schmidt et al.

4We use the source sentence and force decode the first
reference to compute the encoder and decoder representations,
respectively.

5https://www.statmt.org/wmt22/mtdata/
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(2022). For the multilingual experiments, we repli-
cated the setup of Pires et al. (2023), which in-
cludes all details, including data preprocessing and
dataset sizes.

Metrics We compute BLEU6 using sacreBLEU7

version 2.3.1, with evaluation signatures nrefs:1
| case:mixed | eff:no | tok:13a | smooth:exp
for BLEU, and nrefs:1 | case:mixed | eff:no |
tok:flores101 | smooth:exp for SPBLEU. For
our main results, we also report COMET using the
wmt20-comet-da model and CHRF using the sig-
nature nrefs:1 | case:mixed | eff:yes | nc:6
| nw:0 | space:no.

Latency We report inference time in tokens/sec-
ond (the higher, the better), averaged over 5 runs.
For the multilingual models, we use the DE→EN

test set. Our measurements were collected using
a single NVIDIA V100 GPU on a single-threaded
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz with
batch size of 1 and beam size of 5, in order to real-
istically mimic the inference of a deployed model.
For experiments with larger batch sizes, see Ap-
pendix D.

Tokenization For WMT22 EN →DE, we use
SENTENCEPIECE (Kudo and Richardson, 2018),
with a vocabulary size of 32K and a character cov-
erage of 1.0, while for the multilingual experiments
we use a vocabulary size of 250k and a character
coverage of 0.9995. For WMT16 EN →RO we
use byte-pair encoding (BPE, Sennrich et al., 2016)
with 40, 000 merge operations.

Model Architectures We focus our analysis on
the Transformer Big where Nenc = Ndec = 6,
dmodel = 1024, dff = 4096, and it has 16 attention
heads. We also report results on Transformer Base
(Nenc = Ndec = 6, dmodel = 512, dff = 2048,
and 8 attention heads), and a deep encoder shallow
decoder (Kasai et al., 2021) Transformer Big with
12 encoder layers, and 2 decoder layers. For our
decoder-only experiments, the model is identical to
the Transformer Big, except that all 12 layers are on
the decoder. Our decoder-only model is similar to
a Transformer-based language model, particularly
Prefix-LM (Raffel et al., 2020), where we apply a
non-autoregressive mask on the source side and an
autoregressive mask on the target. The source and

6For the multilingual experiments, we select the Flores101
tokenizer in sacreBLEU, so technically we report SPBLEU.

7https://github.com/mjpost/sacrebleu

target embeddings and the output projection matrix
are shared in all models (Press and Wolf, 2017).

Hyperparameters All experiments are imple-
mented using FAIRSEQ (Ott et al., 2019). Our
optimizer is ADAM (Kingma and Ba, 2015) with
a learning rate of 0.0007. We train for 80k, 80k,
150k steps on WMT22, WMT16, and multilingual,
respectively, at which point the models had con-
verged. We use 4000 warm-up steps, and an inverse
square root learning rate scheduler (Vaswani et al.,
2017). We use a dropout rate of 0.1 for WMT22,
0.3 for WMT16, and 0 for the multilingual experi-
ments due to the abundance of data, following Pires
et al. (2023). All models are trained using fp16
(Ott et al., 2018).

Nomenclature In our experiments, we run a num-
ber of different configurations per model architec-
ture that differ in the way the FFN is used, shared,
or dropped, as well the size of the shared FFN (dff′).
To facilitate our discussion, we introduce in Table 1
the nomenclature that will serve as reference for
the rest of the text. Unless otherwise stated, the
dimension of the shared FNN∗

all, i.e. dff′ is equal to
the dff of the original model.

For decoder-only models, only SharedDec and
NoDec configurations are defined. For concise-
ness, we drop the mention of FFN from the
text when possible, i.e. SharedEnc instead of
SharedEncFFN.

FFN Description Encoder Decoder

SharedEnc FNNenc
all FNNdec

i

SharedDec FNNenc
i FNNdec

all

SharedEncSharedDec FNNenc
all FNNdec

all

SharedEncDec FNNencdec
all

NoDec FNNenc
i No-op

SharedEncNoDec FNNenc
all No-op

Table 1: Nomenclature used in our experiments. No-op
indicates an identity function, which is equivalent to
dropping the FFN.

Representational Similarity We use the
WMT22 EN→DE evaluation set for both CKA and
LNS analysis. We analyze encoder and decoder
representations independently and present these
metrics in a matrix heatmap plot showing pairwise
similarity between layers. The diagonal of this
matrix is the similarity of corresponding layers,
i.e., layer i on both architectures. In order to

1034



facilitate an “apples-to-apples” comparison across
models, we extract decoder representations by
force decoding the (first) reference. We establish
2 crucial similarity scores: a benchmark on
similarity for each of these metrics, where we train
two additional models using the same architecture
but with different random seeds; a similarity
lower bound, where we compare the baseline
Transformer Big with a randomly initialized (i.e.,
untrained) model with the same architecture. We
present these bounds in Appendix C.

4 Experimental Results

4.1 Sharing FFNs

The results of various FFN sharing configurations
are summarized in Table 2, including their impact
on accuracy and model size (in millions of param-
eters and percentage). Sharing either the encoder
(SharedEnc) or the decoder FFN (SharedDec) re-
sults in just a 0.2 to 0.3 BLEU point decrease, while
reducing the parameter count by nearly 20%. Shar-
ing the FFN on each side (ShareEncShareDec)
leads to a more substantial degradation of 0.9
BLEU points, albeit reducing the parameter count
by 37%, while sharing a single FFN on the encoder
and decoder (ShareEncDec) results in a slightly
higher degradation of 1.1 BLEU points. Nonethe-
less, these findings support the hypothesis that the
FFN contains some degree of redundancy, as we
expected a greater accuracy degradation given the
substantial (20− 40%) reduction in model size.

Architecture BLEU | θ | (%)

Transformer Big 35.6 228M (100)
+ SharedEnc 35.4 186M (82)
+ SharedDec 35.3 186M (82)
+ SharedEncSharedDec 34.7 144M (63)
+ SharedEncDec 34.5 136M (59)

Table 2: sacreBLEU results on WMT 22 EN→DE for
different FFN sharing configurations. | θ | is the number
of parameters.

While we focus on sharing one FFN for all layers
within a module, we compare with sharing multi-
ple FFNs following Takase and Kiyono (2023) in
Appendix A. We find that sharing one FFN is as
accurate as sharing multiple FFNs within a module,
while being more parameter-efficient.

4.2 Dropping FFNs

Table 3 summarizes the performance of models
with no FFNs. Besides BLEU and number of pa-
rameters, we report the inference speed for each
architecture. Dropping the FFN on the encoder
(NoEnc) leads to a 0.9 BLEU point drop while re-
ducing the parameter count by 22% and with mini-
mal effect on inference speed. Dropping the FFN
on the decoder (NoDec), on the other hand, causes
a degradation of only 0.4 BLEU points while in-
creasing the inference speed by 20%8. The highest
latency reduction is obtained by removing the FFNs
on both the encoder and the decoder (NoEncNoDec),
but it comes with a significantly larger degradation
of over 2 BLEU points.

Architecture BLEU Speed | θ | (%)

Transformer Big 35.6 111±1.2 228M (100)
+ NoEnc 34.7 112±1.0 178M (78)
+ NoDec 35.2 133±0.9 178M (78)
+ NoEncNoDec 33.5 138±1.9 127M (56)

+ SharedEncNoDec 35.3 136±1.1 136M (60)
+ NoEncSharedDec 33.9 127±1.0 136M (60)

Table 3: sacreBLEU results on WMT 22 EN→DE for
different FFN dropping configurations.

Combining sharing and dropping These re-
sults, together with those from Table 2, suggest that
the encoder and decoder FFNs have different con-
tributions: the decoder’s are more redundant, cor-
roborating previous work on FFNs parametrization
(Ge et al., 2022). With this in mind, we experiment
with one shared FFN on the encoder and dropping
it on the decoder, reported as SharedEncNoDec in
Table 3. As shown, with just approximately 60%
of Transformer Big parameters we observe a 22%
improvement in inference speed, at the cost of 0.3
BLEU point.

4.3 One Wide FFN Model

Previous sections describe models that share and/or
drop FFNs, effectively reducing model size at some
modest accuracy cost. In this section, we investi-
gate whether we can regain the accuracy lost while
preserving the parameter efficiency and the latency
reduction. We focus on ShareEncNoDec model as

8The reason for this difference between NoEnc and NoDec
is that the encoder output is computed in parallel, while the
decoder operates in a step-by-step fashion.
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BLEU CHRF COMET Speed | θ | (%)

Transformer Big EN→DE 35.6 62.6 57.2 110.8±1.2 228M (100)
+ SharedEncNoDec FFN dff′ = 4, 096 35.3 62.1 56.1 135.7±1.1 135M (60)
+ SharedEncNoDec FFN dff′ = 24, 576 35.7 62.7 57.9 138.2±0.9 177M (80)

+ SharedEncNoDec FFN dff′ = 49, 152 36.5† 63.2† 59.6 137.5±1.6 228M (100)

+ SharedEncNoDec FFN dff′ = 98, 304 36.4† 63.2† 59.0 134.5±1.6 328M (145)

Table 4: Accuracy of One Wide FFN for Transformer Big EN→DE on WMT22. † implies the system is statistical
significantly different at p < 0.05.

it provides a strong baseline with significant param-
eter savings and inference speedups.

We propose increasing the dimension of the
shared FFN to match the number of parameters
of the original (fully-parameterized) model, so as
to avoid increasing the overhead of model stor-
age. In particular, ShareEncNoDec saves around
(Nenc + Ndec − 1) × 2 × dmodel × dff parame-
ters as there’s one single shared FFN in the en-
coder. On the other hand, the Transformer Big
has (Nenc +Ndec) FFNs. Thus, we match the size
of the original model by setting the dimension of
the shared FFN, dff′ , to (Nenc +Ndec)× dff.

Table 4 summarizes our results. It includes our
proposed model, the One Wide FFN model (dff′ =
49, 152), as well as the baseline Transformer Big,
and the corresponding ShareEncNoDec (dff′ =
4, 096). It also includes a wide model with dff′ =
24, 576, which uses the same number of parame-
ters as NoDec, with dff′ = Nenc × dff. This model
achieves an accuracy on par (or slightly above) the
baseline Transformer Big with 20% fewer param-
eters and a significant inference speed-up.

Our proposed model with dff′ = 49, 152 goes
beyond that, achieving a gain of 1.2 BLEU points
over the vanilla ShareEncNoDec and 0.9 BLEU

points over the Transformer Big. These gains
remain consistent across CHRF and COMET. Fur-
thermore, it has a similar inference speed as the
ShareEncNoDec model. For completeness, we in-
clude a wider model with dff′ = 98, 304. Despite
the extra capacity, this model does not provide any
additional accuracy gains, which we suspect is due
to the lack of data to train such a large model.

4.4 Analyzing Internal Representations
We now report a post-hoc analysis of the internal
representations of the models introduced in pre-
ceding sections. Our objectives are twofold: 1) to
ascertain whether the proposed models’ internal
representations exhibit a significant degree of sim-

ilarity to those of the original base model; 2) to
delve into the impact of the proposed methods on
redundancy. We adopt the definition of redundancy
of Dalvi et al. (2020), who visually inspect the sim-
ilarity between adjacent modules within a model
(high similarity entails high redundancy).

Architecture
Encoder Decoder

CKA LNS CKA LNS

Benchmark 100.0 100.0 100.0 100.0

SharedEnc 98.0 96.2 100.8 100.6
SharedDec 100.2 101.4 98.3 94.6
SharedEncSharedDec 98.9 97.2 99.5 95.4
SharedEncDec 97.6 94.4 98.4 93.5
NoEnc 90.0 70.5 101.0 96.8
NoDec 100.0 98.6 96.0 87.4
SharedEncNoDec 97.6 98.9 97.5 89.0

SharedEncNoDecd
′
ff=49152 97.0 83.2 94.0 82.9

Table 5: Similarity of the representations (%) of cor-
responding modules of different architectures vs. the
Transformer Big for WMT22 EN→DE. These scores
are normalized by comparing them to the CKA and LNS
benchmark scores. For NoDec configurations we com-
pare the final output of the Transformer layer as a whole
as they have different modules than the baseline. The
columns for shared and for dropped FFNs are high-
lighted in gray and blue respectively.

4.4.1 Similarity to Baseline
We ground the pairwise similarity metrics, by nor-
malizing them against a benchmark. As mentioned
in Section 3, we establish the benchmark scores by
training two additional Transformer Big models,
but using different random seeds. These models
achieve similar accuracy as the baseline model (see
Appendix C.1 for more details). The benchmark
score is the similarity between the baseline and
these models Because the benchmark is calculated
by averaging similarity scores from different train-

1036



(a) Encoder self similarity. (b) Decoder self similarity.

Figure 1: CKA self similarity of encoder and decoder layers of the One Wide Encoder model vs. the Transformer
Big baseline. We identify each component with a label: index.name. For example, 0.sa refers to the self-attention
on layer 0, while 4.ca refers to the cross-attention on layer 4.

ing runs of our baseline, individual runs can have a
normalized score above 100%.

Table 5 shows normalized similarity scores for
several models. Under the Encoder columns we
compare the encoder representations, and under the
Decoder columns we compare decoder represen-
tations. Sharing FFNs leads to consistenly lower
(normalized) similarity scores than models that do
not share, both in terms of internal representation
(CKA) and semantic spaces (LNS). As shown, al-
though models that share FFNs have lower sim-
ilarity scores compared to those that do not, the
scores are still very close to 100%. Moreover, these
decreases align with the drops in BLEU seen in
Table 2, where the model with the lowest similar-
ity score (ShareEncDec) is also the least accurate
model. We observe a similar trend for models that
drop the FFNs in the encoder or decoder, these
models exhibit lower similarity scores with the re-
spective component than models sharing them, as
shown by NoEnc and NoDec. In addition, the former
result again suggests the FFNs in the encoder are
more important than in the decoder as the similarity
shifts drastically compared to all other settings.

For completeness, we report on the last row the
similarity scores for the One Wide FFN model,
which is more accurate than the base model. The
internal representations generated by that model
diverge from those of the base model. Interestingly,
we observe a larger drop in LNS scores than in CKA

scores, indicating that the shift occurs mostly in
semantic space, rather than the Euclidean space
captured by CKA. For a detailed layer-wise similar-
ity analysis that breaks out the aggregate analysis
in Table 5 see Appendix C.2.

4.4.2 A Qualitative View of Redundancy

We now study into the impact of our One Wide
FFN model on the redundancy of the internal repre-
sentations. In addition to adopting their definition
of redundancy, we also adopt Dalvi et al. (2020)’s
method of computing self-similarity, namely look-
ing at how the representations change as they go
through each module (self-attention, FFN, or cross-
attention) of the model. In particular, we use CKA

to compute similarity between the output of differ-
ent modules within the same model.

In Figure 1a, we show the CKA self-similarity
matrices for the encoders of the One Wide FFN
model and the Transformer Big. We do the same
for the decoders in Figure 1b. These matrices show
how similar each module of the network is to all
other modules within that network. The diagonal
of the matrix is the similarity between a module
and itself and is always 1.

As shown, there is high similarity between ad-
jacent modules of the Transformer Big, both on
the encoder and decoder, indicated by areas with
darker red around the diagonal. The prevalence of
high similarity patterns among adjacent modules
suggests a substantial degree of redundancy, and
eliminating a module has a negligible impact on
the final representations. On the other hand, we
observe a distinct checkerboard pattern on the self-
similarity matrices of the One Wide FFN model,
where individual modules tend to exhibit lower sim-
ilarity with their immediate neighbors than with
their second neighbors (i.e., the neighbors of the
neighbors). On the encoder, the checkerboard pat-
tern emerges especially in the earlier modules while
on the decoder, that pattern appears more consis-
tently throughout the layers. This pattern gives an
indication that our model is learning non-trivial

1037



transformations of the input, leading to decreased
redundancy within the network.

4.5 Other architectures and Languages

So far, all our experiments focused on the Trans-
former Big and on WMT22 EN →DE. In this
section, we apply what we learned to other archi-
tectures and language pairs. We run experiments
on the low resource language direction EN→RO

and a large scale multilingual model.
For EN→DE, we apply our proposal to a Trans-

former Base model, a Deep Encoder Shallow De-
coder model (Kasai et al., 2021), and a Decoder-
Only model. For the Transformer Base, we observe
an accuracy gain of 0.5 BLEU (2.2 BLEU over the
vanilla SharedEncNoDec model) and an inference
speedup of around 25%. In the Deep Encoder Shal-
low Decoder model, we observe a more modest
accuracy gain of 0.2 BLEU points (0.9 BLEU over
the vanilla SharedEncNoDec model). However, the
inference speedup from dropping the decoder FFNs
is minimal (< 1%), which is expected because of
the small depth of the decoder in this architecture.

Decoder-only models With the advent of Large
Language Models (LLMs) like GPT (Brown et al.,
2020), and PaLM (Chowdhery et al., 2022), a lot
of effort has been put on decoder-only Transformer
models. We train a decoder-only model on WMT22
EN →DE, as shown on Table 6. Due to the ab-
sence of an encoder, we are limited to applying
a wide FFN on the decoder side. As in the other
setups, we get an accuracy gain of +0.3 BLEU over
the baseline decoder-only model (+1.7 BLEU over
ShareDec), but the latency degrades by 12%. This
is not surprising: due to the autoregressive nature
of the decoder, increasing the size of its FFN has a
bigger impact on speed.

Low-resource languages In EN →RO the ac-
curacy of the One Wide FFN Model is only on
par compared to the base model, even though it is
a higher than the vanilla SharedEncNoDec model.
We hypothesize that due to the low resource condi-
tion, our proposed model already reaches saturation
as there are not that many salient textual patterns
to be learned by the FFN.

Multilingual Finally, we observe the similar
trend on the multilingual setup, where the One
Wide FFN Model is +1.2 SPBLEU points more ac-
curate than the baseline Transformer Big and +2.5
SPBLEU points more accurate than the vanilla

SharedEncNoDec, this gain is significant in 79 out
of 90 directions and when all tests sets are con-
catenated. Additionally, this large accuracy gain
also comes with around 18% inference speed-up,
consistent with our previous results.

5 Related Work

Weight pruning and parameter sharing are well-
known techniques to reduce a model’s footprint.
Given the scale of the latest models (Chowdhery
et al., 2022), there have been multiple efforts to
prune neurons based on different automatic meth-
ods (Dalvi et al., 2020; Michel et al., 2019; Voita
et al., 2019), sharing parameters efficiently (Ge
et al., 2022; Reid et al., 2021), and factorizing cer-
tain components (Lan et al., 2020; Hu et al., 2022).

Neuron pruning methods often focus on finding
and pruning redundant neurons through correlation
methods (Dalvi et al., 2020), but also on how Trans-
former components like the multi-head attention
can be pruned significantly due to model redun-
dancy in the encoder or decoder either by checking
the gradients salience (Michel et al., 2019) or a
differentiable relaxation of the l0 regularization at
training time (Voita et al., 2019).

For parameter sharing, the Universal Trans-
former (Dehghani et al., 2019) proposed a model
where all layers are shared (i.e., in effect it reduced
the model to a single shared layer). Takase and
Kiyono (2023) proposes finding an optimal config-
uration of shared layers in the encoder or decoder
through different methods of sharing (in sequence,
in cycle, or in reversed cycle) always keeping a
specified number of final layers9. Similarly, Reid
et al. (2021) proposes an approach where just the
middle layers are shared, while the bottom and top
layers are independent, and using a lower dimen-
sionality for the embedding layer. Analogously, Ge
et al. (2022) focus on minimizing the number of
parameters and the number of calls to each param-
eters’ group in order to optimise on-device models.
They achieve this by sharing the encoder and de-
coder in a similar way to both previous methods,
particularly by sharing all layer parameters in cycle
like Takase and Kiyono (2023).

Previous works also focus on reducing the di-
mensionality of certain parameters, mostly through
low rank factorization. Lan et al. (2020) decom-
poses the embedding layer into a lower rank em-

9See Appendix A for a detailed description and compari-
son.
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BLEU CHRF COMET Speed | θ | (%)

Transformer Base EN→DE 34.2 61.6 54.1 116.3±0.9 70M (100)
+ SharedEncNoDec FFN dff′ = 2, 048 32.5† 60.1† 50.0 146.0±1.6 47M (67)
+ SharedEncNoDec FFN dff′ = 24, 576 34.7 61.8 55.6 146.8±1.3 70M (100)

Transformer Decoder-Only EN→DE 35.8 62.8 57.7 79.8±1.9 202M (100)
+ ShareDec FFN dff′ = 4, 096 34.4† 61.7† 54.1 79.7±1.3 110M (48)
+ ShareDec FFN dff′ = 49, 152 36.1 62.9 59.4 69.3±0.2 202M (100)

Transformer Deep Enc. Shallow Dec. EN→DE 35.5 62.4 58.0 230.1±0.8 236M (100)
+ ShareEncNoDec FFN dff′ = 4, 096 34.8† 61.6† 55.4 235.0±0.5 127M (54)
+ ShareEncNoDec FFN dff′ = 57, 344 35.7 62.4 58.9 233.5±0.7 236M (100)

Transformer Base EN→RO 22.9 52.9 50.9 119.3±1.1 64M (100)
+ SharedEncNoDec FFN dff′ = 2, 048 22.2† 52.5† 45.8 152.8±1.4 41M (64)
+ SharedEncNoDec FFN dff′ = 24, 576 22.9 52.8 46.7 150.6±0.5 64M (100)

Transformer Big Multilingual 26.8 46.3 47.7 94.6±1.6 422M (100)
+ SharedEncNoDec FFN dff′ = 4, 096 25.5† 45.1† 40.8 107.1±1.4 330M (78)

+ SharedEncNoDec FFN dff′ = 49, 152 28.0† 47.3† 50.7 111.5±1.1 422M (100)

Table 6: Accuracy of One Wide FFN for EN →DE with Transformer Base, Decoder Only, and Deep Encoder
Shallow Decoder on WMT22; for low resource EN→RO with Base version on WMT16, and multilingual with
Transformer big on Flores. † implies the system is statistical significantly different at p < 0.05.

bedding matrix and a projection to the actual hid-
den size while also sharing all parameters across
all layers. In addition to sharing parameters ef-
ficiently, Ge et al. (2022) proposes a lightweight
decomposition of the FFN where instead of a single
component there are 2 projections with a smaller di-
mensionality than vanilla Transformers. Our work
is close to Ge et al. (2022) but instead of factoriz-
ing we explore sharing and full pruning of the FFN.
In contrast with previous works, we also explore
increasing the encoder FFN size while dropping
the decoder’s completely.

6 Conclusion

In this work, we studied the importance of the FFN
in Transformer models. We analyzed the impact of
removing and/or sharing the FFN across layers and
found that, due to this component’s redundancy, the
model sizes can be substantially reduced with little
impact on accuracy for Machine Translation. In
particular, we found that sharing the FFN across all
encoder layers while making it larger and removing
it from the decoder layers leads to models that are
more accurate and faster at inference.

Our findings are applicable across multiple set-
tings, including decoder-only and multilingual
models. In a low-resource setting the results are
modest but our approach can still recover the base-

line’s performance with a faster inference.
Finally, we conducted a thorough similarity anal-

ysis between the vanilla Transformer and our pro-
posed architectures, and found that the latter’s inter-
nal representations do not differ significantly from
the former’s, except in that they are less redundant.

Limitations

In this work, our focus was Machine Translation.
Although we expect the results to generalize to
other sequence-to-sequence tasks, further experi-
ments are needed, which we leave for future work.

Ethics Statement

One important consideration is the energy con-
sumption for model training, which results in green-
house emissions (Strubell et al., 2019). Our work
uses existing datasets, and inherits some of the
risks associated with them, such as privacy leakage
(Carlini et al., 2021) and gender bias (Cho et al.,
2019). Mitigation strategies such as those from
Vanmassenhove et al. (2018) may be necessary.
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A Custom Sharing of Multiple FFNs

There is a combinatorial number of ways of sharing
M < N FFNs within a module of N layers. Since
this is prohibitive, we investigate the following
strategies from Takase and Kiyono (2023):

• Sequence: assign one FFN for every M/N
consecutive layers, forming a block pattern.

FFNi(·) tied
= FFNseqm(·),∀i : 1 ≤ i ≤

N,m = ⌊(i− 1)/(N/M)⌋

• Cycle: stack M FFNs in an identical order,
forming a repetitive checkerboard pattern.

FFNi(·) tied
= FFNcycm(·), ∀i : 1 ≤ i ≤

N,m = (i− 1) modulo M

• Cycle (Rev): stack M FFNs in a reverse
order, forming a repetitive palindrome series.

FFNi(·) tied
= FFNcycrevm(·),∀i : 1 ≤ i ≤

N,m = N/M − i

Note that we assume that N is an even number
and divisible by N . Cycle (Rev) is only valid
for M = N/2. The EdgeFormer (Ge et al., 2022)
adopts Cycle with M = 2 for the encoder FFNs.

Table 7 shows the results of these strategies ap-
plied on the encoder. As references, we copy the re-
sults of the Transformer Big and ShareEnc from
Table 2. Not only is the accuracy of ShareEnc sim-
ilar to Takase and Kiyono (2023)’s strategies, but it
also uses fewer parameters and is easier to extend.

Architecture BLEU | θ | (%)

Transformer Big 35.6 228M (100)
+ SharedEnc (M=1) 35.4 186M (82)

+ Sequence M=2 35.2 194M (85)
+ Sequence M=3 35.3 202M (88)
+ Cycle M=2 35.2 194M (85)
+ Cycle M=3 35.5 202M (88)
+ Cycle Rev M=2 35.2 194M (85)
+ Cycle Rev M=3 35.5 202M (88)

Table 7: Accuracy of different FFN sharing strategies
on WMT22 EN→ DE.

B Sharing or Dropping Attention

We report the results of sharing attention modules
(either self, cross or both) across layers in Table 8.
In contrast with the FFN, attention seems to play
a more crucial role in the model’s performance, as
sharing the different attention mechanisms in both
encoder and decoder causes a large accuracy drop
across all settings, with the exception of sharing
the decoder’s cross attention and the encoder’s self
attention.

Encoder Decoder BLEU | θ | (%)
Self-Att Self-Att Cross-Att

Transformer Big 35.6 228M(100)
Shared Shared Shared 27.5 165M (72)
Shared Shared Indiv. 27.6 186M (82)
Shared Indiv. Indiv. 35.5 207M (91)
Indiv. Shared Indiv. 26.5 207M (91)
Indiv. Shared Shared 25.7 186M (82)
Indiv. Indiv. Shared 35.5 207M (91)

Table 8: BLEU scores on WMT 22 EN →DE when
sharing the attention of both encoder and decoder (self
and cross). Nomenclature follows Section 3 but with
Self Attn an Cross Attn as the encoder/decoder’s self
attention and cross-attention (decoder), respectively.
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C Details on Internal Representations
Analysis

C.1 Raw Similarity Scores for Benchmarking

We establish a benchmark score for the expected
similarity of our two metrics by comparing the
baseline Transformer Big with identical models
trained from different random seeds. Table 9
presents the raw similarity scores from which we
compute the normalized scores presented in Table 5.
As shown, the similarity between

Architecture
Encoder Decoder
CKA LNS CKA LNS

TransformerBig Seed 2 .96 .61 .94 .62
TransformerBig Seed 3 .96 .62 .95 .62

SharedEnc .94 .58 .95 .62
SharedDec .97 .62 .93 .59
SharedEncSharedDec .95 .59 .94 .59
SharedEncDec .94 .57 .93 .58
NoEnc .87 .43 .95 .60
NoDec .96 .60 .90 .54
ShareEncNoDec .94 .59 .92 .55

ShareEncNoDecd
′
ff=41952 .94 .51 .89 .51

Table 9: Raw similarity of the representations of cor-
responding layer-modules of different architectures vs.
the Transformer Big for WMT22 EN→DE. For NoDec
configurations we compare the final output of the trans-
former layer as a whole as they have different sub-
modules. The columns for shared and for dropped FFNs
are highlighted in gray and blue respectively.

C.2 Layer-wise Analysis

In Table 5, we report the aggregated similarity
scores across all layers of Transformer encoder
and decoder. Here, we report a more fine-grained
layer-wise similarity score mostly to showcase the
reliability of the aggregated scores. In Figure 2,
we plot layerwise LNS to study how similar the
semantic information captured at each layer is to
that of the baseline model at every layer. When
LNS scores are high, the network is producing sim-
ilar local neighborhoods for each sentence in our
evaluation set. In particular, we are interested in
comparing the benchmark LNS scores and those of
SharedEncSharedDec at each layer. As shown, the
layer-wise LNS scores of SharedEncSharedDec
track the baseline scores at almost every layer, con-
firming the reliability of the aggregated score. We

observe similar pattern for all the models that we
evaluate in this paper.
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Figure 2: Layerwise LNS between
SharedEncSharedDec and Transformer Big
(blue bars). LNS between two versions of Transformer
Big trained from different random initializations are
shown by the grey bars to ground the comparison.
FFN sharing does not dramatically change activations
produced at each layer.

D Effect of batch size on decoding speed

In Section 4.3, we compared the decoding speeds of
the One Wide FFN model and the Transformer Big,
with a batch size of 1. In Table 10, we delve into
how the decoding speed evolves as the batch size
increases. As shown, the One Wide FFN model
is faster for smaller batch sizes, but its advantage
diminishes as the batch size increases, being slower
than the Transformer Big for large batch sizes. We
suspect this slowdown is due to the fact that the
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| Batch | Transformer Big One Wide FFN Speed-up (%) # batches

1 110.8±1.2 137.5±1.1 24 2, 047
2 221.7±14.3 260.9±6.5 18 1, 024
4 397.4±8.0 448.9±2.0 13 512
8 718.3±8.0 748.7±10.6 4 256

16 1, 220.7±56.2 1, 226.9±17.2 1 128
32 1, 958.5±112.4 1, 837.6±15.3 −6 64
64 1, 319.1±36.7 1, 259.0±70.0 −5 32
128 1, 925.1±64.8 1, 705.0±62.3 −11 16
256 2, 312.1±67.4 1, 976.5±123.2 −15 8
512 2, 512.0±50.1 1, 957.9±32.6 −22 4

Table 10: Effect of batch size on decoding speed (in tokens/s) for the Transformer Big and One Wide FFN
(dff′ = 49, 152). ∆ is the percentage change in inference speed, and # batches is the number of batches used to
evaluate. For large batch sizes, there are fewer batches (since the dataset size is fixed), which leads to higher
variance in the measurements.

large FFN size requires higher peak memory, mak-
ing the larger sizes non-optimal for this model.
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Abstract

For sensible progress in natural language pro-
cessing, it is important that we are aware of
the limitations of the evaluation metrics we
use. In this work, we evaluate how robust
metrics are to non-standardized dialects, i.e.
spelling differences in language varieties that
do not have a standard orthography. To in-
vestigate this, we collect a dataset of human
translations and human judgments for auto-
matic machine translations from English to two
Swiss German dialects. We further create a
challenge set for dialect variation and bench-
mark existing metrics’ performances. Our re-
sults show that existing metrics cannot reliably
evaluate Swiss German text generation outputs,
especially on segment level. We propose ini-
tial design adaptations that increase robustness
in the face of non-standardized dialects, al-
though there remains much room for further
improvement. The dataset, code, and mod-
els are available here: https://github.com/
textshuttle/dialect_eval

1 Introduction

As multilingual NLP models include more and
more languages, the community’s focus on low-
resource languages has also grown. This not only
includes languages for which we have “little data”
but also language varieties and dialects which often
pose additional challenges, especially if they do not
have a standardized orthography. Recent work has
shown some progress in classification tasks (e.g.
Wang et al., 2021; Touileb and Barnes, 2021; Aepli
and Sennrich, 2022) as well as generation tasks
where such language varieties appear on the input
side only (e.g. Zbib et al., 2012; Honnet et al., 2018;
Alam et al., 2023). For these scenarios, we can use
established evaluation schemes. However, for re-
search towards NLP models generating language
varieties, Sun et al. (2023) have shown that current
evaluation metrics are not robust to translations
into different dialects.

GSW ... ufere Webs ii te aa glueg e t w ä rd e .
GSW ... ufere Webs i te ah gluegt w e rd ä .
de ... auf einer Webseite angeschaut werden.
en ... viewed on a website.

Figure 1: Example sentence that shows the extent of
spelling variability in language varieties, here Swiss
German dialect (GSW), with German (de) and English
(en) translations.

What their evaluation does not consider is that
language varieties often lack a standardized orthog-
raphy and do not adhere to consistent spelling rules.
This implies that even within a single dialect, no-
table orthographic variations can be observed, as
illustrated in the Swiss German example in Figure
1. The same utterance with a similar but different
spelling would result in a high word error rate of 3

4 .
Many languages have multiple regional vari-

ants, such as Spanish (Mexican, Argentinean,
etc.), French (Canadian, Belgian, etc.), or En-
glish (British, American, Australian, Indian, etc.),
among others. Such language varieties exhibit
various lexical, grammatical, and orthographical
distinctions. Importantly, these differences are
standardized, meaning that they adhere to specific
spelling rules and conventions, albeit with varia-
tions specific to each variant. This suggests that if
a neural metric is exposed to a sufficient amount
of data encompassing various language varieties, it
should be able to develop similar representations
and provide comparable scores for a given sentence
in different varieties. Sun et al. (2023) show that
pre-training a metric on data from multiple dialects
indeed makes metrics more inter-dialect robust.

However, for a substantial number of languages
and language varieties, there exists no established
standard orthography. Many regions exhibit a di-
alect continuum where language varieties lack pre-
cise boundaries, and each dialect displays a signifi-
cant range of diversity within itself. Furthermore,
when speakers write in their dialect, they follow
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their individual writing styles. Such kinds of vari-
abilities, as can be observed in the example in Fig-
ure 1, are much less consistent and localized and
will differ significantly between different writers.
A metric designed to handle these kinds of varieties
must be capable of addressing frequent spelling dif-
ferences, which is considerably more challenging
to learn solely from data compared to the standard-
ized language variation differences mentioned in
the previous paragraph.

In recent years, embedding-based metrics have
gained increasing popularity (Sellam et al., 2020;
Rei et al., 2020a) which – in theory – could be
more appropriate for assessing non-standardized
language varieties than string-based MT metrics
like BLEU (Papineni et al., 2002) or chrF (Popović,
2015). However, these neural metrics are often not
trained on the language varieties in question. Addi-
tionally, recent work showed that reference-based
learned metrics still rely too much on subword
overlap with the reference (Hanna and Bojar, 2021;
Amrhein et al., 2022).

In this work, we follow Sun et al. (2023) and an-
alyze the dialect robustness of machine translation
metrics but specifically focus on non-standardized
language varieties that were not seen during pre-
training. Our contributions are:

• We collect a new dataset and design a chal-
lenge set for evaluating MT metrics on two
Swiss German dialects.

• We benchmark existing string-based and neu-
ral metrics on our dataset and find that they
are not reliable, especially on segment level.

• We propose initial adaptations to make metrics
more robust for Swiss German but find that
there is still a lot of room for improvement.

2 Related Work

There is a substantial amount of research on MT
into language varieties (Scherrer, 2011b; Had-
dow et al., 2013; Fancellu et al., 2014; Hassani,
2017; Costa-jussà et al., 2018; Lakew et al., 2018;
Myint Oo et al., 2019; Wan et al., 2020; Garcia
and Firat, 2022). Most of these works exclusively
evaluate with surface-level metrics like BLEU (Pa-
pineni et al., 2002) but some voice their concerns
over a lack of reliable evaluation metrics (Kumar
et al., 2021; Bapna et al., 2022).

Sun et al. (2023) confirm that existing machine
translation evaluation metrics are not dialect-robust.

They show that it is possible to train more robust
metrics by including a language and dialect identifi-
cation task in a second language model pre-training
phase. While they focus on inter-dialect robust-
ness between well-defined dialects, i.e. Brazilian
and Iberian Portuguese, our study focuses on a
setting where dialects lack standardized orthogra-
phy. This absence of standardization introduces
additional variability, resulting in distinct chal-
lenges and necessitating different solutions for MT
systems, which need to generalize to often lim-
ited data; MT metrics, which need to be robust
to spelling differences; and also meta-evaluation,
which has its own challenges when collecting hu-
man assessments for dialects without standardized
orthography as we outline in Section 3.1. To in-
vestigate how reliable MT metrics are for non-
standardized varieties, we collect a new dataset
with human translations and human judgments for
MT outputs from English to two Swiss German
dialects.

While other works also evaluate MT metrics on
language varieties and dialects, Sun et al. (2023) is
closest to our work: Alam et al. (2023) only look at
language varieties on the source side and Riley et al.
(2023) only evaluate language varieties for which
a standard was included in the language model pre-
training. Both studies also conclude that existing
metrics are not robust to dialects. Riley et al. (2023)
further propose a new automated lexical accuracy
metric based on term dictionaries, similar to met-
rics used for automatic speech recognition (ASR)
(Ali et al., 2017; Nigmatulina et al., 2020) which
allow for more flexible string matching by using a
look-up table of acceptable spellings. Riley et al.’s
approach may work well if there is a limited set of
term differences between dialects. However, such
a metric is difficult to employ for language vari-
eties without standardized spelling rules. Instead,
we experiment with increasing dialect robustness
by introducing character-level noise during met-
ric training which has been shown to be useful for
cross-lingual transfer to language varieties with-
out standardized orthography (Aepli and Sennrich,
2022; Srivastava and Chiang, 2023; Blaschke et al.,
2023).

3 Evaluation Data for Swiss German
Dialects

While we focus on Swiss German because there
are enough different MT systems that can be eval-
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uated, Swiss German is by no means the only lan-
guage where its varieties do not have standard-
ized spelling. Many medium to high-resource lan-
guages like Arabic (Darwish et al., 2021) or Italian
(Ramponi, 2022) include dialectal varieties that
lack a standardized orthography. Additionally, this
phenomenon extends to numerous low-resource
settings (Bird, 2022), encompassing a wide array
of language varieties across Africa (Adebara and
Abdul-Mageed, 2022), Asia (Roark et al., 2020;
Aji et al., 2022), Oceania (Solano et al., 2018) and
the Americas (Littell et al., 2018; Mager et al.,
2018). Historically, even many language varieties
that now have a standardized orthography did not
always have one, including English (Scragg, 1974).
This makes our work on robust metrics for non-
standardized dialects also relevant for NLP for his-
torical texts.

To measure robustness against non-standardized
dialects, we design two new datasets. With the first,
we investigate how metrics behave in a realistic
setup where we compare them against human judg-
ments. The second is a challenge set that allows
us to investigate score changes between different
spellings and compare them to score changes when
meaning is changed. This is inspired by similar
experiments in Sun et al. (2023).

3.1 Human Judgement Data

In order to realistically evaluate machine transla-
tion metrics on Swiss German dialects, it is essen-
tial to obtain human-translated reference segments
and human judgments for machine-translated trans-
lation hypotheses. Since no such data exists for
Swiss German, we compile our dataset based on
the English NTREX-128 data1 (Federmann et al.,
2022). We selected this dataset because it origi-
nates from a standard test set2, already contains
human translations into 128 languages including
some regional variants, has a permissive license3

and offers document context which is important for
collecting reliable human judgments (Läubli et al.,
2018; Toral et al., 2018).

Human reference translations: For the refer-
ence translations, we provided two Swiss German
translators with the English NTREX-128 source
data (i.e. 1997 sentences from 123 documents).

1https://github.com/MicrosoftTranslator/NTREX
2newstest2019 from the 2019 news translation shared

task at WMT (Barrault et al., 2019)
3Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Translators saw sentences in document context and
were asked to translate them into their respective na-
tive dialects (i.e. Bern and Zurich region). We pro-
vided translators with simple instructions where we
stated that they must not post-edit machine transla-
tion outputs to translate the texts.

Human judgment scores: The hypotheses come
from ten machine translation systems translating
from English to Bern dialect and ten systems trans-
lating from English to Zurich dialect. For each
dialect, we include nine neural MT systems in our
rating setup and one rule-based system.

The neural models are provided by Textshuttle.
They are based on a standard Transformer architec-
ture (Vaswani et al., 2017) trained using different
amounts of data, making use of data augmenta-
tion techniques like backtranslation (Sennrich et al.,
2016). Some of the systems use German as a pivot
language. In collaboration with Textshuttle, we de-
cided to evaluate models for which they expect no-
ticeable translation differences and not to compare
the nine models that they think would perform the
best. The rule-based system works by morphosyn-
tactically analyzing the standard German NTREX-
128 translation of the English source and then se-
quentially applying a set of dialect-specific rewrit-
ing rules to generate Swiss German output. The
system is described in detail in Scherrer (2011a).
The system version used for this task operates word
by word without taking syntax into account. No-
tably, this means that past tense and genitive forms
produce unpredictable output because they would
require larger changes in the sentence structure.

We translated the English NTREX-128 source
data with each neural system and the German
NTREX-128 translation with the rule-based sys-
tems and let native dialect speakers rate the outputs
via Appraise4 (Federmann, 2018), a framework
for the evaluation of machine translation outputs.
Raters only had access to the source for context
because providing the reference could incentivize
raters to “quickly compare the surface forms of
translation against reference without understanding”
(Freitag et al., 2022). Note that in order to mitigate
dialect preference biases as documented by Riley
et al. (2023) and Abu Farha and Magdy (2022),
the translators and raters were all native speakers
of the dialect they were asked to rate or translate
into. We collected continuous Direct Assessment
(DA) scores (Graham et al., 2013) where the slider

4https://github.com/AppraiseDev/Appraise
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presented to the raters was annotated with Scalar
Quality Metric (SQM) labels which increases the
rating stability across annotators (Kocmi et al.,
2022). Raters viewed segments in a document con-
text and rated translations on the segment level as
well as the document level. The document-level
ratings are collected to enable future research on
document-level metrics; in this study, we only fo-
cus on segment-level ratings.

Ideally, we would recruit professional transla-
tors for both the translation and the rating tasks.
However, there exist no professional translators
for Swiss German. Instead, we recruited transla-
tors and annotators from a pool of reliable candi-
dates who already worked on similar Swiss German
projects. To ensure the quality of the ratings we col-
lect, we included control segments as implemented
in Appraise. Based on this control, no raters needed
to be excluded.

As Swiss German constitutes a dialect contin-
uum, its various variations lack precise boundaries,
and each dialect displays a significant range of
diversity within itself. Consequently, during the
recruitment process, we placed our trust in the an-
notators’ self-identification of their native dialects.
Furthermore, it is worth noting that all our contrib-
utors, comprising six women and five men, belong
to younger generations, with raters ranging in age
from 23 to 30, and translators aged 35 to 40, re-
spectively. This age factor has an impact on their
dialect. All translators and annotators were paid 30
CHF per hour for their work.

3.2 Challenge Set

As an additional evaluation, we compile a chal-
lenge set to directly pinpoint how robust metrics
are to dialect variability. In the creation of this chal-
lenge set, we draw inspiration from the work of Sun
et al. (2023), who propose measuring inter-dialect
robustness by comparing metric scores between
two language varieties and between one variety
and a version with significant meaning changes. If
segment pairs of the latter type are judged more or
equally similar by a metric than those of the two
varieties, Sun et al. (2023) argue the metric is not
dialect-robust.

We build our challenge set from the collected
data presented in the previous section. We filter
for all MT hypotheses that humans rated as perfect
(i.e. received a score of 100). If more than one
unique hypothesis exists for a segment, we create

all combinations of these hypotheses. For example,
if four different machine translation outputs for the
same source all receive a perfect human rating,
this results in six pairs of semantically equivalent
translation hypotheses that feature orthographic
differences. For each pair, we then manually create
a modified version of one of the hypotheses to
change its meaning. Following Sun et al. (2023),
we consider deletion, insertion, and substitution
operations for introducing meaning changes
which we randomly assign to each hypothesis
pair. All changes are made either to a single word
or if necessary a whole phrase. This process
results in hypothesis triples as seen in this example:

A: S e chs Mitarbeiter s i wäg e Verletzige behandlet worde.
B: S ä chs Mitarbeiter s y wäg Verletzige behandlet worde.

Six members of staff have been treated for injuries.

C: Sechs Mitarbeiter si wäge Verletzige beschtraft worde.

Six members of staff were punished because of injuries.

Hypotheses A and B are semantically equivalent
but exhibit spelling differences. Hypothesis C is
very similar to hypothesis A on the surface level but
differs significantly in meaning. During evaluation,
metrics will have access to one of these hypotheses,
as well as the reference and/or the source (depend-
ing on whether it is a reference-free or reference-
based metric). We describe how we compare the
different scores for these hypotheses in Section 4.3.

4 Experiment Setup

4.1 Benchmarking Existing Metrics

To document the performance of current MT met-
rics on dialects without a standard orthography, we
evaluate the following metrics:

• BLEU5 (Papineni et al., 2002), a string-based
metric with a brevity penalty that calculates
the word-level n-gram precision between a
translation and one or multiple references.

• chrF++6 (Popović, 2017), another string-
based metric that provides a character n-gram,
word unigram, and bigram F-score by com-
puting overlaps between the hypothesis and
reference translation.

5computed with SacreBLEU (Post, 2018), signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.0.

6computed with SacreBLEU (Post, 2018), signature:
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.0.
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We expect surface-level, string-based metrics to
perform badly on dialects without standard spelling
rules as they are entirely based on overlap with a
reference translation. These are also the metrics
used by most works that explored text generation
for language varieties without standardized orthog-
raphy (e.g. Jeblee et al., 2014; Meftouh et al., 2015;
Kumar et al., 2021). We further benchmark the
following neural metrics:

• COMET-207 (Rei et al., 2020b) and
COMET-228 (Rei et al., 2022), two reference-
based neural metrics built on the COMET
framework (Rei et al., 2020a). These are
trained neural metrics that are built on top of a
large, pre-trained language model and are fine-
tuned on human judgment data from previous
metric evaluation campaigns. COMET-20 is
fine-tuned to predict DA scores. COMET-22
is an ensemble between a COMET-20-like
model and a multi-task model that predicts
segment-level Multidimensional Quality Met-
ric (MQM) scores (Uszkoreit and Lommel,
2013) as well as word-level error tags.

• COMET-20-QE9 (Rei et al., 2020b) and
COMET-Kiwi10 (Rei et al., 2022), two
reference-free neural metrics for quality esti-
mation. COMET-20-QE is trained similarly to
COMET-20 and COMET-KIWI to COMET-
22, but both versions do not have access to
the reference during training on human judg-
ments.

While these metrics go beyond surface-level
comparisons to the reference due to their hidden
representations and embedding-based nature, we
expect that they still struggle to reliably evaluate
translations into Swiss German for several reasons:
First, no Swiss German data was included for pre-
training the language model (XLM-R; Conneau
et al., 2019) that is used as the basis for training
COMET. Second, neural metrics are often fine-
tuned on Standard German data which shares many
similar words with Swiss German and could falsely
bias metrics towards Standard German spelling.
Third, reference-based metrics have been shown
to still be influenced by surface overlap with the
reference (Hanna and Bojar, 2021; Amrhein et al.,

7wmt20-comet-da
8wmt22-comet-da
9wmt20-comet-qe-da

10wmt22-cometkiwi-da

2022) which is a disadvantage in situations where
numerous spelling variations exist.

4.2 Developing Dialect-Robust Metrics
Similar to Sun et al. (2023), we also experiment
with training more robust metrics but we focus on
robustness against non-standardized dialects rather
than inter-dialect robustness. The following list
summarizes our metrics:

• COMET-REF and COMET-QE, a baseline
trained as a reference to compare our modi-
fications to because our COMET models dif-
fer slightly from COMET-20 and COMET-22
(see details below).

• +gsw, same as the baseline but the pre-trained
model is fine-tuned on Swiss German data
before the COMET models are fine-tuned on
human judgment data. This is similar to the
second pre-training phase for the inter-dialect-
robust metric proposed in Sun et al. (2023).
However, we do not include the additional
language and dialect identification task during
continued pre-training as we do not have di-
alect labels for the Swiss German pre-training
data.

• +noise, same as the baseline but during the
fine-tuning process on human judgment data
we introduce character-level noise. This is in-
spired by previous work that showed that this
method allows for better cross-lingual trans-
fer to closely related languages (Aepli and
Sennrich, 2022; Srivastava and Chiang, 2023).
Blaschke et al. (2023) hypothesize that inject-
ing noise into standard language data results
in a similar tokenization rate as for unseen
dialects. We apply noise injection to all lan-
guages within the COMET fine-tuning dataset
that have an alphabetic writing system, there-
fore excluding languages like Chinese which
were not considered in the original work intro-
ducing character-level noise. Following Aepli
and Sennrich (2022), we inject character-level
noise (essentially typos) into a random selec-
tion of 15% of the tokens within each sen-
tence. Specifically, we alter, delete, or add
one character per chosen token. We execute
this process using the characters specific to
the relevant language, taking into account all
characters that occur more than 1,000 times
in the respective dataset. We apply this noise
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injection to all segments, including the source,
translation, and reference segments.

We provide details of how we trained those mod-
els here:

Continued pre-training of XLM-R To expose
our models to Swiss German data, we modify the
encoder model upon which COMET models are
usually based: XLM-RoBERTa11 (Conneau et al.,
2019). We continue the training of the XLM-R
model on SwissCrawl12 (Linder et al., 2020), a
corpus containing 500K dialect sentences crawled
from the web in late 2019. For the continued pre-
training, we work with the Huggingface Transform-
ers library13 (Wolf et al., 2020), following the de-
fault configurations for language model fine-tuning
which involves a training duration of three epochs.

Training COMET models We train COMET
models using the official code base14 with the de-
fault settings from version 2.0.2. We use the “re-
gression model” configuration for the reference-
based models and the “referenceless model” config-
uration for the reference-free models. Our models
are trained on the direct assessment data collected
by the organizers of the WMT news translation task
spanning the years 2017 to 2021 (2021 as dev set)15

(Bojar et al., 2017, 2018; Barrault et al., 2019, 2020;
Akhbardeh et al., 2021). It is important to highlight
that our models are not directly comparable to the
original WMT shared task COMET models, for
which the 2020 models were exclusively trained on
data from 2017-2019 and the 2022 models used a
different configuration.

4.3 Evaluation

We evaluate our metrics in five different ways. For
the human judgment data, we compute two scores
on system (sys) and two on segment (seg) level
using the reference implementation from the WMT
metrics shared task16 (Freitag et al., 2022), except
for success rate where we use our own implemen-
tation.

11xlm-roberta-base
12swisscrawl
13https://github.com/huggingface/transformers
14https://github.com/Unbabel/COMET
15https://github.com/Unbabel/COMET/tree/master/

data
16https://github.com/google-research/

mt-metrics-eval

System level The pairwise accuracy as defined
by Kocmi et al. (2021), measures the accuracy with
which a metric agrees with human preference be-
tween pairs of systems where the human ratings
are significantly different according to a two-sided
Wilcoxon test. Note that the score difference be-
tween the two systems is not important in this anal-
ysis. Furthermore, we provide results for the sys-
level Pearson correlation, quantifying the strength
of the linear relationship between metrics and hu-
man judgment scores for systems.

Segment level At the segment level, our evalua-
tion includes the seg-level accuracy with an opti-
mized tie threshold, which resembles a global ac-
curacy but also acknowledges metrics for correctly
predicting tied human judgment scores (Deutsch
et al., 2023). Further, we present the seg-level
Kendall correlation, akin to pairwise accuracy but
employing a distinct normalization technique.

Challenge set For the challenge set, we compute
the success rate (seg level) following Sun et al.
(2023). This measures the accuracy with which a
metric assigns more similar scores (s) to two equiv-
alent translations A and B compared to a version
with a semantic change C. Consequently, a metric
is considered robust to non-standardized dialects
for a segment if the score difference between sA
and sB is smaller than the score difference between
sC and either sA or sB (depending on which score
is smaller):

|sA − sB| < min(sA, sB)− sC (1)

5 Results

Table 1 provides a comprehensive summary of
our results with scores for existing metrics (top),
COMET models trained for this work (bottom),
system-level evaluations (left), and segment-level
evaluations (right). Additional results can be found
in the appendices. Appendix A.1 contains results
related to the incorporation of additional languages
in the pre-training process, Appendix B presents
an evaluation of performance on an official WMT
benchmark, and Appendix C presents pairwise ac-
curacy plots for our metrics.

Existing vs. GSW metrics As expected, the
surface-level metrics perform worse than trained
metrics in almost all evaluations. Our baseline
metrics often perform a bit worse than the exist-
ing COMET metrics, this is particularly true for
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system-level segment-level

pairwise Pearson tie-optim. Kendall success
accuracy correlation accuracy correlation rate

BE ZH BE ZH BE ZH BE ZH
BLEU 0.740 0.728 0.587 0.544 0.560 0.142 0.163 0.135 0.194

chrF 0.753 0.806 0.665 0.486 0.478 0.076 0.079 0.121 0.145
COMET-20 0.766 0.849 0.816 0.565 0.583 0.205 0.227 0.250 0.298
COMET-22 0.766 0.897 0.901 0.570 0.587 0.184 0.212 0.243 0.306

COMET-20-QE 0.675 0.875 0.872 0.508 0.516 0.134 0.134 0.131 0.161
COMET-KIWI 0.636 0.952 0.876 0.536 0.533 0.146 0.142 0.240 0.290

COMET-REF 0.740 0.864 0.793 0.567 0.570 0.180 0.194 0.221 0.234
+ gsw 0.792 0.906 0.862 0.611 0.627 0.286 0.317 0.320 0.347

+ noise 0.727 0.940 0.903 0.561 0.567 0.223 0.233 0.237 0.290
+ gsw + noise 0.792 0.917 0.868 0.597 0.621 0.271 0.304 0.287 0.323

COMET-QE-KIWI 0.636 0.781 0.689 0.486 0.507 0.104 0.099 0.127 0.145
+ gsw 0.844 0.978 0.987 0.595 0.587 0.257 0.283 0.292 0.298

+ noise 0.675 0.915 0.817 0.524 0.528 0.154 0.158 0.149 0.177
+ gsw + noise 0.896 0.968 0.981 0.582 0.596 0.246 0.269 0.273 0.274

Table 1: Results for the baselines metrics (above) and our trained metrics (below) on system level (left) and segment
level (right). Darker shades indicate lower scores. Bold denotes statistically significant improvement compared
to their respective baselines COMET-REF or COMET-QE-KIWI. There is no information about significance for
tie-optim. accuracy (columns 4-5) and success rate (columns 8-9). Note that BE and ZH represent the abbreviations
for the two Swiss German (GSW) dialect regions under consideration.

our reference-free model. However, continued pre-
training on Swiss German data improves their per-
formance considerably and they strongly outper-
form existing metrics. This highlights the impor-
tance of the model to have seen the target language
(variety) during the language model pre-training. It
also shows that metrics can be extended to include
new languages and language varieties with limited
effort although this impacts their performance on
other language pairs as we show in Appendix B.
Continued pre-training on multiple languages and
language varieties can mitigate this effect (see Ap-
pendix A.1).

Noise injection While continued LM pre-
training on Swiss German data generally outper-
forms noise injection during task fine-tuning, we
still see gains over the baselines. This suggests
that metrics that were trained on noised data are
more robust to unseen language (varieties) and may
be a good strategy for language (varieties) without
sufficient data for continued pre-training. Combin-
ing both continued pre-training and noise injection
generally does not lead to further improvements.

Reference-based vs reference-free While both
types of metrics perform similarly with contin-
ued pre-training on Swiss German, both existing
reference-free metrics perform worse than the ex-
isting reference-based metrics in the segment-level
evaluations. Since these metrics did not see any
Swiss German during the pre-training phase, hav-
ing access to the reference as an anchor might help
the reference-based metrics for unseen languages.
Amrhein et al. (2022) reported a similar finding
where the reference acted as an anchor when met-
rics were used to identify copied source sentences.

Challenge set The success rate for all metrics
is extremely low. Metrics assign more similar
scores to a hypothesis with a semantic change
than to a different translation hypothesis in the
majority of cases. Again, continued pre-training
on Swiss German results in the best metric
performance. However, even these scores are
lower than a random success rate of 50% by
far. Our findings highlight that even though
system-level correlations may seem convincing,
none of the metrics studied in this work are robust
to non-standardized dialect variations.
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Since our results show that there is still signifi-
cant room for improvement toward metric robust-
ness to non-standardized language varieties, we
provide suggestions for future work.

6 Open Questions

We hope that our benchmark inspires more work on
robust evaluation metrics for language varieties in
the future. In this section, we list several directions
we think are worthwhile exploring:

Expanding the benchmark: We were not able to
include additional language varieties in our bench-
mark at the time because we could not find enough
different machine translation systems that trans-
late into these varieties. While we recognize that
without reliable metrics this is a “chicken-and-egg”
problem, we still advocate for more MT research
that focuses on translating into language varieties.
Expanding our benchmark would not only allow us
to draw more general conclusions but would also
help with sample size for the pairwise accuracy
analysis (Kocmi et al., 2021) since we find that a
large number of systems are required for confident
results.

More focus on segment level: Segment-level
metric scores tend to be much less correlated with
human judgments when contrasted with system-
level correlations (Freitag et al., 2022) and have
also been shown to be unreliable in downstream
tasks (Moghe et al., 2023). We hope that future
work aimed at enhancing metric performance on
our challenge set will also contribute to greater
metric reliability on segment level in general, as
over-reliance on reference overlap is also a problem
for languages with standardized spelling (Hanna
and Bojar, 2021; Amrhein et al., 2022).

Training neural metrics that model character-
level similarities: A segment in a dialect often
resembles a reference in certain characters only
rather than in full words (see Figure 1 as an exam-
ple). As the underlying language models of neural
evaluation metrics use a fixed tokenization scheme
that was learned on text that likely does not include
many examples of language varieties, these simi-
larities might be hard to account for by the neural
metric. Thus, we believe that character-based lan-
guage models, such as Canine (Clark et al., 2022),
could provide a better basis for neural evaluation
metrics to model character-level similarities.

7 Conclusion

We evaluated the reliability of machine translation
metrics when evaluating dialects without standard
orthographies. As part of this work, we collected a
new dataset consisting of human translations, hu-
man judgments, and a challenge set from English to
two Swiss German dialects. We benchmark several
existing metrics and find that they are not robust
to variation featured by non-standardized dialects.
Based on this finding, we explore several modifi-
cations that allow us to train metrics that are more
robust towards spelling variation. Our results show
that there is still a lot of room for improvement and
we offer a set of recommendations for future work
on dialect robust metrics.

Limitations

The goal of this work is to evaluate and develop
machine translation metrics that take into account
the spelling variability of dialects and languages
without established writing norms. We recognize
that evaluating metrics on varieties from different
languages would help generalize our results. How-
ever, we were not able to find enough differing
machine translation systems that translate into the
same language variety for other languages. There-
fore, we had to limit this study to two Swiss Ger-
man dialects. We hope to include further language
varieties in our benchmark in the future (when such
machine translation systems become available) to
encourage research toward metrics that are reliable
for many non-standardized language varieties.

We did our best to avoid dialectal preference bias
within our annotators by selecting only annotators
who consider themselves native speakers of the
respective dialect. However, as Swiss German is a
dialect continuum, this can only be controlled to a
certain degree.

Ethics Statement

This work includes the compilation of a new dataset
as a test set for evaluating various machine trans-
lation metrics. All translators and annotators were
compensated at a rate of 30 CHF per hour. Our
dataset is based on a publicly available dataset and
will be released under the same license for future
use. Intended use: The dataset and the models
resulting from this work are intended to be used
by the research community to evaluate machine
translation metrics.
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A Appendix

A.1 Mixed Continued Pre-training

In our main experiments in Section 5, we evalu-
ate continued language model pre-training only on
Swiss German data. While this increases the per-
formance on our benchmark, it remains unclear
whether this leads to a “specialized” metric that
does not perform well on other language pairs.
We will evaluate this in the next section, but first,
we introduce a set of contrastive models that are
less specialized to Swiss German. Continued pre-
training for contrastive models involves incorpo-
rating mixed data from five languages apart from
Swiss German, namely: German (de), English (en),
French (fr), Hindi (hi), and Chinese (zh). We train
one metric based on XLM-R with continued pre-
training only on these five languages (“5 langs”),
and another one where we also add GSW to the
training data (“6 langs”). For both settings, we
also test character-level noise in the COMET fine-
tuning step, as described in Section 4.2. The data
for the five additional languages is sourced from the
CC-100 corpus17 (Wenzek et al., 2020), which is a
reconstructed version of XLM-R’s training dataset.
Specifically, we utilize the first 100,000 sentences
from the training data of each language.

Table 2 shows the results we obtained from in-
corporating mixed data into the continued LM pre-
training. We see a similar effect as when continuing
the pre-training only on GSW in the main results
in Section 5. The performance of the metrics in-
creases in all evaluations. Comparing these results
to the metric where we only continued pre-training
on Swiss German (+6 langs vs. +gsw ), the results
are comparable and often not significantly differ-
ent. In the next section, we investigate how these
metrics behave on other language pairs.

B Correlations on WMT Benchmarks

As discussed in the previous section, we evalu-
ate the performance of our metrics on an official
WMT benchmark to monitor their performance on
language pairs that do not involve Swiss German.
To do this, we reproduce the evaluations from the
WMT 2022 metrics task (Freitag et al., 2022) for
a subset of language pairs. We evaluate on the
following five language pairs:

17https://data.statmt.org/cc-100/
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system-level segment-level

pairwise Pearson tie-optim. Kendall success
accuracy correlation accuracy correlation rate

BE ZH BE ZH BE ZH BE ZH
COMET-REF 0.740 0.864 0.793 0.567 0.570 0.180 0.194 0.221 0.234

+ noise 0.727 0.940 0.903 0.561 0.567 0.223 0.233 0.237 0.290
+ gsw 0.792 0.906 0.862 0.611 0.627 0.286 0.317 0.320 0.347

+ gsw + noise 0.792 0.917 0.868 0.597 0.621 0.271 0.304 0.287 0.323
+ 5 langs 0.766 0.877 0.774 0.561 0.583 0.212 0.230 0.235 0.274

+ 5 langs + noise 0.766 0.938 0.890 0.570 0.593 0.241 0.256 0.265 0.290
+ 6 langs 0.805 0.932 0.887 0.592 0.616 0.286 0.316 0.357 0.452

+ 6 langs + noise 0.779 0.956 0.917 0.599 0.622 0.282 0.311 0.323 0.379

COMET-QE-KIWI 0.636 0.781 0.689 0.486 0.507 0.104 0.099 0.127 0.145
+ noise 0.675 0.915 0.817 0.524 0.528 0.154 0.158 0.149 0.177

+ gsw 0.844 0.978 0.987 0.595 0.587 0.257 0.283 0.292 0.298
+ gsw + noise 0.896 0.968 0.981 0.582 0.596 0.246 0.269 0.273 0.274

+ 5 langs 0.610 0.758 0.773 0.514 0.505 0.134 0.135 0.164 0.202
+ 5 langs + noise 0.701 0.898 0.831 0.513 0.521 0.178 0.184 0.166 0.266

+ 6 langs 0.831 0.985 0.984 0.583 0.605 0.261 0.284 0.304 0.331
+ 6 langs + noise 0.870 0.983 0.983 0.579 0.591 0.251 0.269 0.284 0.323

Table 2: Results for systems with continued pre-training only on Swiss German (+ gsw), on 5 other languages (+ 5
langs) and the same languages including Swiss German (+ 6 langs). Darker shades indicate lower scores. Bold
denotes statistically significant improvement compared to their respective baselines COMET-REF or COMET-QE-
KIWI. There is no information about significance for tie-optim. accuracy (columns 4-5) and success rate (columns
8-9). Note that BE and ZH represent the abbreviations for the two Swiss German (GSW) dialect regions under
consideration.
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• en-de: evaluation against MQM ratings col-
lected specifically for the metrics shared task.

• en-zh: evaluation against MQM ratings col-
lected specifically for the metrics shared task.

• de-en: evaluation against reference-based DA
scores collected for the translation shared task.

• cs-uk: evaluation against DA + SQM scores
collected for the translation shared task.

• en-liv: evaluation against DA + SQM scores
collected for the translation shared task.

Note that all these languages except for Livo-
nian (liv) are part of the CC-100 corpus18 (Wenzek
et al., 2020). Consequently, they form a part of the
training dataset for XLM-R and are thus included
in the COMET models. Moreover, English (en),
German (de), and Chinese (zh) were incorporated
into the mixed continued pre-training, as explained
in Section A.1. Lastly, all the languages mentioned
above, with the exception of Ukrainian (uk) and
Livonian (liv; a language of Latvia), are included
in the COMET training data.

This evaluation allows us to assess the effects of
our modifications both on language pairs that were
included during COMET training, during contin-
ued LM pre-training, and those that were not.

The results are shown in the following Tables:
3 (system-level Pearson correlation), 4 (segment-
level accuracy), and 5 (segment-level Kendall). We
do not report pairwise accuracy here because they
cannot be directly compared with the WMT22 re-
sults, given that we have only included a subset
of the language pairs. Versions of COMET-ref
that were continued pretrained on Swiss German
data demonstrate comparable or improved perfor-
mance compared to the baseline metrics. In con-
trast, continued pretrained COMET-qe performs
worse. When examining individual languages, we
observe that fine-tuning is advantageous for transla-
tions into Livonian (liv), which is the only language
in our selection not included in XLMR. Conversely,
for translations into English, continued pretrained
systems, particularly COMET-qe, tend to perform
slightly worse.

C Pairwise Comparison Plots

In the subsequent plots displayed in Figures 2 (ex-
isting metrics), 3 (our trained COMET-ref metrics),

18https://data.statmt.org/cc-100/

and 4 (our trained COMET-qe metrics), every point
represents a difference in average human judgment
(y-axis) and a difference in automatic metric (x-
axis) over a pair of systems. Metrics disagree
with human ranking for system pairs in pink quad-
rants. These plots follow the example of Figure 1
in (Kocmi et al., 2021).
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sys-level Pearson
correlation de-en en-de en-zh en-liv cs-uk

BLEU 0.353 0.178 0.065 -0.575 0.890
chrF++ 0.356 0.304 0.203 -0.517 0.925

COMET-20 0.424 0.876 0.744 0.893 0.985
COMET-22 0.450 0.873 0.756 -0.517 0.989

COMET-20-QE 0.443 0.577 0.752 0.564 0.953
COMET-KIWI 0.421 0.748 0.767 -0.563 0.987

COMET-ref 0.423 0.888 0.626 0.909 0.992
+ noise 0.420 0.931 0.618 0.912 0.991
+ gsw 0.410 0.904 0.450 0.693 0.983

+ gsw + noise 0.407 0.930 0.375 0.610 0.964
+ 5 langs 0.412 0.897 0.656 0.826 0.993

+ 5 langs + noise 0.415 0.933 0.658 0.689 0.991
+ 6 langs 0.417 0.908 0.636 0.892 0.992

+ 6 langs + noise 0.413 0.951 0.626 0.627 0.989

COMET-qe 0.384 0.453 0.639 0.598 0.954
+ noise 0.398 0.464 0.659 0.589 0.961
+ gsw 0.365 0.300 0.444 0.806 0.874

+ gsw + noise 0.387 0.354 0.446 0.859 0.893
+ 5 langs 0.371 0.434 0.650 0.621 0.923

+ 5 langs + noise 0.377 0.429 0.667 0.639 0.939
+ 6 langs 0.372 0.424 0.657 0.694 0.921

+ 6 langs + noise 0.380 0.440 0.640 0.725 0.939

Table 3: System-level Pearson correlation scores for baseline metrics (above) and our trained metrics (below) on a
subset of language pairs from the WMT 2022 metrics task. Bold denotes statistically significant improvement com-
pared to their respective baselines COMET-REF or COMET-QE-KIWI, underlined denotes statistically significant
decline.
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seg-level tie-optim.
accuracy de-en en-de en-zh en-liv cs-uk

BLEU 0.394 0.539 0.096 0.319 0.490
chrF++ 0.391 0.545 0.352 0.237 0.466

COMET-20 0.439 0.580 0.466 0.589 0.563
COMET-22 0.437 0.584 0.468 0.368 0.567

COMET-20-QE 0.442 0.566 0.460 0.513 0.556
COMET-KIWI 0.412 0.580 0.470 0.338 0.567

COMET-ref 0.439 0.565 0.462 0.540 0.556
+ noise 0.434 0.556 0.458 0.615 0.564
+ gsw 0.434 0.551 0.470 0.507 0.542

+ gsw + noise 0.432 0.543 0.470 0.453 0.531
+ 5 langs 0.444 0.570 0.471 0.593 0.543

+ 5 langs + noise 0.428 0.553 0.478 0.500 0.552
+ 6 langs 0.445 0.567 0.475 0.461 0.551

+ 6 langs + noise 0.430 0.560 0.483 0.523 0.545

COMET-qe 0.433 0.550 0.470 0.545 0.555
+ noise 0.436 0.561 0.470 0.520 0.544
+ gsw 0.445 0.546 0.472 0.583 0.518

+ gsw + noise 0.441 0.552 0.463 0.505 0.500
+ 5 langs 0.445 0.561 0.467 0.522 0.530

+ 5 langs + noise 0.439 0.550 0.462 0.526 0.520
+ 6 langs 0.443 0.555 0.480 0.520 0.528

+ 6 langs + noise 0.453 0.552 0.470 0.517 0.526

Table 4: Segment-level accuracy scores (the darker the lower) for baseline metrics (above) and our trained metrics
(below) on a subset of language pairs from the WMT 2022 metrics task. There is no information about significance.
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seg-level Kendall
correlation de-en en-de en-zh en-liv cs-uk

BLEU 0.009 0.169 0.032 -0.158 0.133
chrF++ 0.007 0.146 0.056 -0.158 0.086

COMET-20 0.018 0.319 0.141 0.208 0.280
COMET-22 0.019 0.343 0.137 -0.111 0.295

COMET-20-QE 0.022 0.234 0.123 0.126 0.254
COMET-KIWI 0.016 0.231 0.123 -0.147 0.281

COMET-ref 0.015 0.320 0.139 0.213 0.267
+ noise 0.019 0.310 0.125 0.165 0.251
+ gsw 0.016 0.293 0.120 0.096 0.225

+ gsw + noise 0.020 0.298 0.101 0.059 0.213
+ 5 langs 0.017 0.316 0.131 0.127 0.252

+ 5 langs + noise 0.018 0.321 0.128 0.095 0.238
+ 6 langs 0.017 0.309 0.133 0.140 0.246

+ 6 langs + noise 0.018 0.309 0.126 0.070 0.234

COMET-qe 0.017 0.225 0.121 0.152 0.235
+ noise 0.014 0.228 0.114 0.137 0.217
+ gsw 0.013 0.178 0.093 0.146 0.161

+ gsw + noise 0.013 0.182 0.094 0.102 0.162
+ 5 langs 0.020 0.214 0.115 0.145 0.214

+ 5 langs + noise 0.019 0.217 0.117 0.142 0.203
+ 6 langs 0.015 0.216 0.117 0.167 0.198

+ 6 langs + noise 0.016 0.212 0.114 0.147 0.186

Table 5: Segment-level Kendall correlation scores for baseline metrics (above) and our trained metrics (below) on a
subset of language pairs from the WMT 2022 metrics task. Bold denotes statistically significant improvement com-
pared to their respective baselines COMET-REF or COMET-QE-KIWI, underlined denotes statistically significant
decline.
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Figure 2: Pairwise comparison plots for existing metrics.
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Figure 3: Pairwise comparison plots for the COMET-ref metrics trained for this work.
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Figure 4: Pairwise comparison plots for the COMET-qe metrics trained for this work.
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Abstract

Automatic evaluation of machine translation
(MT) is a critical tool driving the rapid itera-
tive development of MT systems. While con-
siderable progress has been made on estimat-
ing a single scalar quality score, current met-
rics lack the informativeness of more detailed
schemes that annotate individual errors, such
as Multidimensional Quality Metrics (MQM).
In this paper, we help fill this gap by proposing
AUTOMQM, a prompting technique which
leverages the reasoning and in-context learning
capabilities of large language models (LLMs)
and asks them to identify and categorize errors
in translations. We start by evaluating recent
LLMs, such as PaLM and PaLM-2, through
simple score prediction prompting, and we
study the impact of labeled data through in-
context learning and finetuning. We then eval-
uate AUTOMQM with PaLM-2 models, and
we find that it improves performance compared
to just prompting for scores (with particularly
large gains for larger models) while providing
interpretability through error spans that align
with human annotations.

1 Introduction

Evaluating natural language generation systems has
always been challenging, and as the output qual-
ity of these systems has improved, evaluation has
become even more challenging and critical. For ex-
ample, in Machine Translation (MT), a field where
evaluation has garnered considerable attention, pre-
vious standard automatic surface-level metrics such
as BLEU (Papineni et al., 2002) are becoming less
reliable as the quality of generation systems im-
proves, with little remaining correlation with hu-
man judgments (Freitag et al., 2022).

To keep pace with the constantly improving qual-
ity of MT output, the next generation of automatic
metrics is rapidly evolving. Learned automatic
metrics that leverage human-judgments to finetune

∗ Work done while working part-time at Google.

Source: “Avaliar tradução 
automática é difícil.”

Candidate: “Evaluating 
automatic translation are easy.”

Score the following translation from 0 to 100:

Portuguese: {source}; English:{candidate}

Identify the errors in the translation

Portuguese: {source}; English:{candidate}

Score: 25

Errors: ‘easy’ - major/accuracy; ‘are’ - minor/fluency

MQM Score: -5x1(major) - 1x1(minor) = -6

AᴜᴛᴏMQM

Score Prediction

Figure 1: Illustration of how AUTOMQM uses LLMs
to assess the quality of a translation. Rather than asking
for a single quality score, AUTOMQM prompts mod-
els to identify and classify errors, and uses the MQM
framework to produce a score.

language models (Sellam et al., 2020; Rei et al.,
2022a) currently represent the state-of-the-art in au-
tomatic evaluation benchmarks like the WMT Met-
rics task (Freitag et al., 2022), and show high corre-
lation with human judgments. However, these met-
rics typically output a single, uninterpretable qual-
ity score, making it difficult to understand the type
and extent of errors identified by them. The lack of
insights makes it difficult for model developers to
leverage these metrics to improve their systems.

Unlike automatic metrics that only provide a
single scalar value as quality score, state-of-the-art
human evaluation methodologies like Multidi-
mensional Quality Metrics (MQM; Lommel
et al., 2014; Freitag et al., 2021a) ask professional
annotators to identify and label error spans with
a category and severity. This much richer feedback
can be used to gain a better understanding of the
current limitations of the model under evaluation
and improve it.

In this paper, we ask whether large language
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models (LLMs) in combination with a few human
annotations can be used to design an automatic
metric that generates rich feedback similar to that
generated by human experts in MQM. This work
is motivated by recent papers that demonstrated
that LLMs can be used as automatic metrics (Liu
et al., 2023b) to generate a single quality score. In
particular, Kocmi and Federmann (2023) showed
that LLMs can be prompted to assess the quality
of machine-generated translations, even achieving
state-of-the-art performance on assessing system-
level quality. However, previous work only pro-
vides a limited view of the capabilities of LLMs for
machine translation evaluation: the focus has pre-
dominantly been on score prediction (i.e. predict-
ing a numerical value for quality), without consid-
ering the use of any annotated data (either through
in-context learning or finetuning), and only in high-
resource language pairs.

We provide a large-scale study of the capabilities
of LLMs (from the PaLM and PaLM-2 families;
Chowdhery et al., 2022; Anil et al., 2023) for ma-
chine translation evaluation (both with and without
a reference translation), provide a novel compari-
son between prompting and finetuning, and investi-
gate the performance in the low-resource scenario.
Inspired by findings that the performance of LLMs
can be improved by prompting them for rationales
of their predictions (Wei et al., 2022; Lu et al.,
2023), we also propose AUTOMQM, a prompt-
ing technique for MT evaluation that asks LLMs
to identify error spans in a translation and to clas-
sify these errors according to the MQM framework,
with a quality score derived automatically from the
identified errors. A key advantage of AUTOMQM
is its interpretability, as users can inspect the errors
responsible for a score (Figure 1).

Our contributions can be summarized as follows:

• We confirm the finding of Kocmi and Feder-
mann (2023) that LLMs are zero-shot state-of-
the-art system-level evaluators, but show low
correlation with human judgment compared
to learned metrics at the segment-level.

• We show that finetuning an LLM with hu-
man judgment mitigates its low segment-level
performance (particularly for smaller LLMs),
showing similar correlations with human judg-
ment at both the system-level and segment-
level to state-of-the-art learned metrics.

• We are the first to evaluate LLM-based evalu-
ation methods on low-resource language pairs.

We find that their performance is promising,
but lags behind state-of-the-art learned met-
rics.

• We find that, with AUTOMQM, PaLM-2 mod-
els can be prompted to generate rich MQM-
like annotations, outperforming their score
prediction counterparts at the segment-level.

• Furthermore, annotations predicted by PaLM-
2 models correctly identify over 50% of words
that are part of major errors, and are compa-
rable to the ones produced by state-of-the-art
supervised word-level evaluators.

Our findings might have significant implica-
tions for not only MT evaluation, but evaluation
of machine-generated text in general, and further
highlight the potential of using LLMs to provide
AI Feedback (Fernandes et al., 2023).

The outputs of our models prompted with
AUTOMQM are available at github.com/google-
research/google-research

2 Background: MT Evaluation

Machine translation evaluation is one of the most
well-studied evaluation problems in NLP (Callison-
Burch et al., 2008; Freitag et al., 2022). In this task,
given

1. a source sentence in a (source) language

2. a candidate translation in a (target) language

an evaluation metric assesses the quality of the
candidate translation by how well it conveys the
meaning of the source sentence while considering
other factors like fluency. Like many other natu-
ral language generation evaluation problems, this
task is difficult because the set of correct transla-
tions for a given source sentence is often very large
and not entirely known in advance. To simplify
the problem of machine translation evaluation, of-
ten (3) a reference translation (typically created
by a professional human translator) is included as
additional information when assessing the candi-
date translation. This sub-problem is known as
reference-based evaluation (as opposed reference-
less evaluation or quality estimation).

Up until recently, human evaluation of machine
translation was carried out predominantly with the
aim of assigning a single quality score to a can-
didate translation. Consequently, learned metrics,
which leverage collected human judgment data, are
trained for and evaluated on the same task of score
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prediction (i.e., assigning a single quality score to
a candidate translation), and can achieve high cor-
relation with human-provided scores (Freitag et al.,
2022).

However, framing machine translation evalu-
ation as a score prediction task is problematic:
any scoring or ranking of translations is implicitly
based on an identification of errors in the candidate
translations, and asking raters to solely provide a
single score can lead to rushed and noisy judgments
(Freitag et al., 2021a).

This insight has led to the adoption of the
Multidimensional Quality Metrics (MQM) frame-
work (Lommel et al., 2014; Freitag et al., 2021a)
as the gold standard for evaluating machine transla-
tion. The MQM framework asks human evaluators
to identify error spans in candidate translations and
classify those errors according to various dimen-
sions, e.g., fluency, accuracy, ... (see Appendix A
for a more detailed description of MQM). Impor-
tantly, the MQM framework does not ask anno-
tators to provide a quality score for each transla-
tion, and instead derives one automatically from
the identified error spans and their classifications.
However, despite its richness, most automatic met-
rics that leverage MQM data only use the final qual-
ity score produced by the framework and discard
the error span information and classification.

3 Related Work

The success of learned machine translation met-
rics (Sellam et al., 2020; Rei et al., 2022a; Freitag
et al., 2022; Qin et al., 2022), which finetune neu-
ral network models pretrained on large amounts of
(unsupervised) data, highlighted the importance of
leveraging transfer learning to achieve metrics with
better correlation with human judgments. More re-
cently, generative LLMs (OpenAI, 2023; Anil et al.,
2023) have consistently demonstrated impressive
results in natural language understanding and zero-
and few-shot transfer and, naturally, interest in em-
ploying these models for (translation) evaluation
has increased. Kocmi and Federmann (2023) first
explored the use of GPT models for evaluating
machine translation tasks, showing their potential
as zero-shot evaluators, and others have since ex-
tended GPT-based evaluation to other generation
problems (Jain et al., 2023; Liu et al., 2023b).

Perrella et al. (2022) first highlighted that MQM
annotations could be leveraged to allow pretrained
models to predict major and minor errors and, sim-

ilarly to AUTOMQM, used the identified errors
to automatically score translations. However, their
approach relied on weaker encoder-only or encoder-
decoder language models, required supervised data
to work, and overall underperformed other top met-
rics. We compare against their MaTASe metric in
our experiments. Lu et al. (2023) showed that do-
ing error analysis, a prompting technique similar to
AUTOMQM, could lead to better ChatGPT-based
evaluators. However, they still relied on the LLM
to provide a score once it identified errors (rather
than do it automatically using something like the
MQM framework). Furthermore, they provided
a very limited meta-evaluation using only 40 ex-
amples per language pair. Concurrently with our
work, Xu et al. (2023) proposed INSTRUCTSCORE,
a LLaMA-based evaluator that asks models to iden-
tify and categorize errors in translation (as well as
providing a natural language explanation for each
error). However, the authors only explore a 7B
parameter model and don’t leverage zero- and few-
shot capabilities of models as in this work. Instead,
they rely on a more complex approach of distilling
the knowledge of a more capable GPT-4 LLM.

Additionally, WMT Word-Level Quality Esti-
mation shared tasks (Fonseca et al., 2019; Zerva
et al., 2022) leverage MQM data by converting
span-level annotations of errors (normally of ma-
jor severity) to word-level tags and Task 2 in the
WMT19 Quality Estimation shared task evaluation
explicitly evaluated submissions of span-level anno-
tations (although most submissions still consisted
of models that predicted word-level tags which
were converted to spans). We also compare against
state-of-the-art word-level quality estimation mod-
els.

4 Using LLMs to Predict Quality Scores

Recent works have shown that large language mod-
els are versatile, general-purpose models that can
be used to tackle many problems in NLP, includ-
ing evaluation (Kocmi and Federmann, 2023; Jain
et al., 2023; Liu et al., 2023b). We begin by explor-
ing how LLMs can be used for machine translation
evaluation through score prediction.

4.1 Prompting

We start by measuring how far we can push the
performance of LLMs with just prompting (Liu
et al., 2023a): by defining the task of MT evaluation
and quality estimation as textual templates (with
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a general description of the problem and “slots”
for the inputs and outputs), we can use general-
purpose LLMs to perform these tasks at inference-
time, without any parameter updates.

Throughout the paper, we choose to use Kocmi
and Federmann (2023)’s GEMBA-SQM prompt
(Figure 9, Appendix C), which asks models to gen-
erate (a string representation of) a score from 0-
100. We choose this prompt for two reasons: firstly,
early explorations with various prompts showed
that this generally performed well. Secondly, us-
ing a single prompt ensures a fairer comparison
between the capabilities of different models.1

In-Context Learning A surprising emergent ca-
pability of LLMs is their ability to improve on
prompting-based tasks by including a very small
amount of labeled data as part of the prompt/con-
text (Brown et al., 2020) and without parameter up-
dates, a technique called in-context learning (ICL)
or few-shot prompting. We thus investigate the
impact that ICL has on LLMs’ ability to assess
translation quality. Recent works have shown that
the impact of ICL is tightly tied with the exact
examples included in the prompt, with a poor selec-
tion procedure leading to no improvements or even
worse performance than the zero-shot case (Jain
et al., 2023). We therefore explore two sampling
approaches to select in-context examples from a
pre-defined “pool” of translation quality assess-
ments: uniform and stratified sampling, where
the example pool is bucketed by score ranges and
examples are sampled from each bucket.

4.2 Finetuning

It has previously been shown that LLMs are capa-
ble of zero-shot evaluation (Kocmi and Federmann,
2023), but the extent to which finetuning on human
judgment data can further boost the performance of
LLMs has not been studied. In the WMT’22 Met-
rics Shared Task (Freitag et al., 2022), all top sub-
missions were learned metrics; that is, pretrained
models finetuned on human judgment data2.

Thus, we investigate whether LLMs are
amenable to finetuning on human judgment data.
LLMs used in top-performing metrics are gener-
ally much larger than the pretrained language mod-
els leveraged by previous learned metrics (which

1While this prompt wasn’t the best for system-level, it led
to the best segment-level performance in GEMBA.

2While these metrics all leverage powerful pretrained (lan-
guage) models, these generally aren’t considered LLMs

generally have fewer than 1 billion parameters).
Moreover, most learned metrics leverage pretrained
encoder-only rather than (decoder-only) prefix lan-
guage models. We experiment with finetuning
LLMs using two objectives:

• Regression (R): Commonly used for training
learned metrics (Rei et al., 2022a), the ob-
jective here is a regression loss (e.g., mean
squared error) between continuous scores ob-
tained from the model (for example, with a
regression head) and the human scores.

• Generative Classification (GC): We bucket
scores into discrete classes (e.g. "bad", "ok"
and "good") and treat the MT evaluation task
as a text-to-text classification problem (Raffel
et al., 2020) by having the model generate a
template sentence with the class. See §6.1 for
more details.

5 Using LLMs to Predict Error Spans

While producing quality scores that correlate with
human judgments is an important part of transla-
tion quality assessment, metrics that solely do score
prediction suffer from problems of interpretabil-
ity: if a metric assigns a low score, the downstream
users are left in the dark about which parts of the
translation were responsible for the score and thus
need to be corrected. This is especially problematic
in cases where the metric assigns a wrong score to
a translation, as it is much harder to diagnose why
the evaluation model made a mistake, and iden-
tify and prevent similar mistakes in the future. In
fact, reducing translation quality to a single score
has proven problematic even for human annotators:
asking raters to solely provide a single score can
lead to rushed and noisy judgments (Freitag et al.,
2021a) and the current gold standard for transla-
tion quality evaluation involving human annotators
is instead based on methodologies like the MQM
framework (see §2) , which provide richer feedback
by identifying error spans, categorizing them, and
evaluating their severity.

Interestingly, another emergent phenomenon in
LLMs is the success of chain-of-thought prompt-
ing (Wei et al., 2022): when defining a prompt
for a particular task, if we instruct the model to
produce a series of intermediate reasoning steps
(“let’s think step-by-step”), it tends to generate
a free-text rationale before generating an output,
and this often improves the performance on the
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Based on the given source and reference, identify the major and minor errors in this
translation. Note that Major errors refer to actual translation or grammatical errors,
and Minor errors refer to smaller imperfections, and purely subjective opinions about
the translation.

{src_lang} source: "{source}"
{tgt_lang} human reference: "{reference}"
{tgt_lang} translation: "{candidate}"
Errors: {error1:span} - {error1:severity}/{error1:category}; {error2:span} - ...

Figure 2: The AUTOMQM prompt used in this paper. Parts in purple are only included for reference-based
evaluation, while parts in orange represent slots for outputs, and are only included for in-context examples.

task at hand (Liu et al., 2023b). Furthermore, this
chain-of-thought prompting can be used to obtain
structured rationales from LLMs, and this can lead
to better performance than with free-text rationales
(Lu et al., 2023).

Motivated by these findings, we propose
AUTOMQM, a prompting technique for transla-
tion quality assessment that instructs LLMs to iden-
tify errors in a translation, and categorize the type of
error according to the MQM framework (Lommel
et al., 2014). Furthermore, we don’t ask the model
to produce a score, as the MQM framework pro-
vides an algorithmic procedure to obtain one from
identified errors: the total score is the sum of penal-
ties for all errors identified, where (roughly) major
errors get penalized with −5 and minors with −1
(see Appendix A for a more detailed description of
the scoring algorithm).3 Figure 2 shows the main
AUTOMQM prompt used in this paper.

Importantly, obtaining meaningful AUTOMQM
results in a zero-shot setting is a substantially more
challenging task compared to score prediction: we
found that, without any in-context examples, LLMs
tend to produce outputs that are either uninforma-
tive or difficult to parse. Thus we only consider the
AUTOMQM task in the few-shot scenario. Based
on the findings from §6.2, we explore the impact
of in-context learning by sampling from the exam-
ple pool using stratified sampling extended with a
set of rejection criteria (Appendix D), which en-
sures that the example set has a balance between
major and minor errors as well as diversity in the
categories of errors.

6 Experiments

6.1 Experimental Setup

Data The metrics in this work are evaluated on
both high-resource and low-resource language

3This is similar to methods that leverage external executors
to improve the performance of LLMs (Gao et al., 2022)

pairs. The three high-resource language pairs come
from the WMT’22 Metrics Shared Task (Freitag
et al., 2022): en→de, zh→en, and en→ru. The
ground-truth translation quality scores are derived
from MQM ratings in which expert annotators
marked error spans in the translations with different
severity levels which are automatically converted
to a numeric score (see §2). The four low-resource
language pairs come from the WMT’19 Metrics
Shared Task (Ma et al., 2019): en↔gu and en↔kk.
Since MQM ratings are not available for the low-
resource pairs, the ground truth quality scores are
direct assessment (DA) scores. DA scores are qual-
ity assessments assigned by non-expert raters on a
scale from 0-100, normalized per rater. See Table 9
(Appendix B) for statistics about the number of
MT systems and segments for every language pair.

Additionally, in our experiments, AUTOMQM
required in-context examples with MQM anno-
tations to work, so we restrict our evaluation of
AUTOMQM to en→de and zh→en because there
are available MQM ratings from the WMT’21 Met-
rics Shared Task (Freitag et al., 2021b) that we can
use as in-context learning example pools.

Models We base most of our experiments on the
following LLMs:

• PaLM: A 540 billion parameter autoregres-
sive Transformer model trained on 780 billion
tokens of high-quality text (Chowdhery et al.,
2022). It showed remarkable performance on
a wide-range of NLP tasks, including Machine
Translation (Vilar et al., 2022).

• PaLM-2: The successor to PaLM, the
PaLM-2 family of LLMs (Anil et al., 2023)
builds upon recent research insights, such as
compute-optimal scaling, a more multilingual
and diverse pre-training mixture, and architec-
tural/optimization improvements. We mainly
use two model sizes in the family: PaLM-2 BI-
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SON and (the larger) PaLM-2-UNICORN.4 In
addition we explore the impact of instruction-
tuning by using a UNICORN model finetuned
on the FLAN dataset (Wei et al., 2021).

For score prediction, we compare PaLM and
PaLM-2 against the GPT family of LLMs (Brown
et al., 2020; OpenAI, 2023) by leveraging the
results and outputs from the GEMBA evaluator
(Kocmi and Federmann, 2023). We then evaluate
the performance of AUTOMQM with only PaLM-2
models (which performed best in score prediction).

Additionally, for the high-resource languages,
we compare to a set of strong baseline eval-
uation metrics, MetricX-XXL and COMET-22,
which were the two top-performing metrics in the
WMT’22 Metrics Shared Task. MetricX-XXL and
COMET-22 are both finetuned regression models
trained on DA data from WMT that are initialized
with mT5 (Xue et al., 2021) and XLM-R (Conneau
et al., 2020), respectively.

For the AUTOMQM experiments, we also com-
pare against MATESE, a comparable submission
to the WMT’22 Metrics Shared task that finetuned
a XLM-R model to identify major and minor errors,
and computed a score automatically. Since we were
unable to obtain the span-level predictions for the
MATESE submission, we also compare against the
top submission to the WMT’22 Word-Level Qual-
ity Estimation Shared Task (Zerva et al., 2021):
word-level COMETKIWI (COMET-WL) (Rei et al.,
2022b), also based on an XLM-R model trained on
a combination of sentence- and word-level data. To
do so, we re-run this model on the WMT’22 Met-
rics Shared Task data, and convert the predicted
word-level OK/BAD tags into spans.5

Finetuning For regression finetuning, we use a
real-valued logit, extracted from a fixed index in the
first target token’s logit vector, as the quality signal.
(In particular, we leverage a special, unused, vocab-
ulary token.) This was the technique used to train
MetricX-XXL in the WMT 2022 Shared Task sub-
mission (Freitag et al., 2022). The regression-based
model was trained on WMT direct assessment (DA)
data from the years 2015 through 2020.

For generative classification, we bucket the
scores in the training data into five classes, where

4Information about exact number of parameters of PaLM-2
models is not publicly available.

5We consider a span as any maximal consecutive sequence
of words marked as BAD, assigning every span the major
severity.

class boundaries are assigned so that each class
contains an equal number of training examples. We
then map labels to verbal ratings from the follow-
ing set, based on their bucket: ["very bad", "bad",
"ok", "good", "very good"]. To evaluate the model,
predictions are mapped back to integer labels from
1 to 5. Any predictions not containing a substring in
the label set are considered invalid and are mapped
to 0. We experimented with finetuning on both DA
and MQM 2020 (Freitag et al., 2021a) data, and
found that the latter performed slightly better.

To assess the impact of model size, we also
finetune two additional (smaller) PaLM-2 models,
which we call S and M , comparing their finetuned
and zero-shot performance.6

Metric Meta-Evaluation The quality of an au-
tomatic evaluation metric is estimated by compar-
ing the agreement between the metric scores and
ground-truth quality scores on a large number of
translations from different MT systems, a process
known as metric meta-evaluation. This work re-
ports three different agreement scores, as follows.

The first is system-level accuracy, which calcu-
lates the percent of system pairs that are ranked the
same by the metric and ground-truth scores, micro-
averaged over a set of language pairs (Kocmi et al.,
2021). System-level scores are defined as the aver-
age score across all segments.

At the segment-level, the standard correlation
that is reported by WMT is Kendall’s τ . However,
recent work pointed out problems with Kendall’s τ
with respect to ties (Deutsch et al., 2023). In short,
different variants of τ are inconsistent with respect
to ties and even biased against metrics that predict
ties, as our metrics do in this work. Deutsch et al.
(2023) recommend reporting a pairwise accuracy
score, which rewards metrics for correctly ranking
translations as well as correctly predicting ties, in
combination with a tie calibration procedure that
automatically introduces ties into metric scores so
that the meta-evaluation is fairer. This accuracy
score, denoted acc∗, ranges between 0 and 1, and
a random metric would achieve 33% accuracy. We
report the “group-by-item” variant of the pairwise
accuracy score from Deutsch et al. (2023) in ad-
dition to Pearson’s ρ, a complementary signal to
rank-based correlations that measure the strength of
the linear relationship between two variables (and
one of the standard correlations reported in WMT).

6We use a small variation of the zero-shot prompt, asking
models for scores from the same 5 buckets used in finetuning.
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System-Level Segment-Level
All (3 LPs) EN-DE ZH-EN EN-RU

Model Ref? Accuracy ρ acc? ρ acc? ρ acc?

Baselines
MetricX-XXL 3 85.0% 0.549 61.1% 0.581 54.6% 0.495 60.6%
COMET-22 3 83.9% 0.512 60.2% 0.585 54.1% 0.469 57.7%
COMET-QE 7 78.1% 0.419 56.3% 0.505 48.8% 0.439 53.4%
Prompting
PaLM 540B 3 90.1% 0.247 55.4% 0.255 48.5% 0.180 48.6%
PaLM-2 BISON 3 88.7% 0.394 56.8% 0.322 49.3% 0.322 52.8%
PaLM-2 UNICORN 3 90.1% 0.401 56.3% 0.349 51.1% 0.352 55.3%
FLAN-PaLM-2 UNICORN 3 75.9% 0.197 55.6% 0.139 46.1% 0.198 52.0%
PaLM 540B 7 84.3% 0.239 56.1% 0.270 43.1% 0.300 51.8%
PaLM-2 BISON 7 85.0% 0.355 57.0% 0.299 48.6% 0.303 53.1%
PaLM-2 UNICORN 7 84.3% 0.275 56.1% 0.252 48.3% 0.209 49.8%
FLAN-PaLM-2 UNICORN 7 69.7% 0.116 54.6% 0.112 43.8% 0.156 47.8%
Finetune
PaLM-2 BISON (R) 3 88.0% 0.511 61.0% 0.459 51.5% 0.458 59.5%
PaLM-2 BISON (GC) 3 86.1% 0.400 59.2% 0.444 49.3% 0.365 56.0%
PaLM-2 UNICORN (R) 3 87.6% 0.508 61.1% 0.412 52.6% 0.460 60.4%
PaLM 2 BISON (R) 7 87.6% 0.490 59.9% 0.439 53.4% 0.437 59.2%
PaLM 2 BISON (GC) 7 86.1% 0.368 57.5% 0.420 47.3% 0.390 54.9%
PaLM 2 UNICORN (GC) 7 86.1% 0.407 57.9% 0.402 45.6% 0.411 55.3%

Table 1: Meta-evaluation results at system and segment-level for the high-resource language pairs. Finetuned (R)
and (GC) represent the regression and generative classification objectives (§4.2). 3and 7 represent reference-based
and reference-less metrics, respectively.

Span Meta-Evaluation Since AUTOMQM pro-
vides not only scores but also the identified error
spans, we can compare the predicted spans with the
errors marked by annotators in the MQM annota-
tions. We evaluate quality of predicted spans using:
(1) Span Precision (SP), which measures the over-
lap of predicted spans and gold (annotated) spans;
and (2) Major recall (MR), which captures the per-
centage of gold major errors that were predicted as
errors (either minor or major).

More formally, consider the set of ground truth
spans S?, where each span consists of a sequence of
words, i.e., si = (w(a), w(a+1), · · · ). Let S?

maj ⊆
S? be the subset containing only the major errors.
Given a span set S, we define its positional set
P (S) as the set containing the positions of all the
words in every span in S. For example, assuming a
span si = (w(n), w(n+1), · · · ) in S starts at the nth
position in the text, its corresponding positional set
will include the positions {n, n+1, ..., n+len(si)−
1}. Then for a set of predicted spans Ŝ, SP and
MR are defined as:

SP(Ŝ) =
|P (Ŝ) ∩ P (S?)|
|P (Ŝ)|

(1)

MR(Ŝ) =
|P (Ŝ) ∩ P (S?

maj)|
|P (S?

maj)|
(2)

Intuitively, we care for overall precision (regard-
less of severity) since we want to make sure pre-
dicted errors tend to be marked by annotators as
well, but for recall we care mostly for major errors,

as these have a larger impact on translation qual-
ity and are more critical to identify. Additionally,
we also report the (3) Matthews Correlation Coeffi-
cient (MCC), one of the official metrics in the word-
level quality estimation tasks (Zerva et al., 2022).

6.2 Results
6.2.1 Score Prediction
Table 1 summarizes the meta-evaluation results, at
the system and segment level, for both the zero-shot
prompting and finetuning settings.

Prompting A first observation is almost all zero-
shot LLM evaluators have higher system-level per-
formance than learned metrics (with and without
references), with PaLM 540B and PaLM-2 UNI-
CORN achieving the best performance. At the seg-
ment level, the story is more complicated: similarly
to Kocmi et al. (2022), we find that none of the
LLMs we explored was able to consistently out-
perform the baseline learned metrics. We see that
PaLM-540B is a particularly poor reference-based
evaluator, which is surprising given its system-level
performance. Unexpectedly, instruction-tuning
with FLAN seems to degrade performance, with
FLAN-PaLM-2 UNICORN achieving poor perfor-
mance at both the system and segment levels.7

Nevertheless, PaLM-2 models achieve high cor-
relations with human judgments, and the reference-

7Note that this might be a problem with the FLAN dataset
and not instruction-tuning in general, as the GPT models are
also instruction-tuned and perform well.
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System Segment acc?

Model Ref? All EN-DE ZH-EN EN-RU
GEMBA
GPT-3.5 3 85.4% 54.9% 49.5% 47.5%
GPT-4 3 88.7% 57.8% 52.6% 55.0%
GPT-3.5 7 82.5% 56.1% 49.7% 49.3%
GPT-4 7 89.1% 56.4% 53.4% 54.8%

BISON 3 88.7% 56.8% 49.3% 52.8%
UNICORN 3 90.1% 56.3% 51.1% 55.3%
BISON 7 85.0% 57.0% 48.6% 53.1%
UNICORN 7 84.3% 56.1% 48.3% 49.8%

Table 2: Comparison between PaLM-2 and GPT-based
GEMBA (Kocmi et al., 2022) at the system and segment levels
for the high-resource language pairs.

less PaLM-2 BISON is competitive with the learned
baselines, particularly at assessing alternative trans-
lations of the same sentence (acc∗). When com-
paring PaLM-2 models with Kocmi et al. (2022)’s
GPT-based GEMBA evaluator (Table 2), we see
that both families of LLMs perform similarly,
with PaLM-2 models exhibiting higher system-
level performance than GPT-based GEMBA, while
GEMBA achieves better segment-level accuracy,
particularly in the reference-less setting.

Figure 3: Distribution of scores for various LLM reference-
based evaluators, on the EN-DE test set. Note that the y axis
is in log-scale.

Figure 3 shows the distribution of scores pro-
duced by PaLM- and PaLM-2-based evaluators.
We find that, despite being prompted to give a score
in the 0-100 range, these models almost always out-
put one of a very limited set of scores (e.g. 0, 50,
90, 95). Given Kocmi and Federmann (2023)’s
similar findings with GPT models, it seems that
this is a consequence of the pretraining objective.

Finetuning Despite their already-great perfor-
mance in the zero-shot setting, we find that fine-
tuning LLMs can further improve LLM evaluators’
segment-level scores. This is particularly obvious
for the reference-less evaluators, where a finetuned
PaLM-2 BISON achieves state-of-the-art perfor-
mance in segment-level correlations and compa-
rable system-level accuracy across all language

pairs. Moreover, when we look at how perfor-
mance scales with parameter count (Figure 4), we
observe an interesting trend: while smaller models
are not capable of being effective zero-shot evalu-
ators, finetuning them leads to competitive perfor-
mance, and only a slight decrease when compared
to their larger finetuned counterparts.
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Figure 4: Behavior of Pearson as we scale the LLM’s param-
eter count. Note that the x axis is not to-scale with regard to
parameter count.

In-context Learning Figure 5 shows the mean
and interquartile range (IQR) of the performance
as we increase the number of in-context examples
k (with 100 example sets per k) sampled with strat-
ified sampling (see Appendix E for uniform). Sur-
prisingly, despite evidence of the benefits of in-
context learning for many tasks, we found that
including in-context examples during evaluation
(almost) never led to better performance, either
with uniform or stratified sampling.

0 1 2 3 4
# of in-context examples
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Figure 5: Mean Pearson and its interquartile range (IQR) in
the WMT22 EN-DE test set, as we increase the number of
in-context examples with stratified sampling

To investigate the cause of this disappointing per-
formance, we looked at how particular in-context
example sets affect the distribution of scores pro-
duced by LLM-based evaluators. Figure 6 shows
the distribution of scores over the whole test set
for the 1-shot and 2-shot settings, with different
in-context examples sets. We can see that output
distribution is heavily biased by the scores in the
in-context examples: despite never predicting 79
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Figure 6: Distribution of scores for PaLM-2 (BISON) models
for 1-shot (top) and 2-shot (bottom) setups, with various in-
context learning sets for each (and their scores in the legend)

in the zero-shot setting, when a single example
with that score is included, it starts to dominate
the model predictions. This seems to hint that
LLMs “overfit” to the specific scores provided as
examples, rather than generalizing to the broader
evaluation task, which could explain the lackluster
performance of in-context learning.

6.3 Low Resource Languages

Table 3 shows the performance of PaLM-2 mod-
els at score prediction for low-resource transla-
tion. Overall, we find that similar to high-resource
LPs, these models are good zero-shot evaluators,
with system-level accuracies around 90%. How-
ever, zero-shot LLMs underperform learned met-
rics, even when these metrics also weren’t exposed
to data in these low-resource languages.

System Segment ρ
Model Ref? All EN-KK EN-GU KK-EN GU-EN

Baseline

MetricX-XXL? 3 94.0% 0.666 0.701 0.539 0.409
Prompting

BISON 3 92.2% 0.605 0.540 0.462 0.339
UNICORN 3 87.4% 0.609 0.621 0.495 0.384
BISON 7 89.8% 0.567 0.478 0.381 0.313
UNICORN 7 84.4% 0.536 0.523 0.433 0.334

Table 3: Meta-evaluation results for system-level accuracy
and segment-level Pearson on the low-resource languages,
using PaLM-2 for score prediction. ?Note that the baseline is
slightly different from the high-resource case, being trained on
the same data but without these low-resource language pairs.

6.3.1 AUTOMQM
Figure 14 shows the mean and interquartile range
(IQR) of the performance of PaLM-2 BISON with
AUTOMQM, as we increase the number of in-
context examples (again, with 100 example sets per
k). Contrary to the performance with score predic-
tion, we find that performance with AUTOMQM
seems to (mostly) scale with the number of in-
context examples: performance increases monoton-
ically with up to 4 in-context examples and plateaus
thereafter. Additionally, the variance across the in-
context learning sets seems to be lower, with most
example sets exhibiting less than 0.05 Pearson dif-
ference from the best-performing sets. All this sug-
gests that LLM evaluators are much more robust to
the choice of in-context examples when prompted
for AUTOMQM rather than for score prediction.
We also find that the behavior of in-context learn-
ing is quite similar for both reference-based and
reference-less evaluation tasks. Finally, we observe
that the example sets that perform well for one task
generally work well for the other, with performance
on both settings given a fixed in-context set being
highly correlated, as shown in Figure 7.
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Figure 7: Scatter plot of the Pearson of PaLM-2 (BISON)
models, with/without including the reference in the prompt,
for each in-context learning setting tried.

Table 4 shows the meta-evaluation results for
PaLM-2 BISON and UNICORN prompted with
AUTOMQM (using the best-performing in-context
learning sets in Figure 14). For ease of comparison,
we also report their performance when prompted
for score prediction, as well as the performance
of the baselines. Overall, prompting LLMs with
AUTOMQM seems to lead to significant improve-
ments in evaluating machine translation quality,
particularly for larger models: UNICORN achieves
better performance (across all meta evaluations)
with it than when prompted for score prediction,
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System-Level Segment-Level
All (2 LPs) EN-DE ZH-EN

Model Ref? Accuracy ρ acc? ρ acc?

Baselines
MetricX-XXL 3 81.1% 0.549 61.1% 0.581 54.6%
MATESE 3 79.9% 0.391 58.8% 0.528 51.5%
COMET-QE 7 76.9% 0.419 56.3% 0.505 48.8%
MATESE-QE 7 73.4% 0.298 57.9% 0.468 50.1%
COMET-WL 7 71.6% 0.418 57.1% 0.406 51.5%
Score Prediction
PaLM-2 BISON 3 86.4% 0.394 56.8% 0.322 49.3%
PaLM-2 UNICORN 3 86.4% 0.401 56.3% 0.349 51.1%
PaLM-2 BISON 7 84.0% 0.355 57.0% 0.299 48.6%
PaLM-2 UNICORN 7 80.5% 0.275 56.1% 0.252 48.3%
AutoMQM
PaLM-2 BISON 3 84.0% 0.369 59.2% 0.355 48.4%
PaLM-2 UNICORN 3 87.6% 0.432 59.1% 0.442 51.8%
PaLM 2 BISON 7 87.6% 0.297 55.2% 0.331 48.0%
PaLM 2 UNICORN 7 83.4% 0.368 56.4% 0.429 50.2%

Table 4: Meta-evaluation results for PaLM-2 models using AutoMQM and score prediction, at the system and
segment levels for multiple language pairs.

and its reference-less version is competitive with
the best learned metric even at the segment level.
However, for the smaller BISON, the benefits of
AUTOMQM are less clear, with both techniques
performing comparably. This hints that scale is
necessary for zero- and few- shot fine-grained evalu-
ation (like with AUTOMQM). We also find that the
distribution of scores produced by LLMs prompted
with AUTOMQM is much closer to the gold MQM
distribution, with models outputting a much larger
set of scores, and in the same ranges as annotators
do (see Figure 8).

Figure 8: Distribution of scores for PaLM-2 models using
AUTOMQM, on WMT22 EN-DE

Finally, when evaluating the error spans pro-
duced by LLMs prompted with AUTOMQM (Ta-
ble 5), we find that PaLM-2 models are able to
identify most of the major errors. However, it does
seem to over-predict errors (with errors predicted
by UNICORN having on average∼5 words per span
vs ∼2 words in the ground truth) and have overall

EN-DE ZH-EN

Model R? SP MR MCC SP MR MCC
Baselines
COMET-WL 7 0.267 0.250 0.161 0.364 0.178 0.152
AutoMQM
BISON 3 0.095 0.749 0.060 0.252 0.255 0.109
UNICORN 3 0.175 0.628 0.193 0.238 0.476 0.143
BISON 7 0.119 0.520 0.092 0.224 0.311 0.091
UNICORN 7 0.150 0.580 0.150 0.229 0.488 0.133

Table 5: Span-level meta-evaluation on WMT22 for PaLM-2
models using AutoMQM. SR and MR represent span precision
and major recall, respectively.

low span precision. Similarly to overall score cor-
relations, scale also seems to be important for the
quality of spans produced by AUTOMQM, with
UNICORN outperforming BISON at most metrics.
Additionally, UNICORN prompted with AutoMQM
predicts spans of comparable quality to the ones
produced by current state-of-the-art learned word-
level evaluators (trained on a considerable number
of fine-grained annotations derived from MQM):
while word-level models are more precise, their
overall span correlation (MCC) is comparable, and
they miss considerably more major errors than
LLMs (despite only leveraging a handful of an-
notations).

7 Conclusion

In this study, we have systematically investi-
gated the capabilities of large language models
for machine translation evaluation through score
prediction, and proposed AUTOMQM, a novel
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prompting technique that leverages the Multidi-
mensional Quality Metrics (MQM) framework for
interpretable MT evaluation using LLMs.

We demonstrated that just prompting LLMs for
score prediction leads to state-of-the-art system-
level evaluators, but still falls short of the best
learned metrics at the segment-level (with fine-
tuning being necessary to close this gap). Then
we showed that AUTOMQM can further improve
the performance of LLMs without finetuning while
providing interpretability through error spans that
align with human annotations.

Our findings surrounding finetuning LLMs for
score prediction hint that LLMs’ performance in
machine translation evaluation could be further im-
proved by finetuning these models on fine-grained
human judgment data (like MQM) and is a direc-
tion we are actively pursuing. Additionally, the
general-purpose nature of LLMs may enable the
application of similar prompting techniques (lever-
aging some fine-grained evaluation schemes) to
other evaluation problems (Wu et al., 2023).
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A Multidimensional Quality Metric
(MQM)

The Multidimensional Quality Metrics (MQM)
framework is a flexible human-evaluation frame-
work developed to evaluate and categorize errors in
translations. Annotators are instructed to identify
all errors within each segment in a document, pay-
ing particular attention to document context. See
Table 6 for the annotator guidelines provided.

Annotators are asked to assign both an error
severity and category. Error severity (either ma-
jor or minor) is assigned independently of category.
Spans with no marked errors have neutral sever-
ity and no category. Possible error categories are
displayed in Table 7.
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You will be assessing translations at the segment level, where a segment may contain one or more
sentences. Each segment is aligned with a corresponding source segment, and both segments are
displayed within their respective documents. Annotate segments in natural order, as if you were reading
the document. You may return to revise previous segments.

Please identify all errors within each translated segment, up to a maximum of five. If there are more than
five errors, identify only the five most severe. If it is not possible to reliably identify distinct errors because
the translation is too badly garbled or is unrelated to the source, then mark a single Non-translation error
that spans the entire segment.

To identify an error, highlight the relevant span of text, and select a category/sub-category and severity
level from the available options. (The span of text may be in the source segment if the error is a source
error or an omission.) When identifying errors, please be as fine-grained as possible. For example, if a
sentence contains two words that are each mistranslated, two separate mistranslation errors should be
recorded. If a single stretch of text contains multiple errors, you only need to indicate the one that is most
severe. If all have the same severity, choose the first matching category listed in the error typology (eg,
Accuracy, then Fluency, then Terminology, etc).

Please pay particular attention to document context when annotating. If a translation might be questionable
on its own but is fine in the context of the document, it should not be considered erroneous; conversely,
if a translation might be acceptable in some context, but not within the current document, it should be
marked as wrong.

There are two special error categories: Source error and Non-translation. Source errors should be
annotated separately, highlighting the relevant span in the source segment. They do not count against the
five-error limit for target errors, which should be handled in the usual way, whether or not they resulted
from a source error. There can be at most one Non-translation error per segment, and it should span the
entire segment. No other errors should be identified if Non-Translation is selected.

Table 6: MQM annotator guidelines

Since MQM doesn’t ask annotators for quality
scores, those scores are derived automatically from
the identified error spans and their classifications,
based on a weighting of each error severity and cat-
egory. Table 8 summarizes this weighting scheme,
in which segment-level scores can range from 0
(perfect) to 25 (worst). The final segment-level
score is an average over scores from all annotators.
In some settings (e.g. calculating correlation for
learned metrics), the scores are negated.

We use the same weighting to obtain scores from
errors identified by AUTOMQM.

B Datasets’ Statistics

See Table 9 for a summary of the number of sys-
tems and annotated segments per system in the
evaluation datasets used in this work.

C Score Prediction Prompt

Figure 9 contains the GEMBA-SQM prompt that
we used for our 0-shot experiments.

D Sampling in-context learning
examples for AutoMQM

Figure 10 shows the rejection criteria used when
sampling example sets as discussed in §4.

E Additional Results

Figures 11, 12, 13 and 8 present additional experi-
mental results.
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Error Category Description

Accuracy Addition Translation includes information not present in the source.
Omission Translation is missing content from the source.
Mistranslation Translation does not accurately represent the source.
Untranslated text Source text has been left untranslated.

Fluency Punctuation Incorrect punctuation (for locale or style).
Spelling Incorrect spelling or capitalization.
Grammar Problems with grammar, other than orthography.
Register Wrong grammatical register (eg, inappropriately informal pronouns).
Inconsistency Internal inconsistency (not related to terminology).
Character encoding Characters are garbled due to incorrect encoding.

Terminology Inappropriate for context Terminology is non-standard or does not fit context.
Inconsistent use Terminology is used inconsistently.

Style Awkward Translation has stylistic problems.

Locale Address format Wrong format for addresses.
convention Currency format Wrong format for currency.

Date format Wrong format for dates.
Name format Wrong format for names.
Telephone format Wrong format for telephone numbers.
Time format Wrong format for time expressions.

Other Any other issues.

Source error An error in the source.

Non-translation Impossible to reliably characterize distinct errors.

Table 7: MQM hierarchy.

Score the following translation from {src_lang} to {tgt_lang} with respect to the
human reference on a continuous scale from 0 to 100 that starts with "No meaning
preserved", goes through "Some meaning preserved", then "Most meaning preserved
and few grammar mistakes", up to "Perfect meaning and grammar".

{src_lang} source: "{source}"
{tgt_lang} human reference: "{reference}"
{tgt_lang} translation: "{candidate}"
Score (0-100): {score}

Figure 9: The score prediction prompt used in this paper. Equivalent to the GEMBA-SQM prompt in Kocmi and
Federmann (2023). Parts in purple are only included for reference-based evaluation, while parts in orange represent
slots for outputs and are only included for in-context examples.

Severity Category Weight

Major Non-translation 25
all others 5

Minor Fluency/Punctuation 0.1
all others 1

Neutral all 0

Table 8: MQM error weighting.

LP #Sys #Seg

en→de 13 1315
zh→en 14 1875
en→ru 15 1315

LP #Sys #Seg

en→kk 11 998
kk→en 11 1000
en→gu 11 998
gu→en 11 1016

Table 9: The number of systems and segments that
have MQM scores (left) and DA scores (right) used as
ground-truth in this work.
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1 def check_icl_set(
2 examples: pd.DataFrame,
3 min_errors=3,
4 majmin_threshold=2,
5 cat_diversity=2,
6 min_clen=20,
7 max_clen=400,
8 ):
9 # Check if they have the same number of spans as severity/category

10 if not examples.apply(
11 lambda r:
12 len(r[’span’]) == len(r[’severity’]) and len(r[’span’]) == len(r[’category’]),
13 axis=1
14 ).all():
15 return False
16
17 # Check if there are at least min_errors
18 if examples[’severity’].apply(lambda svs: len(svs)).sum() < min_errors:
19 return False
20
21 # Check that there’s a balance of major and minor errors.
22 major_count = examples[’severity’].apply(lambda svs: sum([s==’major’ for s in svs])).sum()
23 minor_count = examples[’severity’].apply(lambda svs: sum([s==’minor’ for s in svs])).sum()
24 if abs(major_count - minor_count) > majmin_threshold:
25 return False
26
27 # Check that at least cat_diversity error types are represented.
28 categories = examples[’category’].apply(lambda cs: [c.split("/")[0] for c in cs])
29 represented_error_types = set().union(*categories.tolist())
30 if len(represented_error_types) < cat_diversity:
31 return False
32
33 top_clen = examples.apply(
34 lambda row: max(len(row[s]) for s in (’source’, ’reference’, ’candidate’)
35 ), axis=1).max()
36 bot_clen = examples.apply(
37 lambda row: min(len(row[s]) for s in (’source’, ’reference’, ’candidate’)),
38 axis=1).min()
39
40 if top_clen > max_clen or bot_clen < min_clen:
41 return False
42
43 # All checks passed.
44 return True

Figure 10: Rejection criteria used when sampling in-context learning examples for AUTOMQM.
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Figure 11: Mean Pearson and its interquartile range (IQR), as we increase the number of in-context examples in the
score prediction prompt, sampled with uniform (left) and stratified (right) sampling, for WMT22 EN-DE.
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Figure 12: Mean Pearson and its interquartile range (IQR), as we increase the number of in-context examples in the
score prediction prompt, sampled with uniform (left) and stratified (right) sampling, for WMT22 ZH-EN.

Figure 13: Distribution of scores for various LLM reference-
based evaluators, on the ZH-EN test set. Note that the y axis
is in log-scale.
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Figure 14: Mean Pearson and its interquartile range (IQR), as we increase the number of in-context examples in the
AUTOMQM prompt, for EN-DE (left) and ZH-EN (right).
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