
NEALT
Northern European Association for Language Technology

NEALT Proceedings Series No. 52

Proceedings of the 24th Nordic
Conference on Computational

Linguistics (NoDaLiDa)

May 22 - 24, 2023

Tórshavn, Faroe Islands

Editors: Tanel Alumäe and Mark Fishel



NoDaLiDa 2023

24th Nordic Conference on Computational Linguistics
(NoDaLiDa)

Proceedings of the Conference

May 22-24, 2023



The NoDaLiDa organizers gratefully acknowledge the support from the follow-
ing sponsors.

Silver

Bronze

Other

NORTHERN EUROPEAN ASSOCIATION FOR LANGUAGE TECHNOLOGY

NEALT

ii



c©2023 University of Tartu Library

Front-cover photo: Luca Renner (@lucarennerphotography, http://visitfaroeislands.com)

Published by:

University of Tartu Library, Estonia
NEALT Proceedings Series, No. 52
Indexed in the ACL Anthology

ISBN: 978-99-1621-999-7
ISSN: 1736-8197 (Print)
ISSN: 1736-6305 (Online)

Volume Editors:
Tanel Alumäe and Mark Fishel

iii



Message from the General Chair

It is my great pleasure and honor to welcome you to the 24th Nordic Conference on Computational
Linguistics (NoDaLiDa 2023)!

After a couple of years’ worth of conferences cancelled or held online (including the previous NoDaLiDa)
we are extremely happy that NoDaLiDa 2023 is an onsite event. This is especially exciting given that for
the first time in the history of NoDaLiDa conferences it takes place in Tórshavn, Faroe Islands.

The conference features three types of papers: long, short and demo papers. We are truly grateful to all
the authors of papers submitted to this year’s conference, with 130 papers submitted, a more than 40%
increase over last year’s yield! In total, we accepted 79 papers: 49 long papers, 26 short papers and 4
demo papers. More than half of the accepted papers are student papers, in which the first author is a
student (29 long, 17 short and 2 demo papers). We would like to thank the 113 members of the program
committee who reviewed the papers for their contributions!

The 79 accepted papers are grouped into 12 oral and 2 poster sessions. In addition to these regular ses-
sions the conference program also includes three keynote talks. We would like to extend our gratitude
to the keynote speakers for agreeing to present their work at NoDaLiDa. Georg Rehm from DFKI will
talk on the topic of “Towards Digital Language Equality in Europe: An Overview of Recent Develop-
ments”. Hjalmar P. Petersen will talk about “Aspects of the structure of Faroese”. Marta R. Costa-Jussà
from Meta will talk about “No-language-left-behind: Scaling Human-Centered Machine Translation and
Toxicity at Scale”.

The main conference program is preceded by three workshops: NLP for Computer-Assisted Language
Learning (NLP4CALL), the Constraint Grammar Workshop and Resources and representations for under-
resourced languages and domains (RESOURCEFUL’2023). We thank the workshop organizers for their
efforts and for expanding the main conference program with a focus on more specific research topics.

I would like to express sincere gratitude to the entire team behind organizing NoDaLiDa 2023. I was
honored to receive the invitation to serve as the general chair from the NEALT board; thank you for
trusting me with this role. My deepest gratitude goes to Tanel Alumäe for serving as the publications
chair and his active participation, Inguna Skadin, a for serving as the workshop chair as well as Iben
Nyholm Debess for serving as the main local chair and smoothly handling all associated aspects of
conference organization. I also want to thank the rest of the program chairs, Lilja Øvrelid and Christian
Hardmeier and the local co-chairs Bergur Djurhuus Hansen, Peter Juel Henrichsen and Sandra Saxov
Lamhauge. Thank you everyone for your contributions, you are awesome!

NoDaLiDa 2023 received financial support from several institutions and we would like to thank them
here: NEALT, Dictus, Málráðið, Tórshavnar kommuna, BankNordik, Digitaliseringsstyrelsen, Univer-
sity of the Faroe Islands, Nationella språkbanken, Elektron and Formula.

Welcome and enjoy the 24th Nordic Conference on Computational Linguistics!

Mark Fishel, General Chair

Tartu

May 2023
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Invited Talk: Towards Digital Language Equality in Europe:
An Overview of Recent Developments

Georg Rehm
German Research Center for Artifical Intelligence

Digital Language Equality (DLE) “is the state of affairs in which all languages have the technological
support and situational context necessary for them to continue to exist and to prosper as living languages
in the digital age”, as we specified in one of our key reports of the EU project European Language Equal-
ity (ELE). Our empirical findings suggest that Europe is currently very far from having a situation in
which all our languages are supported equally well through technologies. In this presentation, I’ll give
an overview of the two ELE projects and their main results and findings with a special focus on the Nordic
languages (including insights from the FSTP projects supported through ELE2). This will also include
a brief look back into the past, especially discussing the question if and where we have seen progress
in the last, say, 15 years. Furthermore, I’ll present an overview of our main strategic recommendations
towards the European Union in terms of bringing about DLE in Europe by 2030. The presentation will
conclude with a look at other relevant activities in Europe, including, critically the Common European
Language Data Space project, which started in early 2023.

Invited Talk: No-language-left-behind: Scaling
Human-Centered Machine Translation and Toxicity at Scale

Marta R. Costa-jussà
Meta AI

Machine Translation systems can produce different types of errors, some of which are characterized as
critical or catastrophic due to the specific negative impact that they can have on users. In this talk, we fo-
cus on one type of critical error: added toxicity. We evaluate and analyze added toxicity in the context of
NLLB-200 that open-sources models capable of delivering evaluated, high-quality translations directly
between 200 languages. An automatic toxicity evaluation shows that added toxicity across languages
varies from 0% to 5%. The output languages with the most added toxicity tend to be low-resource ones,
and the demographic axes with the most added toxicity include sexual orientation, gender and sex, and
ability. Making use of the input attributions allows us to further explain toxicity and our recommenda-
tions to reduce added toxicity are to curate training data to avoid mistranslations, mitigate hallucination
and check unstable translations.
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Invited Talk: Aspects of the Structure of Faroese
Hjalmar P. Petersen

University of Faroe Islands

Phonological changes and later morphologization have led to different complex alternations in Faroese.
These are argued to emerge especially in small languages, with little contact and tight networks. The
alternations will be exemplified with ’skerping’, palatalization, glide insertion and the quantity-shift.
There will be a discussion of the morphology-phonology interface, where the suggestion is that Faroese
has 3 strata, stem1, stem2 and a word- strata. Syntactic variation and different construction will be ad-
dressed and illustrated; in this context reflexives are included and the present reorganization of the case
system of complements of prepositions, where speakers use semantic and structural case in a certain way.
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Abstract

We investigate to what extent pre-trained
language models can be used for auto-
mated claim detection for fact-checking in
a low resource setting. We explore this
idea by fine-tuning four Norwegian pre-
trained language models to perform the
binary classification task of determining
if a claim should be discarded or upheld
to be further processed by human fact-
checkers. We conduct a set of experiments
to compare the performance of the lan-
guage models, and provide a simple base-
line model using SVM with tf-idf features.
Since we are focusing on claim detection,
the recall score for the upheld class is to be
emphasized over other performance mea-
sures. Our experiments indicate that the
language models are superior to the base-
line system in terms of F1, while the base-
line model results in the highest preci-
sion. However, the two Norwegian mod-
els, NorBERT2 and NB-BERTlarge, give
respectively superior F1 and recall values.
We argue that large language models could
be successfully employed to solve the au-
tomated claim detection problem. The
choice of the model depends on the de-
sired end-goal. Moreover, our error analy-
sis shows that language models are gener-
ally less sensitive to the changes in claim
length and source than the SVM model.

1 Introduction

With the growing concerns about misinformation,
fact-checking has become an essential part of jour-
nalism. To mitigate the time and the human bur-
den of fact-checking and to allow for more fact-
checked articles, automated fact-checking (AFC)
systems have been developed (Guo et al., 2022;

Zeng et al., 2021; Lazarski et al., 2021). To ap-
proach automated fact-checking, three basic tasks
are defined in the pipeline: claim detection, ev-
idence retrieval, and claim verification. Claim
detection refers to monitoring social media and
political sources for identifying statements worth
checking. The subsequent components retrieve
reliable documents for debunking the detected
claims and generate a verdict. Several tools have
been developed to automate these tasks to meet
the expectations of the human fact-checkers1. Ac-
cording to the studies on the user needs of fact-
checkers, claim detection receives the highest
preference among other AFC tools (Graves, 2018;
Dierickx et al., 2022). Automated claim detec-
tion is a classification problem, where models are
trained on sentences parsed from text documents
and labelled by humans according to their check-
worthiness (Hassan et al., 2017a).

In this work, we explore how well Norwegian
pre-trained language models (LMs) perform on
the task of automated claim detection. This is,
to the best of our knowledge, the first attempt at
automated claim detection for Norwegian using
LMs. Fine-tuning LMs for the task of automated
claim detection is not novel (Cheema et al., 2020;
Zhuang et al., 2021; Shaar et al., 2021). However,
this has never been done on Norwegian, and we
believe that our insights into which errors these
models do compared to simple baselines is a valu-
able contribution. Our research questions are:

• How well do Norwegian LMs perform on the
task of automated claim detection compared
to a simple SVM baseline?

• Which aspects of claim detection do these
LMs still struggle with?

1https://www.rand.org/
research/projects/truth-decay/
fighting-disinformation/search.html

1
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To address these questions, we first fine-tune
each model on a small dataset from a Norwegian
non-profit fact-checking organization, comprising
claims manually annotated with labels reflecting
their check-worthiness. Then we manually anal-
yse the misclassifications of each model and pro-
vide an error analysis.

We believe that the contributions of this work
have important societal implications. The case we
study here sheds lights on the future directions of
claim detection tools for fact-checking based on
pre-trained language models for low to medium
resourced languages. This would contribute to
the fight against dis/misinformation by scaling and
speeding up the fact-checking process.

The rest of the paper is organized as follows. In
Section 2 we give an overview of previous work
on automated claim detection. Section 3 describes
the dataset and our experimental setup. We present
and discuss our results and provide an error anal-
ysis in Section 4. Finally, we summarize our main
findings, and discuss possible future works in Sec-
tion 5.

2 Background

Automated claim detection for fact-checking does
not have a long history, but it has turned to be one
of the attractive fields of research in NLP (Has-
san et al., 2015; Gencheva et al., 2017; Beltrán
et al., 2021; Cheema et al., 2020; Shaar et al.,
2021). One of the first studies on claim detec-
tion for AFC is initiated as part of the ClaimBuster
project Hassan et al. (2017b). Their initial claim
detection system was based on a set of features
(sentiment, word count, part of speech (PoS) tags
and named entities (NE)) followed by a feature se-
lection and a traditional classifier namely Naive
Bayes, SVM, and Random Forest(Hassan et al.,
2015). Claim detection has also been addressed
in languages other than English. ClaimRank is a
claim detection system that supports both Arabic
and English (Gencheva et al., 2017). A compre-
hensive set of features such as tf-idf, assertiveness,
subjectivity, word embeddings are added to the
ClaimBuster features and are fed to a two-layered
neural network classifier (Gencheva et al., 2017).

In recent years, employment of pre-trained
language models (LMs) in automated claim de-
tection has been considered by numerous re-
searchers (Cheema et al., 2020; Shaar et al., 2021;
Beltrán et al., 2021). Several instances of these

works are presented in the check-worthiness de-
tection sub-tasks in CLEF CheckThat! editions
(introduced in 2018 and ongoing) (Shaar et al.,
2021; Nakov et al., 2022). CheckThat! provides
data sets in different languages (English, Turkish,
Arabic, Bulgarian, and Spanish) for the claim de-
tection task on Twitter and political debates. The
teams participating in this task have proposed clas-
sifier models mostly based on LMs. For instance,
the top-ranked teams in CheckThat! 2020 used
BERT (Devlin et al., 2019) and RoBERTa (Zhuang
et al., 2021) with enhanced generalization capabil-
ity (Williams et al., 2020) to detect check-worthy
Tweets. For the task of detecting claims in polit-
ical debates, the baseline BiLSTM (Schuster and
Paliwal, 1997) model with GloVe embedding out-
performs the LM-based systems (Martinez-Rico
et al., 2020). ClaimHunter (Beltrán et al., 2021)
is another BERT-based claim detection system
that leverages XLM-RoBERTa 2(Conneau et al.,
2020), a multilingual version of RoBERTa. It has
been proved that the proposed model is superior to
the classical baseline models NNLM+LR (Neural-
Net Language Models embedding+Logistic Re-
gression) and tf-idf+SVM.

To deal with the problem of small training
data for LMs, data augmentation is employed.
Claim detection from Twitter has been approached
by generating synthetic check-worthy claims with
lexical substitutions using BERT-based embed-
dings (Shaar et al., 2021). This approach improves
the performance of BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) classification mod-
els (Shaar et al., 2021). It has also been shown
that the BERTweet (Nguyen et al., 2020) model,
fine-tuned on claims normalized and augmented
by substitutions using WordNet, surpasses a ref-
erence n-gram model (Shaar et al., 2021).

3 Experiments

3.1 Data set

The data set is provided to us by Faktisk.no AS 3,
a non-profit fact-checking organization and inde-
pendent newsroom in Norway. Faktisk is jointly
owned by several prominent Norwegian media
houses, including VG, Dagbladet, NRK, TV2, Po-
laris Media, and Amedia. As per the company’s
articles of association, it operates under the overar-

2https://huggingface.co/
xlm-roberta-large

3https://www.faktisk.no/om-oss

2
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Figure 1: Most frequent sources of claims in our
dataset provided by Faktisk, the non-profit fact-
checking organization and independent newsroom
in Norway.

ching ethical guidelines for the Norwegian press,
as stipulated in the Vær Varsom poster 4. To en-
sure its editorial and organizational independence,
Faktisk.no adheres to the provisions of the Media
Responsibility Act 5 and its articles of association.
This ensures the editor’s autonomy from the in-
fluence of the owners and other interested parties
with interests in Faktisk’s affairs. Thus, the fund-
ing news organizations of Faktisk and this project,
being a source of some of the claims in the dataset
should not raise concern about the independence
of this research.

The data set comprises 4885 claims in Nor-
wegian collected from social debates and public
discourses from 04.03.2018 to 20.05.2022. Each
claim in the dataset is provided with its respec-
tive source. These cover a selection of Norwe-
gian newspapers (Dagbladet, VG, Nettavisen, Af-
tenposten, Klassekampen, Nationen, Dagsavisen,
DN), alternative news outlets (Resett, Steigan,
Document), think tank (Rights.no), the Norwe-
gian Broadcasting Corporation (NRK), social me-
dia (Facebook, Twitter, YouTube), and TV/Radio
(news) shows (Dagsnytt18, Politisk kvarter, De-
batten). The alternative news outlets and the think
tank are generally considered radical and contro-
versial. The distribution of the occurrence of these
sources can be seen in Figure 1.

A label is assigned to each claim, which refers

4http://presse.no/pfu/etiske-regler/
vaer-varsom-plakaten/

5https://lovdata.no/dokument/NL/lov/
2020-05-29-59

to the actions taken by human fact-checkers. This
data set has been labelled as part of the daily
routine in the organization Faktisk.no and is nei-
ther hand-crafted nor crowd-sourced for training
LMs. Thus, it resembles a real world prob-
lem. The data set labels are {Discarded, Checked
and rejected, Pre-checked, Published, Suspended,
Checked, Facebook}. After removing the miss-
ing values, the rare samples with label ‘Facebook’
(only nine claims), and the short claims with less
than five words, we end up with 4116 claims
across six different labels. These labels are pro-
duced during the fact-checking procedure. Ac-
cording to Faktisk, a claim must be based on veri-
fiable information and should not be normative or
a prediction of the future. For a claim to be con-
sidered for fact-checking, it must be supported by
verifiable information and should not involve pre-
dictions or normative statements about the future.
Additionally, the claim should have a certain de-
gree of controversy and relevance to a majority of
people. Less relevant claims may be fact-checked
if they possess good entertainment value. Once
a claim is selected, an attempt is made to contact
the sender to verify the claim and its surrounding
context. In cases where the sender is unknown,
the origin and context of the claim are used as the
starting point for the fact-checking process.

For our purposes, we aim to focus on class la-
bels specified as whether a claim is worth being
considered for further processing or if it should be
discarded. We therefore define a binary classifi-
cation task with the labels Discarded and Upheld;
where the Discarded class refers to claims with the
same label (Discarded) in the data set, and the Up-
held class includes the claims originally labelled
as Pre-checked and rejected, Pre-checking, Pub-
lished, Suspended, or Checking. A brief explana-
tion of these labels as well as the mapping of the
original labels to the binary class labels is given
in Table 1. The number of claims in each cate-
gory is also presented. There are 2810 claims in
the first class and 1306 claims in the second class.
The average and the maximum length of claims in
these samples are equal to 16 and 107 words, re-
spectively.

3.2 Experimental setup

Pre-trained language models We fine-tune
four Norwegian LMs to perform the binary clas-
sification task of claim detection. Norwegian

3
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Class Data Set Label Description #Claims

Discarded Discarded The claim has simply been discarded,
there is no need for further investigation.

2810

Upheld

Pre-checked and rejected Some preliminary work has been done to
see if the claim is worth fact-checking,
with a negative result.

372

Pre-checking Preliminary work to see if the claim is
worth fact-checking has been started.

336

Published The fact-check about the claim has been
published.

297

Suspended The claim will be taken up for consider-
ation at a later time, and pre-checking or
fact-checking will start then.

194

Checking A fact-check about the claim is in
progress.

107

Table 1: Distribution of claims across class labels and related labels in our dataset.

has two official written standards: Bokmål and
Nynorsk, and the four models are trained on data
in both written forms. These are:

• NorBERT (Kutuzov et al., 2021): trained
on the Norwegian newspaper corpus6, and
Norwegian Wikipedia, with a vocabulary of
about two billion word tokens.

• NorBERT27: trained on the non-copyrighted
subset of the Norwegian Colossal Corpus
(NCC)8 and the Norwegian subset of the C4
web-crawled corpus (Xue et al., 2021). The
size of the vocabulary is about 15 billion
word tokens.

• NB-BERTbase (Kummervold et al., 2021):
trained on the full NCC, and follows the ar-
chitecture of the BERT cased multilingual
model (Devlin et al., 2019). This model is
bigger than the two previous ones, and com-
prises around 18.5 billion word tokens.

• NB-BERTlarge
9: trained on NCC, and fol-

lows the architecture of the BERT-large un-
cased model. This model is bigger and

6https://www.nb.no/sprakbanken/
ressurskatalog/oai-nb-no-sbr-4/

7https://huggingface.co/ltgoslo/
norbert2

8https://github.com/NbAiLab/notram/
blob/master/guides/corpus_description.md

9https://huggingface.co/NbAiLab/
nb-bert-large

trained on more data (from the same sources)
than it’s base-form NB-BERTbase.

Training details The baseline model is a SVM
classifier with tf-idf features (Jones, 2004), imple-
mented using the Scikit-learn library10. To split
the data, stratified sampling based on the origi-
nal data set labels is employed to ensure the dis-
tributions of the real world label noise is consis-
tent among the splits. The ratio of the train, val-
idation, and test sets is 70% − 20% − 10% re-
spectively. The validation set is employed to tune
the hyperparameters of the model. To account
for class imbalance, weighted F1 is used for scor-
ing, which computes metrics for individual labels
and determine their weighted average based on
their respective support values. The hyperparame-
ters of the best model are (C=100, gamma=0.1,
kernel=‘rbf’). It should be noted that the
preliminary experiments revealed that the baseline
model performs extremely poor on the minority
class, Upheld. To make a fair comparison between
the baseline model and the BERT-based models,
we have examined five different random states for
splitting the data and chosen the one in favour of
the baseline model. Furthermore, we ensured that
the distribution of the length of claims in the test
split is consistent with the whole data set (See Fig-
ure 3 (a)). The same split is used for fine-tuning
the pre-trained LMs. The selected split results in
the highest F1 for the Upheld class by the baseline

10https://scikit-learn.org/stable/
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Hyperparameter Value

batch size 16
init lr 2e-5
end lr 0
warmup proportion 0.1
num epochs 5
max seq length 64

Table 2: Hyperparameter configuration of the four
used Norwegian language models.

Model t (s) P R F1

tf-idf+SVM 2 0.440 0.168 0.243
NorBERT 44 0.328 0.626 0.430
NorBERT2 45 0.401 0.588 0.477
NB-BERTbase 48 0.358 0.336 0.345
NB-BERTlarge 103 0.320 0.740 0.447

Table 3: Training time and claim detection results
for the used models, in terms of precision (P), re-
call (R), and F1.

model among the five examined random splits.
The claim detection models are fine-tuned using

a TensorFlow-based model for sequence classifi-
cation 11 from the HuggingFace transformers
library 12. Bert-based model transformer have a
sequence classification head, i.e. a linear layer
on top. We use the same train, validation, and
test splits as the baseline model and the valida-
tion set is deployed to return the best model af-
ter five epochs. All experiments are repeated for
five times and the best run in terms of F1 is re-
ported. All models are fine-tuned with Adam opti-
mizer (Kingma and Ba, 2014). The other hyperpa-
rameter configurations are identical for all the four
models, and can be seen in Tabel 2.

4 Results and discussion

4.1 Classification performance

The performance of the classification models on
the test data are measured in terms of precision,
recall, and F1. The Upheld class is treated as
the positive class. It should be noted that in
automated claim detection, overlooked important
claims have a higher cost than misclassified unim-

11TFAutoModelForSequenceClassification
12https://huggingface.co/docs/

transformers/index

portant claims. In other words, the recall score of
the Upheld class should be given particular em-
phasis.

Table 3 presents the results for the baseline
model and the four fine-tuned language models.
Metrics are computed for the positive class. The
highest score in each column is shown in bold.
For the case of precision, the baseline system
outperforms the LMs, but recall and F1 are ex-
tremely poor. It is noticeable how all the four
LMs are superior to the baseline system in terms
of F1, with NorBERT2 standing on the top. An-
other significant reflection of the results is NB-
BERTlarge’s superior performance in terms of re-
call. The training time (in seconds) is also given in
the table. We run the experiments on a PC with an
AMD Ryzen 7 5800X 8 Core Processor, an Nvidia
GeForce RTX-3080 GPU with 10 GB graphics
memory and 32 GB of RAM. The largest model,
NB-BERTlarge, requires twice as much training
time compared to the other three models.

4.2 Error analysis

To get insights on the errors made by our models,
confusion matrices of the predictions are plotted
in Figure 2. The horizontal and vertical axes refer
to the predicted and true labels, respectively. If we
focus on one of the classes in terms of precision-
recall, the baseline model and NB-BERTlarge are
the best models. These models appear to learn
one of the classes better, having fewer errors on
that class. For example, NB-BERTlarge has learnt
to correctly classify more instances of the upheld
class. But the fact that it also classifies a large pro-
portion of the claims from the discarded class as
upheld shows that it simply has overfitted on the
upheld class. This observation seems to be true for
the SVM model (overfitted to the majority class)
as well, and to some extent can be said about NB-
BERTbase.

NorBERT and NorBERT2 seem to actually
learn a more decent representation of the label dis-
tribution. While NorBERT exhibits some similar-
ities with the previous models, by mostly classi-
fying claims as one class rather than the other (in
this case the discarded class), NorBERT2 seems to
have a more balanced representation between the
classes. It is the only model that is able to iden-
tify both classes to a certain degree, even if it still
confuses many of the upheld claims as discarded
claims. If we were to select a model that works

5
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Figure 2: Confusion matrices of our models’ predictions.

(a) test data and all data (b) tf-idf+SVM (c) NorBERT

(d) NorBERT2 (e) NB-BERTbase (f) NB-BERTlarge

Figure 3: Distribution of number of words in claims across true and false predictions for the four Nor-
wegian language models and the SVM baseline.

fairly good on both classes, NorBERT2 would be
the natural choice.

Further analysis is conducted on the length of
the claims with respect to the model predictions
for true positives (TPs), true negatives (TNs), false
positives (FPs), and false negatives (FNs). Fig-
ure 3 illustrates the box and whisker plots of the
number of words in each of these groups. In Fig-
ure 3 (a), the number of words in the upheld and
discarded class are shown for the test set and the
whole data set. The length of the claims in the
discarded class appears to be slightly larger than
the upheld class. However, the quartiles and the
median length are very close and thus length is
not a significant discriminative feature. For the
baseline model, length plays an important role in
the model behaviour, though. The SVM model

correctly classifies the longer claims from the up-
held class and the shorter claims from the dis-
carded class. Among the LMs, NorBERT and
NB-BERTlarge are less sensitive to the length of
the claims, as inferred from the similar statistics
for true and false predictions. The figure also in-
dicates that NorBERT2 suffers when predicting
shorter claims, while NB-BERTbase deteriorates
for longer claims from the discarded class.

We also looked into the sources of the in-
correctly classified claims for different models.
The five most frequent sources in the data set,
namely, ‘Politisk kvarter’, ‘Facebook’, ‘NRK’,
‘Dagbladet’, and ‘Debatten’ are considered. The
percentage of the claims with false predictions
from each source are shown in Figure 4. One inter-
esting observation is claims from ‘Facebook’ are

6



Figure 4: Percentage of the incorrectly classified
claims from the five most frequent sources.

Data Set Label #Claims Acc.

Discarded 281 59.1%
Pre-checked and rejected 37 56.8%
Pre-checking 34 52.9%
Published 30 56.7%
Suspended 19 73.7%
Checking 11 45.5%

Table 4: Number of claims and accuracy in terms
of original labels for the test set.

relatively difficult for all the models, while pre-
dicting the ones from ‘NRK’ seem to be more
straightforward. This could be due to the differ-
ences in the writing styles in an official broad-
casting organization and a social media platform.
It is notable that the patterns for NorBERT and
NorBERT2 are relatively similar across differ-
ent sources. NB-BERTbase and NB-BERTlarge are
more sensitive to the source of the claims.

Finally, the predicted labels in the test set are
analysed to see what percentage of each individ-
ual original label is correctly classified. We only
focused on the NorBERT2 as it is the best model in
terms of F1. Table 4 shows the number of claims
in each category and the accuracy. The results
are relatively comparable among the labels, which
confirms the consistency of the mapping applied
to convert the original labels to the binary labels.
The two exceptions are Suspended and Checking
class corresponding to the highest and the lowest
accuracy, respectively.

5 Conclusion

In this work, we conduct a case study using Nor-
wegian pre-trained LMs for the task of automated

claim detection. Four existing Norwegian models
in addition to an SVM baseline system are exam-
ined and compared using a claim detection data
set that resembles a real world problem. The re-
sults show that language models outperform the
baseline system. Different models can be selected
for different purposes. If the overall performance
is to be prioritized, the NorBERT2 model is the
best performing. If the recall is the focus, then the
biggest NB-BERTlarge model is to be selected.

Most of our observations can also be due to the
differences between the LMs. The behaviour of
our models can be due to model architecture, train-
ing procedures, and the datasets they were origi-
nally trained on. We also show how the length and
the source of the claim plays a role in prediction
patterns. We believe that there is more that can
be uncovered from the behaviour of these models,
and we plan to explore this in future works.

Limitations

Our work does have some limitations that might
have impacted the outputs of our models. For in-
stance, the behaviour of the models might partly
be due to the skewed distribution of classes in the
dataset, where the discarded class is the majority
class. Another limitation is publishing the data to
reproduce the results and perhaps to conduct fur-
ther analysis. Faktisk provided the data set to us to
investigate automated fact-checking systems and
publish the results. At the moment, we are not per-
mitted to make the data set publicly available, as
it is part of the organization’s internal procedure.
This might hopefully change in the future.
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Abstract

Data anonymisation is often required to
comply with regulations when transfering
information across departments or entities.
However, the risk is that this procedure can
distort the data and jeopardise the mod-
els built on it. Intuitively, the process
of training an NLP model on anonymised
data may lower the performance of the re-
sulting model when compared to a model
trained on non-anonymised data. In this
paper, we investigate the impact of de-
identification on the performance of nine
downstream NLP tasks. We focus on the
de-identification and pseudonymisation of
personal names and compare six different
anonymisation strategies for two state-of-
the-art pre-trained models. Based on these
experiments, we formulate recommenda-
tions on how the de-identification should be
performed to guarantee accurate NLP mod-
els. Our results reveal that de-identification
does have a negative impact on the perfor-
mance of NLP models, but it is relatively
low. We also find that using pseudonymi-
sation techniques involving random names
leads to better performance across most
tasks.

1 Introduction

Protection of personal data has been a hot topic for
decades (Bélanger and Crossler, 2011). Careless
sharing of data between companies, cyber-attacks,
and other data breaches can lead to catastrophic
leaks of confidential data, potentially resulting in
the invasion of people’s privacy and identity theft.

To mitigate damages and hold bad actors ac-
countable, many countries introduced various laws
that aim to protect confidential data, such as the
Health Insurance Portability and Accountability
Act (HIPAA) for healthcare confidentiality (Act,
1996), and the Gramm–Leach–Bliley Act (GLBA)
in the financial domain (Cuaresma, 2002). Most
notably, with the introduction of the General Data
Protection Regulation (GDPR), the protection of
personally identifiable information was codified
into EU law. (Regulation, 2016) Failure to comply
with these regulations can lead to huge fines in case
of a data breach. Indeed, the amount of fines for
GDPR violations adds up to over 1.5 trillion euros
with the largest single fine of 746 million euros
being imposed on Amazon.1

In order to mitigate data leaks, organisations
such as financial institutes and hospitals are re-
quired to anonymise or pseudonymise sensitive
data before processing them further. Similarly,
automated NLP models should ideally be trained
using anonymised data as resulting models could
potentially violate a number of GDPR guidelines
such as the individuals’ right to be forgotten, and
the right to explanation. Furthermore, models can
be manipulated to partially recreate the training
data (Song et al., 2017), which can result in disas-
trous data breaches. On the other hand, however,
anonymisation of texts can lead to loss of informa-
tion and meaning, making NLP models trained on
anonymised data less reliable as a result (Meystre
et al., 2014). Intuitively, this in turn could lead to
a decrease in performance of such models when
compared to models trained on non-anonymised

1at the time of writing this paper, according to https:
//www.privacyaffairs.com/gdpr-fines/

10



text. As such, it is crucial to choose an appropriate
anonymisation strategy to lower this loss of infor-
mation and avoid performance drops of models.

In this study, we investigate the impact of text de-
identification on the performance of downstream
NLP tasks, focusing on the anonymisation and
pseudonymisation of person names only. This al-
lows us to select from a wide array of NLP tasks
as most datasets contain a large number of person
names, whereas other types of names are less com-
monly found. Specifically, we compare six differ-
ent anonymisation strategies, and two Transformer-
based pre-trained model architectures in our ex-
periments: the popular BERT (Devlin et al., 2018)
architecture and the state-of-the-art ERNIE (Sun
et al., 2020) architecture. Further, we look into nine
different NLP tasks of varying degrees of difficulty.

We address the following research questions:

• RQ1: Which anonymisation strategy is the
most appropriate for downstream NLP tasks?

• RQ2: Should a model be trained on original
or de-identified data?

2 Experimental Setup

In this section, we present the datasets used in this
study and we introduce the different anonymisation
strategies that we compare against each other. We
also show the pre-trained models we use.

2.1 Datasets

For this study, we selected several downstream
tasks that greatly vary in complexity, ranging from
simple text classification to complicated Natural
Language Understanding (NLU) tasks featured
in the GLUE benchmark collection (Wang et al.,
2018). We ensured that each set contains a con-
siderable number of person names. Most of these
datasets are publicly available, except for a pro-
prietary email classification dataset provided by
our partners. Table 1 contains statistics about the
datasets used for this study. We release the original
as well as the de-identified datasets for most tasks.2

We choose three public classification tasks: Fake
News Detection (FND)3, News Bias Detection
(NBD) (Bharadwaj et al., 2020), and Fraudulent
Email Detection (FED) (Radev, 2008).

2https://github.com/lothritz/
anonymisation_paper

3https://www.kaggle.com/shubh0799/
fake-news

Five of our investigated tasks are featured
in the GLUE collection, namely MRPC (Dolan
and Brockett, 2005), RTE (Haim et al., 2006),
WNLI (Levesque et al., 2012), CoLA (Warstadt
et al., 2018), and MNLI (Williams et al., 2018).

Our final task is the Email Domain Classifica-
tion Dataset (EDC) which we describe in greater
detail. It is provided by our partners in the banking
domain. As such, it is a proprietary dataset con-
sisting of sensitive emails from clients, and thus
cannot be publicly released. However, it serves as
an authentic use-case for our study. The task con-
sists of classifying emails along 19 broad domains
related to banking activities such as credit cards,
wire transfers, account management etc., which
will then be forwarded to the appropriate depart-
ment. We selected a subset of the provided dataset,
such that each domain is represented equally. More
specifically, for each domain in the set, we ran-
domly selected ≃ 500 emails, for a total of nearly
9000 emails. Furthermore, the dataset is multilin-
gual, but we perform our experiments on the emails
written in French due to the high sample number.

2.2 Anonymisation Strategies

We consider six anonymisation strategies (AS1-
6) for this study. These strategies are commonly
found in the literature (Berg et al., 2020; Deleger
et al., 2013). They largely fall into three categories:
replacement by a generic token (AS1, AS2, AS3),
removal of names (AS4), and replacement by a ran-
dom name which we also refer to as pseudonymisa-
tion throughout this work (AS5, AS6). We describe
each AS in Table2. Table 3 shows the differences
between each AS on an example.

2.3 Name Detection

In order to detect names in the datasets, we fine-
tune a BERT Large model on the task of Person
Name Detection. We use the CoNLL-2003 dataset
for Named Entity Recognition (Sang and De Meul-
der, 2003) and modify it by relabeling every non-
Person entity as non-entity. The resulting training
set consists of 204 567 words, 11 128 are Person en-
tities and 193 439 are labeled as non-entities.4 The
resulting model achieved an F1 score of 0.9694,
precision of 0.9786, and a recall of 0.9694 on the
modified CoNLL-2003 test set. We use this fine-

4The dataset used to to train the de-identification
model can be found at https://github.com/
lothritz/anonymisation_paper/tree/main/
anonymisation_model
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dataset FND NBD FED MRPC RTE WNLI CoLA MNLI EDC
train set 4382 1374 8980 3668 2489 635 6039 39 999 6354
dev set 690 196 997 407 276 71 851 5000 926
test set 1237 395 1926 1725 800 146 1661 5396 1798
#names 68 890 15 610 30 404 3324 3685 898 2600 85 999 6550
#unique 7500 3247 6104 1729 2042 102 335 10 460 2807

%de-identified 90.9 83.9 55.7 43.1 51 61.9 41 93.8 42.6

type binary multi binary binary binary binary binary multi multi

Table 1: Statistics for the datasets. Size of datasets, number of names found in the training set (#names),
number of unique names found in the training set (#unique), percentage of samples that contains at
least one name (i.e. the percentage of samples to be de-identified) (%de-identified), and the type of the
classification task (binary/multiclass)

Name Description of AS
AS1 Singular generic token
AS2 Unique generic token for each name in document
AS3 Unique generic token for each distinct name in document
AS4 Removal of names
AS5 Random name for each name in document
AS6 Random name for each distinct name in document

Table 2: Description of Anonymisation strategies

tuned model to detect and replace names from the
training, validation, and test set of the selected
downstream tasks.

2.4 Model Training

We compare the impact of de-identification
strategies using two Transformer-based models:
BERT (Devlin et al., 2018) and ERNIE (Sun et al.,
2020). For the tasks written in English, we use the
uncased BERT Base mode and the ERNIE Base
models. For the EDC task, we use the multilingual
mBERT model and the ERNIE-M model published
by Ouyang et al. (2021). For our study, we use the
Transformers library by Huggingface (Wolf et al.,
2019) as our framework. Furthermore, we take a
grid-search based approach to determine the most
appropriate fine-tuning parameters for each down-
stream task (cf. Appendix A)

3 Experimental Results

In this section, we show the results of our exper-
iments and address the research questions from
Section 1. For each task and for each pre-trained
model, we fine-tune a model on the original dataset
and each of our six anonymised datasets. We also
de-identify the test sets accordingly and evaluate
each model on the corresponding test set. We do
five runs for each case, and average the results. We
then compare the average performance for each AS

to the performance of the models trained on origi-
nal data. Table 4 shows the average performance
of every model. For each of the GLUE tasks, we
use the metric recommended by (Wang et al., 2018)
and F1 score for the classification tasks.

3.1 Which anonymisation strategy is the most
appropriate for downstream NLP tasks?

In order to determine the most appropriate strat-
egy, we consider two ranking-based approaches:
Borda Count and Instant Runoff (Taylor and Pacelli,
2008). For both approaches, we determine the
score sa,t for each anonymisation strategy (AS,
indexed by a) and for each task (indexed by t) in
the following way: The best approach gets a score
of five, the second best gets a score of four, etc.

The final Borda Count score for a given anonymi-
sation strategy A is defined as

∑T
t=0 sA,t (where T

is the total number of tasks, here, nine). The model
with the highest total score is considered the best.

Instant Runoff is an iterative procedure. For each
iteration, we count the number of wins for each AS,
where an AS is considered a winner in a given task
if its corresponding fine-tuned model outperforms
every other model. We then eliminate the AS with
the lowest number of wins and update the scores
accordingly. We repeat this process until one AS
remains, or until we cannot eliminate further ASs.

Table 5 shows the scores for each model and the
winning anonymisation strategies according to the
aforementioned approaches. For BERT models, we
see that AS1, AS4, and AS6 are the best perform-
ing strategies according to Borda count, AS6 being
a close winner. Instant Runoff leads to similar re-
sults with AS4 and AS6 reaching the final iteration,
and AS6 being the overall winner. Furthermore,
we note a lower variance in the scores for AS6
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Original "Hi, this is Paul, am I speaking to John?" "Sorry, no, this is George. John is not here today."

AS1 "Hi, this is ENTNAME, am I speaking to ENTNAME?" "Sorry, no, this is ENTNAME. ENTNAME is not here today."
AS2 "Hi, this is ENTNAME1, am I speaking to ENTNAME2?" "Sorry, no, this is ENTNAME1. ENTNAME2 is not here today."
AS3 "Hi, this is ENTNAME1, am I speaking to ENTNAME2?" "Sorry, no, this is ENTNAME3. ENTNAME2 is not here today."
AS4 "Hi, this is , am I speaking to " "Sorry, no, this is . is not here today."
AS5 "Hi, this is Bert, am I speaking to Ernie?" "Sorry, no, this is Elmo. Kermit is not here today."
AS6 "Hi, this is Jessie, am I speaking to James?" "Sorry, no, this is Meowth. James is not here today."

Table 3: Example for each anonymisation strategy

BERT ERNIE
Task Metric Original AS1 AS2 AS3 AS4 AS5 AS6 Original AS1 AS2 AS3 AS4 AS5 AS6
FND F1 0.973 0.976↑ 0.974↑ 0.969↓ 0.965↓ 0.968↓ 0.971↓ 0.968 0.962↓ 0.960↓ 0.960↓ 0.956↓ 0.956↓ 0.963↓
NBD F1 0.653 0.658↑ 0.647↓ 0.654↑ 0.681↑ 0.674↑ 0.683↑ 0.678 0.681↑ 0.684↑ 0.695↑ 0.709↑ 0.653↓ 0.669↓
FED F1 0.994 0.995↑ 0.996↑ 0.996↑ 0.996↑ 0.994 0.995↑ 0.996 0.994↓ 0.993↓ 0.994↓ 0.993↓ 0.995↓ 0.993↓
MRPC F1 0.791 0.786↓ 0.769↓ 0.768↓ 0.797↑ 0.792↑ 0.783↓ 0.811 0.824↑ 0.817↑ 0.799↓ 0.832↑ 0.826↑ 0.820↑
RTE Acc 0.691 0.670↓ 0.654↓ 0.639↓ 0.624↓ 0.644↓ 0.666↓ 0.703 0.696↓ 0.665↓ 0.671↓ 0.683↓ 0.716↑ 0.676↓
WNLI F1 0.520 0.530↑ 0.526↑ 0.551↑ 0.586↑ 0.541↑ 0.535↑ 0.561 0.472↓ 0.557↓ 0.564↑ 0.595↑ 0.614↑ 0.550↓
CoLA MCC 0.555 0.520↓ 0.522↓ 0.524↓ 0.443↓ 0.495↓ 0.532↓ 0.519 0.517↓ 0.543↑ 0.556↑ 0.385↓ 0.540↑ 0.542↑
MNLI Acc 0.754 0.742↓ 0.730↓ 0.734↓ 0.745↓ 0.742↓ 0.747↓ 0.789 0.774↓ 0.750↓ 0.759↓ 0.770↓ 0.776↓ 0.773↓
EDC F1 0.626 0.624↓ 0.683↑ 0.617↓ 0.619↓ 0.616↓ 0.595↓ 0.642 0.635↓ 0.696↑ 0.642 0.635↓ 0.627↓ 0.621↓

Table 4: Results of our fine-tuned models. We highlight in green (↑) the models that outperform the
models trained on original data, in red (↓) the models that do not.

BERT ERNIE
Task AS1 AS2 AS3 AS4 AS5 AS6 AS1 AS2 AS3 AS4 AS5 AS6
FND 5 4 2 0 1 3 4 3 3 1 1 5
NBD 2 0 1 4 3 5 2 3 4 5 0 1
FED 2 5 5 5 0 2 4 2 4 2 5 2
MRPC 3 1 0 5 4 2 3 1 0 5 4 2
RTE 5 3 1 0 2 4 4 0 1 3 5 2
WNLI 1 0 4 5 3 2 0 2 3 4 5 1
CoLA 2 3 4 0 1 5 1 4 5 0 2 3
MNLI 3 0 1 4 3 5 4 0 1 2 5 3
EDC 4 5 2 3 1 0 3 5 4 3 1 0
Total 27 21 20 26 18 28 25 20 25 25 28 21
Avg. 3 2.33 2.22 2.89 2 3.11 2.78 2.22 2.78 2.78 3.11 2.33

Table 5: Ranking scores for fine-tuned models. Bold text shows the winner according to Borda Count,
underlined text according to Instant Runoff.

BERT ERNIE
Task Metric Original AS1 AS2 AS3 AS4 AS5 AS6 Original AS1 AS2 AS3 AS4 AS5 AS6
FND F1 0.973 0.933↓ 0.910↓ 0.907↓ 0.950↓ 0.963↓ 0.963↓ 0.968 0.951↓ 0.938↓ 0.935↓ 0.957↑ 0.967↑ 0.967↑
NBD F1 0.653 0.566↓ 0.551↓ 0.546↓ 0.601↓ 0.602↓ 0.609↓ 0.678 0.683 0.684 0.659↓ 0.687↓ 0.683↑ 0.683↑
FED F1 0.994 0.995 0.995 0.995 0.996 0.996 0.996 0.996 0.995 0.995 0.995 0.996 0.996 0.996
MRPC F1 0.791 0.809↑ 0.811↑ 0.811↑ 0.819↑ 0.816↑ 0.814↑ 0.811 0.848↑ 0.848↑ 0.849↑ 0.852↑ 0.804↓ 0.834↑
RTE Acc 0.691 0.665↓ 0.663↑ 0.669↑ 0.670↑ 0.645↑ 0.660↓ 0.700 0.703↑ 0.701↑ 0.693↑ 0.699↑ 0.688↓ 0.704↑
WNLI F1 0.520 0.504↓ 0.504↓ 0.504↓ 0.504↓ 0.504↓ 0.504↓ 0.561 0.435↓ 0.442↓ 0.467↓ 0.506↓ 0.458↓ 0.428↓
CoLA MCC 0.555 0.376↓ 0.515↓ 0.528↑ 0.335↓ 0.549↑ 0.550↑ 0.519 0.427↓ 0.537↓ 0.511↓ 0.313↓ 0.518↓ 0.523↓
MNLI Acc 0.754 0.753↑ 0.724↓ 0.753↑ 0.753↑ 0.744↑ 0.744↓ 0.789 0.783↑ 0.545↓ 0.760↑ 0.772↑ 0.669↓ 0.765↓

Table 6: Results of testing the original models on de-identified data. We highlight in green (↑) the models
that significantly outperform the matching model in Table 4 using a Wilcoxon test, in red (↓) the models
that perform significantly worse, in black the models that do not perform significantly differently.

when compared to AS4. In contrast, when eval-
uating ERNIE models, we note that AS5 models
are performing significantly better than every other
strategy according to Borda Count. Similarly, AS5
also wins the Instant Runoff with AS4 and AS5
making it to the final round. Overall, it appears
that using random names over generic tokens to
de-identify textual data is the preferable solution
as AS1, AS2, AS3 models, which were all trained

on data with generic tokens, usually rank low.

3.2 Should a model be trained on original or
de-identified data?

In order to answer this question, we investigate the
performance of models trained on original data on
the de-identified test sets (cf. Table 4) and compare
them to the models trained directly on de-identified
data. Table 6 shows the results of testing models
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trained on original training sets and evaluated on
each of the de-identified test sets. We find that
nearly half of the models trained on de-identified
data outperform the counterpart model trained on
original data. While there is not always a clear
trend, we observe that the original models almost
consistently perform better in the MRPC and RTE
tasks, and perform worse in the WNLI and CoLA
tasks, regardless of the architecture used. Further-
more, for BERT models, the models trained on
de-identified data consistently perform worse on
the FND and NBD tasks. For the ERNIE models,
the models trained on original data consistently
perform better on the FED task ever so slightly.
Despite these observations, we notice that the per-
formance losses are oftentimes very high, specifi-
cally for the NBD, WNLI, and CoLA tasks, while
performance gains tend to be lower.

4 Discussion

Judging by the results of our experiments, we rec-
ommend practitioners to de-identify their sensi-
tive textual data using random names, as they typ-
ically lead to the best results among the anonymi-
sation strategies we tested. We also recommend to
de-identify data before the training of NLP mod-
els. It follows that it is important to keep the de-
identification process and naming schemes consis-
tent throughout the entire pipeline that uses the data
in order to mitigate potential performance losses
of models. It may also be important to keep the
number of names sufficiently high in order to avoid
introducing bias in the training that may contribute
to unfair discrimination against specific names, a
well-known issue in machine learning models that
handle person names (Caliskan et al., 2017).

5 Related Work

Relevant studies done on textual data largely focus
on medical texts and on a very limited number of
tasks and anonymisation strategies when compared
to our work. On the other hand, they typically
anonymise a wide variety of protected health in-
formation (PHI) classes, while our work focuses
on anonymisation of persons’ names only. Berg
et al. (2020) studied the impact of four anonymisa-
tion strategies (pseudonymisation, replacement by
PHI class, masking, and removal) on downstream
NER tasks for the clinical domain. Similarly to our
findings, they find that pseudonymisation yields
the best results among the investigated strategies.

On the other hand, removal of names resulted in
the highest negative impact on the downstream
tasks. Deleger et al. (2013) investigated the im-
pact of anonymisation on an information extraction
task using a dataset of 3503 clinical notes. They
anonymised 12 types of PHI such as patients’ name,
age, etc., and used two anonymisation strategies
(replacement by fake PHI, and masking). They
found no significant loss in performance for this
task. Similarly, Meystre et al. (2014) found that the
informativeness of medical notes only marginally
decreased after anonymisation, using 18 types of
PHI and 3 anonymisation strategies (replacement
by fake PHI, replacement by PHI class, and replace-
ment by PHI token). Using the same anonymisa-
tion strategies and ten types of PHI, Obeid et al.
(2019) investigated the impact of anonymisation
on a mental status classification task. Comparing
nine different machine learning models, they did
not find any significant difference in performance
between original and anonymised data.

6 Conclusion

In this paper, we conducted an empirical study
analysing the impact of de-identification on down-
stream NLP tasks. We investigated the difference
in performance of six anonymisation strategies on
nine NLP tasks ranging from simple classification
tasks to hard NLU tasks. Further, we compared two
architectures, BERT and ERNIE. Overall, we found
that de-identifying data before training an NLP
model does have a negative impact on its perfor-
mance. However, this impact is relatively low. We
determined that pseudonymisation techniques in-
volving random names lead to higher performances
across most tasks. Specifically, replacing names by
random names (AS5) had the least negative impact
when using an ERNIE model. Similarly, replac-
ing by random names while preserving the link
between identical names (AS6) worked best for
BERT models. We also showed that it is advisable
to de-identify data prior to training as we observed
a large difference in performance between models
trained on original data versus de-identified data.
There is also a noticeable difference between the
performances of BERT and ERNIE, warranting fur-
ther investigation into the performance differences
between a larger number of language models.
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7 Appendices

7.1 Appendix A: Fine-Tuning
Hyperparameters

BERT ERNIE
Task batch size learn rate #epoch batch size learn rate #epoch
FND 16 5e-5 1 8 2−5 1
NBD 16 5e-5 3 8 2−5 5
FED 32 3e-5 3 32 5−5 1

MRPC 16 5e-5 3 32 3−5 4
RTE 16 5e-5 4 4 2−5 4

WNLI 16 3e-5 4 8 2−5 4
ColA 16 5e-5 3 64 3−5 3
MNLI 16 5e-5 2 512 3−5 3
EDC 16 5e-5 5 8 3−5 3

Table 7: Hyperparameters for fine-tuning pre-
trained models for downstream tasks
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Abstract

In this work, we studied methods for
automatic abstractive summarization in a
low-resource setting using Icelandic text,
which is morphologically rich and has lim-
ited data compared to languages such as
English. We collected and published the
first publicly available abstractive summa-
rization dataset for Icelandic and used it
for training and evaluation of our mod-
els. We found that using multilingual pre-
training in this setting led to improved
performance, with the multilingual mT5
model consistently outperforming a simi-
lar model pre-trained from scratch on Ice-
landic text only. Additionally, we ex-
plored the use of machine translations for
fine-tuning data augmentation and found
that fine-tuning on the augmented data fol-
lowed by fine-tuning on Icelandic data im-
proved the results. This work highlights
the importance of both high-quality train-
ing data and multilingual pre-training in
achieving effective abstractive summariza-
tion in low-resource languages.

1 Introduction

The task of automatic text summarization has been
gaining interest in recent years due to the increas-
ing amount of available information and the need
for well-written summaries that preserve key in-
formation while being coherent and flowing natu-
rally. Two main approaches to automatic text sum-
marization are extractive and abstractive methods.
Extractive methods compose the summary out of
copies of important sections from the original text,
whereas abstractive methods rephrase and shorten
the text similar to how a human would (Tas and
Kiyani, 2017). The rise of Transformer mod-
els (Vaswani et al., 2017) in natural language

processing (NLP) has led to great advances in
the field, particularly in abstractive summariza-
tion (Zhang et al., 2020). However, these models
often rely on a large amount of text data and com-
putational resources for pre-training. This raises
the question of whether low-resource languages
can build advanced NLP models for summariza-
tion, given the lack of data.

We aim to address this question by studying
the use of state-of-the-art Transformer models for
abstractive summarization of Icelandic text. We
introduce the first publicly available abstractive
summarization dataset for Icelandic, RÚV Radio
News (RRN), and use it for training and evalua-
tion of the models. With that approach, we aim to
study whether state-of-the-art Transformer mod-
els can be adapted to perform abstractive sum-
marization in a low-resource setting for Icelandic
text. In order to support future research on ab-
stractive summarization in Icelandic, we are shar-
ing our dataset1 and the fine-tuned model2 with the
research community.

This work is motivated by the increasing de-
mand for automatic text summarization and the
challenges of applying machine learning methods
to low-resource languages such as Icelandic. The
study of NLP in low-resource languages is impor-
tant for language preservation, and this research
contributes to this field by providing a dataset
for Icelandic and evaluating the performance of
state-of-the-art Transformer models on it. Sum-
marization has been claimed to be challenging
in low-resource settings (Zoph et al., 2016; Khu-
rana et al., 2022) and the potential solution that
we base our work on is to apply transfer learn-
ing (Zhuang et al., 2021) and data augmentation
techniques (Tanner and Wong, 1987).

1https://huggingface.co/datasets/
thors/RRN

2https://huggingface.co/thors/
mt5-base-icelandic-summarization
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2 Background

Abstractive summarization is a complex task that
involves identifying important information from a
text and expressing it in new words. The Trans-
former architecture (Vaswani et al., 2017), which
is based on the attention mechanism (Bahdanau
et al., 2015), has become popular for this task as it
can efficiently work with larger text segments and
take into account context in the input.

Transformers are widely applied through trans-
fer learning, a technique introduced by Yosinski
et al. (2014) where a model trained on one task
is fine-tuned or reused as the starting point for
a model on a similar or different task. Prior to
the transfer, the models are generally trained us-
ing self-supervision, which allows the models to
leverage a large, diverse corpus of unlabeled text
data. For generative models, the pre-training ob-
jective often involves masking parts of the input
sequence and tasking the model with filling in the
gaps, as proposed by (Song et al., 2019) for exam-
ple. Raffel et al. (2020) demonstrated with the T5
model that many NLP problems can be treated as
text-to-text tasks, allowing for the pre-training of
a single encoder-decoder Transformer on a diverse
set of tasks. Additionally, BART models (Lewis
et al., 2020) have been trained to reconstruct a text
document that has been corrupted with an arbitrary
noising function and have proved to be very effec-
tive at tasks such as summarization. The PEGA-
SUS model (Zhang et al., 2020) uses a pre-training
objective that closely resembles the summariza-
tion task, resulting in a model that adapts faster
when fine-tuned on a small number of examples.

Pre-training language models through self-
supervised learning has achieved impressive re-
sults when applied to abstractive summarization
tasks. However, obtaining high-quality summa-
rization outcomes can be difficult when there
is a scarcity of data for fine-tuning, a common
issue encountered with low-resource languages.
To tackle this challenge, researchers have turned
to transfer learning and data augmentation tech-
niques, which have proven to be effective in
various low-resource natural language processing
(NLP) tasks (Hedderich et al., 2021). Prior results
on abstractive summarization in a low-resource
setting serve as good examples of applying such
methods (Fadaee et al., 2017; Sennrich et al.,
2016).

Transfer learning methods have enabled

progress in Icelandic NLP tasks, such as trans-
lation (Símonarson et al., 2021), question
answering (Snæbjarnarson and Einarsson, 2022b),
and named entity recognition (Snæbjarnarson
et al., 2022). However, research on Icelandic sum-
marization has predominantly concentrated on
extractive approaches (Christiansen, 2014; Daða-
son et al., 2021; Daðason and Loftsson, 2022).
Multilingual models, like XLM-R (Conneau et al.,
2020) and mT5 (Xue et al., 2021), have exhibited
promising results across a wide range of NLP
tasks and have been particularly advantageous
for Icelandic tasks (Snæbjarnarson et al., 2022;
Snæbjarnarson and Einarsson, 2022a).

3 Methods

3.1 Data
A summary of the text corpora utilized in this
study is provided in Table 1. The English lan-
guage corpora were translated to Icelandic using
machine translation, as described in Section 3.1.4.

3.1.1 Pre-training Corpus
The Icelandic Gigaword Corpus (IGC, (Stein-
grímsson et al., 2018)) version 20.05 was used
for pre-training of the Gullfaxi model (see Sec-
tion 3.2). The corpus consists of a collection of
approximately 5 million documents from various
categories, including adjudications, parliamentary
speeches, news, books, and scientific journals.
The corpus consists of text that is automatically
divided into sentences and running words, tagged,
and lemmatized. The IGC-News1 21.05 dataset,
consisting of news articles from the year 2020,
was used for validation during pre-training. These
articles were not included in the training data.

3.1.2 Fine-tuning corpora
In this study, we utilized the following news sum-
marization datasets for fine-tuning our models:
RÚV Radio News (RRN) dataset, which consists
of news stories from the Icelandic National Broad-
casting Service (RÚV) collected specifically for
this study. It includes 4k stories from 2021 and
2022, containing many stories related to COVID-
19 and domestic news.
XSum dataset (Narayan et al., 2018), which fea-
tures a variety of English-language BBC articles
from 2010 to 2017, each accompanied by a pro-
fessional, single-sentence summary.
CNN/DailyMail dataset (Hermann et al., 2015),
which includes English-language news stories

18



Dataset # Documents Language Type

IGC 20.05 5M is Generic
IGC-News1 21.05 (2020) 112k is Generic
RRN 4k is Summarization
XSum 227k en Summarization
CNN/DailyMail 311k en Summarization

Table 1: Overview of the datasets used in this study. The language column refers to the original language
of the dataset.

from CNN and Daily Mail websites, each accom-
panied by human-written summary bullets.

Note that there was no overlap between the fine-
tuning datasets and the pre-training corpus. We
study fine-tuning on the datasets separately and we
also study fine-tuning on translated data followed
by fine-tuning on RRN.

3.1.3 Pre-processing RRN
The Icelandic National Broadcasting Service
(RÚV) granted access to a database of news sto-
ries via a custom interface that was available on-
premises at their headquarters. The stories were
manually selected from the database, and only
transcripts of radio news from 2021 and 2022 were
used. The RRN dataset was extracted from these
transcripts and comprises four parts for each story:
a title, an intro, the main story, and a summary. To
ensure that the dataset was suitable for the summa-
rization task, we filtered out stories that were not
relevant, such as live broadcasts and weather news.
Additionally, we programmatically removed re-
porters’ comments, phone numbers, and instruc-
tions for the broadcast. The intro and the sum-
mary are often similar as they both provide an
overview of the key points of the story and in
some instances, they may be identical. For a given
date, the summaries were in a separate document
and not linked to a story by any unique identifier.
Therefore, the summaries were paired with their
corresponding stories in a heuristic manner using
a ROUGE1-F1 score. To ensure the accuracy of
the pairing, we reviewed 100 random pairings and
found that this approach produced correct pairings
in all cases.

3.1.4 English to Icelandic Translation
In order to augment our summarization data, we
translated the XSum and CNN/DailyMail datasets
from English to Icelandic using a machine trans-
lation model. Specifically, we utilized Facebook’s

multilingual model, which was a winning submis-
sion to the 2021 Conference on Machine Trans-
lation (WMT, Tran et al. (2021)). This model is
fine-tuned for news domain data and trained us-
ing data from eight different languages, achiev-
ing state-of-the-art performance in machine trans-
lation. We used the pre-trained version of the
model, which is available in HuggingFace’s Trans-
formers library, and loaded the weights from
the wmt21-dense-24-wide-en-x reposi-
tory. To improve the quality of translations, we
split the text into sentences and translated them
separately. This approach was found to improve
translation quality during a manual inspection, al-
though no quantitative evaluation was performed
to confirm it.

3.2 Models

In this study, we introduce the Gullfaxi model,
which is based on the PEGASUS architec-
ture (Zhang et al., 2020) but trained on Icelandic
text. We call the model GullfaxiBASE and it corre-
sponds to the BASE architecture presented in the
PEGASUS study. GullfaxiBASE has 223M train-
able parameters. Additionally, we also fine-tune a
pre-trained mT5 model (Xue et al., 2021) for per-
formance comparison. We use mT5BASE, which
has 580M trainable parameters. The increase in
parameter count compared to Gullfaxi BASE is pri-
marily due to the larger vocabulary employed in
mT5. Details on training and hyperparameters can
be found in Appendix A

3.3 Downstream Tasks

We evaluate the performance of our models on
a set of downstream summarization tasks using
the RÚV Radio News (RRN) dataset. The RRN
dataset is split into train, validation, and test sets
with a 60%, 20%, 20% ratio respectively. We cre-
ated three fine-tuning tasks to test different abili-
ties for abstractive summarization:
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Task 1: Intro + Main → Summary The task
involves producing a summary from the introduc-
tion and main part of the story. As the introduction
and summary are often similar and in some cases
identical, this task is somewhat related to extrac-
tive summarization.

Task 2: Main → Intro The task involves gen-
erating the introduction from the main part of the
story. The introduction and main text rarely share
the same sentences, thus we expect the model to
generate more abstractive summaries.

Task 3: Intro → Title The task involves pro-
ducing the title of the story from the introduction.
The title is much shorter compared to the output
in the previous tasks, and we expect the model to
generate more abstractive summaries.

To further understand the performance of
Gullfaxi on larger corpora, we fine-tune it on
the Icelandic translations of the XSum and
CNN/DailyMail datasets and compare the results
to the English PEGASUS model.

We also explored a mixed fine-tuning approach
where the models were first fine-tuned on trans-
lated data and then on Icelandic data. For each
fine-tuning phase, the model was fine-tuned until
the validation loss stopped decreasing.

3.4 Performance Measures
In this study, we use the Recall-Oriented Under-
study for Gisting Evaluation (ROUGE) scoring al-
gorithm to evaluate the performance of our mod-
els (Lin, 2004). ROUGE is a widely used and ac-
cepted standard for evaluating automatic summa-
rization tasks. We use ROUGE-1, ROUGE-2, and
ROUGE-L to calculate the similarity between the
model’s summary and a reference summary.

We define countmatch(gramn) as the number of
matching n-grams, and similarly, countref(gramn)
and countmodel(gramn) refer to the number of n-
grams in the reference and the model output, re-
spectively. The ROUGE-N precision, recall, and
F1-score are calculated as follows:

ROUGE-N precision =
countmatch(gramn)
countmodel(gramn)

,

ROUGE-N recall =
countmatch(gramn)
countref(gramn)

.

Similarly, we define ROUGE-L precision and re-
call using the longest common subsequence (LCS)
between the reference summary and the model’s

output in the numerator. The LCS represents the
longest sequence of words shared between the two
texts, regardless of whether the words appear con-
secutively. Finally, we compute the F1-score for
each of ROUGE-1, ROUGE-2, and ROUGE-L as
the harmonic mean of their precision and recall.

F1-score = 2× precision× recall
precision + recall

.

3.5 Human Evaluation
To further assess the quality of the generated sum-
maries, we conduct human evaluations on a sub-
set of the generated summaries. The samples are
rated by a single annotator on three binary criteria:
relevance, correctness, and language. Relevance
is based on whether the summary is relevant to
the reference text and pertains to the subject mat-
ter of the story. Correctness is based on whether
the summary is factually accurate and consistent
with the reference text, and does not include any
unrelated information. Lastly, language is based
on whether the summary is grammatically correct
and natural, without any repetitions or use of non-
Icelandic words.

4 Results

4.1 Summarization Performance
In this section, we present the results of our evalu-
ation of the Gullfaxi model and the mT5 model on
the RRN dataset. Table 2 shows the ROUGE F1-
scores (R1/R2/RL) of the fine-tuned models for
each task. The results show that mT5BASE out-
performs the Gullfaxi model on all tasks. The
difference between the models is particularly no-
table in the first task (Intro + Main→ Summary).
Opting for an extractive approach in this task pro-
vides leverage in achieving high ROUGE scores
as the intro and the summary tend to be similar.
For comparison, a basic strategy of copying the
intro yields a score of 61.8/46.2/58.9. Examples
of the model outputs and their scores can be found
in Appendix B.

We also found that mT5 almost exclusively re-
lied on an extractive approach in the first task, sim-
ply copying the intro, which resulted in a much
higher score compared to Gullfaxi. In the other
tasks, we observed more abstractive output from
all models. Factors that contributed to lower
ROUGE scores include repetition, grammatical er-
rors, and different lengths of the output.
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As a reference, we also fine-tuned a randomly
initialized model, referred to as TransformerBASE,
with the same architecture as GullfaxiBASE on the
full RRN training set without any pre-training.

4.2 Low-resource Fine-tuning
In this section, we examine the performance of
Gullfaxi and mT5 in a low-resource fine-tuning
setting. We fine-tuned both models using vary-
ing amounts of data from the RRN dataset, specif-
ically using the first 10k (k = 1, 2, 3) examples
from the training set. Figure 1 show the results of
the low-resource fine-tuning of GullfaxiBASE and
mT5BASE.

Our findings indicate that even without fine-
tuning, GullfaxiBASE performed better than
TransformerBASE on some tasks. mT5BASE also
showed a gradual improvement in performance
as the number of training examples increased.
Both models achieved significantly higher scores
than TransformerBASE when fine-tuned on the full
RRN training set.

4.3 Fine-tuning Data Augmentation
In this section, we investigate the impact of data
augmentation on fine-tuning Gullfaxi and mT5 for
summarization tasks. Specifically, we fine-tune
the models on the Icelandic translations of XSum
and CNN/DailyMail datasets and evaluate their
performance on the RRN dataset. We also ex-
plore an approach where the model is fine-tuned
in two phases, first on augmented data and then on
RRN data. Results are presented in Table 2. We
observe that when the translations are combined
with RRN, the scores are higher. Furthermore, by
manually reviewing the output of the models, we
notice an increase in grammatical errors when us-
ing the translations for fine-tuning for Gullfaxi but
not for the mT5 model. To further demonstrate
the difference in performance between Icelandic
and English models trained in a similar manner,
we evaluate the performance of the Gullfaxi model
fine-tuned on XSum and CNN/DailyMail on their
respective test sets. Table 3 shows the results with
and without fine-tuning, as well as a comparison to
the English data scores of the PEGASUS models
obtained from the original study. It is apparent that
fine-tuning leads to a notable improvement in per-
formance on both datasets. However, when com-
paring Gullfaxi to PEGASUS, it is evident that the
PEGASUS model’s scores for English are much
higher.

4.4 Human Evaluation

In order to further evaluate the performance of
our models, we conducted a human evaluation of
a subset of the summary outputs. We randomly
sampled 50 examples from the Main→ Intro task,
which tests the model’s ability to generate an ab-
stractive summary in a few sentences. The results
of the human evaluation are presented in Table 4,
which compares the scores for Gullfaxi and mT5
for different fine-tuning approaches.

In general, we observed that the output intros
produced by all models were of lower quality than
those written by humans. The outputs were of-
ten relevant to the reference text but not effec-
tively summarizing it. Fine-tuning Gullfaxi on
the Icelandic translations of CNN/DailyMail re-
sulted in the worst performance, particularly re-
garding grammar, often using the wrong inflec-
tions of words, as seen in Table 5.

We further observed that the mT5 model im-
proved with augmented translation data, whereas
Gullfaxi performed worse with the augmented
data, particularly in grammar and word inflec-
tion. Overall, the mT5 model showed superior
performance, producing the best summaries when
fine-tuned on the augmentations followed by fine-
tuning on the RRN dataset, demonstrating gener-
alization to the summarization task. However, it
sometimes extracted information from the refer-
ence text instead of generating new phrases, which
may explain its higher scores for relevance and
correctness compared to Gullfaxi.

5 Discussion

In this study, we investigated techniques for ad-
dressing the challenging task of low-resource ab-
stractive summarization for Icelandic. We evalu-
ated several well-known approaches and uncov-
ered limitations as well as potential avenues for
future work.

The main challenge in our study was the lack of
sufficient data for training abstractive summariza-
tion models for Icelandic. We collected a news-
domain abstractive summarization dataset, RÚV
Radio News (RRN), but acknowledge that it is rel-
atively small and may not generalize well to other
domains or summarization settings. The collec-
tion and processing of RRN were time-consuming
due to the inconsistency in the format of the radio
transcripts. To aid in future language resource de-
velopment, publicly funded organizations, such as
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Figure 1: Model performance on RRN with a limited number of fine-tuning examples. The dashed lines
are the performance of the GullfaxiBASE model whereas the solid lines represent the mT5BASE model.

Model Intro + Main
→ Summary Main→ Intro Intro→ Title

TransformerBASE (only fine-tuning) 13.1/1.3/12.0 10.8/0.7/9.7 14.2/0.6/14.1
GullfaxiBASE (no fine-tuning) 18.4/2.9/16.4 16.8/2.2/15.1 6.8/1.1/6.6
GullfaxiBASE (RRN) 29.4/10.2/26.8 20.5/5.7/18.5 26.6/5.8/26.6
GullfaxiBASE (CNN/DailyMail) 26.5/9.0/24.2 17.8/3.5/16.0 -
GullfaxiBASE (CNN/DailyMail + RRN) 42.5/21.3/39.6 22.2/6.2/19.7 -
mT5BASE (RRN) 54.9/38.8/52.1 24.8/11.2/23.0 27.1/5.1/26.8
mT5BASE (CNN/DailyMail) 36.2/19.3/33.9 21.4/5.9/19.4 -
mT5BASE (CNN/DailyMail + RRN) 58.9/42.8/56.1 33.0/17.0/30.6 -

Table 2: A comparison of GullfaxiBASE and mT5BASE on the RRN dataset using different training sets.
TransformerBASE has the same model architecture as GullfaxiBASE but is not pre-trained, only randomly
initialized. The scores listed are the ROUGE F1-scores (R1/R2/RL). The information in brackets denotes
what data the model was fine-tuned on, when fine-tuned on more than a single dataset, the training is
performed in two phases. Highest scores in the first two columns are shown in bold.

Model XSumis CNN/DailyMailis
GullfaxiBASE (no fine-tuning) 13.3/1.1/11.4 13.1/1.3/12.1
GullfaxiBASE (XSum) 23.5/7.3/19.9 -
GullfaxiBASE (CNN/DailyMail) - 24.6/7.7/23.1

XSumen CNN/DailyMailen

PEGASUSBASE 39.8/16.6/31.7 41.8/18.8/38.9

Table 3: GullfaxiBASE’s ROUGE F1-scores (R1/R2/RL) with and without fine-tuning on the Icelandic
translations of XSum and CNN/DailyMail. The scores listed for PEGASUSBASE are the highest English
language fine-tuning scores obtained from the PEGASUS paper.

RÚV, should be encouraged to be more mindful
of their data processing. RRN provides a start-
ing point for further research in this field, but
broader coverage and diversity are necessary to
create practical summarization solutions for Ice-
landic.

We evaluated the performance of two Gullfaxi
models and mT5 on the RRN dataset for ab-
stractive summarization in a low-resource setting,

specifically for the Icelandic language. mT5 con-
sistently outperformed the Gullfaxi models. How-
ever, we also observed that pre-training Gullfaxi
led to better summarization performance when
compared to no pre-training.

The performance of the multilingual mT5
model can be attributed to the large corpus of
multilingual data, including 2.1 million Icelandic
pages, used for pre-training. It should further
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Model Relevance Correctness Language

GullfaxiBASE (RRN) 74% 8% 42%
GullfaxiBASE (CNN/DailyMail) 46% 8% 6%
GullfaxiBASE (CNN/DailyMail + RRN) 64% 4% 10%
mT5BASE (RRN) 84% 46% 54%
mT5BASE (CNN/DailyMail) 80% 42% 44%
mT5BASE (CNN/DailyMail + RRN) 96% 54% 56%

Table 4: The human evaluation scores for the Main → Intro task. The scores listed are the fraction of
summary results that fulfilled the criteria of each category in the 50 annotations evaluated. Highest scores
in each column are shown in bold.

Reference summary Framkvæmdastjóri Vistorku á Akureyri segir raunsæjan kost að Ísland
geti orðið algjörlega óháð olíu á næstu árum og þar með sjálfbært um
alla orkuframleiðslu. Heildræna stefnu vanti þó í málaflokknum.

Model output framkvæmdastjóri segir að það er engin (séu engar) hindranir til (fyrir
því) að flýta banni við innflutningi á olíu

Reference summary Í fyrsta sinn í 15 ár er stefnt að því að byggja fjölda íbúðarhúsa norður
af Akureyri. Mikill áhugi er á lóðunum og færri fengu úthlutun en
vildu.

Model output á síðustu 19 árum hafa lóðir (hefur lóðum) verið úthlutað til eldri bor-
gara. áhugi á lóðir (lóðum) hefur aukist á undanförnum árum.

Table 5: Examples of ungrammatical output text of GullfaxiBASE fine-tuned exclusively on the Icelandic
translations of CNN/DailyMail. Corrections are in parentheses. The inflections of the words in red are
incorrect.

benefit from the translation task, which is one
of the tasks it is trained on in the pre-training
phase. Our results suggest that low-resource lan-
guages may benefit from the general knowledge
acquired through multilingual pre-training when
fine-tuned for specific tasks, aligning with pre-
vious work (Snæbjarnarson et al., 2022; Snæb-
jarnarson and Einarsson, 2022a) where multilin-
gual models for Icelandic were studied. For Gull-
faxi, we used the same hyperparameters as in the
Pegasus paper, but we still cannot conclude that
Gullfaxi cannot be made better since we did not
perform extensive hyperparameter tuning of the
model due to time and cost.

We explored using machine translations to aug-
ment data for low-resource NLP tasks, specif-
ically abstractive summarization in Icelandic.
We fine-tuned models on Icelandic translations
of two large English summarization datasets,
CNN/DailyMail and XSum, but found the fine-
tuned model did not perform well on the Icelandic
summarization task, RÚV Radio News (RRN) and
had more grammar mistakes compared to other

models. When reviewing the Icelandic transla-
tions used for data augmentation there are a few
things to note. Although most of them are easily
comprehensible for a native speaker, they tend to
be unnatural, use unusual wording, and have the
wrong inflection of words. For that reason, we
think that exclusively using translated examples
for fine-tuning can sometimes lead to worse out-
put texts.

We also explored a two-phase fine-tuning ap-
proach where we first fine-tuned on translated data
and then on RRN. We observed improvements in
ROUGE metrics but a manual inspection revealed
better summaries for the mT5 model but worse
summaries for the Gullfaxi model when compared
to using no augmentation. This difference high-
lights the limitation of using ROUGE scores as
a metric to measure summarization performance.
It further highlights the importance of the quality
of training data in low-resource settings, as well
as the importance of considering the naturalness
and grammatical accuracy of machine translations
when using them for data augmentation.

23



We investigated the impact of the number of
fine-tuning examples on the performance of a low-
resource abstractive summarization task by fine-
tuning GullfaxiBASE with 0, 10, 100, and 1k exam-
ples from the RRN dataset. Our results showed
that even without fine-tuning, GullfaxiBASE per-
formed better on some tasks than a randomly ini-
tialized model fine-tuned on all the RRN train-
ing set examples. As we increased the number
of fine-tuning examples, GullfaxiBASE continued
to improve, achieving significantly higher scores
than the baseline when using the full RRN dataset.
This demonstrates the effectiveness of pre-training
in a low-resource setting and highlights the poten-
tial value of creating small, domain-specific sum-
marization datasets. However, we also observed
that the mT5 model was better able to make use
of more fine-tuning examples when exceeding a
thousand examples.

The study has several limitations, including that
all models tend to generate summaries that are in-
consistent with the source text, which is a com-
mon issue for abstractive summarization models,
and limits their practical use (Cao et al., 2018;
Bender et al., 2021). Another limitation is that
the pre-training objective may encourage the gen-
eration of incorrect statements. To address this,
the use of reinforcement learning with human
feedback, as demonstrated by the Instruct GPT
model (Ouyang et al., 2022) can be used. Addi-
tionally, it is worth noting that most state-of-the-
art models and breakthrough studies in NLP are
primarily focused on English-language solutions,
and it is unclear to what extent the choice of lan-
guage impacts the performance of these models
when the training budget and amount of training
data are fixed. Further research comparing the per-
formance of state-of-the-art models across differ-
ent languages would be necessary to better under-
stand this issue. Lastly, we would like to highlight
the potential of including the Main → Summary
task in future research, which was deemed out of
scope for this work.

Our evaluation approach may be perceived as a
limitation due to its binary nature. However, we
intentionally designed it this way to prioritize ob-
jectivity, by being stringent about any errors in the
model-generated summaries. That said, there are
alternative evaluation approaches that could be ex-
plored in future research, such as employing con-
tinuous rating scales or more nuanced assessment

criteria to better capture the intricacies of sum-
mary quality. By investigating these alternatives,
we can potentially gain a deeper understanding
of the strengths and weaknesses of summarization
models.

Our results on data augmentation show that
evaluating abstractive summaries is challenging.
In this study, we used ROUGE scores and hu-
man evaluation, but ROUGE has been known to
favor lexical similarity, which may not be suitable
for abstractive summaries (Ng and Abrecht, 2015),
particularly in morphologically rich languages like
Icelandic. The lower ROUGE scores of Icelandic
summaries compared to English language studies
may be due to the differences in grammar between
the two languages. The human evaluation revealed
that the summaries tended to be factually inaccu-
rate and had varying levels of grammatical quality.
For future evaluations, it could be beneficial to in-
clude human-written summaries for comparison.

6 Conclusion

In this work, we explored methods for automatic
abstractive summarization in a low-resource set-
ting, specifically in the Icelandic language. We
collected and published the first publicly avail-
able abstractive summarization dataset for Ice-
landic, and used it to train and evaluate state-of-
the-art models. Our findings indicate that multilin-
gual pre-training provides significant benefits for
this task, as the multilingual mT5 model consis-
tently outperformed a similar capacity PEGASUS
model pre-trained from scratch on Icelandic text
only. Additionally, we found that using machine
translations for data augmentation led to higher
ROUGE scores. However, when evaluated man-
ually, the benefits of data augmentation were not
consistently observed across models compared to
a scenario where models were solely fine-tuned
on the RRN dataset. Specifically, data augmen-
tation enhanced the quality of the summaries gen-
erated by the mT5 model compared to those pro-
duced with RRN fine-tuning alone. In contrast,
the Gullfaxi model’s summaries experienced a de-
crease in quality due to data augmentation, dis-
playing weaker grammar and a higher level of in-
consistency compared to the reference text.

For future work, we suggest a further collection
of abstractive summarization data for Icelandic, as
well as studying metrics that may be better suited
for this language. We also emphasize the benefits
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of using pre-trained multilingual models, which
we expect to apply to other generative tasks and
languages. Overall, our study highlights the im-
portance of pre-training and the challenges of eval-
uating abstractive summarization in low-resource
settings.
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A Training details

A.1 Pre-training Objective
Gullfaxi is pre-trained using a self-supervised pre-
training objective called gap sentence generation
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(GSG). This method, originally proposed for the
PEGASUS model, involves masking whole sen-
tences from the input document and concatenating
them in their original order to form an abstractive
summary-like output text. The goal is that a pre-
training objective that closely resembles the sum-
marization task will lead to a better starting point
for fine-tuning.

The gap sentences are selected using a heuristic
approach based on importance criteria. The ideal
outcome is that the sentences containing the key
information of the text are chosen from the doc-
ument, but this is not guaranteed by the method.
The importance of a sentence within a document
is estimated by calculating the ROUGE1-F1 score
between the gap sentence and the rest of the doc-
ument. In this study, we calculate this score based
on the lemmatized sentences as they are given in
the IGC, due to the inflected nature of the Ice-
landic language.

The highest-performing models from the PE-
GASUS study were obtained by choosing a gap
sentence ratio between 15%-45%, varying by task
and model. For this study, we mask 20% of the
total number of sentences in the original text doc-
ument.

A.2 Vocabulary
The vocabulary of a language model is the set of
unique subword units, referred to as tokens, that
the model is able to recognize. Methods such as
PEGASUS and mT5 construct the vocabulary by
training a subword tokenizer, which aims to iden-
tify an appropriate separation of input text. In
this study, we use the SentencePiece unigram to-
kenizer (Kudo and Richardson, 2018) to construct
a vocabulary for Gullfaxi. This configuration is
similar to that used in PEGASUS, with a vocab-
ulary size of 96k and no differentiation between
lowercase and uppercase letters. The Gullfaxi tok-
enizer is trained on documents from the Icelandic
Gigaword Corpus (IGC). On the other hand, the
mT5 model comes with a pre-trained multilingual
vocabulary of size 250k, obtained from training a
SentencePiece tokenizer on the mC4 dataset.

A.3 Hyperparameter configuration
In this study, we use the same hyperparameter con-
figuration as the PEGASUS model, as it is compu-
tationally expensive to train and conduct a search
for optimal hyperparameters. Details of the ex-
periments’ hyperparameters and training configu-

ration can be found in the appendix. The Gullfaxi
model is trained from scratch and implemented us-
ing the HuggingFace Transformers library, while
the mT5 model uses pre-trained weights from the
google/mt5-base repository and the corre-
sponding tokenizer. The training was conducted
on a high-performance computing cluster using
multiple GPUs and distributed configuration with
the HuggingFace Accelerate library. During fine-
tuning, we use a label-smoothed regularization
with a value of 0.1, and at test time, we use a beam
size of 8 with a length penalty of 0.8 for all tasks.

B Example model outputs

Examples of model output can be seen in Tables 7,
8, and 9.
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Pre-training of Gullfaxi

Model # Steps Batch
size

Max input
tokens

Max target
tokens

GullfaxiBASE 200k 256 512 256

Fine-tuning of Gullfaxi models in Table 2, 3 and 4

Task # Steps Batch size Max input
tokens

Max target
tokens

Intro + Main→ Summary 4k 256 512 128
Main→ Intro 4k 256 512 128
Intro→ Title 4k 256 128 32
XSum 50k 256 512 64
CNN/DailyMail 50k 256 512 128

Fine-tuning of mT5BASE in Table 2 and 4

Task # Steps Batch size Max input
tokens

Max target
tokens

RRN 8k 256 Same as Gullfaxi

Low-resource fine-tuning of GullfaxiBASE and mT5BASE in Figure 1

Task # Steps Batch size Max input
tokens

Max target
tokens

RRN 3k 256 Same as Gullfaxi

Table 6: Hyperparameter setup for pre-training and fine-tuning.
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RRN Document

Title Neyðarástand vegna flóða í Kína (e. Emergency due to floods in China)
Intro Hæsta viðbúnaðarstigi hefur verið lýst yfir í Henan-héraði í Kína vegna flóða. Þau hafa orðið að minnsta kosti tólf manns að bana. (e. The

highest level of preparedness has been declared in Henan province in China due to floods. At least twelve people have been killed.
Main Hátt í tvö hundruð þúsund íbúar borgarinnar Sheng-sjá Zhengzhou í Henan-héraði í Kína hafa verið fluttir að heiman vegna flóða. Þau hafa

orðið að minnsta kosti tólf manns að bana. Hæsta viðbúnaðarstigi hefur verið lýst yfir í héraðinu. Ríkisfjölmiðlar í Kína hafa eftir Xi Jinping
að ástandið í Henan sé afar alvarlegt. Stíflur hafi brostið og valdið manntjóni og eignatapi. Allir verði að leggjast á árarnar til að koma í veg
fyrir að það verði enn meira. Á annan tug borga og bæja eru umflotin vatni. Á götum hafa myndast straumharðar ár sem bera með sér bíla og
alls kyns brak. Ef marka má fréttir af svæðinu er ástandið verst í héraðshöfuðborginni Zhengzhou. Þar flæddi vatn inn í jarðlestagöng með
þeim afleiðingum að tólf drukknuðu. Um fimm hundruð var bjargað úr göngunum. Hátt í tvö hundruð þúsund íbúum borgarinnar hefur verið
forðað að heiman vegna flóða. Síðustu þrjá sólarhringa hefur fallið álíka mikið regn og á einu ári. Þá greindi kínverski herinn frá því í gær að
tuttugu metra sprunga væri komin í Yihetan stífluna í Luoyang þar sem um það bil sjö milljónir búa. Hermenn hafa verið sendir á vettvang
til að stýra rennsli í ám og hlaða upp sandpokum til að styrkja bakkana. Vegna veðursins í miðhluta Kína hefur fjölda flugferða verið aflýst
og áætlunarferðir járnbrautarlesta eru úr skorðum. (e. Around two hundred thousand residents of the city of Zhengzhou in Henan province in
China have been evacuated from their homes due to floods. The floods have killed at least twelve people. The highest preparedness level has
been declared in the province. State media in China have quoted Xi Jinping as saying that the situation in Henan is very serious. Dams have
burst, causing casualties and property damage. Everyone must do their part to prevent further damage. Between ten and twenty cities and
towns are flooded with water. On the streets, strong currents have formed, carrying cars and various debris with them. Judging by news from
the area, the situation is worst in the provincial capital of Zhengzhou. There, water flooded into subway tunnels, resulting in twelve people
drowning. About five hundred people were rescued from the tunnels. Almost two hundred thousand inhabitants of the city have been forced
from their homes due to the floods. In the past three days, as much rain has fallen as in an entire year. The Chinese army reported yesterday
that a twenty-meter crack has appeared in the Yihetan dam in Luoyang, where around seven million people live. Soldiers have been sent to the
site to control the flow of rivers and build sandbags to strengthen the banks. Due to the weather in central China, numerous flights have been
canceled and scheduled train trips are disrupted.)

Summary Hæsta viðbúnaðarstigi hefur verið lýst yfir í Henan héraði í Kína vegna flóða. Að minnsta kosti tólf manns hafa látist (e. The highest level of
preparedness has been declared in Henan province in China due to floods. At least twelve people have died.).

GullfaxiBASE (RRN) ROUGE F1

Title skjálfti í henan-héraði 25.00/0.00/25.00
Intro að minnsta kosti fimm eru látnir eftir að öflugur jarðskjálfti reið yfir kína í gær. 35.29/11.43/29.41

R / C / L : 1/0/1 The text is relevant to the topic of a natural disaster in China but incorrectly refers to the
cause of the disaster as an earthquake. The language used is natural and grammatically correct.

Summary minnst níu hafa látist í miklum flóðum í kína frá því í gær. tugir þúsunda hafa orðið að yfirgefa heimili sín
vegna flóða.

35.00/14.29/30.00

GullfaxiBASE (CNN/DailyMail) ROUGE F1

Intro að minnsta kosti 12 manns hafa verið drepnir í henan héraði í henan-héraði í kína 54.55/28.57/48.48
R / C / L : 0/0/0 The text is not relevant to the topic, incorrectly capturing the subject of the story, asserting
that people were murdered in China. The language used includes unnatural repetitions.

Summary að minnsta kosti 12 manns hafa látist í henan héraði í henan-héraði í henan-héraði í kína 64.52/50.00/64.52

GullfaxiBASE (CNN/DailyMail + RRN) ROUGE F1

Intro hátt í tvö þúsund íbúar í kína hafa orðið að yfirgefa heimili sín vegna flóða í henan-héraði í kína. 45.71/31.58/40.00
R / C / L : 1/0/1 The text is relevant but contains a factual error regarding the number of people who left their
homes due to the flood. The language used is natural and grammatically correct.

Summary hæsta viðbúnaðarstigi hefur verið lýst yfir í kína vegna flóða í henan-héraði í kína vegna flóða. þau hafa orðið
að minnsta kosti tólf að bana í henan-héraði í kína.

78.95/58.54/73.68

mT5BASE (RRN) ROUGE F1

Title Hæsta viðbúnaðarstig lýst yfir í Henan 18.18/0.00/18.18
Intro Síðustu þrjá sólarhringa hefur fallið ástandið verst í miðhluta Kína. Hátt í tvö hundruð þúsund íbúar borgarinnar

hafa verið fluttir að heiman vegna flóða.
37.21/4.55/32.56

R / C / L : 1/0/0 The text is relevant but the first sentence is unclear and unnatural.
Summary Hæsta viðbúnaðarstigi hefur verið lýst yfir í Henan-héraði í Kína vegna flóða. Þau hafa orðið að minnsta kosti

tólf manns að bana.
82.05/65.00/76.92

mT5BASE (CCN/DailyMail) ROUGE F1

Intro Hátt í tvö hundruð þúsund íbúar borgarinnar Sheng-sjá Zhengzhou í Henan-héraði í Kína hafa verið fluttir að
heiman vegna flóða

42.11/20.00/36.84

R / C / L : 1/1/1 The text meets all criteria but note that it copies the first sentence of the input text.
Summary Hæsta viðbúnaðarstig hefur verið lýst yfir í Henan-héraði í Kína vegna flóða 60.00/46.67/60.00

mT5BASE (CCN/DailyMail + RRN) ROUGE F1

Intro Flóðin í Henan-héraði í Kína hafa orðið að minnsta kosti tólf að bana. Stíflur hafa brostið og valdið manntjóni
og eignatapi.

54.05/43.90/54.05

R / C / L : 1/1/1 The text meets all criteria. The first sentence effectively rephrases information from the input
text while the second sentence is a direct copy.

Summary Hæsta viðbúnaðarstigi hefur verið lýst yfir í Henan-héraði í Kína vegna flóða. Þau hafa orðið að minnsta kosti
tólf manns að bana.

82.05/65.00/76.92.

Table 7: Example of model output. English translations are shown for the source text and the human
evaluation scores are shown for each translation along with a justification.
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RRN Document

Title Stríðið gæti varað árum saman
Intro Stríðið í Úkraínu gæti varað árum saman og Vesturlönd þurfa að vera undir það búin að veita Úkraínu stuðning áfram. Þetta segir Jens

Stoltenberg framkvæmdastjóri Atlantshafsbandalagsins.
Main Stoltenberg lét þessi orð falla í viðtalið við þýska dagblaðið Bild. Hann segir að þrátt fyrir að stríðið sé kostnaðarsamt verði Vesturlönd að

halda áfram að senda Úkraínumönnum hergögn og nauðsynjar því kostnaðurinn verði umtalsvert meiri ef Vladimír Pútín Rússlandsforseti nái
sínum markmiðum. Við þurfum að búa okkur undar það að stríðið gæti varað árum saman, segir Stoltenberg. Það sama segir Boris Johnson,
forsætisráðherra Bretlands, sem fór í sína aðra heimsókn til Kænugarðs á föstudag. "It would be a catastrophe if Putin won. It would be a
catastrophe if he was able to secure the land bridge to the cities in the south that he has, to hold the Donbas. That’s what he wants. Boris
Johnson segir skelfilegt að hugsa til þess að Pútín vinni stríðið. Stuðningur við Úkraínu sé nauðsynlegur til að koma í veg fyrir að Rússar
nái Donbas. Breska varnarmálaráðuneytið birti í morgun yfirferð um átökin sem geisa hvað harðast við borgina Sjevjerodonetsk. Þar kemur
fram að litlar breytingar hafi orðið síðasta sólarhringinn. Síðustu daga hafi verið nokkuð um liðhlaup úr úkraínskum hersveitum. Einnig segir
breska varnarmálaráðuneytið að átök haldi áfram innan hersveita Rússa og dæmi séu um að hersveitir neiti að hlýða skipunum foringja sinna.

Summary Framkvæmdastjóri Atlandshafsbandalagsins segir að Vesturlönd þurfi að vera undir það búin að veita Úkraínu stuðning áfram, stríðið geti
varað í mörg ár í viðbót.

GullfaxiBASE (RRN) ROUGE F1

Title jens stoltenberg um úkraínu 0.00/0.00/0.00
Intro vladimír pútín rússlandsforseti segir að stríðið í úkraínu sé í fullum gangi. pútín rússlandsforseti segir að rússar

verði að sætta sig við stríðið í úkraínu.
25.00/9.09/25.00

Summary framkvæmdastjóri atlantshafsbandalagsins segir að stríðið í úkraínu sé hafið. framkvæmdastjóri atlantshafsban-
dalagsins segir að stríðið í úkraínu sé hafið.

40.00/6.25/33.33

GullfaxiBASE (CNN/DailyMail) ROUGE F1

Intro forsætisráðherra bretlands segir að stríðið í úkraínu sé nauðsynlegurnauðsynlegur til að koma í veg fyrir að
rússland nái árangri í úkraínu

25.00/9.09/25.00

Summary jens stoltenberg, framkvæmdastjóri atlantshafsbandalagsins í úkraínu, segir að vladimírs pútín rússlandsforseti
muni halda áfram að senda hergögn til kænugarðs. forsætisráðherra bretlands, donbas, segir að rússneskir
hermenn hafi verið sendir til kænugarðs til að koma í veg fyrir átök í úkraínu.

19.23/3.33/15.38

GullfaxiBASE (CNN/DailyMail + RRN) ROUGE F1

Intro forsætisráðherra bretlands segir skelfilegt að stríðið í úkraínu sé að undirbúa sig fyrir það. hann segir að stríð í
úkraínu sé á réttri leið.

28.57/8.70/28.57

Summary jens stoltenberg knattspyrnustjóri atlantshafsbandalagsins segir að stríðið í úkraínu gæti komið í veg fyrir að
rússar nái friði í úkraínu.

26.32/4.76/21.05

mT5BASE (RRN) ROUGE F1

Title Stríðið í Úkraínu 25.00/0.00/25.00
Intro Forsætisráðherra Bretlands segir skelfilegt að hugsa til þess að Vladimír Pútín Rússlandsforseti nái sínum mark-

miðum.
10.53/0.00/10.53

Summary Forsætisráðherra Bretlands segir að stríðið í Úkraínu gæti varað árum saman og Vesturlönd þurfa að vera undir
það búin að veita Úkraínu stuðning áfram. Þetta segir framkvæmdastjóri Atlantshafsbandalagsins.

62.22/36.00/44.44

mT5BASE (CCN/DailyMail) ROUGE F1

Intro Stuðningur við Úkraínu er nauðsynlegur til að koma í veg fyrir að Rússar nái Donbas segir Boris Johnson
forsætisráðherra Bretlands

18.60/0.00/13.95

Summary Stuðningur við Úkraínu er nauðsynlegur til að koma í veg fyrir að Rússar nái Donbas segir Jens Stoltenberg
framkvæmdastjóri Atlantshafsbandalagsins

25.00/0.00/10.00

mT5BASE (CCN/DailyMail + RRN) ROUGE F1

Intro Forsætisráðherra Bretlands segir skelfilegt að hugsa til þess að Pútín Rússlandsforseti vinni stríðið. Stuðningur
við Úkraínu sé nauðsynlegur til að koma í veg fyrir að Rússar nái Donbas.

20.83/0.00/12.50

Summary Stríðið í Úkraínu gæti varað árum saman og Vesturlönd þurfa að vera undir það búin að veita Úkraínu stuðning
áfram, segir framkvæmdastjóri Atlantshafsbandalagsins.

69.77/39.13/46.51.

Table 8: Example of model output.
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RRN Document

Title Breytingar á leigumarkaði
Intro Ungt fólk hefur hrakist af leigumarkaði í covid-faraldrinum og hefur í vaxandi mæli þurft að flytja aftur heim í foreldrahús. Vísbendingar eru

um að dregið hafi úr framboði á leiguhúsnæði á síðustu mánuðum.
Main Þetta kemur fram í könnun á vegum hagdeildar Húsnæðis- og mannvirkjastofnunar um stöðuna á leigumarkaði. Almennt hefur leigjendum

fækkað á síðustu tveimur árum. Margir hafa nýtt sér hagstæð lánakjör til að kaupa húsnæði en aðrir hafa hrakist af markaðinum. Karlotta
Halldórsdóttir hagfræðingur hjá stofnuninni segir að ungt fólk hafi orðið hvað verst úti. Svo myndi ég segja líka að áhrif af covid faraldrinum
þau eru að koma einna verst niður á búsetu hjá ungu fólki. Yngsta aldurshópnum 18 til 24 ára. Þar erum við að sjá stórlækkun hjá þeim á
leigumarkaði og þeir eru í auknum mæli að flytja aftur í foreldrahús Við mundum geta giskað á að það væri minni atvinna fyrir þau. Kannski
mikið til fólk sem er í hlutastörfum, veitingageiranum, ferðaþjónustutengt og atvinna þar hafi minnkað og þau séu með minna ráðstöfunarfé
og hafi þá ekki lengur efni á að vera á leigumarkaði Þá eru einnig vísbendingar um að dregið hafi úr framboði á leiguhúsnæði á undanförnum
mánuðum. Í upphafi faraldursins jókst framboð verulega þegar Airbnb íbúðir fóru inn á hinn almenna leigumarkað. Við sáum einmitt í kjölfarið
af covid og í fyrra þá vorum við að sjá framboð af leiguhúsnæði aukast töluvert. Fólk átti auðveldara með að finna sér húsnæði og svona aukið
öryggi. En við erum að sjá í fyrsta skipti núna síðan 2015 að það sé hærra hlutfall sem finnst erfiðara að verða sér úti um húsnæði. Þannig að
það eru vísbending um að það sé að draga úr þessu mikla framboði sem var Þetta hefur líka þær afleiðingar að leiguverð fer nú hækkandi. Við
sáum það í fyrsta skipti í svolítinn tíma þá hækkaði vísitalan. alveg töluvert milli mánaða. þannig að það eru kannski svona einhver merki um
að það sé aðeins farið að vera erfiðari leigumarkaðurinn hjá okkur

Summary Staða ungs fólks á húsleigumarkaði hefur versnað í Covid faraldrinum og margir hafa neyðst til að flytja aftur í foreldrahús. Þetta sýnir ný
könnun.

GullfaxiBASE (RRN) ROUGE F1

Title skortur á leiguhúsnæði 33.33/0.00/33.33
Intro ungtungt fólk á aldrinum 18 til átján ára hefur flutt lögheimili sitt á almennum leigumarkaði. þetta kemur fram

í nýrri könnun.
20.83/0.00/20.83

Summary ungt fólk hefur dregið úr framboði á leigumarkaði frá því í fyrra. ungt fólk er líklegra til að flytjast búferlum
frá heimilum sínum.

26.67/4.35/22.22

GullfaxiBASE (CNN/DailyMail) ROUGE F1

Intro ungt fólk á aldrinum 18 til 24 ára hefur fækkað á undanförnum tveimur árum. ungt fólk á aldrinum 18 til 24 ára
eru verst úti á leigumarkaði.

26.67/3.92/22.22

Summary ungt fólk hefur dregið úr framboði á íbúðarhúsnæði á undanförnum mánuðum. á undanförnum mánuðum hefur
fjöldi leigjenda dregið úr framboði á leiguhúsnæði á undanförnum mánuðum.

10.81/0.00/10.81

GullfaxiBASE (CNN/DailyMail + RRN) ROUGE F1

Intro ungt fólk á aldrinum 18 til 24 ára er í auknum mæli á leigumarkaði í fyrsta sinn í 20 ár. þetta kemur fram í nýrri
könnun sem gerð var á vegum húsnæðis- og mannvirkjastofnunar sem unnin var á dögunum.

23.73/5.80/20.34

Summary ungt fólk hefur hrakist af leigumarkaði í vaxandi mæli á síðustu mánuðum. vísbendingar eru um að ungt fólk
hafi dregið úr framboði covid-faraldrinum.

21.74/0.00/17.39

mT5BASE (RRN) ROUGE F1

Title Leigumarkaður 0.00/0.00/0.00
Intro Forstjóri Húsnæðis- og mannvirkjastofnunar segir að ungt fólk hafi orðið hvað verst úti um húsnæði. Þetta

kemur fram í könnun á vegum hagdeildar Húsnæðis- og mannvirkjastofnunar um stöðuna á leigumarkaði.
33.96/3.39/18.87

Summary Formaður Húsnæðis- og mannvirkjastofnunar segir að ungt fólk hefur hrakist af leigumarkaði í covid-
faraldrinum og hefur í vaxandi mæli þurft að flytja aftur heim í foreldrahús. Vísbendingar eru um að dregið hafi
úr framboði á leiguhúsnæði á síðustu mánuðum.

28.57/9.68/25.00

mT5BASE (CCN/DailyMail) ROUGE F1

Intro Almennt hefur leigjendum fækkað á undanförnum tveimur árum. Margir hafa nýtt sér hagstæð lánakjör til að
kaupa húsnæði. En aðrir hafa hrakist af markaðinum.

19.61/3.64/19.61

Summary Almennt hefur leigjendum fækkað á síðustu tveimur árum. Margir hafa nýtt sér hagstæð lánakjör til að kaupa
húsnæði. En aðrir hafa hrakist af markaðinum.

25.53/8.51/21.28

mT5BASE (CCN/DailyMail + RRN) ROUGE F1

Intro Ungt fólk er í auknum mæli að flytja aftur í foreldrahús. Þetta segir hagfræðingur hjá Húsnæðis- og mannvirk-
jastofnun. Almennt hefur leigjendum fækkað á síðustu tveimur árum.

45.28/17.54/45.28

Summary Ungt fólk hefur hrakist af leigumarkaði og hefur í vaxandi mæli þurft að flytja aftur heim í foreldrahús. Vís-
bendingar eru um að dregið hafi úr framboði á leiguhúsnæði á síðustu mánuðum.

34.62/10.91/30.77.

Table 9: Example of model output.
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Abstract

The aim of this work is to present a set of
novel language resources in Faroese suit-
able for the field of Automatic Speech
Recognition including: an ASR corpus
comprised of 109 hours of transcribed
speech data, acoustic models in systems
such as WAV2VEC2, NVIDIA-NeMo,
Kaldi and PocketSphinx; a set of n-gram
language models and a set of pronuncia-
tion dictionaries with two different vari-
ants of Faroese. We also show comparison
results between the distinct acoustic mod-
els presented here. All the resources ex-
posed in this document are publicly avail-
able under creative commons licences.

1 Introduction

As the digital world has become increasingly
prominent and omnipresent in most human activ-
ities, the use of more and better language tech-
nologies has become a pressing need. For this
reason, more and more governments are invest-
ing in the development of all kinds of linguistic
resources that allow their citizens to be part of the
new digital era, with all the benefits it entails. Lan-
guage technology initiatives in the main regions
of the world such as: Europe (Rehm et al., 2020;
Nikulásdóttir et al., 2020; Meister et al., 2010;
D’Halleweyn et al., 2006), India (Vikas, 2001;
Choudhary, 2021), Africa (Grover et al., 2011),
China (Kania et al., 2018), Saudi Arabia (Mae-
gaard et al., 2008, 2005) and the Spanish speak-
ing countries (Fernandez et al., 2016); allow us to
attest how important language technologies have
become in recent times.

In synchrony with all the developments men-
tioned above, it is time to talk about the efforts
made for the development of the Faroese language
in the digital sphere. The most recent initiative in

this regard is the Ravnur Project, founded in the
Faroe Islands. Thanks to the resources generated
and shared by Ravnur, it has been possible to de-
velop all the language resources presented in this
document.

1.1 Faroese

The Faroe Islands is a set of small islands located
at the North Atlantic in a half way between Scot-
land, Iceland and Norway. It is an autonomous ter-
ritory of the Kingdom of Denmark with Faroese as
the official language, which is spoken by around
54, 000 people. There are four main dialect ar-
eas in the Faroe Islands; north, northwest, central
and southern (Petersen, 2022). The Faroe Islands
is a bilingual country with Danish as the second
official language. While many native speakers of
Faroese use Danish for university education or em-
ployment in Denmark, Faroese is spoken as a first
language by most of the population and is used
on all domains, e.g. in education, public sectors,
church etc. in the Faroe Islands. The first and, to
this date, only Faroese speech synthesis was cre-
ated in 2005 (Helgason and Gullbein, 2005) by
combining efforts from researchers at the Univer-
sity of Stockholm and the University of the Faroe
Islands and is used by the visually impaired com-
munity. Currently, there is a huge demand for
Faroese ASR solutions, needed by the deaf, visu-
ally impaired and dyslexic communities - and also
the general public, who wish to use their mother
tongue when interacting with technology.

1.2 The Ravnur Project

The Faroese ASR research project, Ravnur, was
assembled in 2019 (Foundation, 2019). The aim
of the project was to create open-source resources
that could be used to create automatic speech
recognition (ASR) systems in Faroese. These re-
sources would also be useful for creating other
types of language technologies, as well as for lin-
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guistic research. The project was funded by pub-
lic and private initiators and investors, including
the Faroese government. The development team
consisted of a project leader, a technical leader,
three native speaking junior linguists, an IT as-
sistant, five university student assistants, as well
as external advisors. The project concluded in the
summer of 2022 with the publication of the Basic
Language Resource Kit for Faroese (BLARK) (Si-
monsen et al., 2022; Debess et al., 2022).

1.3 Collection of the Speech Corpus

A Basic Language Resource Kit or BLARK is
defined as the minimal set of language resources
needed to create language and speech technology
for a language (Krauwer, 2003; Maegaard et al.,
2006). A BLARK is ideally language indepen-
dent, but because languages may have different re-
quirements, the contents of the BLARK may vary
in some respects from language to language.

So, as Ravnur was an ASR project, the fo-
cus was on collecting good quality recordings of
Faroese and creating a transcription corpus and
pronunciation dictionary. During the course of the
project, Ravnur collected 135 hours of recordings
of 433 speakers total (249 female speakers and
184 male speakers) reading text of various genres,
such as news, blogs, Wikipedia, law texts, GPS
commands, word lists etc. The participants self-
reported their gender, native language, dialect and
age which varies between 15 to 83 years old. The
recordings were made on TASCAM DR-40 Linear
PCM audio recorders using the built-in stereo mi-
crophones in WAVE 16 bit with a sample rate of
48kHz. All recordings have been manually ortho-
graphically transcribed, while part of the speech
corpus has been phonetically transcribed. The
transcriptions were made by the university student
assistants and the three Faroese linguists working
for the project. All words that occur in the record-
ings were put in a pronunciation dictionary. The
dictionary includes phonetic transcriptions written
in SAMPA and PAROLE PoS-tags (Bilgram and
Keson, 1998; Keson, 1998)1.

As it can be seen, the BLARK developed by
Ravnur is the starting point of the novel machine
learning models presented in this work.

1Both the Faroese SAMPA alphabet (sometimes called
FARSAMPA) and PAROLE PoS-tags were created by
Ravnur for the BLARK.

2 The Ravnursson Corpus

Ravnursson2 (Hernández Mena and Simonsen,
2022) is an ASR corpus with a length of 109
hours3, extracted from the BLARK described in
section 1.3. Unlike the original BLARK, the
Ravnursson only contains the speech files along
with their respective transcriptions. The main
characteristics of the corpus are the following:

• The audio files in this corpus are distributed
in a FLAC format at 16kHz@16bit mono.

• The corpus contains 71, 949 speech files from
433 speakers.

• The corpus is split into train, dev, and test
portions. Lengths of every portion are: train
= 100h08m, dev = 4h30m, test = 4h30m.

• The development and test portions have ex-
actly 10 male and 10 female speakers each
and both portions have exactly the same size
in hours.

• As the test and development portions were
selected to be gender balanced, an equal rep-
resentation of all the dialectal variants is not
guarantee in these two portions.

• Due to the limited number of prompts to read,
only 39, 945 of the 71, 949 prompts in the
whole corpus are unique. In other words,
44.48% of the prompts in the corpus are re-
peated at least once.

• Despite the repeated prompts in the corpus,
the development and test portions do not
share speakers with each other or with the
training set.

2.1 Analysis of the Repeated Prompts
As the number of reading prompts for the corpus
was limited during the recording process, the com-
mon denominator in the Ravnursson corpus is that
one prompt is read by more than one speaker. This
is relevant because it is a common practice in ASR

2As a matter of fact, the name Ravnursson comes from
Ravnur (a tribute to the Ravnur Project) and the suffix “son”
which in Icelandic means “son of”. Therefore, the name
“Ravnursson” means “The (Icelandic) son of Ravnur”. The
double “ss” is just for aesthetics.

3As it was mentioned in section 1.3, 135 hours of speech
data were collected for the original BLARK. However, the
Ravnursson Corpus contains 109 hours because we removed
the portions with no presence of speech as much as we could.
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to create a language model using the prompts that
are found in the train portion of the corpus. That is
not recommended for the Ravnursson Corpus as it
counts with several prompts shared by all the por-
tions and that will produce an important bias in the
language modeling task.

Table 1 shows some statistics about the repeated
prompts through all the portions of the corpus.
The way this table has to be understood is as fol-
lows: for example, the first row indicates that there
is a total of 71, 949 reading prompts in the whole
corpus; 39, 945 of those are unique and 32, 004
are repeated at least once. Therefore, a total of
44.48% prompts in the whole corpus are repeated
at least once. The same applies to the rest of the
rows in Table 1.

Corpus Total Unique Repeat. %
Portion Prompts Prompts Prompts
All 71, 949 39, 945 32, 004 44.48%
Train 65, 616 38, 646 26, 970 41.1%
Test 3, 002 2, 887 115 3.83%
Dev 3, 331 3, 302 29 0.87%

Table 1: Analysis of Repeated Prompts.

2.2 Corpus Organization
The “speech” directory contains all the speech
files of the corpus. The files in the speech folder
are divided in three directories: train, dev and
test. The train portion is sub-divided in three
types of recordings: RDATA1O, RDATA1OP and
RDATA2; this is due the organization of the
recordings in the original BLARK. There, the
recordings are divided in Rdata1 and Rdata2.

One main difference between Rdata1 and
Rdata2 is that the reading environment for Rdata2
was controlled by a software called “PushPrompt”
which is included in the original BLARK (Simon-
sen et al., 2022). Another difference is that in
Rdata1 there are some available transcriptions la-
belled at the phoneme level. The audio files in
the speech directory of the Ravnursson corpus are
divided in the folders RDATA1O where “O” is
for “Orthographic” and RDATA1OP where “O” is
for Orthographic and “P” is for phonetic. These
categories are just a reminiscence of the original
BLARK but it does not imply that the Ravnursson
corpus comes with transcriptions at the phonetic
level. In the case of the dev and test portions, the
data come only from Rdata2 which does not have

labels at the phonetic level in the original BLARK.

2.3 The Metadata File
The metadata file is a “tab-separated values file”
(TSV) containing all the relevant information of
the corpus. The file can be read using the Pan-
das (McKinney et al., 2010) library in Python and
it comprises of the following 12 columns:

1. id: The filename without the extension
“.flac”.

2. speaker_id: The filename without the seg-
ment number.

3. filename: Full filename including the exten-
sion “.flac”.

4. sentence_norm: The normalized transcrip-
tion: no punctuation marks, no digits, lower
case letters, one single space between words.

5. gender: The gender of the speaker: male or
female.

6. age: The age range of the speaker: 15-35, 36-
60, 61+ years old.

7. native_language: “Faroese” in all the cases.

8. dialect: The speaker dialect.

9. created_at: The date when the audio file was
recorded.

10. duration: Duration of the speech file in sec-
onds.

11. sample_rate: 16kHz in all the cases.

12. status: The corpus portion: train, test or dev.

2.4 Codification of the Audio Filenames
In the Ravnursson corpus, the filenames of the au-
dio files encode relevant information about the re-
spective speech files. The first row of Table 2,
shows a typical audio filename. The second row
enumerates the fields of information encoded in
the filename and the third row shows the same
filename of row one but broken down in the eight
parts as specified in the second row.

The explanation of the information encoded in
the filename is at follows:

1. Gender of the Speaker: M for male or K for
female
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MEY 01_040319_rok0_0009.f lac
1 2 3 4 5 6 7 8
M E Y 01 040319 rok0 0009 .flac

Table 2: Audio Filename Format.

2. Dialect Group: U for Suðuroy, A for San-
doy, S for Suðurstreymoy, E for Norðurstrey-
moy/Eysturoy (exclusive of Eiði, Gjógv
og Funningur), V for Vágar and N for
Norðuroyggjar (inclusive of Eiði, Gjógv og
Funningur)

3. Age Group: Y for “Younger” between 15-35
years old, M for “Middle-aged” between 36-
60 years old and E for “Elderly” 61 years old
or older.

4. Number of Speaker in a Group: is a number
that always consists of two digits and starts
with 01, 02, 03 etc. The first speaker in a
group with the same gender, dialect group
and age group (e.g. MEY) gets the num-
ber 01. The next speaker in the same group
gets the number 02 (and his ID is therefore
MEY02).

5. Date: The date when the speech was recorded
(day/month/year).

6. Type of reading material: This code can only
be found in speech files at RDATA1O and
RDATA1OP. For more information about the
types of reading material please see the docu-
mentation of the original BLARK and its di-
rectory “readingtexts_1.0”.

7. Segment Number: In the original BLARK
the recording session is distributed as one
audio file per speaker and it can be very
long from the ASR perspective. So, the
audio files are subdivided in segments of
around 10 seconds to fit most of the mod-
ern ASR engines4. The numbering is con-
tinuous for each speaker; the only exception
is with the files MUY01_180519_set4_0004
and MUY02_190120_eind2_0007. We de-

4According to the developers of Sphinx, the optimal
length for audio recordings in ASR is between 5 and 30 sec-
onds (see https://cmusphinx.github.io/wiki/
tutorialam/. However, we segmented the audio files of
the Ravnursson Corpus to have a lenght around 10 seconds to
fit the format of other corpora developed by our laboratory

tected that they are empty and we removed
them.

8. File extension: The corpus is distributed in
FLAC format.

3 Acoustic Models

The development of the Ravnursson corpus al-
lowed us to create acoustic models in four differ-
ent ASR systems: WAV2VEC2, NeMo, Kaldi and
PocketSphinx. In this section we discuss the de-
tails of how we created each of them.

3.1 WAV2VEC2 Model

WAV2VEC, released in 2019, is a convolutional
neural network that takes raw audio as input and
computes a general representation that can be
input to a speech recognition system (Schnei-
der et al., 2019). In 2020, a second version,
WAV2VEC2 (Baevski et al., 2020) was released.
Based on WAV2VEC2, the XLSR-53 (Conneau
et al., 2020) was also released in 2020. XLSR-53
is a open-source model trained with more than 50k
hours of unlabelled speech in 53 languages. It can
be used to create acoustic models in any language
through a fine-tuning step.

Using the XLSR-53 as a starting point, we cre-
ated an acoustic model suitable for Faroese (Her-
nandez Mena, 2022b)5 which is available on a
Creative Commons licence “CC BY 4.0”. The
fine-tuning process for this model lasted 30
epochs. Due to the acceptable WER results that
we obtained with this model, we decided not to
add any type of augmentation to the training data.

3.2 NeMo Model

NeMo (Neural Modules) is a Python toolkit de-
veloped by NVIDIA for creating AI applica-
tions. It comes with extendable collections of
pre-built modules for automatic speech recogni-
tion and natural language processing (Kuchaiev
et al., 2019). One of the NeMo modules suitable
for speech recognition is called Quartznet (Kri-
man et al., 2020) which is a convolutional model
trained with Connectionist Temporal Classifica-
tion (Graves, 2012) or CTC for short.

In order to train an ASR model for Faroese
in NeMo, we used the public checkpoint

5Available at: https://huggingface.
co/carlosdanielhernandezmena/
wav2vec2-large-xlsr-53-faroese-100h
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Points of articulation

Manners

Consonants Bi-labial Labiodental Dental Alveolar Post-alveolar Retroflex Palatal Velar Glottal

of

Voiceless Stop p t k

articulation

Voiced Stop b d g
Voiceless Affricate tS

Voiced Affricate dZ
Voiceless Fricative f 5 s S z h

Voiced Fricative v 4
Voiceless Nasal M x X

Voiced Nasal m n N
Voiceless Lateral L
Voiced Lateral l
Approximants r j w

Vowels Front Central Back

Close i y 3 u
I Y U

Close-mid e 2 o
8

Open-mid E 9 O

Open a

Table 3: Phonetic Repertoire of Faroese

“QuartzNet15x5Base-En.nemo6” as a starting
point. This model was trained with more than
3k hours of English data in a Quartznet archi-
tecture during 600 epochs. Based on a work
by Huang et al.7, we fine-tuned the checkpoint
with the data of the Ravnursson corpus during 236
epochs, obtaining a first checkpoint able to recog-
nize Faroese. Then, we augmented the initial 100
hours of the training portion of the Ravnursson
corpus to 300 hours through speech perturbation
using two speed rates: 0.9 and 1.1. Finally, we
fine-tuned our initial checkpoint in Faroese with
the augmented data during 163 epochs to obtain
a final model8 (Hernandez Mena, 2022a) which is
available on a Creative Commons licence “CC BY
4.0”.

6Available at: https://catalog.ngc.nvidia.
com/orgs/nvidia/models/nemospeechmodels/
files

7The decision of using the QuartzNet architecture and not
others, was based mainly on this research paper. A compar-
ison of different NeMo architectures is beyond the scope of
this paper.

8Available at: https://huggingface.
co/carlosdanielhernandezmena/stt_fo_
quartznet15x5_sp_ep163_100h

3.3 Kaldi Model

Kaldi (Povey et al., 2011), released in 2011,
is a well established toolkit for speech recog-
nition written in C++, which is based on dis-
tinct paradigms such as: finite-state transduc-
ers (Allauzen et al., 2007), Hidden Markov Mod-
els (Juang and Rabiner, 1991), Gaussian Mixture
Models (Naeem et al., 2020) as well as neural net-
works (Rath et al., 2013).

Our “Kaldi Recipe for Faroese9” (Hernán-
dez Mena, 2022) was created using the Ravnurs-
son corpus as training data. The recipe produces
models based on Hidden Markov Models (HMMs)
as well as Neural Networks; in specific, the neural
network is an LSTM or “Long Short-Term Mem-
ory” (Huang et al., 2017) and it uses speed pertur-
bation as augmentation technique with speed rates
of 0.9 and 1.1. This recipe requires a 3-gram lan-
guage model (lm) for decoding, a 4-gram lm for
re-scoring and a pronouncing dictionary; elements
that are available in our “Faroese Language Mod-
els with Pronunciations” (Hernández Mena et al.,
2022), discussed in further sections.

9See: https://github.com/
CarlosDanielMena/Kaldi_Recipe_for_
Faroese
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The recipe is available on Clarin.is 10 un-
der a Creative Commons licence “CC BY 4.0”.

3.4 PocketSphinx Model

Sphinx is an old speech recognition system
based on Hidden Markov Models developed by
Carnegie-Mellon University in the late 80’s (Lee
et al., 1990). Through time, progressive versions
of Sphinx have been released up the version 4.
At some point, the version 2 turned into Pock-
etSphinx (Huggins-Daines et al., 2006). Pocket-
Sphinx was supposed to be a lighter and faster
version of Sphinx but nowadays it has become the
main version that can be used in real time mode,
even in ARM processors. PocketSphinx has long
ceased to be a suitable system for research, but
nevertheless it still has an active community of
users that choose it as a real time speech recogni-
tion system in devices with not a great computing
power such as Raspberry PI (Upton and Halfacree,
2014) or other ARM computers.

Our PocketSphinx models11, trained with the
Ravnursson corpus, are suitable for the Pocket-
Sphinx Python library available at the Pypi repos-
itory 12. With this library it is possible to per-
form both standard and real time speech recog-
nition, forced-alignment and produce timestamps.
The version of PocketSphinx that was available
when we produced these models was the number
4. Few weeks later the version 5 was released but
our models remain compatible.

The example language model that comes with
the PocketSphinx model is a 3-gram model cre-
ated using the training prompts of the Ravnurs-
son Corpus. The test portion of the corpus was
used to measure a WER of 18.7%. We don’t show
this result in Table 5 because the use of the train-
ing prompts in the language model produces a bias
that is not fair to the other models as we point out
in section 2.1. We strongly recommend to create
a language model for the specific task that is re-
quired and to kept it as short as possible because a
larger model will impact the latency of the system.

10See: http://hdl.handle.net/20.500.
12537/305

11Available at: https://github.com/
CarlosDanielMena/RAVNURSSON_FAROESE_
Models_100h

12See: https://pypi.org/project/
pocketsphinx/

4 Pronunciation Models

The pronunciation models that we discuss in this
section is a set of pronouncing dictionaries that are
included in our “Faroese Language Models with
Pronunciations” (Hernández Mena et al., 2022)
along with a number of language models that will
be discussed in section 5. Most of the pronun-
ciations come from the original BLARK, but for
convenience, we subdivide them in different dic-
tionaries as follows:

• Central_Faroese.dic: It contains pronuncia-
tions of the variant of Faroese which is spo-
ken in the capital.

• East_Faroese.dic: It contains pronunciation
of the northwest variant of Faroese13.

• Ravnursson_Composite_Words.dic: It con-
tains words with hyphens and/or underscores
that are present in the Ravnursson Cor-
pus. We keep them separate in a different
dictionary because these type of composite
words can be problematic for a grapheme-to-
phoneme (g2p) tool.

• BLARK.dic: It contains pronunciations of
words that are present in the BLARK but that
are not present in any other dictionary of the
set.

• FAROESE_ASR.dic: This dictionary is
recommended for ASR experiments in
Kaldi or any other ASR system based on
phonemes. The dictionary is the mix of
Central_Faroese.dic, East_Faroese.dic and
Ravnursson_Composite_Words.dic. It is im-
portant to clarify that the dictionary can
contain words with multiple pronunciations,
which is normal in Kaldi-like systems.

4.1 Phoneme Sets of Dictionaries
Table 3 shows the phonetic repertoire of Faroese
using 42 SAMPA symbols. Each of these corre-
spond to an individual phoneme that is included

13In the most recent dialect classification (Petersen, 2022),
the islands in the northwest area are classified as being the
same dialect area. However, there is a difference in the pro-
nunciation of the digraph ei between the westernmost islands
and the more central and eastern islands in that dialect area.
Therefore, the westernmost part of the dialect area is not in-
cluded in our EAST dictionary. For that reason, we have
given this dictionary the name EAST. The idea is that this
makes it is possible to make WEST, NORTH and SOUTH
dictionaries in the future.
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SAMPA IPA SAMPA IPA SAMPA IPA SAMPA IPA
p ph m m e e aJ ai
b b M m

˚
E E aW au

t th n n a a OJ Oi
d d x n

˚
y y OW Ou

k kh N N Y Y 3W 0u
g g X N̊ 2 ø EW eu
f f l l 9 œ 9W œu
v v L l

˚
u u 9J œi

s s j j o o 4 ð
S S w w O O 5 T
z ù r ô EA Ea 8 @
h h U U OA Oa H Pre-aspiration

tS tSh i i UJ Ui
dZ Ã I I EJ Ei

Table 4: SAMPA vs. IPA Equivalences.

in the pronouncing dictionaries described in sec-
tion 4, except for the vowel “/3/” that only occurs
in diphthong. The phonetic repertoire of Faroese
includes the following 12 diphthongs: EA, OA,
UJ, EJ, aJ, aW, OJ, OW, 3W, EW, 9W and 9J.
Summing the 41 individual phonemes in Table 3,
plus the 12 diphthong, plus seven phonemes with
pre-aspiration (Hb, Hd, HdZ, Hg, Hp, Ht, HtS),
we have a total of 60 phonemes. That is the list
of 60 phonemes that are included in the dictio-
naries presented in section 4. To see an equiv-
alence between our SAMPA symbols versus the
IPA phonemes, please see Table 4.

5 Language Models

As it was mentioned in section 4, our “Faroese
Language Models with Pronunciations” is a set
of n-gram language models of distinct sizes that
were created using the Faroese text provided in
the BLARK, as it provides with text from news-
paper articles, parliamentary speeches, books and
more. The normalization process of that text in-
cluded to change everything to lowercase, allow
only characters belonging to the Faroese alphabet
and removing punctuation marks.

The resulting text has a length of more than half
million lines of text (106.3MB approximately).
The text was used to create a 3-gram (recom-
mended for decoding) and a 4-gram (recom-
mended for re-scoring) language models with the
SRILM toolkit (Stolcke, 2002). Both the 3-gram
and 4-gram models come in pruned and unpruned
versions. It also includes a 6-gram language model

in binary format suitable for ASR experiments
with the NeMo toolkit. In particular, this model
was created using KenLM (Heafield, 2011). It is
important to mention that all the words present in
any of the language models are present in the pro-
nouncing dictionaries for the east and central vari-
ants of Faroese (see section 4).

6 Results

Table 5 shows a comparison of the Word Error
Rate (WER) obtained with the acoustic models
presented in section 3 with the exception of the
PocketSphinx models as discussed in section 3.4.

The NeMo results include the WER obtained
using the 6-gram language model (LM) presented
in section 5 as well as the WER obtained with no
language model at all. The Kaldi results include
the WER obtained with Hidden Markov Mod-
els (HMM) only and the WER obtained with the
LSTM network. As it can be seen, the best results
are obtained with the WAV2VEC2 model, which is
not a surprise as it is well known that it can achieve
acceptable results with less than 1 hour of speech
data. What is remarkable indeed, is the gap of per-
formance between WAV2VEC2 and the other sys-
tems.

In addition to this, based on our previous expe-
rience (Hernandez Mena et al., 2020; Mena et al.,
2022), it is also remarkable that the WER obtained
with NeMo using a language model and the WER
obtained with Kaldi using the LSTM are so close
to each other despite of the relatively low amount
of training data. This fact reveals that the train-
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Corpus NeMo SP NeMo SP Kaldi Kaldi WAV2VEC2
Portion No LM With LM HMM LSTM XLRS-53
Dev 20.51% 13.66% 20.60% 12.22% 5.56%
Test 22.81% 15.95% 23.44% 14.04% 7.60%

Table 5: WER Results.

ing method described by Huang et al. in 2020 and
the use of speed perturbation for training are really
effective in NeMo.

On the other hand, Table 6 shows the results
obtained with the newest system Whisper (Rad-
ford et al., 2022). Whisper is a transformer-based
speech recognition system trained with 680k hours
of transcribed data in multiple languages. Whisper
is also a multitask system able to perform multilin-
gual speech recognition as well as speech transla-
tion and language identification. According to the
original paper (Radford et al., 2022), the training
set that Whisper uses for translation includes 46
hours of Faroese. Based on this, we decided to test
Whisper in its distinct sizes with no fine-tuning
step and using the development and test portions
of the Ravnursson corpus. As it can be seen in
Table 6, we obtained terribly bad WER results, re-
vealing that Whisper needs to be fine-tuned prior
to recognize Faroese data; unfortunately, this is
beyond the scope of this paper but it will tackle
as further work.

Whisper Dev Test
Size WER WER
Tiny 113.4% 116.7%
Base 112.61% 113.07%
Small 128.05% 132.64%
Medium 116.34% 119.3%
Large 105.93% 110.25%

Table 6: Whisper WER Results.

7 Conclusions

A major development of Faroese ASR is presented
in this work. The Ravnursson project has pro-
duced a corpus of 109 hours of transcribed speech
and acoustic models for WAV2VEC2, NeMo,
Kaldi and PocketSphinx have been developed.
Furthermore, the project has also produced a set
of n-gram language models of distinct sizes and
pronunciation dictionaries in Faroese suitable for
ASR experimentation. Quality assessment of the

acoustic models are shown in Table 5 where the
best results of 7.60% WER was achieved by the
WAV2VEC2 model. Another interesting result is
shown in Table 6 demonstrating that a fine-tuning
step is needed for Faroese for the multi-lingual
ASR system Whisper.

Faroese ASR is no longer under-developed due
to this work. The project has lowered the tech-
nological threshold for implementing ASR solu-
tions for Faroese in industry and for studying the
Faroese language using ASR as a tool. With all the
results made available with open licenses, there
is no good reason why Faroese ASR should not
be included in standard language technology soft-
ware in the future.

8 Further Work

As further work, it is clear to us that we have to ex-
plore acoustic models with the new parameter ver-
sions of WAV2VEC2 such as 300m, 1B and 2B; as
well as the Whisper system with a fine-tuning step
in Faroese in order to keep improving our WER
results. Another future challenge is to add more
Faroese data to our models, including conversa-
tional speech.
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Abstract

In this paper, we explore the extent
to which readability contributes to the
perception of literary quality as de-
fined by two categories of variables:
expert-based (e.g., Pulitzer Prize, Na-
tional Book Award) and crowd-based
(e.g., GoodReads, WorldCat). Based on a
large corpus of modern and contemporary
fiction in English, we examine the corre-
lation of a text’s readability with its per-
ceived literary quality, also assessing read-
ability measures against simpler stylomet-
ric features. Our results show that read-
ability generally correlates with popularity
as measured through open platforms such
as GoodReads and WorldCat but has an in-
verse relation with three prestigious liter-
ary awards. This points to a distinction be-
tween crowd- and expert-based judgments
of literary style, as well as to a discrimina-
tion between fame and appreciation in the
reception of a book.

1 Introduction and Related Works

Is it overall better for a novel to strive for an easy
prose, or is there a link between difficulty and lit-
erary quality? The concept of readability has been
studied for decades and is defined as the ease with
which a text can be read and understood (Dale and
Chall, 1949). Several works have attempted to de-
fine an easy way to compute readability in order

to make, for example, didactic books more acces-
sible, reduce technical jargon in documents pro-
duced for the general public, and adjust text selec-
tions according to the intended audience (Dubay,
2004). The result has been a series of popular and
amply tested measures, each with a slight differ-
ence in their model of readability. Dale and Chall
(1949), for example, referred to readability as the
combination of elements in a text that impact im-
portant aspects of a reader’s experience - including
whether the reader can understand the text, finds
it interesting, and can read with optimal speed
(Dale and Chall, 1949). Despite their shortcom-
ings (Redish, 2000), readability measures have
been broadly applied to a large number of different
domains. Measures of readability vary according
to what aspect of a text they take into account, but
they typically combine features such as sentence
length, word length, and the presence of complex
words. While the actual ease of a text depends on
reader characteristics (background, situation, abil-
ity) it is widely accepted that simple textual fea-
tures such as sentence length, syllables per word
and lexical diversity impact the reading experi-
ence (Dubay, 2004). The connection of readabil-
ity to the quality of a text has often been implied
when it comes to non-fiction, and early studies into
readability attest to the educational and social im-
portance of developing such measures to improve
technical or expository documents (Chall, 1947),
but its role in the quality of literary fiction is much
more complex. An easy-to-read novel can be en-
joyable to read, but may also apppear poor or uno-
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Figure 1: Correlations between stylometrics and flavours of readability (Spearman). All correlations
between 0.09 and 0.99 are statistically significant.

riginal. In literary studies, the idea that readability
might be a precondition for literary success is de-
bated, and literary texts have been assessed var-
iously by readability measures and similar met-
rics. Sherman (1893) was one of the first schol-
ars to propose certain values of average sentence-
length and reading ease as properties of ”better”
literary style. Readability naturally varies across
genre, but it is a widespread conception for readers
and publishers alike that bestsellers (as defined by
top book-sales) are easier to read (Martin, 1996).
More recently, readability has gained traction in
areas of (commercial) creative writing and pub-
lishing, especially where its measures are imple-
mented in text-editing tools such as the Heming-
way or Marlowe editors 1. These applications tend
to favour lower readability scores - which is, texts
easier to read. Yet, on the large scale, few studies
have included readability as a measure that could
help predicting literary quality. Studying a small
corpus of bestsellers and more literary, canonical
works, Martin (1996) found no significant differ-
ence in readability, using a modified Flesch read-
ing score, while Garthwaite (2014) found differ-
ences in readability between bestsellers and com-
mercially endorsed book-list titles. Relying on
multiple measures of readability and one measure
of literary quality (i.e., GoodReads’ average rat-
ings), Maharjan et al. (2017) found that readability
was actually a weak measure for estimating popu-
larity in comparison to, for example, character n-
grams. Still, many studies of literary success, pop-
ularity, or perceived literary quality have sought to
approximate text complexity and have studied tex-
tual properties upon which formulae of readability
are directly or indirectly based, such as sentence-
length, vocabulary richness, or text compressibil-
ity (Brottrager et al., 2022; van Cranenburgh and

1https://hemingwayapp.com/help.html,
https://authors.ai/marlowe/

Bod, 2017; Crosbie et al., 2013).
The question of the role of readability in literary

quality is complicated by the practical and con-
ceptual problem of defining literary quality itself,
and consequently of quantifying it for large scale
studies. Studies that seek to predict perceived lit-
erary quality from textual features often rely on
the provisional proxy of one single gold standard,
such as book-ratings from large user-platforms
like GoodReads (Maharjan et al., 2018), person-
ally or institutionally compiled canons (Mohseni
et al., 2022) or sales-numbers (Wang et al., 2019).
However, it has been shown that readers may
have different, distinct perceptions of quality that
are not necessarily based on the same criteria or
prompted by the same textual features (Koolen
et al., 2020).

In this paper, we explore to what extent read-
ability might contribute to the perception of liter-
ary quality – defined through several alternative
measures – in a large fiction corpus of modern
and contemporary novels in English, taking into
account, instead of one golden standard, different
contextual perspectives on literary quality, so as to
cover both crowd-based and ”expert”-based stan-
dards of judgment.

2 Data and Methods

The essence of our approach consists in examining
whether readability, as measured through five dif-
ferent algorithms, and literary quality, as approx-
imated through six different resources, show any
correlation on a large corpus of English-language
fiction. We use standard correlation measures
(Pearson and Spearman product-moment correla-
tion coefficients rp and rs, respectively). For infer-
ence on the correlation measures, simple Student’s
t-tests are used. For robustness checks, correlation
coefficients were also modelled using a Bayesian
ridge model of standardized the variables – al-
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though not reported due to limited space.2

2.1 Corpus

We use a corpus of modern and contemporary fic-
tion in English, the so-called Chicago Corpus. 3

The Chicago Corpus is a collection of over 9000
novels from 1880 to 2000, representing works of
fiction that are widespread in libraries, that is, the
works of fiction that have a large number of library
holdings as listed on WorldCat, a large-scale, in-
ternational online library catalogue 4. The num-
ber of holdings was used as a first filtering mea-
sure to include or exclude works in the dataset,
yet there are still large differences in how many
libraries hold each title, so we can use it as a met-
ric to score different titles within the dataset as
well. The corpus is unique, to our knowledge,
for its diversity and extraordinary representation
of famous popular- and genre-fiction, as well as
seminal works from the whole period: key works
of modernism and postmodernism as well as No-
bel laureates and winners of major literary award.
Still, it should be noted that the Chicago corpus re-
flects a clear cultural and geographical tilt, with a
strong over-representation of Anglophone authors,
and features only works either written in or trans-
lated into English. This tilt should be taken into
account especially since we correlate textual fea-
tures in the corpus to readability measures that
were developed - and are particularly successful
- in the English language context (Antunes and
Lopes, 2019).

N. Titles N. Authors
Whole corpus 9089 7000
Pulitzer 53 46
NBA 104 79
Hugo 96 47

Table 1: Overall titles and authors in the corpus
and number of long-listed titles for each award.

2.2 Measures of quality

We use six different measures of literary quality
of two main types, heuristically setting up a qual-
itative distinction between more crowd-based and
more expert-based measures. Expert-based mea-

2The code will be publicly available upon acceptance.
3While we cannot directly provide access to the corpus, it

is possible to contact the authors for requests.
4https://www.worldcat.org/about

sures may be supposed more institutionally pre-
scribed, where titles are distinguished by appoint-
ing committees (as with literary prizes). Here, we
chose to look at three prominent literary prizes in
Anglophone literary culture: The Pulitzer Prize,
the National Book Award, and the Hugo Awards,
considering titles that were both long- and short-
listed for these prizes. The selection of awards
allows us to consider a main-stream vs. genre-
literature divide in our expert measures, since the
first two prizes are assigned mainly to works of
literary fiction, while the latter is an award given
to works of genre fiction (science fiction and fan-
tasy).

Crowd-based measures may be considered
more democratic in the sense of being user-
created, for example by users’ ratings on
large scale reading community sites such as
GoodReads, or by the effect of popular demand on
library acquisitions. We use three standards here:
the average ratings of titles on GoodReads (from
0 to 5 stars), the average rating count of titles on
GoodReads (number of ratings given to a given ti-
tle), and the number of libraries that hold a title ac-
cording to Worldcat. Goodreads ratings and/or rat-
ing counts are often favoured in studies of literary
quality and reception, because they seem to proffer
more democratic literary evaluations ”in the wild”,
considering the large diversity and geographical
spread of its nearly 90 million users (Nakamura,
2013). In slight contrast to Goodread’s ratings,
we consider library holdings a conceptually hy-
brid measure, standing between completely free
reader-based votes and expert-driven choices, as
libraries respond to user-demand from within an
institutional structure.

2.3 Measures of readability

For assessing the complexity and/or difficulty of
literary texts, we apply various measures of read-
ability. Since the 1920s, and especially with the
success of the Flesch and Dale-Chall formulas in
the 1950s, combinations of sentence-length and
words and/or syllables have been used to assess
the difficulty of a text as proxies of word and sen-
tence complexity (Dale and Chall, 1948). Accord-
ing to Dubay (2004), there were more than 200
different versions of readability formulas in 1980,
while new ones are still introduced and old ones
revised. Still, measures from what Dubay calls
the ”classic” readability studies, continue to be the
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(a) Distributions of readability measures

(b) Distributions of quality measures. Rating count is visualised with cutoff at 5000 for legibility.

Figure 2: Distributions of measures

(a) Readability and GoodReads’ average rating

(b) Readability and GoodReads’ rating count, with cutoff at 100.000

(c) Readability and library holdings

Figure 3: Quality standards and flavours of readability

most widely used measures and to prove them-
selves effective in assessing text difficulty (Dubay,
2004; Stajner et al., 2012) - despite their relative
simplicity (being counts of two or three aspects
of texts). As mentioned, readability is subjective
and depends on the audience/reader. However, if
the intended audience or specific reader is unkown

(as in our case), readability scores may provide a
general/overarching measure which is also suffi-
cient for comparison between texts. These mea-
sures have been applied to a wide range of written
productions, from technical and journalistic texts
to fiction. Flesch, for example, found that fiction
tend to score a Flesch Reading Ease score in the
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range 70 ¡ Score ¡ 90, in contrast to scientific text
that often score below 30 (Flesch, 1948). In the
present study we used five different ”classic” read-
ability algorithms to measure the prose of each
book, chosen for their popularity and interpretabil-
ity 5.

• The Flesch Reading Ease is a measure of
readability based on the average sentence
length (ASL), and the average syllables per
word (word length)(ASW). It is calculated as
follows:

Score = 206.835− (1.015× ASL)

− (84.6× ASW)

• The Flesch-Kincaid Grade Level is a revised
version of the Flesch Reading Ease score.
Like the former, it is based on the average
sentence length (ASL), and the number of
syllables per word (ASW). It is calculated as
follows:

GL = (0.4× ASL) + (12× ASW)− 15

• The SMOG Readability Formula is a read-
ability score introduced by McLaughlin
(McLaughlin, 1969). It measures readabil-
ity based on the average sentence length and
number of words with more than 3 syllables
(number of polysyllables), applying the for-
mula:

SMOG grading = 3 +
√
polysyllablecount

• The Automated Readability Index is a read-
ability score based on the average sentence
length and number of characters per words
(word length). It is calculated as follows:

4.71
characters

words
+ 0.5

words
sentences

− 21.43

• The New Dale–Chall Readability Formula is
a 1995 revision of the Dale-Chall readabil-
ity score (Chall and Dale, 1995). It is based
on the average sentence length (ASL) and the
percentage of ”difficult words” (PDW) which
were defined as words which do not appear
on a list of words which 80 percent of fourth-
graders would know (Dale and Chall, 1948),

5All readability scores were extracted using the textstat
package: https://pypi.org/project/textstat/

contained in the Dale-Chall word-list. 6 It is
calculated as follows:

Raw Score = 0.1579×PDW+0.0496×ASL

If PDW > 5% : Adjusted Score =

Raw Score + 3.6365

All readability scores are represented as a US-
grade level, where a higher grade means a more
difficult text, except for the Flesch Reading Ease.
The Flesch Reading Ease indicates a score be-
tween 0 (low readability) and 100 (high readabil-
ity): a higher number means a more readable text.
For this reason in most of our experiments the
Flesch Reading Ease looks reversed with respect
to the other measures (and is negatively correlated
with them).

3 Results

Pearson’s and Spearman’s correlations between
these five readability metrics and commonly used
stylometric features show - as a sanity check - that
readability measures capture aspects of novels’
overall style. All measures are similarly correlated
to sentence-length (naturally, being a base for all
measures) but also to lexical diversity and com-
pressibility, which measure, respectively, com-
plexity at the word- and sequence-level. More-
over, the correlations with our ”quality scores”
show that readability is linked with the ones closer
to popularity than to appreciation.

Figure 4: Correlations between quality standards
and flavours of readability. All correlations are
statistically significant.

Pearson’s r, specifically in its significance test-
ing, relies on the assumption of normally dis-
tributed data and it assumes that the two vari-
ables have a linear relationship, while Spearman’s
r correlation coefficient is non-parametric, mean-
ing that, while it still assumes a monotonic relation

6See: https://countwordsworth.com/download /DaleChal-
lEasyWordList.txt

46

https://pypi.org/project/textstat/
https://countwordsworth.com/download /DaleChallEasyWordList.txt
https://countwordsworth.com/download /DaleChallEasyWordList.txt


between the two variables, it does not make strong
assumptions on the shape of the data. For this rea-
son, Spearman is probably the best overall mea-
sure for this study, as we have no reason to assume
that all our measures are normally distributed (and
some are evidently not, as can be seen in Figure 2).
For these reasons, we will mainly credit the corre-
lations observed through Spearman’s r, although
we report both in 2.

3.1 Readability and stylometrics

As readability measures are supposed to be mea-
sures of style, we compute their correlation with
three core stylistic features - sentence length, lex-
ical diversity7 and textual compressibility8 - that
have been found linked to perceived literary qual-
ity in previous studies (van Cranenburgh and Bod,
2017; Crosbie et al., 2013; Maharjan et al., 2017;
Wang et al., 2019). As can be seen in Figure 1,
all readability measures have evident correlations
with these three metrics, even though they don’t
necessarily compute them directly - for example,
no readability measure computes text compress-
ibility. However, while compressibility is not ob-
viously correlated to readability, compressibility is
a measure of redundancy or formulaicity: it ap-
pears that easier texts also have a tendency to be
more sequentially repetitive. One readability mea-
sure, the new Dale-Chall, correlates with the sim-
ple length (word count) of the novels. This is a
surprising effect, since, like the other measures,
the new Dale-Chall is not length-dependent. As it
is the only measure looking at the texts’ lexicon
through an index of difficult words, it seems to be
picking on a tendency for longer books to have a
slightly more complex vocabulary.

3.2 Relation with quality - GoodReads and
libraries

As discussed before, we correlate readability with
three possible proxies of perceived quality of nov-
els: GoodReads’ average ratings, GoodReads’ rat-
ing count, and the number of libraries holding

7We operationalized lexical diversity as the type-token
ratio (TTR) of a text, using a common method insensi-
tive to text-length: the Mean Segmental Type-Token Ratio
(MSTTR). MSTTR-100 represents the average TTR of local
averages in 100-word segments of each text.

8Following van Cranenburgh and Bod (2017), for text
compressibility, we calculated the compression ratio (origi-
nal bit-size/compressed bit-size) using bzip2, a standard file-
compressor.

a given title according to WorldCat9. We could

Figure 5: The likelihood of being acquired by less
than 100 libraries increases quite steadily with dif-
ficulty of reading (Spearman’s rho 0.84), as the
probability of appearing in more than 500 de-
clines. Readability is here measured as Flesch-
Kincaid Grade Level.

consider GoodReads’ rating count to be a mea-
sure closer to the concept of popularity or fame,
while GoodReads’ average rating tells us about the
appreciation of the title independently from how
many readers it had. As can be seen in Figure

Figure 6: The probability of being rated by less
than 100 users in Goodreads strongly correlates
with the difficulty of the texts as measured, in this
case, by the Flesch-Kincaid Grade Level.

4, all of our readability measures show a degree
of correlation with the number of library holdings
and the GoodReads’ rating count: more readable

9Naturally this selection remains arbitrary. Expanding to
other measures of perceived quality is an ongoing process.
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Figure 7: Flavours of readability and awards: overall distributions.

Figure 8: Flavours of readability and awards: mean value and standard error.

books tend to have more ratings and tend to be
held by more libraries.

The average rating of titles on GoodReads, on
the other hand, shows a significant correlation
with only one of the measures, the Dale-Chall
readability score, while it appears to have no link
with the other four. Interestingly, the Dale-Chall
score is the only measure that uses a precompiled
list of words to estimate the number of difficult
words in a text, instead of relying entirely on the
features of the text at hand. While this could make
it a more fragile measure (due to linguistic change
and differences between genres) it appears to ac-
tually give it an increased modelling power for the
tastes of GoodReads’ average readers. It is worth
mentioning that GoodReads’ average ratings do
not correlate, in our corpus, with the books’ pub-
lication date - so a direct effect of language evolu-
tion on the measure’s index can be excluded. Sim-
plifying a bit, this points to the idea that the ease
of vocabulary might relate to the average apprecia-
tion of a book as well as its fame, so that texts with
a simpler lexicon, together with shorter sentences
or words, are both more read and better liked.

In Figure 3 we show the relation of each read-
ability measure with library holdings, average
Goodreads ratings and number of Goodreads’ rat-
ings. As can be seen, we should interpret the re-
sults with some caution, as the relation might not
be linear: it could be that the best interpretation of
the relation between, for example, readability and
library holdings is modelled with a curve rather
than a straight line. Yet, it appears quite evident

at a glance that the probability of being held by a
large number of libraries, and of being rated by a
large number of Goodreads users, decreases dra-
matically when the difficulty of the text increases
beyond a certain level. As we show in Figure 5,
the probability of being acquired by less than 100
libraries grows quite clearly with the text’s dif-
ficulty, and the probability of being acquired by
more than 500 decreases accordingly, with an in-
teresting peak at a medium-low point of difficulty.
The effect is even more evident when consider-
ing the probability of having less than 100 ratings
on GoodReads, as appears in Figure 6. Appear-
ing in 90 libraries is still a quite impressive mea-
sure of success, but the majority of the titles in
the Chicago corpus goes beyond that threshold, as
well as beyond the threshold of 100 user ratings
on GoodReads, so the difference in probabilities
seems to point to a relative decline in popularity or
fame with the increase of the texts’ surface com-
plexity.

3.3 Relation with quality - literary awards

The second type of quality check we selected is a
categorical one: whether or not a title was long-
listed for one of three prestigious awards - the
Pulitzer Prize, the National Book Award and the
Hugo Award.

As we show in Figures 7 and 8, as well as in
Table 3, the difference between long-listed books
and non long-listed books in terms of readability is
small but significant for almost all measures, with
long-listed books are systematically harder to read
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Libs. Rat. n.
Flesch grade -0.16 (-0.1) -0.06 (-0.06)
Flesch ease 0.13 (0.07) 0.08 (0.09)
SMOG -0.15 (-0.1) -0.11 (-0.11)
ARI -0.15 (-0.01) 0.06 (-0.06)
New Dale-Chall -0.25 (-0.2) -0.22 (-0.2)
Flesch grade 0.84 0.83
Flesch ease -0.4 -0.48
SMOG 0.76 0.81
ARI 0.73 0.71
New Dale-Chall 0.78 0.82

Table 2: On the upper part of the table, Spear-
man’s r (Pearson’s in parenthesis) for each read-
ability flavour and quality measure. On the lower,
Spearman’s r with the probability of being in less
than 100 libraries or having less than 100 ratings.

than their non-listed counterparts - again with the
exception of the new Dale-Chall measure. Using
this kind of quality proxy, we do not observe a
value of reading ease but possibly its ”dark side”,
such as perceived simplification or a reduced ex-
pressive power of novels.

It may not surprise that these different stan-
dards should exhibit different preferences and per-
spectives on quality. Literary awards are notori-
ously elitist, even, perhaps, in a way that is wanted
by their readership: the committee of the Booker
Prize was accused of populism in 2011 when an-
nouncing ”readability” as a new criterion for the
award (Clark, 2011).

T-test p-value
Flesch grade 3.78 0.0001
Flesch ease -4.66 0.000005
SMOG 3.69 0.0002
ARI 3.6 0.0003
New Dale-Chall 1.8 0.07

Table 3: T-test and p-value for the difference be-
tween long-listed and non-listed titles for each
readability measure. The only measure that does
not fall under the formal threshold of statistical
significance is the new Dale-Chall.

4 Conclusions and Future Works

Readability measures proved significantly consis-
tent, both between each other and with other rel-
evant stylometric features, when applied on mod-

ern and contemporary fiction. Their relation with
different proxies of literary quality is intriguing:
more popular works, in terms of number of ratings
on GoodReads and in terms of libraries willing to
hold a copy of the book, appear to have a corre-
lation with readability, while the appreciation of
readers alone (independently from their number)
seems to hold almost no link with it, and long-
listed titles have an inverse relation with readabil-
ity, tending to prefer slightly more difficult prose
on the readability metrics’ scale. It can be argued
that we are seeing the divide between high-brow
and ”popular” literature, but the lack of correla-
tion with GoodReads average rating might point
to a slightly more nuanced conclusion. It is worth
noting that the only measure showing a meaning-
ful correlation with all of the crowd-based quality
metrics was the new Dale-Chall measure of read-
ability, also the only one explicitly focusing on the
presence of widely understood lexicon in a text,
but it was also the only one showing no significant
difference between long-listed and non long-listed
titles. The only other measure having a correlation
higher than 0.1 with average GoodReads’ ratings
was SMOG, which, while not using a list of hard
words, considers ”difficult words” in its own way
in its computation, using the number of polysyl-
lable words as a central element. If we were to
draw rough conclusions from these observations,
it would seem that surface-level simplicity of style
in terms of words per sentence, characters per
words, and similar metrics ”helps” a text’s pop-
ularity, but has nothing to do with its likelihood
of being highly liked by its readers - and it even
slightly hinders its possibilities of receiving a pres-
tigious awards. In other words, surface-level sim-
plicity improves a text’s quality only if we equate
it with popularity or fame. Similarly, looking at
threshold-based probability distributions showed
that indeed increasing the difficulty of the novels’
style might hinder its diffusion across libraries and
Goodreads’ users. Using a more common vocab-
ulary might also increase readers’ appreciation of
the text, but only when it comes to crowd-based
measures. On the other hand, the correlations of
average number of ratings and library holdings
with readability measures do not appear linear or
monotonic, meaning that there might also be a
”point of balance” between too easy and too diffi-
cult, that maximizes the correlation with a novel’s
fame. The same might be true for the likelihood
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of a novel being long-listed for one of the three
awards we took into consideration.

Overall, readability seems to have an impact on
different perceptions of literary quality, although
its role and interaction with other features of the
text remains to be defined. Another overarching
point to observe from these findings is that there
is a difference between crowd-based (GoodReads)
and expert-based (awards) standards of literary
quality in readability-level preference, which in-
dicates that the criteria change across different
quality-judgements, which suggetss that ”literary
quality” cannot be quantified reliably if it is re-
duced to a single golden standard. Further re-
search points towards extending the set of corre-
lations to more proxies of quality as well as more
sophisticated stylometric measures to see whether
interactions can provide a clearer picture of what
we perceive as literary quality. Other further work
could be to check the correlations of our measures
with publication date: readability might depend
on time, either in the sense of the evolution of the
average novelistic style, overall language change,
or even cultural selection, which would make the
passage of time a particular form of ”quality test”
of its own accord.
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Abstract
We approach the problem of recognition
and attribution of quotes in Finnish news
media. Solving this task would create pos-
sibilities for large-scale analysis of media
wrt. the presence and styles of presenta-
tion of different voices and opinions. We
describe the annotation of a corpus of me-
dia texts, numbering around 1500 articles,
with quote attribution and coreference in-
formation. Further, we compare two meth-
ods for automatic quote recognition: a
rule-based one operating on dependency
trees and a machine learning one built on
top of the BERT language model. We con-
clude that BERT provides more promis-
ing results even with little training data,
achieving 95% F-score on direct quote
recognition and 84% for indirect quotes.
Finally, we discuss open problems and fur-
ther associated tasks, especially the neces-
sity of resolving speaker mentions to en-
tity references.

1 Introduction

The recognition of quotes and reported speech is
an important step towards the computational anal-
ysis of news media articles. It allows us to mea-
sure, on a large scale, who is given voice and how
much, how opposing or competing views are pre-
sented alongside each other, as well as how the
language of the quoted sources differs from the
language of the journalistic reporting. In case of
the Finnish news media, such analyses have re-
cently been attempted by (Koivunen et al., 2021;
Seuri et al., 2021). On the other hand, Suomen
Kuvalehti et al. (2021) have studied politicians’
visibility in the media based on the mentions of
their names.

In the present paper, we focus on the technical
task of recognizing direct and indirect quotes in

the Finnish news media texts. The task can be il-
lustrated with the following example:

Sipilän mukaan lakiehdotuksia ollaan
tuomassa eduskuntaan helmikuussa.

According to Sipilä, bill proposals will
be brought to the parliament in Febru-
ary.

Such relations consists of three elements: the
cue ‘mukaan’ (‘according to’) indicates an indi-
rect quote, in which the source (Juha Sipilä, the
Finnish prime minister 2015–2019) says the text
referred to as proposition, or quotation span.1 A
complete approach for quote detection and attribu-
tion would solve the following tasks:

1. Detecting quotation spans.

2. Attributing quotation spans to the source
mention in the text (which might also span
multiple tokens).

3. Linking source mentions to entity identi-
fiers (including coreference resolution and
lemmatization).

We will present methods for solving tasks 1 and 2,
while discussing 3 as subject for further work.

Most existing work for this task deals with En-
glish, while occasionally other Germanic or Ro-
mance languages have been considered. Com-
pared to that, Finnish presents challenges due to
a rich morphology and free word order. Those
can largely be dealt with by the advanced NLP
tools that we are using (either a dependency parser
pipeline or BERT), but they rule out the usage of
simpler pattern-based methods and remain a possi-
ble source of errors even for state-of-the-art NLP.

1We follow Pareti (2015)’s convention of marking the
quotation span in cursive, the source in bold, and underlin-
ing the cue.
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We describe the process of collecting and anno-
tating a gold standard corpus in Sec. 3. Further,
in Sec. 4, we describe two different automatic ap-
proaches: a rule-based one, amounting to match-
ing certain grammatical structures in dependency-
parsed text, as well as a machine learning one,
which utilizes the state-of-the-art neural language
model BERT. The corpus and the code for both
methods are publicly available.2 3 4

Our initial intuition was that dependency pars-
ing provides enough information to recognize
quotes with simple pattern matching. Another rea-
son to implement this approach was that it did not
need training data, which was at first unavailable
for us. However, the final comparison revealed
that the BERT-based model outperformed the rule-
based even with little training data. The results of
this experiment are described in Sec. 5.

2 Related Work

To our knowledge, the most similar work to ours
has been done by Silvia Pareti and colleagues
(Pareti et al., 2013; Pareti, 2015, 2016), who anno-
tated a corpus of attribution relations for English
and experimented with machine learning models
for recognizing such relations. For the latter they
applied classification algorithms – CRF, k-NN, lo-
gistic regression – working on data enriched with
linguistic features, which was state-of-the art in
NLP at the time. However, Scheible et al. (2016)
have criticized the choice of CRFs for quote detec-
tion because of the Markov assumption they make.
More recently, Papay and Padó (2019) presented a
neural LSTM-based model for recognizing quota-
tions, but without attribution. Brunner et al. (2020)
compare different embedding-based models (in-
cluding BERT) on the task of recognizing types of
speech, which includes direct and indirect quotes.

As to Nordic languages, a rule-based approach
for Norwegian has been presented by Salway et al.
(2017). It utilizes a dependency parser and a
list of speech verbs. From among other lan-
guages, Quintão (2014) used a machine learn-
ing method on Portuguese news corpora, while
Pouliquen et al. (2007) used a rule-based approach
for multiple European languages.

2https://github.com/hsci-r/
fi-quote-coref-corpus

3https://github.com/hsci-r/
flopo-quote-detection

4https://github.com/hsci-r/
flopo-quotes-bert

Muzny et al. (2017) present a method for quote
attribution. They thus start with quotation spans
already recognized and perform two tasks: 1) at-
tributing a quote to a speaker mention in the text,
2) linking the speaker mentions into entities. They
use a rule-based strategy on top of tools perform-
ing dependency parsing and coreference resolu-
tion. They have also released a corpus of quote
attributions consisting of three novels in English.

Although not dealing exactly with quote detec-
tion, Padó et al. (2019) provide a prominent ex-
ample of computational analysis of political dis-
course using modern NLP methods. They use
various neural models (including BERT) to detect
claims and attribute them to actors, with the goal
of modeling the discourse as a network of relations
between actors and claims. Automatic quote de-
tection could be a useful element of such a larger
system as well.

3 Dataset and Annotation

The annotation process consisted of two paral-
lel tasks: marking quotations and linking to-
gether chains of co-referencing expressions denot-
ing people, institutions and other human-like ac-
tors present in the documents. Both annotation
tasks were conducted using the WebAnno plat-
form (Eckart de Castilho et al., 2016), by which
each annotator was assigned their documents and
by which the annotation itself was done. The an-
notation guidelines were written beforehand and
further developed after a test run.

The quotation detection annotation consisted of
1) marking the span in the text containing the con-
tent of the quote, 2) marking the speech act verb (if
present), 3) marking the source of the quotation (if
present), and 4) noting whether the quote was di-
rect or indirect. The task was relatively straightfor-
ward, as all annotators were students with at least
a minor degree in linguistics.

The project employed 10 annotators. Four of
them were recruited in an earlier phase and an-
notated a test data set of 40 articles. After the
test run, the guidelines were improved based on
both inter-annotator agreement scores and feed-
back from the annotators, in accordance with the
standard linguistic annotation methodology (Art-
stein, 2017). The inter-annotator agreement scores
(Fleiss’ κ) were between 0.77-0.8, which we
deemed sufficient to consider the annotations con-
sistent. The workload was balanced so that the 6
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other annotators who were recruited at the later
stage annotated more articles to compensate for
the test run. The annotators worked independently
on the WebAnno platform.

The articles were sampled from a database con-
taining the metadata for the online media sources
and the sampled lists of articles were then scraped
using a web crawler (Mäkelä and Toivanen, 2021)
and automatically pre-processed to CONLL for-
mat containing lemmatization, part-of-speech and
dependency taggings using Turku Neural Parser
(Kanerva et al., 2018). We used four sources for
the articles: YLE (the Finnish national broadcast-
ing company), Helsingin Sanomat (the most popu-
lar daily newspaper), Iltalehti (an evening tabloid)
and STT (the Finnish news agency), covering dif-
ferent kinds of media texts wrt. length and style.
The total number of articles annotated was 1500.
Except for the common part mentioned above, the
remaining 1460 articles were assigned to one an-
notator each at the second stage.

4 Methods

4.1 Rule-based approach
The input to the rule-based quote detection engine
is text with linguistic annotations obtained from
the Turku Neural Parser (Kanerva et al., 2018).5

The parser performs the following tasks: tokeniza-
tion, lemmatization, part-of-speech and morpho-
logical tagging, and dependency parsing.

The first stage of quote recognition is recogniz-
ing syntactic structures that typically introduce a
quote (Table 1). Rules 1-2 describe the very com-
mon structures like ‘X says that Y’ and ‘Y, says
X’, respectively. Rules 3-4 describe structures of
the type: ‘according to X, Y’ and ‘in X’s opinion,
Y’. In such structures, the source and cue can be
positioned differently relatively to the proposition:
before, after, or even inside it (see the example
for rule 4). In the latter case, we allow annotat-
ing the cue and source as part of the proposition to
avoid discontinuous propositions. Finally, rule 5 is
characteristic for Finnish: it captures the construc-
tion ‘says + active participle’, e.g. sanoo olevansa

5A reviewer has plausibly remarked that using the depen-
dency parser available in spaCy could simplify the architec-
ture. We have not evaluated the impact of this change on per-
formance, as at the time of implementing the method Turku
Neural Parser was considered state-of-the-art for Finnish and,
unlike spaCy, the Turku parser was applied in various other
ways in the project context. However, the rules are coded in
the spaCy DependencyMatcher format, so they can easily be
tried on spaCy output as well.

‘says that he is’, or sanoo tehneensä ‘says that he
did’. This construction does not use the word että
‘that’.

In the rules where the cue is a verb (1, 2 and
5), the verb sanoa ‘to say’ can be substituted by
any other speech act verb, e.g. kertoa ‘to tell’,
korostaa ‘to emphasize’, kuitata ‘to sum up’ etc.
We initially prepared a list of speech act verbs
manually, then used a word2vec model to expand
it with automatically generated synonyms, which
were again filtered manually. The final list con-
sisted of 73 verbs.

Once the source-cue-proposition triplets are
recognized, the proposition texts can typically be
extracted by taking the dependency subtree under
the token marked as proposition. However, fur-
ther post-processing is needed for quotes consist-
ing of multiple sentences. For example in Table
1, the example for rule 2 is clearly the last sen-
tence of a multi-sentence quote. In order to expand
the matches to multi-sentence quotes, we use two
rules:

1. If the paragraph containing the match starts
with a hyphen – extend the quote to the begin-
ning of the paragraph. This is because long
direct quotes are typically formatted as sepa-
rate paragraphs.

2. If there is a quotation mark between the cue
and the proposition head – extend the quote
backwards to the matching quotation mark.

In both these cases, the quote is classified as
direct, as it is marked with quotation markers.
Matches that do not fulfill the above conditions are
classified as indirect.

Finally, we use an additional rule to detect ‘free-
standing’ direct quotes encompassing entire para-
graphs. These do not necessarily contain a source
attribution (like ‘, says X’) because the source
might be already clear from the context. Thus,
we detect remaining paragraphs that either start
with a hyphen or are enclosed in quotation marks,
as direct quotes. For the attribution we currently
use a naı̈ve strategy of attributing them to the
same source as the previous quote in the text (if
present). This works in a lot of cases because the
quotes usually follow a structure in which a whole-
paragraph direct quote is introduced by a preced-
ing sentence containing an indirect quote, like in
the following example:
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According to Lindberg, approximately
every third pet is overweight.

– We do have a lot of work on that.

The rules from Table 1 are implemented using
the spaCy library class DependencyMatcher6

which offers a declarative language to express the
rules and good performance. The post-processing
code is implemented in Python.

4.2 BERT model
The machine learning model is realized as two to-
ken classification heads on top of BERT – a neural
language model based on the transformer architec-
ture (Devlin et al., 2019). We use the model pre-
trained on Finnish data by Virtanen et al. (2019).

The first classification head recognizes and clas-
sifies spans of quoted text (propositions). The la-
beling follows the IOB schema and the class label
encodes whether the quote is direct or indirect, as
well as the relative position of the speaker men-
tion to the quoted text. The latter is expressed as
one of the symbols: +, - or = and a number 1-4.
The symbol describes whether the speaker is men-
tioned after (+), before (-) or inside (=) the propo-
sition, while the number signifies, which recog-
nized entity is the speaker. For example, the class
label B-DIRECT+2 denotes the beginning (B-)
of a direct quote, the source of which is the sec-
ond recognized entity after the quote. A special
label 00 signifies that the source of the quote is
not marked.

The second classification head recognizes the
entities, i.e. elements of coreference chains. It has
just one class encoded in the IOB schema and does
not perform the linking of entities into chains.

An example of sequence annotation is shown in
Table 2. It shows the following sentence:

Kansainvälinen rikostuomioistuin aikoo
määrätä Sudanin presidentin Omar
al-Bashirin pidatettäväksi, kertoo
sanomalehti New York Times.

The International Criminal Court is in-
tending to issue an arrest warrant on
Sudan’s president Omar al-Bashar, the
newspaper New York Times reports.

There are three entities in the sentence: ‘The In-
ternational Criminal Court’, ‘Sudan’s president

6https://spacy.io/api/
dependencymatcher

Omar al-Bashar’ and ‘the newspaper New York
Times’ – their annotations on the token level are
encoded on the ‘entity’ layer. The ‘quote’ layer
encodes an indirect quote, which is attributed to
the first entity following the quote (hence, +1).

5 Evaluation

For the evaluation experiments we use a roughly
80-20 split of the data by taking the data provided
by 2 annotators as evaluation set and the remaining
8 annotators as training set. The dataset sizes are
summarized in Table 3. We compare both methods
on the task of quote recognition (with and without
direct/indirect classification) and attribution.

Quote detection. The results of quote span de-
tection without taking into account the direct-
indirect distinction are shown in Table 4. On the
other hand, the direct-indirect breakdown is shown
in Table 5, where misclassifications (identifying a
direct quote as an indirect one or vice versa) were
counted as both a false positive and a false neg-
ative. We exclude punctuation tokens from the
evaluation as especially the commas and periods
on the boundaries of quotes might have been in-
consistently annotated, and their inclusion in the
quote is irrelevant.

Both settings show a clear advantage of the
BERT model. In case of direct quotes, the rules
for recognizing them are quite rigid. Furthermore,
they can suffer from paragraph segmentation er-
rors and misplaced or incidental quotation marks
(e.g. ‘scare quotes’). This explains the lower re-
call of the rule-based method.

Indirect quotes have proven more challenging to
the rule-based method as well. This can be to a va-
riety of reasons: missing speech act verbs, incor-
rectly identifying quote spans based on syntactic
criteria (also affected by parser, tagger and sen-
tence segmentation errors), or uncommon struc-
tures not covered by the rules. Moreover, rule 3
(‘according to’) has a tendency to produce false
positives, e.g. something being described ‘accord-
ing to the plan’.

In general, the BERT model has shown to be
more flexible wrt. the often unpredictable nature
of text data, and does not suffer from the error
propagation through the NLP pipeline.

Attribution. The evaluation of attribution is
problematic because of the fact that our dataset
was not annotated with the BERT model in mind.
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No. schema example
1

source cue prop
VERB

nsubj ccomp
Malinen sanoo, että hän ei tule esittämään liiton hallituk-
selle yhdenkään sopimuksen hyväksymistä.
Malinen says that he will not propose accepting even a
single motion of agreement to the union’s board.

2

source cue prop
VERB

nsubj parataxis
Siksi mekin lähdimme näihin neuvotteluihin mukaan,
Mäkynen sanoo.
This is why we also joined these negotiations, Mäkynen
says.

3

source cue prop
LEMMA: ‘mukaan’

case

obl
Sipilän mukaan lakiehdotuksia ollaan tuomassa eduskun-
taan helmikuussa.
According to Sipilä, bill proposals will be brought to the
parliament in February.

4

source cue prop
LEMMA: ‘mieli’

CASE: Ela

nmod:poss (any)
Suomen vaikeista ongelmista talous on presidentin
mielestä helpompi.
From Finland’s most difficult problems, the economy is in
the president’s opinion easy.

5

source cue prop
VERB

nsubj xcomp
Orpo sanoo olevansa valmis poikkeuksellisiin keinoihin ja
jopa lainmuutoksiin [. . . ].
Orpo says that he is ready for exceptional measures and
even legistative changes [. . . ].

Table 1: The manually constructed rules for detecting quote-like syntactic structures.

word quote entity
Kansainvälinen B-INDIRECT+1 B
rikostuomioistuin I-INDIRECT+1 I
aikoo I-INDIRECT+1 O
määrätä I-INDIRECT+1 O
Sudanin I-INDIRECT+1 B
presidentin I-INDIRECT+1 I
Omar I-INDIRECT+1 I
al-Bashirin I-INDIRECT+1 I
pidätettäväksi I-INDIRECT+1 O
, O O
kertoo O O
sanomalehti O B
New O I
York O I
Times O I
. O O

Table 2: An example of sequence annotation for
the BERT model.

training evaluation
articles 1,172 287
sentences 22,949 5,097
tokens 252,006 59,076
quotes 3,854 984

Table 3: The sizes of datasets used in experiments.

method Pr Re F1
rule-based .85 .78 .82
BERT .92 .90 .91

Table 4: Results of quotation span detection with-
out classification.

indirect direct
method Pr Re F1 Pr Re F1
rule-based .75 .66 .70 .93 .86 .89
BERT .84 .84 .84 .96 .94 .95

Table 5: Results of quotation span detection and
direct/indirect classification.
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Thus, we present it as our best attempt given the
current possibilities, but recognize the need for
further work in this regard.

The annotated data assigns each quote to a sin-
gle token representing the mention of the quote’s
source in the text. If the source is represented by
a longer phrase, the syntactic head (wrt. depen-
dency parsing) of this phrase should be selected
according to the annotation guidelines. On the
other hand, mentions of quote sources are typ-
ically entities annotated as parts of coreference
chains, and thus the entire span is marked for the
purpose of coreference annotation. Thus, by com-
bining the quote and coreference annotations, we
are able to obtain a span-to-span attribution rela-
tion for most cases. The exception are cases in
which the quoted entity is mentioned only once in
the article, and thus not annotated as a coreference
chain.

Although the BERT model outputs sources as
entity spans, the rule-based model points to a sin-
gle token – the syntactic head, similarly to the
gold standard annotation. In order to make the
results comparable, we reduced the output of the
BERT model to the first token of the span, and
then evaluated a source annotation as correct if it
either points to exactly the same token as the gold
standard, or if it points to a token within the same
coreference span. Thus, the model’s ability to cor-
rectly identify the entire span is currently not eval-
uated, as it is not implemented in the rule-based
method.

Table 6 presents results of the attribution eval-
uation in terms of the number of gold-standard
quote tokens with correctly and incorrectly recog-
nized source, as well as unrecognized source. The
latter case occurs if either the token is not recog-
nized as a quote at all, or it is recognized but with-
out identifying the source. We report the accuracy
as the ratio of correctly identified to all tokens.

The results indicate a small advantage of the
rule-based model. In both cases, the main source
of errors are the unrecognized annotations, rather
than the incorrect ones. For the rule-based model
this is typically due to quotes not being recog-
nized at all (see low recall in Table 4), while for
the BERT model there is a large amount of cor-
rectly identified quotes, for which the source could
not be found. Of the 1990 recognized quotes, 646
(32%) are reported without source, compared to
13% (218/1633) for the rule-based model. The

method cor inc unrec accuracy
rule-based 7889 774 4996 .58
BERT 7554 767 5338 .55

Table 6: Results of attribution.

BERT model’s ability to identify the source de-
pends on the entity detection, for which the train-
ing data is incomplete (derived from coreference
annotations only). Further, the model processes
the text paragraph by paragraph and thus does not
find a source mention that is outside of the para-
graph containing the quote. These problems offer
room for improvement in further work, and thus it
can be expected that the BERT model will eventu-
ally outperform the rule-based one also in attribu-
tion.

6 Discussion and Further Work

Although we regard the work presented in the pre-
vious sections as a complete solution to a well-
delimited problem, we see some potential for both
incremental improvements, as well as work on fur-
ther related tasks, that will be addressed in the fu-
ture.

Entity annotation and detection. While de-
signing our annotation project, we did not antici-
pate that a machine learning quote detection model
will need to also detect entities that the quotes can
be attributed to. We intended the coreference an-
notation to be used only in the further step (entity
resolution). In result, entities that are mentioned
only once were not annotated. The corpus could
be improved by ensuring that at least tokens as-
signed as source to a quote are also annotated as
an entity. This is expected to improve the BERT
model’s performance on entity detection, and thus
quote attribution.

Entity resolution. While some works treat the
problem of quote attribution to speaker mention in
the text and entity resolution jointly (e.g. Muzny
et al., 2017), in our opinion entity resolution is a
complex task that is best treated separately. In ad-
dition to coreference resolution within one docu-
ment, also matching the entities across documents
could be considered there.

Coreference resolution can be done with BERT
with state-of-the-art accuracy (Joshi et al., 2019).
However, the setup is complicated as coreferences
are typically long-range relations, so a sliding win-
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dow approach needs to be used to mitigate BERT’s
limitation in text size. Furthermore, modeling re-
lations with a neural model is not straightforward.

A related problem is that nested entities are pos-
sible and might be relevant, e.g.:

[[[Viron] metallityöväen liiton] puheen-
johtaja Endel Soon]

[[[Estonia]’s metal workers’ union]’s
chairman Endel Soon]

In such case, coreferences and other quotes might
also refer to the inner entities ‘Estonia’ or ‘Esto-
nia’s metal workers’ union’. For the present work,
we disregarded nested entities as locally the outer-
most entity is typically the source of the quote it
stands next to.

7 Conclusion

We have presented two methods for recognition of
quotes in Finnish news media, along with an an-
notated corpus for training and evaluation. To our
knowledge, our solution is the first one proposed
for Finnish. We hope that the progress achieved
on this task will facilitate more detailed large-scale
quantitative analysis of voices in the Finnish news
media.
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Abstract

Dyslexia screening in adults is an open
challenge since difficulties may not align
with standardised tests designed for chil-
dren. We collect eye-tracking data from
natural reading of Danish texts from read-
ers with dyslexia while closely following
the experimental design of a corpus of
readers without dyslexia. To our knowl-
edge, this is the first attempt to classify
dyslexia from eye movements during read-
ing in Danish. We experiment with var-
ious machine-learning methods, and our
best model yields a 0.85 macro F1 score.

1 Introduction

Dyslexia is a learning disorder of neurological ori-
gin that reportedly affects about 10-20% of the
world population (Rello and Ballesteros, 2015;
Kaisar, 2020). It involves difficulties with reading,
spelling, and decoding words, and is not related to
intelligence (Perera et al., 2018; Rauschenberger
et al., 2017). Detecting dyslexia as early as pos-
sible is vital, as the disorder can lead to many
negative consequences that can be mitigated with
proper assistance. These include low self-esteem
and high rates of depression and anxiety (Per-
era et al., 2018; Schulte-Körne, 2010). There
are qualitative studies suggesting that living with
an undiagnosed learning disorder leads to frus-
trations (Kong, 2012), feelings of being misun-
derstood (Denhart, 2008), and of failure, (Tanner,
2009). Being diagnosed with a learning disorder
as an adult has been reported to lead to a sense
of relief (Arceneaux, 2006), validation (Denhart,
2008; Kelm, 2016) and liberation (Tanner, 2009;
Kong, 2012). Dyslexia can be difficult to diagnose
due to its indications and impairments occurring
in varying degrees (Eckert, 2004), and is there-
fore often recognised as a hidden disability (Rello

and Ballesteros, 2015). Popular methods of de-
tecting dyslexia usually include standardised lex-
ical assessment tests that involve behavioural as-
pects, such as reading and spelling tasks (Perera
et al., 2018). Singleton et al. (2009) explain that
computerised screening methods have been well-
established for children in the UK, but develop-
ing such tests for adult readers with dyslexia is
exceptionally challenging as adults with dyslexia
may not show obvious literacy difficulties that
align with what standardised tests distinguish as
dyslexic tendencies. For one thing, dyslexia is ex-
perienced differently from person to person. Still,
also, most adults with dyslexia have developed
strategies that help them disguise weaknesses and
may thus remain unnoticed and result in false-
negative tests (Singleton et al., 2009).

Less frequently used methods are eye track-
ing during reading or neuroimaging techniques
such as (functional) magnetic resonance imaging,
electroencephalogram, brain positron emission to-
mography, and magnetoencephalography methods
(Kaisar, 2020; Perera et al., 2018). These mod-
els are yet under experimental development and
are currently not used for screening dyslexia (Per-
era et al., 2018). A small body of studies inves-
tigates dyslexia detection using eye tracking with
the help of machine-learning techniques outlined
in §2.4. Compared to neuroimaging techniques,
eye tracking is more affordable and faster to record
and its link to online text processing is well estab-
lished (Rayner, 1998). Using eye-tracking records
for dyslexia detection does not necessarily require
readers to respond or perform a test but merely ob-
jectively observes the reader during natural read-
ing (Benfatto et al., 2016). Although eye-tracking
experiments are often limited to a relatively small
number of participants compared to computerized
tools, the method typically produces many data
points from each participant.

The purpose of the current paper is twofold:
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1) We provide a dataset from participants with
dyslexia reading Danish natural texts. This dataset
uses the same experimental design as the CopCo
corpus by Hollenstein et al. (2022), which al-
lows us to compare the eye movement patterns
from readers with dyslexia to those without from
CopCo. 2) We train the first machine learn-
ing (ML) classifiers for dyslexia prediction from
eye movements in Danish. The data is available
as raw gaze recording, fixation-level information,
and word-level eye tracking features.1 The code
for all our experiments is also available online.2

2 Related Work

2.1 Dyslexia Screening in Denmark

In 2015, The Ministry of Children and Educa-
tion in Denmark launched a national electronic
dyslexia test, Ordblindetesten ‘the Dyslexia Test’.
The test is a screening method for children,
youths, and adults speculated to have dyslexia. It
is accessible through educational institutions and
is performed under the observation of a supervi-
sor (Centre for Reading Research et al., 2020).
It consists of three multiple-choice subtests, per-
formed electronically, that focus on phonological
decoding abilities. The result is ‘not dyslexic,’
‘uncertain phonological decoding,’ or ‘dyslexic.’
The official instruction strictly denies the uncer-
tain group to be dyslexic3 and therefore not en-
titled to dyslexia support. But they may ben-
efit from other support and are subject to fur-
ther assessment, e.g., text comprehension, reading
speed, spelling, and vocabulary tests appropriate
for the examinee’s age and educational require-
ments (Centre for Reading Research et al., 2020).
To this end, Helleruptesten “The Hellerup Test” is
used by educational institutions for adults.4

2.2 Danish as a Target Language

Similar studies on dyslexia detection with ML
classification include experiments with Chinese
(Haller et al., 2022), Swedish (Benfatto et al.,
2016), Spanish (Rello and Ballesteros, 2015),
Greek (Asvestopoulou et al., 2019), Arabic (Al-
Edaily et al., 2013) and Finnish (Raatikainen et al.,

1https://osf.io/ud8s5/
2https://github.com/norahollenstein/

copco-processing
3https://www.spsu.dk/for-stoettegivere/elever-og-

studerende-med-usikker-fonologisk-kodning
4from Vestegnen VUC, an educational institution that pro-

vides education for students with dyslexia

2021) as their target languages. However, the di-
agnostic characteristics of dyslexia may differ de-
pending on the transparency of the language. In
early research, De Luca et al. (1999) reported that
the regular spelling-sound correspondences in lan-
guages of transparent orthographies, e.g., German
and Italian, dim phonological deficits. Phonologi-
cal deficits of individuals with dyslexia are clearer
in languages with irregular, non-transparent or-
thographies (Smyrnakis et al., 2017).

Danish is a language with a highly non-
transparent orthography. It has been shown that
overall adult reading comprehension skills are
poorer in Danish than in other Nordic languages
(Juul and Sigurdsson, 2005). The lack of spelling-
sound correspondence in Danish indicates that the
Danish language holds excellent value for inves-
tigating dyslexia detection based on two main
reasons: Firstly, the combination of the non-
transparent orthography of the Danish language
and eye movement patterns could potentially re-
veal more apparent indications of dyslexia through
the selected features that have proven to be rel-
evant for dyslexia detection in other languages,
which can be favourable in further research on,
e.g., the development of assistive tools and tech-
nologies. Enabling a direct comparison between
eye-tracking data from adults with dyslexia and
adults without dyslexia with Danish as the tar-
get language will provide beneficial insights into
reading dyslexic patterns, which can be favourable
in further research, e.g., the development of as-
sistive tools and technologies. Secondly, the fact
that reading comprehension skills are proven to be
poorer in Danish than in other Nordic languages
highlights the necessity of proper assistance and
recognition for individuals with dyslexia in Den-
mark.

2.3 Dyslexia and Eye Movements

Tracking eye movements during natural reading
reveals information on fixations (relatively still
gaze on a single location) and saccades (rapid
movements between fixations). Studies (Rayner,
1998; Henderson, 2013) have substantiated that
information on eye movements during reading
contains characterizations of visual and cogni-
tive processes that directly impact eye movements.
These are also strongly related to identifying infor-
mation about, e.g., attention during reading, which
is highly correlated with saccades (Rayner, 1998).
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Figure 1: Fixations recorded from a reader without dyslexia (above) and a reader with dyslexia (below)
when reading the same sentence. Numbers indicate duration in ms.

As Henderson (2013) phrases it, “eye movements
serve as a window into the operation of the atten-
tional system.”

Previous studies have repeatedly shown that
readers with dyslexia show more fixations and re-
gressions, longer fixation durations, and shorter
and more numerous saccades than readers with-
out dyslexia (Pirozzolo and Rayner, 1979; Rayner,
1986; Biscaldi et al., 1998). This was already dis-
covered by Rubino and Minden (1973) and later
work discussed whether this was the cause or ef-
fect of dyslexia with evidence on both sides, e.g.,
Pirozzolo and Rayner (1979); Pavlidis (1981);
Eden et al. (1994); Biscaldi et al. (1998). Most
recent studies acknowledge that the movements
reflect a dyslexic reader’s difficulties with pro-
cessing language. (Fischer and Weber, 1990;
Hyönä and Olson, 1995; Henderson, 2013; Rello
and Ballesteros, 2015; Benfatto et al., 2016;
Raatikainen et al., 2021), and Rayner (1998) who
echo an earlier study (Rayner, 1986) state that eye
movements are not the cause of slow reading but
rather reflect the more time-consuming cognitive
processes. These insights from psycholinguistics
motivate the feature selection for this work.

2.4 ML-based Dyslexia Detection from Gaze

Recent evidence shows that ML-based methods
can be used for dyslexia detection in children,
e.g., Christoforou et al. (2021); Nerušil et al.
(2021). This section is, however, limited to ML-
based methods for dyslexia detection in adults.
Prior studies that facilitate the investigation of
dyslexia detection with the help of machine learn-
ing classification on eye-tracking data have con-

cluded that support vector machines (SVM’s)
is of great advantage (Rello and Ballesteros,
2015; Benfatto et al., 2016; Prabha and Bhargavi,
2020; Asvestopoulou et al., 2019; Raatikainen
et al., 2021). Rello and Ballesteros (2015) used
an SVM for dyslexia detection based on eye-
tracking recordings from readers with and without
dyslexia, which resulted in an accuracy of 80.18%.
Benfatto et al. (2016); Prabha and Bhargavi (2020)
achieved accuracy scores of 95.6% and 95% re-
spectively on the same dataset using SVM varia-
tions.

With Greek as their target language, Smyrnakis
et al. (2017) propose a method with two parame-
ters for dyslexia detection: word-specific and non-
word-specific. Non-word-specific features con-
sisted of fixation duration, saccade lengths, short
refixations, and the total number of fixations. On
the other hand, the word-specific features con-
tained gaze duration on each word and the num-
ber of revisits on each word. Based on the same
dataset as Smyrnakis et al., Asvestopoulou et al.
(2019) developed a tool called DysLexML. The
classifier with the highest accuracy on noise-free
data is linear SVM, used on features selected by
LASSO regression at λ1SE, which gave an ac-
curacy of 87.87%, and up to 97%+ when using
leave-one-out cross-validation. In recent years,
Raatikainen et al. (2021) used a hybrid method
consisting of an SVM classifier with random for-
est feature selection for dyslexia detection with
data recorded from eye movement. The best-
performing SVM model of their study scored an
accuracy of 89.7%.
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SUBJ SCORE n TEXTS WPM AGE GENDER DIAGNOSED

READERS WITH DYSLEXIA

P23 1.00 2 200.0 33 F 16
P24 0.80 2 203.7 64 F 9
P25 0.82 4 142.0 20 F 16
P26 0.57 2 86.7 32 M 12
P27 0.71 4 137.4 53 M 48
P28 0.93 4 173.3 25 F 15
P29 0.73 3 143.3 25 F 21
P30 0.93 4 179.0 61 M 50
P31 0.75 2 61.9 20 M 15
P33 0.86 2 59.3 30 F 8
P34 0.62 2 107.4 56 F 9
P35 0.71 4 285.1 24 F 19
P36 0.40 2 58.5 23 F 11
P37 0.58 4 270.7 25 F 23
P38 0.75 2 115.5 30 M 29
P39 1.00 1 160.2 32 F 17
P40 0.92 4 173.3 29 M 7
P41 0.88 4 154.9 51 F 50

AVG 0.78 (0.16) 2.9 (1.1) 150.7 (65.0) 35.1 (14.7) 67.7%F 20.8 (14.3)

READERS WITHOUT DYSLEXIA

AVG 0.81 (0.11) 4.4 (1.5) 276.8 (54.6) 30.7 (10.8) 78% F –

Table 1: Overview of readers with dyslexia included in the study. Average and standard deviations are
in brackets. SCORE is the accuracy of the answers to the comprehension questions; DIAGNOSED refers
to the age at which the participants were diagnosed with dyslexia. Aggregated data from the 18 readers
without dyslexia from Hollenstein et al. (2022) for comparison.

3 Data Collection

Data acquisition follows Hollenstein et al. (2022),
but the most important points are repeated here.
The only procedural difference is the additional
two reading tests administered to participants with
dyslexia as described in §3.3.

3.1 Participant Selection

The participant selection for this study of natu-
ral reading is purposefully broad and follows the
requirements for Hollenstein et al. (2022) from
which we sample the typical readers. Prior to
this, we excluded four participants from the non-
dyslexic group from the analysis due to poor cali-
bration or reported attention deficit disorder. The
only difference to our participant sampling is that
all dyslexic readers are officially diagnosed with
dyslexia. There is no age limit and no required
educational background but all participants are
adults, and native speakers of Danish. All have
normal vision or corrected-to-normal (glasses or
contact lenses), but no readers included in the
analysis had a known attention deficit disorder.
All participants signed an informed consent and
all digital data is pseudonymised. Due to the ab-

sence of an official dyslexia diagnosis, we discard
the data from one subject for further analysis but
include 18 readers in the dyslexic group. Partici-
pant statistics for all included dyslexic participants
are presented in Table 1 with a summary of the 18
non-dyslexic participants for comparison.

3.2 Reading Materials

We used the same set of reading materials as
Hollenstein et al. (2022) presented in the same
way. They are 46 transcribed and proofread Dan-
ish speeches, accessed from the Danske Taler
archive (https://dansketaler.dk). Table 2 shows an
overview. The readability of each speech was
calculated from a LIX score, which is based on
the length of the words and sentences in a text
(Björnsson, 1968). Each reader read a subset of
the full dataset reported in n TEXTS in Table 1.

Reading Comprehension Questions To pre-
vent mindless reading, comprehension questions
were added to occur after approximately 20% of
the paragraphs that contain more than 100 charac-
ters following Hollenstein et al. (2022). The aver-
age accuracy of the comprehension questions per
participant can be seen in Table 1 in the SCORE
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MIN MAX MEAN STD TOTAL

SENTS PER DOC 37 134 92.4 29.4 1,849
TOKENS PER DOC 978 2,846 1,744.8 533.1 34,897
WORD TYPES PER DOC 391 1,056 603.6 159.4 7,361
LIX PER DOC 26.4 50.1 37.2 7.2 –
FREQUENCY PER DOC 0.68 0.79 0.74 0.03 –
SENT LEN IN TOKENS 1 119 10.8 15.9 –
TOKEN LEN IN CHARS 1 33 4.5 3.0 –

Table 2: Statistics on the 46 documents that
comprise the reading material. TOTAL is the
dataset total. LIX is the readability score. For
typical readers, a text with a LIX score between
25 and 34 is considered easy, whereas a text
scoring more than 55 is considered difficult and
corresponds to an academic text. The frequency
is measured by the proportion of words included
in the 10,000 most common Danish words from
https://korpus.dsl.dk/resources/
details/freq-lemmas.html

.

column.

3.3 Lexical Assessment
All participants with dyslexia performed two lex-
ical assessment tests, which are used as a control
test for the current study. Both tests are developed
by the Centre of Reading Research, University of
Copenhagen. The purpose of the tests is to have
a comparable benchmark for a lexical assessment
unrelated to the eye movements of the participants
with dyslexia.

Nergård-Nilssen and Eklund (2018) found in
their psychometric evaluation that a pseudohomo-
phone test is of high reliability and that such a
test incorporates evaluations that provide accurate
discrimination of readers with dyslexia. Due to
this finding, as well as the fact that the pseudoho-
mophone task is used in the Danish dyslexia test,
a pseudohomophone test was selected as one of
the lexical assessment tests for the current study.
For the sake of reliability and providing insightful
findings on reading skills, a reading comprehen-
sion test was also used as a complementary lexical
assessment test.

Reading Comprehension Test The original
purpose of the reading comprehension test5 is to
provide easy access for adults to receive an infor-
mal evaluation of their reading skills, and to stress
that more adults are seeking help with developing
their reading skills (Jensen et al., 2014). It takes
ten minutes to complete, making it relatively

5Accessed from https://selvtest.nu/

short, yet insightful. The tasks in the test consist
of three variants of cloze tests, which are tests
where the participants must select a missing word
in a sentence, e.g., It had been raining
for some [days, moments,
countries] (our translation).

As the reading task is an online self-assessment
test that requires no log-in or external assistance,
requirements, or access, the participants without
dyslexia in the experiment were contacted after
their participation in the eye-tracking experiment
to voluntarily take the test at home to serve as a
control group. Ten participants without dyslexia
submitted their scores as a contribution to this ex-
periment.

The aggregated results for both reader groups
are presented in Table 3. We observe that read-
ers with dyslexia generally have a lower score and
a larger variance. A two-tailed t-test showed that
this difference is significant (p < 0.001).

GROUP n MEAN MIN MAX

DYSLEXIC 18 3.5 0.7 5.2
NOT DYSLEXIC 10 5.7 4.4 7.1

Table 3: Reading task scores for participants of
both reading groups. A score between 0–3.4 indi-
cates that the reader may find many texts difficult
and time-consuming to read, and a score between
3.5–3.9 indicates that the reader may find some
texts difficult and/or time-consuming to read. A
score over 4 indicates good reading skills.

Pseudohomophone Test The second linguistic
assessment we conducted with the participants
with dyslexia was a pseudohomophone 6 and was
developed as a part of a diagnostic reading test
for adults. The test encompasses 38 tasks where
each task consists of four non-words, of which
one of the words sounds like a real Danish word
when pronounced. The difficulty of the 38 tasks
increases gradually. The participants get five
minutes to complete as many tasks as possible.
Knowledge of the words of the test is required to
perform it, but as the words are frequent, everyday
words in Danish, it is assumed that native, adult
readers are familiar with the words. Translated
examples of the words are: cheese, eat, steps, fac-
tory, and help.

6Accessed from https://laes.hum.ku.dk/
test/
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GROUP n ACC

NO READING DIFFICULTIES 72 66%
IN PROGRAMS FOR DYSLEXIC STUDENTS 46 23%
IN LITERACY READING PROGRAMS 167 31%

COPCO READERS WITH DYSLEXIA 18 33%

Table 4: Pseudohomophone test accuracies. The
three top rows are standards from the official doc-
umentation of the test material for comparison.

The result is presented in Table 4 compared
to standard scores from the documentation of the
test7. We observe that the scores from the read-
ers with dyslexia in the current study are on par
with the standard scores of adults in literacy read-
ing programs and higher than the standards for
adults in programs for dyslexic readers. However,
all quartile scores for our group of readers with
dyslexia are about half compared to the standards
for adults without reading difficulties.

3.4 Experiment Procedure
Eye movement data were collected with an in-
frared video-based EyeLink 1000 Plus eye tracker
(SR Research) and follow Hollenstein et al.
(2022). The experiment was designed with the
SR Experiment Builder software. Data is recorded
with a sampling rate of 1000Hz. Participants were
seated at a distance of approximately 85 cm from
a 27-inch monitor (display dimensions 590 x 335
mm, resolution 1920 x 1080 pixels). We recorded
monocular eye-tracking data of the right eye. In
a few cases of calibration difficulties, the left eye
was tracked.

A 9-point calibration was performed at the be-
ginning of the experiment. The calibration was
validated after each block. Re-calibration was
conducted if the quality was not good (worst point
error < 1.5◦, average error < 1.0◦).Drift cor-
rection was performed after each trial, i.e. each
screen of text. Minimum calibration quality mea-
sure of the recording (“good” calibration score, or
“fair” in exceptionally difficult cases).

Experiment Protocol Participants read
speeches in blocks of two speeches. The ex-
periment was self-paced meaning there were no
time restrictions. Thus, the participants read in
their own pace for comprehension which is what
we dub ‘natural reading’. Between blocks, the

7https://laes.hum.ku.dk/test/find_det_
der_lyder_som_et_ord/standarder/

participants could take a break. Each participant
completed as many blocks as they were comfort-
able within one session. The order of the blocks
and the order of the speeches within a block were
randomized. Instructions were presented orally
and on the computer screen before the experiment
started. All participants first completed a practice
round of reading a short speech with one compre-
hension question. The experiment duration was
between 60 and 90 minutes.

Stimulus Presentation The text passages pre-
sented on each screen resembled the author’s
original division of the story into paragraphs as
much as possible. Comprehension questions were
presented on separate screens. The text was
in a black, monospaced font (type: Consolas;
size: 16pt) on a light-gray background (RGB:
248,248,248). The texts spanned max. 10 lines
with triple line spacing. We used a 140 pixels mar-
gin at the top and bottom, and 200 pixels side mar-
gin for a screen resolution of 1920x1080.

4 Data Processing

4.1 Event Detection

This procedure also follows Hollenstein et al.
(2022) closely. During data acquisition, the eye
movement events are generated in real-time by
the EyeLink eye tracker software during record-
ing with a velocity- and acceleration-based sac-
cade detection method. The algorithm defines a
fixation event as any period that is not a saccade
or a blink. Hence, the raw data consist of (x,y)
gaze location coordinates for individual fixations.

We use the DataViewer software by SR Re-
search to extract fixation events for all areas of in-
terest. Areas of interest are automatically defined
as rectangular boxes surrounding each text charac-
ter on the screen, as shown in Figure 1. For later
analysis, only fixations within the boundaries of
each displayed character are extracted. Therefore,
data points distinctly not associated with reading
are excluded. We also set a minimum duration
threshold of 100ms.

4.2 Feature Extraction

In the second step, we use custom Python code
to map and aggregate character-level features to
word-level features. These features cover the read-
ing process from early lexical access to later syn-
tactic integration. The selection of features is
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Figure 2: Correlation matrices showing correlations between all features recorded from readers with
dyslexia (DR; left) and readers without dyslexia (NDR; right).

inspired by similar corpora in other languages
(Siegelman et al., 2022; Hollenstein et al., 2018;
Cop et al., 2017) as well as features known to
show strong effects in eye movements from read-
ers with dyslexia (Biscaldi et al., 1998; Pirozzolo
and Rayner, 1979; Rayner, 1986). We extract the
following eye-tracking features:

• nFIX: The total number of fixations on the
current word.

• FFD: Duration of the first fixation of the cur-
rent word.

• MFD: Mean duration of all fixations on the
current word.

• TFD: Total fixation duration on the current
word.

• FPD: first pass duration, The summed dura-
tion of all fixations on the current word prior
to progressing out of the current word (left or
right).

• GPT: go-past time, the sum duration of all
fixations prior to progressing to the right of
the current word, including regressions to
previous words that originated from the cur-
rent word.

• MSD: mean saccade duration, Mean duration
of all saccades originating from the current
word.

• PSV: peak saccade velocity, Maximum gaze
velocity (in visual degrees per second) of all
saccades originating from the current word.

The feature correlations for readers with and
without dyslexia are shown in Figure 2. They il-
lustrate that the correlation of the features is gener-
ally higher for readers without dyslexia compared
to those with dyslexia. This may indicate that
the data varies more among readers with dyslexia,
suggesting that the reading pattern of the partic-
ipants with dyslexia includes greater variability.
The highest correlated features are those related
to fixations, with the highest correlated pairs be-
ing first fixation duration and mean fixation du-
ration, as well as total fixation duration and the
number of fixation duration. A t-test analysis was
performed to compare the features recorded from
readers with and without dyslexia, revealing that
all eight features show a significant difference be-
tween groups (p <0.0001).

5 Dyslexia Classification

We experiment with three types of classifiers us-
ing features on two different levels of aggregation;
sentence-level and trial-level. A trial corresponds
to the text presented on a single screen, roughly
corresponding to paragraphs from the original text
materials. For both levels of aggregation, the eye-
tracking features of each word in a sentence or
trial, respectively, are averaged to get a single vec-
tor of eight features for each sample. Further,
we experiment with adding standard deviations
(+STD) and max values (+MAX). Therefore, we
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n SAMPLES
EXPERIMENT TYPE NON-DYSLEXIC DYSLEXIC

TRIAL-LEVEL 5,147 4,144
SENTENCE-LEVEL 21,859 17,477

Table 5: Dataset size.

train classifiers, where each sample corresponds
either to the eye-tracking information from a sen-
tence or from a full trial. Dataset sizes are pre-
sented in Table 5. The data is split into 90% train-
ing data and 10% test data. We use an additional
10% of the training data as a validation split for
the Long Short-Term Memory (LSTM). For all
experiments, we randomly undersampled the non-
dyslexic datasets for training, but not testing. We
perform 5 runs taking different random samples
from the data of readers without dyslexia and re-
port the average performance.

SVM and Random Forest Classifiers The eye-
tracking features are normalised with a min-max
scaler that gives each instance a number between
0 and 1.We use a grid search to tune the hyper-
parameters of both SVM (the best regularization
parameter C = 100) and random forest (the best
maximum depth=9, and the optimal number of es-
timators=200) in a 5-fold cross-validation setup on
the full train set. The classifiers are implemented
with the scikit-learn library for Python. The SVM
uses a linear kernel. In addition to taking the mean
feature values per word or trial (i.e., aggregating
the eye-tracking features of all individual words),
we also experiment with adding the standard devi-
ations and maximum values of each feature.

LSTM Classifiers with Sequential Word Fea-
tures We train a recurrent neural network op-
timized for sequential data, namely an LSTM.
As LSTMs perform well with sequences and data
consisting of large vocabularies and are effective
in memorizing important information, it can be
beneficial to dyslexia detection to predict the prob-
ability of class for a sentence, given the observed
words. Therefore, the inputs for the LSTM net-
work are the same eye-tracking features, but rather
than aggregating on the full trial or sentence, each
word is assigned a feature vector. The sequences
were then padded to the maximum sentence or
trial length, respectively. We use two LSTM lay-
ers, with 32 and 16 dimensions, respectively, and
a dropout rate of 0.3 after the first layer. Fi-

nally, we use a sigmoid activation function for out-
putting the probabilities of each class. The mod-
els are trained with a batch size of 128, using a
cross-entropy loss and a RMSprop optimizer with
a learning rate of 0.001. We implement early stop-
ping with a patience of 70 epochs on the maximum
validation accuracy and save the best model. The
model was implemented using Keras.

MODEL TRIAL SENTENCE

SVM 0.80 (0.018) 0.71 (0.004)
SVM + STD 0.81 (0.010) 0.71 (0.006)
SVM + STD + MAX 0.81 (0.014) 0.72 (0.007)

RF 0.83 (0.012) 0.72 (0.001)
RF + STD 0.85 (0.015) 0.72 (0.007)
RF + STD + MAX 0.85 (0.010) 0.73 (0.006)

LSTM 0.82 (0.030) 0.71 (0.037)

Table 6: Average F1 score (standard devia-
tion across five runs in brackets) for SVM,
R(random)F(orest) and LSTM.

5.1 Results
The trial-level and sentence-level results for the
dyslexia classification task are presented in Table
6. We observe that trial-level classifiers achieve
much higher results than sentence-level classifiers,
which is to be expected since the latter includes
reading data from fewer words. However, for the
SVM and random forest, the features are aggre-
gated. Hence there will be an upper limit of text
length suitable for these methods. The random for-
est achieves the best results on both levels and a
wider range of features (namely, including stan-
dard variation and maximum value features) yields
higher scores. The LSTM model does not outper-
form the simpler and faster-to-train random forest
models and shows a higher variance between runs.

5.1.1 Misclassifications
To further analyze these results, we look at the
confusion matrix and misclassified participants
from the best model, namely the random forest
classifier including mean, standard deviation, and
maximum value features. The confusion matrices
in Figure 3 show that more mistakes are made clas-
sifying samples from readers with dyslexia than
from readers without dyslexia. This is more appar-
ent at sentence-level where the number of samples
is substantially larger.

Furthermore, we hypothesize that the classifier
struggles to correctly classify samples from read-
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ers with dyslexia that have reading patterns com-
parable to readers without dyslexia. The sam-
ples that are misclassified most frequently belong
mostly to the same group of participants, both at
sentence-level and at trial-level. The most fre-
quently misclassified samples from readers with
dyslexia were P28, P35, P23, P40, and P37 (in
descending order of the number of misclassifi-
cations). We correlate the number of misclassi-
fied samples for all participants with dyslexia with
their demographic and lexical text information and
find a significant correlation between misclassi-
fications and words per minute (ρ = 0.79, p <
0.001) and between misclassifications and read-
ing comprehension scores (ρ = 0.71, p < 0.001).
However, the correlation between misclassifica-
tions and pseudohomophone test scores is minimal
and not significant. This shows that samples from
readers with dyslexia with higher reading speed
and better reading comprehension are more likely
to be misclassified since the features are more sim-
ilar to readers without dyslexia.

(a) Trial-level

(b) Sentence-level

Figure 3: Confusion matrices for the best classi-
fier, RF+SDT+MAX, for each experiment level.

6 Discussion & Conclusion

We presented a dataset of eye-tracking recordings
from natural reading from adults with dyslexia,
which complements the CopCo dataset of readers
without dyslexia (Hollenstein et al., 2022). Ad-
ditionally, to the best of our knowledge, we pre-
sented the first attempt to predict dyslexia from
eye-tracking features using Danish as a target
language. The best-performing classifier of the
current study achieves an F1 score of 0.85, us-
ing a random forest classifier trained with a fea-
ture combination that includes the aggregation of
means, standard deviations, and maximum values
of eight eye-tracking features.

While the recorded eye-tracking features
proved to reflect vital information about the read-
ing mechanisms of the participants, there were a
considerably high number of misclassifications
of fast and skilled readers with dyslexia. This
indicates that a fast reading speed is atypical for
a reader with dyslexia. These results contribute
to findings that the symptoms of dyslexia oc-
cur in varying degrees and thus underline the
importance of developing a reliable assessment
tool for dyslexia that can reduce the number of
misclassifications.

Moreover, due to known comorbidities across
reading disorders (Mayes et al., 2000) that can
be reflected in eye movements (e.g., attention and
autism spectrum disorders), as the dataset contin-
ues to grow, we will include these populations of
readers in the data collection to learn to classify
different subgroups readers correctly.

Precise criteria for dyslexia diagnosis remain
difficult to standardise with the varying degrees
of the symptoms and indicators of the disorder,
which is why the condition deserves more atten-
tion. As eye-tracking recordings provide insight-
ful information about cognitive processes in natu-
ralistic tasks such as reading, they can be a ben-
eficial tool for dyslexia prediction. Eye tracking
can be a stepping stone to achieving more reliable
screening methods for dyslexia.
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Holger Juul and Baldur Sigurdsson. 2005. Orthogra-
phy as a handicap? a direct comparison of spelling
acquisition in danish and icelandic. Scandinavian
Journal of Psychology, 46(3):263–272.

Shahriar Kaisar. 2020. Developmental dyslexia detec-
tion using machine learning techniques: A survey.
ICT Express, 6(3):181–184.

Joanna Lynne Kelm. 2016. Adults’ experiences of re-
ceiving a diagnosis of a learning disability. Ph.D.
thesis, University of British Columbia.

Shelley Young Kong. 2012. The emotional impact of
being recently diagnosed with dyslexia from the per-
spective of chiropractic students. Journal of Further
and Higher Education, 36(1):127–146.

Susan D Mayes, Susan L Calhoun, and Errin W Crow-
ell. 2000. Learning disabilities and adhd: Overlap-
ping spectrum disorders. Journal of learning dis-
abilities, 33(5):417–424.
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Abstract

We train and evaluate four Part-of-Speech
tagging models for Icelandic. Three are
older models that obtained the highest
accuracy for Icelandic when they were
introduced. The fourth model is of a
type that currently reaches state-of-the-art
accuracy. We use the most recent version
of the MIM-GOLD training/testing cor-
pus, its newest tagset, and augmentation
data to obtain results that are comparable
between the various models. We exam-
ine the accuracy improvements with each
model and analyse the errors produced by
our transformer model, which is based on
a previously published ConvBERT model.
For the set of errors that all the models
make, and for which they predict the same
tag, we extract a random subset for manual
inspection. Extrapolating from this subset,
we obtain a lower bound estimate on anno-
tation errors in the corpus as well as on
some unsolvable tagging errors. We argue
that further tagging accuracy gains for Ice-
landic can still be obtained by fixing the
errors in MIM-GOLD and, furthermore,
that it should still be possible to squeeze
out some small gains from our transformer
model.

1 Introduction

Part-of-Speech (POS) tagging is a sequential la-
belling task in which each token, i.e., words, sym-
bols, and punctuation in running text is assigned
a morphosyntactic tag. It is an important step for
many Natural Language Processing applications.
A token is ambiguous when it has more than one
possible tag. The source of ambiguity is polysemy
in the form of homographs from the same word
class, from different word classes, and also within

the declension paradigms of the same word. The
task, therefore, entails examining the token itself
and its context for clues for predicting the cor-
rect tag. For the last mentioned type of ambigu-
ity, which is prevalent in Icelandic, it is necessary
to find another unambiguous token in the context
that the target token shows agreement with and use
it to determine the correct target tag.

Over the last two decades, steady progress has
been made in POS tagging for Icelandic. Various
taggers have been presented throughout this period
that improved on previous state-of-the-art (SOTA)
methods (Rögnvaldsson et al., 2002; Helgadóttir,
2005; Loftsson, 2008; Dredze and Wallenberg,
2008; Loftsson et al., 2009, 2011; Loftsson and
Östling, 2013; Steingrímsson et al., 2019; Snæ-
bjarnarson et al., 2022; Daðason and Loftsson,
2022; Jónsson and Loftsson, 2022).

Work on Icelandic corpora has also progressed.
Existing corpora have undergone error correction
phases (Barkarson et al., 2021), and, in some
cases, been expanded with new data (Barkarson
et al., 2022). A new larger gold standard cor-
pus for POS tagging, MIM-GOLD (Loftsson et al.,
2010), was created to replace the older standard,
the Icelandic Frequency Dictionary (IFD, Pind
et al. 1991), and multiple alterations have been
made to the fine-grained Icelandic tagset (Stein-
grímsson et al., 2018; Barkarson et al., 2021).

All this variability over the years means that
previously reported results for POS taggers are not
easily comparable. Thus, we train and test four
data-driven taggers that have been employed for
Icelandic (see Section 3), using the latest version
of MIM-GOLD and its underlying tagset, as well
as the latest versions of augmentation data (see
Section 2). We obtain SOTA tagging accuracy by
training and fine-tuning a ConvBERT-base model
in a slightly different manner than previously re-
ported by Daðason and Loftsson (2022) (see Sec-
tion 3).
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With the latest tagging method based on the
transformer model finally reaching above 97%
per-token accuracy for Icelandic (Jónsson and
Loftsson, 2022; Snæbjarnarson et al., 2022; Daða-
son and Loftsson, 2022), the generally be-
lieved limit of inter-annotator agreement (Mann-
ing, 2011), we might ask ourselves if POS tagging
is now a solved problem for Icelandic. Indeed, our
evaluation results show that the tagging accuracy
of our ConvBERT-base model is close to 98% (see
Table 3). A large portion of the remaining errors
can be explained by 1) a lack of context inform-
ation to make the correct prediction, and 2) anno-
tation errors or other faults in the training/testing
corpus itself. Addressing the latter should give
further gains. Furthermore, some small additional
gains could be squeezed out of the transformer
model, by using a larger model and pre-training
it on more data. When this is done, we may be
able to argue that POS tagging is a solved problem
for Icelandic.

The rest of this paper is structured as follows.
In Sections 2 and 3, we describe the data and the
models, respectively, used in our experiments. We
present the evaluation results in Section 4, and de-
tailed error analysis in Section 5. Finally, we con-
clude in Section 6.

2 Data

In this section, we describe the data and the tagset
used in our work.

2.1 Corpus

The MIM-GOLD corpus is a curated subset of the
MIM corpus (Helgadóttir et al., 2012) and was
semi-automatically tagged using a combination of
taggers (Loftsson et al., 2010). Version 21.05 of
the corpus contains 1 million running words from
13 different text types, of which about half origi-
nate from newspapers and books (see Table 1). All
versions of MIM-GOLD include the same 10-fold
splits for use in cross-validation.1

MIM-GOLD was created to replace the IFD as
the gold standard for POS tagging of Icelandic
texts. The IFD corpus was sourced from books
published in the eighties and has a clear literary
and standardized language slant. Steingrímsson
et al. (2019) reported a 1.11 percentage point (pp)

1Version 21.05 is available at http://hdl.handle.
net/20.500.12537/114

Text type % of all
Newspaper Morgunblaðið 24.9
Books 23.5
Blogs 13.4
Newspaper Fréttablaðið 9.4
The Icelandic Web of Science 9.1
Websites 6.5
Laws 4.1
School essays 3.4
Written-to-be-spoken 1.9
Adjudications 1.3
Radio news scripts 1.1
Web media 0.8
E-mails 0.5
Total 100.0

Table 1: Information about the various text types
in MIM-GOLD, adapted from Loftsson et al.
(2010).

lower per-token accuracy for MIM-GOLD com-
pared to the IFD.

2.2 Morphological lexicon

Version 22.09 of the Database of Modern Ice-
landic Inflection (DMII) (Bjarnadóttir, 2012),
which is now a part of the Database of Icelandic
Morphology (Bjarnadóttir et al., 2019), contains
6.9 million inflectional forms and about 330 thou-
sand declension paradigms.2 Though the database
cannot be used directly to train a POS tagger, as
there is no context or distributional information
for the word forms, it has been used to augment
taggers during training and help with tagging un-
known words (words not seen during training)
(Loftsson et al., 2011; Steingrímsson et al., 2019).

2.3 Pre-training corpus

The Icelandic Gigaword Corpus (IGC), which in-
cludes text sources from multiple varied domains,
has been expanded annually since 2018 (Barkar-
son et al., 2022). The motivation for construct-
ing the IGC was, inter alia, to make the devel-
opment of large Icelandic language models pos-
sible (Steingrímsson et al., 2018). The 2021 ver-
sion used in our work contains about 1.8 billion
tokens.3

2https://bin.arnastofnun.is/DMII/
LTdata/

3Version 2021 is available at http://hdl.handle.
net/20.500.12537/192
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2.4 Tagset
The MIM-GOLD tagset v. 2 is the fourth iteration
of the fine-grained tagset that is exclusively used
for modern Icelandic and has its origin in the IFD.
The tagset consists of 571 possible tags, of which
557 occur in MIM-GOLD.

The tags are morphosyntactic encodings con-
sisting of one to six characters, each denoting
some feature. The first character denotes the lex-
ical category and is, in some cases, followed by
a sub-category character. For each category, a
fixed number of additional feature characters fol-
low, e.g., gender, number and case for nouns;
degree and declension for adjectives; and voice,
mood and tense for verbs. To illustrate, consider
the word form konan (‘the woman’). The corre-
sponding tag is nveng, denoting noun (n), feminine
(v), singular (e), nominative (n) case, and definite
suffixed article (g).

3 Models

In this section, we describe the four data-driven
POS tagging models we trained and evaluated:

• TriTagger (Loftsson et al., 2009) is a reim-
plementation of TnT (Brants, 2000), a sec-
ond order (trigram) Hidden Markov model.
The probabilities of the model are estimated
from a training corpus using maximum like-
lihood estimation. Assignments of POS tags
to tokens is found by optimising the product
of lexical probabilities (p(wi|tj)) and contex-
tual probabilities (p(ti|ti−1, ti−2)) (where wi

and ti are the ith word and tag, respectively).

When work on creating a tagger for Icelandic
started at the turn of the century, five existing
data-driven taggers were tested on the IFD
corpus (Helgadóttir, 2005). TnT obtained the
highest accuracy and has often been included
for comparison in subsequent work.

• IceStagger (Loftsson and Östling, 2013)
is an averaged perceptron model (Collins,
2002), an early and simple version of a neu-
ral network.4 It learns binary feature func-
tions from predefined templates. The tem-
plates are hand-crafted and can reference ad-
jacent words, previous tags, and various cus-
tom matching functions applied to them. The

4IceStagger and TriTagger are included in the IceNLP
toolkit (Loftsson and Rögnvaldsson, 2007): https://
github.com/hrafnl/icenlp

templates, intended to capture dependencies
specific to Icelandic, were developed against
the IFD. During training, the algorithm learns
which feature functions are good indicators
of the assigned tag, given the context avail-
able to the templates. It does that by ad-
justing the weight associated with the feature
function. The highest-scoring tag sequence
is approximated using beam search. Both
IceStagger and TriTagger use data from the
DMII to help with guessing the tags for un-
known tokens.

• ABLTagger v. 1 (Steingrímsson et al., 2019;
Jónsson and Loftsson, 2022) is based on a
bidirectional long short-term memory (Bi-
LSTM) model.5 That model is an exten-
sion of LSTMs (Hochreiter and Schmidhu-
ber, 1997) that can be employed when the
input is the whole sequence. Two LSTMs
are trained on the input, with the second
traversing it in reverse (Graves and Schmid-
huber, 2005). The input for ABLTagger con-
sists of both word and character embeddings.
The model is augmented with n-hot vectors
created from all the potential lexical features
of the word forms from the DMII. ABL-
Tagger was developed against the IFD but
was the first tagger to be applied to MIM-
GOLD.

• ConvBERT (Jiang et al., 2020) is an im-
proved version of the BERT model (Vaswani
et al., 2017; Devlin et al., 2019) that is more
efficient and accurate. We used an exist-
ing ConvBERT-base model pre-trained on
the IGC by Daðason and Loftsson (2022)6

and fine-tuned it for tagging on MIM-GOLD.
This is a standard pre-trained transformer
model with two changes: the embeddings
of the first and last subwords are con-
catenated (first+last subword pooling) to
generate the token representations (Schuster
and Nakajima, 2012), and we continued the
pre-training of the ConvBERT-base model
using the training data of each fold from
MIM-GOLD for three epochs before fine-
tuning it for tagging for 10 epochs with the
same data. Each modification gave a 0.07 pp

5ABLTagger v. 1 is available at https://hdl.
handle.net/20.500.12537/53

6https://huggingface.co/jonfd/
convbert-base-igc-is

73



Token acc. Sent. acc.
TriTagger 91.01% 35.58%
IceStagger 92.72% 42.74%
ABLTagger v1 94.56% 49.11%
ConvBERT-base 97.79% 73.43%

Table 2: Token and sentence tagging accuracy for
the four models.

improvement in accuracy; i.e. 0.14 pp in to-
tal.7

4 Results

We evaluated the four models by applying 10-fold
cross-validation (CV) using the standard splits
in MIM-GOLD (see Section 2). The results
are shown in Table 2. The transformer model,
ConvBERT-base, obtains 6.78 pp higher accuracy
than the HMM model (TriTagger), which is equiv-
alent to a 75.42% reduction in errors!

The increase in sentence accuracy, which is
often overlooked, is also very impressive. It has
more than doubled and now close to 3

4 of the sen-
tences are correct. Sentences come in different
lengths, ranging from a single token up to 1,334
tokens in MIM-GOLD, and increased length can
result in increased complexity. Figure 1 shows
the length distribution of sentences with no errors.
The figure shows both general accuracy gains as
well as an improvement in handling longer sen-
tences.

Figure 1: Distributions of correctly tagged sen-
tences. The legend shows each set’s median (Mdn)
and mean (M).

7See https://github.com/orvark13/postr/
for training and evaluation scripts, as well as fine-tuned
models.

Figure 2: The accuracy improvements between the
models for the more frequent lexical categories.
Solid lines are the per-token accuracy for all tags
in that category, and dashed lines are the lexical
class accuracy, i.e., the tag category is correct but
there is some error in the predicted features. Errors
within the categories diminish as those lines con-
verge.

4.1 Accuracy improvements

TriTagger and IceStagger are limited to a three-
token window and they need frequency inform-
ation of tokens to learn from. As is to be ex-
pected, IceStagger gains accuracy according to the
feature templates pre-defined for it. ABLTagger’s
improvements come from the BiLSTM’s context
window being the whole sentence and it, thereby,
being able to detect long-range dependencies. Its
ability to see within the token by means of the
character embeddings helps it handle tokens not
seen during training. Augmenting the model with
data from DMII also helps with unknown words.

The source of improvement for the transformer
model is mainly threefold. First, the attention
mechanism aids it in selecting the right depend-
encies (e.g., when there is more than one option),
and it is detecting longer long-range dependencies
than the BiLSTM model. We see this from the
examination of the predictions and it is also indi-
cated by the model’s success with longer sentences
as is evident in the shape of its distribution in Fig-
ure 1. Secondly, the model is often able to dis-
cern the different semantic senses of ambiguous
tokens. We assume this stems from the contextual
word embeddings in the large pre-trained Conv-
BERT language model. Finally, it benefits from
all the language sense from the IGC infused in the
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POS Transformer Model Accuracy
IceBERT-IGC [1] 97.37%
ConvBERT-base [1] 97.75%
Our ConvBERT-base 97.79%
Excluding x and e tags
IceBERT-IGC, multi-label [2] 98.27%
Our ConvBERT-base 98.14%
9-fold CV, excluding x and e errors
DMS, ELECTRA-base [3] 97.84%
Our ConvBERT-base 98.00%

Table 3: Accuracy results for different POS trans-
former models pre-trained on IGC and the accu-
racy of our transformer model when fine-tuned
and evaluated in a comparable manner. [1] were
reported in Daðason and Loftsson (2022), [2] in
Snæbjarnarson et al. (2022), and [3] in Jónsson
and Loftsson (2022).

language model during pre-training.
Figure 2 shows the accuracy improvements of

the models for the more frequent lexical cate-
gories.

4.2 Transformer models and SOTA

In Table 3, we show previously reported results for
transformer models pre-trained on the IGC, and
the results of our transformer, a ConvBERT-base
model trained and fine-tuned slightly differently
compared to Daðason and Loftsson (2022) (see
Section 3), evaluated in the same manner for com-
parison. Two of the papers cited in the table report
results excluding the x and e tags, either both dur-
ing training and evaluation or only during evalu-
ation. These tags are used for unanalysed tokens
and foreign words, respectively, and have the low-
est category accuracies, the reasons for which will
become apparent in Section 5. Not counting tagg-
ing errors for these two tags increases reported
accuracy by 0.21 pp for our model. Excluding
those tags from training, by fixing their weights to
zero, increases the reported accuracy by a further
0.14 pp, because, in this case, the model is no
longer able to assign these two tags erroneously
to tokens.

The current SOTA is a multi-label model based
on IceBERT-large8 (Snæbjarnarson et al., 2022).
Multi-label classification means that the tags are
split into individual features, e.g., lexical category,

8IceBERT is based on a RoBERTa model (Liu et al.,
2019).

tense, gender, number, and the model is trained to
predict each separately. Treating composite tags
as multiple labels has been shown to improve POS
tagging accuracy, especially when training data
is scarce (Tkachenko and Sirts, 2018). Combin-
ing the predictions back into tags is dependent
on knowledge about the composition of the tags.
The results presented in Table 3 show that our
ConvBERT-base model obtains SOTA results for
single-label models applied to Icelandic.

5 Error analysis

In this section, we, first, present an analysis of the
most frequent errors, and, second, the results of
our analysis of the different sources of errors.

5.1 Most frequent errors

Table 4 shows the most frequent errors made by
our transformer model. The list for the BiLSTM
model is very similar, but with about double the
accuracy degradation. The 12 most frequent errors
are in fact six pairs of tags where the confusion
between each pair occurs in either direction.

The most frequent confusion is n—s→e (and
e→n—s), or between foreign proper names and
foreign words.9 More than half, 0.04 pp for both
error types, are due to words not seen during train-
ing. According to the MIM-GOLD tagging guide-
lines, compound foreign names should have the
first word tagged as a foreign proper name (n—
s), and then the rest of the name tagged as for-
eign words (e), except for names of persons and
places that should have all parts tagged as foreign
proper names (n—s). The tag n—s is also used
for abbreviations of foreign proper names, e.g.,
BBC. There are also some special cases that devi-
ate from these rules (Barkarson et al., 2021). A
significant portion of these tagging errors is in-
deed caused by annotation errors in the corpus
(mostly n—s→e), as well as the fact that the appli-
cation of the rules requires world knowledge that
the models of course lack.

Confusion between adverbs and prepositions
(which are annotated in MIM-GOLD as adverbs
that govern case), i.e., aa→af (and af→aa) are the
next most frequent errors. Some of these tagging
errors are due to cases where there is a clause be-
tween the preposition and the object, or where the

9We denote a tagging error with a→b where a is the pre-
dicted tag and b is the gold tag. The tag n—s stands for a
proper noun without markings for gender, number, or case.
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Predicted tag Degradation
No. → gold tag in pp

1. n—s→ e 0.07
2. e→ n—s 0.07
3. af→ aa 0.05
4. aa→ af 0.05
5. nheo→ nhfo 0.03
6. fpheþ→ faheþ 0.03
7. nveþ→ nveo 0.03
8. nhfo→ nheo 0.02
9. nveo→ nveþ 0.02

10. ct→ c 0.02
11. c→ ct 0.02
12. faheþ→ fpheþ 0.02

Table 4: The 12 most frequent tagging errors our
transformer model makes. The rightmost column
shows accuracy degradation in percentage points
for each error type.

object has been moved to the front of the sentence.
There also seem to be a fair number of annotation
errors associated with this confusion between ad-
verbs and prepositions.

A confusion between personal and demonstra-
tive pronouns, fpheþ→faheþ (and faheþ→fpheþ),
is caused by the antecedent being out of context or
being a whole clause. Understanding the clause is
often necessary to make the distinction. These are
all the same word form, því (‘it’ or ‘this, that’).
For því/fpheþ→faheþ, we see some improvement
in accuracy with the transformer model over the
other models, but for því/faheþ→fpheþ, we notice
the only case of lower accuracy for the transformer
model compared to the others. The tags here are
for neuter (h) singular (e) in the dative case (þ).
There are identical confusions for the accusative
and genitive cases, but those tokens are not as freq-
uent.

The c→ct (and ct→c) errors are compara-
tive conjunctions being marked as relativizers (a
subordinating conjunction indicating a relative
clause) and vice versa. Except for a few anti-
quated uses of er, these cases are all the word form
sem (‘as’ or ‘who, whom, that, which’). The con-
junction sem subsumed er’s role as a relativizer in
Old Icelandic. This language change was feasi-
ble due to their syntactic structures being identical
(Kemmer, 1984). Semantically their function is
similar, as one complements and the other modi-
fies a noun phrase with the following clause. The

difference is this role of the relation. Therefore,
the remaining tagging errors for sem are caused
by a lack of syntactic and contextual information
to make the correct prediction. Indeed, Loftsson
et al. (2009) suggested that two tag categories be
merged.

The errors nheo→nhfo (and nhfo→nheo), are
confusions between the singular (e) and plural
(f ) forms of neuter nouns (nh...). When this
error occurs, the context is usually not enough
to determine the correct number. A wider con-
text, previous sentences, or general knowledge is
needed, and might even not be enough. Finally,
nveþ→nveo (and nveo→nveþ) are confusions be-
tween the dative (þ) and accusative (o) cases of
feminine nouns (nv...). The word that governs the
case needs to be in the context, if it is omitted the
distinction cannot be made. Moreover, if it can
govern both cases, the required semantic inform-
ation is unavailable.

One other group of errors should be mentioned,
∗→x, where ∗ is any tag and the x tag denotes
unanalysed tokens. This error is obscured be-
cause the predictions are distributed over many
tags. These are tokens that contain spelling mis-
takes or constitute grammar errors and are the ma-
jority of the 2,777 tokens in the unanalysed tag
category. Of the four models, the transformer does
best with this tag category but is only predicting
58% correctly. Without changing how the spelling
mistakes are annotated in MIM-GOLD or sim-
ply excluding sentences containing them, this will
continue to be a source of about 0.12 pp accuracy
degradation. As the corpus also contains tokens
with such mistakes that are not annotated as un-
analysed it would be in line with current practice
to look to the intended meaning of these tokens
and tag them accordingly.

5.2 Sources of errors

Manning (2011) discusses the generally perceived
97% token accuracy upper limit for POS tagg-
ing. At that time, those accuracy numbers had
been reached for English, but Icelandic, a morpho-
logically richer language with a very fine-grained
tagset, had a long way to go. Rögnvaldsson et al.
(2002) had earlier suggested 98% as the highest
possibly achievable goal for Icelandic, because of
inter-annotator disagreement. Manning reasons
that the disagreement might actually be higher but
says it is mitigated with annotator guidelines and
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adjusting tag categories. Besides disagreement,
subjectivity in annotation and the possibility of
more than one right choice make up what Plank
(2022) calls human label variation.

Manning samples errors the Stanford POS
Tagger (Toutanova et al., 2003) makes when ap-
plied to a portion of the Penn Treebank corpus.
He analyses the errors to try to understand if and
how tagging accuracy could be further improved.
He finds that the largest opportunity for gains is in
improving the linguistic resources used to train the
tagger. Before the initial release of MIM-GOLD,
Steingrímsson et al. (2015) carried out an identi-
cal analysis on errors in both the IFD and MIM-
GOLD when tagged with IceStagger. Their find-
ings concurred with Manning’s. We performed a
similar analysis, though with a less detailed class-
ification of the errors.

Figure 3: Venn diagram showing how prediction
errors are shared between the four models.

Of the 1,000,218 tokens in MIM-GOLD, our
transformer model makes 22,128 tagging errors.
For 10,087 of these tokens, the three other taggers
also make errors (see Figure 3), and for 5,526 of
them, all four taggers agree on the predicted tag.
From this set of errors, we drew a random sample
of 500 for analysis. In this sample, we discovered
166 annotation errors, i.e., incorrect gold tags. For
150 of them, the taggers predicted the correct tag.
Extrapolating to the superset gives us 1,658 tagg-
ing errors caused by gold errors (≈0.16 pp). We
also found 87 cases where the prediction error was
obviously caused by there being insufficient con-
text information (≈0.09 pp), and 18 cases where
it was likely caused by a spelling or grammar mis-
take (≈0.02 pp). The last error class (spelling or
grammar mistakes) is aggravated by the use of the

unanalysed tag (x) for such mistakes in the corpus.
Table 5 shows the accuracy degradation for each of
these error classes. Though we cannot draw con-
clusions from these findings about the frequency
of these errors in the whole set of 22,128 errors,
it is safe to assume these are the lower bounds of
these error categories.

Error class pp
Annotation errors 0.16
Insufficient context 0.09
Spelling or grammar mistakes 0.02
Unexplained 0.25
Total 0.52

Table 5: Estimated accuracy degradation in per-
centage points caused by each class in the set of
prediction errors that all four taggers agree on.

6 Conclusions and Future Work

For Icelandic POS tagging, we have reached a
point where individual error categories no longer
stand out and annotation errors in the corpus are
more pronounced, as well as inconsistencies stem-
ming from human label variation.

Clear annotation errors can be corrected in the
corpus, and the tagging guidelines and tag cate-
gories can be refined to remove some of the
inconsistencies. Further gains can as well be
squeezed out of the transformer model by using
a larger model, i.e., ConvBERT-large instead of
ConvBERT-base, increasing the vocabulary size,
training it on the 2022 version of IGC that adds
549 million tokens, and fine-tuning the hyperpara-
meters for the tagging model. Yet, on top of
the annotator disagreement, there will always be
errors because of a lack of information in the con-
text, as well as the scarcity of examples to learn
from for the long tail of infrequent tags.

For MIM-GOLD, that unsolvable part of the
tagging errors seems to amount to less than 2 pp.
Therefore, with a little more work, we should be
able to confidently pass that 98% accuracy goal
(when training and evaluating using the whole
tagset) envisioned twenty years ago. A good start-
ing point would be to search for and fix those
estimated 1,658 annotation errors in MIM-GOLD,
which are a subset of the tagging errors that all
four models agree on.

To conclude, POS tagging for Icelandic is very
close to being solved!
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Abstract

Most research in Relation Extraction (RE)
involves the English language, mainly due
to the lack of multi-lingual resources.
We propose MULTI-CROSSRE, the broad-
est multi-lingual dataset for RE, includ-
ing 26 languages in addition to English,
and covering six text domains. MULTI-
CROSSRE is a machine translated ver-
sion of CrossRE (Bassignana and Plank,
2022a), with a sub-portion including more
than 200 sentences in seven diverse lan-
guages checked by native speakers. We
run a baseline model over the 26 new
datasets and—as sanity check—over the
26 back-translations to English. Results
on the back-translated data are consis-
tent with the ones on the original English
CrossRE, indicating high quality of the
translation and the resulting dataset.

1 Introduction

Binary Relation Extraction (RE) is a sub-field of
Information Extraction specifically aiming at the
extraction of triplets from text describing the se-
mantic connection between two entities. The task
gained a lot of attention in recent years, and dif-
ferent directions started to be explored. For ex-
ample, learning new relation types from just a
few instances (few-shot RE; Han et al., 2018;
Gao et al., 2019; Sabo et al., 2021; Popovic and
Färber, 2022), or evaluating the models over mul-
tiple source domains (cross-domain RE; Bassig-
nana and Plank, 2022b,a). However, a major issue
of RE is that most research so far involves the En-
glish language only.

After the very first multi-lingual work from
the previous decade—the ACE dataset (Dodding-
ton et al., 2004) including English, Arabic and
Chinese—recent work has started again exploring

multi-lingual RE. Seganti et al., 2021 published a
multi-lingual dataset, built from entity translations
and Wikipedia alignments from the original En-
glish version. The latter was collected from auto-
matic alignment between DBpedia and Wikipedia.
The result includes 14 languages, but with very
diverse relation type distributions: Only English
contains instances of all the 36 types, while the
most low-resource Ukrainian contains only 7 of
them (including the ‘no relation’). This setup
makes it hard to directly compare the performance
on different languages. Kassner et al., 2021 trans-
lated TREx (Elsahar et al., 2018) and GoogleRE,1

both consisting of triplets in the form (object, re-
lation, subject) with the aim of investigating the
knowledge present in pre-trained language mod-
els by querying them via fixed templates. In
the field of distantly supervised RE, Köksal and
Özgür, 2020 and Bhartiya et al., 2022 introduce
new datasets including respectively four and three
languages in addition to English.

In this paper, we propose MULTI-CROSSRE, to
the best of our knowledge the most diverse RE
dataset to date, including 27 languages and six di-
verse text domains for each of them. We automat-
ically translated CrossRE (Bassignana and Plank,
2022a), a fully manually-annotated multi-domain
RE corpus, annotated at sentence level. We release
the baseline results on the proposed dataset and, as
quality check, on the 26 back-translations to En-
glish. Additionally, we report an analysis where
native speakers in seven diverse languages manu-
ally check more than 200 translated sentences and
the respective entities, on which the semantic rela-
tions are based. MULTI-CROSSRE allows for the
investigation of sentence-level RE in the 27 lan-
guages included in it, and for direct performance
comparison between them. Our contributions are:
1 We propose a practical approach to machine-

1https://code.google.com/archive/p/
relation-extraction-corpus
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Figure 1: Example sentence with color-coded entity markup. From top to bottom: The original
English text, its translation to German, and translation back to English. In the first translation step
the entity classification is not transferred to German. In the second translation step the entity machine
learning is (wrongly) expanded by a comma—later corrected in our post-processing.

SENTENCES RELATIONS

train dev test tot. train dev test tot.

\ 164 350 400 914 175 300 396 871
ÿ 101 350 400 851 502 1,616 1,831 3,949

 103 351 400 854 355 1,340 1,393 3,088
Y 100 350 399 849 496 1,861 2,333 4,690
_ 100 400 416 916 397 1,539 1,591 3,527
Æ 100 350 431 881 350 1,006 1,127 2,483

tot. 668 2,151 2,446 5,265 2,275 7,662 8,671 18,608

Table 1: CrossRE Statistics. Number of sen-
tences and number of relations for each domain.

translate datasets with span-based annotations and
apply it to produce MULTI-CROSSRE, the first
multi-lingual and multi-domain dataset for RE in-
cluding 27 languages and six text domains.2 2
Multi-lingual and multi-domain baselines over the
proposed dataset. 3 Comprehensive experiments
over the back-translations to English. 4 A man-
ual analysis by native speakers over more than 200
sentences in seven diverse languages.

2 MULTI-CROSSRE

CrossRE As English base, we use
CrossRE (Bassignana and Plank, 2022a),3 a re-
cently published multi-domain dataset. CrossRE
is entirely manually-annotated, and includes 17
relation types spanning over six diverse text
domains: artificial intelligence (Æ), literature
(_), music (Y), news (\), politics (ÿ), natural
science (
). The dataset was annotated on top
of CrossNER (Liu et al., 2021), a Named Entity
Recognition (NER) dataset. Table 1 reports the
statistics of CrossRE.

Translation Process With the recent progress
in the quality of machine translation (MT), uti-
lizing machine-translated datasets in training and
evaluation of NLP methods has become a stan-

2https://github.com/mainlp/CrossRE
3Released with a GNU General Public License v3.0.

dard practice (Conneau et al., 2018; Kassner et al.,
2021). As long as the annotation is not span-
bound, producing a machine-translated dataset is
rather straightforward. The task however becomes
more involved for datasets with annotated spans,
such as the named entities in our case of the
CrossRE dataset, or e.g. the answer spans in a
typical question answering (QA) dataset. Numer-
ous methods have been developed for transferring
span information between the source and target
texts (Chen et al., 2022). These methods are of-
ten tedious and in many cases rely on language-
specific resources to obtain the necessary map-
ping. Some methods also require access to the in-
ner state of the MT system, e.g. its attention activa-
tions, which is generally not available when com-
mercial MT systems are used.

In this work, we demonstrate a practical and
simple approach to the task of machine translating
a span-based dataset. We capitalize on the fact that
DeepL,4 a commercial machine translation service
very popular among users thanks to its excellent
translation output quality, is capable of translat-
ing document markup. This feature is crucial for
professional translators—the intended users of the
service—who need to translate not only the text of
the source documents, but also preserve their for-
matting. In practice, this means that the input of
DeepL can be a textual document with formatting
(a Word document) and the service produces its
translated version with the formatting preserved.

For the CrossRE dataset, we only need to trans-
fer the named entities, which can be trivially en-
coded as colored text spans in the input docu-
ments, where the color differentiates the individ-
ual entities. This is further facilitated by the fact
that the entities do not overlap in the dataset, al-
lowing for a simple one-to-one id-color mapping.
Observing that oftentimes the entities are over-

4https://www.deepl.com/translator
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la
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2v
ec TRANSLATION (EN→ X)

BACK-TRANSLATION (X→ EN)

∆
B

T

∆
O

REVAL ON BACK-TRANSLATED DATA EVAL ON ORIGINAL CROSSRE DATA

Language Æ _ Y \ ÿ 
 avg. Æ _ Y \ ÿ 
 avg. Æ _ Y \ ÿ 
 avg.

German 0.18 24.6 27.6 29.6 9.7 19.7 21.1 22.0 24.9 31.5 27.9 10.5 19.3 21.2 22.5 25.1 30.7 27.7 10.4 19.6 21.5 22.5 0.0 0.8
Danish 0.18 25.5 30.8 33.0 11.9 19.8 21.4 23.7 25.6 31.4 34.6 8.4 20.0 21.4 23.6 25.6 30.6 33.8 8.6 20.1 20.6 23.2 0.4 0.1

Portuguese BR 0.18 26.2 30.7 29.2 10.7 20.0 21.2 23.0 24.9 34.7 32.1 10.1 18.2 21.5 23.6 25.3 32.5 32.5 10.1 17.9 21.4 23.3 0.3 0.0
Portuguese PT 0.18 28.2 32.9 31.7 10.5 20.1 22.9 24.4 24.4 34.7 28.0 10.1 19.9 21.9 23.2 25.1 34.5 28.9 10.0 19.7 22.3 23.4 0.2 0.1

Dutch 0.19 25.8 30.9 29.3 9.7 18.5 20.7 22.5 25.0 32.1 30.3 10.5 19.9 21.6 23.2 25.7 32.2 30.3 10.7 20.4 21.8 23.5 0.3 0.2
Ukrainian 0.21 26.7 29.1 27.5 9.0 19.4 20.4 22.0 24.8 31.4 29.9 10.4 16.1 22.5 22.5 24.6 30.9 30.5 10.8 16.2 23.3 22.7 0.2 0.6

Swedish 0.21 25.8 33.4 31.1 10.6 18.6 21.6 23.5 25.7 32.1 33.4 8.0 17.4 20.5 22.9 25.2 31.3 32.4 8.3 17.8 20.2 22.5 0.4 0.8
Slovenian 0.22 27.0 32.3 28.1 7.9 15.0 20.1 21.7 25.3 32.4 28.4 10.5 19.8 21.1 22.9 25.1 31.3 30.2 10.1 20.0 20.2 22.8 0.1 0.5

Italian 0.22 27.1 32.5 31.3 12.8 19.1 22.3 24.2 26.3 34.6 32.0 11.3 19.9 19.7 24.0 26.7 34.3 31.5 11.3 20.2 20.0 24.0 0.0 0.7
Romanian 0.23 26.5 33.0 30.2 10.3 16.6 21.3 23.0 24.0 33.7 29.8 10.8 20.7 19.4 23.1 24.3 30.5 30.4 10.8 20.0 19.2 22.5 0.6 0.8
Bulgarian 0.23 28.1 34.4 27.2 9.0 20.4 20.9 23.3 24.3 31.5 29.2 10.8 19.1 21.4 22.7 24.3 31.1 30.9 10.9 19.0 21.5 22.9 0.2 0.4

French 0.23 29.6 33.5 32.3 11.3 19.3 23.5 24.9 25.5 33.5 31.4 11.2 19.8 21.8 23.9 25.5 32.1 31.2 10.9 20.1 21.7 23.6 0.3 0.3
Slovak 0.23 23.1 32.7 28.2 9.2 18.6 18.2 21.7 24.4 32.6 31.6 10.2 19.2 19.8 23.0 24.1 33.6 31.7 10.3 17.8 20.1 22.9 0.1 0.4

Indonesian 0.24 26.0 34.6 33.2 9.6 19.7 20.7 24.0 25.2 32.9 32.6 9.7 16.9 20.9 23.0 26.1 32.9 32.4 9.8 16.5 20.7 23.1 0.1 0.2
Latvian 0.25 24.8 32.3 25.0 11.0 15.9 19.1 21.4 24.3 32.6 27.6 8.7 18.8 20.5 22.1 24.4 30.9 28.7 8.5 19.1 20.5 22.0 0.1 1.3
Spanish 0.27 27.6 32.2 29.9 9.7 19.2 22.5 23.5 24.5 32.4 29.1 9.2 19.5 23.9 23.1 24.6 31.9 28.6 9.5 20.2 23.3 23.0 0.1 0.3

Hungarian 0.27 22.4 28.9 26.0 8.5 19.2 18.4 20.6 21.2 31.0 28.5 8.6 18.5 21.2 21.5 22.2 30.2 29.1 8.5 19.3 21.3 21.8 0.3 1.5
Greek 0.27 28.3 33.3 31.8 9.1 20.3 22.7 24.2 24.1 30.7 32.9 11.2 18.6 19.8 22.9 24.7 31.9 33.6 10.9 19.2 20.8 23.5 0.6 0.2

Estonian 0.27 23.4 29.3 27.4 8.3 17.1 19.0 20.8 22.7 31.8 29.2 8.5 15.8 19.4 21.2 23.8 30.6 30.4 8.5 16.4 18.4 21.3 0.1 2.0
Lithuanian 0.27 26.2 31.5 26.3 9.9 18.9 16.2 21.5 24.5 31.3 26.4 10.8 18.8 21.4 22.2 25.3 30.0 27.6 10.3 18.6 21.2 22.2 0.0 1.1

Polish 0.27 24.6 34.3 28.7 10.4 19.5 19.9 22.9 24.4 31.6 27.9 9.7 16.6 20.4 21.8 24.5 30.9 28.6 9.6 16.6 20.8 21.8 0.0 1.5
Finnish 0.28 22.9 30.2 24.7 8.8 17.0 18.1 20.3 21.4 29.5 27.1 8.8 17.4 20.5 20.8 24.9 34.7 32.1 10.1 18.2 21.5 23.6 2.8 0.3

Czech 0.29 25.0 30.1 28.4 10.1 19.4 18.1 21.8 23.8 30.8 29.0 9.8 20.2 19.6 22.2 24.4 31.9 29.5 9.7 19.6 20.0 22.5 0.3 0.8
Chinese 0.30 22.2 33.4 25.0 9.0 20.1 18.7 21.4 23.1 28.4 27.1 9.5 18.9 22.0 21.5 23.8 28.7 27.4 9.9 18.7 21.3 21.6 0.1 1.7
Turkish 0.38 23.8 29.4 26.7 10.6 20.4 18.2 21.5 23.4 23.2 28.4 9.3 17.6 19.1 20.2 24.5 23.2 29.8 9.2 17.9 20.3 20.8 0.6 2.5

Japanese 0.41 22.6 29.2 20.1 8.9 19.5 12.9 18.9 21.1 27.4 21.7 8.0 16.1 15.2 18.3 20.5 27.9 23.4 8.1 16.1 16.2 18.7 0.4 4.6

Table 2: MULTI-CROSSRE Baseline Results. Macro-F1 scores of the baseline model ordered by
increasing lang2vec distance from English. ∆BT: delta between back-translated and original evaluation
when model trained on back-translated data. ∆OR: delta between model trained on back-translated data
and on original CrossRE data when evaluated on original CrossRE English.

Æ _ Y \ ÿ 
 avg.

English 20.8 36.4 30.7 10.1 20.0 21.6 23.3

Table 3: CrossRE Baseline Results. Macro-
F1 scores of the RC baseline over the original
CrossRE English dataset.

extended by a punctuation symbol during transla-
tion, the only post-processing we apply is to strip
from each translated entity any trailing punctua-
tion not encountered in the suffix of the original
named entity. The process is illustrated in Fig-
ure 1, with details about two typical issues with
this approach (later analysed in Section 4).5

3 Experiments

Model Setup In order to be able to directly
compare our results with the original CrossRE
baselines on English, we follow the model and
task setup used by Bassignana and Plank, 2022a.
We perform Relation Classification (Han et al.,
2018; Baldini Soares et al., 2019; Gao et al.,
2019), which consists of assigning the correct re-
lation types to the ordered entity pairs which are
given as semantically connected. The model fol-
lows the current state-of-the-art architecture by
Baldini Soares et al., 2019 which augments the

5The overall translation process cost is ≈ 60C.

sentence with four entity markers estart1 , eend1 ,
estart2 , eend2 surrounding the two entities. Follow-
ing Zhong and Chen (2021) the entity markers are
enriched with information about the entity types.
The augmented sentence is then passed through a
pre-trained encoder (XLM-R large; Conneau et al.,
2020), and the classification made by a linear
layer over the concatenation of the start markers
[ŝestart1

, ŝestart2
]. We run all our experiments over

five random seeds. See Appendix A for repro-
ducibility and hyperparameters settings.

Results The original CrossRE study reports the
baseline experiments by using the mono-lingual
BERT (Devlin et al., 2019) language encoder. In
order to be able to compare the original baseline
with the results on our MULTI-CROSSRE dataset,
we re-run the English experiments by using the
multi-lingual XLM-R large (Conneau et al., 2020)
language encoder, and report the results in Table 3.

In Table 2 we report the results of our ex-
periments over MULTI-CROSSRE. The left-most
columns are the results of the models trained and
evaluated over the translated data (from English
to language X). As a sanity check, we back-
translated the data from each of the 26 new lan-
guages to English (from language X to English).
We train and evaluate new models on this data in
the middle columns. Finally, on the right-most
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columns we evaluate the same models—trained on
back-translated data—over the original CrossRE
test sets. We sort the languages by increasing dis-
tance to English, computed as the cosine distance
between the syntax, phonology and inventory vec-
tors of lang2vec (Littell et al., 2017).

For our analysis we consider the average of
the six domains.6 Our scores on the translated
data reveal a relatively small drop in respect to
the English baseline in Table 3. The difference
range goes from an improvement of +1.6 Macro-
F1 points on French, to a maximum drop of −4.4
on Japanese—which has the largest lang2vec dis-
tance with respect to English (0.41). The results
of the models trained on the back-translated data
present essentially the same trend between evalu-
ating on the back-translations and on the original
CrossRE English data—with a Pearson’s correla-
tion coefficient of 0.88—confirming the high qual-
ity of the proposed translation. The only exception
if Finnish, with a difference of 2.8 points between
the two evaluations. All the other languages report
a smaller difference in a range between 0.0 and
0.6. The lang2vec distance is not informative of
the quality of the individual translations (Pearson’s
correlation −0.59). However, other factors should
be taken into account, e.g. the language model per-
formances on each individual language.

4 Manual Analysis

We performed a manual analysis for further in-
specting the quality and usability of MULTI-
CROSSRE for studying multi-lingual RE. We
manually checked 210 sentences from a diverse set
of seven languages, including one North Germanic
(Danish), one Uralic (Finnish), one West Slavic
(Czech), two Germanic (German and Dutch), one
Latin (Italian), and one Japonic (Japanese). For
each of them, native speakers annotated the fol-
lowing: 1 In how many sentences is the over-
all meaning preserved? 2 How many entities are
transferred to language X? 3 How many entities
are correctly translated? 4 How many entities are
marked with the correct entity boundaries?

We annotated 30 sentences for each language.
Table 4 reports the statistics of our analysis. Over-
all, we find a surprisingly high quality of entity
translations (96% are judged as correct by our

6Bassignana and Plank, 2022a discuss the lower scores of
news (\) attributing them to the data coming from a different
data source and the fewer amount of relation instances with
respect to the other domains.

Language Sent. Transl. # entities Ent. Transl. Ent. Bound.

English 30 160 - -

Czech 28 158 152 143
Danish 27 158 143 136
Dutch 28 158 156 141

Finnish 30 150 141 137
German 27 151 148 139

Italian 29 160 157 152
Japanese 19 150 145 82

Table 4: Statistics of the Manual Analysis. At
the top, total amount of original English sentences
and annotated entities within them. Below, for
each sample set, amount of correct instances in the
four categories of sentence translation, number of
entities, entity translations, and entity boundaries.

human annotators). Out of the seven languages,
Japanese is the one suffering the most by the trans-
lation process and, as we discussed above, this is
reflected in the lowest scores in Table 2. Some
entities are not transferred. These are mostly due
to compounds typical for some languages. For
example, the English snippet “the Nobel laure-
ate” (where only Nobel is marked as entity), is
translated to Danish as “nobelpristageren”, and to
Dutch as “Nobelprijswinnaar”. In Italian, which
in this regard behaves more similarly to English,
all the entities are correctly transferred. In Ap-
pendix B we report the total per-language percent-
ages of transferred entities and relations. Regard-
ing the entity translations and the entity bound-
aries, the latter is a bigger challenge for the trans-
lation tool, often including surrounding function
words—e.g. the writer Pat Barker in Danish is ex-
tended to the entity Pat Barker er. These could
easily be post-processed, but since the Relation
Classification model relies on the injected entity
markers, it is not much influenced by this type of
error (see baseline discussion in Section 3).

5 Conclusion

We introduce MULTI-CROSSRE, the most diverse
RE dataset to date, including 26 languages in addi-
tion to the original English, and six text domains.
The proposed span-based MT approach could be
easily applied to similar cases. We report base-
line results on the proposed resource and, as qual-
ity check, we back-translate MULTI-CROSSRE to
English and run the baseline model again over it.
Our manual analysis reveals that the higher chal-
lenge during the translation is transferring the cor-
rect entity boundaries. However, given the model
architecture, this does not influence the scores.
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Appendix

A Reproducibility

We report in Table 5 the hyperparameter setting of
our RC model (see Section 3). All experiments
were ran on an NVIDIA® A100 SXM4 40 GB
GPU and an AMD EPYC™ 7662 64-Core CPU.

Parameter Value

Encoder xlm-roberta-large
Classifier 1-layer FFNN

Loss Cross Entropy
Optimizer Adam optimizer

Learning rate 2e−5

Batch size 32
Seeds 4012, 5096, 8878, 8857, 9908

Table 5: Hyperparameters Setting. Model de-
tails for reproducibility of the baseline.

Language % Entities % Relations

German 96.7 91.4
Danish 97.5 93.9

Portuguese BR 99.8 99.5
Portuguese PT 99.8 99.6

Dutch 98.5 95.8
Ukrainian 99.1 97.7

Swedish 97.6 94.1
Slovenian 99.1 98.0

Italian 99.8 99.5
Romanian 98.8 96.7
Bulgarian 99.5 98.9

French 99.6 99.4
Slovak 99.2 98.1

Indonesian 99.8 99.5
Latvian 99.4 98.6
Spanish 99.3 98.3

Hungarian 98.2 95.8
Greek 98.8 98.0

Estonian 97.9 94.6
Lithuanian 99.4 98.8

Polish 99.4 98.6
Finnish 96.0 90.7

Czech 99.0 98.0
Chinese 99.3 98.4
Turkish 99.4 98.5

Japanese 94.9 88.9

Table 6: Transferred Entities and Relations.
Percentages of entities and of relations transferred
during the translation process for each language.

B Per-language Analysis

In table 6 we report the percentages of entities
which are transferred during the translation pro-
cess from the original English to language X, and
the percentage of relations which do not involve
missing entities (i.e. are transferred during the
translation process).
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Abstract

This paper describes a collaborative Eu-
ropean project whose aim was to gather
open source Natural Language Processing
(NLP) tools and make them accessible as
running services and easy to try out in the
European Language Grid (ELG). The mo-
tivation of the project was to increase ac-
cessibility for more European languages
and make it easier for developers to use the
underlying tools in their own applications.
The project resulted in the containeriza-
tion of 60 existing NLP tools for 16 lan-
guages, all of which are now currently run-
ning as easily testable services in the ELG
platform.

1 Introduction

Universities and other research institutes in Eu-
rope, and sometimes companies, are nowadays
often publishing open source Natural Language
Processing (NLP) software on various platforms,
primarily GitHub. This software is often associ-
ated with research papers and, in the best case,
also linked to other sharing platforms, such as
CLARIN1 or META-SHARE2. GitHub is, how-
ever, often the only place in which the tools are
available. If a user finds a tool with a suitable li-
cense, it may still be difficult to determine if the
tool works as intended. The threshold for trying
out these NLP tools can also be high due to the
reliance on various dependencies that may not be

1http://clarin.eu/
2http://www.meta-share.org/

compatible with other desired tools or the tools are
simply not up to date. Reproducibility of results is
important in NLP but currently many results can-
not be reproduced, even if the code is available.
For example, Wieling et al. (2018) were only able
to reproduce the same results in 1 out of 10 exper-
iments.

In this paper, we describe a collaborative Eu-
ropean project, Microservices at Your Service:
Bridging the Gap between NLP Research and In-
dustry3 (hereafter simply referred to as the Mi-
croservices project), carried out by four partners:
Lingsoft, a private company from Finland, Univer-
sity of Tartu from Estonia, Reykjavik University
from Iceland, and Gradiant, a non-profit organisa-
tion from Spain. The main aim of the project was
to increase accessibility of NLP tools for more Eu-
ropean languages by:

• Making the tools available as running ser-
vices in the European Language Grid4

(ELG), and, additionally, registering them
in ELRC-SHARE5 for higher visibility and
reach.

• Providing, for each tool, a tested container
image which takes care of any dependencies
and provides a logical handling of the data
inputs and outputs, should the users want to
use the container in their own computing en-
vironment.

3https://www.lingsoft.fi/en/microserv
ices-at-your-service-bridging-gap-betwe
en-nlp-research-and-industry

4https://live.european-language-grid.
eu/

5https://elrc-share.eu/
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• Providing training and dissemination in the
form of recorded workshops about the con-
tainerization of the tools, uploading the tools
to the ELG.

• Finally, showcasing how the tools can be in-
tegrated for different purposes.

The project has deployed services in the ELG
for 16 languages (see Section 4). For many lan-
guages, there is a distinct lack of resources in the
current academic NLP research (Maria Giagkou,
2022). Highlighting the efforts made for low-
resource languages is paramount to foster the de-
velopment and usage of these resources by both
the academic community and the industry, and our
project targeted several of these low-resource lan-
guages.

Each underlying open source tool was imple-
mented as a microservice (see Section 2.1) using
Docker (see Section 3.3) for containerization. This
allows developers, who need functionality from
the various tools, to design their NLP applications
as a collection of loosely coupled running ser-
vices, as opposed to building the application using
sources from various Github repositories, which,
notably, may be written using various program-
ming languages and depend on various external li-
braries.

In total, our project has resulted in the con-
tainerization of 60 existing NLP tools, all of
which are currently running as services accessible
through the ELG.

2 Background

Nowadays, software is often distributed to the
end users via the Internet, rather than having the
users install the software on their local machines.
This method of distribution is called software-as-
a-service or SaaS. Many large commercial organi-
sations offer cloud platforms for distributing soft-
ware, e.g. AI and NLP as SaaS, to the end users,
and on some platforms it is possible for other or-
ganisations than the platform provider to upload
their own tools for further distribution.

In this section, we provide the reader with basic
information on the concept of microservices, the
ELG cloud platform, and ELRC-SHARE.

2.1 Microservices

The microservice architectural style for software
development has been defined as “[..] an approach

to developing a single application as a suite of
small services, each running in its own process and
communicating with lightweight mechanisms, of-
ten an HTTP resource API” (Lewis and Fowler,
2014).

One of the advantages of microservices is that
they can be updated without the need of re-
deploying the application that uses them. Another
advantage is that different services can be imple-
mented in different programming languages. In
the contrasting monolithic architectural style, an
application is built as a single executable unit (of-
ten using a single programming language). Any
changes to the functionality demand building and
deploying a new version of the application.

According to Francesco et al. (2017),
“[m]icroservice architectures are particularly
suitable for cloud infrastructures, as they greatly
benefit from the elasticity and rapid provisioning
of resources.”

2.2 European Language Grid

The ELG is a scalable cloud platform, which hosts
tools, data sets, and records of Language Technol-
ogy (LT) projects and LT providers in official 24
EU languages and many additional ones. The goal
of the ELG is to become the primary platform for
LT, including NLP and speech technologies, in Eu-
rope. An important part of the purpose of ELG is
to support digital language equality, “i.e., to create
a situation in which all languages are supported
through technologies equally well” (Rehm et al.,
2021). Additionally, there is a growing movement
to ensure that all relevant services can be offered
by European providers to improve EU-wide digi-
tal sovereignty (European Parliament et al., 2023).
Currently, most European cloud services are pro-
vided by non-European providers (Synergy Re-
search Group, 2022).

The ELG platform is growing continuously and
they foresee a need to evolve in the following ar-
eas: hardware capacity and cost distribution, hard-
ware acceleration (for example, there is no GPU
support yet), integration and deployment support,
and workflow support (Kintzel et al., 2023).

ELG provides resources for developers to eas-
ily integrate a service: A (micro)service running
in the ELG is wrapped with the ELG LT Service
API and packaged in a Docker container. Both of
these steps are carried out by the developer of the
service. Thereafter, the container is integrated into
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the ELG: It can either be called through the API
or tested using a web UI. All APIs are https-based
and use JSON as the primary data representation
format. For easy creation of an application for an
ELG-compatible service, Java- and Python-based
libraries are available (Galanis et al., 2023).

For a user looking for potential tools, the ELG
platform provides a faceted search functionality,
allowing search by resource type such as cor-
pus, tool, functionality, availability as an ELG-
compatible service, data type, language, and li-
cense in a simple manner. The submissions to
the service are also validated, which should im-
prove the findability compared to a platform with-
out such validation process.

2.3 ELRC-SHARE

ELRC-SHARE is a repository, maintained by
the European Language Resource Coordination
(ELRC)6, for documenting, storing and access-
ing language data and tools in all EU languages,
Norwegian Bokmål, Norwegian Nynorsk, and Ice-
landic. The original intent of the repository
was to obtain and store data and tools that con-
tribute to the European Commission’s automated
eTranslation platform7, but the scope has
broadened to include other LT tools as well. Ap-
proximately 80% of the language resources are
freely usable outside ELRC (Marra et al., 2022).

3 Project Execution

Our two year project started in March 2021. The
goal of the project (described in Section 1) in-
cluded several stages. In the first stage, we sought
out open source tools that might be of potential in-
terest. We prioritized those that are actively main-
tained or developed. This was carried out both
by bottom-up search on the software sharing plat-
forms (primarily GitHub), and by contacting re-
search institutions in the targeted regions. In par-
allel, we also collected standard or available test
data sets for the tools. This initial phase was fol-
lowed by testing the set of collected tools on the
existing test data. If many tools existed for the
same task, a selection was made based on met-
rics performance and language coverage. After
all tools were tested and selected, we started con-
tainerizing the tools and expose a web service

6https://www.lr-coordination.eu/
7https://webgate.ec.europa.eu/etransl

ation/public/welcome.html

API for each of them on the ELG. Finally, we
stored metadata information of each tool in ELRC-
SHARE. Our dissemination activities ran parallel
to making the tools available: We held workshops
on different themes of the project, ranging from
dockerization of the tools to demonstrating their
functionality and use case integration.

3.1 Searching for tools

The search for tools was not primarily guided by
pre-specified project goals or use cases, but rather
guided by the subjective explorative interests of
the individual partners.

At the start of the project, there was an initial
assumption made that university labs or individ-
ual programmers were storing interesting and use-
ful tools on local disks. These tools could then be
made public via the project. However, the reality
was different: source code was always in GitHub8

or GitLab9. The focus therefore quickly shifted
to verifying that the found tools were functioning
well.

To find interesting tools, we sent emails to uni-
versity contacts, browsed university web reposito-
ries and arXiv, did online searches with relevant
keywords (e.g. ‘speech recognition’, ‘parsing’, or
’named entity recognition’) and looked up con-
ference proceedings and journal articles for inter-
esting repositories. Then, we went through each
promising repository to see first if all the relevant
parts for running the tool were available. This was
followed by an initial compilation of the tool and
ensuring that we obtained the same or at least sim-
ilar results as the original authors, if the test data
was available. If not, we gathered examples to en-
sure the test results seemed reasonable.

3.2 Testing and documenting

To make a third-party tool available for the wider
public involves providing documentation, which
minimally describes the following: a) What the
purpose of the tool is; b) how to run the tool; c)
specification of the tool input and output formats
and error handling; d) the original authors of the
tool; and e) what kind of a licence or terms of use
the tool has.

Often these points have already been addressed
by the authors of the tool, although the amount of
details varied. We sometimes had to fill in missing

8http://github.com/
9http://gitlab.com/
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information (most notably the licence) and come
up with our own wording about the purpose and
place of the tool in the ecosystem of the LT field
of the particular language.

While creating the documentation for the mi-
croservices tools it was noticed that some tools
with similar functionality had differing output
types without an explicit reason why. Such dif-
ferences can of course be justified, but can also
indicate that some standardisation in a field might
benefit interoperability. This was especially no-
table for morpho-syntactic categories for Estonian
and University of Tartu set up a designated web-
page10 for facilitating comparison between these
identified systems.

3.3 Dockerization
We used Docker11 for developing, distributing and
running the NLP tools (in the ELG). Docker has in
recent years been established as a convenient solu-
tion for making it easier to create, deploy, and run
applications by using containers. Containers allow
developers to package up an application with all
requirements, such as libraries and other depen-
dencies, and distribute it as a single stand-alone
package. Docker is a good option for a platform
independent solution for making NLP tools avail-
able for both researchers and software developers.

Each of the selected NLP tools was dockerized
by building a container with the tool itself along
with an http API that gives people/programs out-
side the container access to the tool. All of the im-
ages for our tools are shared in the Docker Hub12,
world’s largest library for container images. The
difficulty of dockerizing a given NLP tools was
dependent on how easy it was to give the API in
the container access to the tool. Once the API was
able to receive output from the NLP tool, all that
was left was to make sure that the output from the
API was in accordance to the ELG specification.

For each service integrated to the ELG, we also
provided metadata, which contains a link to the
code repository of the underlying tool.

4 The NLP Tools

In our project, the focus was on tools for the
Nordic/Scandinavian languages, the Baltic lan-
guages, and the Iberian languages, simply because

10https://cl.ut.ee/ressursid/morfo-sys
teemid/

11https://www.docker.com/
12https://hub.docker.com/

of the partners’ geographical locations and local
interests.

We dockerized 60 existing NLP tools, in 16 lan-
guages: Catalan: 2; English: 2; Estonian: 11;
Faroese: 1; Finnish: 4; Galician: 1; Basque: 1;
Icelandic: 11; Komi: 1; Latvian: 3; Lithuanian: 2;
Northern Sami: 2; Norwegian: 1; Portuguese: 6;
Spanish: 5; and Swedish: 3. Additionally, we pro-
vided four multilingual tools. Whilst the major-
ity these tools come from European institutions,
the project also made available relevant results
from South American countries (Brazil, Chile and
Uruguay).

The list of dockerized tools is available at the
project website. The NLP tools are very diverse,
covering from low level (e.g. PoS taggers, mor-
phological analyzers, NERs and parsers) to high
level applications (e.g. question answering (QA)
and audio processing), as well as others with niche
results (detection of false friends and text genera-
tion of proverbs given a short text)

5 Getting the Tools into Use

There is a risk that new tools made for low-
resource languages might not be known by the
community. A tool might be created as a one time
release for an academic publication, or it might not
have gathered the attention needed for a contin-
ued development. For the purpose of both stimu-
lating researchers to share their tools and promote
the tools we made available, we held three types of
workshops: First we had an early awareness work-
shop, in which we provided hands-on guidance on
how to release available tools as Docker images.
During the second year, we held two workshops
focusing on how to make tools available in the
ELG platform. Finally, at the end of the project,
we held workshops which summarized our work
and demonstrated how the tools we provided can
be integrated into LT applications. All workshops
are made available on the project webpage.

In what follows, we describe some of these pilot
integration cases. In each of these cases, it was
easy to “plug in” a container with a well defined
API, and then handle the input and output in the
process pipeline.

A language identification (LID) tool was uti-
lized in two different cases. In a translation pro-
cess, we utilized it to make sure the training data
for a neural machine translation (NMT) model
was actually in the correct language. The original
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texts contained sentences in other languages, caus-
ing an in-production NMT model to occasionally
produce English instead of Swedish translations.
The previous LID tool had a 98.9 % precision and
96.4% recall for Swedish, whereas the new tool,
HeLI OTS (Jauhiainen et al., 2022), had a 99.9 %
precision and 99.6% recall. When there are hun-
dreds of millions of words in the training mate-
rial, one percentage point yields millions of words
tagged in wrong language. The new LID tool alle-
viated this problem to a sufficient extent.

This LID tool was also found useful in an on-
line library platform13, where publishers provide
large amounts of e-books. Sometimes the meta-
data provided by the publisher does not match the
language of the actual e-book, yielding erroneous
behavior, for example, in screen readers.

At the online library platform, we also piloted
aligning audio books and e-books, to allow seam-
less switching from text to audio and back, using
an audio alignment tool. This tool was not de-
signed for this kind of task originally, but, nev-
ertheless, it allowed testing potential new features
for the platform. Furthermore, we also tested NER
and linking to ontologies to further improve the
findability within an e-book or audio book.

6 Limitations

In the previous sections, we have argued that it
can be beneficial to dockerize NLP tools for the
purpose of making them accessible as running mi-
croservices. However, this approach can have
some practical limitations.

First, changes to a tool do not automatically be-
come available in the dockerized version. Thus,
the running microservice in the ELG might be-
come outdated. However, if the developer of the
underlying tool is keen on making the newest ver-
sion running as a microservice, the developer can
easily build the docker image again (the code for
building it is open source) and then ask ELG to
pull the new image from the associated docker
hub. Most of that process can also be automated.

Second, due to resource constraints, ELG ser-
vices are not guaranteed to be constantly running.
If a user calls the API of a service, which is not
running, the user will probably experience consid-
erable initial delay (associated with the first API
call) before the requested service has started.

13https://www.ellibs.com

With regard to both of the above mentioned lim-
itations, it is worth noting that anyone can use a
given docker image to expose an API for the un-
derlying tool on some web server. In other words,
ELG is not the only option for providing access to
a running service.

7 Conclusion

In this paper, we have described a collaborative
project which succeeded in making 60 NLP tools
covering a total of 16 languages available as mi-
croservices in the ELG platform. We also de-
scribed the microservice principles and the Euro-
pean platforms that record or host these microser-
vices, and the steps to get the tools into these plat-
forms.

We recommend that researchers continue this
work by providing their tools as Docker images
and as compatible services in the ELG platform.
This requires just a little more effort from the re-
searchers, but substantially lowers the threshold
for testing the tool for new researchers/developers.
Hence, lowering the threshold for integrating the
tool in new services and raising the potential im-
pact of the initial research.
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Abstract

This work studies the plausibility of
sequence-to-sequence neural networks as
models of morphological acquisition by
humans. We replicate the findings of
Kirov and Cotterell (2018) on the well-
known challenge of the English past tense
and examine their generalizability to two
related but morphologically richer lan-
guages, namely Dutch and German. Using
a new dataset of English/Dutch/German
(ir)regular verb forms, we show that the
major findings of Kirov and Cotterell
(2018) hold for all three languages, includ-
ing the observation of over-regularization
errors and micro U-shape learning trajec-
tories. At the same time, we observe trou-
blesome cases of non human-like errors
similar to those reported by recent follow-
up studies with different languages or neu-
ral architectures. Finally, we study the
possibility of switching to orthographic in-
put in the absence of pronunciation in-
formation and show this can have a non-
negligible impact on the simulation re-
sults, with possibly misleading findings.

1 Introduction

The plausibility of neural network-based or con-
nectionist models in simulating psycholinguistic
behaviours has been attracting considerable at-
tention since Rumelhart and McClelland (1986)
first modeled the past-tense acquisition with an
early example of sequence-to-sequence network.
Their experiment received harsh criticism (e.g.,
Pinker and Prince, 1988) but also inspired cog-
nitive scientists with alternatives (e.g., Kirov and
Cotterell, 2018; Plunkett and Juola, 1999; Taat-
gen and Anderson, 2002). Much more recently,
Kirov and Cotterell (2018) replicated Rumelhart

and McClelland (1986)’s simulations using a mod-
ern encoder-decoder neural architecture developed
for the task of morphological paradigm comple-
tion. Their improved results resolved much of the
original criticisms by Pinker and Prince (1988).

The main purpose of this paper is to study the
generalizability of Kirov and Cotterell (2018)’s
findings beyond the case of English. Specifically,
we consider two languages that are genetically
related to English, but morphologically richer –
namely, Dutch and German. In these languages
too, past tense inflection is divided into regular and
irregular verbs, but with different proportions and
different inflectional patterns than English. More-
over, German and Dutch are characterized by a
much more transparent orthography than English
(Van den Bosch et al., 1994; Marjou, 2021), which
allows us to study the usability of grapheme-based
input for simulating past tense acquisition patterns
when pronunciation information may not avail-
able. Concretely, we aim to answer the following
research questions:

1. Can the model applied by Kirov and Cot-
terell (2018) to English also simulate the past
tense acquisition process in languages with
more complex morphological inflection, such
as Dutch and German?

2. Given the more predictable grapheme-to-
phoneme correspondence, i.e., orthographic
transparency (Marjou, 2021), in these two
languages, will the model perform similarly
if the written forms of verbs are used for
training instead of the phonetic ones?

To answer these two questions, we build and
release a new past-tense inflection dataset of
English, Dutch, and German, covering both
grapheme and phoneme features (Section 3).1 We

1All code and data are available at https://github.
com/JingyanChen22/IK-NLP-Project-4.git
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then replicate the single-task learning experiments
of Kirov and Cotterell (2018) (Section 4) and ex-
tend them to our multilingual dataset, using both
phoneme- and grapheme-based input for compari-
son (Section 5).

Our findings reconfirm the potential and limita-
tions of using neural networks for the simulation
of human language learning patterns. Our model
shows human-like behavior in learning past tenses
of verbs, such as the micro U-shape coined by
Plunkett et al. (1991) and over-regularization er-
rors in all the examined languages; however non
human-like errors are also reported. We also find
that learning irregular past tense forms is consider-
ably easier in Dutch and German than in English.
Finally, we observe that higher orthographic trans-
parency indeed leads to more consistent learning
results when a model is trained with grapheme vs.
phoneme input.

2 Background

Past tense debate The acquisition of ver-
bal past tense in English, particularly the over-
regularization of the irregular verbs in the process
of learning (Marcus et al., 1992), has been serv-
ing as a testing ground for different hypotheses in
language modelling for decades. A much debated
question is whether the past tense of (ir)regular
verbs is learnt by rules and memories (e.g., Plaut
and Gonnerman, 2000; Seidenberg and Gonner-
man, 2000; Marcus et al., 1995; Albright and
Hayes, 2003; Pinker and Ullman, 2002), by anal-
ogy (e.g., Ramscar, 2002; Albright and Hayes,
2003) or by a dual mechanism (Pinker and Prince,
1988; Taatgen and Anderson, 2002).

Marcus et al. (1995) posited the necessity of
mental rules in learning German irregular verbs.
By contrast, Ernestus and Baayen’s (2004) and
Hahn and Nakisa’s (2000) studies on Dutch and
German respectively provided evidence in favour
of connectionist and analogical approaches: they
showed that humans tend to choose wrong past
tense suffixes for regular verbs whose phonolog-
ical structure is similar to that of irregular ones.

Recent connectionist revival The recent devel-
opment of deep learning methods in computa-
tional linguistics has led to a renewed interest in
connectionist approaches to modelling language
acquisition and processing by humans (e.g., Bly-
thing et al., 2018; Kádár et al., 2017; Pater, 2019;
Corkery et al., 2019; McCurdy et al., 2020). Last

year, modelling morphological acquisition trajec-
tories was adopted as one of the shared tasks
of SIGMORPHON-UniMorph (Kodner and Khal-
ifa, 2022). The three submitted neural systems
(Pimentel et al., 2021; Kakolu Ramarao et al.,
2022; Elsner and Court, 2022) exhibited over-
regularization and developmental regression, but
non-human-like behaviours were also observed.

Some recent studies have revealed a poor
alignment between the way humans and neural
encoder-decoder models generalize to new words
(wug test) in the case of English verb past tense
(Corkery et al., 2019) and German plural nouns
(McCurdy et al., 2020). Dankers et al. (2021)
observed cognitively plausible representations in
a recurrent neural network (RNN) trained to in-
flect German plural nouns but also found evidence
of problematic ‘shortcut’ learning. Wiemerslage
et al. (2022) observed that Transformers resemble
humans in learning the morphological inflection of
English and German in the wug tests but they also
pointed out the divergence of the model in Ger-
man production. However, computational simula-
tions have succeeded in replicating the U-shaped
learning curve during the acquisition of past tense
(Kirov and Cotterell, 2018; Plunkett and March-
man, 2020). Additionally, further probing experi-
ments have suggested that neural models do learn
linguistic representations (Goodwin et al., 2020;
Hupkes et al., 2018; Ravichander et al., 2020).
Our research continues on exploring the cognitive
plausibility of neural networks in modeling lan-
guage inflection learning.

Recurrent encoder-decoder inflection model
In this work, we adopt the model of Kirov and
Cotterell (2018), henceforth referred to as K&C.
This model is based on the encoder-decoder archi-
tecture proposed by Bahdanau et al. (2014), with
input representation and hyper-parameters taken
from Kann and Schütze (2016). The architec-
ture consists of a bidirectional LSTM (BiLSTM)
encoder augmented with an attention mechanism
and a unidirectional LSTM decoder. The task of
the encoder is to map each phonetic (or ortho-
graphic) symbol from the input string to a unique
embedding and then process that embedding to get
a context-sensitive representation of that symbol.
The decoder reads the context vector from the fi-
nal cell of the encoder and generates an output
of phoneme/grapheme sequences through training
a BiLSTM model with two hidden layers. For
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more details on the model, see Bahdanau et al.
(2014); Kann and Schütze (2016); Kirov and Cot-
terell (2018).

3 Datasets

To replicate the results published by K&C, we em-
ploy their dataset based on CELEX (Baayen et al.,
1993).2 To extend the experiments to Dutch and
German and compare the results to English, we
build a new dataset containing past tense forms in
all three languages.

3.1 K&C English Dataset
K&C’s CELEX-based dataset contains 4,039 En-
glish verb types including 3,871 regular verbs and
168 irregular verbs. Each verb is associated with
an infinitive form and past tense form, both in
International Phonetic Alphabet (IPA). Moreover,
each verb is marked as regular or irregular (Al-
bright and Hayes, 2003).

Note that there are label errors in their dataset.
For example, dive-dived, dream-dreamed,
light-lighted are marked as irregular. This
is possibly because those verbs have two past tense
forms and the other form does not follow the regu-
lar inflection (dive-dove, dream-dreamt,
light-light). However, as the past tense of
those verbs in the original dataset aligns with the
regular inflection rule of English, we take those
verbs as regular ones and manually correct their
labels.

3.2 Multilingual Unimorph-based Dataset
We use the morphological annotation dataset Uni-
morph (McCarthy et al., 2020) as a source of En-
glish, Dutch, and German word forms to enable a
fair comparison in our multilingual experiments.
In this lexicon, each entry consists of the infinitive
of the verb, the conjugation, and the tag contain-
ing the Part-Of-Speech and inflectional informa-
tion. Our use of the Unimorph dataset allowed for
a wider range of past tense inflection cases com-
pared to the CELEX-based dataset. Unlike the lat-
ter, we included more present-past pairs instead
of exclusively using infinitive-past pairs. An im-
portant adjustment has to be made here because
English has only two forms for the present tense
(I/you/we/they) and only one for the past. By con-
trast, Dutch and German distinguish more persons

2Dataset, code and other experimental details are
taken from https://github.com/ckirov/
RevisitPinkerAndPrince

(a) English

(b) Dutch

(c) German

Figure 1: Excerpt of the newly introduced dataset
of English, Dutch and German past tense. Dutch
verbs: slapen (to sleep); behoeven (to need).
German: berechnen (to calculate); fliehen
(to fleed).

in both present and past tense. To address this, we
include for each lemma the first/second/third sin-
gular present form and plural form together with
their respective past form, each as a separate entry
(see examples in Figure 1).

Specifically, we start by extracting from Uni-
morph a list of verb lemmas and their correspond-
ing present and past tense forms. A different ex-
traction script is used in each language because of
the different number of forms and slightly differ-
ent POS tags:

• English only has two present tense forms:
one for the third person singular and one for
the rest. Mostly, there is only one past tense.

• Most verbs in Dutch have three present tense
forms and two past tense forms.

• Most verbs in German have five present tense
forms and four past tense forms.

Next, we tag each form as regular or irregular,
based on a simple rule-based strategy:

• English: if the past tense ends with ‘ed’ then
it is considered a regular verb.

• Dutch: if the singular past tense ends with
‘-de’ or ‘-te’, it is considered regular.

94

https://github.com/ckirov/RevisitPinkerAndPrince
https://github.com/ckirov/RevisitPinkerAndPrince


Number of verbs
Language Type train dev test Total verbs

Count (%) Count (%) Count (%) Count (%)

English
all 4,879 79.9 611 10.0 614 10.1 6,104 100.0

regular 4,601 75.4 529 8.7 520 8.5 5,650 92.6
irregular 278 4.6 82 1.3 94 1.5 454 7.4

Dutch
all 4,896 80.1 612 10.0 607 9.9 6,115 100.0

regular 4,383 71.7 550 9.0 542 8.9 5,475 89.6
irregular 513 8.4 62 1.0 65 1.0 640 10.4

German
all 4,865 79.7 616 10.1 620 10.2 6,101 100.0

regular 4,299 70.5 535 8.8 578 9.5 5,412 88.8
irregular 566 9.2 81 1.3 42 0.7 689 11.2

Table 1: Dataset distributed into train, dev and test sets in each of the three languages. The number of
regular and irregular verbs is also reported. The percentage is calculated over the total number of verbs
per language.

• German: if the singular past tense of the first
or third person ends with ‘-te’, it is consid-
ered regular.

Finally, the IPA transcriptions of all word forms
are retrieved from CELEX for all languages and
added to the final dataset. As shown in Fig-
ure 1, the resulting dataset is in the same format
as K&C’s CELEX-based dataset.

Data selection The generated Dutch data only
contains 6106 verb forms versus 11489 and 6975
in English and German respectively. Therefore,
to enable a fair comparison among languages, we
need to downsample the larger datasets. However,
randomly choosing 6K verb forms from the En-
glish and German lists may lead to a poor selec-
tion given the long tail of infrequent words. As
a solution, we use word form frequencies as pro-
vided in the CELEX data and choose all words
with a frequency of more than 1 in a million, and
complement with a random selection of less fre-
quent words in order to get approximately 6106
verb forms.

To make sure the model can generalize to un-
seen verbs, we follow Goldman et al. (2022) and
split the data by lemma into a train set (80%), a
development (dev) set (10%) and a test set (10%).
Therefore, the verb forms from the same lemma
can only appear in one of the splits. The data dis-
tribution into three sets and regular/irregular verbs
for each language is reported in Table 1.

3.3 Remarkable problems
A few problems occurred during data prepara-
tion. First, rule-based tagging of lemma’s is not

as trivial as it seems at first sights. For example,
in English, not all past tenses ending with ‘-ed’
are regular. Using the data of K&C, we added a
few exceptions that are all irregular words ending
with ‘-ed’: bled, bred, led, misled, fled,
and forms of fed (including breast-fed,
force-fed and bottle-fed).

Also, in the original K&C experiment, the
model should be able to predict past tense based
on what it learned from other verbs, not from other
word forms. In morphologically richer languages,
a lemma has more word forms and data splitting
becomes problematic. For instance, a model might
have learned that work → worked and walks
→ walked, then it might predict that works→
worked. In such a case, it is not possible to
know whether the model made the right prediction
based on similarities to other lemmas (walks) or
to other forms of the same verb (work). To be
as comparable as possible to the original setup of
K&C, we put all forms of the same verb in the
same data split (that is, either training, dev or test).
As a result, if the model scores well, we know for
sure that it cannot make predictions based on other
forms of the same verb.

Another issue is that one present tense form nor-
mally corresponds to one past tense form. How-
ever, German poses two notable exceptions to this:

• The second person singular verb form ends
with ‘-st’ and the third person singular ends
with ‘-t’. Those forms coincide if a verb al-
ready ends with an ‘s’, but there is still a dif-
ference between those forms in the past tense.
For example, bremst is the present conju-
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gation form of verb bremsen (to brake) for
pronoun du you, er he and even ihr you.

• Verbs ending in ‘-t’ can be the third person
singular or the second person plural informal.
For example, wundert is the present conju-
gation of the verb wundern (to wonder) for
the pronoun ihr you and er he.

In the former case, the model should be able to
output multiple solutions, since only context can
make clear whether it is the second person or the
third person. However, this complicates the eval-
uation. As a solution, we exclude the third person
form if it collides with the second person. As for
the latter issue, we choose to remove all second
person plural informal forms, since those are far
less frequent than the third person singular forms.

4 Replication of K&C

Before moving to the main multilingual experi-
ments, we replicate the original K&C experiments
(single-task only).

4.1 Experimental Setup
For the replication, we employ K&C’s CELEX-
based dataset and keep the model architecture
and hyper-parameters unchanged using Open-
NMT (Klein et al., 2017)3. Also, as reported by
K&C, we train the neural model for 100 epochs
to make sure the examples in the training data are
properly learned. See more details in Appendix A.
Following K&C, the model is trained on the IPA
transcription.

We use word form-level accuracy to evaluate
model performance. An important remark con-
cerns data splitting: K&C did not release their spe-
cific data split, which makes it impossible to repli-
cate the exact same results. We, therefore, cre-
ate our own splits following K&C’s proportions
(80/10/10% for training/dev/test). To obtain more
reliable results, we train the model three times us-
ing different random seeds for different initializa-
tion and report the averaged resulting accuracies.

To study the micro U-shape learning curve of ir-
regular verbs, we save the model at each 10 epochs
and use those partially-trained models to predict
the test set and compare their prediction results.

3However, as the epoch has been deprecated in the latest
version of OpenNMT, we converted it to train steps based on
its relationship with steps.

4.2 Results
As shown in Table 2, the results on the training
set are almost the same as reported in the original
paper, which means our replication is largely suc-
cessful.4 We note that the accuracy for irregular
verbs in the dev and test set is considerably dif-
ferent from that of K&C (dev: 21.1% vs. 53.3%;
test: 35.3% vs. 28.6%). Since K&C did not re-
lease their specific data split, replicating their ex-
act results on the small portion of irregular verbs
is not possible. Given that our results are averaged
over three random seeds and on all three split sets,
we consider them more reliable, which means the
model might perform worse at learning the past
tense of irregular verbs than K&C’s report.

all regular irregular

train dev test train dev test train dev test

K&C 99.8 97.4 95.1 99.9 99.2 98.9 97.6 53.3 28.6

Ours 99.9 95.3 96.5 99.9 98.4 99.2 98.4 21.1 35.3

Table 2: Mean accuracy of our replication of K&C
with three random seeds based on English data
from CELEX-based dataset.

4.3 Discussion
The reason we assume for the gap between our
results and K&C’s is twofold: (i) the number
of irregular verbs is much lower than regular
ones, which makes the accuracy change dramat-
ically even if only few more or few less verbs
are predicted correctly than the original experi-
ments; (ii) we corrected the label errors mentioned
above, thus the number of irregular verbs becom-
ing smaller than before. This small difference
could cause a large impact on the accuracy calcu-
lation given that these two sets only contain about
20 irregular verbs. To test this hypothesis, we con-
duct 9-fold cross-validation5 and find that the ac-
curacy for irregular verbs varied in different dev
splits, ranging widely between 9% and 42%.

4Our results are also very close to those of Corkery et al.
(2019), who did a similar replication and reported the aver-
aged accuracy over ten runs initialized with different random
seeds, but only on the training set.

5We keep the test set unchanged and validated across the
train and dev sets. To make sure the dev set has a comparable
number of verbs as the original set, we adopt 9 fold instead
of 10 fold cross-validation.
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5 Multilingual Experiments

This section presents the results of our main ex-
periments aimed at comparing Dutch and German
past learning patterns to the English ones. It also
presents the results of grapheme vs phoneme se-
quence learning in all three languages. Because
Dutch and German pronunciation is more pre-
dictable than the English one, we expect that the
difference between grapheme and phoneme learn-
ing will be smaller in these languages.

For comparability, all experiments in this sec-
tion use the newly introduced Unimorph-based
dataset, which includes a similar amount of train-
ing forms in all languages (cf. Table 1). The model
architecture and the hyperparameter settings are
the same as in previous experiments. We also run
each experiments three times with different ran-
dom seeds and report the averaged results.

We use our newly-created data for multilingual
experiments without resampling tokens by their
frequency. This decision is informed by research
suggesting that human learners generalize over
type frequency, rather than token frequency (By-
bee, 1995; Bybee and Thompson, 1997) and is
consistent with the experimental design of K&C.
Other studies have suggested that word frequency
is important for children’s past tense acquisition
(Plunkett and Marchman, 1991; Bybee and Slobin,
1982; Ellis, 2002), but we do not examine this hy-
pothesis in this work.

Result overview For the forms seen in training,
the model is able to learn both regular and irregu-
lar past tense inflection with more than 95% accu-
racy (Table 3a), and with similar learning curves
(Figure 2), which confirms and strengthens the
main findings of K&C on two other languages.

Comparing Table 3a to 3b, we find that the over-
all trends are maintained when the model is trained
on graphemes instead of phonemes (the original
setup of K&C). However, a notable exception is
observed: grapheme learning results in a much
lower accuracy of English irregular verbs.

In the following sections, we discuss these re-
sults in more detail.

5.1 Past Tense Learning Results in English,
Dutch, and German

Accuracy Looking closer at the results across
languages (Table 3a), we notice that inflecting un-
seen Dutch regular verbs is slightly harder than in

(a) Phoneme Input

(b) Grapheme Input

Figure 2: Learning curves of the model on the Ger-
man, English, and Dutch training set (with random
seed 123).

German and English. This might be explained by
the fact that in Dutch all voiced consonants be-
come unvoiced at the end of a word, but to pre-
dict if the past tense becomes ‘-de’ (for voiced
consonants) or ‘-te’ (for unvoiced consonants), we
still need the end consonant of the stem, which
can be found within the lemma and most of the
times in the spelling of the word form. Unfortu-
nately, this information is absent in the pronun-
ciation. For example, in the pair lAnt-lAndd@,
one will not know whether the past tense should be
lAnd@ or lAnt@ before seeing the orthographic
form land. We find that such errors account for
about 50% (18/38) of all Dutch regular verb er-
rors. This difference in voiced/unvoiced regular
past tense endings only occurs in Dutch.

As for irregular verbs, we find a large difference
across languages in the ability to generalize to new
forms. Especially in English, while the model has
almost perfectly learned to inflect seen verbs, it
has a hard time predicting the form of new irreg-
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all regular irregular

train dev test train dev test train dev test

EN 99.5 93.1 92.1 99.8 96.1 95.0 98.1 27.8 40.5

NL 98.9 88.4 88.4 99.2 91.4 92.2 96.5 62.4 57.9

DE 98.9 85.0 92.5 99.4 92.0 95.1 96.7 38.7 57.9

(a) Phoneme input

all regular irregular

train dev test train dev test train dev test

EN 99.1 93.6 93.8 99.8 98.2 98.1 89.0 11.1 28.1

NL 99.4 88.0 89.6 99.8 91.2 93.0 97.9 58.6 61.0

DE 98.4 86.4 93.6 99.1 93.5 95.7 93.9 39.5 65.9

(b) Grapheme input

Table 3: Past tense inflection accuracy in English, Dutch, and German; all averaged over 3 random seeds.

epoch English Dutch German
hits bestijgt (mounts) gilt (applies)

10 hItId hitted b@stKGd@ besteeg gIlt@ galte
20 hItst hit b@stex besteeg gIlt@ galt
30 hItId hitted b@stKGd@ besteeg g&lt galt
40 hItId hitted b@stKGd@ besteeg g&lt galt
50 hIt hitted b@stKGd@ besteeg g&lt galt
60 hItst hit b@stex besteeg gIlt@ gilte
70 hIt hit b@stex bestijgde g&lt galt
80 hItId hitted b@stex besteeg g&lt galt
90 hItId hitted b@stex besteeg g&lt galt

100 hIt hit b@stex besteeg g&lt galt

Table 4: The oscillating development (micro U-shape) of single verbs in three languages: with phoneme
or grapheme inputs, the respectively predicted past phonetic (left) or orthographic (right) forms are
changing with the training proceeding, but their final predictions are correct when reaching the last
epoch. The changing points are boldfaced.

ular verbs (dev: 27.8%, test: 40.5%). This effect
is smaller in Dutch and German, suggesting the ir-
regular inflection patterns in these languages are
more predictable. Surprisingly, the model made
more mistakes when predicting the inflections of
the irregular verbs in the German dev set than the
test set (dev: 38.7%, test: 57.9%). By inspecting
the mistakes, we found that the model incorrectly
took many irregular verbs as regular ones because
of their resemblance (high character overlap). For
instance, reitest-*reitetest/rittest
(ride) is influenced by the regular conjugation
of bereitest-bereitetest (prepare). We
found 23/81 irregular verbs in the dev set are very
similar to regular verbs in the training set. Out
of these, 8 irregular verbs are identical to regular
ones except for a prefix (e.g., reitet (rides) vs.
bereitet (prepares) and reitest (ride) vs.
verbreitest (spread), which could be highly
confusing for a model that is only based on form
regardless of meaning. By contrast, such overlap
is not found between the irregular verbs in the test
set and regular ones in the training set. This distri-
butional discrepancy might explain the lower ac-
curacy in the dev set. It echoes with our other

finding discussed in the next section that irregu-
lar verbs might be misled by regular verbs if they
share representation similarity.

Errors and learning trajectories Going be-
yond overall accuracy, we inspect the learning tra-
jectories of individual verbs in our dataset. We
find human-like overregularization patterns simi-
lar to those observed by K&C in English also oc-
cur in Dutch and German. For example, in Dutch,
after 40 epochs of training, the model change
verscheent to verscheen as the past tense
of verschijnt (appears). However, after 50
epochs, the model again generate the wrong form
verscheent. After 70 epochs, the correct result
is again obtained. Similar patterns are observed
for sink in English and streitet (argues) in
German. Interestingly, Plunkett and Marchman
(1991); Bybee and Slobin (1982); Kuczaj II (1977)
reported that children do sometimes vacillate, even
within one utterance, between the correct and in-
correct past tense form of the same irregular stem.
All wrongly predicted irregular verbs are caused
by over-regularization. In other words, no patterns
like ated in English or lookte in Dutch are
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found, which is consistent with humans’ learning
behaviour (Pinker and Prince, 1988). More exam-
ples from English, Dutch and German are listed in
Table 4.

Additionally, we find cases where the model
generates an irregular form for a regular verb,
because of the resemblance with other (irregular)
verbs. In Dutch, for example, the regular verb
versier-versierde (decorate-decorated)
gets incorrectly inflected as *versoor by
resemblance to verbs like verlies-verloor
(lose-lost). Similar errors also occur in Ger-
man. For instance, the wrong prediction
of verfehle-*verfahl/verfehlte
(miss-missed) might be misled by the pair
befehlen-befahlen (order-ordered), and
schweben-*schwoben/schwebten (float-
floated) is possibly due to its resemblance to
schieben-schoben (push-pushed). Inter-
estingly, this type of errors aligns with Ernestus
and Baayen (2004)’s experiments with Dutch
speakers: phonological similarity, rather than
rule-based regularity, influences participants’
judgments toward the inflection of verbs.

That said, the model also displays error pat-
terns that are not human-like, such as copying the
present form or randomly removing phonemes (or
letters) from it. Similar cases of non-plausible
predictions were also observed at the Sigmor-
phon Shared Task (Kodner and Khalifa, 2022),
for instance forgive-*forgaved/forgave
or seek-*sougk/sought. As also observed
by Wiemerslage et al. (2022), this kind of model
predictions contrasts with the behavior of human
speakers, who mostly resort to generating a regu-
lar past tense when a verb is unknown.

5.2 Phoneme vs. Grapheme Input
Undoubtedly, using phoneme input is more prin-
cipled than grapheme input when simulating hu-
man acquisition patterns. However, pronunciation
information is not always available and makes it
harder to extend this kind of simulations beyond a
small set of widely studied languages. Here, we
investigate the usability of grapheme-based input
for modeling past tense inflection. We expect Ger-
man and Dutch to be a good use case for this, given
their more transparent orthography compared to
English (Marjou, 2021).

The results in Table 3 clearly show that
switching to grapheme input for the English

simulations is not principled as this results in
a slight increase of regular inflection accu-
racy (from 99.8/96.1/95.0% to 99.8/98.2/98.1%
train/dev/test) as opposed to a large decrease of ir-
regular inflection accuracy (from 98.1/27.8/40.5%
to 89.0/11.1/28.1%). The latter effect is particu-
larly marked, suggesting non-transparent orthog-
raphy may not be a uniform property of the lan-
guage but may be correlating with less regular
word forms within a language. We leave this in-
vestigation to future work.

Using grapheme input in Dutch and German
seems much safer (differences are overall small,
with only a slight increase in almost all cases). Our
observations seem to reflect the figures of Mar-
jou (2021), who give a much higher transparency
score to Dutch and German than to English.

In sum, using graphemes to simulate human
patterns of morphological acquisition is possible
but should be done with caution and only in some
languages. A good practice could be to first verify
that the orthographic transparency of a language
is high (Marjou (2021) present results for 17 lan-
guages). When that is not possible, grapheme-
based results should be at least validated against
a small-scale pronunciation dataset.

6 Conclusions

In this work, we study the plausibility of using
sequence-to-sequence neural networks for simu-
lating human patterns of past tense acquisition.
More specifically, we replicate findings by Kirov
and Cotterell (2018) and examine their generaliz-
ability beyond the specific case of English, using a
new dataset of English/Dutch/German (ir)regular
verb forms based on Unimorph (McCarthy et al.,
2020).

We show that the main findings of K&C also
largely hold for Dutch and German, including
over-regularization errors and the oscillating (or
micro U-shape) learning trajectory of individual
verb forms across training epochs. At the same
time, we also observe cases of non human-like
errors, for instance when the model just keeps
the present form unchanged or randomly removes
phonemes from it. A notable difference among
our studied languages concern unseen English ir-
regular verbs, which appear to be much harder
to inflect than the Dutch and German ones. We
also observe that the orthographic transparency of
a language influences and possibly confounds the
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model’s learning performance: higher transparent
orthography contributes to more reliable and con-
sistent simulation results, but in general this as-
pect should be seriously considered when setting
up new benchmarks of morphological acquisition.

Future work could include the construction of
a nonce word benchmark in Dutch and German
to enable a multi-lingual evaluation of this task
(Corkery et al., 2019), as well as an in-depth in-
vestigation of the different level of irregular past
inflection difficulty in our three languages.

Kirov and Cotterell (2018) provided very
promising evidence for the use of modern neural
networks to model the human language acquisi-
tion patterns. Our work confirms the potential of
this research direction, but also raises important
issues and joins recent follow-up studies (Cork-
ery et al., 2019; Dankers et al., 2021; Kodner and
Khalifa, 2022; Wiemerslage et al., 2022) that have
warned against over-optimistic conclusions.
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A Appendix

Parameter Value

seed 123
feat vec size 300
feat merge concat
rnn type LSTM

encoder type brnn
encoder layers 2

encoder rnn size 100
decoder type rnn

decoder layers 2
decoder rnn size 100

dropout 0.3
learning rate decay 1.0

learning rate 1.0
batch size 20

train steps
(training sample size/
batch size)∗the number of
epochs

beam size 12
optim adadelta

verbose True
tensorboard True

tensorboard log dir logs
report every steps / 100

log file directory of the log file
log file level 20

A displays hyperparameter settings of the repli-
cating experiments and the extension experiments.
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Abstract

We address two understudied areas related
to explainability for neural text models.
First, class explanations. What features
are descriptive across a class, rather than
explaining single input instances? Sec-
ond, the type of features that are used
for providing explanations. Does the ex-
planation involve the statistical pattern of
word usage or the presence of domain-
specific content words? Here, we present
a method to extract both class explanations
and strategies to differentiate between two
types of explanations – domain-specific
signals or statistical variations in frequen-
cies of common words. We demonstrate
our method using a case study in which
we analyse transcripts of political debates
in the Swedish Riksdag.

1 Introduction

Recent developments in NLP are often the result
of ever more complex model architectures and an
increasing number of model parameters. Yet, if
we want to rely on these models, we should be
able to review the similarities and dissimilarities
between the model and human judgement. Ex-
plainability frameworks can do this by highlight-
ing on what the model has learnt to base its deci-
sions. Are these coincidental statistical patterns or
something that a human would use as an explana-
tion? Madsen et al. (2022) argue that explanations
should ideally be both functionally-grounded (true
to the underlying machine learning model) as well
as human-grounded (useful to a human).

In this article, we propose a new method for
extracting class explanations from text classifiers.
Besides, we also show a new way to distinguish
between two types of features that appear in those
explanations, that is, between informative content

words and subtle statistical differences in common
words’ frequencies. Our method aggregates expla-
nations for individual data points (here provided
by LIME (Ribeiro et al., 2016)), followed by a
sorting stage that separates the different kinds of
features.

Our work is in part motivated by use cases of
machine learning for texts in the social sciences.
In this field, explainability methods are relevant
both as checks to compare against human expert
knowledge and as a tool for bias detection. As a
case study, we use our method to explain the de-
cisions of a binary classifier trained to identify if
speeches in the Swedish Riksdag belong to either
of the two main parties, the Moderates (M) or the
Social Democrats (S).

We find that our method can separate class ex-
plainability features and that those data points
whose explanations contain primarily domain-
specific content words are more often classified
correctly.

2 Literature Review

As a result of the extensive work on explainabil-
ity methods, a complex typology of different ap-
proaches exists (see Danilevsky et al. (2020) or
Madsen et al. (2022) for a survey). One impor-
tant distinction is between global and local. On
the one hand, global methods aim to explain some
general behaviour of a model, such as class expla-
nations, which summarise the model with respect
to a certain class. On the other, local methods aim
to explain why the model assigned a single data
point to a particular class.

Between global and local methods, the latter re-
ceive the most attention (Nauta et al., 2022). Three
popular methods are gradient-based approaches
(Baehrens et al., 2010), Shapley values (Shapley,
1952), and LIME. Gradient-based approaches use
the model’s weights and take the gradient with
regard to the input. As such, they measure the
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change in the outcome given some small change in
the input. Yet, they are only an accurate reflection
of the model if that model is linear (Li et al., 2016),
which is not the case for most deep NLP architec-
tures. On the other hand, while Shapley values
have many theoretical guarantees to make them a
faithful interpretation (they represent the true con-
tributions of the features (Ethayarajh and Jurafsky,
2021)), their implementations (e.g. via attention
flows for transformer-based architectures (Abnar
and Zuidema, 2020)) tend to be computationally
expensive, which is problematic in the current set-
ting, where we focus on aggregating a substantial
number of individual explanations. Finally, LIME
has an advantage over gradient-based approaches
as it is model agnostic. This means that LIME at-
tempts to explain a trained classifier independently
of its architecture (Ribeiro et al., 2016).

2.1 Class explanations

The area of global class explanations is so far less
studied than that of local explanations. One ap-
proach to providing global understanding of the
model is to use behavioural or structural probes
(Tenney et al., 2019; Hewitt and Manning, 2019;
Wallace et al., 2019). Probing is a technique where
a supervised model (a probe) is used to determine
what is encoded in the internal representation of
the studied model. This is done by training the
probe to predict based on the frozen representa-
tions of the black-box model. If the probe per-
forms well on the task, that indicates the required
information was well represented by the black-
box model, if the probe is unable to achieve high
accuracy, that is taken to signify that the studied
patterns are not learned by the black-box model.
This has some limitations – for example, the com-
plexity of the probe. If the probe is too sim-
ple, it may not capture second order effects, if it
is too complex, it may learn the task internally
and “discover” things that are in the probe rather
than the model (Hewitt and Liang, 2019). More
importantly, these methods tend to be applied to
the discovery of simple syntactic structures like
part of speech (POS) tagging, syntactic tree struc-
tures (Rogers et al., 2020) or to detect the pres-
ence of specific knowledge (Petroni et al., 2019).
Other attempts in this area include leveraging lo-
cal methods and utilising a strategy for aggregat-
ing and presenting those results to the user. An
example of such approach is SP-LIME (Ribeiro

et al., 2016), which aggregates individual LIME
explanations with a greedy search for finding data
points (texts) that are explained by the most dis-
similar sets of features in order to represent the
breadth of the class explanations. The results are
presented as ranked text examples with their cor-
responding explanations, where the number of ex-
amples is defined by the user. Due to its focus
on features that cover as many input instances as
possible, this method tends to overemphasise stop
words (see further discussion in Section 6).

2.2 Features of Explanations

To a human, not all features learnt by the machine
learning model are equally informative. Some
signals may come from speech patterns, others
from the topic that is discussed and the senti-
ment, yet others may indicate preferred catch-
phrases and slogans. There is a distinction be-
tween explanations of the model (what a model
bases its prediction on) and human explanation
(what a human would base their decision on
if faced with the same prediction task) (Miller,
2019). Since humans have background knowl-
edge that is not accessible to the model and the
model has the capacity to detect small statistical
signals that are beyond human computational ca-
pabilities, the set of features that are selected by ei-
ther may differ. This issue can be viewed in terms
of the concepts presented in the position paper
by Doshi-Velez and Kim (2017) and further dis-
cussed by Madsen et al. (2022), namely – human-
grounded and functionally-grounded explainabil-
ity. Functionally-grounded explainability is con-
cerned with how well the explanation reflects the
model, whereas human-grounded explainability is
concerned with producing explanations that are
useful to a human. This is also in line with work by
Nauta et al. (2022), where the authors argue for the
rigorous evaluation of an explainability method
across twelve properties in three categories – con-
tent, presentation, and user. The content prop-
erties and in particular correctness (faithfulness
w.r.t. the black box) are related to the functionally-
grounded approach, whereas the user properties
– context (how relevant the explanation is to the
user), coherence (how accordant the explanation
is with prior knowledge), and controllability (how
interactive or controllable an explanation is) – re-
late to human-grounded explainability.

In our work, we use stop words and content
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words to align with functionally-grounded and
human-grounded explanations. Content words are
words that have independent meaning outside of
the sentence they appear in. These are typically
a noun, verb, adjective, or adverb and are distin-
guished from function words, which mainly ex-
press grammatical relationships and have little se-
mantic content. Stop words are words that carry
little or no important information for the task at
hand and tend to contain function words. This
concept is not strictly defined, but generally refers
to high-frequency terms. It can therefore extend
to, for example, procedural language (e.g. ”tall-
man” (speaker)) that can also act as a stop word in
the domain of Swedish political debates. A model
can learn to detect distributional differences of any
word as long as it is correlated with the predicted
class, but a human will be unlikely to relate and
understand the cause of the distributional differ-
ences of stop words. The difference in frequency
of how often a group uses the word ”also”, for
example, may not be very informative for a hu-
man, even if those distributional differences point
to real speech patterns that distinguish between the
speakers (Arun et al., 2009a) and have even been
linked to the author’s gender (Arun et al., 2009b).
Human domain knowledge will most likely be
captured through domain-specific, content words.
Being able to confirm the (extent of the) model’s
grounding in content words can serve to validate
it.

3 Method

Our algorithm for computing class explanations
consists of four steps: post-hoc instance expla-
nations extraction, aggregation, sorting, and a
keyword-in-context search that extracts example
texts. This framework is formalized in Algorithm
1. It is similar to SP-LIME, but rather than search-
ing for data points that capture the most diver-
sity of the important features, we propose to work
directly with the feature importance and explore
ways to summarize and sort these by relevance.

The replication materials and full results are
available online 1.

3.1 Step 1: Instance explanation extraction

For a set of held-out data samples N , we apply
the trained classifier f . In the instances where

1https://github.com/dsaynova/
NoDaLiDa2023

Algorithm 1 Class explainability from instance
explanations
Require: Binary classifier f , data samples N
Require: Instance explainability function g
Require: Feature scoring function h
W ← {} ▷ features and importance scores
c1← {} ▷ features explaining class 1
c2← {} ▷ features explaining class 2

Step 1 – Instance explanation extraction

for text, true label ∈ N do
if f(text) = true label then

W ←W ∪ {g(text, f)}
end if

end for

Step 2 – Aggregation

for feature, score ∈W do
if score < 0 then

c1← c1 ∪ {feature}
else

c2← c2 ∪ {feature}
end if

end for

Step 3 – Sorting

for c ∈ {c1, c2} do
return c sorted by h score

end for

Step 4 – Keywords in context

for c ∈ {c1, c2} do
for term ∈ top X terms in c do

return all occurrences of term
with n words before and after

end for
end for

the classifier makes the correct prediction, we ex-
tract the list of features and their corresponding
saliency with model g. This can also be flipped
to focus on instances where the model makes the
incorrect predictions to investigate which patterns
or instances are hard to classify. A certainty
threshold can also be used to explore only cases
where the model is certain or borderline cases.
Our method aims to be extendable to different
model architectures, therefore we require a post-
hoc, model agnostic instance explanation function
g. For now, we have chosen LIME, but alternative
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methods can be used as well, as long as they are
able to extract features and the feature contribu-
tion scores that explain an instance. This means
we are currently constrained by LIME’s limita-
tions and only consider single tokens as features.
Since LIME is a surrogate model, there is also
some uncoupling between the classification model
and the explanations. For each correctly classified
instance, we extract the top k features (here set
to 10). This can be reduced even further in order
to limit the number of features that are considered
or extended to include all tokens and the task of
limiting the explanation will then be completely
relegated to the sorting step.

3.2 Step 2: Aggregation

A feature can contribute either positively or nega-
tively towards the prediction of the model. When
working with a binary classifier, a negatively con-
tributing feature towards predicting class 1 means
it is a positively contributing feature for class 2.
Therefore, the features collected from the previous
step are aggregated in two sets – c1, c2 – one for
each class based on their feature score sign. Note
that these two sets of features may have overlaps
if the predictive signal is indicative of the different
context in which those features appear.

3.3 Step 3: Sorting

The resulting sets of features for each class need to
be constrained to a feasible size to be interpretable
by a human. We propose two approaches to de-
veloping a feature relevance score h to prioritize
and distinguish these terms along an axis of more
domain-specific concepts to more generic words –
normalization and PCA.

Normalization. Here, we use the sum of LIME
scores for each feature of the explanation divided
by number of occurrences of that feature in the
validation set. We calculate the feature relevance
score h of the jth feature as: hj = 1

mj

∑N
i=1Wij .

Here, N is the number of data points in the ex-
plained dataset, mj is the number of occurrences
of feature j in the explained set, and W is the ex-
planation matrix containing the local importance
of the interpretable components for each instance.
This will give higher scores to features identi-
fied as more important by LIME, but will penalise
common words, if they do not contribute to a class
prediction often. This is in line with the defini-
tion of stop words and should target the corpus-

specific stop words. We also filter out words that
appear in two or less documents, as these can be
party specific, but may not be useful for generali-
sation. This number can also be increased to filter
out more predictive (according to LIME) words.

PCA. The second approach to sorting is to de-
couple it from the LIME score after the initial
aggregation step and use PCA of word embed-
dings. We found that PCA applied to pre-trained
word embeddings tends to separate domain spe-
cific words from more generic terms. A theoret-
ical motivation for this analysis lies in the distri-
butional differences between a general text (used
for pre-training word embeddings) and a domain-
specific text (in this case – political debate). We
hypothesise that the general embedding model
will see the domain specific terms in sufficiently
distinct context in order to embed them in a com-
pact space with a latent dimension separating them
from more common and general terms. This relies
on the studied data having a significant amount of
domain specific terminology that is rarer in gen-
eral. We expect this to be the case for many ap-
plication within the social sciences (e.g. politics),
but can have limitations in, lower-level, syntactic
classification tasks like POS tagging.

To calculate the sorting score, the terms from
each set c1 and c2 are embedded using a model2

trained on the Swedish CoNLL17 corpus. A PCA
is run on each set of words – c1, c2 – and the first
PCA dimension value is used as the sorting score
h. Similarly to the normalisation approach, words
that appear in two or fewer documents are filtered
out. This dimension seems to provide a good dis-
tinction of domain specific terms.

3.4 Step 4: Keywords in Context

To further increase human interpretability, we also
provide a way to provide context by extracting
snippets of texts around the top word features pro-
duced in Step 3. For each occurrence, we use a
simple keyword-in-context search and extract n
words before and after our feature word. This is
clearly not feasible or interesting for very frequent
words, which further motivates separating rarer,
domain specific content words from more com-
mon stop words.

2http://vectors.nlpl.eu/repository/20/
69.zip
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4 Data

The dataset used for the case-study consists
of transcripts of debates in the Swedish Riks-
dag, sourced from Riksdagens öppna data –
Anföranden3. We use a pre-processed version
available from Språkbanken4 consisting of de-
bates from 1993 to 2018. For our experiment,
texts from the Social Democrat (S) and Moder-
ate (M) parties have been extracted, resulting in
104,842 S and 62,160 M data points (one data
point is one speech that could be part of a longer
debate). From these, 100 examples have been
sampled for a small-scale human baseline check,
where two annotators are asked to perform the
classification task of determining the party label
from the speech texts and were evaluated against
the true label. Since these are debates, refer-
ences to the opponent are a strong but trivial pre-
dictor of party. References to people and po-
litical parties have been removed by targeting
Swedish political party names’ stems (for a full
list please refer to the linked code base) and words
tagged as “People along political spectrum” in
Språkbanken’s tags, based on Swedish FrameNet
(Heppin and Gronostaj, 2012). Since the cleanup
is based on a coarse rule for party name stems de-
tection and the automatic tags from Språkbanken,
not all references have been removed. We have
opted for blanking all certain cases, so that enough
of the interfering signal is removed to make the
classification task non-trivial, rather than applying
a comprehensive and exhaustive search of all men-
tions, since that is not the main goal of this work.
Data points shorter than 50 words have been re-
moved, as manual analysis shows these tend to be
entirely procedural and do not carry political sen-
timent. This is in line with similar cleaning prac-
tices used for US congressional debates (Bayram
et al., 2019). The data is undersampled to bal-
ance the classes and split into: train (108,169), test
(12,019) and validation (2,000) sets. The valida-
tion set is used for explainability methods.

5 Experiments

To test our methodology we apply it to a BERT
classifier trained to predict the party label of a text
(Devlin et al., 2019). The classifier is fine-tuned

3https://data.riksdagen.se/data/
anforanden/

4https://spraakbanken.gu.se/resurser/
rd-anf-1993-2018

from a pre-trained model for Swedish data re-
leased by The National Library of Sweden/KBLab
and available through the huggingface library5.
The model has a 50,325 word vocabulary and 512
maximum token length. Longer inputs are trun-
cated. As a baseline for investigating class differ-
ences and separability of the data we use a logistic
regression classifier, as this provides easy access
to class explanations by simply looking at the top
and bottom scoring internal weights of the model.
N-gram spans from 1 to 3 and a combination of
all have been compared. The number of input fea-
tures is 50,325 – the same as the pre-trained BERT
model.

A small-scale human annotation check on 100
instances shows the two annotators perform with
58 and 56 percent accuracy respectively. A Co-
hen’s kappa of 0.4 indicates this is a hard classifi-
cation task.

In the interest of space, the sections below con-
tain partial results. The full results are available
online.

5.1 Baseline
Table 1 summarises the accuracy and F1 scores
for the logistic regression classifier. We observe
that the best result is achieved with 1-grams, with
the inclusion of 2- and 3- grams adding no perfor-
mance gains. It seems the main part of the distin-
guishing signal can be picked up by specific words
rather than phrases.

n-gram span # feat acc F1
1,1 50,325 76.94 76.80
2,2 50,325 73.19 73.05
3,3 50,325 69.39 69.15
1,3 150,975 76.93 76.80

Table 1: Logistic regression classifier perfor-
mance.

From the internal model weights, we can
identify both domain specific words – “sjuka”
(sick), “arbetslösa” (unemployed), “arbetslinjen”
(the employment line, a Moderate catchphrase),
and stop words – “det” (the), “också” (also), “syn-
nerhet” (in particular), can be predictive of the
party label. This is in agreement with our assump-
tion that a model can depend on both statistical
differences in stop word or in human concepts as

5https://huggingface.co/KB/
bert-base-swedish-cased
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the basis of its prediction, and in doing so outper-
forms the human annotators.

5.2 BERT

The BERT model (lr = 5e-6, batch size = 48, steps
= 6000) shows only slight improvement over the
baseline, summarised in Table 2.

Evaluation acc F1
test set 78.44 76.66
validation set 79.95 78.27

Table 2: BERT classifier performance.

Applying LIME to all validation samples and
aggregating the top 10 features for each data point
results is a list of 2,043 Moderate and 2,085 Social
Democrats terms. Out of these 1,456 Moderate
and 1,334 Social Democrat terms appear in more
than two documents, and are thus candidates to be
included as part of class explanations (this limit
can be adjusted by the user).

PCA ordering
rank term
1 utgiftsområde (expenditure area)
2 budgetpropositionen (the budget bill)

3
jobbskatteavdrag
(employment tax credit)

4
arbetslöshetsförsäkringen
(unemployment insurance)

5 skattehöjningar (tax increases)
...

1454 högkvalitativa (high quality)
1455 vackra (beautiful)
1456 klassiska (classic)
Normalised LIME score
rank term
1 vänsterregering (left-wing government)

2
fattigdomsbekämpning
(poverty alleviation)

3 bidragsberoende (benefits dependency)
4 fridens (of peace)
5 arbetsföra (able to work)

...
1454 som (as)
1455 ett (one)
1456 en (one)

Table 3: Results for the Moderates.

5.3 Validation

Tables 3 – 4 show the results of both LIME and
PCA for both M and S. In both cases, the mod-
els separate informative terms from generic ones.
This is especially the case with the LIME scores,
where the lowest-scoring words are all stop words.
As for the highest-scoring words, we find that they
are all related to taxes and employment. This
is understandable, as this is also what makes up
the main political left/right dimension in Sweden
(Franzmann and Kaiser, 2006; Jolly et al., 2022;
Ezrow et al., 2011). Besides, we can identify sev-
eral references to several (groups of) parties and
ministers, which we would expect in debates. As
discussed in section 3.2, we also find a term that
appears as important for both parties - budget-
propositionen (the budget bill). This is a result
of the explainability model using single tokens as
features and most likely indicates that this is a term
mentioned in a different context for both parties.

While these findings are hopeful on their own,
to be useful for social scientists, we need to do

PCA ordering
rank term
1 budgetpropositionen (the budget bill)

2
arbetsmarknadspolitik
(labor market policy)

3 samlingspartiet [Refers to the Moderates]

4
ungdomsarbetslösheten
(youth unemployment)

5 skattesänkningar (tax cuts)
...

1332 tillsammans (together)
1333 u (u)
1334 dam (lady)
Normalised LIME score
rank term
1 överläggningen (the deliberation)
2 moderatledda (moderate-led)
3 kd (abbrev. for Christian Democrat party)
4 skattesänkningarna (the tax cuts)
5 borgarna (the bourgeois [parties to the

right])
. . .

1332 har (have)
1333 av (of)
1334 för (for)

Table 4: Results for Social Democrats.
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more to ensure that our results are valid. In other
words, we want to ensure that our method mea-
sures what we intend to measure (Carmines and
Zeller, 1979). In our case, this is whether a speech
is representative of S or M.

Looking at how appropriate the terms are, as we
did above, is a first step. This is also known as
face validity, as we look if our method “appears to
measure” what we want it to measure (Anastasi,
1976, pp. 139–140). Yet, face validity depends on
many implicit decisions that vary between context
and researcher. As such, we should look further if
we wish to provide a more satisfactory validation.
One good candidate for this is by looking at con-
struct validity (Shadish et al., 2002; Carmines and
Zeller, 1979). This refers to the degree to which
we can use our results to say something about that
what we aim to measure. One way to learn this
here is to look at the wider context in which the
terms the algorithm uses appear. For example, if
a term used by the algorithm to assign a speech to
S occurs in a context that defines S, this strength-
ens our case for construct validity. To see this, we
can use keyword-in-context (KWIC), which looks
at the n (here we choose 20) words before and af-
ter the term that interests us. In Table 5 we show
this for one of the terms from the PCA analysis
for S – arbetsmarknadspolitik (labour market pol-
icy). Here, we see that the context of the word
indeed refers to policies close to S. In both cases,
the term is used to call for more and new measures
to regulate the labour market – something indica-
tive of S. Similar examples for the words in Tables
3 – 4 are in the online appendix. As we have im-
plemented KWIC in our algorithm, scholars can
thus easily assess whether the same is true for any
of the other terms and in this way better assess the
validity.

5.4 Explanations and Predictive Accuracy

Returning to individual instance explanations, we
also wanted to investigate if the kind of words
(domain specific or statistical distributions) occur-
ring in an explanation have any relationship with
the certainty of the model on those datapoints.
We found domain specific words (here related to
politics), along the positive PCA spectrum, while
more common, general words had embeddings
placing them towards the negative end. We find
that data points where the explanation-words are
predominantly positioned within the positive PCA

“. . . enda åtgärd lösa detta, det behövs
många åtgärder. Det handlar om ett gott
företagarklimat, om en ny arbetsmarknad-
spolitik, om ytterligare utbildningssatsningar,
om att bygga om — osv. med de förslag till
åtgärder som vi . . .”
“. . . single measure solve this, many measures
are needed. It’s about a good business cli-
mate, about a new labour market policy, about
further training efforts, about rebuilding – etc.
with the proposed measures that we . . .”
“. . . i arbete det finns individer som kommer att
behöva säskilt stöd, och då behöver vi ha en bra
arbetsmarknadspolitik. Men det är förstås in-
get egenvärde i att ungdomar som kan få jobb
ändå ska vara i en . . .”
“. . . in work there are individuals who will
need separate support, and then we need to
have a good labour market policy. But of
course there is no intrinsic value in young peo-
ple who can get a job still being in a. . .”

Table 5: Keywords-in-context for the class-
explanation feature labour market policy for the
Social Democrats.

spectrum (the sum of the PCA coordinates of the
top-ten explanation features is positive) are cases
where the model is more accurate. Compared to
datapoints where explanations lie in the negative
PCA space, there is an accuracy gain of roughly
10 percent (Table 6). Interestingly, this suggests
that explanations containing domain specific, rarer
words are correlated with the model’s correctness,
although the number of datapoints with domain
specific explanations is quite small.

Correct Incorrect Acc
Pos PCA sum 186 25 88.15
Neg PCA sum 1413 376 78.98

Table 6: Classifier performance on the validation
set split based on the sum of PCA coordinates of
the explanation provided by LIME.

6 Comparison to SP-LIME

Our method is comparable with SP-LIME, which
aggregates individual LIME explanations. SP-
LIME consists of three similar steps: post-hoc in-
stance explanations extraction, sorting and exam-
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Rank 1 SP-LIME example (true label S):
är (is), det (the), som (as), den (the), vi (we),
Natomedlemskap (NATO membership), att (to),
du (you), samlingsregeringen (the coalition
government), Vi (We)
Rank 2 SP-LIME example (true label M):
frågorna (the questions), protektionistiska
(protectionist), önskar (wish), Det (The),
och (and), Herr (Mr), oerhört (incredibly),
handelsminister (Minister of Trade), tackar
(thanks), de (the)
...
Rank 12 SP-LIME example (true label M):
medelinkomsttagare (middle income
earner), avregleringar (deregulations),
vänster (left), tvivelaktiga (questionable),
skattesänkningar (tax cuts), Då (Then), och
(and), Man (One/third person singular),
bostadsmarknaden (the housing market), stöd
(support)
...
Rank 16 SP-LIME example (true label S):
borgarna (the bourgeois), oss (us),
långtidsarbetslösa (long-term unemployed),
klyftorna (the cleavages), det (the), sjuka
(sick), rödgröna (red green)6, Vi (We), Låt
(Let), är (is)

Table 7: Explanations provided by SP-LIME.
Bold features indicate words contributing towards
an M classification, while italic features do the
same for S. Full results are in the online appendix.

ple extraction. In contrast to our proposed scoring
functions, SP-LIME calculates the score for fea-
ture j as Ij =

√∑N
i=1Wij where N is the num-

ber of data points in the explained dataset and W
is the explanation matrix containing the local im-
portance of the features. Based on this scoring,
SP-LIME performs a greedy search to extract the
top scoring data examples that also have the great-
est coverage of distinct features. Therefore, the
model explanation takes the form of a set number
of text examples with their corresponding instance
explanations, where the number of examples pro-
vided is defined by the user. Since the method
performs a greedy search, the results are ordered
by their contribution to how well they explain the
model and how many unique features they cover.

We apply SP-LIME to the BERT classifier and
extract the top 20 text examples that the explain-

ability approach considers most representative.
These contain 9 S examples and 11 M examples.
A selected set of instance explanations can be seen
in Table 7 and the full list is available in our on-
line appendix. We can see the overemphasis of
stop words especially in the top examples. Only a
couple of the surfaced terms carry a political sig-
nificance, and even those lack context and have
debatable generalisability. Some of the examples
provided by SP-LIME (see Top 12 and Top 16 in
Table 7) are instances where human intuition is
easier to align with. However SP-LIME in gen-
eral does not provide a way to distinguish between
the two types of contributing features that the cur-
rent work targets. Finally, SP-LIME also differs
from our method in the way it presents texts con-
taining explanatory features. SP-LIME tries to
find texts which have as many features as pos-
sible in one and the same text, while we choose
to present many alternative contexts in which ex-
plaining feature words appear, motivated by social
science use-cases.

7 Conclusion and Discussion

We have developed a new algorithm for extract-
ing class explanations, which takes the distinction
between stop words and content words into ac-
count. It thereby provides an alternative to prior
methods like SP-LIME, which mixes explanations
based on e.g. stop word frequency with the pres-
ence of certain domain-specific terms. Our mo-
tivation comes from the idea of human-grounded
explainability: a useful explanation for a human
will focus on content rather than stop words, while
still being true to the model. In our case study, we
demonstrated this for speeches from the Swedish
parliament, with the task of explaining a binary
classifier associating speeches to either of the two
main parties. This is a difficult task, our human
annotation experiment showed humans perform-
ing just better than random, potentially as they
primarily looked for clues about policy. The ma-
chine learning models performed better, as they
likely also managed to identify statistical speech
patterns of speakers, which we saw in explanations
where e.g. stop words inevitably appear. Our al-
gorithm can not only identify these, but also sep-
arate them from explanations containing domain-
specific words, hinting at policy, motivated by the
needs of social scientists. Additionally, we find
indications that domain-specific explanations cor-
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relate with model performance. Patterns related to
policy in our experiment may be more robust than
learned speech patterns of stop words, which risks
being influenced by single frequent individuals in
the dataset, rather than capturing patterns common
to a political party.

Future work will focus on systematic and exten-
sive testing of the proposed methodology in order
to evaluate it along the twelve properties proposed
by Nauta et al. (2022). The focus should be on
measuring the faithfulness to the underlying black
box model, correctness, as well as a larger scale
domain expert evaluation to measure how relevant
and valid the explanations are (context and coher-
ence properties). The generalisability will also be
tested, by studying other domains and classifica-
tion tasks.
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Abstract

Automatic text simplification (ATS) de-
scribes the automatic transformation of a
text from a complex form to a less com-
plex form. Many modern ATS techniques
need large parallel corpora of standard and
simplified text, but such data does not ex-
ist for many languages. One way to over-
come this issue is to create pseudo-parallel
corpora by dividing existing corpora into
standard and simple parts. In this work, we
explore the creation of Swedish pseudo-
parallel monolingual corpora by the appli-
cation of different feature representation
methods, sentence alignment algorithms,
and indexing approaches, on a large mono-
lingual corpus. The different corpora are
used to fine-tune a sentence simplification
system based on BART, which is evaluated
with standard evaluation metrics for auto-
matic text simplification.

1 Introduction

Automatic Text Simplification (ATS) is a sub-field
of natural language processing mainly focusing on
the automatic transformation a text from a com-
plex form to a less complex form, and in that way
make texts accessible for weaker readers. Even
though the modern ATS techniques vary in scale
and efficiency, there is one constant; the need for
large parallel corpora of standard and simplified
text, in order to train the simplification system.

The acquirement of such corpora is however not
an easy task. One theoretical option is to collect
manually created simplifications, but that process
is incredibly time consuming and often not fea-
sible due to the enormous amount of text that is
required by modern ATS systems.

A second option is to leverage already existing
sources of parallel texts. One common example is

the collection of articles from Wikipedia alongside
their Simple Wikipedia counterpart. However, Xu
et al. (2015) identified numerous problems to the
dual Wikipedia approach, for example the fact the
simple article most often is not a rewrite of the
standard article. This can lead to a variation of
the content in the articles that is large enough to
make them unsuitable to be included in an aligned
corpus. Moreover, the Simple English Wikipedia
presents a limitation in text simplification research
due to its sole availability in the English language.
One way to overcome this problem is to trans-
late the English texts into another language. For
instance, Sakhovskiy et al. (2021) translated the
WikiLarge dataset (Zhang and Lapata, 2017) into
Russian.

Another possibility would be to follow the ap-
proach of Kajiwara and Komachi (2018), where
a monolingual sentence corpus is divided into a
standard and simplified part, and aligned with the
best sentence matches between the two corpora.
The result is a “pseudo-parallel” monolingual cor-
pus; a parallel monolingual corpus that has been
aligned with an unsupervised alignment algorithm
rather than been manually constructed or collected
from an already divided source, circumventing the
previously mentioned problems. The approach
was proven to perform well for both English and
Japanese domains.

The aim of the work presented in this paper
was two-fold. First, we aimed to create Swedish
pseudo-parallel sentence simplification corpora1

from a single monolingual Swedish sentence cor-
pus. Second, we aimed to investigate how differ-
ent methods and techniques used during the cre-
ation influence the performance of sentence sim-
plification systems trained on the different cor-

1The corpora are made available at: https://github
.com/holmad/Constructing-Pseudo-paralle
l-Swedish-Sentence-Corpora-for-Automatic
-Text-Simplification
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pora. The research question we explored was:

• For different alignment and embedding tech-
niques, which alignment thresholds produce
corpora that when used to fine-tune a BART
model, produce sentence simplifications with
the highest BLEU and SARI scores?

2 Related work

Data-driven approaches are common for most
modern research in sentence simplification (Alva-
Manchego et al., 2020). Data-driven does—in this
context—refer to the collection of parallel corpora
of standard-simple sentence pairs. These corpora
are then used to train simplification systems by
considering the simplification task as monolingual
machine translation.

Much research has been conducted by exploit-
ing the standard and simple versions of the English
Wikipedia (Zhu et al., 2010; Coster and Kauchak,
2011; Woodsend and Lapata, 2011; Hwang et al.,
2015; Zhang and Lapata, 2017). Additionally,
the Newsela corpus (Xu et al., 2015) has been
used for the creation of aligned corpora (Alva-
Manchego et al., 2017; Zhao et al., 2018) , much
alike Wikipedia. The Newsela corpus contains
1, 130 standard news articles, combined with up
to five simplifications for each given article. The
simplifications are created by professional writ-
ers, which overall should be an improvement in
quality over the simplifications in the Simple En-
glish Wikipedia, which are produced by volunteers
(Alva-Manchego et al., 2020). In a Swedish con-
text, Rennes (2020) compiled a corpus of 15, 433
unique sentence pairs derived from the websites
of Swedish authorities and municipalities. This
comparatively small resource is the only available
aligned corpus of standard-simple sentence pairs
for Swedish.

In contrast to the previously mentioned corpora,
which are based on alignment of sentences that
are extracted from one source of standard sen-
tences and another source of simplified sentences,
the construction of a pseudo-parallel monolingual
corpus includes the process of deciding if every
given sentence should be considered as one of
standard or less complexity. For this task, Ka-
jiwara and Komachi (2018) calculated the, for
English text widely used, Flesch Reading Ease
Score (FRES) for each sentence, and in that way
determined its complexity. The Swedish coun-
terpart to FRES is called Läsbarhetsindex (LIX)

(Björnsson, 1968). Since LIX only measures the
lengths of words, sentences, and ratios of long
words, additional text complexity metrics have
been developed for Swedish texts, such as the
SCREAM (Falkenjack et al., 2013; Falkenjack,
2018) and SVIT (Heimann Mühlenbock, 2013)
measures.

With MUSS, Martin et al. (2022) implemented
a method to align paraphrases based on their sim-
ilarity measures. In order to train a simplifier to
produce simplifications, as opposed to just para-
phrases, the authors employed ACCESS (Martin
et al., 2020). ACCESS enables controllable output
of sequence-to-sequence models by including spe-
cial control tokens, that—among other things—
can be used to limit the length of decoder output.

2.1 BART

BART (Lewis et al., 2020) is an autoencoder
for pretraining models for sequence-to-sequence
tasks. A BART model is trained by inputting text
corrupted with a noising function, and learning to
reconstruct the text to its original state. Hence, it is
a denoising autoencoder. BART utilises a bidirec-
tional encoder2, where random tokens are masked
and the document is encoded by considering to-
kens in both directions. For the prediction of the
masked tokens, each token is predicted indepen-
dently by considering the entire input sequence.
Since text-generation is a task that only considers
the current and previous input, a standard BERT
model is unsuitable for text generation3 (Lewis
et al., 2020). With BART, the bidirectional en-
coder is paired with an auto-regressive left-to-right
decoder. The auto-regressive decoder predicts to-
kens by considering the current token combined
with the leftward context, and can therefore gen-
erate new text.

The combination of the two components allows
BART to apply any noising function, compared
to previous autoencoders that are tailored for a
specific function (Lewis et al., 2020). The num-
ber of possible pre-training tasks that can be em-
ployed by BART is therefore also significantly
larger than, for example, BERT.

2The structure is very similar to that of BERT (Devlin
et al., 2019), but some discrepancies can be noted. For in-
stance, BART replaces ReLU with GeLU activation func-
tions. See Lewis et al. (2020) for details.

3However, the weights of a BERT model can be used
in a warm-start procedure of an encoder-decoder model to
achieve similar capabilities. See for example Rothe et al.
(2020) and Monsen and Jönsson (2021)
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3 Data

We used several different datasets for different
tasks. Table 1 provides an overview of the datasets
used.

The Stockholm-Umeå Corpus (or SUC)
(Gustafson-Capková and Hartmann, 2006) is a
balanced corpus of Swedish texts from the 1990s.
The style of text is varied, and it is sometimes used
as a baseline for standard use of the Swedish lan-
guage during the time period (see for example Pet-
tersson and Nivre (2011)). In total, the corpus con-
sists of 1, 166, 593 tokens and 74, 245 sentences.

The NyponVilja dataset consists of OCR scans
of books from Sweden’s largest publisher of easy-
to-read books, Nypon och Vilja Förlag, targeting
children and youths. Each book is graded by hu-
man experts with a readability level, where level 1
denotes a book that is the easiest to read and level
6 denotes books that provide the most challenge
for the readers.

The CCNET dataset is provided by Common
Crawl4, a non-profit organisation that uses web
crawlers to collect an enormous amount of text
data from all around the web, and makes it freely
available to the public. The organisation collects
and publishes a new data snapshot approximately
10 times a year5, each snapshot in the size range of
≈ 100–300TB whereof 20–30 TB is raw text data.

We used the Swedish part of the CC-100
dataset, previously used to recreate the training
of XLM-R (Conneau et al., 2020), for the sen-
tence alignment task. The dataset was created
by researchers at StatMT6, by applying the CC-
Net pipeline to extract datasets for 100 differ-
ent languages from the Common Crawl snap-
shots created during the time period January–
December 2018. The Swedish dataset com-
prises 80GB uncompressed text, in the form of
580, 387, 314 paragraphs. From these paragraphs,
61, 959, 899 sentences were extracted for further
pre-processing and annotation.

The data was further prepared for alignment by
roughly following the procedure in Raffel et al.
(2020). However, an additional step was intro-
duced to rearrange the data from paragraphs to
sentences. This step was added since the task is
to align sentences, not paragraphs. It was there-

4https://commoncrawl.org
5Each snapshot can be found at https://index.co

mmoncrawl.org
6https://data.statmt.org/cc-100/

fore also necessary to annotate the dataset on the
sentence level.

We used the SAPIS (Fahlborg and Rennes,
2016) pipeline to tokenise each sentence with Ef-
selab (Östling, 2018), and to annotate each sen-
tence with a subset of the SCREAM metrics pre-
viously identified by Santini et al. (2020).

PK18 (Lindberg and Kindberg, 2018) is a cor-
pus totalling 1,005 texts pairs. Each pair con-
sist of an original version of the given text,
and a simplified version of the same text. The
texts origin from four Swedish organisations
and municipal-, regional- and state departments;
Riksförbundet för utvecklingsstörda barn, ungdo-
mar och vuxna (FUB), Linköpings Kommun, Re-
gion Östergötland, and Specialpedagogiska myn-
digheten (SPSM). The simplified versions were
written by experts, and were manually aligned
with the corresponding original version of the
texts.

PK18 is currently the largest available corpus
suitable for use as a gold standard for the evalu-
ation of Swedish ATS systems. Since this work
focused on sentence-level simplification, only the
pairs aligned in a 1-1 manner were used. The re-
sult was a dataset of 467 sentence pairs, with the
purpose of being used as the test dataset for the
fine-tuned text simplification system.

4 Implementation

This section describes the creation of the pseudo-
parallel corpora and their usage in text simplifi-
cation systems. The procedure can be outlined
in four steps. First, the sentences were classified
as being of either standard or simple complexity.
Second, the sentences were aligned. Third, the
different corpora were provided as training data to
fine-tune multiple text simplification systems. Fi-
nally, the performance of each of the systems was
assessed with standard evaluation metrics.

4.1 Labelling of sentences as standard or
easy

Following Kajiwara and Komachi (2018), the sen-
tence dataset was divided into two subsets, one
with standard sentences and one with easy sen-
tences.

We used a classification model to determine if
the sentences from the CCNet dataset should be
seen as “standard” or “easy”. The model was re-
alised with the implementation of Support Vec-

115

https://commoncrawl.org
https://index.commoncrawl.org
https://index.commoncrawl.org
https://data.statmt.org/cc-100/


Dataset name Sentences Tokens Usage
SUC 74,243 1,166,593 Standard sentences

used for training of
the SVM sentence
classifier.

NyponVilja 54,938 459,540 Easy sentences used
for the training of the
SVM sentence classi-
fier.

CCNet subset 61,959,899 832,996 921 Sentences which were
classified as either easy
or standard, and then
aligned to form the
easy/standard sentence
pairs of the pseudo-
parallel corpora.

PK18 subset 467 (sentence pairs) 7,873 (standard)
6,429 (simplified)

A manually annotated
dataset that is used for
evaluation of the sen-
tence simplifier trained
on the aligned corpora.

Table 1: Overview of the different datasets used.

tor Machine (SVM) found in the Python library
scikit-learn (Pedregosa et al., 2011). We annotated
each sentence with a subset (described in San-
tini et al. (2020)) of the text complexity metrics
from SCREAM (Falkenjack et al., 2013; Falken-
jack, 2018), previously known to predict text com-
plexity in Swedish. Since the metrics vary in scale
(for instance, some metrics are ratios while other
are raw frequencies), they were standardised by re-
moving the mean and scale to unit variance, before
being used as features to represent a sentence in
the SVM.

The SVM was then trained with the standard
sentences (from SUC) and the easy sentences
(from NyponVilja) as class labels. A 10-fold
cross-validation process was applied to evaluate
the model performance. Averaged over all folds,
the SVM classifier performed with an F1-score of
82%. This SVM classifer was then used to assign
all sentences from the CCNet dataset as of either
standard or easy complexity.

4.2 Alignment of sentences

The alignment of sentences labelled in the pre-
vious section can be divided into two categories:
alignments based on similarities of individual

word embeddings between sentences, and align-
ment based on the similarity of embeddings of
whole sentences.

A common functionality between the two ap-
proaches is the ability to filter the resulting corpus
with regard to the alignment threshold. A higher
threshold would allow fewer sentence pairs to be
included in the corpus, but the pairs that were in-
cluded would be more similar according to the
cosine distance, and therefore probably of higher
quality. Inversely, a lower threshold would include
more sentence pairs, but their similarity would on
average be lower. To investigate this trade-off, cor-
pora with the alignment threshold of both 0.8 and
0.9 were created.

4.2.1 Word-based embeddings

At its core, this approach is based on the method
originally proposed by Song and Roth (2015) and
later used by both Kajiwara and Komachi (2018)
and Rennes (2020), where sentences were aligned
according to their similarity at the word level. Dif-
ferent alignment algorithms were used to perform
the task, where Kajiwara and Komachi (2018)
implemented Average (AA), Maximum (MA), and
Hungarian (HA) alignment algorithms, as well

116



as the Word Mover’s Distance (WMD). Rennes
(2020) implemented the AA, MA, and HA align-
ment algorithms.

The main difference in this work when com-
pared to the aforementioned works is the much in-
creased dataset size; an increase of several million
sentences. This brings forth some additional chal-
lenges, mainly regarding the computational com-
plexity during the alignment process. For this rea-
son, we only used the AA and MA algorithms.
Both HA and WMD resulted in a dramatic increase
in the required computations, which were not fea-
sible to perform given the available hardware and
time frame.

Average alignment similarity (AAS) calculates
the pairwise cosine similarities between all the
words of sentence x and sentence y and averages
them over the number of pairs (see Equation 1).

AAS(x, y) =
1

|x||y|

|x|∑

i=1

|y|∑

j=1

cos(xi, yj) (1)

Maximum alignment similarity (MAS) can be
seen as a refinement of the AAS, since it does only
take into account the best (maximum cosine simi-
larity) word pair between sentence x and sentence
y (see Equation 2).

MASasym(x, y) =
1

|x|

|x|∑

i=1

max
j

cos(xi, yj) (2)

Equation 2 describes an asymmetric similarity,
meaning that there will be different total similarity
scores depending on if each of the words of sen-
tence x gets paired with its maximum similarity
in sentence y, and vice versa7. Therefore, to get a
symmetric MAS, we add the averages of the asym-
metric MAS(x, y) and MAS(y, x), as described in
Equation 3.

MAS(x, y) = 1
2MASasym(x, y) + 1

2MASasym(y, x)

(3)
In earlier works, MAS has shown to be well per-

forming, and the alignment algorithm of choice of
both Kajiwara and Komachi (2018) and Rennes
(2020).

7Unless the sentences are identical, but that would of
course make the whole alignment procedure unnecessary

Another consequence of the increased amount
of data is the need to restrict the search problem
during the alignment process. Even though only
the computationally least demanding alignment al-
gorithms were used, to calculate the cosine dis-
tances in a N:M manner (that is, between every
easy sentence and every standard sentence) would
be too computationally expensive. Therefore, a
more efficient method of calculating the similar-
ities was implemented.

We used MinHashLSH8 to construct an index
from the easy sentences, and query the index with
the standard sentences to create a mapping of po-
tential sentence pairs for alignment (see step 1, 2,
and 3 in Figure 1). MinHash allows the match-
ing of sentences that share fewer features in the
syntactic sense, than for example SimHash as pro-
posed in earlier works, but still set a requirement
that the sentences have to share similarities at a
given threshold. For this work we used the Jac-
card similarity of 0.5 for a sentence pair to be
considered a possible match. This allowed for a
relatively large range of possible matches, but still
dramatically reduced the search space. The index
was constructed with a feature window of 5 and
the num perm parameter of 16.

After the construction of the index and the ex-
traction of possible matching sentences, we used
Fasttext9 pre-trained Swedish word vectors to em-
bed every word in every sentence of the match-
ing pairs. In order to reduce the memory footprint
of the vectors, we reduced the dimensions from
the default 300 to 100 dimensions. This allowed
for more vectors to be loaded in memory, and al-
lowed larger batches of computations of several
sentences at once. This significantly improved the
computational overhead for the alignment module.
The embeddings of the words in the matched sen-
tences then got passed to the alignment module
(see steps 4, 5, and 6 in Figure 1).

4.2.2 Sentence-based embeddings
For this approach, each sentence was represented
as a sentence embedding via Swedish sentence-
BERT (Rekathati, 2021). Each embedding from
the standard bucket was compared to all of the
embeddings from the easy bucket, and the pair
of standard and easy sentences with the highest

8from the datasketch package http://ekzhu.com/
datasketch/lsh.html

9https://fasttext.cc/docs/en/crawl-vec
tors.html
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Figure 1: High-level overview of the alignment of sentences with the word-level Fasttext embeddings.

cosine similarity was aligned and added to the
corpus. To speed up this process and forgo the
quadratic complexity of an exhaustive search, the
embeddings of the easy sentences were indexed
using Faiss (Johnson et al., 2019). Since Faiss re-
quires all embeddings to be loaded into memory
when constructing the index, we employed PCA to
reduce the output dimension of the sentence trans-
former model from 768 to 12810. The slight reduc-
tion in quality for each embedding was deemed to
be outweighed by the ability to use all easy sen-
tence embeddings for the index training and con-
struction.

For this work, we used the IVFFPQ-index from

10This process was based on the following code from Sen-
tenceTransformers https://github.com/UKPLab/
sentence-transformers/blob/master/exampl
es/training/distillation/dimensionality_
reduction.py

Faiss, which utilises both coarse- and fine quanti-
sation to reduce both search times and index disk
size. The index was trained with the parame-
ters nlist=2048 (the number of Voronoi cells),
nbits=8 (the number of bits to represent the
codes per each subvector), and M=8 (the number
of subvectors per vector). Additionally, each em-
bedding vector was normalised to support measur-
ing cosine distances as opposed to Euclidean dis-
tances.

For the standard sentences, each sentence em-
bedding was queried to the index, and the easy
sentence with the highest cosine similarity to the
queried standard sentence was extracted if it ad-
hered to the given similarity threshold set for the
current corpus.
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Embed-
ding type

Word
align-
ment
algo-
rithm

Threshold Sentence
pairs

Avg.
sentence
length
(easy)

Avg.
sentence
length
(stan-
dard)

BLEU SARI

- - baseline - - - 22.81 12.80
word AA 0.8 440,259 8.24 12.76 10.17 33.11
word AA 0.9 40,014 7.16 8.05 17.29 28.31
word MA 0.8 442,152 8.25 12.77 9.53 33.24
word MA 0.9 40,017 7.16 8.05 16.71 29.51
sentence - 0.8 6,560,372 7.09 12.25 4.04 30.43
sentence - 0.9 652,964 6.23 9.20 3.64 30.29

Table 2: The created corpora and their evaluation scores when used to train the simplification system.

4.3 Simplification module

Each corpus was used to fine-tune a simplifier
based on a Swedish BART model11, developed by
KBLab. They pre-trained the model on approxi-
mately 80GB of text (around 15B tokens) with the
help of Fairseq12, and subsequently converted it to
be compatible with the Huggingface Transformers
Python-library (Wolf et al., 2020). The pre-trained
model consisted of approximately 139M parame-
ters.

In our work, the fine-tuning and evaluation
pipeline was in large part built with the Transform-
ers library. Each sentence pair were tokenised
using the pre-trained model’s tokeniser with the
AutoTokenizer class and the model was
loaded using the AutoModelForSeq2SeqLM
class. For the fine-tuning, the hyperparam-
eters were consistent for all models, with
the learning rate=3e-05 and batch
size=32. Furthermore, the number of
warmup steps were 500 and the weight
decay=0.1. The optimisation algorithm was
the default AdamW and each simplification model
was fine-tuned for between 1 and 10 epochs,
depending on corpus size. In general, the hyper-
parameters were kept close to the default values,
and the ones we experimented with only showed
minor differences in performance.

From each corpus, 90% of the sentence pairs
were used as training data, and 10% were used as
validation data.

11https://huggingface.co/KBLab/bart-bas
e-swedish-cased

12https://github.com/facebookresearch/
fairseq

4.4 Evaluation

For the evaluation, we applied two metrics com-
monly used for the assessment of ATS systems –
BLEU and SARI. BLEU (BiLingual Evaluation
Understudy) (Papineni et al., 2002) is calculated
with modified unigram precision and a brevity
penalty factor between a target and reference sen-
tence. The SARI metric (Xu et al., 2016) compare
system output against references and against the
input sentence. The purpose of SARI is to quan-
tify the simplification of sentences based on words
that are added, deleted, or kept by the simplifi-
cation system. (Alva-Manchego et al., 2020) de-
scribes the intuition behind SARI as that the sys-
tem is rewarded for the addition of n-grams that
occur in any of the references but not in the in-
put, the keeping of n-grams both in the output and
the references, and the avoidance of over-deleting
n-grams.

Unfortunately the PK18 subset is limited by
its small size, but it is to the best of the authors
knowledge the only manually aligned simplifica-
tion dataset in Swedish, and future studies would
benefit from a larger, high quality dataset. For
this study, we did however use the PK18 subset
of 467 manually aligned sentence pairs to evaluate
the performance of the BART simplifiers trained
on the different generated corpora. Each sen-
tence pair was passed as test data, and BLEU and
SARI metrics were calculated. As a baseline, we
calculated the BLEU and SARI metrics for the
test dataset when no simplification was performed
(i.e. the original sentence was used as the sys-
tem output sentence and the gold standard sim-
plified sentence was used as the reference sen-
tence). For both BLEU and SARI calculations,
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we used the implementation from EASSE (Alva-
Manchego et al., 2019).

5 Results

For simplicity, the created corpora are referred
to with the notation of [embedding type] [word
alignment algorithm] [alignment threshold]. For
example, the corpus in the second row of Table 2
is referred to as word AA 0.8.

In Table 2, the results of the corpora created
with the alignment and embedding methods de-
scribed in Sections 4.2.1 and 4.2.2 are presented.
The baselines for BLEU and SARI were calcu-
lated as described in Section 4.4 (i.e. they were
calculated as if no simplification was conducted at
all).

All of the corpora performed better than the
baseline SARI. However, the best performance
was shown by both word embedding-based cor-
pora with a filtering threshold of 0.8, with a SARI
score of over 33. This is higher than the cor-
pus aligned with the help of sentence embeddings,
which had a SARI of 30.43. Of the two best-
performing word embedding-based corpora, the
one aligned with the MA algorithm performed
with a slightly higher SARI score than the AA one.

For the BLEU score all of the corpora showed
lower values than the baseline. The corpus
based on word embeddings and with an alignment
threshold at 0.9 did however show BLEU scores
fairly close to the baseline. The rest of the corpora
performed significantly lower.

It is clear that the number of sentence pairs is
closely related to the alignment threshold. For all
embedding type/word alignment algorithm com-
binations, the corpus with a higher threshold also
consisted of fewer sentence pairs than their lower
threshold counterparts.

6 Discussion

In this section the results for the different con-
ducted experiments will be discussed.

6.1 Alignment results

Inspecting the results in Table 2, a first thing to
note is that all of the models fine-tuned on the cor-
pora performed with higher SARI scores than the
baseline. Furthermore, the two corpora created us-
ing embeddings on the word level and the sentence
alignment threshold of 0.8, word AA 0.8 and

word MA 0.8, showed the highest SARI scores
(33.11 & 33.24) in this study.

On the other hand, the word AA 0.9 and
word MA 0.9 corpora showed significantly
higher BLEU scores than the rest, while at the
same time exhibiting relatively low SARI scores.
One explanation for this behaviour is that the sim-
plifications from the models fine-tuned on these
corpora often include only minor changes to the
original sentence. In some cases, no change from
the original sentence can be observed at all. As a
consequence, since few (or none) add, delete, or
keep operations can be rewarded, the SARI score
will be kept low. Inversely, the similarity between
the original and output sentences will benefit the
BLEU score. The evaluation dataset contains,
in many cases, small differences between the
standard and simplified sentence, with only small
parts of information either added or deleted. This
in turn leads to a situation where the reference and
original sentences are so similar that a (relative to
the baseline) high BLEU can be achieved by just
keeping the original sentence.

When looking at both the corpora based
on sentence embeddings (sentence 0.8 and
sentence 0.9), it can be noted that the SARI
scores are somewhat average compared to the
other corpora. The BLEU scores are however sig-
nificantly lower. One possible explanation for this
behaviour could be that BLEU is more restrictive
than SARI, in the sense that the same n-gram have
to be present in both the target and reference sen-
tence for BLEU. Since the sentence embeddings
are a semantic representation of the sentence, two
sentences could have high similarity scores on the
sentence level while having a low ratio of shared
n-grams.

Overall, the word MA 0.8 corpus performed
with the most balance between the BLEU and
SARI scores, closely followed by word AA 0.8.

6.2 Evaluation metrics

While BLEU has been used as a metric for the
evaluation of automatic text simplification sys-
tems, it is problematic to use. Sulem et al. (2018)
showed how BLEU fails to serve as a useful eval-
uation metric for sentence splitting operations.
Since the corpora created in this work are aligned
in a sentence-to-sentence manner, this point is of
less importance for this specific evaluation. How-
ever, the authors did also find that BLEU of-
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ten negatively correlates with simplicity, and may
penalise simpler sentences instead of rewarding
them. To rely on BLEU as the only metric for eval-
uation is therefore not to recommend. In this work,
its main purpose is instead to indicate the similar-
ity of the reference and system output, not nec-
essarily the difference in simplicity. For example,
the BLEU metric gives support to the observations
that the simplified sentences of the models fine-
tuned on word AA 0.9 and word MA 0.9 in
many instances is just a cut-off version of the stan-
dard sentence, where either the beginning or end
of the sentence have been removed. For this par-
ticular behaviour, the BLEU metric provided valu-
able information despite its other apparent flaws in
the task of text simplification.

Another thing to note is the low BLEU scores
overall, but in particular for the corpora based on
sentence embeddings. The low overall scores can
probably, as also observed by Kajiwara and Ko-
machi (2018), partly be attributed to the lack of
multiple reference sentences in the test dataset. An
additional contributing factor to low scores for the
corpora based on sentence embeddings is probably
the behaviour that sentences with named entities
often get aligned with sentences containing com-
pletely different entities. This leads to a corpus of
sentences with a lower ratio of exact word-to-word
matches. When evaluating simplification mod-
els fine-tuned on these corpora, the BLEU metric
would probably be more affected by this than the
SARI metric.

In recent years, much of the published research
on text simplification systems has used SARI as
an evaluation metric. One of its main merits is
that it is good at assessing a system’s ability to
perform lexical paraphrasing. (Alva-Manchego
et al., 2021) suggest using a combination of multi-
ple metrics to capture different aspects of text sim-
plification. In future studies it would be interesting
to implement a wider array of metrics, for exam-
ple BERTScore (Zhang et al., 2020) or METEOR
(Denkowski and Lavie, 2011), to further examine
the quality of the corpora.

7 Conclusion

The aim of the work presented in this paper
was to create a Swedish pseudo-parallel sentence
simplification corpus from a single monolingual
Swedish sentence corpus, and to investigate how
different methods and techniques used during the

creation influence the performance of sentence
simplification systems trained on the different cor-
pora.

From the results, it can be seen that the model
fine-tuned on a corpus created with word-based
embeddings, the Maximum Alignment algorithm,
and an alignment threshold of 0.8 performed with
the best SARI and acceptable BLEU scores. It is
however unclear how much the different indexing
methods impacted the performance of the align-
ment process, and exactly how the quality of the
corpora was affected.

Both the investigated methods of creating
pseudo-parallel corpora for sentence simplifica-
tion show promising results. Future studies should
conduct a further investigation on different param-
eter choices, mainly when constructing the indices
to help the alignment process, and explore how
they impact the quality of the corpora. The re-
sulting corpora should also be thoroughly evalu-
ated with regard to different aspects of text simpli-
fication; with a combination of qualitative evalu-
ations, additional evaluation metrics, and a larger
test dataset.
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Abstract

We study the performance of machine
learning techniques to the problem of iden-
tifying speakers at meetings from anony-
mous minutes issued afterwards. The data
comes from board meetings of Sveriges
Riksbank (Sweden’s Central Bank). The
data is split in two ways, one where each
reported contribution to the discussion is
treated as a data point, and another where
all contributions from a single speaker have
been aggregated. Using interpretable mod-
els we find that lexical features and topic
models generated from speeches held by
the board members outside of board meet-
ings are good predictors of speaker iden-
tity. Combining topic models with other
features gives prediction accuracies close
to 80% on aggregated data, though there is
still a sizeable gap in performance com-
pared to a not easily interpreted BERT-
based transformer model that we offer as a
benchmark.

1 Introduction

Attributing a text or a part thereof to an agent is
a well-established sub-field of computational lin-
guistics. Apart from the traditional task of author
attribution, it has also been applied in social media
studies, to the identification of speakers in fiction
dialogues, and for detection of plagiarism. In this
work, we study a new but related problem: identify-
ing speakers at meetings from anonymous minutes
issued afterwards.

The data at hand are minutes, in Swedish, from
the monetary policy meetings of the Riksbank’s

Executive board. The main monetary policy objec-
tive is to keep inflation low and stable, close to the
target of 2 percent. The key issue at the meetings
is to decide on the policy rate, and, since the global
financial crisis in 2007-2009, on purchases of fi-
nancial assets. Minutes from meetings like these
are not only common for central banks but also,
for instance, corporates, c.f. (Agarwala et al., 2022;
Schwartz-Ziv and Weisbach, 2013).

Until June 2007 the minutes of the Swedish
Riksbank’s monetary policy meetings gave an
anonymised account of the deliberations. Since
then, however, the identity of a board member is
revealed in the minutes so that it is possible to
know which member expressed which opinion dur-
ing the meeting. This change towards increased
transparency is of great interest to researchers on
economic policy-making and there is a growing
literature in this area (Hansen et al., 2018). It could
potentially affect board members’ incentives and
behaviour in different ways, not least because the
minutes are published only around two weeks after
a meeting.

Following the theoretical literature increased
transparency can have different effects. It can make
agents prepare more thoroughly – a disciplinary ef-
fect (Holmström, 1999). It can also make agents
behave differently due to career concerns, either by
making them less inclined to oppose to the major-
ity view – a herding, or conformism, mechanism
– or by making them instead want to distinguish
themselves more from others – an anti-herding or
exaggeration mechanism. It may also make agents
more committed to stick to a specific opinion once
they have expressed it and less willing to change
their mind, even if circumstances change (Falk and
Zimmermann, 2018).
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Swedish English translation
Vice riksbankschef A inledde diskussionen Deputy Governor A started the discussion
med att uttrycka sitt stöd för det B sade by expressing his support for what B had said
om behovet av att ha en bredare ansats när about the need for a broader approach when
man analyserar skälen till den låga inflationen. analysing the reasons for the low inflation rate
Här är det, menade han, viktigt att ta hänsyn Here, he said, it is important to consider
till både efterfråge- och utbudsfaktorer. Att factors of both demand and supply. That
fokus varit ensidigt kan möjligen vara förståeligt there has been a one-sided focus may be under-
i länder som befunnit sig i krisens epicentrum, standable in countries that have been at the
fortsatte A. Där har stora negativa effekter på epicentre of the crisis, A continued. There great
produktion, sysselsättning och arbetslöshet helt negative effects on production and employment
dominerat både debatten och den ekonomiska have dominated both the debate and
politikens inriktning. the direction of economic policies.

Table 1: Extract from a contribution.

Here we are not concerned with transparency
effects as such, rather we want to find out what
features and methods would enable us to trace the
behaviour of individual members when conditions
are changed, from a state where views, but not
identities, are reported in the minutes, to a state
where both identities and views are revealed. The
study can be seen as a first contribution to the de-
velopment of automatic tools that can support trans-
parency studies by analysing minutes of meetings
created under different conditions.

In this study we investigate the problem of pre-
dicting agent identities under a supervised con-
dition, using minutes from the period Septem-
ber 2007 to April 2018 for experiments. During
this period the board has had six members at any
given time, but as members have limited periods
of service, altogether twelve people have served
on the board. We are looking for features of the
board members that can be assumed to be rela-
tively stable over time, and so be used for iden-
tification. The study is thus an experiment in de-
anonymisation, which has been defined as a re-
verse engineering process in which de-identified
data are cross-referenced with other data sources
to re-identify the personally identifiable informa-
tion1. The data to be re-identified are participants’
contributions to the discussions preceding the vote
on policy rate as they are reported in the minutes.
The primary data used for cross-referencing are
speeches made by the members to private and pub-
lic audiences outside of board meetings. Both the
minutes of the meetings and the speeches are pub-

1https://codata.org/rdm-glossary/
de-anonymization/

licly available on the Riksbank’s website.
The minutes are compiled by a secretary who has

access to recordings of the meeting. Discussions
and decisions are reported in detail using a formal
writing style where sentences are well-formed and
punctuation formal. For an example, see Table 1.
During a meeting a member may make several
contributions and the start of a new contribution
is usually marked in the minutes by a reference
including the title and full name of the member.
A contribution can be short, only a few sentences,
but sometimes as long as several paragraphs. The
minutes may sometimes partly be based on written
notes provided by members but we do not know to
what extent this happens nor how much editing is
done.

The aims of the study are three-fold: 1) to com-
pare the performance of several machine learning
methods on this task, all of which have been suc-
cessfully applied to attribution tasks in the past; 2)
to identify features of members and their contribu-
tions that can aid de-anonymisation; 3) to establish
a benchmark for what can likely be achieved on
anonymised minutes under an unsupervised condi-
tion.

The methods investigated are:

• Burrows’ Delta (Burrows, 2002)
• A Support Vector Machine (SVM)
• A Multi-layer Perceptron (MLP)
• Two ensemble methods of SVMs and MLPs
• A Swedish BERT model (Malmsten et al.,

2020) fine-tuned for sequence classification

The paper is organised as follows. In section 2
we report related work. In section 3 we describe
our data and the preprocessing we have applied. In
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section 4 we describe the features we have used
in the study and in particular the topic model we
have used. Section 5 reports our experiments and
the final sections discuss our results and report our
conclusions.

2 Related work

We have not been able to find studies that per-
form speaker attribution under equal circumstances.
A study on cabinet meetings (Ruppenhofer et al.,
2010) had the goal of annotating all sentences of
cabinet protocols with its speaker. They used a rule-
based approach exploiting properties of German
morphology. Speaker attribution of sentences has
also been studied on dialogues in literature, where
again the task is to annotate sentences or utterances
with speaker information, where this is not explicit.
An example is He et al. (2013) who applied su-
pervised machine learning to the task. We do the
same in this study but the genre is different and our
data points are usually much longer than a single
sentence.

Still, the task has similarities with closed-class
author attribution. A taxonomy of six feature cat-
egories has been proposed for this task by Sta-
matatos (2009): character, lexical, syntactic, struc-
tural, semantic, and application-specific. The first
two types have the advantage that they can be com-
puted with very little analysis of the text; they in-
clude frequency counts of function words, punctu-
ation marks, and short ngrams. Syntactic features
can refer to part-of-speech tags or ngrams of these.
Structural features include word length and sen-
tence length as well as layout features.

Features requiring detailed analysis of texts,
such as full syntactic parsing and topic modelling
have also been used. Zhang et al. (2014) used de-
pendency parsing as well as morphological and
syntactic features, while Savoy (2013) employed
topic modelling as a basis for feature selection.
Seroussi et al. (2014) showed how variants of topic
modelling can be used to predict authorship and
Sari (2018) used topic modelling to analyse which
features are effective under different conditions,
showing content-based features to be more effec-
tive when the diversity of topics in the document
set is more varied.

Given a set of selected features that can be
used for profiling documents as well as authors,
a method is needed to decide among the authors
for a given document. Well-known methods based

on a selection of frequent words are Chi-Square
distance (Grieve, 2007), Burrows’s Delta (Burrows,
2002), and Kullback-Leibler Distance (Zhao and
Zobel, 2007). All of these compute a distance met-
ric where the author model with the smallest dis-
tance to the document model is proposed as the
most likely author. Among machine learning meth-
ods k-nearest neighbours and support vector ma-
chines have been tried, often with good results.

Neural methods have also been applied, some-
times with mixed results. The best overall sys-
tem at the PAN-2015 author identification task was
a character-level RNN language model (Bagnall,
2015), while the neural systems at the cross-domain
author identification task at PAN-2018 did not com-
pete well (Kestemont et al., 2018). Most systems
at that event used SVMs while the best system was
an ensemble system, combining features of three
kinds with logistic regression.

More recently, there have been a few examples
of author attribution in which the Transformer ar-
chitecture (Vaswani et al., 2017), which does au-
tomatic feature extraction, has been utilised. For
example, Fabien et al. (2020) introduced BertAA,
a fine-tuned BERT language model for author-
ship classification. In experiments, the pre-trained
model was fine-tuned on three different datasets in
the domains of emails, blogs and movie reviews,
respectively. State-of-the-art performance was ob-
tained on all three datasets either with plain BertAA
or with BertAA with additional features.

3 Data and preprocessing

The data collected at The Riksbank have two main
sections: minutes from monetary policy meetings
and public speeches given by Executive Board
members. The minutes are from two periods: One
batch starting in February 2000 and ending in May
2007, and another beginning in June 2007 and end-
ing in April 2018. Minutes from the earlier period
are truly anonymous, while the minutes from the
later period have been anonymised for the purposes
of this study. An overview of the data can be found
in Table 2.

The speeches have been collected during a some-
what longer period, from 1997 forward. The
speeches mostly address the current economic sit-
uation and are addressed to a variety of audiences
such as banks, regional authorities, chambers of
commerce, and parliamentarians.

Both minutes and speeches were originally in
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either doc- or PDF-format. Texts were extracted
from the PDF-files using the Apache Tika parser2

accessed via a Python port3. From the minutes we
then used regular expressions to remove data that
was not text such as multiple empty lines, page
headers, pagination and table cell data.

The outline of the minutes has changed over the
years but is typically divided into four numbered
sections. Some minutes have less than four sec-
tions and a few of them have more. Each section
is supplied with a heading that starts with an initial
’§’-sign. The contributions are found in a sepa-
rate section with a heading such as Penningpolitisk
diskussion, ’Discussion on monetary policies’ or
just Diskussion. This section is the one from which
we extract contributions for the experiments.

A contribution from a board member in the min-
utes is as a rule introduced with the member’s ti-
tle, e.g., Förste vice riksbankchef, ’First Deputy
Governor’ and full name. All text following this
introductory phrase and lasting until a new intro-
duction of the same type is encountered has been
allocated to a single contribution. A member may
speak at a meeting on several occasions and so we
have also collected these together as aggregated
contributions. The total number of individual con-
tributions is 900, and the aggregated contributions
amount to 385.

Data type Numbers
Speeches 399
Meetings / Minutes 65
Members present at meetings 5-6
Members during 2007-2018 12
Individual contributions 900

min length (in tokens) 11
max length (in tokens) 2760

Aggregated contributions 385
min length (in tokens) 68
max length (in tokens) 5095

Individual contributions (BERT) 1738
min length (in tokens) 13
max length (in tokens) 512

Aggregated contributions (BERT) 1434
min length (in tokens) 32
max length (in tokens) 512

Table 2: Overview of the data used in the study.

In most meetings six members including the
Governor are present. There are a few meetings
with fewer members present. It does not happen
that a member does not contribute to the discussion
at all. Some members have been present at the

2https://tika.apache.org/
3https://github.com/chrismattmann/tika-python

majority of meetings, others at only a few e.g., be-
cause their period as director ended. The minutes
and the speeches have all been parsed by the Sparv
parser (Borin et al., 2016). The information ob-
tained from Sparv includes lemmas, part-of-speech
tags and word senses, which we have used in sub-
sequent processing.

The speeches, all in edited written form, are
known to be given by certain members. All text
of a speech, with the exception of some metadata
information supplied in the header, has been kept.
The main processing of the speeches is word based
(frequency counts, topic modelling) and for this
reason, we did not clean them to the same extent as
the minutes.

For fine-tuning the pre-trained BERT model, we
used the raw texts from the minutes as data (the
speeches were not used in this setting), masking
titles, names and gendered pronouns. The masking
was done assuming such information could steer
the model towards certain predictions, trivialising
the task and hampering generalisation to the truly
anonymous setting where this information is ab-
sent.

For both the individual and the aggregated data,
the length of the contributions varies significantly.
As seen in Table 2, the aggregated contributions
range from 68 to 5095 tokens. Due to the lim-
itations of BERT handling long text sequences,
this posed a problem. Other architectures, such
as the Longformer (Beltagy et al., 2020), have been
proposed to mitigate this problem. However, in
Swedish, BERT is currently the best option. What
we did in our experiments, was to chunk the long
texts into several smaller texts. This was done by
adding up sentences of a text until the addition of
one more sentence would yield a text with more
than 512 tokens.

4 Features used in the experiments

We have framed our problem as a closed set classifi-
cation task and applied a number of different meth-
ods. Burrows’ Delta uses lexical features, which
are detailed below, in Section 5.1, and the BERT
model uses its own feature selection. However, for
the SVM and MLP models, we have investigated
various properties with the potential to differentiate
between members. For each of the properties, one
or more features were defined. The focus is on
properties and features that relate to content and
application.
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In the rest of this section we motivate the choice
of features.

4.1 Topic modelling

We assume that the topics members address in their
speeches are more or less the same as those they
address in meetings as they have different back-
grounds, affiliations and areas of expertise. We
used lemmatized content words for the topic mod-
elling, where we defined a content word as a word
with one of the part-of-speech tags adjective, ad-
verb, foreign word, noun, proper noun, and verb
as decided by the Sparv parser. Further filtering
was made by applying a frequency threshold and
a threshold for spread. We trained multiple topic
models with different hyperparameters, we used
the NPMI coherence measure (Röder et al., 2015)
that estimates coherence among word pairs in a
topic based on their pairwise associations, as guide
to the final topic model.

After a number of trials we found that the full
data set of speeches could best be captured by
eleven topics. Each topic constitutes a feature of
its own. As a form of evaluation, we asked two re-
searchers at the Riksbank to suggest short descrip-
tions of the topics, based on the ten most probable
terms for each topic. Although a few of the top-
ics were more difficult than the others to describe
convincingly, they ended up with reasonable de-
scriptions for all of them, shown in Table 3. The
fact that the topics are varied and interpretable sug-
gests to us that the model has merits.

4.2 Sentiment analysis

Some members may have an overall negative out-
look on the economy and/or the proposals dis-
cussed in board meetings, while others have a more
positive one. We capture this aspect via sentiment
analysis, where sentiments from the speeches are
compared to sentiments expressed at meetings.

For sentiment analysis we have used a Swedish
version of Vader4 (Hutto and Gilbert, 2014) that
also considers a word’s sense. Vader is a lexicon
and rule-based sentiment analyser. The lexicon
in English Vader comprises 5500 lexical entries
with sentiment scores between +5 and -5. We
used the Swedish SenSALDO 0.2 sentiment lexi-
con (Rouces et al., 2019) with sentiment scores -1,
0 and +1, that comprises 12287 lexical entries of
which 8893 are unique words. It has an accuracy of

4https://github.com/cjhutto/vaderSentiment

0.89 (Rouces et al., 2019). Word sense disambigua-
tion with the SenSALDO 0.2 lexicon is achieved
using the Sparv parsed texts.

Vader also uses booster words, such as amaz-
ingly, to further refine the sentiment analysis. The
booster dictionary used in our analyses is a slightly
enhanced version of the Swedish dictionary used
for sentiment analysis of consumer support e-mail
conversations and comprises 89 items (Borg and
Boldt, 2020). That version of Vader uses a smaller
lexicon, the Swedish sentiment lexicon (Nusko
et al., 2016). It was evaluated showing an 88%
correspondence with human annotators.

Vader produces a compound score for each sen-
tence, by summing the valence scores of the words
according to their identified sense and normalise
this sum to be between -1 (most negative) and +1
(most positive). This gives one feature. We also
calculated the amount of positive, negative or neu-
tral sentences yielding another three features. For
this, we use the recommendations that a sentence
has positive sentiment if the compound score is
≥ 0.05, neutral if the compound score is between
-0.05 and 0.05 and negative if it is ≤ −0.054.

4.3 Application-specific features
Some members use more words than others. We
capture this aspect by counting the number of
words that each member uses, and by computing a
member’s share of words at a meeting. The relative
share of a member’s contribution gives a single fea-
ture. We also assume that the speaking order that is
reported in the minutes reflects the actual speaking
order at the meeting. If this order is dependent on
the board member’s status, or role, it could be fairly
stable over time, or only change gradually. This
aspect gives rise to six features corresponding to
being the first speaker, the second speaker, and so
on.

It is known for each member whether they have
entered a reservation against the majority decision.
We assume that members may differ in their inci-
dence of entering reservations. The probability of
entering a reservation is used as a feature.

4.4 Feature selection
Table 4 shows the properties we have investigated.
Topic distribution and Sentiments cover the con-
tents of contributions while the rest are application-
specific capturing aspects of members’ meeting
behaviour. For each property, we first determined
whether it could have some predictive value on its
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Topic Description Most probable terms
0 Monetary policies general styrränta, inflationsförväntning, inflationspolitik, mena, nominell

policy rate, expectation on inflation, inflation targeting, mean, nominal
1 Housing and private debt skuldsättning, skuld, bostadspris, bostad, bostadsmarknad

indebtness, debt, price of housing, housing, housing market
2 Financial stability and macro myndighet, verktyg, institut, makrotillsyn, regelverk

prudential public authority, tools, institute, macro supervision, regulations
3 Public debt and quantitative easing balansräkning, obligation, statsobligation, avkastning, miljard

balance sheet, bond, gobernment bond, returns, billion
4 Transparency and communication direktion, möte, öppenhet, prisnivå, kommunikation

Executive board, meeting, transparency, price level, communication
5 Labour market arbetsmarknad, produktivitet, vänta, inflationsförväntning, inflationsrapport

labour market, productivity, wait, expectation on inflation, inflation report
6 Monetary policy general II tillgångspris, resursutnyttjande, inflationsmålspolitik, mena, nominell

asset price, resource utilization, inflation targeting, mean, nominal
7 International trade euro area euro, eu, emu, konkurrens, handel

Euro, EU, EMU, competition, trade
8 International trade general offentlig, sparande, diagram, bytesbalans, export

public, savings, diagram, balance of payments, export
9 Payment system betalning, pengar, kontanter, betalningssystem, infrastruktur

payment, money, cash, payment system, infrastructure
10 Inflation targeting and the policy resursutnyttjande, diagram, räntebana, stabilisera, hållbar

rate path resource utilization, diagram, policy rate path, stabilize, sustainable

Table 3: Descriptions of the produced topics with the five most probable terms.

own using both MLP- and SVM-systems5. It can
be seen from Table 4 that all selected properties
give performance above a random baseline which,
for six participants present in each meeting, would
give a theoretical accuracy of 16.7%. Topic dis-
tribution is by far the property that has the best
results.

In total, our feature set consists of 37 features.
Since we are interested in how these features im-
pact member classification, we employed two dif-
ferent feature selection methods. The first approach
is a Recursive Feature Elimination (RFE) which
is able to find a set of features that carry the most
predictive power. The second is based on a Python
implementation6 of the Boruta algorithm (Kursa
and Rudnicki, 2010). The rationale behind using
Boruta is the algorithm’s ability to provide a set of
relevant features, contrary to the minimal optimal
feature sets provided by for example RFE. This
means that we with Boruta are able to get a set
of all features that have some impact on the pre-
diction, while with RFE we can choose to extract
the N most important features. By using a combi-
nation of these algorithms, we can therefore gain
knowledge about which features carry the most
predictive power if we wanted to slim down the
classification model, but also a picture of which of
the features provide at least some information for

5See section 5.2 for a description of the experimental setup
6https://github.com/scikit-learn-contrib/

boruta_py

the classification task.

5 Experiments

This section elaborates on the details of the differ-
ent systems and their performance. All results are
shown in Table 5.

5.1 A traditional system: Burrows’ Delta

For comparison, we tested an implementation of
Burrows’ Delta under different conditions. Three
different feature sets were used, one relying solely
on the most frequent words in the corpus of
speeches, another where proper nouns were re-
moved, as these include references to the speaker
we wish to identify, and a third relying on the most
frequent content words, where a content word was
defined as a noun, verb or adjective. Following
Evert et al. (2015) we also looked at the effect of
normalising the feature vectors and compared two
different measures: Manhattan distance and Cosine
similarity.

Initial tests were made on a corpus where all
contributions from one member had been collected
into one text yielding a total of 12 texts. These
suggested that the frequency-based features gave
slightly better results than the other two, with 7 out
of 12 members being predicted correctly, and 9 out
of 12 being included in the two first predictions.
This selection of features was then used for predict-
ing the speaker of contributions at meetings. The
number of features was also varied showing clear
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Property Features Accuracy (SVM) Accuracy (MLP)
Length (absolute) 1 30.57% 26.67%
Length (relative) 1 23.19% 28.33%
Order (only position) 1 25.13% 21.25%
Order (probabilities) 6 42.31% 40.97%
Reservation 1 23.10% 21.25%
Sentiments (compound) 1 18.77% 16.45%
Sentiments (ratios) 3 23.11% 16.06%
Topic distribution 11 63.70% 62.84%
Burrows Delta 12 24.86% 29.34%

Table 4: Properties used and their performance as single predictors for the SVM and MLP models.

improvements from 300 features upwards with a
peak around 500. Using normalised feature vectors
and cosine distance consistently gave better perfor-
mance by two or more points. The best results are
reported in Table 5.

We observe that the best result for the aggregated
contributions is close to that for the topic models.
We also see that results drop when predicting speak-
ers of individual contributions but are still far above
chance. Adding more features does not generally
improve predictions.

We can also note that the performance of using
the Burrows’ Delta models for different speakers
to generate features to be included in an SVM-
classifier differs greatly from using the standalone
system for classifying members with Burrows’
Delta.

5.2 The SVM and MLP systems

Each type of feature was first tested individually to
see whether it could beat a random baseline. The
results are reported in Table 4.

The systems, written in Python, use the scikit-
learn library (Pedregosa et al., 2011), with the im-
plementations of support vector machines (SVC)
and multilayer perceptrons (MLPClassifier) as the
algorithms for the classification task.

We used a 5-fold cross-validation procedure to
randomly split the data into training and test data.
Since we wanted to do the prediction of the con-
tributing members on a meeting level, we let the in-
dividual meetings be the unit assigned to either the
train or test portion of each fold, with all member
contributions extracted from the particular meeting.
In the cross-validation procedure, it is however
customary to balance the classes (in this case, the
members) evenly across all folds, but as a conse-
quence of the importance of keeping the integrity
of each meeting, it was not possible to achieve a
perfect balance of classes in all folds.

In each training fold, we performed a second 5-

fold cross-validation procedure to optimise the hy-
perparameters of the selected classification model.
For the SVM, we optimised the C and gamma
values with a radial basis function (RBF) kernel.
The MLP was optimised with its hidden layer
sizes and the L2-regularisation term (named al-
pha in scikit-learn) for the Limited Memory Broy-
den–Fletcher–Goldfarb–Shanno (lbfgs) solver.

We implemented a custom prediction step with
two restrictions for the classification task, namely,
for each meeting;

• Only members present in the meeting can be
predicted.

• A member can only be predicted once per
meeting.

5.3 Ensemble systems

Using the same features and the two restrictions
just described, two ensemble systems of SVMs and
MLPs were implemented7. The first is a soft vot-
ing system, where both an SVM and an MLP are
trained as described in section 5.2. At the predic-
tion step the classification probabilities, for each
possible board member, of both the SVM and MLP
are added together and averaged between the two
classifiers. The board member with the highest av-
erage probability is then subsequently selected as
the classifier output for the given meeting. Since
we noticed subtle differences in how the SVM and
MLP predicted certain meetings, the rationale be-
hind this approach was to try to make a more robust
prediction, leveraging the strengths of both classi-
fiers.

The second ensemble system is a hybrid of an
MLP and an SVM, following the method used in
Garg et al. (2021). The system consists of an MLP
that is trained on the training splits in a regular
fashion, but whose weight matrix from the final

7The cross-validation and hyperparameter optimisation
were performed in the same fashion as described in section 5.2

130



hidden layer is used as features by an additional
SVM classifier.

5.4 BERT-based system

As with the SVM and MLP systems, we used a
5-fold cross-validation procedure to randomly split
the data into training and test data. The fine-tuning
procedure was implemented using Transformers
(Wolf et al., 2020) and PyTorch (Paszke et al.,
2019). To make this method comparable with the
other methods described, we combined the predic-
tions for smaller chunks of a given contribution into
one single prediction. Thus, we had to keep track
of the contribution ID when splitting into training
and test data and make sure that all smaller chunks
for a given contribution were in the same partition.
The combining was then done by summing the raw
output scores from the model for all chunks of a
given contribution before picking the class with the
highest score as the prediction. This way, we got a
single prediction for each contribution.

For both the aggregated and individual data, we
did experiments of two kinds, one where only the
members present at a particular meeting were con-
sidered when aggregating predictions and one that
disregarded the notion of meetings. The former set-
ting is similar to the setting used for the SVM and
MLP systems, with the only difference being that
each member in a meeting could now be predicted
multiple times. In the latter case, no information
about what members participated at a particular
meeting was given to the model. Thus, the model
had to predict the member from the pool of all 12
members. Surprisingly, at the end of training for
each fold, the results were exactly the same in all
cases but one where the first approach had an in-
crease in accuracy of approximately 1% compared
to the second approach. This effect was seen in
both the aggregated and individual data.

In each fold, the data was prepared as input to
the BERT model by retrieving input ids, and the at-
tentions mask for each batch of sequences. A batch
size of 8 was used, and the model was fine-tuned
for 10 epochs on a Tesla P100-PCIE-16GB GPU
with a learning rate of 10−5. 10 epochs seemed
to be suitable for this problem and dataset, as loss
converged without causing overfitting.

6 Results

The results for classification accuracy of all tested
systems are presented in Table 5. For all systems,

System Contributions
Aggregated Individual

Delta, standard, 500feats 55.54% 33.89%
Delta, normalised, 500feats 60.33% 42.41%
SVM (RFE) 78.20% 54.18%
SVM (Boruta) 79.70% 57.55%
SVM (All) 78.56% 56.98%
MLP (RFE) 76.22% 52.45%
MLP (Boruta) 77.15% 54.15%
MLP (All) 74.66% 54.55%
Soft voting (RFE) 77.25% 54.50%
Soft voting (Boruta) 77.95% 55.83%
Soft voting (All) 76.48% 57.52%
Hybrid (RFE) 78.71% 54.78%
Hybrid (Boruta) 78.50% 54.66%
Hybrid (All) 79.31% 55.70%
BERT 94.81% 83.78%

Table 5: Results of the classification accuracy for
different systems, feature sets and types of member
contributions.

as expected, the aggregated contributions score
higher than the individual contributions. Classi-
fying aggregated (and longer) contributions are
naturally a less complex problem compared to in-
dividual contributions due to the reduced number
of classifications to be performed per meeting. It
should however be noted that the tested systems,
especially the system based on BERT, are able to
handle this change of scope in an acceptable man-
ner considering the increased task complexity.

Furthermore, the results indicate that the SVM
and MLP classification methods performed signif-
icantly better than the random baseline and that
the differences between these methods were rela-
tively small. When including all the features listed
in Table 4, we saw a lower classification perfor-
mance for all feature-based systems, compared to
when we included only a subset of the features (see
Table 5). The best results were generally found
with the subset of features selected by the Boruta-
algorithm, referred to as Boruta in Table 5. The
best performance of any feature based system can
be seen in the standalone SVM system with an ac-
curacy of 79.70% on the aggregated data and boruta
feature selection. The best performance of the En-
semble systems were found in the hybrid system
with an accuracy of 79.31%, followed by the soft
voting system with an accuracy of 77.95%. The
standalone MLP system performed the generally
lowest scores, with the highest being 77.15%,

An even smaller subset of features (the RFE fea-
ture subset), including the 10 features with the most
predictive power according to the Recursive Fea-
ture Elimination, were able to perform almost on
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par with the other feature sets. This also aligns
with what was seen when each feature was tested
individually (see Table 4), where some of the fea-
tures scored close to the random baseline. The
features present in the subset created with RFE,
topics, length (absolute), and speaking order,
were also some of the highest performing individ-
ual features. It should however be noted that not all
of the topics are included among the top 10. Three
of the topics are not (topic 6, topic 7, and topic 9).
These topics were also some of the few features
that most often were omitted as features by the
Boruta algorithm. All this taken into consideration,
we can conclude that a small number of features
carry great predictive power for the classification
task.

The fine-tuned BERT model obtained 94.81%
accuracy for all folds combined on the aggregated
data, and an accuracy of 83.78% on the individual
data. Since the data used for the BERT model had
to be split into smaller chunks to fit the input limit
of BERT, we tried the same chunking approach
for all the non-BERT systems. Since some of the
aggregated contributions were fairly long (see Ta-
ble 2) the total number of contributions increased
significantly, while also rendering the restriction
of only being able to predict a member once per
meeting less effective. The SVM, MLP, and ensem-
ble systems did therefore perform worse with this
data chunking approach, resulting in accuracies
between 55-58% on the aggregated data.

7 Conclusions and discussion

In this work, the main purpose has been to investi-
gate a set of interpretable features for identifying
speakers from minutes. With the aid of feature
selection algorithms, we are able to pin down the
most important features, while also excluding some
of the less relevant, and simultaneously improve
the classification performance. Topic models gener-
ated from speeches given by directors of the board
of The Riksbank turned out to be a good predictor
of what they say in board meetings. Combined with
other features such as wordiness, speaking order
and sentiment analysis we could reach an accuracy
close to 80% in predicting which director said what.
Not surprisingly the fine-tuned BERT model has
the best performance in predicting which board
member made a certain contribution. This is in line
with the performance of similar models in other at-
tribution tasks (cf. Fabien et al. (2020)) and points

to Transformer-based models being good feature
extractors. While we have only investigated one
corpus of minutes, the methods we’ve tried have
a wider application; similar types of meetings and
minutes are common in financial and other public
institutions where transparency and accountability
is an issue.

The success of the BERT-model suggests that
members are consistent in their argumentation
across meetings. An interesting aspect is the fact
that the minutes of the meetings are not written by
the members, which should make this task harder
than standard author attribution. Given this, we find
that the BERT model provides a strong benchmark
for de-anonymisation of minutes.

The BERT-model, unlike the features used for
the other models, is not easily interpretable. Yet,
as new techniques for interpreting models such
as BERT are emerging, we would like to investi-
gate what the BERT-model actually considers when
making predictions. For example, whether it looks
at stylistic features in how the minute taker writes
about a particular member or features more related
to the content and topics of the contributions.

The properties, coupled with analysis of the over-
all differences of the minutes under the two con-
ditions, are likely to be helpful in future research
on de-anonymising the minutes from the earlier
period. Although members are not referred to by
name there is a similar structure to the minutes
and the discussions so that contributions can be
identified. While performance may be lower for
all models when applied to minutes for the earlier
period, the data obtained from the non-anonymous
minutes could then be used for training. For ex-
ample, we know from confusion matrices which
speaker models are often confused.

There are features we have not yet investigated
such as members’ style of argumentation, or rhetor-
ical structure, which potentially could be helpful.
As we now also have identified the topics discussed
during the meetings, we can analyse members’ at-
titudes, i.e. sentiments, towards each topic. This
can also be included in our model. An analysis
of the parse trees of contributions could also yield
features at a more fine-grained level than topics,
such as individual members’ hobby-horses.
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Abstract

Resource-efficiency is a growing concern
in the NLP community. But what are the
resources we care about and why? How do
we measure efficiency in a way that is reli-
able and relevant? And how do we balance
efficiency and other important concerns?
Based on a review of the emerging liter-
ature on the subject, we discuss different
ways of conceptualizing efficiency in terms
of product and cost, using a simple case
study on fine-tuning and knowledge distil-
lation for illustration. We propose a novel
metric of amortized efficiency that is better
suited for life-cycle analysis than existing
metrics.

1 Introduction

Resource-efficiency has recently become a more
prominent concern in the NLP community. The
Association for Computational Linguistics (ACL)
has issued an Efficient NLP Policy Document1 and
most conferences now have a special track devoted
to efficient methods in NLP. The major reason for
this increased attention to efficiency can be found
in the perceived negative effects of scaling NLP
models (and AI models more generally) to unprece-
dented sizes, which increases energy consumption
and carbon footprint as well as raises barriers to
participation in NLP research for economic reasons
(Strubell et al., 2019; Schwartz et al., 2020). These
considerations are important and deserve serious
attention, but they are not the only reasons to care
about resource-efficiency. Traditional concerns like
guaranteeing that models can be executed with suf-
ficient speed to enable real-time processing, or with
sufficiently low memory footprint to fit on small
devices, will continue to be important as well.

*Equal contribution to this work.
1https://www.aclweb.org/portal/content/efficient-nlp-

policy-document

Resource-efficiency is however a complex and
multifaceted problem. First, there are many rele-
vant types of resources, which interact in complex
(and sometimes antagonistic) ways. For example,
adding more computational resources may improve
time efficiency but increase energy consumption.
For some of these resources, obtaining relevant
and reliable measurements can also be a challenge,
especially if the consumption depends on both soft-
ware and hardware properties. Furthermore, the
life-cycle of a typical NLP model can be divided
into different phases, like pre-training, fine-tuning
and (long-term) inference, which often have very
different resource requirements but nevertheless
need to be related to each other in order to obtain a
holistic view of total resource consumption. Since
one and the same (pre-trained) model can be fine-
tuned and deployed in multiple instances, it may
also be necessary to amortize the training cost in
order to arrive at a fair overall assessment.

To do justice to this complexity, we must resist
the temptation to reduce the notion of resource-
efficiency to a single metric or equation. Instead,
we need to develop a conceptual framework that
supports reasoning about the interaction of differ-
ent resources while taking the different phases of
the life-cycle into account. The emerging literature
on the subject shows a growing awareness of this
need, and there are a number of promising propos-
als that address parts of the problem. In this paper,
we review some of these proposals and discuss is-
sues that arise when trying to define and measure
efficiency in relation to NLP models.2 We specifi-
cally address the need for a holistic assessment of
efficiency over the entire life-cycle of a model and
propose a novel notion of amortized efficiency. All
notions and metrics are illustrated in a small case
study on fine-tuning and knowledge distillation.

2Most of the discussion is relevant also to other branches
of AI, although some of the examples and metrics discussed
are specific to NLP.
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2 Related Work

Strubell et al. (2019) were among the first to dis-
cuss the increasing resource requirements in NLP.
They provide estimates of the energy needed to
train a number of popular NLP models, including
T2T (Vaswani et al., 2017), ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019) and GPT2 (Rad-
ford et al., 2019). Based on those estimates, they
also estimate the cost in dollars and the CO2 emis-
sion associated with model training. In addition to
the cost of training a single model, they provide
a case study of the additional (much larger) costs
involved in hyperparameter tuning and model fine-
tuning. Their final recommendations include: (a)
Authors should report training time and sensitiv-
ity to hyperparameters. (b) Academic researchers
need equitable access to computation resources.
(c) Researchers should prioritize computationally
efficient hardware and algorithms.

Schwartz et al. (2020) note that training costs
in AI increased 300,000 times from 2012 to 2017,
with costs doubling every few months, and argue
that focusing only on the attainment of state-of-the-
art accuracy ignores the economic, environmental,
or social cost of reaching the reported accuracy.
They advocate research on Green AI – AI research
that is more environmentally friendly and inclu-
sive than traditional research, which they call Red
AI. Specifically, they propose making efficiency a
more common evaluation criterion for AI papers
alongside accuracy and related measures.

Hershcovich et al. (2022) focus specifically on
environmental impact and propose a climate per-
formance model card that can be used with only
limited information about experiments and underly-
ing computer hardware. At a minimum authors are
asked to report (a) whether the model is publicly
available, (b) how much time it takes to train the
final model, (c) how much time was spent on all
experiments (including hyperparameter search), (d)
what the total energy consumption was, and (e) at
which location the computations were performed.
In addition, authors are encouraged to report on the
energy mix at the location and the CO2 emission
associated with different phases of model develop-
ment and use.

Liu et al. (2022) propose a new benchmark for
efficient NLP models called ELUE (Efficient Lan-
guage Understanding Evaluation) based on the con-
cept of Pareto state of the art, which a model is said
to achieve if it achieves the best performance at a

given cost level. The cost measures used in ELUE
are number of model parameters and number of
floating point operations (FLOPs), while perfor-
mance measures vary depending on the task (sen-
timent analysis, natural language inference, para-
phrase and textual similarity).

Treviso et al. (2022) provide a survey of current
research on efficient methods for NLP, using a taxo-
nomy based on different aspects or phases of the
model life-cycle: data collection and preprocess-
ing, model design, training (including pre-training
and fine-tuning), inference, and model selection.
Following Schwartz et al. (2020), they define ef-
ficiency as the cost of a model in relation to the
results it produces. They observe that cost can be
measured along multiple dimensions, such as com-
putational, time-wise or environmental cost, and
that using a single cost indicator can be misleading.
They also emphasize the importance of separately
characterizing different stages of the model life-
cycle and acknowledge that properly measuring
efficiency remains a challenge.

Dehghani et al. (2022) elaborate on the theme
of potentially misleading efficiency characteriza-
tions by showing that some of the most commonly
used cost indicators – number of model parame-
ters, FLOPs, and throughput (msec/example) – can
easily contradict each other when used to compare
models and are therefore insufficient as standalone
metrics. They again stress the importance of dis-
tinguishing training cost from inference cost, and
point out that their relative importance may vary
depending on context and use case. For example,
training efficiency is crucial if a model needs to be
retrained often, while inference efficiency may be
critical in embedded applications.

3 The Concept of Efficiency in NLP

Efficiency is commonly defined as the ratio of use-
ful output to total input:3

r =
P

C
(1)

where P is the amount of useful output or results,
the product, and C is the total cost of producing the
results, often defined as the amount of resources
consumed. A process or system can then be said

3Historically, the technical concept of efficiency arose in
engineering in the nineteenth century, in the analysis of engine
performance (thermodynamic efficiency); it was subsequently
adopted in economy and social science by Vilfredo Pareto and
others (Mitcham, 1994).
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to reach maximum efficiency if a specific desired
result is obtained with the minimal possible amount
of resources, or if the maximum amount of results
is obtained from a given resource. More generally,
maximum efficiency holds when it is not possible
to increase the product without increasing the cost,
nor reduce the cost without reducing the product.

In order to apply this concept of efficiency to
NLP, we first have to decide what counts as useful
output or results – the product P in Equation 1. We
then need to figure out how to measure the cost C
in terms of resources consumed. Finally, we need
to come up with relevant ways of relating P to C
in different contexts of research, development and
deployment, as well as aggregating the results into
a life-cycle analysis. We will begin by discussing
the last question, because it has a bearing on how
we approach the other two.

3.1 The Life-Cycle of an NLP Model

It is natural to divide the life-span of an NLP model
into two phases: development and deployment. In
the development phase, the model is created, op-
timized and validated for use. In the deployment
phase, it is being used to process new text data in
one or more applications. The development phase
of an NLP model today typically includes several
stages of training, some or all of which may be re-
peated multiple times in order to optimize various
hyperparameters, as well as validation on held-out
data to estimate model performance. The deploy-
ment phase is more homogeneous in that it mainly
consists in using the model for inference on new
data, although this may be interrupted by brief de-
velopment phases to keep the model up to date.

As researchers, we naturally tend to focus on
the development of new models and many models
developed in a research context may never enter
the deployment phase at all. Since the development
phase is typically also more computationally in-
tensive than the deployment phase, it is therefore
not surprising that early papers concerned with the
increasing energy consumption of NLP research,
such as Strubell et al. (2019) and Schwartz et al.
(2020), mainly focused on the development phase.
Nevertheless, for models that are actually put to
use in large-scale applications, resources consumed
during the deployment phase may in the long run be
much more important, and efficiency in the deploy-
ment phase is therefore an equally valid concern.
This is also the focus of the recently proposed eval-

uation framework ELUE (Liu et al., 2022).
As will be discussed in the following sections,

some proposed efficiency metrics are better suited
for one of the two phases, although they can often
be adapted to the other phase as well. However, the
question is whether there is also a need for metrics
that capture the combined resource usage at devel-
opment and deployment, and how such metrics can
be constructed. One reason for being interested in
combined metrics is that there may be trade-offs
between resources spent during development and
deployment, respectively, so that spending more re-
sources in development may lead to more efficient
deployment (or vice versa). To arrive at a more
holistic assessment of efficiency, we need to define
efficiency metrics for deployment that also incor-
porate development costs. Before we propose such
a metric, we need to discuss how to conceptualize
products and costs of NLP models.

3.2 The Products of an NLP Model

What is the output that we want to produce at the
lowest possible cost in NLP? Is it simply a model
capable of processing natural language (as input
or output or both)? Is it the performance of such
a model on one or more NLP tasks? Or is it the
actual output of such a model when processing
natural language at a certain performance level?
All of these answers are potentially relevant, and
have been considered in the literature, but they give
rise to different notions of efficiency and require
different metrics and measurement procedures.

Regarding the model itself as the product is of
limited interest in most circumstances, since it does
not take performance into account and only makes
sense for the development phase. It is therefore
more common to take model performance, as mea-
sured on some standard benchmark, as a relevant
product quantity, which can be plotted as a function
of some relevant cost to obtain a so-called Pareto
front (with corresponding concepts of Pareto im-
provement and Pareto state of the art), as illustrated
in Figure 1, reproduced from Liu et al. (2022).

One advantage of the product-as-performance
model is that it can be applied to the deployment
phase as well as the development phase, although
the cost measurements are different in the two cases.
For the development phase, we want to measure
the total cost incurred to produce a model with a
given performance, which depends on a multitude
of factors, such as the size of the model, the num-
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Figure 1: Pareto front with model performance as
the product and cost measured in FLOPs (Liu et al.,
2022).

ber of hyperparameters that need to be tuned, and
the data efficiency of the learning algorithm. For
the deployment phase, we instead focus on the av-
erage cost of processing a typical input instance,
such as a natural language sentence or a text doc-
ument, independently of the development cost of
the model. Separating the two phases in this way
is perfectly adequate in many circumstances, but
the fact that we measure total cost in one case and
average cost in the other makes it impossible to
combine the measurements into a global life-cycle
analysis. To overcome this limitation, we need a
notion of product that is not defined (only) in terms
of model performance but also considers the actual
output produced by a model.

If we take the product to be the amount of data
processed by a model in the deployment phase,
then we can integrate the development cost in the
efficiency metric as a debt that is amortized dur-
ing deployment. Under this model, the average
cost of processing an input instance is not constant
but decreases over the life-time of a model, which
allows us to capture possible trade-offs between de-
velopment and deployment costs. For example, it
may sometimes be worth investing more resources
into the development phase if this leads to a lower
development cost in the long run. Moreover, this
model allows us to reason about how long a model
needs to be in use to “break even” in this respect.

An important argument against the product-as-
output model is that it is trivial (but uninteresting)
to produce a maximally efficient model that pro-
duces random output. It thus seems that a relevant
life-cycle analysis requires us to incorporate both
model performance and model output into the no-
tion of product. There are two obvious ways to do
this, each with its own advantages and drawbacks.
The first is to stipulate a minimum performance

level that a model must reach to be considered
valid and to treat all models reaching this threshold
as ceteris paribus equivalent. The second way is to
use the performance level as a weighting function
when calculating the product of a model. We will
stick to the first and simpler approach in our case
study later, but first we need to discuss the other
quantity in the efficiency equation – the cost.

3.3 The Costs of an NLP Model
Schwartz et al. (2020) propose the following for-
mula for estimating the computational cost of pro-
ducing a result R:

Cost(R) ∝ E ·D ·H (2)

where E is the cost of executing the model on a
single example, D is the size of the training set
(which controls how many times the model is exe-
cuted during a training run), and H is the number of
hyperparameter experiments (which controls how
many times the model is trained during model de-
velopment). How can we understand this in the
light of the previous discussion?

First, it should be noted that this is not an exact
equality. The claim is only that the cost is propor-
tional to the product of factors on the right hand
side, but the exact cost may depend on other factors
that may be hard to control. Depending on what
type of cost is considered – a question that we will
return to below – the estimate may be more or less
exact. Second, the notion of a result is not really
specified, but seems to correspond to our notion of
product and is therefore open to the same variable
interpretations as discussed in the previous section.
Third, as stated above, the formula applies only to
the development phase, where the result/product is
naturally understood as the performance of the final
model. To clarify this, we replace R (for result)
with PP (for product-as-performance) and add the
subscript T (for training) to the factors E and D:

DevCost(PP ) ∝ ET ·DT ·H (3)

Schwartz et al. (2020) go on to observe that a for-
mula appropriate for inference during the deploy-
ment phase can be obtained by simply removing
the factors D and H (and, in our new notation,
changing ET to EI since the cost of processing a
single input instance is typically not the same at
training and inference time):

DepCost(PP ) ∝ EI (4)
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This corresponds to the product-as-performance
model for the deployment phase discussed in the
previous section, based on the average cost of pro-
cessing a typical input instance, and has the same
limitations. It ignores the quantity of data pro-
cessed by a model, and it is insensitive to the initial
investment in terms of development cost. To over-
come the first limitation, we can add back the factor
D, now representing the amount of data processed
during deployment (instead of the amount of train-
ing data), and replace product-as-performance (PP )
by product-as-output (PO):

DepCost(PO) ∝ EI ·DI (5)

To overcome the second limitation, we have to add
the development cost to the equation:

DepCost(PO) ∝ ET ·DT ·H + EI ·DI (6)

This allows us to quantify the product and cost as
they develop over the lifetime of a model, and this
is what we propose to call amortized efficiency
based on total deployment cost, treating develop-
ment cost as a debt that is amortized during the
deployment phase. Our notion of amortized effi-
ciency is inspired by the notion of amortized analy-
sis from complexity theory (Tarjan, 1985), which
averages costs over a sequence of operations. Here
we instead average costs over different life-cycle
phases.

As already noted, the product-as-output view is
only meaningful if we also take model performance
into account, either by stipulating a threshold of
minimal acceptable performance or by using per-
formance as a weight function when calculating
the output produced by the model. Note, however,
that we can also use the notion of total deploy-
ment cost to compare the Pareto efficiency of dif-
ferent models at different points of time (under a
product-as-performance model) by computing av-
erage deployment cost in a way that is sensitive to
development cost and lifetime usage of a model.

The discussion so far has focused on how to un-
derstand the notion of efficiency in NLP by relating
different notions of product to an abstract notion of
cost incurred over the different phases of lifetime
of a model. However, as noted in the introduction,
this abstract notion of cost can be instantiated in
many different ways, often in terms of a specific
resource being consumed, and it may be more or
less straightforward to obtain precise measures of
the resource consumption. Before illustrating the

different efficiency metrics with some real data, we
will therefore discuss costs and resources that have
been prominent in the recent literature and motivate
the selection of costs included in our case study.

Time and Space The classical notion of efficient
computation from complexity theory is based on
the resources of time and space. Measuring cost
in terms of time and space (or memory) is impor-
tant for time-critical applications and/or memory-
constrained settings, but in this context we are more
interested in execution time and memory consump-
tion than in asymptotic time and space complexity.
For this reason, execution time remains one of the
most often reported cost measures in the literature,
even though it can be hard to compare across exper-
imental settings because it is influenced by factors
such as the underlying hardware, other jobs run-
ning on the same machine, and the number of cores
used (Schwartz et al., 2020). We include execution
time as one of the measured costs in our case study.

Power and CO2 Electrical power consumption
and the ensuing CO2 emission are costs that have
been highlighted in the recent literature on resource-
efficient NLP and AI. For example, Strubell et al.
(2019) estimate the total power consumption for
training NLP models based on available informa-
tion about total training time, average power draw
of different hardware components (GPUs, CPUs,
main memory), and average power usage effective-
ness (PUE) for data centers. They also discuss the
corresponding CO2 emission based on information
about average CO2 produced for power consumed
in different countries and for different cloud ser-
vices. Hershcovich et al. (2022) propose that cli-
mate performance model cards for NLP models
should minimally include information about total
energy consumption and location for the computa-
tion, ideally also information about the energy mix
at the location and the CO2 emission associated
with different phases of model development and
use. Against this, Schwartz et al. (2020) observe
that, while both power consumption and carbon
emission are highly relevant costs, they are difficult
to compare across settings because they depend on
hardware and local electricity infrastructure in a
way that may vary over time even at the same loca-
tion. In our case study, we include measurements
of power consumption, but not carbon emission.

Abstract Cost Measures Given the practical dif-
ficulties to obtain exact and comparable measure-
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ments of relevant costs like time, power consump-
tion, and carbon emission, several researchers have
advocated more abstract cost measures, which are
easier to obtain and compare across settings while
being sufficiently correlated with other costs that
we care about. One such measure is model size,
often expressed as number of parameters, which is
independent of underlying hardware but correlates
with memory consumption. However, as observed
by Schwartz et al. (2020), since different models
and algorithms make different use of their parame-
ters, model size is not always strongly correlated
with costs like execution time, power consump-
tion, and carbon emission. They therefore advocate
number of floating point operations (FLOPs) as the
best abstract cost measure, arguing that it has the
following advantages compared to other measures:
(a) it directly computes the amount of work done
by the running machine when executing a specific
instance of a model and is thus tied to the amount of
energy consumed; (b) it is agnostic to the hardware
on which the model is run, which facilitates fair
comparison between different approaches; (c) un-
like asymptotic time complexity, it also considers
the amount of work done at each time step. They
acknowledge that it also has limitations, such as
ignoring memory consumption and model imple-
mentation. Using FLOPs to measure computation
cost has emerged as perhaps the most popular ap-
proach in the community, and it has been shown
empirically to correlate well with energy consump-
tion (Axberg, 2022); we therefore include it in our
case study.

Data The amount of data (labeled or unlabeled)
needed to train a given model and/or reach a certain
performance is a relevant cost measure for several
reasons. In AI in general, if we can make models
and algorithms more data-efficient, then they will
ceteris paribus be more time- and energy-efficient.
In NLP specifically, it will in addition benefit low-
resource languages, for which both data and com-
putation are scarce resources.

In conclusion, no single cost metric captures all we
care about, and any single metric can therefore be
misleading on its own. In our case study, we show
how different cost metrics can be combined with
different notions of product to analyze resource-
efficiency for NLP models. We include three of
the most important metrics: execution time, power
consumption, and FLOPs.

4 Case Study

To illustrate the different conceptualizations of
resource-efficiency discussed in previous sections,
we present a case study on developing and deploy-
ing a language model for a specific NLP task using
different combinations of fine-tuning and knowl-
edge distillation. The point of the study is not to
advance the state of the art in resource-efficient
NLP, but to show how different conceptualizations
support the comparison of models of different sizes,
at different performance levels, and with different
development and deployment costs.

4.1 Overall Experimental Design
We apply the Swedish pre-trained language model
KB-BERT (Malmsten et al., 2020) to Named Entity
Recognition (NER), using data from SUCX 3.0
(Språkbanken, 2022) for fine-tuning and evaluation.
We consider three scenarios:

• Fine-tuning (FT): The standard fine-tuning
approach is followed, with a linear layer added
on top of KB-BERT. The model is trained on
the SUCX 3.0 training set until the validation
loss no longer decreases for up to 10 epochs.

• Task-specific distillation (TS): We distill
the fine-tuned KB-BERT model to a 6-layer
BERT student model. The student model
is initialized with the 6 lower layers of the
teacher and then trained on the SUCX 3.0
training set using the teacher predictions on
this set as ground truth.

• Task-agnostic distillation (TA): We distill
KB-BERT to a 6-layer BERT student model
using the task-agnostic distillation objective
proposed by Sanh et al. (2020). Following
their approach, we initialize the student with
every other layer of the teacher and train on
deduplicated Swedish Wikipedia data by ave-
raging three kinds of losses for masked lan-
guage modelling, knowledge distillation and
cosine-distance between student and teacher
hidden states. The student model is subse-
quently fine-tuned on the SUCX 3.0 training
set with the method used in the FT experi-
ment.

All three fine-tuned models are evaluated on the
SUCX 3.0 test set. Model performance is measured
using the F1 score, which is the standard evaluation
metric for NER, and model output in number of
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Distillation Stage Fine-Tuning Stage Evaluation Stage
Time Power FLOPs Time Power FLOPs Time Power FLOPs F1

FT – – – 0:35:17 141.1 2.48×1016 0:01:32 5.2 2.59×1015 87.3
TS 0:18:30 77.1 1.64×1016 0:35:17 141.1 2.48×1016 0:01:09 3.1 1.71×1015 84.9
TA 13:06:59 6848.9 3.65×1017 0:18:53 74.4 1.69×1016 0:01:15 3.3 1.71×1015 77.6

Table 1: Performance (F1) and cost measurements (Time: hh:mm:ss, Power: Wh, FLOPs) for different
stages (Distillation, Fine-tuning, Evaluation) and different development scenarios (Fine-tuning: FT, Task-
specific distillation: TS, Task-agnostic distillation: TA).

tokens. We measure three different types of cost
during development and deployment: execution
time, power consumption and FLOPs. Based on
these basic measures, we derive different efficiency
metrics for model comparison, as discussed in Sec-
tion 4.4.

4.2 Setup Details

The TextBrewer framework (Yang et al., 2020)
is used for the distillation experiments, while the
Huggingface Transformers4 library is used for fine-
tuning and inference. More information on hyper-
parameters and data set sizes can be found in Ap-
pendix A. All experiments are executed on an
Nvidia DGX-1 server with 8 Tesla V100 SXM2
32GB. In order to get measurements under realistic
conditions, we run different stages in parallel on dif-
ferent GPUs, while blocking other processes from
the system to avoid external interference. Each ex-
perimental stage is repeated 3 times and measure-
ments of execution time and power consumption
are averaged.5

The different cost types are measured as follows:

• Execution time: We average the duration of
the individual Python jobs for each experimen-
tal stage.

• Power consumption: We measure power con-
sumption for all 4 PSUs of the server as well
as individual GPU power consumption, fol-
lowing Gustafsson et al. (2018). Based on
snapshots of measured effect at individual
points in time, we calculate the area under
the curve to get the power consumption in
Wh. Since we run the task-agnostic distilla-
tion using distributed data parallelism on two

4https://huggingface.co/docs/transformers/index
5Since we repeat stages 3 times for every model instance,

task-specific distillation, fine-tuning of the distilled model,
and evaluation of FT are repeated 9 times, while evaluation of
TS and TA is repeated 27 times.

GPUs, we sum the consumption of both GPUs
for each TA run.

• FLOPs: We estimate the number of FLOPs
required for each stage using the estimation
formulas proposed by Kaplan et al. (2020),
for training (7) and inference (8):

FLOPT = 6 · n ·N · S ·B (7)

FLOPI = 2 · n ·N · S ·B (8)

where n is the sequence length, N is the num-
ber of model parameters, S is the number of
training/inference steps, and B is the batch
size. The cost for fine-tuning a model is
given by FLOPT , while the evaluation cost
is FLOPI . For distillation, we need to sum
FLOPT for the student model and FLOPI

for the teacher model (whose predictions are
used to train the student model).

4.3 Basic Results
Table 1 shows basic measurements of performance
and costs for different scenarios and stages. We see
that the fine-tuned KB-BERT model (FT) reaches
an F1 score of 87.3; task-specific distillation to
a smaller model (TS) gives a score of 84.9, while
fine-tuning after task-agnostic distillation (TA) only
reaches 77.6 in this experiment. When comparing
costs, we see that task-agnostic distillation is by
far the most expensive stage. Compared to task-
specific distillation, the execution time is more than
40 times longer, the power consumption almost 100
times greater, and the number of FLOPs more than
20 times greater. Although the fine-tuning costs are
smaller for the distilled TA model, the reduction
is only about 50% for execution time and power
consumption and about 30% for FLOPs.

We also investigate whether power consumption
can be predicted from the number of FLOPs, as this
is a common argument in the literature for prefer-
ring the simpler FLOPs calculations over the more
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Figure 2: Pareto efficiency for the development phase (top) and the deployment phase (down) based on
three different cost measures: execution time (left), power consumption (center), and FLOPs (right).

involved measurements of actual power consump-
tion. We find an extremely strong and significant
linear correlation between the two costs (Pearson
r = 0.997, p ≈ 0). Our experiments thus corrobo-
rate earlier claims that FLOPs is a convenient cost
measure that correlates well with power consump-
tion (Schwartz et al., 2020; Axberg, 2022). How-
ever, it is worth noting that the GPU power con-
sumption, which is reported in Table 1 and which
can thus be estimated from the FLOPs count, is
only 71.7% of the total power consumption of the
server including all 4 PSUs.

4.4 Measuring and Comparing Efficiency

So how do our three models compare with respect
to resource-efficiency? The answer is that this de-
pends on what concept of efficiency we apply and
which part of the life-cycle we consider. Figure 2
plots product-as-performance as a function of cost
separately for the development phase and the de-
ployment phase, corresponding to Equations (3)
and (4), which allows us to compare Pareto effi-
ciency. Considering only the development phase,
the FT model is clearly optimal, since it has both
the highest performance and the lowest cost of all
models. Considering instead the deployment phase,
the FT model still has the best performance, but the

other two models have lower (average) inference
cost. The TA model is still suboptimal, since it
gives lower performance at the same cost as the
TS model.6 However, FT and TS are both opti-
mal with respect to Pareto efficiency, since they
are both at the Pareto front given the data we have
so far (meaning that neither is outperformed by a
model at the same cost level nor has higher deploy-
ment cost than any model at the same performance
level). In order to choose between them, we there-
fore have to judge whether a 2.4 point improvement
in F1 score in the long run is worth the increase in
execution time and power consumption, which in
this case amounts to 0.077 nano-seconds and 0.607
micro-watts per token, respectively.

For a more holistic perspective on life-time effi-
ciency, we can switch to a product-as-output model
and plot deployment efficiency as a function of
both the initial development cost and the average
inference cost for processing new data over life-
time, corresponding to Equation (6) and our newly
proposed notion of amortized efficiency. This is
depicted in Figure 3, which compares the FT and

6It is worth noting, however, that the TA model can be
fine-tuned for any number of specific tasks, which could make
it competitive in a more complex scenario where we can dis-
tribute the initial distillation cost over a large number of fine-
tuned models.
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Figure 3: Amortized efficiency of the deployment phase over lifetime, based on three different cost
measures: execution time (left), power consumption (center), and FLOPs (right).

TS model (disregarding the suboptimal TA model).
We see that, although the FT model has an initial
advantage because it has not incurred the cost for
distillation, the TS model eventually catches up and
becomes more time-efficient after processing about
4B tokens and more energy-efficient after process-
ing about 127M tokens. It is however important
to keep in mind that this comparison does not take
performance into account, so we again need to de-
cide what increase in cost we are willing to pay
for a given improvement in performance, although
the increase in this case is sensitive to the expected
lifetime of the models. Alternatively, as mentioned
earlier, we could weight the output by performance
level, which in this case would mean that the TS
model would take longer to catch up with the FT
model.

Needless to say, it is often hard to estimate in
advance how long a model will be in use after it
has been deployed, and many models explored in a
research context may never be deployed at all (over
and above the evaluation phase). In this sense,
the notion of life-time efficiency admittedly often
remains hypothetical. However, with the increasing
deployment of NLP models in real applications, we
believe that this perspective on resource-efficiency
will become more important.

5 Conclusion

In this paper, we have discussed the concept of
resource-efficiency in NLP, arguing that it cannot
be reduced to a single definition and that we need
a richer conceptual framework to reason about dif-
ferent aspects of efficiency. As a complement to
the established notion of Pareto efficiency, which
separates development and deployment under a
product-as-performance model, we have proposed

the notion of amortized efficiency, which enables a
life-cycle analysis including both development and
deployment under a product-as-output model. We
have illustrated both notions in a simple case study,
which we hope can serve as inspiration for further
discussions of resource-efficiency in NLP. Future
work should investigate more sophisticated ways
of incorporating performance level into the notion
of amortized efficiency.
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A Experimental Details

A.1 Data Sets

The SUCX 3.0 dataset (simple_lower_mix ver-
sion)7 is used for fine-tuning, task-specific distil-
lation and evaluation. The dataset splits are are
the following: 43126 examples in the training set,
10772 in the validation set and 13504 examples in
the test set.

For task-agnostic distillation, we are using a
deduplicated version of Swedish Wikipedia, with
the following dataset split: 2, 552, 479 sentences in
the training set and 25, 783 sentences in the valida-
tion set.

A.2 Models and Hyperparameters

The base model in our experiments is KB-BERT-
cased.8 The hyperparameters used for fine-tuning
and distillation are presented in Table 2. In the
fine-tuning experiments, early stopping is used and
the best performing model in the validation set is
saved. The task-agnostic distillation experiments
are performed on two GPUs, using the distributed

7https://huggingface.co/datasets/KBLab/sucx3_ner
8https://huggingface.co/KB/bert-base-swedish-cased
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data parallel functionality of pytorch, while gradi-
ent accumulation steps are set to 2.

FT TS TA Eval
Batch size 32 32 8 32
Training epochs 10 2 0.75 –
Sequence length 256 256 256 256
Learning rate 0.00003 0.00005 0.0001 –
Warm-up steps 404 260 3750 –

Table 2: Hyperparameters for FT, TS, TA and Eval.
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Abstract

Dialectal variation is present in many hu-
man languages and is attracting a grow-
ing interest in NLP. Most previous work
concentrated on either classifying dialec-
tal varieties at the document or sentence
level or performing standard NLP tasks on
dialectal data. In this paper, we propose
the novel task of token-level dialectal fea-
ture prediction. We present a set of fine-
grained annotation guidelines for Norwe-
gian dialects, expand a corpus of dialectal
tweets, and manually annotate them using
the introduced guidelines. Furthermore, to
evaluate the learnability of our task, we
conduct labelling experiments using a col-
lection of baselines, weakly supervised and
supervised sequence labelling models. The
obtained results show that, despite the diffi-
culty of the task and the scarcity of training
data, many dialectal features can be pre-
dicted with reasonably high accuracy.

1 Introduction

Language variation is a pervasive phenomenon in
human language. These varieties can differ on
phonemic, lexical, or syntactic levels, among oth-
ers, and often vary on several levels at a time
(Chambers and Trudgill, 1998). One common type
of language variation stems from geographical lo-
cation, as people actively use regional variations to
mark their identity. When a language variety indi-
cates where a speaker is from, we call this variety
a dialect, or more precisely a geolect or topolect,
as the word ‘dialect’ can also refer to social back-
ground or occupation. In this work, we use ‘dialect’
to denote geographical variation.

Dialectal variation in Norwegian is widespread
and, in contrast to many languages, the use of
spoken and written dialects in the public sphere

is generally viewed positively (Bull et al., 2018).
Although Norwegian can be broadly divided into
four dialectal regions, many dialectal features are
shared across these regions (see Figure 1). There-
fore, rather than seeing dialects as discrete cate-
gories, we should view them as a combination of
correlated dialectal features (Nerbonne, 2009).

The under-resourced status of dialects, however,
makes it difficult to build NLP tools from scratch.
This is exacerbated by the growing reliance on pre-
trained language models, which often encounter
few examples of dialectal data during training. If
NLP models fail to process dialectal inputs, their
deployment may reinforce existing inequalities, as
those who use a non-standard variety will either re-
ceive worse service or be forced to adopt a standard
variety to interact. Those who advocate for main-
taining dialectal variation also depend on tools to
help them monitor the use of dialects on social me-
dia. This motivates the development of fine-grained
models of dialectal features.

Previous work on dialectal NLP has classified di-
alects, geographical location, or provided training
and testing resources for various dialects. In this pa-
per, we take a different viewpoint on identifying di-
alects, opting to label the token-level dialectal fea-
tures of a text rather than classifying or predicting
the geolocation of the entire text. We first propose
a fine-grained annotation scheme for token-level
dialectal features in Norwegian. We then annotate
a corpus of Norwegian dialectal tweets using this
scheme, and finally validate its use for fine-tuning
neural sequence labeling models in Norwegian.

Our contributions are 1) we introduce the novel
task of token-level dialect feature identification,
2) provide a novel corpus of Norwegian dialectal
tweets annotated for 21 token-level features,1 and
3) describe extensive experiments demonstrating
the learnability and difficulty of the task.

1Annotation guidelines, procedure and data available at
https://github.com/jerbarnes/nordial
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je(i), jæi both stressed and
unstressed syllables

e(g), æ(g), æi(g)

i

stressed syllables

no palatalization 

1st person pronoun palatalization

Figure 1: Map of two dialectal features in Norwe-
gian that do not coincide geographically.

2 Related Work

In contrast to more formal writing, social media
abounds with dialectal variation, ranging from vari-
ation between racial groups (Eisenstein, 2015),
to variation within online communities (Danescu-
Niculescu-Mizil et al., 2013). While not all lev-
els of variation are equally present, often due to
a speaker’s lack of awareness of sociolinguistic
indicators (Labov, 2006), a substantial share of di-
alectal variation is reliably transcribed in social
media posts (Eisenstein, 2013; Doyle, 2014).

For NLP, dialectal data presents both a challenge
and an important area to improve upon. Previous
work in NLP has included descriptive corpus stud-
ies (Jones, 2015; Tatman, 2016), dialect classifica-
tion (Zampieri et al., 2017), geolocation of tweets
based on their dialectal features (Eisenstein et al.,
2010; Hovy and Purschke, 2018) or quantifying the
spatial dependence of linguistic variables (Nguyen
and Eisenstein, 2017).

There have also been a series of workshops (Var-
Dial) (e.g. Nakov et al., 2016, 2017; Zampieri et al.,
2018) that include work on discriminating similar
languages (Haas and Derczynski, 2021), identify-
ing dialects (Jauhiainen et al., 2021), and geolo-
cation of tweets (Gamăn et al., 2021). The work-
shops have also held several shared tasks with the
aim to identify languages and dialects (Zampieri
et al., 2017), as well as morpho-syntactic tagging
(Zampieri et al., 2018). Another series of shared
tasks have focused on the identification of Ara-
bic dialects (Bouamor et al., 2019; Abdul-Mageed
et al., 2020, 2021). While each of these shared tasks
proposed dialect identifications on different level
of granularity (region, country, and city-levels),

they all approached dialect identification as a sen-
tence classification task. Work on code-switching
(e.g. Solorio and Liu, 2008; Jain and Bhat, 2014;
Samih et al., 2016; Çetinoğlu, 2016), on the other
hand, has focused on word-level classification, but
usually casts this a binary decision, rather than
identifying fine-grained labels.

Regarding Norwegian dialects specifically, lin-
guistic work is long and varied. Christiansen (1954)
described the main dialect regions, while Sandøy
(2000) describes several factors that drive language
change in modern Norwegian dialects, e.g. urban
jumping (Chambers and Trudgill, 1998), the pres-
tige of certain dialects, or the general tendency
towards simplification. Within NLP, Barnes et al.
(2021) present the NorDial corpus, a curated col-
lection of 1,073 tweets classified as either Bokmål,
Nynorsk (which are the two standardized written
forms for Norwegian), dialectal, or mixed. The
authors experimented with classifying these tweets
with Norwegian BERT models (Kummervold et al.,
2021) and found that the resulting models achieved
reasonably good performance at identifying tweets
written in dialectal Norwegian.

Demszky et al. (2021) introduce the task of di-
alect feature detection at the phrase/sentence level.
They use available annotations on the ICE-India
English data (Greenbaum and Nelson, 1996) and
annotate a small amount of this data with separate
set of 18 dialectal features. As they have no train-
ing data for their annotated features, they propose
to use a minimal pairs framework as a kind of weak
supervision. They find that even with minimal su-
pervision, their models are able to reliably predict
many of the features. However, they do not predict
which tokens carry the features, choosing to label
the entire phrase instead.

To address these limitations, we propose a new
approach where we annotate dialectal features at
the token level. We contend that this annotation
strategy provides a more fine-grained view of the
actual use of dialectal features in social media.

3 Dialectal tweet collection

In order to increase the number of dialectal tweets,
we expand upon the NorDial corpus (Barnes et al.,
2021) and collect a further 3,000 tweets to annotate.
During the initial collection, we used the Twitter
API without a search query and confined the search
to tweets from the geographical area of Norway.
This first collection, however, yielded relatively
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...    y'all    fixin'      to      leave?
subj-pron lexical

g-drop

'are you-pl about to leave?'

lexical

Figure 2: Example of Texan English with dialectal
labels below each token.

few dialectal tweets and those found displayed a
narrow set of dialectal features. To increase the
variety of dialectal features, we first collected a
list of dialectal features from the Store Norske Lek-
sikon2 (Norwegian Encyclopedia) and used these as
queries in the Twitter API. We then identified users
whose tweets often contain these dialectal features
and collected their tweets, as well as tweets from
their followers. As many of the collected tweets
were still written in standard Bokmål or Nynorsk,
three annotators were asked to classify the tweets,
and those labelled as dialectal were then included
in the process of fine-grained feature annotation.
In total, 2,455 of 3000 tweets were classified as
dialectal.

4 Annotation of fine-grained dialectal
features

Figure 2 shows an example from Texan English
with three main dialectal features: y’all, which is
the non-standard second person plural pronoun and
fixin’ to, which contains the lexical feature ‘fixing
to’ which means ‘about to’, and the morphological
feature of ‘g-dropping’.

In the rest of this section, we detail the inventory
of dialectal features used in our annotation. As
each example highlights a minimal pair example
of a single dialectal feature, we do not include the
labels below the relevant tokens.

4.1 Dialectal features
The inventory of dialectal features stems from the
linguistic traits that can be encountered in writ-
ten form as described by Venås and Skjekkeland
(2022). Other dialectal features, such as differing
toneme patterns or the pronunciation of ‘l’, were
not considered, as they are not observable in writ-
ten texts. We focus on the dialectal impact a word

2https://snl.no/

has, i.e. whether the annotator can determine that
the word falls outside of the norms in such a way as
to identify the speaker as a dialect user. For exam-
ple, a form like jæ for ‘I’ has a higher impact than
the choice between the two habitual aspect markers
bruke and pleie, ‘use (to)’, as the latter are both
part of the written norm, and the former is unlikely
to be an accidental misspelling.

In cases where there are several choices of form,
some of these might be more marked than others.
In the following examples, we show the original
dialectal version and normative Bokmål versions:
dialect/normative and the English translation.

Subject and object pronoun use Pronouns are
extremely common dialect markers in Norwegian,
as a single pronoun can be marked enough to iden-
tify the dialect of the writer. We label the subject
and object (or oblique) functions separately, but do
not include a separate label for the dative.

(1) ... og dem/de blir aldrig eldre ...
‘... and they never get older ...’

Copula The copula ‘være/vera/vere’ (be) is
marked with the label copula. We only mark di-
alectally interesting, non-standard versions of the
copula, such as ‘e’ and ‘værra’.

(2) Det e/er rart at ...
‘It is weird that ...’

Contraction We label contractions for negation
adverb ‘ikke/ikkje’ (not), and enclitic pronouns.
The verb and the adverb are labeled separately, but
both are labeled with the contraction label.

(3) ekke/er ikke han som skulle ...
‘he is not the one who should have’ ...

Palatalization In Norwegian palatalization oc-
curs frequently to geminated consonants such as
‘nn’, ‘dd’ and ‘ll’, in several dialects. In writing it
is usually indicated by additions of ‘j’ or ‘i’.

(4) ho e nok forbainna/forbanna ...
‘She is so angry ...

Present marker deletion In some dialects the
final ‘-r’ that marks the present tense for many
verbs in both Bokmål and Nynorsk is dropped. We
also use this label to indicate the dropping of ‘-l’
in present tense verb forms such as ‘skal’→ ‘ska’
(will) and ‘vil’→ ‘vi’ (want).
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Apocope Apocope is the loss of word-final ‘-a’
or ‘-e’ and is common in certain dialects.

(5) Æ e her for å vinn/vinne
‘I am here to win’ ...

Voicing Voicing is the process by which conso-
nants which are voiceless in some dialects become
voiced, where ‘p’, ‘t’, and ‘k’ become ‘b’, ‘d’, and
‘g’, respectively.

(6) Eg kommer ikkje tebage/tilbake
‘I won’t come back’ ...

Vowel shift Both monophtongal changes such as
lowering (e→æ) and dipthongization such as ‘e’
→ ‘ei’ are all marked with the vowel shift label.
We also see cases of monophthongization such as
‘ei’ → ‘ø’. One important heuristic we follow is
that we do not mark vowel shift in words that are
tagged with any of the pronoun labels.

Lexical variation This label is used when the
lemma of a word is notably marked. Loanwords are
not affected by this; the word has to be a dialectal
or local version of a standard word that could have
been used instead. An example is the word ‘tue’
(towel) instead of ‘klut’ (cloth).

Demonstrative pronoun use In some dialects it
is common to use third-person pronouns as deter-
miners together with proper names. These can be
full forms as in ‘ho Kari’ (she Kari) or ‘han Olav’
(he Olav) or reduced as in ‘a Kari’ or ‘n Olav’.

Shortening In some dialects, writers indicate a
change of stress to the first syllable with accompa-
nying vowel reduction and consonant lengthening,
by writing a double consonant after the first syl-
lable if there is originally only one, as in ‘pottet’
instead of ‘potet’ (potato).

Grammatical gender of nouns The grammati-
cal gender of nouns in Norwegian has considerable
variation. The least common remnant of the fem-
inine gender is the indefinite article ‘ei’. Keeping
the feminine definite form ‘-a’ is more common,
but there is also a clear tendency to see certain
high-frequency words as feminine. Examples are
words like ‘jente’ (girl). ‘Ei jente’ (a girl) is slightly
marked towards favoring the feminine form, while
‘jenten’ (the girl) is strongly marked towards a di-
alect with no feminine gender.

Marked This label is used for words that are part
of the written languages’ norms, but which are still
rarely used, and therefore dialectally marked. An
example is the question word ‘åssen’ (how), which
is accepted in Bokmål, but still infrequent, and
somewhat marked compared to ‘hvordan’ (how).

h-v A notable difference between Bokmål and
Nynorsk is that Nynorsk has ‘kv’ where bokmål
has ‘hv’, especially for interrogatives. In some
dialects, the ‘v’ is lost, giving only ‘k’ or ‘h’, as in

‘hårr’ for ’hvor’ (where) or ‘ka’ for ‘hva’ (what).
This is marked with the h-v label. Any token with
this label will not have the phonemic spelling label.

Adjectival declension This labels is used for ad-
jectives with non-standard endings, such as ‘-e’ in
indefinite or non-plural environments.

(7) ein gode/god venn

‘a good friend’ ...

Nominal declension This label is used when a
noun takes a non-standard declensional ending.

(8) Fortsatt gode muligheta/muligheter til gå

‘still good chances to go’ ...

Verb conjugation This label is used when a verb
takes a non-standard conjugation ending, such as
‘skrivi’ for ‘skrive’ (to write).

Functional words The dialectal forms of many
functional words are spelled radically different. We
label all functional words whose spellings are not
in accordance with the written norms.

(9) Tru ittæ/ikke dæ æ dær

‘do not think it is there’ ...

Phonemic spelling In cases where there is no
clear dialectal variation, but it is clear that the
speaker wants to indicate that they are writing a
more oral form, the label phonemic spelling is used.
This is mostly for cases where a pronunciation is
close to the perceived norm of some standard, like
‘næi’ for ‘nei’ (no).

Interjection This label is used for all interjec-
tions, dialectal or not, such as the greeting ‘heia’
(hey).
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4.2 Annotation procedure
For the token-level annotations, we take the tweets
that were classified as dialectal in the first round,
combined with the dialectal tweets from Nordial
(Barnes et al., 2021). The annotation was per-
formed by three hired student research assistants
with a background in linguistics and with Norwe-
gian as native language. All annotators are from
eastern Norway, and native speakers of the east-
ern dialect. The first 50 tweets were annotated
independently by two annotators. This first round
provided the basis for group discussions, held reg-
ularly during the first phase of annotation, after
which the guidelines were updated. The doubly
annotated documents were then adjudicated by a
third annotator after a final round of discussions
concerning difficult cases. Annotators had the pos-
sibility to discuss any potential problems during
both the annotation and adjudication period, but
were encouraged to follow the guidelines as strictly
as possible. The annotation and adjudication were
both performed using the web-based annotation
tool Brat (Stenetorp et al., 2012).

4.3 Annotation results and statistics
Table 1 presents the statistics for the final anno-
tated data. We create separate test and develop-
ments splits of 500 and 300 tweets respectively,
maintaining the overall distribution of labels evenly
throughout the splits and leave the remaining 1,655
tweets as training data. The average length of the
tweets is around 25 tokens, with an average of 4.5
annotations per tweet. Most tokens in a tweet are
not annotated (84.3%), leaving an average of 0.2
annotations per token. Of the remaining 15.7%,
the average number of labels per token is 1.2. In
other words, 14% (1343 tokens) of the annotated
tokens have multiple labels, while the remaining
86% (8167 tokens) have a single label.

Figure 3 shows the distribution of the annotated
labels. Vowel shift is the most common label, fol-
lowed by subject pronoun, and functional. This is
expected as vowel shift covers a large number of
phenomena, and subject pronoun and functional
are highly salient features in Norwegian dialects.
The least common are interjection, demonstrative
pronoun, and gender. While these features may be
more common in spoken dialects, it seems writers
of tweets use them less frequently, possibly because
they are much more marked when written. See the
Appendix for further analysis.
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Figure 3: Frequency counts of dialectal features
annotated in the full dataset of Norwegian tweets.

After completing the annotation process, the an-
notators pointed out that some dialectal areas (es-
pecially the Trøndersk-Central dialect) seem to be
more common in the data. This might skew the
label distribution to a degree.

4.4 Inter-annotator agreement
Chance-corrected inter-annotator agreement is im-
portant to determine the reliability of annotated
data. The annotation we propose requires uniti-
zation or delimiting spans of words, categoriza-
tion, and is inherently multi-label. Typical inter-
annotator agreement measures, e.g. κ (kappa) (Co-
hen, 1960) or α (alpha) (Krippendorff, 1980), do
not provide a good statistical basis for determining
agreement with multi-labels which can span several
tokens. We therefore use the γ (gamma) agreement
from Mathet et al. (2015) instead, which allows for
chance corrected agreement between annotators
given the three above requirements.
γ combines alignment and comparing of cate-

gorization into a single chance-corrected metric.
It first selects the alignment that leads to the least
overall disagreement γo and then calculates the
expected disagreement γe by sampling from the ex-
isting annotations. Finally, as with other measures
based on disagreement, gamma is calculated as
γ = 1− γo

γe
, where the observed measure is divided

by the expected measure. Values in gamma range
from −∞ to 1, where 0 represents chance agree-
ment. We use the pygamma-agreement package
(Titeux and Riad, 2021) available in python.

The double annotations from the first and second
round achieve γ = 0.63, and γ = 0.64 respectively,
which we take to indicate good agreement, given
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train dev test total
number of tweets 1,655 300 500 2,455
number of tokens 40,483 7,563 12,597 60,643
average number of tokens per tweet 24.5 25.2 25.2 24.7
average number of annotations per tweet 4.5 4.4 4.5 4.5
average number of annotations per token 0.2 0.2 0.2 0.2
average number of labels per annotated token 1.2 1.2 1.2 1.2

Table 1: Statistics of the dialectal feature annotations.

that the task is challenging. Common disagree-
ments between annotators include whether a token
should be considered functional or not, the use of
the lexical label and the identification of vowel
shift.

5 Experiments

We now describe the experimental setup employed
to validate our annotations. As early results indi-
cated that standard models had difficulty learning
multi-label sequence labelling tasks, we merge oc-
currences of multiple labels, yielding a total of 159
combinations (including ‘Ø’, the null label). For
each possible combination of labels in our dataset,
we create a new merged label that represents them.
This increases the number of total classes to be
predicted, but reduces the task to a much simpli-
fied multi-label sequence labelling problem. For-
mally, the task is then given a sequence of N tokens
S = {t1, t2, . . . , tn} to predict the sequence of
token-wise labels L = {l1, l2, . . . , ln}, where these
labels can be either single labels, e.g., ‘vowel_shift’
or a merged label, e.g., ‘lexical-vowel_shift’. For
all experiments with neural models, we train an
set of five models with different random seeds and
report both micro-averaged F1 and standard devia-
tion.

5.1 Initial baseline
The first baseline consists of a simple majority
voter that always predicts the most common label,
which is ‘vowel shift’.

5.2 Handcrafted functions
To investigate the extent to which the dialectal fea-
tures can be inferred from known linguistic rules,
we designed a set of handcrafted functions. One
team member with a linguistics background and
access to the annotation guidelines and the labelled
training data implemented a set of 39 programmatic
labeling functions, divided in three groups:

Heuristic functions Many labels can be detected
programmatically. For example, to identify di-

alectal demonstrative pronouns, we create a func-
tion that detects demonstrative pronouns occurring
within two tokens after a proper name.

Lexicon functions: Categories such as h-v, func-
tional, or interjection correspond to (roughly)
closed classes which can be directly compiled in
lexicons. We also construct lexicons for other cat-
egories such as marked or phonemic spelling, al-
though those categories are more productive and
are not restricted to a closed set. Those lexicons
are created by enumerating tokens associated with
the corresponding tag in the development set.

Dictionary-based functions We can also predict
a voicing tag by changing a soft consonant (‘b’,
‘d’, ‘g’) to its hard consonant (‘p’, ‘t’, ‘k’) and then
performing a lookup in precompiled dictionaries
for Bokmål and Nynorsk3.

The results of all labelling functions can then be
aggregated into a unified prediction over possible
labels. This aggregation is done using a Hidden
Markov Model (HMM) or a majority voter (MV),
as implemented in skweak (Lison et al., 2021).

5.3 Weakly supervised models
Handcrafted functions remain hampered by their
limited coverage and lack of robustness to noise.
Weak supervision can partially alleviate those lim-
itations. Weak supervision operates by defining
labeling functions and applying those on large
amounts of unlabeled data to create a silver cor-
pus, which is in turn employed to train a machine
learning model for the task. We use the same 39
labelling functions as above and apply them to a
set of 2,169 additional dialectal tweets collected
similarly to the training data. Note that this data
was not annotated by hand and serves mainly as
a way to increase the size of the silver data with
the hope of increasing recall. The outputs of those

3We rely here on the Norsk Ordbank for both Bokmål
(https://www.nb.no/sprakbanken/ressurskatalog/
oai-nb-no-sbr-5/) and Nynorsk (https://www.nb.no/
sprakbanken/ressurskatalog/oai-nb-no-sbr-41/) and
extract all inflected forms from those.
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Model Dev Test

‘Vowel shift’ 3.7 4.4

Labeling functions (MV-aggregated) 15.6 16.4

NB-BERT fine-tuned on HMM-aggregated weak labels 14.1 ± 0.3 21.2 ± 0.7
NB-BERT fine-tuned on MV-aggregated weak labels 29.7 ± 0.6 33.3 ± 0.7

SVM + NB-BERT embeddings (gold labels) 45.5 47.7
BiLSTM fine-tuned on train (gold labels) 38.5 ± 3.4 45.5 ± 0.0
NorBERT fine-tuned on train (gold labels) 42.0 ± 6.0 52.9 ± 1.3
NB-BERT fine-tuned on train (gold labels) 54.9 ± 0.8 58.4 ± 0.4

Table 2: Micro F1 on dev and test for the vowel shift baseline, handcrafted labelling functions, weakly
supervised models aggregated with either Hidden Markov Models (HMM) or majority voting (MV), and
supervised models (BiLSTM, NorBERT, NB-BERT) trained on gold labels from the training set. The
results for neural models are shown as the average and standard deviation of five runs with different
random seeds.

functions are then aggregated using either HMMs
or majority voting. After aggregation, we train an
NB-BERT (Kummervold et al., 2021) model on
this silver data using the same procedure as the
supervised models described in the next section.

5.4 Supervised models
We test one context-free model and three sequence
labeling models which take context into account:
a bidirectional LSTM and two Norwegian pre-
trained language models. Those models are all
fine-tuned on the gold labels of the training set.

The context-free model is an linear SVM trained
using the embeddings from the NB-BERT model
(see below). Specifically, we create vector repre-
sentations for each word in the training data by
passing the words individually to the embedding
layer of NB-BERT. For words that are split into
several subcomponents due to the byte pair tok-
enization, we take the average representation of
these embeddings. Finally, we train a linear SVM
classifier4 and fine tune the C parameter on the dev
set. This model therefore uses the same represen-
tation strategy as the stronger NB-BERT model,
but uses these without contextualization and has
significantly fewer trainable parameters.

The BiLSTM is a two layer Bidirectional LSTM
(Schuster and Paliwal, 1997) with 100-dimensional
pre-trained embeddings,5 and a hidden layer size
of 256. The embeddings were trained on the Nor-
wegian Newspaper corpus, the Norwegian Web as
corpus (NoWaC) (Guevara, 2010), and NBDigital
corpus (books from the national library of Norway),

4https://scikit-learn.org/stable/modules/
generated/sklearn.svm.LinearSVC.html

5Model 81 downloaded from the NLPL word embedding
repository http://vectors.nlpl.eu/repository/

using fastText Skipgram (Bojanowski et al., 2017),
and with a vocabulary size of 4,428,648 tokens.
We train the BiLSTM model for a maximum of 50
epochs with a patience of 3 using Adam (Kingma
and Ba, 2014) with default parameters.

The transformer models include NorBERT (Ku-
tuzov et al., 2021) and NB-BERT (Kummervold
et al., 2021). NorBERT is a BERT (Devlin et al.,
2019) model trained from scratch, including the
subword tokenizer, on the Norwegian Newspaper
corpus combined with Wikipedia dumps for Bok-
mål and Nynorsk, for a total of nearly 2 billion
tokens. The NB-BERT model is a multilingual
BERT base model further trained on the Norwe-
gian Colossal Corpus.6 The latter is therefore less
adapted to Norwegian vocabulary, but has been ex-
posed to a larger volume and variety of Norwegian
texts, including dialectal context.

As commonly done, we add a classification head
to the transformer models and rely on the Hugging-
face library (Wolf et al., 2020) for the implementa-
tion. To deal with subword tokens, we assign the
token label only to the first subword and mask the
others. We use a learning rate of 2e-5, a weight
decay of 0.01, and a batch size of 16 with Adam
W (Loshchilov and Hutter, 2019). We train the
models for 20 epochs, updating both pretrained
weights and classification heads, and do not tune
any parameters on the development set.

6 Results

Table 2 shows the micro-average F1 scores obtained
by all approaches on the test set.

The majority label baseline (‘vowel shift’)
6https://github.com/NbAiLab/notram/blob/

master/guides/corpus_description.md
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achieves a low F1 score of 4.4. While the hand-
crafted functions obtain slightly higher F1 scores
than these baselines, the scores demonstrate that
the proposed task is challenging and that simple
rule-based approaches are insufficient.

All supervised models perform better than the
weak supervision models, with the BiLSTM achiev-
ing 45.5 F1, the SVM 47.7, NorBERT 52.9, and
NB-BERT 58.9. In general, the results of the SVM
follow a high-precision low-recall pattern (e.g., h-
v: precision 90/recall 42, interjection: 100/8.3,
palatalization: 100/13.3) displaying this model’s
inability to generalize to new examples, while the
neural models tend to generalize better. The good
performance of NB-BERT follows previous trends
for classification of tweets (Barnes et al., 2021).
Those results differs from Demszky et al. (2021),
who found that the weak supervision provided by
several hundred minimal pairs was often enough
to outperform supervised approaches. This dis-
crepancy may be due to differences in the training
set size or the increased difficulty of labeling the
tokens rather than the full utterance.

Label Precision Recall F1

copula 94.5 94.8 94.7
pron. subj. 82.9 74.3 78.4
pm deletion 72.4 79.9 76.0
pron. obj. 88.2 63.8 74.0
h-v 67.4 69.0 68.2
functional 71.2 63.9 67.3
voicing 73.7 58.3 65.1
apocope 75.5 53.6 62.7
nom. decl. 66.0 55.6 60.4
dem. pro. 60.0 60.0 60.0
contraction 77.1 45.8 57.4
vowel shift 58.4 55.3 56.8
phon. spelling 40.7 36.5 38.5
shortening 41.3 35.2 38.0
adj. decl. 36.8 28.0 31.8
palatalization 75.0 20.0 31.6
interjection 30.0 25.0 27.3
conjugation 24.3 15.8 19.1
marked 6.7 8.0 7.3
lexical 50.0 3.0 5.7
gender 0.0 0.0 0.0

Table 3: Precision, recall, and F1 scores of NB-
BERT.

7 Error Analysis

We provide here an error analysis of the results
from the best performing model, namely NB-BERT.
Table 3 shows the per-label precision, recall, and F1

scores of the NB-BERT model. We highlight scores
> 70 in blue and scores < 50 in red . The model
performs well on copula, pronouns (subject and
object), and present marker deletion. It performs
poorly on phonemic spelling, shortening, adjecti-
val declension, interjection, conjugation, marked,
lexical, and gender. There is a statistically signifi-
cant correlation between frequency in the training
corpus and F1 (Spearman’s ρ = 0.65, p = 0.001),
although there are outliers such as vowel shift. This
may be due to the range of heterogeneous contexts
in which vowel shift can occur. Other labels such as
functional or h-v are more difficult than expected,
likely due to the number of possible forms.

It is clear from the confusion matrix in Figure
4 that the model confuses most labels with the
label ‘Ø’. The other label that is regularly over-
predicted is ‘vowel shift’, which suggests that fre-
quency plays a strong role in prediction. When
it comes to multiple labels, the performance of
NB-BERT can be characterized as high-precision
and low-recall, with only 30% of the test tokens
with multiple labels being predicted as such by the
model, with a micro F1 of 88.1.

To establish the importance of context, we
compare the performance of the SVM and NB-
BERT models on context-free labels (h-v, func-
tional, vowel shift, voicing, palatalization, short-
ening, interjection, nominal declension, conjuga-
tion, marked, lexical) and context-sensitive labels
(phonemic spelling, contraction, pronoun subject,
pronoun object, present marker deletion, apocope,
adjectival declension, demonstrative pronoun, cop-
ula, gender). We compare these two groups by tak-
ing the average difference between the F1 scores for
each label. For the context-free labels, there is an
average 14.0 percentage points difference between
the two models, while for the context-sensitive la-
bels, this difference is 24.9. This implies that in-
cluding context via contextual embeddings is espe-
cially important for the context-sensitive labels.

8 Conclusion and future work

In this paper, we have presented a new dataset for
token-level dialect feature prediction, composed of
Norwegian tweets classified as dialectal, which we
annotated for 21 dialectal features achieving good
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Figure 4: Confusion matrix of the NB-BERT model. ‘Ø’ represents predicting no label. The y-axis
represents the true labels.

inter-annotator agreement. This dataset was em-
ployed in a set of labelling experiments including
rule-based approaches, weakly supervised, and su-
pervised neural models. The experimental results
corroborate the difficulty of the task, with micro F1

scores ranging from 16.4 for handcrafted functions
to 58.9 for the best supervised model.

This work provides a basis for future research on
dialectal features. Specifically, we plan to explore
the distribution of these dialectal features in differ-
ent online communities using the learned models.
The data can also help multi-task learning of text
normalization models, as identifying tokens to be
normalized should lead to improvements.

Another promising direction is to predict re-
gional dialects based on the token-level features.
As dialectal traits are correlated with certain re-
gions, it may be possible to create hierarchical
representations of dialects on different levels of
granularity. The guidelines, models, and annota-
tions will be made publicly available.7

As for potential risks, the dataset was compiled
from social media posts. Therefore, complying
with the GDPR regulations, authors of these posts

7https://github.com/jerbarnes/nordial

must have the right to be forgotten if they wish
to remove previous posts. We will therefore only
release the annotations with the original tweets
upon request. In this way, if they have been deleted,
they will also not be recuperated for our dataset.
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Appendix A – Limitations

Our motivation for this project was to take a first
step towards fine-grained dialectal feature detec-
tion. However, there are several limitations with
the current annotation process and modeling ap-
proaches presented in this paper.

Firstly, although the idea of identifying dialec-
tal features in Twitter data is rather general, the
guidelines and dataset provided with this paper are
specific to Norwegian. While we hope that these
resources are helpful to other language variations,
adapting this to another situation would require a
non-trivial amount of work and money. The cre-
ation of this dataset required 7000 euro.

The annotation procedure focused on token-level
labels. Dialectal features that arise from the ab-
sence of a given token (e.g. subject dropping, as
in Example 10) or that cannot be marked at the
token-level (e.g. non-V2 word order in interroga-
tive sentences as in Example 11) are therefore not
explicitly annotated in this dataset.

(10) Spent
Exited

på
on

det
it

...

...
‘(I am) excited about it’

(11) Ka
What

du
you

sier?
say?

‘What are you saying?’

Appendix B – Co-occurence of annotated
labels

Figure 5 shows the co-occurrence of the 21 labels at
token-level. From the figure, it is clear that most la-
bels do not co-occur or do so rarely. The labels that
co-occur the most frequently are vowel shift and
functional (366), vowel shift and present marker
deletion (121), functional and contraction (104),
phonemic and functional (65) and pronoun subject
and contraction (57). Vowel shift, besides being the
most common label, is also the label that co-occurs
the most with other labels.
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Abstract

In this paper, we present NorQuAD:
the first Norwegian question answering
dataset for machine reading comprehen-
sion. The dataset consists of 4,752 man-
ually created question-answer pairs. We
detail the data collection procedure and
present statistics about the dataset. We
also benchmark several multilingual and
Norwegian monolingual language models
on the dataset and compare them against
human performance. The dataset will be
made freely available.1

1 Introduction

Machine reading comprehension is one of the key
problems in natural language understanding. The
question answering (QA) task requires a machine
to read and comprehend a given text passage, and
then answer questions about the passage. In re-
cent years, considerable progress has been made
toward reading comprehension and question an-
swering for English and several other languages
(Rogers et al., 2022).

In this paper, we present NorQuAD: the first
Norwegian question answering dataset for ma-
chine reading comprehension. The dataset con-
sists of 4,752 question-answer pairs manually cre-
ated by two university students. The pairs are
constructed for the task of extractive question an-
swering aimed at probing machine reading com-
prehension (as opposed to information-seeking
purposes), following the methodology developed
for the SQuAD-datasets (Rajpurkar et al., 2016,
2018). The creation of this dataset is an important
step for Norwegian natural language processing,
considering the importance and popularity of read-
ing comprehension and question answering tasks
in the NLP community.

1https://github.com/ltgoslo/NorQuAD

In the following we detail the dataset creation
(section 3), where we describe the passage se-
lection and question-answer generation, present
relevant statistics for the dataset and provide an
analysis of human performance including sources
of disagreement. In order to further evaluate the
dataset as a benchmark for machine reading com-
prehension, we perform experiments (section 4)
comparing several pre-trained language models,
both multilingual and monolingual models, in the
task of question-answering. We also compare
models against human performance for the same
task. We further provide an analysis of perfor-
mance across the source data domain and anno-
tation time and present the results of manual error
analysis on a data sample.

2 Related Work

Cambazoglu et al. (2021) categorise QA datasets
into abstractive, extractive, and retrieval-based. In
abstractive datasets the answer is generated in free
form without necessarily relying on the text of the
question or the document. In extractive datasets
the answer needs to be a part of a given docu-
ment that contains an answer to the question. In
retrieval-based QA, the goal is to select an answer
to a given question by ranking a number of short
text segments (Cambazoglu et al., 2021). Since
NorQuAD is constructed based on extractive QA,
we will here concentrate on related work in extrac-
tive QA.

The Stanford Question Answering Dataset
(SQuAD) 1.1 (Rajpurkar et al., 2016) along with
SQuAD 2.0 (Rajpurkar et al., 2018) which sup-
plements the dataset with unanswerable questions
are the largest extractive QA datasets for En-
glish. SQuAD 1.1 contains 100,000+ questions
and SQuAD 2.0 contains 50,000 questions.

Several SQuAD-like datasets exist for other lan-
guages. The French Question Answering Dataset
(FQuAD) is a French Native Reading Compre-
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hension dataset of questions and answers on a
set of Wikipedia articles that consists of 25,000+
samples for version 1.0 and 60,000+ samples for
version 1.1 (d’Hoffschmidt et al., 2020). The
German GermanQuAD is a dataset consisting of
13,722 question-answer pairs created from the
German counterpart of the English Wikipedia ar-
ticles used in SQuAD (Möller et al., 2021). The
Japanese Question Answering Dataset (JaQuAD)
consists of 39,696 question-answer pairs from
Japanese Wikipedia articles (So et al., 2022). The
Korean Question Answering Dataset (KorQuAD)
consists of 70,000+ human-generated question-
answer pairs on Korean Wikipedia articles (Lim
et al., 2019). The Russian SberQuAD consists
of 50,000 training examples, 15,000 develop-
ment, and 25,000 testing examples (Efimov et al.,
2020)2. To the best of our knowledge there are
no extractive question answering datasets avail-
able for the other Nordic languages, i.e., Danish
or Swedish.

3 Dataset Creation

We collected our dataset in three stages: (i) select-
ing text passages, (ii) collecting question-answer
pairs for those passages, and (iii) human validation
of (a subset of) created question-answer pairs. In
the following, we will present these stages in more
detail and provide some statistics for the resulting
dataset as well an analysis of disagreements dur-
ing human validation.

3.1 Selection of passages

Rogers et al. (2020) reported that the absolute
majority of available QA datasets target only
one domain with rare exceptions. To provide
some source variation in our dataset, consider-
ing our limited resources, we decided to create
question-answer pairs from passages in two do-
mains: Wikipedia articles and news articles.

We sampled 872 articles from Norwegian
Bokmål Wikipedia. In order to include high-
quality articles, we sampled 130 articles from the
‘Recommended‘ section and 139 from the ‘Fea-
tured‘ section. The remaining 603 articles were
randomly sampled from the remaining Wikipedia
corpus. From the sampled articles, we chose only
the “Introduction“ sections to be selected as pas-
sages for annotation. Following the methodology
proposed for the QuAIL dataset (Rogers et al.,

2The datasets are presented in alphabetical order

2020) with the goal of making the dataset more
complex, we selected articles with “Introduction“
sections containing at least 300 words.

For the news category, we sampled 1000 arti-
cles from the Norsk Aviskorpus (NAK)—a collec-
tion of Norwegian news texts3 for the year 2019.
As was the case with Wikipedia articles, we chose
only news articles which consisted of at least 300
words.

3.2 Collection of question answer-pairs

Two students of the Master’s program in Natural
Language Processing at the University of Oslo,
both native Norwegian speakers, created question-
answer pairs from the collected passages. Each
student received separate set of passages for anno-
tation. The students received financial remuner-
ation for their efforts and are co-authors of this
paper. For annotation, we used the Haystack an-
notation tool 4 which was designed for QA collec-
tion. An example from the Haystack annotation
environment for a Norwegian Wikipedia passage
is shown in Figure 1. The annotation tool supports
the creation of questions, along with span-based
marking of the answer for a given passage. In
total, the annotators processed 353 passages from
Wikipedia and 403 passages from news, creating a
total of 4,752 question-answer pairs. The remain-
ing collected passages could be used for further
question-answer pair creation.

3.2.1 Instructions for the annotators
The annotators were provided with a set of ini-
tial instructions, largely based on those for sim-
ilar datasets, in particular, the English SQuAD
dataset (Rajpurkar et al., 2016) and the German-
QuAD data (Möller et al., 2021). These instruc-
tions were subsequently refined following regular
meetings with the annotation team. The annota-
tion instructions will be made available along with
the dataset.

3.2.2 Question generation
Annotators were instructed to read the presented
passages and formulate 5-10 questions for each
passage. The questions should be varied in terms
of wh-question type: hva ‘what’, hvor ‘where’,
når ‘when’, hvem ‘who’, hvilke ‘which’, hvordan

3https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-4/

4https://github.com/deepset-ai/
haystack/

160

https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-4/
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-4/
 https://github.com/deepset-ai/haystack/
 https://github.com/deepset-ai/haystack/


Figure 1: View of the Haystack annotation environment for a Norwegian Wikipedia document. The tool
supports the creation of questions along with span-based marking of the selected answer for a document.

‘how’ and hvorfor ‘why’. When formulating ques-
tions, the annotators were further instructed not to
repeat or simply copy words or phrases from the
passage text directly, but rather, if possible, re-
phrase the question. They were provided with a
number of examples of types of re-phrasals, in-
spired by the Japanese QA dataset JaQuAD (So
et al., 2022):

Syntactic variation The questions should, if pos-
sible, make use of syntactic alternations, such
as the active-passive alternation:
... John Lennon was assassinated by Mark
Chapman on ..
Q: Who assassinated John Lennon?

Lexical variation (synonymy) The questions
should if possible make use of synonymy
relations in re-phrasal:
... John Lennon was assassinated by Mark
Chapman on ..
Q: Who murdered John Lennon?

Lexical variation (inference) The questions
should if possible make use of inference
based on lexical or world knowledge in
re-phrasal:
... John Lennon was assassinated by Mark
Chapman on December 8, 1980 ...
Q: When did John Lennon die?

Multiple sentence reasoning The questions
should if possible require inference based
on more than one sentence in the associated

passage:
... John Lennon was the world-famous
guitarist of The Beatles. He wrote many
songs, among them ”All you need is love”.
Q: Who wrote ”All you need is love”?

In general, the annotators were encouraged to
pose difficult questions as long as they can be an-
swered based on the information in the passage
(and additional inference). The questions should
in combination cover most of the passage, how-
ever, if this turned out to be difficult to balance
with the requirement to pose varied questions, a
priority should be given to the latter requirement.
Each question should have only one answer and
there are no unanswerable questions in the dataset.

3.2.3 Answer generation

The annotators were instructed to mark answers to
their questions that adhere to the following main
principles:

• The answer should consist of the shortest
span in the original passage that answers the
question.

• The answer should, however, also be a
natural-sounding and a grammatically correct
response to the question. As an example, for
the question ”When was Lennon born?” the
answer text span should include the preposi-
tion ”in” and not only the year ”1940” if ”in
1940” is indeed a span of the original text.
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Question word Wikipedia News Total

hva ‘what’ 507 (21.54%) 383 (15.97%) 890 (18.73%)
hvor ‘where’ 414 (17.59%) 471 (19.64%) 885 (18.62%)
når ‘when’ 381 (16.19%) 385 (16.06%) 766 (16.12%)
hvem ‘who’ 350 (14.87%) 393 (16.39%) 743 (15.64%)
hvilke ‘which’ 346 (14.70%) 325 (13.55%) 671 (14.12%)
hvordan ‘how’ 201 (8.54%) 267 (11.13%) 468 (9.85%)
hvorfor ‘why’ 152 (6.46%) 174 (7.26%) 326 (6.86%)
other 3 (0.13%) 0 (0%) 3 (0.06%)

Total 2354 2398 4752

Table 1: Question types distribution by question word in the dataset, broken down by data source
(Wikipedia/news).

• Answers should always consist of whole
words, and there should be no subword an-
swers, such as parts of a compound or words
stripped of affixes.

• Answer spans should furthermore not include
span-final punctuation.

• The answers to the question should only oc-
cur once in the passage. Sometimes the same
entity occurs multiple times, but it should oc-
cur only once as an answer to the relevant
question.

3.3 Dataset analysis

To understand the properties of the created
question-answer pairs, we automatically cate-
gorised the whole NorQuAD dataset by question
word. We provide statistics for the questions and
their distribution by question word in Table 1. The
”other” row in the table contains questions which
we could not automatically categorise by a ques-
tion word due to absence of a question word in a
question or a typo in a question word. The table
shows that the distribution of the various question
types is fairly balanced, with the most common
type being hva ‘what’ type questions (18.73% of
all questions) and the least common being hvor-
for ‘why’ type questions (6.86%). While the an-
notators were instructed to try to introduce varia-
tion in question types, the distribution of these will
depend on the type of data. There are clear dif-
ferences between the two data sources (Wikipedia
and news), and we find that the news data con-
tains more hvor ‘where’, hvem ‘who’ and hvor-
dan ‘how’ type questions and less hva ‘what’
type questions than the Wikipedia portion of the

Question word Wikipedia News Total
hva ‘what’ 136 123 259
hvor ‘where’ 107 177 284
når ‘when’ 121 100 221
hvem ‘who’ 84 104 188
hvilke ‘which’ 95 88 183
hvordan ‘how’ 61 89 150
hvorfor ‘why’ 46 47 93

Total 650 728 1378

Table 2: Question types distribution for human
validation

dataset.

The reason for a lower occurrence of hvorfor
‘why’ and hvordan ‘how’ type questions is related
to this dataset being extractive in its nature. For
Norwegian, these question words require answers
of a particular form, which do not occur as fre-
quently in descriptive text as in other types of lan-
guage data, such as dialogue.

It is worth noting that the overview in Table 1
does not differentiate distinct question types for
questions using hvor as an adverb of degree, e.g.
hvor mange ‘how many’, hvor ofte ‘how often’
and hvor gammel ‘how old’. Even though hvor
in these questions does not denote location, they
are categorized as hvor ‘where’ type questions, in
contrast to the GermanQuAD dataset, where wie
viele ‘how many’ questions are considered a sep-
arate question type rather than just wie ‘how’ type
questions (Möller et al., 2021). We found that 214
(24.18%) of our total 885 questions categorised
as hvor ‘where’ type questions, are actually ques-
tions asking hvor mange ‘how many’.
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Question word Wikipedia News Total
EM F1 EM F1 EM F1

hva ‘what’ 66.2% 85.8% 74.0% 91.7% 69.9% 88.6%
hvor ‘where’ 82.2% 94.7% 85.9% 94.9% 84.5% 94.8%
når ‘when’ 81.8% 92.2% 94.0% 97.5% 87.3% 94.6%
hvem ‘who’ 73.8% 88.8% 83.7% 93.3% 79.3% 91.3%
hvilke ‘which’ 65.3% 89.1% 68.2% 88.5% 66.7% 88.8%
hvordan ‘how’ 72.1% 87.0% 89.9% 92.7% 82.7% 90.4%
hvorfor ‘why’ 82.6% 90.8% 91.5% 99.0% 87.1% 94.9%

Total 74.3% 89.8% 83.4% 93.7% 79.1% 91.8%

Table 3: Averaged human performance by question types

3.4 Dataset validation

In a separate stage, the annotators validated a sub-
set of the NorQuAD dataset. In this phase each
annotator replied to the questions created by the
other annotator. We chose the question-answer
pairs for validation at random. In total, 1378 ques-
tions from the set of question-answer pairs, were
answered by validators. This provides us with a
measure of human performance on a subset of the
dataset. Table 2 shows the number of question-
answer pairs assessed by a human, as broken down
by the question types over the two data sources. It
is worth mentioning that this subset is larger than
the test set for which modeling results are reported
in later sections. Table 3 shows the performance of
the human annotators in terms of exact match and
token-level F1. For the dataset as a whole we find
a human performance of 79.1% exact match and a
token-level F1 of 91.8%.

Exact match measures the percentage of predic-
tions that exactly match the ground truth answers.
F1 score is the harmonic mean of precision and
recall. We calculate token-level F1. Both metrics
ignore punctuation.

Wikipedia The annotators answered a total of
650 questions taken from the Wikipedia category.
We found that human performance is 74.3% for
the exact match metric and 89.8% for token-wise
F1 score on average. These results are further bro-
ken down by question types in Table 3. We find
that hvilke ‘which’ type questions seem to be the
most difficult, with an exact match score of only
65.3%, however with considerably higher F1, in-
dicating that for this category the precise delimi-
tation of the answer span proves challenging. The
question type with the highest F1 score of 94.7%
is the hvor ‘where’, most likely due to location

expressions being relatively easy to identify. The
question type with the highest EM score of 82.6%
is hvorfor ‘why’.

News The annotators answered a total of 728
questions taken from the news category of the
dataset. Overall exact match for this source
is 83.4% with a total F1 of 93.7%. Some-
what surprisingly, the human results for this cat-
egory turned out to be overall higher than for the
Wikipedia category. For the news category, the
hvilken ‘which’ type questions have the lowest hu-
man performance (EM 68.2%; F1 88.5%) which
proved difficult also for the Wikipedia articles.
The question type with the highest scores in terms
of human performance for the news category are
the når ‘when’ and hvorfor ‘why’ type questions.

3.5 Analysis of disagreement

As presented in Table 3, we found that human val-
idators performed better on the news dataset than
on the Wikipedia dataset. One possible reason for
this is that the time of annotation affected the qual-
ity of question-answer pairs seeing that the news
dataset was annotated after Wikipedia annotation.
We explore this hypothesis further in Section 4.3
below. Here we examine the disagreements be-
tween the annotators during the validation phase
in some more detail.

A manual inspection of the disagreements
shows that there are primarily three categories of
disagreements between the annotator and the val-
idator, two of which are semantic and the last one
grammatical in nature. First, there is disagreement
caused by the decision of how big of a span is
necessary to answer a question fully. For exam-
ple, for the question Hva er ei runebomme laget
av? ‘What is a runebomme (type of drum) made
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from?’, the answer could be either et dyreskinn
stort sett reinskinn ‘an animal skin mainly from
reindeer skin’ or et dyreskinn stort sett reinskinn
spent over en oval treramme eller over en oval
uthult rirkule ‘an animal skin mainly from rein-
deer skin, pulled over an oval wooden frame or
over an oval hollowed out burl’. The first option
excludes the description of how the reindeer skin
is constructed, while the second one includes it.

The second category of disagreement is where
an all together different span in the text is selected
to answer the question. In these cases, the question
is either not precisely enough formulated by the
annotator to exclude other options, or the valida-
tor has been semantically imprecise in their under-
standing of the question. For the cases of the first
type, ideally there should be no ambiguity. For
example, for the question ‘Where was Napoleon
born?’, the answer could be explicit one place in
the text, as in ‘...He was born in Corsica..’, and
implicit in another ‘...born 15 August 1769, Cor-
sica’. Both alternatives for the string ‘(in) Corsica’
would be valid options, so in this case the prob-
lem is an imprecisely formulated question. For
the question ‘In what city is Nidarosdomen?’, the
answer ‘Trøndelag’ would be wrong, as that is a
region and not a city. In that case the mistake is
on the validator side, as the only correct answer
would be ‘Trondheim’.

The last category has to do with function words
like determiners and prepositions, and whether to
repeat them in the answer. Here the principles of
answering with the shortest possible span but at
the same time ensuring that the answers are natu-
ral sounding are in conflict. One example contain-
ing the subjunction som ‘as’ is the answer to the
question Hva arbeidet Miklos Horthy som fram til
1944? ‘What did MH work as until 1944?’: som
statsoverhode i ungarn ‘as head of state in Hun-
gary’ versus the alternative answer span statsover-
hode i ungarn which excludes the subjunction.

4 Experiments

In this section, we assess the use of the NorQuAD
dataset as a benchmark for Norwegian machine
reading comprehension. Given the small size of
the dataset, compared to many other QA datasets,
one important question to assess will be the level
of performance that can be obtained with less than
5,000 question-answer pairs.

To evaluate models, we use two metrics which

are used to evaluate performance on most SQuAD-
like datasets: exact match and F1 score, as de-
scribed in Section 3.4.

We split the NorQuAD dataset randomly into
three sets: training (80%), validation (10%), and
test (10%). We split datasets to the above-
mentioned fractions separately for Wikipedia and
news datasets to observe if performance will dif-
fer depending on domain. The test sets consist
of human validated question-answer pairs, hence
we may compare models’ results to human perfor-
mance on the same data. The human validation
process is described in Section 3.4.

We establish benchmarking experiments using a
set of different pre-trained language models, out-
lined below. Due to the small size of NorQuAD,
as compared to other SQuAD-like datasets, we run
all configurations five times with different random
seeds and report the mean and standard deviation
from these experiments. Details on selected hy-
perparameters are located in Appendix A.1

4.1 Baseline models

Norwegian models. We compare two monolin-
gual transformer models based on the architecture
from BERT (Devlin et al., 2019): The NorBERT2,
originating from the initiative started in NorLM
(Kutuzov et al., 2021), and the NB-BERT model
from Kummervold et al. (2021).

Multilingual models. We further compare two
multilingual models: mBERT (Devlin et al., 2019)
and XLM-RoBERTa (Conneau et al., 2020).

Cross-lingual augmentation. Table 1 shows
that ≈ 51% of the questions in our dataset use
the question words what, where and who. Such
questions are often answered with a named entity.
Hence, we hypothesise that a lot of the annotated
gold labels are named entities, and that much of
the performance on SQuAD-like datasets there-
fore comes down to identifying the span of the
correct entity in the text, which is less language
specific. To investigate this, we study whether or
not we can utilise another SQuAD-like dataset as
a cross-lingual data augmentation step in order to
increase the number of samples.

We warmup the NB-BERT model on the Ger-
manQuAD (Möller et al., 2021) dataset for 3000
optimization steps with a batch size of 16 using a
learning rate of 1e − 4. That is, we first fine-tune
the NB-BERT model on the German data for a
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Model Wiki News All
EM F1 EM F1 EM F1

Human* 72.65 88.84 83.61 93.43 78.13 91.14
NorBERT2 57.76 ± 1.15 71.89 ± 0.89 64.05 ± 1.27 76.93 ± 1.15 64.64 ± 1.40 77.86 ± 0.65
NB-BERT 59.74 ± 0.76 74.16 ± 1.31 67.64 ± 1.11 79.17 ± 0.92 69.68 ± 1.21 81.27 ± 0.73
mBERT 55.70 ± 1.67 71.21 ± 1.20 63.12 ± 2.34 73.96 ± 1.26 63.32 ± 1.58 76.00 ± 0.83
XLM-RoBERTa 54.33 ± 7.14 70.00 ± 7.76 61.72 ± 2.74 75.62 ± 2.88 64.52 ± 1.37 78.42 ± 0.97
NB-BERTger 65.23 ± 1.45 78.504 ± 1.67 70.80 ± 1.59 80.76 ± 1.78 68.78 ± 1.38 80.76 ± 0.62

Table 4: Results on the test set of the different domains of the NorQuAD dataset. Results are reported as
means over five different random seeds with standard deviation. *Human performance is the averaged
performance of the two annotators on complementary halves of the test set (10%). The model NB-
BERTger refers to the model with the cross-lingual augmentation from the GermanQuAD dataset. Note
that the full human validated part of the dataset is larger, hence these results are not identical to those
reported in Table 3.
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Figure 2: Performance of annotators and models on the entire test set: EM and F1 scores

limited number of steps, then switch to the Norwe-
gian data and continue fine-tuning in the same way
as for the monolingual experiments. We choose
German as the augmentation language because it
is typologically similar to Norwegian and since
the GermanQuAD dataset has a similar annota-
tion scheme. We chose NB-BERT as the model
for cross-lingual augmentation because it was the
best performing monolingual model.

4.2 Results

Table 4 shows the results of the baseline models
outlined above. Overall, all models perform worse
on the Wikipedia split, followed by the news split,
and perform best on the total split. The best per-
forming monolingual model, NB-BERT, performs
better than both multilingual models and also has

the lowest standard deviation over the different
runs. We note that the performance of XLM-
RoBERTa is particularly unstable. As this ar-
chitecture is very similar to the models based on
BERT, we did not perform a separate round of hy-
perparameter tuning for this model, which might
explain the instability. A comparison of perfor-
mance of models against human performance on
all the data (both Wikipedia and news) is shown in
Figure 2.

Our results indicate that it is possible to further
improve the performance of a monolingual model
by first warming up on the GermanQuAD dataset.
This model achieves the highest score out of all
the baselines on both the Wikipedia and news split
with an exact match score of 65.23% and 70.80%.
However, on the total split the cross-lingual data
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augmentation step did not yield any added per-
formance and performed on par with just regular
fine-tuning, which points towards the cross lin-
gual warmup being most effective for low sample
scenarios. That is, when there is enough training
data available, the models converge towards the
same point regardless of the warmup phase. Fur-
thermore, as the multilingual models also perform
close to the monolingual ones, we interpret this
as evidence towards the importance of identifying
named entities for closed question answering.

Although the models perform well with respect
to the relatively low sample size, as compared to
other SQuAD-like datasets, there is still room for
improvement when considering the human perfor-
mance level.

4.3 Performance across domains and time

We noticed a difference in performance both for
annotators and models on the Wikipedia and news
partitions of the data sets, where the annota-
tors and models generally performed better on
the news partition. During the data collection
phase, the annotators started creating question-
answer pairs first for Wikipedia passages and sub-
sequently moved on to news passages. One rel-
evant question is therefore whether the observed
difference in performance is an artifact of the way
the data collection was organized. It might be that
the annotators became more competent at the task
over time and that the annotation for the news sec-
tion is therefore more consistent and generally of
a higher quality.

To evaluate whether the time of annotation af-
fected the consistency of annotation, we measure
the performance of the annotators (as obtained
during the data validation stage) as well as the best
performing NB-BERT model on the halves of the
test dataset which were created first and the halves
which were created last. These partitions measure
117/117 for Wikipedia and 119/119 for news. The
results can be observed in Figure 3.

The results show that the annotators perform
better on question-answer pairs created later in
the annotation process both for the Wikipedia and
news partitions of the dataset. We find that the
average performance of the annotators on the be-
ginning of the Wikipedia dataset is 67.29% EM
and 84.99% F1, compared with 70.35% EM and
91.83% F1 on the last part of this dataset. For
the beginning of the news dataset the results are

Beginning End
50

60

70

80

90

Human Wiki
Human news

NB-BERT Wiki
NB-BERT news

Figure 3: Performance on the beginning and end
of datasets (F1 score)

81.79% EM and 92.84% F1, while the last part
achieves the higher results of 85.70% EM and
94.37% F1. In total for the beginning half of the
whole dataset, the performance is 74.54% EM and
88.92% F1, while the averaged performance of the
annotators for the last halves are 78.03% EM and
93.10% F1.

For the models, the average performance over
five runs on the beginning of the news dataset is
67.73% EM and 80.06% F1 compared to 71.35%
EM and 80.36% F1 at the end. The difference
in EM is within a standard deviation. On the
Wikipedia dataset, however, the discrepancy is
large: the average performance on the beginning is
54.98% EM and 67.67% F1 compared to 66.32%
EM and 80.35% F1 at the end, with a standard de-
viation of ≈ 1.5 at both tails.

These results indicate a temporal effect in the
data collection phase, where the annotators be-
came more consistent in their question-answer
pairs over time regardless of the domain. Since
they started out with Wikipedia this effect is most
noticeable in the Wikipedia category.

5 Error Analysis

In this section, we have a more detailed look at
how the models performed on our dataset. We
sampled 60 errors from the system output. The
model in question is NB-BERT. We found that in
57% of cases there is at least some overlap be-
tween the prediction and the annotated span. In
85% of instances the predicted answers are gram-
matically and semantically viable phrases, but are
not factually the correct answer to the current
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question. Within this category there are cases of
questions where the answer is the same type of en-
tity as the one asked for in the question (e.g. a per-
son, but the wrong person), and in other cases the
entity is of a different type (e.g. a number, instead
of a person).

In 13% of cases the predicted phrase could be
considered a good answer to the question, but the
annotator made a different selection. This means
that the question must be considered ambiguous
and that the system is not necessarily to blame for
the error, but rather the annotation itself, because
according to the annotation guidelines each ques-
tion should have only one possible answer (see
Section 3.2.2). Please see further discussion on
this type of ambiguity in section 3.5 on analysis of
disagreement between annotators.

6 Conclusion

In this paper, we presented NorQuAD—the first
question answering dataset for Norwegian. We
collected passages from Norwegian Wikipedia ar-
ticles and a collection of Norwegian news texts
and manually created over 4,700 questions. In
the experiments, we fine-tuned several pre-trained
language models with NorQuAD and found that
the best performing model achieved 69.68% for
EM and 81.27% for F1 score on the entire test set.
Averaged human performance on the test set was
78.13% for EM and 91.14% for F1. The dataset
and our experiments are available at https://
github.com/ltgoslo/NorQuAD. Further-
more, we presented human validation of the part
of the dataset.

We noticed that annotators and models per-
formed better on the news dataset and we per-
formed experiments to find out whether the time of
annotation influences the performance. We mea-
sured performance of annotators and NB-BERT—
the best performing model. We found that both
annotators and the model perform better on the
second half of the datasets meaning that the an-
notators got better and more consistent in their
question-answer pairs over time.

While it is clear from our experiments that the
number of question-answer pairs are sufficient to
achieve a decent performance, improvements are
certainly possible both in terms of size and data
quality. To improve the dataset quality, one pos-
sible avenue for future work is to collect mul-
tiple answers for the questions as was done in

SQuAD (Rajpurkar et al., 2016). Another possi-
ble extension in the future is the addition of unan-
swerable questions (Rajpurkar et al., 2018) to the
dataset.
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A Appendix

A.1 Hyperparameters
The hyperparameters for the baseline models were
selected based on a grid search against the valida-
tion split. The final parameters were used for all
models on all splits, except for the warmup phase
of the cross lingual augmentation configuration.

• lr = 5e− 5

• epochs = 3

• batch size train = 16

• batch size eval = 8

• learning rate scheduler = linear
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Abstract

This paper concerns evaluating methods
for extracting phonological information of
Swedish Sign Language signs from video
data with MediaPipe’s pose estimation.
The methods involve estimating i) the ar-
ticulation phase, ii) hand dominance (left
vs. right), iii) the number of hands artic-
ulating (one- vs. two-handed signs) and
iv) the sign’s place of articulation. The
results show that MediaPipe’s tracking
of the hands’ location and movement in
videos can be used to estimate the artic-
ulation phase of signs. Whereas the in-
clusion of transport movements improves
the accuracy for the estimation of hand
dominance and number of hands, remov-
ing transport movements is crucial for es-
timating a sign’s place of articulation.

1 Introduction

Sign languages – or, signed languages – are lan-
guages produced with gestures articulated in space
and perceived visually or tactilely. Over 200 sign
languages have been documented around the globe
(Hammarström et al., 2022) but they are minori-
tized and under-researched. One challenge for
quantitative research on sign languages is that they
generally lack a conventionalized representation in
a machine-readable form, such as phonetic tran-
scription or orthography (see e.g., Miller, 2006;
Frishberg et al., 2012; Crasborn, 2015). Following
technological advances in computer vision, meth-
ods have emerged that allow a degree of form-
based analysis of body movements, such as ges-
turing and signing, through human body pose esti-
mation tracking of either real-time or pre-recorded
video data (Pouw et al., 2020). Whereas most
body pose tracking utilized in sign/gesture re-
search used to involve either wearable devices

(e.g., motion capture sensors) (Puupponen et al.,
2015) or 3D cameras (e.g., Kinect) (Namboodiri-
pad et al., 2016; Trujillo et al., 2019), thus requir-
ing designated hardware, there are now pre-trained
models that do human body pose estimation ei-
ther real-time through a regular video camera or on
pre-recorded video data, providing a cost-efficient
alternative that has proven to be reliable in estimat-
ing human gesturing (Pouw et al., 2020). A popu-
lar tool for such analysis is OpenPose (Cao et al.,
2017), which has been successfully applied in re-
search on both sign language and gesture (Östling
et al., 2018; Börstell and Lepic, 2020; Ripperda
et al., 2020; Fragkiadakis et al., 2020; Fragki-
adakis and van der Putten, 2021; Fragkiadakis,
2022). A tool that has become available more
recently is Google’s MediaPipe (Lugaresi et al.,
2019), which similarly performs human body pose
estimation of video data and outputs coordinates
of landmarks (joints and anchor points such as
eyes, nose and eyebrows).

1.1 Sign Language and Computer Vision

Previous research using OpenPose has shown that
it can be used to pre-process and analyze gesture
and sign language video data in terms of assess-
ing movement (estimating articulation, holds and
movement patterns) (Börstell and Lepic, 2020;
Ripperda et al., 2020; Fragkiadakis et al., 2020;
Fragkiadakis, 2022; Fragkiadakis and van der Put-
ten, 2021), hand dominance (which hand is articu-
lating more) and the number of hands involved in
signing (one- vs. two-handed signs) (Östling et al.,
2018; Börstell and Lepic, 2020), the place of artic-
ulation (the hands’ position relative to the body)
(Östling et al., 2018; Börstell and Lepic, 2020;
Fragkiadakis, 2022) and even non-manual features
(Kimmelman et al., 2020; Saenz, 2022). These
are all basic properties of describing the form of
signs and establishing the phonological structure
of a sign language (Brentari, 2019). Defining the
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start and end points of the sign articulation, ex-
cluding transport movements to and from the place
of articulation, is crucial to delimit the articulation
phase of a sign (Jantunen, 2015). Signs can be
described as either one- or two-handed, generally
evenly distributed in any sign language lexicon
(Börstell et al., 2016), and two-handed signs can
be further divided into unbalanced signs with a
single active articulator (the dominant hand articu-
lating on/by the non-dominant hand) vs. balanced
signs, for which both hands articulate simultane-
ously (van der Hulst, 1996; Sandler, 2006; Cras-
born, 2011). While hand dominance is generally
associated with individual handedness (whether
the signer is left- or right-handed), it is crucial
to know which hand is dominant in one-handed
and unbalance two-handed signs to establish the
place of articulation, which in itself can be mean-
ingful through iconic mappings, e.g., the head be-
ing associated with concepts relating to cognition
(Börstell and Östling, 2017; Östling et al., 2018;
Börstell and Lepic, 2020). The number of hands
in signs has also been found to be iconically linked
to plurality, such that two-handed signs are more
likely to denote plural concepts (Lepic et al., 2016;
Börstell et al., 2016; Östling et al., 2018).

1.2 Aims

In this paper, I evaluate methods of analyzing
videos from the Swedish Sign Language online
dictionary (Svenskt teckenspråkslexikon, 2023)
with MediaPipe. The methods aim at extract-
ing basic information about the articulation and
sign form, which can aid quantitative research on
sign languages relating to phonology and form–
meaning mappings. Specifically, the aim is to
evaluate methods for estimating the articulation
phase of signs (§3.1), which can inform further
analyses of sign form, and classifying signs as
either left- or right-handed as hand dominance
(§3.2) and one- or two-handed in terms of num-
ber of hands articulating (§3.3). Based on the
hand dominance estimation and segmentation of
the articulation phase, the sign’s main place of ar-
ticulation (§3.4) is estimated relative to the body.

2 Methodology

2.1 Retrieving and Processing Sign Videos

Using data from the Swedish Sign Language
online dictionary (Svenskt teckenspråkslexikon,
2023) containing information about the hand dom-

inance, number of hands and sign location for the
over 20,000 signs in the database, a subset of 1,292
non-compound signs was sampled to represent a
diverse set of signers in the videos (including left-
and right-handed signers) and different places of
articulation. Non-compounds were selected to
limit each sign to a single main place of articu-
lation and avoid combination of multiple, phono-
logically different elements (cf. Lepic, 2015).
The sampled signs were downloaded with the
signglossR package (Börstell, 2022) and then
analyzed with the Python (3.10.5) implementation
of MediaPipe (mediapipe 0.8.10.1), together
with OpenCV (opencv-python 4.6.0.66) and
NumPy (numpy 1.23.1) (Harris et al., 2020).
Each video is analyzed frame by frame using the
pose model estimating major landmarks on the
body, represented visually in Figure 2 using the
one-handed sign TAXI. The sampled sign videos
vary between 35 and 312 frames in total (mean =
83, SD = 33) – some videos are recorded in 50
frames per second (fps), others at 25 fps. Of the
1,292 sampled videos, 43 (3.3%) show left-handed
signers, the rest right-handed signers, and 567
(43.9%) involve a one-handed sign (1h), whereas
725 (56.2%) are two-handed, of which 338 are un-
balanced (2h unbalanced) and 387 are balanced
(2h balanced). The distribution of places of artic-
ulation is shown in Table 1.1

Location n %
head 469 36.3%
torso 184 14.2%
hand/arm 397 30.7%
neutral 155 12.0%
low 87 6.7%

Table 1: Places of articulation in sample.

2.2 Normalizing MediaPipe Outputs

A total of 107,955 frames from 1,292 videos
were analyzed with MediaPipe. The output
was further processed using R (4.2.2) and the
packages tidyverse (Wickham et al., 2019),
pracma (Borchers, 2022), scales (Wick-
ham and Seidel, 2022), slider and (Vaughan,
2021), and graphics were created with packages
ggbeeswarm (Clarke and Sherrill-Mix, 2017),
ggchicklet (Rudis, 2022), ggforce (Ped-

1Locations are more fine-grained in the dictionary
database, but are lumped into five major categories here.
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Figure 1: The sign TAXI (Svenskt tecken-
språkslexikon, 2023, 1) (top) with the MediaPipe
pose estimation visual output (bottom).

ersen, 2021), ggrepel (Slowikowski, 2022),
xtable (Dahl et al., 2019).2

Only five out of the 33 landmarks of the pose es-
timation model were included in the further anal-
ysis, yielding a total of 539,775 datapoints, each
representing a landmark estimation in a single
frame. The five landmarks selected are shown in
Figure 2: 0 represents the nose, 11 and 12 the left
and right shoulders, and 15 and 16 the left and
right wrists. The coordinate outputs from Medi-
aPipe are scaled to 0 to 1 for both x and y. Based
on the methods of Östling et al. (2018) and Fragki-
adakis and van der Putten (2021), coordinates are
normalized based on the mean distance between
the shoulders within a sign and adjusted to an
origo set at the halfway point between the mean
position of the two shoulders – the red square with
a white “X” in Figure 2. The coordinates were
rescaled such that the distance between the shoul-
ders equals to 1 to normalize across signers of dif-
ferent size, and the distance between landmark 0
and origo equals .6, to approximate the propor-
tions of the human body.

2The full data set and code can be found at:
https://osf.io/x3pvq/.

Figure 2: Relevant MediaPipe landmarks num-
bered, the normalized size based on the mean dis-
tance between shoulder landmarks scaled to 1, and
origo set to the halfway point (“X” mark).

2.3 Estimating Articulation

For each sign, the articulation phase was esti-
mated based on the movement of the two hands
(or, rather, wrists) represented by landmarks 15
and 16. For each hand, the Euclidean distance
traveled between each frame transition was cal-
culated and summed into a total distance trav-
eled. The distance traveled was smoothed into a
rolling average of ±2 frames. The smoothed dis-
tance traveled data was analyzed for peaks using
the pracma::findpeaks() function, set to
look for two peaks at least 8 frames apart. These
peaks represent the highest points of articulation
speed, assumed to occur to and from the articu-
lation phase – i.e., transport movements. Then,
the sequence between the two peaks identified was
analyzed in isolation with the same function, but
with inverted values to detect valleys – assumed
to represent sign holds as onset/offset in syllables
(Brentari, 2019) – and set to up to 6 peaks with at
least 5 frames apart. The first (inverted) peak was
defined as the start frame of the articulation phase,
and the last (inverted) peak was defined as the end
frame. If no (inverted) peaks were identified, the
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start and/or end frames were defined as the first
and last original (positive) peaks, respectively. If
there were less than 10 frames between the start
frame and the end frame, the end frame was ex-
tended to 10 frames after the start frame. Figure 3
illustrates the original signal of the total distance
traveled by the hands in the sign TAXI in grey, the
smoothed signal in black, with the identified peaks
as vertical, black lines, and the inverted smoothed
signal between peaks as a dashed, red line, with
the inverted peaks identified as vertical, red lines.

Figure 3: Distance traveled by the hands as a
raw (grey) and smoothed (black) signal in the
sign TAXI. Black lines show peaks in movement.
The dashed, red curve is the inverted signal be-
tween peaks with lines representing peaks identi-
fied. First inverted peak is estimated start frame.

2.4 Estimating Hands
In order to estimate hand movements and loca-
tions reliably, it is important to establish which of
the two hands is articulating in a sign, particularly
for one-handed signs and unbalanced two-handed
signs, for which the articulation is not symmetri-
cal across the two hands. The estimation used here
is simply comparing the distance traveled between
the two hands: if the distance traveled by the right
hand is equal to or greater than that of the left
hand, the right hand is estimated to be the dom-
inant hand, otherwise the left hand is estimated.
This estimation is performed twice for each sign
video: first with the distance traveled across all
frames of the video (full method), then with the
distance traveled within the estimated articulation
phase only (short method).

Estimating the number of hands used in a sign is
somewhat more complicated, as the relative differ-
ence in movement across the two hands can vary

a lot, especially when a non-articulating hand can
still be moving because of general body motion
or readjustments (changing rest position, groom-
ing/scratching, etc.). Östling et al. (2018) used
a factor of 3 as the cut-off point between one-
and two-handed signs when analyzing sign lan-
guage data with OpenPose: if one hand traveled
over three times the distance of the other hand,
the sign was estimated to be one-handed. How-
ever, one difference between the study by Östling
et al. (2018) and this one is that they calculated an
extrapolated position of the hands extended from
the estimated wrist position, which could lead to
differences in the distance traveled. In this pa-
per, I evaluate the accuracy of different relative
factors in the distance traveled by the two hands,
ranging from 1 (equal distance) to 4 (four times
the distance of the other hand). This estimation
is also performed twice for each sign video: first
with the distance traveled across all frames of the
video (full method), then with the distance trav-
eled within the estimated articulation phase only
(short method).

The estimation of place of articulation is heav-
ily dependent on an accurate classification of hand
dominance, at least for one-handed signs. In this
paper, the estimation of place of articulation is
made on the basis of the location of the estimated
dominant hand. Since several of the locations
(see Table 1) are potentially overlapping and may
display internal differences – e.g., signs articu-
lated around the head may be high or low and
right or left relative to the head – the main aim
here is to estimate sign height, that is the loca-
tion on the y axis relative to origo. This estima-
tion of place of articulation is done three times
for each sign video: first using the mean coordi-
nates of the estimated dominant hand across all
frames of the video (full method), secondly, using
the mean coordinates of the estimated dominant
hand within the estimated articulation phase only
(short method), and lastly using the coordinates of
the estimated dominant hand of the estimated start
frame only (start method).

3 Results

3.1 Articulation Phase

Using the peak estimation method on the distance
traveled of the two hands, two main peaks were
identified in all 1,292 sign videos. These peaks
define the segment of the sign video that is fur-

172



ther analyzed for inverted peaks representing sign
holds, when the hands are mostly stationary. For
47 (3.6%) out of 1,292 signs, no inverted peaks
could be identified, in which case the original
peaks were used as a proxy, and for 639 (49.5%)
signs only a single inverted peak was found, in
which case this is defined as the start frame. For
294 (22.8%) signs, the distance between start and
end frames was less than 10 frames, resulting in
the end frame being extended to 10 frames af-
ter the start frame. For the purpose of estimating
place of articulation, the most important estima-
tion is the initial hold phase at the beginning of
the articulation phase, and with the current method
of estimating this phase, 96.4% of the signs ana-
lyzed had an identified inverted peak between the
transport movement peaks. Figure 4 illustrates the
total distance moved by the hands across all sign
videos, with vertical lines showing the mean rela-
tive locations of peaks and inverted peaks.

Figure 4: Distance traveled by the hands as a
raw (grey) and smoothed (black) signal across all
signs. Black lines show mean relative position of
peaks in movement. The red lines show mean rel-
ative position of (inverted) peaks identified.

The accuracy of this method cannot be evalu-
ated on its own without a manual annotation of
each individual sign video’s observed start and
end points of the articulation phase. However, the
method can be evaluated indirectly in the follow-
ing sections, in terms of how useful the segmen-
tation is for accurately estimating other form fea-
tures of the signs, and the method will thus be dis-
cussed in more depth later.

3.2 Hand Dominance
The estimation of hand dominance was based on
a simple comparison of the distance traveled by

the left and right hands: if the distance traveled
by the right hand is greater or equal to that of the
left hand, the right hand was estimated to be the
dominant hand – defaulting to the right hand for
equal distances is motivated by the general right-
handedness bias. The relative distance compari-
son was made across all frames (full method) and
the frames within the estimated articulation phase
only (short method).

Table 2 and Figure 5 show the accuracy of
the two methods in classifying left- and right-
dominant sign videos based on the actual hand-
edness of the signers in the lexical database. The
results show that the full method performs better
than the short method, but both methods have a
similar precision on left- and right-dominant signs.

Method Hand Precision Recall F1
Full left 0.81 0.88 0.85
Full right 0.81 0.81 0.81
Short left 0.72 0.72 0.72
Short right 0.72 0.72 0.72

Table 2: Precision, recall and F1 of hand domi-
nance estimation with full and short methods.

Figure 5: Accuracy of hand dominance estimation
with full and short methods.

Figure 6 shows the accuracy of hand dominance
estimation across different sign types with regard
to the number of hands articulating: one-handed
signs (1h) and two-handed signs (2h; unbalanced
and balanced). The full method performs better
across all three sign types, but unsurprisingly the
balanced two-handed signs are approximately at
chance level for both methods. The reason for
this is that balanced two-handed signs are gener-
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ally symmetrical in terms of both hands articulat-
ing either mirrored or alternating movements, and
the hands would thus be expected to have approx-
imately the same total distance traveled. Conse-
quently, defining hand dominance is less impor-
tant for balanced signs, since the two hands are
generally symmetrical.

Figure 6: Accuracy of hand dominance estimation
with full and short methods by sign type.

3.3 Number of Hands
The number of hands involved in each sign video
was estimated by comparing the relative distance
traveled between the two hands to see whether one
hand traveled farther than the other hand by a fac-
tor between 1 and 4. In a previous study using
OpenPose data, Östling et al. (2018) used a fac-
tor of 3 to estimate the number of hands (whether
one- or two-handed). Here, the factor is increased
by 0.1 increments to evaluate what the best cut-
off point is for this data set. Figure 7 shows the
F1 scores for one- and two-handed signs across all
factor increments for both methods, with the mean
F1 as a thicker, black line. The figure demon-
strates that the best performing factor is 1.7 for the
full method and 1.8 for the short method, and that
the full method once again performs better overall.
Table 3 shows the accuracy of classification for the
best performing factors for each method.

Figure 8 shows a confusion matrix of the clas-
sification of one- and two-handed signs across the
three sign types: one-handed and two-handed (un-
balanced and balanced). Both methods perform
relatively well with one-handed signs and bal-
anced two-handed signs, but the unbalanced two-
handed signs are particularly problematic for the

Figure 7: F1 of number of hands estimation with
full and short methods. Yellow line shows one-
handed signs only, blue line shows two-handed
signs only, black line shows the combined mean.
Dashed, vertical black line shows the top perform-
ing factor for each method.

short method. It is unsurprising that this category
poses some problems, seeing as it is an in-between
sign type phonologically (cf. van der Hulst, 1996;
Sandler, 2006; Crasborn, 2011), in that it has a
single hand actively articulating (like one-handed
signs) but two hands involved in the sign (like bal-
anced two-handed signs).

3.4 Place of Articulation

The place of articulation of the signing for each
sign video was estimated using three methods:
the full method, including the mean coordinates
of the estimated dominant hand across all sign
frames; the short method, including the mean co-
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Method # Fct Precision Recall F1
Full 1h 1.7 0.89 0.84 0.86
Full 2h 1.7 0.89 0.93 0.91
Short 1h 1.8 0.78 0.75 0.76
Short 2h 1.8 0.78 0.81 0.79

Table 3: Precision, recall and F1 of number of
hands estimation with full and short methods us-
ing the top performing factor for each method.

Figure 8: Confusion matrix of number of hands
estimation with full and short methods, with abso-
lute numbers and accuracy (%) for each category.

ordinates of the estimated dominant hand only for
the frames inside the estimated articulation phase;
and the start method, including the coordinates
of the estimated dominant hand only for the es-
timated start frame, i.e., the first inverted peak
(sign hold) inside between the transport move-
ment peaks. Figure 9 shows the location of the
estimated dominant hand relative to the signer’s
body across the known places of articulation for
the three methods. The figure illustrates that the
short and start methods perform much better than

the full method. The full method conflates the
hand location across the entire sign video, which
means that rest positions and transport movements
will always be included, and thus the estimated
places of articulation are quite uniform across the
actual locations as coded in the lexical database.
With the short and start methods, there are visible
differences in the estimated places of articulation
across actual locations, which also reflect the ac-
tual locations of the signs in the lexical database
– e.g., signs with a known place of articulation by
the head are visibly higher up than the others. This
pattern is also visible in Figure 10, which simpli-
fies the comparison by looking at the height of the
estimated place of articulation. Here, there is a
much clearer – and accurate – difference across
the known sign locations, showing that the short
and start methods outperform the full method.

4 Conclusions

In this paper, I have shown initial explorations of
methods to extract basic information about articu-
lation and sign form from sign language video data
using MediaPipe.

The first step of estimating an approximate ar-
ticulation phase of the sign proved to be possi-
ble for most sign videos in the data set, which
turned out to be a fruitful endeavor in order to
then accurately estimate the place of articulation
across signs. For the purpose of estimating hand
positions corresponding to a phonological place
of articulation, estimating the articulation phase
is crucial, since the signal is otherwise disrupted
by noise from rest positions and transport move-
ments. Being able to automatically segment the ar-
ticulation phase of signs would have other obvious
applications, when extracting phonological infor-
mation about the actual sign (articulation) rather
than contextual noise (transport and rest).

However, when estimating hand dominance and
number of signs articulating, the full method,
which included data from all frames in the
sign video, consistently outperformed the short
method, for which the data only included frames
within the estimated articulation phase. It seems
as though the crude method of comparing the rela-
tive distance traveled between the two hand ben-
efits from more data than the short articulation
phase provides, and that the transport movements
to and from the articulation phase are in fact quite
useful for magnifying the differences in distance
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Figure 9: Estimated place of articulation across locations and three methods.

Figure 10: Estimated place of articulation as vertical sign height (y coordinates) across locations and
three methods.

traveled between the two hands. This method
works quite well with dictionary data here, with
each video containing a single (non-compound)
sign. If applied to complex/compound signs or
stretches of multiple signs in succession, as in con-
versational data, transport movements may not be
as distinct and more elaborate methods to estimate
articulation phases would be necessary.

The results of this preliminary and exploratory
study has demonstrated some possibilities in ex-

tracting sign language articulation from videos
with MediaPipe, which can be used as a fast
and cost-efficient way to analyze pre-recorded but
unannotated sign language data in substantially
larger quantities than would be feasible with man-
ual annotation.
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Asli Özyürek. 2019. Toward the markerless and au-
tomatic analysis of kinematic features: A toolkit for
gesture and movement research. Behavior Research
Methods, 51(2):769–777.

Davis Vaughan. 2021. slider: Sliding Window Func-
tions.

Hadley Wickham, Mara Averick, Jennifer Bryan, Win-
ston Chang, Lucy D’Agostino McGowan, Romain
François, Garrett Grolemund, Alex Hayes, Lionel
Henry, Jim Hester, Max Kuhn, Thomas Lin Ped-
ersen, Evan Miller, Stephan Milton Bache, Kirill
Müller, Jeroen Ooms, David Robinson, Dana Paige
Seidel, Vitalie Spinu, Kohske Takahashi, Davis
Vaughan, Claus Wilke, Kara Woo, and Hiroaki Yu-
tani. 2019. Welcome to the tidyverse. Journal of
Open Source Software, 4(43):1686.

Hadley Wickham and Dana Seidel. 2022. scales: Scale
Functions for Visualization.

178

https://doi.org/10.1093/jole/lzw005
https://doi.org/10.1093/jole/lzw005
https://doi.org/10.3389/fpsyg.2018.00725
https://doi.org/10.3389/fpsyg.2018.00725
https://doi.org/10.3389/fpsyg.2018.00725
https://CRAN.R-project.org/package=ggforce
https://CRAN.R-project.org/package=ggforce
https://doi.org/10.3758/s13428-019-01271-9
https://doi.org/10.3758/s13428-019-01271-9
https://doi.org/10.3758/s13428-019-01271-9
https://doi.org/10.3758/s13428-019-01271-9
https://doi.org/10.1075/sll.18.1.02puu
https://doi.org/10.1075/sll.18.1.02puu
https://doi.org/10.1075/sll.18.1.02puu
https://doi.org/10.1075/sll.18.1.02puu
https://doi.org/10.3758/s13428-020-01350-2
https://doi.org/10.3758/s13428-020-01350-2
https://doi.org/10.3758/s13428-020-01350-2
https://doi.org/10.3758/s13428-020-01350-2
https://git.rud.is/hrbrmstr/ggchicklet
https://git.rud.is/hrbrmstr/ggchicklet
https://aclanthology.org/2022.sltat-1.14
https://aclanthology.org/2022.sltat-1.14
https://CRAN.R-project.org/package=ggrepel
https://CRAN.R-project.org/package=ggrepel
https://teckensprakslexikon.ling.su.se/
https://teckensprakslexikon.ling.su.se/
https://doi.org/10.3758/s13428-018-1086-8
https://doi.org/10.3758/s13428-018-1086-8
https://doi.org/10.3758/s13428-018-1086-8
https://CRAN.R-project.org/package=slider
https://CRAN.R-project.org/package=slider
https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=scales


Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages 179–184
May 22-24, 2023 c©2023 Association for Computational Linguistics

Named Entity layer in Estonian UD treebanks

Kadri Muischnek
University of Tartu

kadri.muischnek@ut.ee

Kaili Müürisep
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Abstract

In this paper we will introduce two new
language resources, two NE-annotated
corpora for Estonian: Estonian Universal
Dependencies Treebank (EDT, 440,000
tokens) and Estonian Universal Dependen-
cies Web Treebank (EWT, 90,000 tokens).
Together they make up the largest publicly
available Estonian named entity gold an-
notation dataset. Eight NE categories are
manually annotated in this dataset, and the
fact that it is also annotated for lemma,
POS, morphological features and depen-
dency syntactic relations, makes it more
valuable. We will also show that dividing
the set of named entities into clear-cut cat-
egories is not always easy.

1 Introduction

Named entity recognition (NER) is an important
sub-task of information extraction. In order to
build a NER tagger, one first needs to annotate
a corpus for named entities (NE). In this paper
we introduce two NE-annotated corpora for Esto-
nian: Estonian Universal Dependencies Treebank1

(EDT) and Estonian Universal Dependencies Web
Treebank2 (EWT). By annotating these two re-
sources for NE, we have aimed at broad cover-
age of genres, writing styles and correct vs relaxed
compliance to the Estonian spelling rules.

Although there are previous NE-annotated re-
sources for Estonian, we regard enriching exist-
ing UD corpora with NE annotation an important
effort as UD annotations can support both man-
ual annotation and help to build better NER mod-
els. We were also encouraged by the reports on
similar efforts for Finnish (Luoma et al., 2020),

1https://universaldependencies.org/treebanks/et edt/
2https://universaldependencies.org/treebanks/et ewt/

Danish (Hvingelby et al., 2020) and Norwegian
(Jørgensen et al., 2020).

In this paper, we first describe the underlying
Estonian UD treebanks in Section 2.1. Section 2.2
introduces the NE categories that are distinguished
in the dataset and discusses some gray areas be-
tween these classes. Corpus statistics is presented
in Section 2.3 and a brief overview of related work
is given in Section 3.

The NE annotations are included in the release
2.12 of Estonian UD treebanks.

2 Corpus and annotations

2.1 Estonian UD treebanks

Universal Dependencies3 (De Marneffe et al.,
2021) is an open community effort for annotat-
ing dependency treebanks using consistent annota-
tion scheme for different human languages. Cur-
rently UD treebank collection entails nearly 200
treebanks in over 100 languages.

There are two Estonian UD treebanks: Esto-
nian Universal Dependencies Treebank EDT and
Estonian Universal Dependencies Web Treebank
EWT. EDT contains ca 440,000 tokens in ca
30,000 sentences and its texts cover three cen-
tral text types of normed written language: fic-
tion, journalism and scientific writing. The text
types of the treebank are not balanced: journalism
with ca 270,000 tokens makes up more than half
of the treebank, whereas fiction (ca 68,000 tokens)
and scientific texts (ca 95,000 tokens) comprise
the other half. EWT consists of texts from blog
posts, online comments and discussion forums, it
contains ca 90,000 tokens in ca 7000 sentences.

Universal Dependencies annotation is described
thoroughly on their website4. For the task of NE
annotation it is relevant to point out that there is a
special POS-tag for proper nouns (PROPN) and a

3https://universaldependencies.org/
4https://universaldependencies.org/guidelines.html

179

https://universaldependencies.org/treebanks/et_edt/
https://universaldependencies.org/treebanks/et_ewt/
https://universaldependencies.org/
https://universaldependencies.org/guidelines.html


special syntactic relation ’flat’, that is used for ex-
ocentric (headless) structures, also for multiword
names. So it is relatively easy to pre-annotate the
majority of NEs automatically, using these UD an-
notations. However, there are still some NEs that
don’t include a proper noun, so an annotator still
has to go through the entire text carefully. Also,
the exact extent of a named entity and its category
have to be marked manually.

2.2 NE categories and annotation scope

Martin and Jurafsky (2021) summarize the com-
mon practice for NE annotation, noting that al-
though a named entity is anything that can be re-
ferred to with a proper name; often also dates,
times, and other kinds of temporal expressions,
and even numerical expressions like prices are also
included while annotating and tagging NE-s.

In our project we, at least for the time being,
have annotated only ”proper” NE-s, i.e. the en-
tities that contain a proper noun or otherwise re-
fer to a specific object like a title of a book, a
film, a song etc. We have classified these en-
tities into eight categories: persons Per, loca-
tions Loc, geo-political entities Gep, organiza-
tions Org, products Prod, events Eve, NE-s that
do not fit into aforementioned categories (Other)
and NE-s that can’t be categorized due to the lack
of information (Unk).

Often a proper noun or a title is accompanied by
a headword indicating the type of the NE and thus
providing valuable information. In Estonian writ-
ing, these headwords are not capitalized and they
can both follow or precede the proper noun, e.g.
Tartu linn ’Tartu city’ or romaan ”Sõda ja rahu”
’novel ”War and Peace”’. Headwords of named
entities are included in the annotation span, but
personal titles like härra Kask ’mister Kask’ are
not.

The texts of EDT originate from the period
1998—2007 and the capitalization conventions
have changed slightly during this period. Internet
and Sudoku are among examples of unstable cap-
italization, they tend to be capitalized more in the
earlier texts. Also, names of ”newer” diseases like
Ebola or Covid tend to be capitalized, although the
language specialists suggest that a lower-case ver-
sions should be used. Of course a named entity
should be annotated as such, regardless of whether
it meets the spelling standard or not. On the other
hand, capitalization in written Estonian is a signal

that the word is a proper noun and if the text more
or less follows the norms of the written language,
POS tagging relies on capitalization while mak-
ing the distinction between common and proper
nouns. So Internet is a proper noun and internet
a common noun. NE annotation, in turn, relies on
POS tags, so Internet is a NE and internet is not.

Similarly, names of celestial bodies like Maa
’Earth’ or Kuu ’Moon’ are capitalized if referring
to ”a certain place in the Universe” and are treated
as named entities there.

In the Estonian Web Language Treebank EWT,
the texts differ from each other as to whether the
author follows the norms of written language or,
deliberately, does not care about them. Some writ-
ers do not use capitalization at all, others use it in
an inconsistent manner. So, the POS tagging in
EWT can’t rely so much on capitalization but the
annotator has to understand whether the reference
is unique or not and NE annotations and POS tags
still need to be consistent with each other.

While dividing the set of NE-s into types or cat-
egories we have put more emphasis on consistency
(similar entities have to be grouped together) than
on ”absolute justness”. So, in case that the annota-
tors pointed out that they are persistently confused
about making a clear-cut distinction between cer-
tain categories, we considered re-drawing the line.
An example of Loc and Gep will be presented
hereinafter.

We will now present our categories one by one.
The category Per includes, in addition to per-

son names, also names of animals and imagi-
nary creatures. Family names are annotated as
Per even though they refer to several people, e.g.
perekond Tamm ’Tamm family’. In internet fo-
rums, usernames are annotated as Per, but they
are quite different from person names in general,
so may be it would be a good idea to annotate them
as examples of a subtype of Per.

The category Loc includes names of landscape
objects like rivers or hills, and also names of man-
made landscape objects like roads or settlements.

Geo-political entities Gep are entities that orig-
inally stand for locations, but are often represented
in texts as agents – they can decide or say some-
thing etc. It is a typical case of metonymy: state
or city is seen as the incarnation of its people or
its governing body. This category was introduced
in the annotation scheme of the Automatic Con-
tent Extraction program (ACE) (Mitchell et al.,
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news fiction sci other ewt
Per 5718 1202 1100 432 1896
Loc 2498 305 445 63 268
Gep 3324 230 442 42 318
Org 2578 47 300 73 320
Prod 1588 88 401 8 819
Event 320 5 61 1 51
Other 22 1 2 0 9
Unk 33 6 9 0 5

Table 1: Counts of named entities in treebanks

2003). Categorizing named entities as Loc or
Gep in a consistent manner turned out to be a dif-
ficult task for the annotators, so, remaining true
to our principle of prioritizing annotation consis-
tency, we made a simplifying decision that a name
of a state is always an example of Gep, whereas a
name of a city or other settlement can be annotated
as Loc or Gep depending on the context.

The decision to annotate all state names as geo-
political entities can be seen as an oversimplifi-
cation, but our annotators pointed out that they
kept doubting about the correct label especially in
this case. Even if the word denoting a state is in
a spatial case form, it is not a firm proof that it
has spatial meaning and should be annotated as
a place. For example, in a sentence Raha jõudis
Eestisse anonüümselt. ‘The money arrived in Es-
tonia anonymously.’ one can’t infer from the text
whether Eestisse ‘in Estonia’ here means the Esto-
nian land or the Estonian state, the economic space
governed by Estonian legislation.

The category Org is relatively straightforward.
Yet there exists a grey area between organizations
and products produced by those organizations. For
example, the name of a newspaper can stand both
for an issue of a newspaper, e.g. in the latest Eks-
press an article about elections was published and
for the editorial board of this newspaper, e.g. Ek-
spress’s view on elections is presented in this arti-
cle.

The category Prod includes man-made ob-
jects, also abstract entities such as ideas or theo-
ries. Again, the category seems to be easy at first
glance, but depending on a context, a product can
be presented as a location in texts: a person is in a
building, a cat is in a cupboard, a fly is in a bowl.
Also, products have a certain overlap with events.
A movie is a product, but what about a theatre per-
formance, taking place on a certain time and in a

news fiction sci other ewt
Per 2.79 1.77 1.31 4.70 2.09
Loc 1.22 0.45 0.53 0.68 0.30
Gep 1.62 0.34 0.52 0.46 0.35
Org 1.26 0.07 0.36 0.79 0.35
Prod 0.77 0.13 0.48 0.09 0.90
Event 0.16 0.01 0.07 0.01 0.06
Other 0.01 0.00 0.00 0.00 0.01
Unk 0.02 0.01 0.01 0.00 0.01

Table 2: Counts of named entities in percentile
points

certain place? There is also a gray area of build-
ings and other man-made landscape objects, e.g.
airports.

So, we have seen a few times that there exist
grey areas at the borders between NE categories
and, perhaps from the semantic point of view also
other intersectional categories besides Gep would
be justified. But the main objective of our work
is to build a NER tagger and having too many too
small NE types would hamper the NER task.

The category Other is used to annotate NEs
that do not fit into aforementioned categories, the
examples include U3 projekt ’the U3 project’ or
Dow indeks ’The Dow Index’. As seen from Table
1, it is the rarest of the NE categories.

The category Unk is used for annotating NEs
which meaning is not clear. This category is
more frequent in web texts, although, compared to
other NE categories, it is infrequent there also. A
good example of an unknown named entity origi-
nates from a fiction text describing a non-sensical
lecture about blanko-idosseeritud Pardakonosse-
ment. Both words do not exist in Estonian, but
it can be inferred from the context that blanko-
idosseeritud is a past participle and Pardakonosse-
ment is a proper noun.

2.3 Annotation process

At the beginning of the project, it was clear that
there was a need to annotate the entire Estonian
UD treebank (approximately 530,000 tokens) in
a consistent manner and also keep in mind that
our created annotation should not differ drastically
from the previous named entity annotation efforts.

The EDT treebank was pre-annotated automati-
cally, based on name lists primarily including fre-
quent person names. With the help of syntactic
annotations, the extent of the named entity was at-
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Figure 1: Corpus example: annotated clause where hockey player with Estonian roots Hakan Loob’s
father Paul from Kihnu island lives

tempted to be identified, and for remaining proper
names, annotations B-Unk (first member of the
named entity) and I-Unk (subsequent members
of the named entity) were added.

Initially, there were 3 student annotators who
annotated the texts; at the first stage texts were
annotated by two students, the annotations com-
pared and the discrepancies solved. The students
had different skills and availability, so eventually,
one student continued to work alone. If the an-
notator felt that the solution was not unambigu-
ous, he wrote a question into the log-file, which
was later discussed with supervisors. Lists of an-
notated named entities were also compiled and
reviewed together. The EWT corpus, which is
smaller in size but more complex in content, was
annotated by a student and then checked and cor-
rected by supervisors. This method for annotation
does not allow for calculations to assess the inter-
annotator agreement measures but we believe that
a multi-person, multiple-check annotated corpus
is the best that could be created given limited re-
sources.

2.4 Corpus statistics

Tables 1 and 2 show the raw and normalized NE
frequencies in EDT and EWT and the distribu-
tion of NEs in different text types. EDT contains
the main text classes of normed written language:
newspaper texts, fiction and scientific texts. Only
one text, containing example sentences from a sci-
entific work about Estonian valency patterns, plus
sentences from different news texts, belongs to the
text class ”other”. EWT contains the text classes
of user-generated content: blog posts, comments
and forum texts.

In EDT, the frequencies are distributed as could
be expected: newspaper texts have the highest
density of NEs, fiction texts contain lot of person

names. Scientific texts include references, that,
somewhat unnaturally, increase the frequency of
person names in them. The text class ”other” does
not represent normal text: the example sentences
of the valency frames include person names (never
pronouns or common nouns referring to a human)
wherever a word denoting a human was possible,
e.g. Mary saw John.

EWT forum texts include usernames, that are
annotated as Per and the users also address each
other using their usernames. In web forums peo-
ple also discuss and rate various products, which
raises the frequency of Prod category.

3 Related work

3.1 Estonian NE-annotated corpora

There are two previous NE-annotated corpora for
present-day Estonian and one for historical Es-
tonian. Tkachenko and colleagues (Tkachenko
et al., 2013) have annotated four NE categories
(persons, locations, organizations and other) in a
185,000-token dataset.

New Estonian NER dataset5 contains ca
140,000 tokens and the annotated NEs are divided
into 7 categories: persons, organizations, loca-
tions, geo-political entities, titles, products and
events. In addition to ”proper NEs”, also dates,
times, percents and currencies are annotated. Dur-
ing this project also Tkatchenko’s dataset was re-
annotated. The resulting datasets use hierarchical
annotation, which we regard useful, but for the
time being have refrained from using it in order
to make the task easier for the annotators.

In a corpus of historical Estonian, a collection of
parish court records from the 19th century (Oras-
maa et al., 2022) seven NE categories are an-
notated: person, location, organization, location-

5https://github.com/TartuNLP/EstNER new
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organization, artefact, other and unknown. The
parish court records make up a text type of its
own, but their NE typology is similar to that of
our corpora; the category ’location-organization’
is essentially the same as our Gep and the cate-
gory ’artefact’ is similar to our Prod.

3.2 Other NE-annotated resources based on
UD annotations

In the Finnish corpus (Luoma et al., 2020), six NE
categories have been annotated: person, organiza-
tion, location, product and event names as well as
dates. In order to to avoid ambiguity-creating cat-
egories, geopolitical entities are annotated as lo-
cations, but the authors admit that for applications
where the resolution of the ambiguity is not criti-
cal, there may be merit to the adoption of possibly
ambiguity-creating type like geo-political entity.

In the Danish NE-annotated corpus (Hvingelby
et al., 2020) four NE classes are annotated: loca-
tion, organisation, person and miscellaneous, fol-
lowing the guidelines of the CoNLL-2003 NE an-
notation scheme (Sang and Meulder, 2003). They
also report that it was difficult for the annotators to
distinguish between locations and organizations in
certain cases.

In the Norwegian UD treebank (Jørgensen et al.,
2020) the categories of person, organization, loca-
tion, geo-political entity, product and event have
been annotated. Geo-political entities are subcate-
gorized as either GPE with a locative sense or GPE
with an organization sense. However, while anno-
tating the corpus with those categories, annotators
had some difficulties with making the distinction
between the subcategories of the GPE entity types.
Building on the experience of NOrNE annotation
effort, we did not attempt at dividing the category
of Gep into subcategories.

4 Conclusions and future directions

We have presented two manually annotated NER
datasets for Estonian. The annotated texts repre-
sent the core text types of normed written language
as well as several text types of the user-generated
content of the web. The annotated NEs fall into
eight categories: persons, locations, geo-political
entities, organizations, products, events, other NEs
that can’t be classified into aforementioned cate-
gories and NEs of unknown category. The cate-
gory of geo-political entities is a hybrid category
between location and organization. Although we

noticed that there exist also other cases of system-
atic metonymy besides using a location name to
note the people connected with this location, we
did not introduce more NE types as we did not
want to divide the NEs into too many too small
categories.

Obviously the next step would be building NER
models using this dataset. Also, as the web tree-
bank EWT is being developed further, annotating
new genres of web texts with UD annotations, we
plan to add the new texts into our dataset.
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Abstract

This paper introduces a Scandinavian
benchmarking platform, ScandEval,
which can benchmark any pretrained model
on four different tasks in the Scandinavian
languages. The datasets used in two of the
tasks, linguistic acceptability and question
answering, are new. We develop and re-
lease a Python package and command-line
interface, scandeval, which can bench-
mark any model that has been uploaded to
the Hugging Face Hub, with reproducible
results. Using this package, we bench-
mark more than 100 Scandinavian or mul-
tilingual models and present the results of
these in an interactive online leaderboard1,
as well as provide an analysis of the re-
sults. The analysis shows that there is sub-
stantial cross-lingual transfer among the
Mainland Scandinavian languages (Dan-
ish, Swedish and Norwegian), with limited
cross-lingual transfer between the group of
Mainland Scandinavian languages and the
group of Insular Scandinavian languages
(Icelandic and Faroese). The benchmark-
ing results also show that the investment
in language technology in Norway, Swe-
den and Denmark has led to language mod-
els that outperform massively multilingual
models such as XLM-RoBERTa and mDe-
BERTaV3. We release the source code for
both the package2 and leaderboard3.

1 Introduction

In recent years, there has been a significant in-
crease in the number of monolingual language

1https://scandeval.github.io
2https://github.com/saattrupdan/

ScandEval
3https://github.com/ScandEval/

scandeval.github.io

models in the Scandinavian languages (Møller-
høj, 2020; Højmark-Bertelsen, 2021; Sarnikowski,
2021; Enevoldsen et al., 2021; Abdaoui et al., 2020;
Kummervold et al., 2021; Malmsten et al., 2020;
Snæbjarnarson et al., 2023), to the extent that it
becomes difficult both for the practioner to choose
the best model for the task at hand, as well as for
language researchers to ensure that their research
efforts are indeed improving upon past work.

Aside from the increasing number of models,
Sahlgren et al. (2021) also emphasises that a joint
Scandinavian language model is probably a better
strategy for the Scandinavian countries, consider-
ing the similarity of their languages and culture. In-
deed, Faarlund (2019) even argues that the Danish,
Norwegian and Swedish languages are so similar
that they should be considered a single language.

The languages included in the term “Scandina-
vian” is debatable (oxf, 2021). Following the dis-
tinction between Mainland Scandinavian (Danish,
Swedish and Norwegian) and Insular Scandinavian
(Icelandic and Faroese) (Haugen, 1976; Faarlund,
2019), a distinction based on mutual intelligibility
and syntactical structure, we focus in this work on
the Mainland Scandinavian languages, while still
allowing support for the Insular Scandinavian lan-
guages. Aside from being a standard distinction,
our choice is also based on experiments on the
cross-lingual transfer between these two groups,
which we present in Section 3.3. We will here use
the term “Scandinavian” to mean the collection of
all five languages, and use the Mainland/Insular
distinction when applicable.

To help facilitate progress in both improving
upon the monolingual Scandinavian models as well
as the multilingual, we present ScandEval, a
benchmark of Scandinavian models, along with
a Python package and Command-Line Interface
(CLI), and an associated online leaderboard. This
leaderboard contains the results of language mod-
els benchmarked on datasets within the Mainland
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Scandinavian languages, as described in Section 4.
Recent studies (Khanuja et al., 2021; Pires et al.,

2019; Lauscher et al., 2020) have shown that multi-
lingual models can outperform monolingual mod-
els when the languages are sufficiently similar, and
also that they are worse than the monolingual mod-
els when the languages are too dissimilar. This
shows that the Scandinavian languages could have
something to gain by creating “local multilingual”
models, rather than using the massively multilin-
gual models such as XLM-RoBERTa (Conneau
et al., 2020). Based on this, we test the follow-
ing hypotheses:

• Hypothesis 1: There is a substantial cross-
lingual transfer within the Mainland Scandi-
navian languages.

• Hypothesis 2: There is no notable cross-
lingual transfer between the group of Main-
land Scandinavian languages and the group of
Insular Scandinavian languages.

To the best of our knowledge, this is the first
benchmarking tool for any of the Scandinavian lan-
guages, as well as the first online leaderboard con-
taining scores from such a tool. Our contributions
are the following:

1. We construct a new question answering
dataset for the Mainland Scandinavian lan-
guages, dubbed ScandiQA.

2. We construct a new linguistic acceptability
dataset for all the Scandinavian languages,
dubbed ScaLA.

3. We develop a Python package and CLI,
scandeval, which allows reproducible
benchmarking of language models on Scandi-
navian language datasets.

4. We uniformise all the datasets used in the
benchmark, to enable consistent evaluation
across languages and datasets. These uni-
formised datasets are also available on the
Hugging Face Hub4.

5. We benchmark all the Scandinavian and a se-
lection of the multilingual language models
on the Hugging Face Hub5 on the Mainland
Scandinavian datasets in the benchmark, and
present all the scores in an online leaderboard.

4https://huggingface.co/ScandEval
5https://hf.co

2 Related Work

There has been a number of (non-English) NLU
benchmarks published in recent years (Wang et al.,
2018; Sarlin et al., 2020; Rybak et al., 2020; Ham
et al., 2020a; Shavrina et al., 2020; Wilie et al.,
2020; Xiang et al., 2021; Koto et al., 2020; Safaya
et al., 2022; Augustyniak et al.; Khashabi et al.,
2020; Ham et al., 2020b; Xu et al., 2020; Du-
mitrescu et al., 2021), with whom we share the
same goal of advancing the state of NLP in our
respective languages. Within the Scandinavian lan-
guages specifically, the SuperLim benchmark (Ade-
sam et al., 2020) is a Swedish NLU Benchmark fea-
turing several difficult tasks. Most of the datasets
in the SuperLim benchmark only contain a test set,
however.

The XGLUE (Liang et al., 2020) dataset is an-
other multilingual NLU benchmark. That dataset is
different from ScandEval in that all the training
data in XGLUE is in English, and that the major-
ity of the test sets are not available in any of the
Scandinavian languages.

Isbister and Sahlgren (2020) present a Swedish
similarity benchmark, achieved through machine
translating the STS-B dataset from the GLUE
benchmark (Wang et al., 2018). Aside from only
dealing with a single task and a single language, the
quality of the dataset is worse than a gold-standard
corpus as a result of the translation, as the authors
also point out.

3 Methodology

This section describes our benchmarking method-
ology in detail, including both the setup of the
datasets, the evaluation procedure and the scoring
of the models. We also describe how we conduct
the cross-lingual transfer experiments.

3.1 Finetuning Setup
When finetuning, we enforce a learning rate of
2 · 10−5 with 100 warmup steps, and a batch size
of 32. If there is not enough GPU memory to
finetune the model with this batch size, we halve it
and double the amount of gradient accumulation,
resulting in the same effective batch size. This is
repeated until the batches can fit in memory.

We impose a linear learning rate schedule with
intercept after 10, 000 training steps (with a train-
ing step consisting of 32 samples), and we adopt
early stopping (Plaut et al., 1986) to stop the train-
ing procedure if the validation loss has not de-
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creased for 90 training steps. We use the AdamW
optimiser (Loshchilov and Hutter, 2018) with first
momentum β1 = 0.9 and second momentum
β2 = 0.999, and we optimise the cross-entropy
loss throughout all tasks. Further, random seeds
are fixed throughout, to ensure reproducibility.

The finetuning itself uses the transformers
package (Wolf et al., 2020). For the
named entity recognition task we use the
AutoModelForTokenClassification
class, which linearly projects the embed-
ding from the language model encoder for
each token into the entity logits for that
token. For the classification tasks we use the
AutoModelForSequenceClassification
class, which linearly projects the embedding from
the language model encoder to each document
into the class logits for that document. Lastly,
for the question answering task we use the
AutoModelForQuestionAnswering class,
which linearly projects the embedding from the
language model encoder for each token, into the
logits of the start and end positions of the answer
for that token.

3.2 Bootstrapping Evaluation
For each model and dataset, we repeat the follow-
ing procedure 10 times, which generates a score
for each model and dataset combination: (a) Fix
a random seed unique to the given iteration; (b)
Finetune the model on the training set; (c) Evaluate
the model on a bootstrapped (i.e., sampling with
replacement) version of the test set. The evaluation
score is then the mean µ of these scores, along with
a 95% confidence interval I10, computed as

IN := µ± 1.96

N − 1

N∑

i=1

scorei. (1)

The combination of varying the random seeds as
well as using bootstrapped test datasets ensures that
we capture the noise coming from both the random
initialisation of the added layers to the model as
well as the noise in the test set, resulting in a more
reliable confidence interval of the true mean for
each model and dataset combination.

To aggregate these scores across all datasets, we
firstly compute the language-specific task scores
for each (model, language, task) triple, which is
the mean of the scores of the model on the tasks
of the language.6 From these language-specific

6This mean is only non-trivial for the Norwegian language

scores we next compute the language score for
each (model, language) pair as the mean of the
language-specific task scores across all the tasks.
A final ScandEval score is computed as the aver-
age of the language scores, to emphasise the train-
ing of Scandinavian models rather than monolin-
gual ones.

3.3 Cross-lingual Transfer
To test Hypothesis 1 and 2, stated in Section 1,
we introduce a way to measure the “joint cross-
lingual transfer” of a group of languages, by which
we mean an aggregate of the cross-lingual transfer
between any two languages in the group.

To do this, we first introduce a control group
of non-Scandinavian languages: English, German,
Dutch, Finnish, Russian and Arabic. By consid-
ering the combined set of languages in the con-
trol group and the Scandinavian languages, we
aim to find the best split of these languages into
two groups: a ScandEval benchmark group and a
non-benchmark group. The “goodness” of a split
is measured by benchmarking a “representative”
model from each language on datasets in each of
the benchmark languages and measuring the quality
of the two-cluster clustering of these benchmarking
values.

As an example, if Danish and Swedish con-
stitute the benchmark group and the rest of the
languages are in the non-benchmark group, we
would benchmark the representative models from
each language on the Danish and Swedish part
of ScandEval, and then compute the F-statistic of
the clustering {{da,sv}, {no,is,fo, . . .}} with
these benchmarking values, computed as the ratio
of the between-group variance to the within-group
variance.7 We can then compare this F-statistic to
the F-statistic of the clustering where the bench-
mark group consists of Danish and Norwegian, for
instance.

As for picking a representative model for each
language, we found pretrained language models of
roughly the same size on the Hugging Face Hub,
each of which has been pretrained on solely mono-
lingual data. We note that no Faroese language
model exists, so for that language we do not include
any model but still include Faroese benchmarking

for the named entity recognition task and the linguistic accept-
ability task, as these tasks are available in both Norwegian
Bokmål and Norwegian Nynorsk.

7Technically speaking, we get an F-statistic for each lan-
guage in the benchmarking group, but we just use the mean of
these F-statistics.
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datasets when Faroese is part of the benchmarking
group. See the full list of models in the appendix.

We can then restate our first hypothesis as the
mainland Scandinavian languages are all in the
best-performing benchmark group, and our second
hypothesis as the Insular Scandinavian languages
are not in the best-performing benchmark group.

3.4 Uniform Benchmarking Datasets

As we are interested in comparing the performance
of the models across languages, we ensure that all
the datasets used in the benchmark are of the same
format and the same size.

We aimed to choose a training data size that
would be a balance between being able to differen-
tiate between the models and being able to bench-
mark the models in a reasonable amount of time.
We benchmarked the same models as in Section 3.3
on truncations of named entity recognition datasets,
sentiment classification datasets and linguistic ac-
ceptability datasets. Based on these results we qual-
itatively found that using 1,024 training samples
allowed for both differentiation between the models
and being able to benchmark the models in a rea-
sonable amount of time. Figures 1 and 2 show the
trade-off between differentiation and benchmark-
ing speed, covering the AngryTweets dataset
(Pauli et al., 2021). The remaining plots for the
other datasets can be found in the appendix.

Another benefit of using a small training dataset
is that it emphasises the importance of the pre-
trained weights of the models, rather than the fine-
tuning process. Further, we wanted the test dataset
to be as large as possible, to ensure more robust
evaluations of the models, which led to the choice
of 2,048 test samples based on the number of avail-
able samples in the smallest dataset. Lastly, the
validation set was chosen to be 256 samples, to
allow for a reasonable evaluation during training,
while not being too time-consuming. All of these
datasets with their splits are available on the Hug-
ging Face Hub.

4 ScandEval Tasks

To properly evaluate the performance of a pre-
trained model, we ideally need to evaluate it on
many diverse tasks. Unfortunately, the Scandina-
vian languages do not have many openly available
datasets for many downstream tasks.

To address this, we construct two new Scandina-
vian datasets, ScaLA and ScandiQA, being Lin-

guistic Acceptability (LA) and Question Answering
(QA) datasets, respectively. These new tasks are
supplemented by existing benchmarking datasets
within Named Entity Recognition (NER) and Sen-
timent Classification (SENT). Aside from down-
stream performance of these tasks, we also bench-
mark the inference speed of each model. We de-
scribe all of these in more detail in the subsections
below.

4.1 Named Entity Recognition

For the NER task we use the four classes used in
CONLL (Tjong Kim Sang and De Meulder, 2003):
PER, LOC, ORG and MISC, corresponding to per-
son names, locations, organisations and miscella-
neous entities.

Since this is a token classification task and that
the language models usually use different tokenis-
ers, we have to ensure a uniform treatment of these
as well. We tokenise the documents using the pre-
trained tokeniser associated to the model that we
are benchmarking, and to ensure consistency of the
evaluation we replace all but the first token in each
word with the empty entity O. For instance, if the
word “København” with the LOC tag is tokenised
as [“Køben”, “havn”], then we would assign the
labels LOC and O to these tokens. This ensures
that we maintain the same number of (non-empty)
labels per document.

In terms of evaluation metrics, we use the micro-
average F1-score, which is standard for NER. We
also report a no-misc score, which is the micro-
average F1-score after we replace the MISC class
in the predictions and labels with the “empty label”
O. This no-misc score is not used in any of the ag-
gregated scores and is purely used for comparison
purposes on the individual datasets.

For Danish we use the DaNE dataset (Hvin-
gelby et al., 2020), being a NER tagged version
of the Danish Dependency Treebank (Kromann
and Lynge, 2004). DaNE is already in the CONLL
format, so we perform no preprocessing on the
data.

For Norwegian we use the Bokmål and Nynorsk
NorNE datasets (Jørgensen et al., 2020), also be-
ing NER tagged versions of the Norwegian De-
pendency Treebanks (Øvrelid and Hohle, 2016).
Aside from the PER, LOC, ORG and MISC tags,
these also include GPE_LOC, GPE_ORG, PROD,
DRV and EVT tags. We convert these to LOC, ORG,
MISC, MISC and MISC, respectively.

188



Figure 1: Plot showing the performance of different models on the AngryTweets dataset with varying
number of training samples.

Figure 2: Boxplot showing the training time of the models on the AngryTweets dataset with varying
number of training samples.

Lastly, Swedish does not have a NER tagged
version of the corresponding dependency treebank,
but they instead have the SUC3 dataset, a NER-
enriched version of the Stockholm-Umeå Corpus

(Gustafson-Capková and Hartmann, 2006). This
dataset does not follow the CONLL format and
is instead released in the XML format, with the
<name> XML tags containing the NER tags for
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the words they span over 8. This dataset contains
the NER tags animal, event, inst, myth,
other, person, place, product and work.
These were converted to MISC, MISC, ORG, MISC,
MISC, PER, LOC, MISC and MISC, respectively.

4.2 Sentiment Classification
We treat the sentiment classification task as a
three-class classification task, with the classes
positive, neutral and negative. Evalu-
ation of the models is done using Matthew’s Corre-
lation Coefficient (Matthews, 1975) as the primary
metric as well as reporting the macro-average F1-
score as a secondary metric. We choose to use
Matthew’s Correlation Coefficient as the primary
metric as it has been shown to be more reliable than
the macro-average F1-score (Chicco and Jurman,
2020), while also being the standard metric used
in the GLUE (Wang et al., 2018) and SuperGLUE
(Sarlin et al., 2020) benchmarks.

For Danish we use the sentiment classifica-
tion dataset AngryTweets (Pauli et al., 2021),
which contains crowdsourced annotations of Dan-
ish tweets. To comply with Twitter’s Terms of Use
we have fully anonymised the tweets by replac-
ing all user mentions with @USER and all links by
[LINK], as well as shuffling the tweets.

For Norwegian we included the sentiment clas-
sification dataset NoReC (Norwegian Review Cor-
pus) (Velldal et al., 2018), which are based on
scraped reviews from Norwegian websites.

Lastly, for Swedish we use the sentiment classifi-
cation dataset presented in Svensson (2017), which
is based on reviews from the Swedish websites
www.reco.se and se.trustpilot.com. In
analogy with NoReC we dub this dataset the
Swedish Review Corpus (SweReC).

4.3 Linguistic Acceptability
Based on the inclusion of the CoLA (Corpus of
Linguistic Acceptability) dataset (Warstadt et al.,
2019) in the GLUE benchmark (Wang et al., 2018),
we construct new linguistic acceptability datasets
for the Scandinavian languages. This task is often
framed as a binary classification task, where the
model is tasked with predicting whether a given
sentence is grammatically correct or not.

We dub our new datasets Scandinavian Linguis-
tic Acceptability (ScaLA), which we release for

8The <ne> XML tags are also NER tags, but these have
been automatically produced by SpaCy (Honnibal et al.,
2020) models and are thus not gold standard.

Danish, Norwegian Bokmål, Norwegian Nynorsk,
Swedish, Icelandic and Faroese. Each of these
datasets consist of 1,024 training samples, 256 val-
idation samples and 2,048 test samples, in accor-
dance with Section 3.4. The ScaLA datasets are
based on the Danish, Norwegian, Swedish, Ice-
landic and Faroese versions of the Universal De-
pendencies datasets (Kromann and Lynge, 2004;
Øvrelid and Hohle, 2016; Nivre et al., 2006; Rögn-
valdsson et al., 2012; Jónsdóttir and Ingason, 2020;
Arnardóttir et al., 2020).

Firstly, we assume that the documents in the
Universal Dependencies datasets are grammatically
correct, an assumption we have been able to ver-
ify for the Danish part, by manually inspecting a
random sample of the documents. We create neg-
ative examples by either removing a single word
or swapping two consecutive words, where only
one such “corruption” is applied to each negative
sample.

Naively corrupting the documents in this way
does not always lead to grammatically incorrect
samples, however. For instance, removing the word
“rød” (red) from the sentence “Den røde bil er stor”
(The red car is big) does not lead to an incorrect
sentence “Den bil er stor” (The car is big).

In order to ensure that the resulting sentence is in-
deed grammatically correct, we enforce restrictions
on the words that can be removed or swapped. We
have gone for a conservative approach, where we
have systematically checked corruptions of words
with a given part-of-speech tag, and only allow cor-
ruptions that were always grammatically correct in
our tests. This led us to the following restrictions:

1. We do not remove adjectives, adverbs, punctu-
ation, determiners or numbers, as the resulting
sentence will still be grammatically correct in
most cases.

2. We do not remove nouns or proper nouns if
they have another noun or proper noun as
neighbour, as again that usually does not make
the sentence incorrect either.

3. When swapping two neighbouring words, we
require them to have different POS tags.

4. We do not swap punctuation or symbols.

5. If we swap the first word then we ensure that
the swapped words have correct casing.
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We are able to enforce these restrictions as we
have gold-standard POS tokens available for these
datasets.

4.4 Question Answering

We also construct new question answering datasets
for the Mainland Scandinavian languages, as we
are not aware of any existing datasets for these lan-
guages. We dub these datasets ScandiQA, which
we release for each of the Mainland Scandinavian
languages.

These datasets are based on the MKQA dataset
(Longpre et al., 2021), which is based on the Nat-
ural Questions (NQ) dataset (Kwiatkowski et al.,
2019). The NQ dataset contains questions inputted
to Google’s search engine, associated with the
HTML page of the search result. In many cases
these questions have an answer associated with it
(a so-called short answer) which appears in the
HTML, and in some cases they also have the para-
graph in which the short answer appears (a so-
called long answer).

The MKQA dataset contains human translations
of 10,000 questions and short answers into 26 lan-
guages, including Danish, Norwegian and Swedish.
Aside from adding these translations, the MKQA
dataset also corrects many mistakes in the original
NQ dataset by including answers not present in the
original dataset, or by correcting the short answers
chosen in the original dataset.

The main thing missing from the MKQA dataset
is the context paragraph, which is what we add
to the dataset as follows. For each MKQA sample,
we first locate the corresponding sample in the NQ
dataset. If that sample has a long answer then we
use that as the initial (English) context. Otherwise,
if neither the NQ dataset nor the MKQA dataset has
an answer registered, then we use the paragraph in
the HTML with the largest cosine similarity to the
question, where we embed the documents using
the Sentence Transformer (Reimers and Gurevych,
2019) model all-mpnet-base-v2.9

In the last case, where there is no long answer
for the sample in NQ but there is an answer in
MKQA, we want to identify the paragraph in the
HTML containing the MKQA answer. Unfortu-
nately, the MKQA answers do no appear verbatim
in the HTML (for instance, all dates are standard-
ised to the YYYY-MM-DD format). We thus start

9https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

by forming a list of answer candidates based on
the MKQA answer, which includes most of the ways
dates and numerals are written in English. We then
locate the paragraph containing any of the answer
candidates and which has the largest cosine similar-
ity to the question, where we embed the documents
as described above.

The above procedure thus results in an English
context paragraph containing the answer. We next
translate this context paragraph to Danish and
Swedish using the DeepL translation API10. As
DeepL did not support Norwegian when we con-
ducted this experiment, we translated the context
paragraph to Norwegian using the Google Trans-
lation API11 instead. With the contexts translated,
we next extract all the answer candidates for the
translated context relevant to the given Mainland
Scandinavian language, and change the answer to
the answer candidate appearing in the translated
context. If no answer candidate appears in the
translated context then we discard the sample.

The MKQA dataset also contains samples with
no answer, and we include these samples in the
ScandiQA dataset as well. For these samples, we
simply use the translated context paragraphs as de-
scribed above. The final dataset contains 7,810
Danish samples, 7,798 Swedish samples and 7,813
Norwegian samples. We release this dataset sepa-
rately12, as well as build a ScandEval version of it
with the same train/dev/test size as the other Scan-
dEval datasets. In the ScandEval version (with
1,024/256/2,048 train/val/test samples as stated in
Section 3.4) we only include samples that contain
an answer, as otherwise we found the 1,024 dataset
size to be too small for this task.

We note that since this dataset is a translated ver-
sion of a dataset originally written in English, it is
not a perfect representation of the Mainland Scan-
dinavian languages, as many of the questions and
answers are concerned with topics specific to the
USA. This might mean that pretrained multilingual
models might have an advantage over monolingual
models, but we leave this question for future work.

10https://www.deepl.com/pro-api
11https://cloud.google.com/translate/
12This can be found at https://huggingface.

co/datasets/alexandrainst/scandi-qa and the
source code is available at https://github.com/
alexandrainst/ScandiQA.
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4.5 Inference Speed

Aside from the predictive performance of the mod-
els we also benchmarked the inference speed of
the finetuned models using the pyinfer package
(Pierse, 2020), and report the mean number of in-
ferences per second. This is done by recording the
mean inference time of running a document with
2,600 characters13 through the model one hundred
times, and repeating that process 10 times. We
also compute the confidence interval as described
in Section 3.2. These have all been computed us-
ing an AMD Ryzen Threadripper 1920X 12-Core
CPU.

5 Benchmarking Package and CLI

To enable every language researcher to benchmark
their language models in a reproducible and con-
sistent manner, we have developed a Python pack-
age called scandeval, which can benchmark any
pretrained language model available on the Hug-
ging Face Hub.

The scandeval package is implemented as
both a CLI and a Python package, which enables
ease of use as both a stand-alone benchmarking tool
as well as enabling integration with other Python
scripts. The package follows a very opinionated
approach to benchmarking, meaning that very few
parameters can be changed. This is a deliberate
design decision to enable consistent benchmarking
of all models. The package follows the hyperpa-
rameter choices described in Section 3.1. See more
in the scandeval documentation.

6 Experiments

Using the scandeval package we have bench-
marked more than 100 pretrained models in the
Scandinavian languages which were available on
the Hugging Face Hub. Aside from these models
we also included several multilingual models to
enable a fair comparison. Lastly, to enable better
interpretability of the results, we also benchmark a
randomly initialised XLM-RoBERTa-base model
(Conneau et al., 2020) and an ELECTRA-small
model (Clark et al., 2019) on the datasets, which
will make it more transparent how much “exter-
nal knowledge” the pretrained models are able to
utilise in their predictions. Benchmarking all these
models approximately required 1000 GPU hours

13The document is “This is a dummy document. ”, repeated
100 times.

on a GeForce RTX 2080 Ti GPU, which emitted
approximately 40 kg of CO2 equivalents14.

6.1 Benchmarking Results

We have presented all of the benchmarked results
along with their associated confidence intervals in
an online leaderboard. These scores have been
computed as described in Section 3, and the top-5
performing models for each language, as well as
overall, can be found in Table 1.

We see from Table 1 that NB-BERT-large15

(Kummervold et al., 2021) is the best perform-
ing model in Norwegian as well as overall, DFM-
encoder-large-v116 being the best Danish model,
and KB-BERT-large17 (Malmsten et al., 2020) hav-
ing the best performance in Swedish.

The massively multilingual models in the top
5 scores are RemBERT (Chung et al., 2020) and
mDeBERTaV3 (He et al., 2021). The remain-
ing models in the top 5 are NB-RoBERTa-base-
scandi18, DanskBERT (Snæbjarnarson et al., 2023),
NB-BERT-base (Kummervold et al., 2021), Nor-
BERT2 (Kutuzov et al., 2021), KB-BERT-base
(Malmsten et al., 2020) and AI-Nordics-BERT-
large19.

6.2 Cross-lingual Transfer

This experiment investigated the cross-lingual
transfer capabilities of the Scandinavian models,
and tested our two hypotheses from Section 1. This
used the methodology described in Section 3.3. For
the Insular Scandinavian languages, the tasks in-
cluded here are the Icelandic and Faroese versions
of the ScaLA dataset, the Icelandic NER dataset
MIM-GOLD-NER (Ingólfsdóttir et al., 2020) and
the Faroese part of the NER dataset WikiANN
(Rahimi et al., 2019). The resulting benchmark
results can be found in Table 2 and all the raw
scores can be found in the appendix. The results
affirm our two hypotheses, as we see that the group

14With a power usage of 250 W/h (Techpowerup.com) and
a carbon efficiency of 0.16 kg/kWh in Denmark (Ritchie et al.,
2022).

15https://huggingface.co/NbAiLab/
nb-bert-large

16https://huggingface.co/chcaa/
dfm-encoder-large-v1

17https://huggingface.co/KBLab/
megatron-bert-large-swedish-cased-165k

18https://huggingface.co/NbAiLab/
nb-roberta-base-scandi

19https://huggingface.co/AI-Nordics/
bert-large-swedish-cased
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Rank Overall Danish Norwegian Swedish

1 NB-BERT-large DFM-encoder-large-v1 NB-BERT-large KB-BERT-large
2 DFM-encoder-large-v1 NB-BERT-large NB-BERT-base NB-BERT-large
3 RemBERT DanskBERT NB-RoBERTa-base-scandi KB-BERT-base
4 mDeBERTaV3-base RemBERT NorBERT2 AI-Nordics-BERT-large
5 NB-RoBERTa-base-scandi mDeBERTaV3-base mDeBERTaV3 RemBERT

Table 1: The five best performing pretrained models in the Mainland Scandinavian language categories.

of languages with the largest F-statistic is the group
of Mainland Scandinavian languages.

Benchmark group F-statistic Benchmark group F-statistic

da, no 16.81 da, sv, is 4.36
da, sv 15.48 da, sv, fo 10.72
da, is 4.76 da, is, fo 5.48
da, fo 7.29 no, sv, is 3.11
no, sv 8.14 no, sv, fo 5.57
no, is 3.73 no, is, fo 3.64
no, fo 2.70 sv, is, fo 4.26
sv, is 4.48 da, no, sv, is 6.97
sv, fo 7.59 da, no, sv, fo 25.40
is, fo 21.84 da, no, is, fo 4.97
da, no, sv 33.34 da, sv, is, fo 5.21
da, no, is 4.27 no, sv, is, fo 3.38
da, no, fo 11.56 da, no, sv, is, fo 7.53

Table 2: F-statistics showing the cross-lingual
transfer between the Scandinavian language mod-
els. Here da is Danish, no is Norwegian, sv is
Swedish, is is Icelandic and fo is Faroese.

7 Discussion

We note that the benchmarking results presented in
Section 6.1 show that the efforts of the National Li-
braries in Norway and Sweden, as well as the Dan-
ish Foundation Models project in Denmark, have
paid off, in the sense that their models NB-BERT-
large (Kummervold et al., 2021), KB-BERT-large
(Malmsten et al., 2020) and DFM-encoder-large-v1
are outperforming the multilingual models.

This seems to indicate that investing in language
technologies at a large language-specific level can
be worthwhile. We also see from the same table
that the Norwegian model is within the top two best
models in Danish, Norwegian and Swedish, indicat-
ing a potentially large amount of language transfer,
supported by the cross-lingual transfer experiment
in Section 6.2. This indicates that a joint Mainland
Scandinavian approach could improve the results
of the current monolingual models within the Main-
land Scandinavian languages.

8 Conclusion

In this paper we have presented a bench-
marking framework for the Scandinavian lan-
guages, together with a Python package and CLI,

scandeval, which can be used to benchmark any
model available on the Hugging Face Hub. The
benchmark features four tasks: named entity recog-
nition, sentiment classification, linguistic accept-
ability and question answering. We have also re-
leased two new datasets, ScaLA and ScandiQA,
which constitute the linguistic acceptability and
question answering tasks, respectively. We have
benchmarked more than 100 models on the Main-
land Scandinavian datasets in the benchmark and
presented these results in an online leaderboard.
In our analysis of the benchmarking results we
have shown substantial cross-lingual transfer be-
tween the Mainland Scandinavian languages, and
no notable transfer between the group of Mainland
Scandinavian languages and the group of Insular
Scandinavian languages. This is the justification
for including only the Mainland Scandinavian lan-
guages in the online leaderboard while maintaining
support for the Insular Scandinavian languages in
the scandeval package.
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Glavaš, and Ivan Vulić. 2023. Transfer to a low-
resource language via close relatives: The case study
on faroese. In Proceedings of the 24th Nordic Con-
ference on Computational Linguistics (NoDaLiDa),
Tórshavn, Faroe Islands. Linköping University Elec-
tronic Press, Sweden.

Kristoffer Svensson. 2017. Sentiment Analysis With
Convolutional Neural Networks: Classifying senti-
ment in Swedish reviews. Bachelor’s thesis.

Techpowerup.com. NVIDIA GeForce RTX 2080
Ti Specs. https://www.techpowerup.
com/gpu-specs/geforce-rtx-2080-ti.
c3305. Accessed: 2023-04-01.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Erik Velldal, Lilja Øvrelid, Eivind Alexander Bergem,
Cathrine Stadsnes, Samia Touileb, and Fredrik Jør-
gensen. 2018. NoReC: The Norwegian review cor-
pus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel Bowman.
2019. Neural Network Acceptability Judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

196

https://aclanthology.org/2021.nodalida-main.53
https://aclanthology.org/2021.nodalida-main.53
https://aclanthology.org/2021.nodalida-main.53
https://github.com/cdpierse/pyinfer
https://github.com/cdpierse/pyinfer
https://doi.org/10.18653/v1/P19-1493
https://www.aclweb.org/anthology/P19-1015
https://www.aclweb.org/anthology/P19-1015
https://doi.org/10.18653/v1/2020.acl-main.111
https://doi.org/10.18653/v1/2020.acl-main.111
https://aclanthology.org/2021.nodalida-main.39
https://aclanthology.org/2021.nodalida-main.39
https://github.com/sarnikowski
https://github.com/sarnikowski
https://doi.org/10.18653/v1/2020.emnlp-main.381
https://doi.org/10.18653/v1/2020.emnlp-main.381
https://doi.org/10.18653/v1/2020.emnlp-main.381
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-64768
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-64768
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-64768
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-ti.c3305
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-ti.c3305
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-ti.c3305
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/L18-1661
https://aclanthology.org/L18-1661
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


Bryan Wilie, Karissa Vincentio, Genta Indra Winata,
Samuel Cahyawijaya, Xiaohong Li, Zhi Yuan Lim,
Sidik Soleman, Rahmad Mahendra, Pascale Fung,
Syafri Bahar, and Ayu Purwarianti. 2020. IndoNLU:
Benchmark and resources for evaluating Indonesian
natural language understanding. In Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
10th International Joint Conference on Natural Lan-
guage Processing, pages 843–857, Suzhou, China.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Beilei Xiang, Changbing Yang, Yu Li, Alex Warstadt,
and Katharina Kann. 2021. CLiMP: A benchmark for
Chinese language model evaluation. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 2784–2790, Online. Association for
Computational Linguistics.

Liang Xu, Xuanwei Zhang, Lu Li, Hai Hu, Chenjie Cao,
Weitang Liu, Junyi Li, Yudong Li, Kai Sun, Yechen
Xu, Yiming Cui, Cong Yu, Qianqian Dong, Yin Tian,
Dian Yu, Bo Shi, Jun jie Zeng, Rongzhao Wang, Wei-
jian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Qipeng
Zhao, Cong Yue, Xinrui Zhang, Zhen-Yi Yang, Kyle
Richardson, and Zhenzhong Lan. 2020. CLUE: A
Chinese Language Understanding Evaluation Bench-
mark. In International Conference on Computational
Linguistics.

197

https://aclanthology.org/2020.aacl-main.85
https://aclanthology.org/2020.aacl-main.85
https://aclanthology.org/2020.aacl-main.85
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.eacl-main.242
https://doi.org/10.18653/v1/2021.eacl-main.242


A Cross-lingual transfer experiment

Language Hugging Face Model ID # Parameters

Danish vesteinn/DanskBERT 124M
Swedish KB/bert-base-swedish-cased 125M
Norwegian patrickvonplaten/norwegian-roberta-base 125M
Icelandic mideind/IceBERT 124M
English roberta-base 125M
German deepset/gbert-base 110M
Dutch pdelobelle/robbert-v2-dutch-base 117M
Finnish TurkuNLP/bert-base-finnish-cased-v1 125M
Russian DeepPavlov/rubert-base-cased 178M
Arabic asafaya/bert-base-arabic 111M

Table 3: The Hugging Face Hub model IDs of the models used in the cross-lingual transfer
experiment.

Model Danish Score Norwegian Score Swedish Score Icelandic Score Faroese Score

Danish 63.87 ± 1.26 53.74 ± 3.73 52.08 ± 2.70 30.39 ± 1.55 45.26 ± 1.35
Norwegian 46.30 ± 2.83 58.78 ± 1.44 46.90 ± 2.79 28.85 ± 1.45 43.35 ± 2.20
Swedish 45.81 ± 2.96 47.32 ± 2.66 69.29 ± 1.40 28.69 ± 1.61 43.63 ± 1.90
Icelandic 30.20 ± 1.23 28.68 ± 2.91 36.80 ± 2.14 71.00 ± 1.50 48.26 ± 4.76
Finnish 32.55 ± 1.47 30.71 ± 2.14 38.94 ± 1.51 16.33 ± 1.89 36.87 ± 1.17
English 34.11 ± 2.11 30.92 ± 2.69 39.24 ± 1.92 28.39 ± 2.41 40.75 ± 1.59
German 28.13 ± 2.04 27.58 ± 2.90 37.62 ± 4.18 26.13 ± 1.63 41.02 ± 1.46
Dutch 31.78 ± 1.62 28.27 ± 2.51 35.06 ± 1.87 26.21 ± 1.79 40.83 ± 1.70
Russian 33.91 ± 1.88 33.55 ± 2.17 39.14 ± 2.33 29.96 ± 1.58 43.17 ± 1.66
Arabic 22.89 ± 1.82 19.98 ± 2.24 25.40 ± 2.69 10.33 ± 2.19 35.33 ± 1.57

Table 4: The raw benchmarking results used in the cross-lingual transfer experiment.
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B Training Data Size Experiment

Figure 3: The results from the training data size experiment for the NoReC dataset.

Figure 4: The results from the training data size experiment for the Absabank-Imm dataset (Adesam
et al., 2020).

Figure 5: The results from the training data size experiment for the DaNE dataset.
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Figure 6: The results from the training data size experiment for the SUC3 dataset.

Figure 7: The results from the training data size experiment for the NorNE-NB dataset.

Figure 8: The results from the training data size experiment for the ScaLA-DA dataset.
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Figure 9: The results from the training data size experiment for the ScaLA-SV dataset.

Figure 10: The results from the training data size experiment for the ScaLA-NB dataset.

Figure 11: The results from the training data size experiment for the ScaLA-NN dataset.
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Abstract

Retrieval-based language models are
increasingly employed in question-
answering tasks. These models search
in a corpus of documents for relevant
information instead of having all factual
knowledge stored in its parameters, thereby
enhancing efficiency, transparency, and
adaptability. We develop the first Norwe-
gian retrieval-based model by adapting
the REALM framework and evaluate it on
various tasks. After training, we also sepa-
rate the language model, which we call the
reader, from the retriever components, and
show that this can be fine-tuned on a range
of downstream tasks. Results show that
retrieval augmented language modeling
improves the reader’s performance on
extractive question-answering, suggesting
that this type of training improves language
models’ general ability to use context and
that this does not happen at the expense
of other abilities such as part-of-speech
tagging, dependency parsing, named entity
recognition, and lemmatization. Code,
trained models, and data are made publicly
available.1

1 Introduction

Retrieval-based language models meet some im-
portant shortcomings associated with pre-trained
language models (PLMs): they are more dynamic,
allowing for updating of knowledge without having
to re-train the model from scratch; they are more
transparent, allowing backtracking the source of
returned statements; and they are more efficient, as
retrieval provides a non-parametric memory. The
accentuated benefit of these models has been the

*The authors contributed equally to this work
1https://github.com/ltgoslo/brent
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Figure 1: The proposed architecture, based on the
REALM method from Guu et al. (2020).

OpenQA task – where they have established new
state-of-the-art results on datasets like NaturalQues-
tions (Kwiatkowski et al., 2019) and WebQuestions
(Berant et al., 2013). There, models first fetch a
relevant passage from a data source in order to be
able to answer a question — as compared to extrac-
tive QA, where a passage with the correct answer is
provided explicitly as additional input to the model,
also referred to as machine reading comprehension.

In this work, we develop the first Norwe-
gian retrieval-based model, BRENT: Bidirectional
Retrieval Enhanced Norwegian Transformer,
based on the general approach proposed by Guu
et al. (2020). Our model consists of two encoders
that respectively learn to embed documents and
queries into dense vector representations, and a
reader module that learns to utilize the retrieved
context for prediction, as shown in Figure 1. These
are trained jointly and end-to-end, and we start
their training from an already pre-trained Norwe-
gian LM. Compared to previous work, we use a
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relatively small retrieval corpus consisting of 730k
Wikipedia documents.

The learning objective is masked language mod-
eling (MLM), and the top k most relevant doc-
uments are retrieved from the retrieval corpus
through a maximum inner product search (MIPS).

The size of our retrieval corpus allows us to up-
date the search index synchronously during training
and do exact matching, as opposed to the asyn-
chronous updates and approximations done in Guu
et al. (2020). Furthermore, we do not consider
OpenQA as an evaluation task, but instead, we
study how retrieval-augmented language modeling
can be used as a continued pre-training step in order
to improve context utilization in the reader model.
That is, we evaluate the reader as a stand-alone —
extracting it from the overall pipeline so that it can
be distributed and used as a normal LM.

In order to analyze the effect of this contin-
ued pre-training, we also benchmark the reader
against other NLP tasks that by intuition should not
benefit from this type of training, such as part-of-
speech-tagging, named entity recognition, depen-
dency parsing, and lemmatization. We find that the
retrieval-augmented training procedure increases
the reader’s performance on extractive QA without
decreasing performance on these tasks. However,
we find that it decreases performance on both tar-
geted and sentence-level sentiment analysis. To
summarize, our contributions are:

• We develop and release the first Norwegian
retrieval-based language model.

• We study how retrieval improves the reader’s
ability to use context on extractive QA while
still performing on par with comparable base-
lines on morpho-syntactic tasks.

• We analyze the different components of a
retrieval-based system through a series of ab-
lations, addressing problems associated with
common design choices.

2 Related work

The basic setup for most retrieval-based approaches
to NLP is that for a query q, be it a question for
QA or a premise in natural language inference, the
model must retrieve a set of passages relevant to q.
Relevant candidates are then typically appended to
q before being passed to a classification layer.

While earlier work approached this using heuris-
tics and sparse retrieval methods like BM25

(Robertson et al., 2009), recent work has focused
on learning this retrieval step. Most of these use
an architecture with an encoder and a reader: the
encoder learns to represent q and the retrieved pas-
sages in a representation space that makes it pos-
sible to match documents using the inner product
operation, while the reader learns how to utilize
the retrieved passage for downstream prediction.
Recent work by Jiang et al. (2022) shows how it is
also possible to model this interaction using a sin-
gle transformer model (Vaswani et al., 2017) with
a retrieval as attention technique, as compared to
having separate encoders and readers.

Lee et al. (2019) note that it is computation-
ally impractical to learn to make predictions condi-
tioned on a retrieval corpus from scratch and thus
proposed to pre-train the encoders with an inverse
cloze task (ICT) in order to “prime” the model for
retrieval. This is also done in Sachan et al. (2021).
We outline more details on this and how we use
ICT in the following section.

The most direct application of retrieval is to use
a supervision signal such as OpenQA to train the
context and passage encoders, such as in Khattab
et al. (2021). However, Guu et al. (2020) show how
this setup can also be used for language modeling.
Using English Wikipedia as the retrieval corpus,
they perform MLM conditioned on retrieved pas-
sages. Passages are retrieved using MIPS over
an index that is asynchronously updated during
training. They also use a masking technique that
prioritizes named entities in order to incentivize
the usage of world knowledge from the retrieved
passages. A similar approach to language mod-
eling is also done in Borgeaud et al. (2022), but
over a corpus consisting of trillions of tokens. For
both works, the LMs are trained for a number of
steps with retrieval before being fine-tuned on a
downstream task, as is the typical workflow with
PLMs.

Lewis et al. (2020b) demonstrate how the
encoder-reader architecture can be used for lan-
guage generation as well. They propose both a
sequence model where the generation is condi-
tioned on the same set of retrieved documents for
the entire sequence and a token model where a
different document is used per target token. The re-
triever is based on Dense Passage Retrieval (DPR)
(Karpukhin et al., 2020), which uses the same gen-
eral approach to retrieval as Guu et al. (2020),
where a PLM like BERT (Devlin et al., 2019) is
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used as the encoder. The reader model is swapped
with a generator based on BART (Lewis et al.,
2020a).

3 Method

As in Guu et al. (2020), the architecture of BRENT
can be separated into two parts: a retriever and a
reader. Our architecture is modified to improve
the speed of training, to ensure that the retrieved
documents affect the predictions, and to incentivize
the retrieval of world knowledge from the retrieval
corpus instead of the reader memorizing it. This
section puts forth the architecture and these modifi-
cations.

3.1 Architecture
Retriever The first part of BRENT is the re-
triever, which consists of two components: the
Query Encoder (Encquery) and the Document En-
coder (Encdoc). Both have their own sets of
weights and in our case have a BERT-style archi-
tecture and tokenizer. However, these can be ini-
tialized with other types of dense representation
learners and could potentially also share weights
for faster training.

The retriever receives as input the query, q,
which is the masked sentence from the pre-training
corpus, and passes it to Encquery to get a dense
representation. Encdoc encodes all the documents
in the retrieval corpus. Once all the documents
and the query are encoded, a similarity score is
calculated between each document d and the query
q:

sim(q, d) =
Encquery(q)

TEncdoc(d)√
hdim

,

where hdim represents the encoding dimension of
the retriever encoders. Since the query and doc
vectors are not normalized, the inner product can
be very large. In order to stabilize the training, we
scale the inner product by dividing it by the square
root of the hidden dimension.

Once all the similarity scores are calculated, we
use softmax to create a probability distribution over
all the documents for a given query:

p(d|q) = exp(sim(q, d))∑
d′∈D exp(sim(q, d′))

.

Finally, we create the inputs to the reader by
appending the representations of each d to q, i.e.
[q; d]. In other words, if we have a retrieval corpus

D with N documents, then a single query generates
N inputs to the reader — effectively multiplying by
N the batch size passed to the reader. However, it is
unfeasible to do this for the whole corpus, therefore
we only retrieve the top-k documents based on the
similarity scores.

Reader The reader is a single pre-trained lan-
guage model taking as input the document d ap-
pended to query q ([q; d]). During continued pre-
training, the reader is optimized for MLM. For each
input to the model, we get predictions on what the
masked words in the query are — given the con-
text provided by document d. Formally, each input
generates the following probability for the correct
masked words y:

p(y|d, q) =
∏

yi∈Mq

p(yi|d, q),

where yi is the i-th masked word in query q and Mq

is the set of all masked words in q. However, we
want p(y|q). Therefore, for a query q, we need to
do k forward passes to get all the p(y|d, q). Finally,
to obtain p(y|q) we marginalize:

p(y|q) =
∑

d∈D
p(y|d, q) p(d|q).

Loss With p(y|q) we can calculate the loss. Dur-
ing the loss function (cross-entropy) derivation,
the error backpropagation is spread between the
reader and the retriever. For the reader, this is the
same as for any transformer-based model trained
on the MLM task except that it averages over the
batch size, number of retrieved documents, and
the number of masked tokens. For the retriever,
it is updated based on whether p(y|d, q) was bet-
ter or worse than p(y|q). Specifically, if p(y|d, q)
is higher than p(y|q), then the similarity score be-
tween q and d should increase. This can be seen
with the following equation:

∇θ log p(y|q) =
∑

d∈D
u(d)p(d|q)∇θsim(d, q)

u(d) =

(
p(y|d, q)
p(y|q) − 1

)
,

where θ represents the parameters of Encdoc.2

The same derivation applies to the parameters of
Encquery.

2The full derivation can be found in the appendix of Guu
et al. (2020), where z = d, x = q and f represents the
function sim
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3.2 Null Document

As pointed out in Guu et al. (2020), not all masked
words need world knowledge to be predicted cor-
rectly. Therefore, we also add a null document
appended to the query q. There are two ways to
encode the null document. The first, and most ob-
vious, is to pass the empty string to Encdoc and use
the resulting encoding as the null document. How-
ever, we use a parameter tensor initialized with all
zeros instead. This saves us one forward and back-
ward pass of Encdoc per step, without affecting
performance.

3.3 Corpus

We use a snapshot of the Norwegian Wikipedia
from October 2022 as our corpus, limited to the
Bokmål written standard. We pre-process the arti-
cles into chunks of token length 128, padding the
last chunk of each article so that no chunk contains
text from two different sources. After processing,
the corpus consists of 735 000 documents, with an
average number of words per chunk being about
100 (µ = 102, σ = 25). We use this corpus for
sampling sentences to mask for MLM and as a
retrieval corpus during continued pre-training.

3.4 Search index

As described in our architecture, we use the doc-
uments d in the retrieval corpus D to improve the
model’s predictions. Ideally, we would use all the
documents of the retrieval corpus to make the pre-
diction. Then, the model would assign close to zero
probabilities to most documents, while simultane-
ously having access to all documents, and therefore
identifying the most relevant ones. However, this is
not feasible, as it would require a very high amount
of resources (which would keep increasing as we
increase our retrieval corpus) and be unreasonably
time-consuming. Therefore, we instead only re-
trieve the top-k documents in terms of similarity
score. To be able to efficiently retrieve and find
these documents, we use a search index. We build
this index using the encoding of the documents pro-
duced by Encdoc. Since we update Encdoc at every
backward pass, it follows that we should re-index
the documents at each backward pass. However,
this is too time-consuming and we therefore only re-
index each s steps. We want to note here that there
has been recent work on how to more efficiently
retrieve from such an index (Alon et al., 2022; He
et al., 2021). Since we use the same corpus for

both MLM training and retrieval, the first retrieved
document is often the same document from which
the query comes from, as this will naturally have a
high similarity score. To avoid directly giving our
model the answer with the unmasked token in it,
we make sure to remove this document.

3.5 Inverse cloze task

We warm up the encoders for both the query and the
document with the ICT task from Lee et al. (2019)
on 68k Wikipedia article introductions limited to
128 tokens, from a snapshot from October 2020.
For each pass, the model must predict the relevant
pseudo-document for a pseudo-question from a set
of distractors. The question is a random sentence
and the document is the text surrounding it, the
distractors are sampled from the same batch.

3.6 Span Masking

For the MLM task, we combine both salient mask-
ing (Guu et al., 2020), where only named entities
and dates that require world knowledge are masked,
and random masking. We identify entities using
an off-the-shelf named entity recognizer and dates
with a simple parsing algorithm.3 We use 15%
salient masking, making sure to mask at least one
salient span for each sample, and 3.75% random
span masking (which is 25% of 15%). By doing
this, we encourage the network to learn to retrieve
spans requiring world knowledge while ensuring
that the model is still able to model linguistic fea-
tures.

4 Experiments

We evaluate BRENT on a wide range of Norwegian
NLP tasks. We do this both without retrieval using
the extracted reader, and with retrieval turned on
using the full model. By doing this, we highlight
both the improved capacity of the reader to use
context and show how retrieval in general affects
performance on NLP tasks other than QA. This
section describes the specific datasets and models
we use during experimentation.

4.1 Models

NorBERT2 A baseline Norwegian LM, originat-
ing from Kutuzov et al. (2021).

NorBERT250k A NorBERT2 model trained for
50k additional steps on Wikipedia using MLM

3spaCy: https://spacy.io/
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as described in Section 3.6, with a batch size of
1024. We show the performance of this model in
order to get a more fair comparison, showcasing
the improvements gained from the actual retrieval-
augmented pre-training as compared to just doing
regular pre-training for 50k more steps on the same
corpora.

BRENT The entire model with retrieval turned
on during fine-tuning. This is akin to a Norwegian
version of REALM (Guu et al., 2020), but with our
modifications. When subscripted, this indicates the
source of the retrieval corpus, which could be either
from Wikipedia or a task-specific dataset.

BRENTreader The reader model extracted after
continued pre-training, used without any retrieval
during fine-tuning on the downstream tasks.

4.2 Datasets

NorQuAD A Norwegian question answering
dataset for machine reading comprehension
(Ivanova et al., 2023) based on the SQuAD format
(Rajpurkar et al., 2016). For a given question, the
model must predict the correct span in a provided
passage that answers the question. NorQuAD in-
cludes three domain splits: one sourced from the
Norwegian Wikipedia (N = 2351), one from Nor-
wegian news articles (N = 2398), and one split
that combines both of them (N = 4749). We use
an 80− 10− 10 split on all three domains for train-
ing, validation, and testing.

NoReCfine A fine-grained sentiment analysis
dataset for Norwegian (Øvrelid et al., 2020). The
texts are a subset of the NoReC dataset (Velldal
et al., 2018), a multi-domain dataset of full-text
professional reviews published in Norwegian on-
line news sources. Each sentence in NoReCfine
is annotated for sentiment holders, targets, polar
expressions, expression polarities, and polar inten-
sities. A version for targeted sentiment analysis
(TSA) is released on GitHub where only the senti-
ment targets are labeled.4

NoReCsent A sentence-level sentiment analysis
dataset for Norwegian derived from NoReCfine
(Øvrelid et al., 2020; Kutuzov et al., 2021). This
dataset is generated by aggregating the entity sen-
timents in each sentence. The sentences are then
labeled as either positive, negative, or neutral. We

4https://github.com/ltgoslo/norec_tsa

use the version only containing positive and nega-
tive sentiments. Both versions of the dataset (with
and without neutral sentiment sentences) are avail-
able on GitHub.5

Morpho-syntactic tasks This group of tasks is
based on annotations from the Norwegian Depen-
dency Treebank (Solberg et al., 2014), which were
converted to the Universal Dependencies (UD) for-
mat by Øvrelid and Hohle (2016) and later enriched
with named-entity types by Jørgensen et al. (2020).
The resulting dataset is called NorNE and we use
its latest version.6 The source of NorNE is mostly
news texts, but also government reports, parliament
transcripts, and blogs. We evaluate the models
on all available UD tasks for Norwegian Bokmål
(UPOS and UFeats tagging, lemmatization, and
dependency parsing; Nivre et al., 2016),7 as well
as on named entity recognition (NER).8

4.3 Implementation details

Since running these models is resource intensive,
we do not do a hyperparameter search. Instead,
we base our hyperparameters on previous research
where available. The following paragraphs outline
the details of our experiments.

Search Index We use the FlatIndexIP from the
FAISS (Johnson et al., 2019) library to construct
our index. This allows us to get the most relevant
documents rather than an approximation of the best
documents. We can do this since our corpus of
documents is relatively small. We retrieve the top-
7 documents and append the null document, in
essence retrieving 8 documents in total. We re-
index every 100 steps.

ICT We use NorBERT2 as the initialization for
the ICT warmup. For this, we use a learning rate of
1 ∗ 10−4 and batch size of 128 for 10 epochs with
early stopping on a single NVIDIA A100 GPU.
After the warmup, these weights are then used as
the starting point for Encquery and Encdoc in the

5https://github.com/ltgoslo/norec_
sentence/

6https://github.com/ltgoslo/norne
7We use the official evaluation script from

CoNLL 2018 shared task (Zeman et al., 2018,
https://universaldependencies.org/
conll18/evaluation.html).

8We employ the evaluation method from SemEval 2013
task 9.1 (Segura-Bedmar et al., 2013), re-implementated
in https://github.com/davidsbatista/
NER-Evaluation.
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Model Wiki News All

EM F1 EM F1 EM F1

Human* 72.65 88.84 83.61 93.43 78.13 91.14

NorBERT2 57.76±1.15 71.89±0.89 64.05±1.27 76.93±1.15 64.64±1.40 77.86±0.65

NorBERT250k 59.14±0.55 73.98±1.05 64.89±1.44 77.22±0.57 63.88±0.49 77.05±0.55

BRENTreader 62.57±1.77 76.45±1.40 68.10±2.87 80.40±1.71 66.56±1.36 80.01±1.16

Table 1: Results on different domains of the NorQuAD dataset. Results are reported as the mean and
standard deviation over five random seeds. *Human performance is the mean performance of two
annotators as reported in Ivanova et al. (2023))

Model UPOS UFeats Lemma LAS NER

NorBERT2 98.65±0.04 97.58±0.06 98.18±0.03 93.15±0.05 88.13±0.34

NorBERT250k 98.64±0.04 97.54±0.04 98.12±0.06 93.10±0.22 88.41±0.45

BRENTreader 98.62±0.06 97.55±0.02 98.09±0.04 92.96±0.15 87.70±0.49

Table 2: Results on the morpho-syntactic tasks: accuracy of UPOS and UFeats tagging, the accuracy
of lemmatization, the labeled attachment scores of dependency parsing, F1 scores of named entity
recognition, where the evaluation requires an exact match on both span and label. Results are reported as
the mean and standard deviation over five random seeds.

retriever, while the reader uses NorBERT2 without
any warmup.

Pre-training We then train BRENT for 50k steps
with a batch size of 1024 divided over 128 AMD
MI250X GPUs,9 a learning rate of 2 ∗ 10−5, using
the AdamW optimizer, and a Cosine scheduler with
a warmup, on the chunked Wikipedia corpus. A full
description of the model and the hyperparameters
can be found in Appendix A.2.

Fine-tuning We run all experiments using five
different seeds and report the average result and
standard deviation. For the fine-tuning of the
retrieval-enhanced models, we test both with and
without re-indexing, i.e., fine-tuning Encdoc. In
both cases, we continue to fine-tune Encquery.
When fine-tuning, we use a higher learning rate
for the retriever as compared to the reader, since
we saw experimentally that this obtained better re-
sults. When re-indexing, we do it every 100 steps
and at the end of each epoch. Hyperparameters for
all evaluation tasks can be found in Appendix A.3.
We fine-tune all models on a single GPU.

4.4 Results
4.4.1 Extractive QA
Table 1 shows the exact match (EM) and token-
level F1 scores of different approaches on the

9These resources were made available to us
through the EuroHPC JU project: https://www.
lumi-supercomputer.eu/

Model BSA F1 % TSA F1 %

NorBERT2 85.52±0.74 47.58±0.49

NorBERT250k 84.62±0.50 46.70±0.65

BRENTreader 83.33±0.47 46.48±0.26

BRENTWiki 84.21±0.37 44.06±0.73

BRENTWiki;nri 84.18±0.53 43.38±1.45

BRENTNoReC 84.35±0.41 43.55±0.26

BRENTNoReC;nri 83.90±0.56 44.22±0.42

Table 3: Results of the binary sentiment analysis
task (BSA) on the NoReCsent dataset and targeted
sentiment analysis (TSA) on the NoReCfine dataset.
Evaluation is on the test set and is based on the
best model found during training. Results are re-
ported as the mean and standard deviation over five
random seeds. nri stands for no re-indexing. The
NoReC subscript represents the training dataset
being used as the retrieval corpus.

NorQuAD dataset. BRENTreader outperforms all
other approaches on the three domain splits, es-
pecially with respect to the EM metric, which we
explain by the salient masking technique. Although
BRENTreader was only trained on Wikipedia, the
improvement in performance is significant also
for questions in the news category. Naturally,
NorBERT250k also improves a bit compared to
NorBERT2 on the Wikipedia split, but not by the
same margin, and not at all on the news category.
This indicates that BRENTreader actually learns
to use context better, that this generalizes beyond
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Figure 2: Training perplexity during the first 10 000
steps. The values are smoothed with an exponential
moving average, using α = 0.99.

the style of Wikipedia, and that this could not be
achieved by simply training the same underlying
LM for 50k additional steps on the same corpus
with the same MLM setup.

4.4.2 Sentiment analysis

As for sentiment analysis, Table 3 shows that
BRENTreader performs worse compared to the
baseline of NorBERT2 on the binary sequence clas-
sification task, indicating that the continued pre-
training with retrieval does not actually help for
this task, but rather impedes performance. This is
also the case for the NorBERT250k model, albeit
with a smaller impediment to performance, sug-
gesting that it might be the continued training on
Wikipedia reducing the performance of the mod-
els on this task. When retrieval is used, as can be
seen in the bottom half of Table 3, the performance
is better, but still short of the baseline. For TSA,
the reader performs on par with the baselines but
turning retrieval on substantially decreases perfor-
mance.

When retrieving from a corpus during fine-
tuning, our model retrieves reviews that are related
with respect to inner product similarity, not neces-
sarily sentiment. If classifying a negative review
of a TV, our model could end up retrieving another
review about some other electronic apparatus —
which might be positive. This is clearly not helpful
for the task at hand. In order to teach the retrievers
to retrieve based on sentiment, we would need a
bigger dataset to fine-tune on. Despite this, man-
ual inspection shows that the retrieved contexts
are sometimes very relevant for the query when
the retrieval corpus is NoReC. When the retrieval
corpus is Wikipedia, however, the contexts are of

low relevance. Examples of queries and retrieved
contexts for BRENTWiki and BRENTNoReC on
binary sentiment analysis (BSA) can be found in
Appendix A.1.1 and Appendix A.1.2.

We also note that not re-computing the search
index decreases performance. However, as perfor-
mance is relatively similar, it might not be worth
it as re-indexing is a lot more resource-demanding.
With Wikipedia as the retrieval corpus on our com-
puting setup, TSA fine-tuning takes about 7 hours
with re-indexing, compared to 2.5 hours without.

4.4.3 Morpho-syntactic
Table 2 shows the results of the reader compared
to the baselines on a series of Norwegian token-
level labeling tasks. BRENTreader performs on
par with the baseline models, which strengthens
our hypothesis that the continued pre-training with
retrieval does not impede the model’s ability to
perform morpho-syntactic tasks while simultane-
ously increasing performance on extractive QA.
This claim is further supported by the fact that
the same happens with NorBERT250k, which indi-
cates that adding the retrieval is no worse than just
continuing to do MLM over the same corpus for
additional steps.

4.5 Analysis of the pre-training

Figure 2 shows the perplexity values of BRENT
and NorBERT250k during the first 10k steps of con-
tinued pre-training on the Wikipedia corpus. After
the initial convergence phase, NorBERT250k es-
tablishes itself on values around 40, while BRENT
sits at around 20. As we do mainly salient mask-
ing, perplexity is a proxy for how well the models
predict the correct named entities and dates. The
difference between the two shows how retrieval is
helpful for predicting masked entities.

5 Ablations

As with other retrieval-augmented LMs, BRENT is
a pipeline model — consisting of multiple parts that
interact according to a series of design choices that
impact the outcome. Due to the computational cost
of pre-training, it is not feasible to quantitatively
determine the effect of all these choices, resulting
in a poor understanding of some aspects of these
models. To mitigate this, we study the effect of
some of these choices with respect to the overall
loss during pre-training with a series of ablations.
We do this for a reduced number of steps, but with

208



0 500 1000 1500 2000
Step

3.0

3.5

4.0

4.5

5.0
Lo

ss
default
w/o null documents
w/o pre-trained ICT

Figure 3: Loss curves of having no null document
or no ICT warmup compared to the tested model.
The values of all three runs are smoothed with an
exponential moving average, using α = 0.99.

the same retrieval corpus and with the same GPU
setup as described in Section 3.3 and Section 4.3.

5.1 ICT

Figure 3 shows the effect of the ICT warmup task
with respect to the loss for 2000 steps. When ICT
is turned off, Encdoc and Encquery are initialized
with the same weights as the reader. As can be seen
from the figure, the loss converges slower when the
ICT task is not used, but it is quickly matching the
setting when it is used. Guu et al. (2020) claims
that without ICT one would encounter a cold-start
problem where the retrieved documents will likely
be unrelated to the query at the beginning of train-
ing, causing a cycle where the encoders do not
receive meaningful gradients. We find that this is
not the case and that the effect of ICT warmup is
minimal.

5.2 The effect of the null document

As mentioned in Section 3.2, we use a parameter
tensor initialized with all zeros for representing the
null document. This is optimized jointly with the
rest of the weights. Figure 3 shows how the model
behaves when the null document is removed, which
is done by making the probability of the null docu-
ment zero, as compared to the test model which has
it included. Contrary to Guu et al. (2020), we find
that the effect of the null document is questionable.
It makes sense to have a ”sink” to use when no
retrieval is necessary, but we do not find the null
document to fulfill this need.
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Figure 4: Loss curves of the first 2 000 training
steps with varying number of retrieved documents
k. The values are smoothed with an exponential
moving average, using α = 0.99.

5.3 Varying the number of documents to
retrieve

Figure 4 shows how the number of retrieved docu-
ments influences training with respect to loss. For
the first 2 000 training steps, k = 16 converges a
bit quicker than the k = 8. However, we see that
the result is minimal after that point, which is also
the conclusion in Guu et al. (2020). Given that it
is more computationally expensive to train with a
higher k and that the gain of going from 8 to 16 is
negligible, we keep k at 8.

6 Conclusion

We develop the first Norwegian retrieval aug-
mented language model, BRENT, based on the
REALM method proposed by Guu et al. (2020).
The model uses an encoder-reader architecture, and
we train it on a relatively small corpus consisting
of 735k Wikipedia documents. In addition to the
model itself, our contribution has been to demon-
strate how the use of continued pre-training with re-
trieval benefits the context utilization of the reader,
which we extract from the pipeline. The reader
performs better than comparable baselines on the
extractive QA task without losing performance on
morpho-syntactic tasks. We also evaluate our full
retriever model on sentiment analysis with two dif-
ferent corpora as the retrieval corpus, but here we
observe a decrease in performance overall. Con-
trary to some previous work, our ablation studies
find that the effect of having a null document and
using ICT as a warmup task is minimal.
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7 Future work

A future direction for our work is to study in greater
detail how retrieval influences the language mod-
eling task. In particular, we would like to train a
retrieval model from scratch. Another direction,
which has also been pointed out in related work,
is to experiment with cross-lingual retrieval, espe-
cially in the case where the retrieval corpus is from
a high-resource language. This would be useful in
scenarios where a large knowledge source like En-
glish Wikipedia could be used to augment a lower
resource language, like Norwegian, which does not
have such an extensive source available.
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A Appendix

A.1 BSA retrieval examples
A.1.1 Wikipedia examples
Examples of retrieved contexts from the
BRENTWiki model fine-tuned on the BSA task
with Wikipedia as the retrieval corpus.

• Query: Men så kommer de skjærende lydene
‘But then the squeaky sounds appear’

– Retrieved context: Øynene ‘The eyes’.

• Query: Broen går seg vill i sitt eget ønske om
å vært artsy ‘”The Bridge” is lost in its own
wish to be ”artsy”’

– Retreived context: Sverige ‘Sweden’

A.1.2 NoReC examples
Examples of retrieved contexts from the
BRENTNoReC model fine-tuned on the BSA task
with the NoReC dataset as the retrieval corpus.

• Query: Men så kommer de skjærende lydene
‘But then the squeaky sounds appear’

– Retrieved context: Allerede under første
låt får vi slengt alle klisjeene i trynet.
‘Already during the first song we are hit
in the face with all the clichés’.

• Query: Begeistringen var uvanlig stor og ap-
plausen deretter da det 70 minutters lange ver-
ket var fullført ‘The enthusiasm was unusually
great and so was the applause that followed
when the 70-minute long piece was over’.

– Retreived context: En helt utrolig konser-
topplevelse ‘A wonderful concert experi-
ence’.

• Query: Å være eksperimentell er ikke positivt
i seg selv; de mange sjangrene og retningene
i musikken gjør helehetsinntrykket rotete og
meningsløst ‘Being experimental is not pos-
itive in and of itself; the many genres and
directions makes the music seem messy and
meaningless’.

– Retrieved context: Automatisk to-soners
klimaanlegg ‘Automatic two-zone aircon-
dition’.

A.2 Model
The hyperparameters used for the continued pre-
training can be found in Table 4.

A.3 Hyperparameters
A.3.1 NorQuAD
For comparison, we use the same set of hyperpa-
rameters as in Ivanova et al. (2023), visible in Ta-
ble 5.

A.3.2 Sequence labeling
For the task of targeted sentiment analysis, we fine-
tune and report the average test results over five
runs, from the epoch providing the best results
on the development set. Hyperparameters can be
found in Table 6.

A.4 Binary Sentiment Analysis
For the task of binary sentiment analysis, we fine-
tune for three epochs and select the best model
based on the development set’s f1 score. We aver-
age our test results over five runs. Hyperparameters
can be found in table Table 7.

A.5 Morpho-syntactic
For morpho-syntactic tasks, we fine-tune for 10
epochs and select the best model based on the av-
erage performance on the development split. We
average our test results over five runs. Hyperparam-
eters can be found in Table 8.
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Hyperparameter Value

Number of parameters 125M
Number of attention heads 12
Number of layers 12
Hidden dimension (hdim) 768
Activation function GeLU
Vocabulary size 50104
Seed 42
Dropout 0.1
lr 2 ∗ 10−5

Weight decay 0.1
Batch size 1024
k 8
re-indexing frequency 100 steps
Steps 50k
Scheduler Cosine with warmup
Warmup 800 steps
Final lr 2 ∗ 10−6

Optimizer AdamW
Index FlatIndexIP

Table 4: Hyperparameters for the continued pre-training of both BRENT and NorBERT2. k represents the
number of documents retrieved including the null document.

Hyperparameter Value

Batch size 16
Epochs 3
lr 5 ∗ 10−5

Scheduler Linear
Optimizer AdamW
Seeds [42, 437, 4088, 3092, 9720]

Table 5: Hyperparemeters for fine-tuning on the NorQuAD dataset

Hyperparameter Value

Batch size 32
Epochs 8
lrreader 5 ∗ 10−5

lrretriever 1.5 ∗ 10−4

k 4
re-indexing frequency 100 steps + end of epoch
Scheduler Linear
Optimizer AdamW
Seeds [101, 202, 303, 404, 505]

Table 6: Hyperparemeters for fine-tuning on the NoRECfine dataset. k represents the number of documents
retrieved including the null document. The lrreader is for both the retrieval and non-retrieval models.
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Hyperparameter Value

Batch size 32
Epochs 3
lrreader 1 ∗ 10−5

lrretriever 3 ∗ 10−5

k 4
re-indexing frequency 100 steps + end of epoch
Scheduler Cosine
Optimizer AdamW
Seeds [42, 456, 78463, 27485, 34586]

Table 7: Hyperparemeters for fine-tuning on the NoRECsent dataset. k represents the number of documents
retrieved including the null document. The lrreader is for both the retrieval and non-retrieval models.

Hyperparameter Value

Batch size 32
Epochs 10
LRreader 1 ∗ 10−4

LRheads 1 ∗ 10−3

Scheduler Cosine
Optimizer AdamW
Seeds [1234, 2345, 3456, 4567, 5678]

Table 8: Hyperparemeters for fine-tuning on the morpho-syntactic tasks. k represents the number of
documents retrieved including the null document. The learning rate is different for the fine-tuned language
model and for the classification heads.
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Abstract

Machine Translation (MT) has become
an integral part of daily life for millions
of people, with its output being so flu-
ent that users often cannot distinguish it
from human translation. However, these
fluid texts often harbor algorithmic traces,
from limited lexical choices to societal
misrepresentations. This raises concerns
about the possible effects of MT on nat-
ural language and human communica-
tion and calls for regular evaluations of
machine-generated translations for differ-
ent languages. Our paper explores the out-
put of three widely used engines (Google,
DeepL, Microsoft Azure) and one smaller
commercial system. We translate the En-
glish and French source texts of seven di-
verse parallel corpora into German and
compare MT-produced texts to human ref-
erences in terms of lexical, syntactic, and
morphological features. Additionally, we
investigate how MT leverages lexical bor-
rowings and analyse the distribution of an-
glicisms across the German translations.

1 Introduction

Advanced text generation tools such as ChatGPT1

and Machine Translation (MT) are used by mil-
lions of people every day. With the scope of hu-
man exposure to machine-generated texts ever-
growing, these tools possess the potential to have
an impact on natural language. The scientific com-
munity is yet to establish a research paradigm
suitable for the assessment of this impact. In
the meantime, we investigate generated texts and
compare them to human-produced texts. In the
present paper, we focus on machine translation for
the German language.

1openai.com/blog/chatgpt

Translation study scholars long established that
any translation has the potential to affect the target
language (TL). First, Gellerstam (1986) noticed
that the translation process leaves “fingerprints” in
the TL translation and named the resulting “fin-
gerprinted” language translationese. The common
characteristics of (human) translated text became
formalized as translation universals or even trans-
lation laws (Toury, 1995; Baker, 1995). These pat-
terns include simplification, explicitation, overall
normalization, and standardization. Moreover, the
source text often “shines through” (Teich, 2003) in
the target text. Kranich (2014) hypothesised that
these patterns persevere beyond any given trans-
lation, reappearing in texts later produced by the
native TL writers. In fact, Kranich conceptual-
ized translation as a virtual place where languages
come into contact and change as a result. The
severity of change is defined by many factors, in-
cluding the intensity and length of exposure.

Human exposure to MT output is expected to in-
crease, and the global MT market is steadily grow-
ing2. Machine-translated texts are used in almost
all spheres of life, from schools (Morton, 2022), to
academic publishing (Anderson, 2021), to govern-
ments (Jaun, 2019; Dalzell, 2020; Percival, 2022),
and even hospitals and courts (Nunes Vieira et al.,
2020; Khoong and Rodriguez, 2022; Kapoor et al.,
2022). New MT engines continue to enter the mar-
ket and language coverage has reached over 200
languages (Siddhant et al., 2022) and tens of thou-
sands language pairs across all MT systems3.

Several researchers already started to investi-
gate the sociolinguistic impact of machine trans-
lation. For instance, MT use has been shown to
have a direct and long-lasting effect on the syn-
tactic production of language learners (Resende
and Way, 2021). While producing highly fluent

2statista.com/statistics/748358/worldwide-machine-
translation-market-size

3State of Machine Translation 2021 report
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translations, the MT output can suffer from sim-
plification and even impoverishment (Vanmassen-
hove et al., 2021; Vanroy, 2021). Moreover, MT
models are known to overgeneralize and amplify
societal biases (Prates et al., 2020; Farkas and
Németh, 2022; Troles and Schmid, 2021; Van-
massenhove et al., 2021; Hovy et al., 2020). When
it comes to the analysis of commercial MT sys-
tems, however, most research focuses on the En-
glish output of Google Translate4 with rare men-
tions of other translation engines (Almahasees,
2018; Aiken, 2019; Matusov, 2019; Webster et al.,
2020; Hovy et al., 2020; Brglez and Vintar, 2022).

In our paper, we explore the output of three
widely used engines (Google, DeepL, Microsoft
Azure) and one smaller commercial system. We
work with translations from English and French
to German, a morphologically and syntactically
complex language. We use seven different cor-
pora (Section 2) and a battery of evaluation met-
rics which examine the texts on lexical, syntactic,
and morphological levels (Section 3). Moreover,
in Section 3.3, we scrutinize the translations from
a novel angle, by looking at the distribution of an-
glicisms in the German texts - the process of lexi-
cal borrowing being a crucial feature of language
change and evolution (Miller et al., 2020).

2 Data

2.1 Selection of test corpora
We follow three criteria in the selection of our
test corpora. First, we experiment with different
domains. Second, we avoid back-translation and
translationese, since they interfere with evalua-
tion metrics and might skew the results (Toral
et al., 2018; Zhang and Toral, 2019; Graham et al.,
2020). However, it is difficult to find parallel cor-
pora with a clearly-marked source language.

Finally, to prevent cross-contamination of train
and test data, we work with test corpora that have
not been used as training data by commercial MT
systems. Since the MT companies do not disclose
the composition of their training corpora, we fol-
low a common-sense assumption that all large,
publicly available parallel corpora with a dated
online presence have been used for MT training.
Following this logic, we refrained from using Eu-
roparl, ParaCrawl, and other similar multilingual
datasets. Instead, we collected seven corpora that
mostly comply with our prerequisites. We describe

4translate.google.com

them in detail in the following subsections and
give a general overview in Table 1.

2.1.1 WMT21 and WMT22
Our first logical choice of data was the test sets for
the Conference on Machine Translation5 (WMT),
since they are used for the evaluation of MT sys-
tems, and therefore consciously kept out of train-
ing data. The test sets from 2021 and 2022 contain
professional translations “from scratch”, without
back-transaltions or post-editing.

The WMT21 News Test Set6 is a collection of
online news from 2020 aligned with professional
human translations (Akhbardeh et al., 2021). The
original texts are collected online in English from
various American, English, and Australian news-
papers as well as from Al Jazeera English, al-
lafrica.com (a news aggregation site), two Indian
news sources, and euronews-en.com, a television
news network headquartered in France.

The novelty of WMT22 (Kocmi et al., 2022)
is that the data comes in equal parts from 4 dif-
ferent domains: news, e-commerce, conversation,
and social media. The test set contains roughly
500 sentences for each domain. The quality of the
test data is controlled manually to avoid noise and
inappropriate content.

2.1.2 Tatoeba
Tatoeba7 is a non-profit association which main-
tains an online open depository of crowd-sourced
original and translated sentences in multiple lan-
guages. The downloadable set of sentences is up-
dated every week. We selected 1777 most recent
English-German pairs dating between September
and December 2022. We picked only those pairs
where the source English sentences are indicated
as original text and translated into German by
users claiming a native or high level of German.

2.1.3 transX
We obtained a parallel corpus of human English-
German translations containing non-sensitive data
from a private translation company. Despite some
of the texts being featured in the company’s blog,
the translation memory has not been made avail-
able to the public. The corpus contains texts about
translation, editing, general business, technology,
and other related topics.

5www.statmt.org/wmt22/
6github.com/wmt-conference
7tatoeba.org
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corpus domain src lang sent pairs one2one tokens src-tgt remarks
WMT 21 news en 1, 002 814 27, 937 web-prof –
WMT22 mixed en 2, 037 1, 850 39, 164 web-prof –
Tatoeba mixed en 1, 777 1, 685 16, 285 crowd-crowd trust-based
transX mixed/tech en 1, 164 965 20, 359 unk-prof urls, jargon
Jane Eyre classic lit en 8, 784 3, 964 229, 283 prof-prof seen by MT
Text+Berg alpine texts fr 22, 662 21, 353 465, 776 mixed-unk OCR errors
CS Bulletin mixed en 59, 348 54, 840 1, 164, 694 prof-prof back-translated?

Table 1: Overview of the corpora. Number of tokens is indicated for the original source sentences.

2.1.4 Jane Eyre
The novel Jane Eyre by Charlotte Brontë is part
of the Gutenberg Project dataset. It was aligned
with its German translation by András Farkas8 and
made available on OPUS. Classical literature pro-
vides certainty about the original source language,
yet is counteracted by a high likelihood that it has
been seen by the commercial English-German MT
models during training. Published in 1847, Jane
Eyre features some archaic language and spelling.

2.1.5 CS Bulletin
The Credit Suisse Bulletin corpus (Volk et al.,
2016) is a digitized diachronic collection of texts
from the world’s oldest banking magazine, pub-
lished by Credit Suisse9. The corpus contains par-
allel texts in German, French, Italian, and English,
and covers topics pertaining to economy, culture,
sport, entertainment, etc. We selected the German-
English PDF subcorpus ranging from 1998 to
201710. There is no proof of the source language,
and we can only assume that German was the
source of most articles since Credit Suisse origi-
nated in the German-speaking part of Switzerland.
Therefore, the CS Bulletin corpus here mostly rep-
resents back-translated texts.

2.1.6 Text+Berg
Text+Berg is a diachronic corpus of Alpine texts
predominantly written by Swiss mountaineers and
spanning from 1864 to 200911 (Volk et al., 2010;
Göhring and Volk, 2011). We included all French-
German parallel articles published since 1957.
Due to incomplete metadata, we limited our selec-
tion to articles that explicitly stated the source lan-
guage as French in the German translation, such as
“Aus dem Französischen von” ([Translated] from
French by), while excluding French articles that

8farkastranslations.com/bilingual books.php
9credit-suisse.com/cn/en/content-hub/bulletin.htm

10pub.cl.uzh.ch/projects/b4c
11textberg.ch

were translated from a language other than French,
such as “Traduit de l’anglais par” (translated from
English by).

2.2 Preprocessing and Translation
We translated all source texts automatically into
German using four commercial MT systems:
Google Translate, DeepL, Microsoft Azure, and
a small private commercial MT engine specializ-
ing in German (here: mtX). The translations were
performed in November 2022. As a point of ref-
erence, we provide the translation quality scores
produced by COMET (Rei et al., 2020) in Table
4. This metric draws information from both source
and reference texts, and captures surface and se-
mantic similarities. We provide more conventional
SacreBLEU scores (which happen to show a sim-
ilar pattern) in the Appendix A.

corpus azure deepl google mtX
WMT21 53.51 57.77 52.50 49.07
WMT22 62.06 64.19 62.24 58.58
Tatoeba 71.07 74.13 72.89 69.92
transX 59.69 63.18 59.09 56.82
JaneEyre 21.23 29.57 24.14 17.73
CSBull 68.30 69.52 68.94 66.78
Text+Berg 28.78 41.32 34.38 31.30

Table 2: COMET-DA 2020 scores per MT system
on full-sized corpora. The best values are in bold.

Since both the Credit Suisse and Text+Berg cor-
pora contain OCR errors and poor sentence align-
ments, we performed an additional alignment step.
We identified the most probable sentence pairs
using LASER margin-based sentence alignment
(Artetxe and Schwenk, 2019) with a rather strict
margin criterion value of 1.2. We tokenized all
texts using the Spacy-UDPipe Tokenizer12.

The tasks of syntactic comparison and auto-
matic anglicism analysis require precise word

12github.com/TakeLab/spacy-udpipe
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alignment, which is complicated in sentence pairs
with a one-to-many translation. For these tasks,
we created a subsection of each corpus with only
one-to-one sentence alignments. Since sentence
segmentation and the choice of one-to-one or one-
to-many sentences differ across translations, we
selected only those sentence pairs from each trans-
lation of a corpus, where the source language
sentences are the same as the ones in the one-
to-one human translation pairs. In other words,
we made an intersection of all translation pairs
(human and MT) with an anchor on the human
translation. The WMT datasets contain several hu-
man references. Here, we base our filtering on the
translation that exhibits the smallest number of n-
to-n pairs: WMT21 - reference C and WMT22
- reference A. The number of sentences in these
subcorpora can be found in Table 1.

3 Metrics and Findings

We used several metrics to analyze the available
translations in terms of their lexical, syntactic, and
morphological features.

3.1 Lexical analysis
Lexical diversity We investigated our texts with
respect to lexical diversity using a variety of met-
rics within the BiasMT13 tool developed by Van-
massenhove et al. (2021). We used the Type-Token
Ratio (TTR) metric, which provides a general
overview of lexical diversity in a text. Since TTR
is known to skew results in long texts, we also
employed the measure of textual lexical diversity
(MTLD), which assesses the length of word se-
quences with a specific level of TTR (McCarthy,
2005), as well as Yule’s K (Yule, 1944), which is
resilient to text length fluctuations while reflecting
the repetitiveness of the data.

Although the results of our investigation show
higher diversity values in human translations, sev-
eral MT systems produced competitively diverse
translations for some of the corpora. The mtX sys-
tem scored the highest TTR values on WMT21,
WMT22, Jane Eyre, and transX. It scored the
highest MTLD on WMT21, and WMT22. Google
scored the highest Yule’s I and MTLD on the Jane
Eyre translation (full results in Appendix B).

Sophistication Another way to examine the lex-
ical diversity of a text is to measure its sophisti-
cation. This involves measuring how much text is

13github.com/dimitarsh1/BiasMT

filled with the most and the least frequent words.
A lexically diverse text usually has a lower per-
centage of tokens that belong to the 1, 000 most
frequent words. Subsequently, there would be a
larger percentage of rare and unusual words in
such a text. In our experiments, the sophistication
results show the same pattern as the lexical diver-
sity metrics. Human translations prove to be most
lexically diverse in all the corpora except WMT22
and Jane Eyre where mtX exhibits the highest di-
versity (full results in Appendix C).

Figure 1: The Zipfian distribution of the English
text and its translations in the Tatoeba corpus. The
mtX output shows higher diversity of the medium
frequency words than the other MT systems.

Inflectional paradigms Additionally, we as-
sessed the morphological complexity and richness
of each text using Shannon entropy and Simp-
son’s diversity. Shannon entropy measures the
surprisal level within each lemma’s inflectional
paradigm. For example, the distribution of the
word forms for the German lemma Problem can be
the following in Google’s translation: {Problem:7,
Probleme:3, Problemen:1, Problems:0}. If the
word forms are distributed more evenly in the hu-
man translation ({Problem:4, Probleme:2, Prob-
lemen:2, Problems:3}), then the entropy for this
lemma is higher than in the text translated by
Google. The scores are averaged over all lemmas
that appear at least as two different word forms in
a corpus. Simpson’s diversity reflects variability
in categorical data. Higher scores indicate homo-
geneity, while lower scores denote diversity.

Vanmassenhove et al. (2021) observed that
machine-translated English, French, and Spanish
texts were less morphologically diverse than the
texts used for training the same MT systems. We
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Figure 2: The measure of syntactic equivalence is calculated as the ratio of cross-alignments to the total
number of word alignments. The higher score indicates more syntactically creative translation.

compare human and machine-translated texts and
notice that commercial MT systems produce Ger-
man texts that are comparable to human trans-
lations in terms of morphological richness. The
mtX system scored higher values for the Tatoeba
and the CS Bulletin corpora. DeepL produced the
most diverse inflectional distributions in the trans-
lations of Jane Eyre and Text+Berg. Microsoft
Azure exhibited the richest morphology in the
transX corpus (see Appendix D).

In summary, our results show that the human
translation and the MT output of the German-
specialized company exhibit the highest scores for
lexical diversity and sophistication. Our morpho-
logical richness results differ from the standard
lexical diversity scores with more than one MT
system exhibiting higher scores than the human
translations.

This trend fluctuates slightly across the do-
mains since each corpus has its own unique fea-
tures. Text+Berg and CS Bulletin are large, diverse
corpora with multiple writers, translators, OCR er-
rors and specialized terminology. Tatoeba’s sen-
tences are crowd-sourced and the translators are
encouraged to provide multiple translation vari-
ants. Assuming that MT tends to standardize, the
lower MT diversity scores are not surprising in
these corpora, although the morphological results
show a different picture. The Jane Eyre and transX
corpora are homogeneous in terms of domain and
terminology. Here, some MT systems score higher
than human texts in terms of all types of diversity.

Figure 1 illustrates lexical differences in the
translations of the Tatoeba corpus using Zipf’s
rank-frequency distribution law. Duplicate sen-
tences were left in for both languages. The graph
demonstrates how the output of the German-
specialized MT system exhibits higher diversity

for mid-range frequency words, while all the trans-
lations are less diverse than the original text. Based
on our results, we may infer that lexical impov-
erishment will not be the main issue with the
machine-translated texts in the future. MT is im-
proving rapidly for many languages, having ac-
cess to more training data, and employing new
decoding methods which control the diversity of
the output. The quality and adequacy of transla-
tion notwithstanding, specialized systems can be
tuned to produce lexically and morphologically
rich texts.

3.2 Syntactic equivalence
We used the ASTrED tool14 (Vanroy, 2021; Van-
roy et al., 2021) to analyze the syntactic differ-
ences between texts. By dividing the number of
cross-aligned words by the total number of word
alignments, we obtained a measure of syntactic
equivalence between the source text and its trans-
lations. The side-by-side results for all the corpora
in Figure 2 clearly demonstrate that human trans-
lators exhibit greater syntactic creativity compared
to any of the MT systems. These findings align
with the results published by researchers for other
language pairs (Tezcan et al., 2019; Webster et al.,
2020; Vanroy, 2021).

Out of all our commercial MT systems, DeepL
syntactically diversifies the output the most, while
the other systems rather mimic the syntax of the
source sentence, like in this example from the
WMT21 corpus:

Eng: Couple MACED at California dog park
Human: Angriff mit Pfefferspray auf ein Paar in
einem Hundepark in Kalifornien
DeepL: Ehepaar wird in kalifornischem Hunde-
park angegriffen
Other MTs: Paar MACED im kalifornischen
Hundepark

14github.com/BramVanroy/astred
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Figure 3: Distribution of anglicisms in different translations across corpora. The number of anglicisms
in the human translations is taken as 100%.

Appendix E shows the translations of all 20 MT
systems from the competition along with those
of Google, Azure, and mtX. All of them mirror
the syntax of the source sentence, whereas human
translators and, to a certain extent, DeepL take lib-
erty with the sentence structure.

3.3 Exploration of anglicisms

Lexical borrowings, the transfer of words from
one language to another, is a productive mecha-
nism of word formation and a catalyst of language
evolution. Borrowings emerge from language con-
tact, a universal linguistic phenomenon. They ap-
pear in all languages and can constitute a high
percentage of lexical items. Identification of bor-
rowings is important in lexicography, comparative
linguistics, and some NLP downstream tasks, yet
there is no reliable way to identify them automati-
cally (Miller et al., 2020; List and Forkel, 2021).

We focus on English borrowings in German,
known as anglicisms. The number of anglicisms
in German is continuously growing. Reportedly,
every 600th word in German could be identified
as an anglicism in 1954. In 1964, it became every
200th word; in 1994, every 145th; and in 2004, ev-
ery 85th (Engels, 1976; Burmasova, 2010). There
is a notable societal push against this process or
at least concerns about the future of the German
language15. The investigation of this phenomenon
can provide valuable insights into the role of MT
in language development. We assess the extent to
which MT language models participate in the an-

15Mind your language: German linguists oppose influx of
English words; Denglisch – Deutsch oder Englisch?

glicization of German. To the best of our knowl-
edge, this is the first investigation of this kind.

There are many different ways to classify an-
glicisms in German: by topic, by type of sur-
face form assimilation (“most anglicisms in-
troduced since 1945 retain their English or-
thography” (Coats, 2019, p.273)), by level of
assimilation (Eindeutschung), etc. Often angli-
cisms are classified into words indicating ei-
ther new concepts (ergänzende Anglizismen,
Bedürfnislehnwörter) or existing concepts (dif-
ferenzierende (or verdrängende) Anglizismen16,
Luxuslehnwörter (Carstensen, 1965)). Since an-
glicisms continuously pour into the language but
do not always stay, we work with the items
that have mostly settled in German. We collected
4, 832 established anglicisms from a dedicated
Wikipedia page17, disregarding “false friends”.

To avoid false positives, we filtered out cer-
tain homonyms, such as “Tag” (day) and “Gang”
(passageway), and removed the word “in” which
occurs in the lexicalized phrase “in sein” (to
be in). Additionally, we excluded some corpus-
specific anglicisms, for example “Credit” in the
Credit Suisse Bulletin corpus, or “Miss” in the
Jane Eyre corpus. The human translation of Jane
Eyre contains an old, pre-1996 spelling of “Miss”
as “Miß”, which is not on the list of anglicisms.

We customized our search to catch different
spelling variations of certain anglicisms (for ex-
ample: fairtrade, fair-trade, fair trade). We to-

16contify.de/glossar/richtig-schreiben/was-sind-
anglizismen

17de.wiktionary.org: last update 12.06.2019; scraped in
April, 2022
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Figure 4: Distribution of lemmas for the translation variants of the anglicism “meeting” in the CS Bulletin
corpus. The lemma “meeting” appears in the English text 119 times. The missing occurrences can be
attributed to poor alignments.

kenized the texts with the Spacy UDpipe tool
and matched anglicisms from our list to tokens,
lemmas, and multiword units. Additionally, we
looked for anglicisms inside German compound
words. We used the Compound Split tool18 to sep-
arate the components, and matched each compo-
nent against the list of anglicisms.

We employed language detection on the pro-
duced word components to compensate for insuf-
ficient or inadequate splitting. However, language
detection is not a reliable method for the identifi-
cation of anglicisms. Thus, we collected the result-
ing alleged non-anglicisms from all the corpora
into one list and manually filtered out true angli-
cisms. The example below shows words that were
correctly and incorrectly identified as false posi-
tives of the anglicism fan:

true: fangen, fandest, Stefan, Fannie
false: Fanbasis, Autofan, Fanbild

The final list contained 342 entries, including
words like musstest and könntest (falsely detected
anglicism test); gängig (gig), dadurch (dad), Psy-
chologin (gin), hitzig and Hitler (hit), etc.

Figure 3 shows the full distribution of angli-
cisms in all the translation versions across all cor-
pora. The number of anglicisms in the human
translations is taken as 100%. All other distribu-
tions are shown as relative to the human transla-
tion. Since the WMT corpora have several human
references, the average of their scores is taken as a
hundred percent mark.

18pypi.org/compound-split/

While we consider the human usage of angli-
cisms to be the gold standard, the distributions pre-
dictably vary even among translators. Similarly,
this variability occurs among the MT systems as
well. Some trends are noticeable, however. For ex-
ample, DeepL produces fewer anglicisms than the
three other systems, while Microsoft Azure tends
to anglicize its output. Figure 4 provides a distri-
bution of translation variant lemmas for a frequent
anglicism meeting in the CS Bulletin corpus. It
shows how this anglicism barely appears in the
DeepL output. Nevertheless, the overall distribu-
tion of translation variants appears to be more even
in the human translation, whereas the MT systems
lean towards one particular lemma (here: treff ).

While most corpora show gentle fluctuations in
the anglicism distribution across the systems, we
observe a striking difference between the human
and machine translations for Tatoeba. This might
be due to the fact that all translations are provided
by crowd-sourced volunteers, who are eager to
show their love and knowledge of German. The
distribution of anglicisms in this corpus has a long
tail of anglicisms that were avoided by the human
translators, but employed by MT: job, meeting, on-
line, team, internet, baby, flirt, teenager, etc.

Conversely, the human translations of a small
translation company (the transX corpus) exhibit
consistently more anglicisms than the output of all
other MT systems. This might have to do with the
fact that professional translators follow a consis-
tency protocol appropriate to the client’s business
domain (here: tech). MT systems, on the other
hand, maintain a steady degree of diversification.
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4 Conclusion

This paper provides a corpus linguistic analysis
of different translations, performed by humans
and machines, in seven corpora from different do-
mains. We looked at the texts mostly on a micro-
level, measuring their lexical and syntactic proper-
ties, such as type-token ratio, morphological rich-
ness, and syntactic versatility. Additionally, we ex-
amined the distribution of translation variants for
English lexical items that have entered the German
language as borrowings or loan words.

Previous research emphasized that machine-
produced texts suffer from standardization, sim-
plification, and monotonicity. On one hand, our
results confirm these findings in terms of syntax
(section 3.2). On the other hand, we show that
machine translation is becoming less of a culprit
when it comes to lexical impoverishment of lan-
guage. Some commercial MT systems are capa-
ble of generating German texts with levels of lex-
ical and morphological richness similar to those
produced by human translators (Section 3.1). Of
course, these results reflect only one aspect of
translation quality, and our automatic scores - as
imperfect as they are - suggest that DeepL, not
mtX, is the most reliable system for German trans-
lations (see Table 4).

Finally, we note that the standard lexical and
syntactic metrics might be getting less informative
for the linguistic assessment of MT as the tech-
nology continues to improve. Alternatively, auto-
matic evaluation of lexical borrowings, such as an-
glicisms in German, can provide a good opportu-
nity to assess the appropriateness of MT use. The
distribution of borrowings is directly related to
the quality and purpose of translation. Our re-
sults indicate that certain machine translation sys-
tems tend to produce fewer anglicisms compared
to other systems (Section 3.3). In general, human
translators adjust the use of anglicisms accord-
ing to the domain, while the MT systems produce
mostly consistent, system-specific distributions.

As machine translation improves and becomes
more widespread, it will likely play a role in the
(de-)anglicization of German. To mitigate this im-
pact on German, more research is needed to accu-
rately identify linguistic borrowings. Overall, our
study sheds light on the current state of machine
translation, laying the groundwork for investigat-
ing the potential impact that generated texts might
have on human language.
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Mojca Brglez and Špela Vintar. 2022. Lexical Diver-
sity in Statistical and Neural Machine Translation.
Information, 13(2):93. Number: 2 Publisher: Multi-
disciplinary Digital Publishing Institute.

Svetlana Burmasova. 2010. Empirische Untersuchung
der Anglizismen im Deutschen am Material der
Zeitung Die WELT (Jahrgänge 1994 und 2004).
Bamberg University Press. Accepted: 2011-01-31
00:00:00.

222

https://doi.org/10.22158/sll.v3n3p253
https://doi.org/10.22158/sll.v3n3p253
https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2021.wmt-1.1
https://doi.org/10.18178/IJLLL.2018.4.3.178
https://doi.org/10.18178/IJLLL.2018.4.3.178
https://doi.org/10.18178/IJLLL.2018.4.3.178
https://publishingperspectives.com/2021/10/during-frankfurt-springer-nature-offers-auto-translation-for-research/
https://publishingperspectives.com/2021/10/during-frankfurt-springer-nature-offers-auto-translation-for-research/
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.1075/target.7.2.03bak
https://doi.org/10.1075/target.7.2.03bak
https://doi.org/10.1075/target.7.2.03bak
https://doi.org/10.3390/info13020093
https://doi.org/10.3390/info13020093
https://doi.org/10.26530/OAPEN_368157
https://doi.org/10.26530/OAPEN_368157
https://doi.org/10.26530/OAPEN_368157


Broder Carstensen. 1965. Englische Einflüsse auf
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Appendix A SacreBLEU scores

corpus azure deepl google mtX
WMT21 59.0 69.9 58.5 53.1
WMT22 50.7 48.5 52.3 47.1
Tatoeba 40.6 42.0 41.8 39.7
transX 33.0 36.7 33.1 32.0
JaneEyre 18.7 20.1 19.5 18.6
CSBull 31.5 32.2 31.7 30.1
Text+Berg 23.5 27.2 24.4 24.6

Table 3: SacreBLEU scores v 2.2.1 across full-sized corpora per MT system. The best values are in bold.

Appendix B Lexical richness scores

system TTR Yule's MTLD system TTR Yule's MTLD

W
M

T2
1

humanA 24.1 610.79 134.47

Ta
to

eb
a

human 21.37 333.36 82.49
humanC 23.25 533.61 125.93 azure 20.39 274.15 72.49
humanD 23.83 562.83 129.73 deepl 20.27 276.48 69.29
azure 22.84 456.32 129.14 google 20.82 288.72 73.28
deepl 22.89 475.89 127.37 mtX 20.92 283.91 71.02
google 23.06 488.02 129.74

tra
ns

X

human 22.8 624.76 138.32
mtX 24.13 528.95 136.34 azure 22.19 504.05 132.47

deepl 22 498.44 130.55

W
M

T2
2

humanA 19.17 369.49 109.5 google 22.73 548.7 136.45
humanB 19.76 405.13 111.3 mtX 22.99 552.01 136.65
azure 19.25 349.45 113.48

C
S

 B
ul

le
tin

human 7.8 69.38 279.39
deepl 19.3 360.71 110.55 azure 6.55 46.88 249.45
google 19.7 379.68 112.81 deepl 6.44 44.84 228.18
mtX 20.3 395.08 117.8 google 6.88 54.13 258.3

mtX 6.7 48.75 249.33

Ja
ne

 E
yr

e

human 8.08 59.31 126.88

Te
xt

+B
er

g

human 9.5 91.95 276.93
azure 8.09 54.45 136.64 azure 8.1 58.47 201.06
deepl 8.15 52.06 127.14 deepl 8.37 67.3 203.15
google 8.38 63.31 136.87 google 8.62 70.22 212.04
mtX 8.56 58.01 129.51 mtX 8.07 56.65 191.42

Figure 5: Lexical richness measured with Type-Token Ratio (TTR), reversed Yule’s K (Yule’s I), and the
Measure of Textual Lexical Diversity (MTLD) across all corpora. Higher scores (in bold) indicate higher
lexical richness.
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Appendix C Lexical frequency profile

system B1 ↓ B2 B3 ↑ system B1 ↓ B2 B3 ↑

W
M

T2
1

humanA 72.43 8.49 19.08

Ta
to

eb
a

human 67.72 6.39 25.9
humanC 73.51 8.27 18.23 azure 69.37 6.51 24.12
humanD 72.77 8.48 18.75 deepl 70.03 6.41 23.55
azure 74.11 8.37 17.52 google 68.73 6.52 24.75
deepl 74.1 8.26 17.64 mtX 68.81 6.55 24.64
google 73.75 8.41 17.84

tra
ns

X

human 78.13 8.88 12.99
mtX 72.97 8.52 18.51 azure 79.41 8.35 12.24
 deepl 79.5 8.31 12.19

W
M

T2
2

humanA 75.65 7.65 16.7 google 78.76 8.58 12.65
humanB 75.12 7.55 17.33 mtX 78.61 8.52 12.87
azure 75.62 7.63 16.75

C
S

 B
ul

le
tin

human 83.34 7.53 9.14
deepl 75.57 7.52 16.91 azure 84.2 7.73 8.07
google 75.1 7.61 17.29 deepl 84.12 7.66 8.22
mtX 74.6 7.66 17.74 google 83.84 7.81 8.35

mtX 83.85 7.86 8.3

Ja
ne

 E
yr

e

human 79.07 5.95 14.98

Te
xt

+B
er

g

human 71.55 6.19 22.25
azure 79.7 5.65 14.65 azure 73.61 6.13 20.25
deepl 80.06 5.48 14.46 deepl 73.41 6.04 20.55
google 79.5 5.58 14.92 google 72.85 6.15 21
mtX 79.02 5.71 15.27 mtX 73.97 5.97 20.06

Figure 6: Lexical frequency profile with B1 indicating top 1000 most frequent words, B2 1000-2000 top
frequent words and B3 all the other words.

Appendix D Morphological richness scores

system H ↑ D ↓ system H ↑ D ↓

W
M

T2
1

humanA 85.56 47.05

Ta
to

eb
a

human 86.74 47.52
humanC 83.16 48.41 azure 86.17 47.9
humanD 84.38 47.82 deepl 87.77 47.59

azure 82.75 48.32 google 87 47.55
deepl 83.48 48.1 mtX 88.29 46.93

google 83.29 48.11

tra
ns

X

human 80.21 49.82
mtX 82.85 48.15 azure 80.57 49.45

deepl 79.72 49.86

W
M

T2
2

humanA 82.79 48.98 google 80.14 49.89
humanB 82.63 49.02 mtX 79.22 49.93

azure 82.3 49.44

C
S

 B
ul

le
tin

human 82.72 50.38
deepl 81.33 50 azure 86.12 49.04

google 81.48 49.7 deepl 85.01 49.45
mtX 82.34 49.26 google 85.47 49.33

mtX 86.25 48.98

Ja
ne

 E
yr

e

human 85.87 48.5

Te
xt

+B
er

g

human 84.36 49.41
azure 86.82 48.06 azure 85.79 49
deepl 87.69 47.65 deepl 85.69 48.81

google 86.46 48.25 google 84.65 49.47
mtX 85.9 48.32 mtX 84.65 49.46

Figure 7: Morphological richness measured with Shannon entropy (H) and Simpson’s diversity (D).
Higher H and lower D indicate morphologically richer text (marked in bold).
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Appendix E Syntactic Equivalence

human or MT translation
eng Couple MACED at California dog park
human1 Paar in Hundepark in Kalifornien mit Pfefferspray besprüht
human2 Paar bekommt beim Mittagessen in einem Hundepark Pfefferspray ins Gesicht gesprüht
human3 Angriff mit Pfefferspray auf ein Paar in einem Hundepark in Kalifornien
Online-W Paar MACED in Kalifornien Hundepark
Online-G Paar MACED im California Dog Park
nuclear trans Paar MACED bei California Dog Park
ICL Paar MACED bei California Hund Park
VolcTrans-GLAT Paar MACED in Kalifornien Hundepark
P3AI Paar Maced im kalifornischen Hundepark
eTranslation Paar MACED im kalifornischen Hundepark
WeChat-AI Paar MACED im kalifornischen Hundepark
Manifold Paar MACED im kalifornischen Hundepark
VNVIDIA-NeMo Paar MACED im kalifornischen Hundepark
BUPT rush Paar MACED im kalifornischen Hundepark
Online-A Paar MACED im kalifornischen Hundepark
Online-Y Paar MACED im kalifornischen Hundepark
Online-B Paar MACED im kalifornischen Hundepark
HuaweiTSC Paar MACED im kalifornischen Hundepark
UEdin Paar MACED im kalifornischen Hundepark
UF Paar MACED im kalifornischen Hundepark
happypoet Paar MACED im kalifornischen Hundepark
Facebook-AI Paar MACED im kalifornischen Hundepark
VolcTrans-AT Paar zerfleischt im kalifornischen Hundepark
Google Paar MACED im kalifornischen Hundepark
DeepL Ehepaar wird in kalifornischem Hundepark angegriffen
Azure Paar MACED im kalifornischen Hundepark
mtX Paar MACED im kalifornischen Hundepark

Table 4: The first clause of the first sentence in the WMT21 test set in the original English and its German
translations, performed by 3 human translators and 20 participating MT systems. The bottom section of
the table contains the same clause translated with the commercial MT systems for this paper.
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Abstract

We train and evaluate Norwegian sentence
embedding models using the contrastive
learning methodology SimCSE. We start
from pre-trained Norwegian encoder mod-
els and train both unsupervised and super-
vised models. The models are evaluated
on a machine-translated version of seman-
tic textual similarity datasets, as well as bi-
nary classification tasks. We show that we
can train good Norwegian sentence em-
bedding models, that clearly outperform
the pre-trained encoder models, as well as
the multilingual mBERT, on the task of
sentence similarity.

1 Introduction

Recently there have been a huge increase in the
capabilities of natural language processing sys-
tems. The new dominant paradigm is using large
language models such as BERT (Devlin et al.,
2019) or GPT (Radford et al., 2018) as a start-
ing model which one adapts to any given task one
wishes to solve. There exists several different ver-
sions of BERT-type encoder models in Norwegian
(Kummervold et al., 2021), (Kutuzov et al., 2021),
(Pyysalo et al., 2021). It is well-known that BERT-
type models that give contextual words embed-
dings do not give particularly good sentence em-
beddings (Reimers and Gurevych, 2019). For this
reason we train and evaluate Norwegian sentence
embedding models, using the pre-trained encoder
models as starting points.

We train models using the state of the art Sim-
CSE methodology, similarly to the original paper
(Gao et al., 2021). Like them, we train both un-
supervised and supervised models. We start with
a pretrained bidirectional language encoder model
such as BERT or RoBERTa (Liu et al., 2019). For
the unsupervised version we sample texts from the

Norwegian Colossal Corpus (NCC) dataset (Kum-
mervold et al., 2022). We then pass them through
the model using two different dropout masks and
predict contrastively which pairs within a batch
represent the same text. For the supervised ver-
sion, we train on a machine-translated version of
natural language inference (NLI) data, where we
use sentences related by ”entailment” as positive
sentences, and sentences labeled as contradiction
as hard negative sentences. We train on both
the Norwegian dataset, and a combined dataset of
both Norwegian and English NLI data, and show
that the latter gives better results for sentence rep-
resentations in Norwegian. We evaluate our mod-
els on a machine translated version of semantic
textual similarities (STS) datasets, as well as on
the sequence classification problems in Norwe-
gian ”Talk of Norway” and the binary classifica-
tion version of the NoReC review dataset (Velldal
et al., 2018).

Our main contributions are:

1. We train and evaluate Norwegian unsuper-
vised and supervised sentence embedding
models.

2. We demonstrate a new way to compare the
various existing Norwegian language models
by measuring their performance after training
them to make sentence embeddings.

3. We show that our sentence encoders some-
times get better performance than the base
encoder on classification . In particular, we
obtain new state of the art results on the clas-
sification problem ”Talk of Norway”.

4. Through our experiments we illustrate the
usefulness of machine translated datasets for
training and evaluating Norwegian language
models. In particular, we show that super-
vised training on machine translated data out-
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performs unsupervised training on Norwe-
gian data.

2 Related work

The fundamental technique we build on is that of
training large transformer models (Vaswani et al.,
2017). In particular, we utilize the large en-
coder models Bidirectional Encoder Representa-
tions from Transformers (BERT) and Robustly
Optimized BERT (RoBERTa) by using them as
pre-trained starting points.

Our work builds upon existing language mod-
els trained in Norwegian. The National Library of
Norway has trained BERT models in Norwegian
(Kummervold et al., 2021), which we call NB-
BERT, which exists in both base and large size.
Also, the language technology group at the Uni-
versity of Oslo has trained their version of a BERT
for Norwegian called NorBERT (Kutuzov et al.,
2021). There is also a WikiBERT model trained on
Norwegian Wikipedia (Pyysalo et al., 2021). We
also test the multilingual version of BERT (Devlin
et al., 2019), which is trained in Norwegian and
many other languages.

Our work uses existing methodology for mak-
ing sentence embedding models. The first paper
to improve BERT to make better sentence repre-
sentations by training it for that purpose, was the
Sentence-BERT paper (Reimers and Gurevych,
2019), which trained sentence embedding mod-
els by using siamese networks. We build upon
the newer Simple Contrastive learning of Sentence
Embeddings (SimCSE) methodology (Gao et al.,
2021), which uses a contrastive training objective
to create sentence embeddings from a pre-trained
encoder. The idea behind both of these works is
that of finding a training procedure that better ex-
tracts the knowledge about sentences that already
exists in the pre-trained encoder model.

Most existing work in the literature on mak-
ing sentence embeddings are either in English or
uses multilingual models. Examples of the latter
are mBERT and several other approaches such as
(Feng et al., 2022), (Goswami et al., 2021) and
(Reimers and Gurevych, 2020).

3 Data

For the unsupervised models, we sample data from
the Norwegian Colossal Corpus (NCC) (Kummer-
vold et al., 2022). This is a dataset of different
smaller Norwegian text corpuses that has been col-

Sentence: Deltakerne mente at hvis inter-
essenter var seriøse om å forbedre finansrap-
porteringsmodellen, ville en gruppe bli op-
prettet og finansiert spesielt for dette formålet.
[Translation: Participants believed that if
stakeholders were serious about improving
the financial reporting model, a group would
be created and funded specifically for this pur-
pose.]
Positive: Deltakerne forventer at seriøse in-
teressenter vil danne en gruppe for å forbedre
finansrapporteringsmodellen.
[Translation: The participants expect that seri-
ous stakeholders will form a group to improve
the financial reporting model.]
Negative: A group was created to improve the
financial reporting model.

Figure 1: An example of a triplet of sentences
of mixed language in the Norwegian/English NLI
dataset.

lected into one corpus by the National Library of
Norway to train language models. This is primar-
ily a Norwegian corpus, although there are some
amounts of other languages present. The dataset
description estimates that 87% of documents are
in Norwegian, with about 6-7 % of documents in
English and the rest in other European languages
(mostly other Nordic languages). We sample 1
million texts from the dataset for training unsu-
pervised. Some are longer than one sentence, but
all are truncated to max 32 tokens before training,
thus they are all approximately sentence length.

For supervised training we train with data col-
lected for the task of natural language inference
(NLI). This task is that of taking a pair of sen-
tences and predicting the relationship between
them as either ”entailment”, ”neutral” or ”contra-
diction”. The authors of the SimCSE paper use
NLI data to create triples of a sentence with one
positive and one hard negative and show that this
data work well for training sentence models us-
ing contrastive learning, thus we follow this prac-
tice. We use a dataset that has been curated for
training in Norwegian by the National Library of
Norway.1 The original data is based on the En-
glish datasets the Stanford Natural Language In-

1https://huggingface.co/datasets/NbAiLab/mnli-
norwegian
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Sentence 1: en mann skjærer opp en agurk .
[Translation: a man cuts open a cucumber .]
Sentence 2: en mann skjærer en agurk .
[Translation: a man cuts a cucumber .]
Similarity: 4.2

Sentence 1: en mann spiller harpe .
[Translation: a man plays the harp .]
Sentence 2: en mann spiller et keyboard .
[Translation: a man plays a keyboard .]
Similarity: 1.5

Figure 2: Examples from the translated STS-
Benchmark dataset. Similarity ratings are from 0-
5.

ference (SNLI) Corpus (Bowman et al., 2015) and
Multi-Genre Natural Language Inference (MNLI)
dataset (Williams et al., 2018). The Norwegian
data is machine translated from the MNLI dataset
and has about 128 thousand triples. There is
also a combined Norwegian and English version
of the dataset made by taking a combination of
the translated Norwegian MNLI data and English
MNLI and SNLI data.2 Also included are ex-
tra combined Norwegian/English sentence triples:
For each of the translated triples there is a joint
Norwegian/English triple consisting of one or two
sentences in each of English and Norwegian, see
Figure 1 for an example. The English/Norwegian
dataset contains about 531 thousand triples of sen-
tences.

For evaluation we also machine translate the
standard English datasets for semantic textual sim-
ilarity STS12-16 (Agirre et al., 2012), (Agirre
et al., 2013), (Agirre et al., 2014), (Agirre et al.,
2015), (Agirre et al., 2016), STSBenchmark (Cer
et al., 2017), and SICK relatedness (Marelli et al.,
2014). The task is predicting how similar a pair of
sentences are to each other on a scale of 0-5. We
use these datasets only for validation and testing
and never for training. In fig. 2 we see two exam-
ples from the translated STS Benchmark dataset.

The usage of translated datasets is a weak-
ness compared to having original data in Norwe-
gian. This project can also be viewed as an ex-
ploration of what performance it is possible to get

2The same English data that was used to train
English SimCSE: https://huggingface.co/datasets/princeton-
nlp/datasets-for-simcse

from auto-translated English datasets: To the de-
gree they are shown to be useful, one will have
much more data one could potentially work with
in Norwegian language processing. We note that
for sentence similiarity, a similar exploration of
translated data has been done for Swedish in (Is-
bister and Sahlgren, 2020). They conclude that
they do not recommend the usage of automati-
cally translated STS datasets for fine-tuning, but
that it should probably have limited negative con-
sequences for comparing models. We partly fol-
low their recommendation: We only use trans-
lated STS data for valdiation and evaluation, but
we do perform supervised training on translated
NLI data.

4 Experiments

Our experiments follow the implementations in
the SimCSE paper closely. We start with a pre-
trained encoder model that is either BERT or
RoBERTa.

For unsupervised training we sample one mil-
lion texts from the NCC dataset. We then pass
each text through the model using two different
dropout masks to obtain two different text repre-
sentations si and s+i for each text. Here dropout
functions as a form of continuous augmentation of
embeddings. Then we contrastively predict which
pairs of texts within a batch are the same using
cross-entropy loss on the cosine similarity scores.
In other words, the loss for text i is given by

lossi = − log
esim(si,s

+
i )/τ

∑b
j=1 e

sim(si,s
+
j )/τ

,

where sim is cosine similarity and τ is a tempera-
ture hyperparameter which we simply set to 0.05,
which is the outcome of optimization done in the
SimCSE paper.

For training unsupervised models, the models
we start from are given by their names on hug-
gingface as

• bert-base-cased [english model]

• roberta-base [english model]

• bert-base-multilingual-cased

• TurkuNLP/wikibert-base-no-cased

• ltgoslo/norbert2

• NbAiLab/nb-bert-base
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Model Avg. STS
BERT 34.29
RoBERTa 25.56
mBERT 48.34
WikiBERT 42.21
NorBERT 54.42
NB-BERT-base 50.41
NB-BERT-large 49.90

Table 1: Average performance of models before
training using average of the last layer on Norwe-
gian STS.

• NbAiLab/nb-bert-large

The english models are included as a sanity
check: Since we are using automatically trans-
lated datasets to choose the best models, we want
to compare their performance with some models
that are expected to perform worse than Norwe-
gian models. For the same reason we also test on
the English STS datasets.

We train the supervised models using NLI data
where each sentence has one paired sentenced la-
beled as entailment, which is regarded as a pos-
itive sample, and one sentence labeled with con-
tradiction, which is considered a negative sample.
We thus obtain three different sentence representa-
tions si, s+i , s

−
i . As in the SimCSE paper, we train

contrastively trying to predict the positive pairs,
and add the negative sentence representation s−i to
the loss function as follows:

lossi = − log
esim(si,s

+
i )/τ

∑b
j=1 e

sim(si,s
+
j )/τ + esim(si,s

−
j )/τ

(1)

For training supervised models we start with the
following models:

• bert-base-multilingual-cased

• TurkuNLP/wikibert-base-no-cased

• ltgoslo/norbert2

• NbAiLab/nb-bert-base

• NbAiLab/nb-bert-large

We train with the same settings as in the Sim-
CSE paper: We set a max sequence length of 32,
and use the learning rates and batch sizes given

in the appendix of the SimCSE paper (which vary
by model type and size). Each model is trained
on a single NVIDIA 3090 GPU. For some models
we have to use gradient accumulation to achieve
the correct batch size due to lack of RAM, which
changes training dynamics a bit, since contrastive
loss depends on the entire batch. We do not see
any noticable effects on results from this. We train
with the Adam optimizer with linear weight de-
cay and put a multi-layer perceptron (MLP) on
top of the model for training. Unsupervised we
train for one epoch, and supervised for three. The
best model is selected by evaluating on the dev
part of the STS Benchmark dataset. For evalua-
tion we test both with and without this MLP, and
find that generally, testing without the MLP gives
slightly better results. We train three versions of
each model and report average scores.

The models are also fine-tuned on two Norwe-
gian sequence classification tasks. Talk of Nor-
way (ToN) is a subset of the Norwegian parliament
speeches dataset (Lapponi et al., 2018), where the
task is to classify whether the speech was given by
SV or FrP (politically left or right, respectively)
selected in (Kummervold et al., 2021).3 NoReC is
a dataset of reviews in Norwegian from different
domains such as movies, video games and music
(Velldal et al., 2018). From this dataset one can
extract a binary classification task by taking the
subset of reviews that are clearly positive or nega-
tive and letting the task be to classify them as pos-
itive or negative (Øvrelid et al., 2020). We take
the text representations made by the model before
the MLP, and add a linear classification layer on
top and fine-tune the entire model on the training
dataset. For both the fine-tuning datasets we do a
grid search for hyperparameters under the follow-
ing conditions (these are the same hyperparame-
ters as in the finetuning examples in the appendix
of the original BERT paper (Devlin et al., 2019)):

• epochs=2, 3, 4

• learning rate = 2e-5, 3e-5, 5e-5

• batch size 16, 32

We use the macro f1 score on the validation set to
select the best model for each training run. We do
three training runs and report the average of test
scores.

3https://huggingface.co/datasets/NbAiLab/norwegian parliament
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Model STS12 STS13 STS14 STS15 STS16 STSB SICKR Avg.
BERT 55.21 49.64 49.29 63.68 54.39 54.67 50.93 53.97
RoBERTa 60.30 59.12 57.15 68.73 64.33 64.04 54.39 61.15
mBERT 60.88 62.31 55.91 70.78 66.80 61.87 57.13 62.24
WikiBERT 63.38 70.21 62.63 74.04 70.90 70.88 62.52 67.79
NorBERT 56.41 65.33 54.32 68.95 68.00 62.40 64.54 62.85
NB-BERT-base 59.40 70.70 57.93 71.87 69.94 69.25 63.98 66.15
NB-BERT-large 70.45 80.80 72.79 81.53 78.41 79.35 69.18 76.07

(a) Performance of unsupervised models on the Norwegian STS datasets.
Model STS12 STS13 STS14 STS15 STS16 STSB SICKR Avg.
mBERT 73.43 69.09 70.84 81.50 73.82 76.47 72.79 73.99
WikiBERT 73.29 64.48 69.24 80.32 74.51 75.42 69.94 72.45
NorBERT 74.30 70.69 72.09 82.56 76.91 79.33 73.74 75.66
NB-BERT-base 76.31 77.20 75.43 84.47 77.69 82.14 77.97 78.75
NB-BERT-large 77.07 83.65 80.28 86.24 81.87 84.37 78.44 81.70
(b) Performance on the Norwegian STS datasets of supervised models trained on both Norwegian and English NLI data.

Model STS12 STS13 STS14 STS15 STS16 STSB SICKR Avg.
mBERT 69.28 71.50 69.44 78.12 74.38 71.12 67.70 71.65
WikiBERT 70.14 71.18 71.79 77.56 76.20 74.20 67.32 72.63
NorBERT 70.79 74.46 72.44 80.66 77.73 76.65 71.56 74.90
NB-BERT-base 72.41 79.22 74.67 81.47 77.72 78.49 73.50 76.78
NB-BERT-large 74.67 83.65 79.47 84.15 81.82 82.25 74.75 80.11

(c) Performance on the Norwegian STS datasets of supervised models trained on Norwegian NLI data.

Table 2: Results of our models tested on the Norwegian STS datasets(Spearman’s correlation).

5 Results sentence similarity

We evaluate the trained models on the semantic
textual similarity datasets. We evaluate our mod-
els both on the Norwegian version of the datasets,
and the original English. We report Spearman’s
correlation for the STS datasets.

5.1 Evaluation in Norwegian

In Table 1 we see the average performance on
the Norwegian STS before training using the aver-
age of the last layer to compare embeddings. We
also tested using the average of first and last lay-
ers (giving similar numbers) and using ”cls” token
(giving worse numbers). Thus we have a baseline
to compare how much the models have learned
from the training.

In Table 2a we see the performance of our unsu-
pervised models on the Norwegian STS datasets.
These are the results when we test without the
MLP, which on average performs slightly better
than using MLP also for testing.

In Table 2b we see the results from training su-
pervised models on the combination of Norwe-
gian and English NLI data, while Table 2c shows

the performance when training on only Norwegian
NLI data. We see that training with English in-
cluded improves performance over merely training
in Norwegian for all models.

We see that the supervised models perform
much better than the unsupervised ones. This
would usually not be surprising, but considering
the supervised data is automatically translated and
therefore presumably of lower quality than the un-
supervised data, it is interesting to note.

5.2 Evaluation in English
In Table 3a we show the results from testing our
unsupervised models on the English dataset. In
Table 3b we show the results from testing our su-
pervised models trained on the combined English
and Norwegian dataset on the English STS data,
while Table 3c shows the results for supervised
models trained only on Norwegian data.

Since we have automatically translated the STS
data, we are unsure how accurate the ground truth
labels in Norwegian will be, since there will be
examples of sentences where the similarity of the
sentences changes because of differing transla-
tions. However we think that this should not influ-
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Model STS12 STS13 STS14 STS15 STS16 STSB SICKR Avg.
BERT(english) 54.76 70.77 57.39 69.32 69.19 61.66 66.29 64.20
roBERTa(english) 65.26 77.06 67.09 76.88 76.71 75.32 65.60 71.99
mBERT 63.56 73.10 63.95 74.67 73.56 68.58 61.61 68.43
WikiBERT 64.68 77.60 67.04 76.20 76.30 74.63 65.34 71.68
NorBERT 52.96 62.30 54.99 67.45 69.83 63.68 62.40 61.94
NB-BERT-base 56.23 72.06 57.93 68.71 71.09 67.25 61.63 64.99
NB-BERT-large 72.54 83.68 76.08 83.03 81.09 81.32 68.80 78.08

(a) Performance of unsupervised models on English STS datasets.
Model STS12 STS13 STS14 STS15 STS16 STSB SICKR Avg.
mBERT 76.88 79.69 77.58 84.99 78.52 81.36 77.30 79.47
WikiBERT 72.45 59.56 67.08 80.87 75.21 75.31 74.01 72.07
NorBERT 73.39 69.40 72.65 83.10 77.30 80.48 76.55 76.13
NBBert-base 76.93 78.78 77.76 85.28 80.29 82.96 78.49 80.07
NBBert-large 78.30 85.92 81.78 87.11 83.24 85.72 79.56 83.09

(b) Performance of supervised models on English STS datasets fine-tuned on both Norwegian and English MNLI.
Model STS12 STS13 STS14 STS15 STS16 STSB SICKR Avg.
mBERT 72.62 79.36 75.84 81.87 79.70 77.48 70.18 76.72
WikiBERT 65.47 65.30 67.40 76.86 73.12 68.91 60.59 68.24
NorBERT 66.90 68.62 69.63 79.35 76.23 73.38 69.66 71.97
NBBert-base 71.57 80.30 76.30 81.55 79.23 78.09 71.12 76.88
NBBert-large 76.42 85.58 81.23 85.49 83.21 83.15 75.04 81.45

(c) Performance of supervised models on English STS datasets fine-tuned on Norwegian MNLI.

Table 3: Results of our models tested on the English STS datasets(Spearman’s correlation).

ence comparisons between different models very
much. This is supported by the fact that the in-
ternal ranking between models for the Norwegian
and the English dataset is the same among the Nor-
wegian unsupervised models. (English models un-
surprisingly are higher in the rankings when tested
on English)

One of the more interesting findings in this pa-
per is how strong performance our models get on
the English STS data. NB-BERT-base was ini-
tialized from the mBERT checkpoint which can
partly explain this, but not all models was started
from a model pre-trained in English. The un-
supervised NB-BERT-large achieves a score of
78.08 on English STS. For comparison, the best
unsupervised model in the original SimCSE pa-
per, SimCSE-RoBERTa-large, achieved a score of
78.90. Thus we see that we have a model pre-
trained on a Norwegian corpus (containg some
English), further trained unsupervised in Norwe-
gian, that achieves less than 1% worse score than
the best English model, trained in English. This
model is also better than the best unsupervised
English model in the original SentenceBERT pa-

per. The supervised NB-BERT trained only on
Norwegian NLI achieved a score of 81.45, while
the version trained on Norwegian and English NLI
achieve a score of 83.09. Comparably the su-
pervised original English version SimCSE-BERT-
base got a score of 81.57 and SimCSE-RoBERTa-
large 83.76. Thus we see that we achieve compa-
rable performance between a supervised Norwe-
gian large BERT and a supervised English base
BERT, when testing in English. Our best super-
vised model is less than 1% away from the best
English SimCSE model, although this is less sur-
prising than for the unsupervised models, since we
in this case fine-tune our model also on English
NLI. We also note that our best supervised model
which is trained on only Norwegian is better than
the best supervised English model in the Sentence-
BERT paper. Thus it does seem like the models
learn a lot for performing well at English sentence
similarity even though the pre-training is mostly
in Norwegian. The strong performance in English
of NB-BERT models was already noted in (Kum-
mervold et al., 2021).

To see if we can better understand the
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BERT 76.7
RoBERTa 79.8
mBERT 80.2
WikiBERT 83.2
NorBERT 83.9
NB-BERT-base 82.7
NB-BERT-large 89.7

(a) Performance of unsupervised models when fine-tuned
on the Talk of Norway dataset.

mBERT 79.3
WikiBERT 82.6
NorBERT 85.7
NB-BERT-base 83.4
NB-BERT-large 89.3

(b) Performance of supervised models trained on Norwe-
gian NLI when fine-tuned on the Talk of Norway dataset.

mBERT 79.2
WikiBERT 81.1
NorBERT 84.9
NB-BERT-base 83.3
NB-BERT-large 89.3

(c) Performance of supervised models trained in on Nor-
wegian and English NLI on the Talk of Norway dataset.

Table 4: Performance of our models on the ToN
dataset(F1 score).

above findings, we tested the English supervised
SimCSE-RoBERTa-large on Norwegian STS, and
achieved only an average score of 54.23. Thus a
very good English model scores badly in Norwe-
gian, while a very good Norwegian model scores
well in English. This might indicate that the rea-
son the Norwegian models all perform so well in
English is that there is enough English in the Nor-
wegian training data (probably including many
snippets in the Norwegian parts) that the models
learn quite a lot of English.

6 Results classification

We report macro F1 score for the binary classifi-
cation tasks.

6.1 ToN binary classification

In Table 4a we see the performance of the unsu-
pervised models when fine-tuned on the Talk of
Norway dataset. In Table 4b we see the perfor-
mance of the supervised models trained on Norwe-
gian NLI and then fine-tuned on the ToN dataset,
while Table 4c shows the performance when train-
ing on both Norwegian and English NLI.

BERT 63.1
RoBERTa 64.4
mBERT 70.3
WikiBERT 77.0
NorBERT 82.0
NB-BERT-base 84.3
NB-BERT-large 87.6

(a) Performance of unsupervised models, fine-tuned on
the NoReC binary classification dataset.

mBERT 72.2
WikiBERT 77.9
NorBERT 82.4
NB-BERT-base 85.9
NB-BERT-large 87.0

(b) Performance of supervised models trained on only
Norwegian NLI when fine-tuned on the NoReC binary
classification dataet.

mBERT 74.4
WikiBERT 77.6
NorBERT 81.0
NB-BERT-base 84.9
NB-BERT-large 87.3

(c) Performance of supervised models trained on Norwe-
gian and English NLI when fine-tuned on the NoReC bi-
nary classification dataset.

Table 5: Performance of our models on the NoReC
binary classification dataset(F1 score).

We see that training the models to give bet-
ter sentence embeddings gives some performance
gains on this task, compared to fine-tuning the
base model: In (Kummervold et al., 2021) it is
reported that NB-BERT achieves a score of 81.8,
while NorBERT scores 78.2 and mBERT 78.4 on
this task. All our numbers are slightly higher.

We see that for this classification task training to
make sentence models with English NLI data in-
cluded did not help: the numbers are very similar
with and without it.

6.2 NoReC binary classification

In Table 5a we see the performance of unsuper-
vised models on the NoReC binary classification
task. In Table 5b we see the results of supervised
models trained on Norwegian NLI, while in Ta-
ble 5c we see the results of supervised models
trained on Norwegian and English NLI.

For this task it is less clear that we get gains
from training sentence embedding models: The
highest reported number for this task is NB-BERT-
base which is reported as 86.4 in (Kummervold
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et al., 2021) and 83.9 in (Kutuzov et al., 2021).
Our best score for NB-BERT-base is 85.9, which
is not better than this. Our best model NB-BERT-
large also does not achieve a higher score than
about 87%, which is only slightly better than the
smaller models. We do not know the reason we get
improvements for ToN classification, and not here.
The mBERT model do improve with training, but
that is not so surprising, since it is not already as
strong in Norwegian as most of the other models.

7 Discussion

We believe that our models perform well on the
semantic sentence similarity task, even if we do
not have any strict comparison since this is the
first evalutation of Norwegian sentence embed-
ding models on the STS data. The Norwegian
dataset corresponds to the English one, so the
scores of English models on English STS and Nor-
wegian models on Norwegian STS should in prin-
ciple correspond to each other, but because of the
extra noise added by the automatic translation we
are not surprised that the Norwegian numbers are
a bit worse. We see that the models improve a lot
compared to before training, and because they per-
form quite well even for the English STS datasets,
we are confident that they have indeed learned
something useful in Norwegian.

The supervised models perform better than our
unsupervised models even though the supervised
models are trained on machine translated data.
This shows that machine translated data could be
useful for doing NLP in smaller languages, at least
for some tasks such as ours. The difference in the
numbers we get for unsupervised and supervised
training are similar to the ones in the original Sim-
CSE paper. It is a bit unclear to what extent the
specific content and language of the training data
is important for performing well on STS tasks.
For example, one can improve the performance of
English SimCSE by training on unrelated image
data (Jian et al., 2022). This might be because the
task is a form of clustering, and images and text
in other languages are structurally similar enough
that the models learn something useful.

From doing our experiments we get compar-
isons of the different Norwegian language mod-
els. This is because this method of making sen-
tence embeddings is mostly a way of extracting the
knowledge already learned by the models, since
the amount of training we do is much smaller

than the amount the models already have been
pre-trained. An unsuprising conclusion is that the
scale of the model is the most important factor in
making good language models. NB-BERT-large
is the best model by clear margins for all of our
evaluations. This conforms to the general ten-
dency in recent NLP that scaling up models is
more effective than tailoring data or architecture
on a given scale. Next, we find that for binary
classification the models NB-BERT-base and Nor-
BERT perform quite similary, while WikiBERT is
generally a bit weaker, while all of them clearly
outperform mBERT. For sentence similarity we
find different rankings among models: Here un-
supervised WikiBERT is the second best model,
while the supervised version is the weakest of the
Norwegian supervised models. Supervised NB-
BERT-base is clearly the second best model, while
NorBERT performs worse on the STS task.

We see that training sentence embedding mod-
els slightly improves performance on the binary
classification tasks, but not by much compared
with the base models. There is no clear ten-
dency on whether training supervised or unsu-
pervised improves performance on classification
more, since the numbers we get are similar in both
cases.
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Abstract

There are several ways of implementing
multilingual NLP systems but little con-
sensus as to whether different approaches
exhibit similar effects. Are the trends that
we observe when adding more languages
the same as those we observe when shar-
ing more parameters? We focus on en-
coder representations drawn from modu-
lar multilingual machine translation sys-
tems in an English-centric scenario, and
study their quality from multiple aspects:
how adequate they are for machine trans-
lation, how independent of the source lan-
guage they are, and what semantic infor-
mation they convey. Adding translation di-
rections in English-centric scenarios does
not conclusively lead to an increase in
translation quality. Shared layers increase
performance on zero-shot translation pairs
and lead to more language-independent
representations, but these improvements
do not systematically align with more se-
mantically accurate representations, from a
monolingual standpoint.

1 Introduction

Multilinguality, within the scope of neural NLP,
can mean either ensuring that computations for dif-
ferent languages are homogeneous, or ensuring that
models are trained with data coming from different
languages. These two definitions are not as equiv-
alent as they might appear: for instance, modular
architectures, where some parameters are specific
to a single language, can only be conceived as mul-
tilingual under the latter definition.

Both of these trends have been explored across
multiple works. Machine translation studies have

Authors listed alphabetically. Corresponding author:
timothee.mickus@helsinki.fi

looked into sharing no parameters at all (Escolano
et al., 2021; Lyu et al., 2020), sharing across lin-
guistically informed groups (Fan et al., 2021; Pura-
son and Tättar, 2022), sharing only some compo-
nents across all languages (Dong et al., 2015; Fi-
rat et al., 2016; Vázquez et al., 2020; Liao et al.,
2021; Zhu et al., 2020; Kong et al., 2021; Black-
wood et al., 2018; Sachan and Neubig, 2018; Zhang
et al., 2021), and sharing the entire model (John-
son et al., 2017). Concerns about multilinguality
have spearheaded research on how to make repre-
sentations and systems more reliable for typolog-
ically and linguistically diverse data (Bojanowski
et al., 2017; Adelani et al., 2022), the distinction
between multilingual and monolingual represen-
tations (Wu and Dredze, 2020), the specificity of
massively-multilingual representations (Kudugunta
et al., 2019) or the effects of having more diverse
data (Arivazhagan et al., 2019; Aharoni et al., 2019;
Costa-jussà et al., 2022; Siddhant et al., 2022; Kim
et al., 2021; Voita et al., 2019). In this paper, we
study whether these different implementations of
multilinguality yield qualitatively different types of
representations—in other words: Are the effects of
parameter sharing orthogonal to those of adding
new languages?

To broach this question, we make three simplify-
ing assumptions. First, we only consider the task
of multilingual machine translation—an exhaustive
study of the impact of all multilingual NLP tasks
is beyond the scope of this paper. Moreover, mas-
sively multilingual language models are known to
leverage parallel data to enhance semantic abstrac-
tions (Hu et al., 2021; Ouyang et al., 2021; Kale
et al., 2021). Second, we only consider parameter
sharing in the last layers of the encoders: we fo-
cus on the intermediary representations acquired
directly after the encoder and leave decoders for
future study. As language selection tokens would
compromise the language independence of the rep-
resentations, this rules out fully shared decoders.
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Third, we focus on an English-centric scenario: i.e.,
all translation directions seen during training con-
tain English as a source or target language. While
such an approach is not without issues (Gu et al.,
2019; Zhang et al., 2020), it makes it possible to
select translation directions for zero-shot evalua-
tions in a principled manner. Furthermore, most
multilingual translation datasets are highly skewed
in any case and contain orders of magnitude more
English examples (e.g., Costa-jussà et al., 2022).

We conduct our study by testing encoder out-
puts on three aspects: task fitness, language inde-
pendence and semantic content. These features
have been discussed in earlier literature: probing
pretrained language models for semantic content
in particular has proven very fecund (e.g., Rogers
et al., 2021; Doddapaneni et al., 2021). As for ma-
chine translation, these studies are less numerous,
although similar aspects have been investigated
(Raganato and Tiedemann, 2018). For instance,
Kudugunta et al. (2019) study how the learned
representations evolve in a multilingual scenario,
whereas Vázquez et al. (2020), Raganato et al.
(2019) or Mareček et al. (2020) focus on the use of
multilingual-MT as a signal for learning language.
As we will show, studying representations under
different angles is required in order to highlight the
differences underpinning distinct implementations
of multilinguality.1

2 Experimental setup

2.1 Datasets

We focus on datasets derived from the OPUS-100
corpus (Zhang et al., 2020), built by randomly
sampling from the OPUS parallel text collection
(Tiedemann, 2012). We construct datasets contain-
ing 3, 6, 9, 12, 24, 36, 48, 60 and 72 languages
other than English and refer to them as opus-03,
opus-06, and so on. To test the impact on the
model performance when adding languages, we
build the datasets with an incremental approach, so
that smaller datasets are systematically contained
in the larger ones. Languages are selected so as to
maximize the number of available datapoints—for
training, zero-shot evaluation and probing—as well
as linguistic diversity. See Appendix A for details.
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Figure 1: Example model architectures for varying
number of shared encoder layers s. Modules with a
light grey background are language-specific, mod-
ules with a dark grey background are fully shared.

2.2 Models

We train modular sequence-to-sequence Trans-
former models (Escolano et al., 2021), with 6 layers
in the encoder and the decoder. Decoders are sys-
tematically language-specific, whereas encoders
contain s ∈ {0, . . . , 6} fully-shared layers on
top of 6− s language-specific layers, as shown in
Figure 1. We train distinct models for each value
of s and each dataset; due to the computational
costs incurred, we consider s ≥ 2 only in com-
bination with datasets up to opus-12, as well as
opus-36. Models vary along two axes: models
trained on larger datasets are exposed to more lan-
guages, whereas models with higher values of s
share more parameters. When training models over
a dataset, we consider the translation directions
L-to-English, English-to-L, and a L-to-L denois-
ing task, for all languages L in the dataset.2 The
noise model for the denoising auto-encoding ob-
jective follows Lewis et al. (2020). An illustration
of opus-03 models is shown in Figure 1. Training
details are given in Appendix B

3 Experiments

3.1 Task fitness: Machine Translation

The first aspect we consider is the models’ perfor-
mance on machine translation. We report BLEU
scores in Figure 2. Where relevant, we also include
supervised results for translation directions present
in opus-06 so as to provide comparable scores.3

1Code available at: https://github.com/
Helsinki-NLP/FoTraNMT/tree/who-would-win.

2I.e., a model trained over the opus-n dataset is trained
over 3n tasks: 2n translation tasks, plus n denoising tasks for
languages other than English.

3Note that all available zero-shot translation directions are
systematically present in opus-06 and all larger datasets.
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Figure 2: Average BLEU scores

The most obvious trend present is that models
trained on opus-03 with s ≥ 5 underfit, and per-
form considerably worse than their s < 5 counter-
part. Otherwise, models with an equivalent number
of shared layers s tend to perform very reliably
across datasets: e.g., across all supervised transla-
tion directions we tested, we found that the maxi-
mum variation in BLEU scores for s < 2 was of
±4.8.4 In Figure 2b, we also observe consistent
improvement on zero-shot translation when increas-
ing the number of shared layers s from 0 to 4, and
for opus-36 this trend only breaks when the full
stack is shared (s = 6). Lastly, results in Figure 2a
suggest that adding more translation directions de-
creases zero-shot translation performances, but this
trend seems to reverse when a significant number of
layers are shared (s > 3), as displayed in Figure 2b.
In all, under the setup we consider here, it appears
that task fitness and zero-shot generalization are
best achieved by sharing more parameters, rather
than adding translation directions—although ex-

4See also Aharoni et al. (2019) or Conneau et al. (2020).

cessive sharing also impacts performances.5

3.2 Language Independence: XNLI
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Figure 3: Average XNLI macro-f1 scores

To test to what degree encoder representa-
tions are language-independent, we train classifier
probes on XNLI (Conneau et al., 2018). We train
models on English and report results for all lan-
guages: the gap between English and non-English
performances quantifies how language-dependent
the representations are. We report macro-f1 on the
validation split; if no such split is available, we
randomly select 10% instead. See Appendix C for
details.

Figure 3 underscores that our English-centric
scenario prevents language-independent encoder
representations: English targets fare better than
their counterparts. Variation seems driven by the
number of shared parameters: in Figure 3a, models
with s = 1 outperform models with s = 0, whereas
in Figure 3b, higher values of s tend to close the gap
between English and other targets. Interestingly,

5Previous fully-shared models achieved high zero-shot
performances, e.g. Johnson et al. (2017).
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Figure 4: Average macro-f1 scores (z-scaled) on NLU monolingual tasks

higher values of s yield lower f1 scores in smaller
datasets, both for English and other languages. In
particular, we observe a drop for all languages on
opus-03 with s > 4, matching the underfitting we
saw in Section 3.1; this trend is also attested in
all datasets except opus-36. But on the whole, a
greater number of shared parameters leads to more
language-independent representations.

3.3 Semantic Content: NLU benchmarks

To verify the semantic contents captured by our rep-
resentations, we test them on monolingual GLUE-
style benchmarks. We focus on benchmarks for
languages present in opus-03: Arabic (ALUE,
Seelawi et al. 2021), Chinese (CLUE, Xu et al.
2020), English (GLUE, Wang et al. 2018) and
French (FLUE, Le et al. 2020). We select tasks
that can be learned using a simple classifier; see
Table 4 in Appendix C for a full list of the mono-
lingual classification tasks considered. We follow
the same methodology as in Section 3.2.

Results are displayed in Figure 4. Instead of
plotting raw macro-f1 scores, we first z-normalize
them so as to convert them to a comparable scale.
Looking across datasets (Figures 4a to 4d), we do
not see a clear variation; at best, we can argue
English performances improves when using more
language pairs. This is consistent with the English-
centric scenario under which we trained our models.
Arabic and Chinese results would suggest that s =
1 models fare better than s = 0 models, but this
trend does not carry on convincingly for French.

Comparing across number of shared layers (Fig-

ures 4e to 4h) suggests this trend might be more
complex: all languages tend to lose in accuracy for
higher values of s, and this effect is all the more
pronounced for non-English languages and models
trained on smaller datasets. For instance, the opti-
mal number of shared layers for Chinese is either
s = 3 or s = 4, depending on the task under con-
sideration and the number of language pairs in the
training dataset, but the gain over s < 3 models is
minimal. This differs crucially from what we ob-
served in Section 3.1, where only s = 6 impacted
BLEU scores, and in Section 3.2, where there was a
clear improvement from low to mid values of s. In
sum, probing encoder representations for their se-
mantic contents paints a more nuanced picture, one
where semantic accuracy does not clearly align
with task fitness or language-independence.

4 Conclusions

We have studied whether different means of achiev-
ing multilinguality—sharing parameters and mul-
tiplying languages—bring about the same effects.
What transpires from our experiments is that the
two means are not equivalent: we generally observe
higher performances and more reliable represen-
tations by setting the optimal number of shared
parameters. Crucially, this optimum depends on
the criteria chosen to evaluate representations: ma-
chine translation quality (Section 3.1), language
independence (Section 3.2) and semantic accuracy
(Section 3.3) all differed in that respect.

These two approaches are not dichotomous: it is
possible to both scale the number of languages and
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select optimal parameter sharing. What is possible
may however not be practical. As guidance to NLP
practitioners, we recommend spending effort on
tuning the level of parameter sharing for the task
at hand. Sharing either too little (0–1 layers in our
experiments) or too much (sharing the entire en-
coder) results in sub-optimal performance overall,
but the optimal number of layers to share depends
on the task. Spending significant effort on acquir-
ing data for additional language pairs may not yield
improved representations past the initial stages of
data collection (opus-03 in our experiments).
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A Selected Languages

When constructing larger datasets, we select the
additional languages based on four criteria:

(a) maximise the number of datapoints available
for training

(b) the presence of zero-shot translation test sets

(c) the existence of XNLI data for the languages

(d) maximize language diversity in the dataset

The information we considered is listed in Table 1,
with the exception of criterion (b): only languages
in opus-03 and opus-06 are relevant to this crite-
rion.

ISO 2 Dataset Train size XNLI

ar opus-03 1,000,000 ✓

fr opus-03 1,000,000 ✓

zh opus-03 1,000,000 ✓

de opus-06 1,000,000 ✓

nl opus-06 1,000,000 ✓

ru opus-06 1,000,000 ✓

th opus-09 1,000,000 ✓

tr opus-09 1,000,000 ✓

vi opus-09 1,000,000 ✓

bg opus-12 1,000,000 ✓

el opus-12 1,000,000 ✓

es opus-12 1,000,000 ✓

bn opus-24 1,000,000 –
eu opus-24 1,000,000 –
fa opus-24 1,000,000 –
fi opus-24 1,000,000 –
he opus-24 1,000,000 –
id opus-24 1,000,000 –
it opus-24 1,000,000 –
ja opus-24 1,000,000 –
ko opus-24 1,000,000 –
lv opus-24 1,000,000 –
mk opus-24 1,000,000 –
sv opus-24 1,000,000 –

bs opus-36 1,000,000 –

(Continued on next column)

(Continued from previous column)

ISO 2 Dataset Train size XNLI

cs opus-36 1,000,000 –
et opus-36 1,000,000 –
hu opus-36 1,000,000 –
is opus-36 1,000,000 –
lt opus-36 1,000,000 –
mt opus-36 1,000,000 –
ro opus-36 1,000,000 –
sk opus-36 1,000,000 –
sq opus-36 1,000,000 –
sr opus-36 1,000,000 –
uk opus-36 1,000,000 –

ca opus-48 1,000,000 –
da opus-48 1,000,000 –
hr opus-48 1,000,000 –
mg opus-48 590,771 –
ml opus-48 822,746 –
ms opus-48 1,000,000 –
no opus-48 1,000,000 –
pl opus-48 1,000,000 –
pt opus-48 1,000,000 –
si opus-48 979,109 –
sl opus-48 1,000,000 –
ur opus-48 753,913 –

af opus-60 275,512 –
cy opus-60 289,521 –
eo opus-60 337,106 –
ga opus-60 289,524 –
gl opus-60 515,344 –
gu opus-60 318,306 –
hi opus-60 534,319 –
ka opus-60 377,306 –
ne opus-60 406,381 –
nn opus-60 486,055 –
sh opus-60 267,211 –
xh opus-60 439,671 –

as opus-72 138,479 –
az opus-72 262,089 –
br opus-72 153,447 –
km opus-72 111,483 –
ku opus-72 144,844 –
nb opus-72 142,906 –
pa opus-72 107,296 –
rw opus-72 173,823 –
ta opus-72 227,014 –
tg opus-72 193,882 –
uz opus-72 173,157 –
wa opus-72 104,496 –

(Continued on next column)
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(Continued from previous column)

ISO 2 Dataset Train size XNLI

Table 1: Languages selected matched with the first
sub-dataset they appear in

B Hyperparameters & Training details

Hyperparameters Models were trained for a to-
tal of 100K steps to minimize the negative log-
likelihood of the target translation. We accumu-
late gradients over all translation directions before
back-propagation. We optimize our models using
AdaFactor (Shazeer and Stern, 2018).

Training occurred on SLURM clusters of A100
NVIDIA GPUs. Each GPU contains the param-
eters for 3 languages (i.e., 9 translation direc-
tions); groups of 4 GPUs form a node. In other
words, models for opus-03 were trained on a sin-
gle A100 GPU, whereas models for opus-72 were
trained over 24 A100 GPUs, distributed across 6
nodes. We did not go beyond opus-72 because
this matches the largest setup in the computing
cluster we used for our experiments. Using the
modular training approach with unlimited compute
resources, the ideal setup in terms of throughput
would contain only one translation direction per
GPU as it would allow concurrent training of all
translation directions. However, this can intro-
duce larger communication overheads unless all
communication calls are not also performed asyn-
chronously and concurrently. A detailed study as-
sessing the training performance, including com-
munication overheads, remains a subject for future
work. In this study, all individual models were
trained under 36 hours, cf. table 2.

s = 0 s = 1

opus03 1 day 08:15:00 1 day 09:46:00
opus06 1 day 03:55:00 1 day 04:08:00
opus09 1 day 04:04:00 1 day 03:44:00
opus12 1 day 04:08:00 1 day 11:25:00
opus24 1 day 04:44:00 1 day 04:37:00
opus36 1 day 05:32:00 1 day 05:43:00
opus48 1 day 05:46:00 1 day 06:30:00
opus60 1 day 05:40:00 1 day 06:02:00
opus72 1 day 05:53:00 1 day 06:21:00

Table 2: Models runtimes

Hyperparameters shared across all models are
shown in Table 3; they were set a priori so as to

not use the validation split of opus-100, as it has
been reported to significantly overlap with the test
set (Yang et al., 2021). Input data is pre-tokenized
using language-specific sentence piece models with
32,000 pieces, except for Chinese and Japanese,
where we use 64,000 pieces.

Parameter Value

src.seq. length 200
tgt.seq. length 200
subword type sentencepiece
mask ratio 0.2
replace length 1
batch size 4,096
batch type tokens
normalization tokens
valid batch size 4,096
max generator batches 2
encoder type transformer
decoder type transformer
rnn size 512
word vec size 512
transformer ff 2,048
heads 8
dec layers 6
dropout 0.1
label smoothing 0.1
param init 0.0
param init glorot true
position encoding true
valid steps 500,000
warmup steps 10,000
report every 50
save checkpoint steps 25,000
keep checkpoint 3
accum count 1
optim adafactor
decay method none
learning rate 3.0
max grad norm 0.0
seed 3435
model type text

Table 3: Set of hyper-parameters shared across all
our models

C Classifiers training procedure

In Sections 3.2 and 3.3, we train classifier probes to
investigate the information contained in the encoder
spaces. All classifiers correspond to two-layer per-
ceptrons with a hidden layer size of 128, dropout
applied to the input layer, and trained with Adam
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(Kingma and Ba, 2015) to optimize cross-entropy.
We define sentence embeddings by simply taking
the sum of the encoder output vectors; the input
features of the classifiers are the concatenation of
these sentence embeddings. For each set of tar-
gets, we train 10 classifiers with different random
seeds and report the mean and standard deviation of
macro-f1 scores. In Section 3.2, we set the learning
rate for XNLI to 5 · 10−5 with a dropout of p = 0.1
and use minibatches of 100 examples. Note that
we consider each language in XNLI as a different
set of targets, and therefore use different classifiers
to compute macro-f1 scores.

Dataset Task Size

ar

NSURL-2019 Task 8 question similarity 10,797
OSACT4 Task-A offensive speech detection 6,839
OSACT4 Task-B hate speech detection 6,839

en

COLA linguistic acceptability 8,551
MRPC sentence similarity 3,668
QNLI NLI 104,743
QQP question similarity 363,846

fr

PAWSX paraphrase detection 49,399
STSB paraphrase detection 5,749
XNLI NLI 392,702

zh

AFQMC question similarity 34,334
CMNLI NLI 391,783
TNEWS news topic classification 53,360

Table 4: NLU monolingual classification tasks

The classification tasks selected for studying the
semantic contents of encoder representations in
Section 3.3 are shown in Table 4. Due to the limited
number of usable tasks in FLUE, we also include
a STSB French translation6 which we binarize by
considering similarity judgments > 3 as indicat-
ing near-paraphrases. Classifiers discussed in Sec-
tion 3.3 are trained for 10 epochs with a dropout
of 0.1 and a learning rate of 5 · 10−5, using mini-
batches of 100 datapoints. We reduced the number
of epochs to 5 for all Arabic tasks and used mini-
batches of 10 examples for the OSACT4 shared
tasks A & B due to the longer length of the training
examples.

D Limitations

D.1 Material Limitations
As stated in the introduction, we make multiple
explicit assumptions that limit the scope of this
research. It is plausible that parameter-sharing in
the decoder or that replicating our experiments in a

6https://huggingface.co/datasets/stsb_multi_mt

non-English-centric scenario will yield a different
set of conclusions.

Also worth highlighting are the computational re-
quirements underlying this work: the most demand-
ing experiments require up to 24 A100 NVIDIA
GPUs. A side-effect of these demanding computa-
tional requirements is that we have not been able
to replicate model training across multiple seeds,
and therefore report results based on a single model
per dataset and number of shared layers. It is also
plausible that greatly scaling up the total number
of parameters in the networks would affect the con-
clusions.

Lastly, our use of classifiers to probe for lan-
guage independence and semantic contents of the
representations can be discussed. We have avoided
discussing the raw performances of our classifiers,
and instead discussed the trends that we observed
across our different MT models. Results from our
classifiers should be taken as indicators of the as-
pects we are trying to probe, rather than accurate
measures of said aspects: replication studies and
further evidence from other settings would be re-
quired to establish our models’ performances on
the criteria we outlined.

D.2 Ethics Considerations
In the present paper, we have argued against adding
languages if practical implementation costs are a
relevant constraint. We acknowledge that this rec-
ommendation may push NLP researchers and en-
gineers towards constructing models specifically
for high-resource languages, which would further
the coverage gap between low- and high-resource
languages.

Nonetheless, it must be stressed that our experi-
ments say nothing of linguistic diversity, as we have
ensured that even our smallest dataset (opus-03)
would contain maximally different languages. Also
relevant to the discussion at hand is that one sce-
nario where practical implementation costs are a
known constraint is that of developing low-resource
languages systems and NLP tools. We believe that
providing evidence as to which approach is most
effective can prove valuable in such scenarios as
well, so as to ensure that efforts can be focused
on the most viable path towards endowing lower-
resource languages with more efficient and suitable
tools.
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Abstract

Automatic abstractive text summarization
is a challenging task in the field of natural
language processing. This paper presents
a model for domain-specific summariza-
tion for Danish news articles. DanSumT5
is an mT5 model fine-tuned on a cleaned
subset of the DaNewsroom dataset com-
prising abstractive article-summary pairs.
The resulting state-of-the-art model is
evaluated both quantitatively and quali-
tatively, using ROUGE and BERTScore
metrics, along with human rankings of
the summaries. We find that although
model refinements increase quantitative
and qualitative performance, the model is
still prone to factual errors. We discuss
the limitations of current evaluation meth-
ods for automatic abstractive summariza-
tion and underline the need for improved
metrics and transparency within the field.
We suggest that future work should em-
ploy techniques for detecting and reduc-
ing errors in model output and methods for
reference-less evaluation of summaries.

1 Introduction

1.1 Automatic text summarization

Automatic text summarization is the automatic
generation of short text which condenses the most

salient points of a longer text. Much of the re-
search in this field to date has focused on auto-
matic extractive summarization (El-Kassas et al.,
2021), which directly extracts and concatenates
sentences from the original text. Various meth-
ods have been developed for selecting sentences
for extractive summaries. Some, such as TextRank
(Mihalcea and Tarau, 2004), rely on measures of
sentence importance; others rely on simple heuris-
tics, such as sentence location. For instance, the
simple LEAD-3 heuristic selects the first three
sentences of a given article (Varab and Schluter,
2020). Extractive summarization thereby ensures
grammaticality but tends to suffer from a lack
of coherence. Additionally, extractive summaries
can be afflicted with dangling anaphoras, in which
an extracted sentence refers to a preceding sen-
tence not included in the summary (Gupta and
Gupta, 2019).

In recent years, the move towards deep learning
in natural language processing (NLP) has brought
to the forefront automatic abstractive summariza-
tion. Abstractive summaries paraphrase and con-
dense the main points from the original text. This
approach views summarization as a text-to-text
problem on which models can be trained and fine-
tuned. In many cases, abstractive methods enable
more informative summarization, since rephrasing
and compressing the text allows for more informa-
tion to be conveyed by fewer sentences. However,
factual credibility is not ensured, and the gener-
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ated summaries may contain statements that are
inconsistent with the original text (Maynez et al.,
2020; Zhao et al., 2020).

The majority of existing work on both types
of automatic summarization has been in English
(Azmi and Al-Thanyyan, 2012; Khan et al., 2019).
In this paper, we develop an abstractive text sum-
marization model for Danish news data. We
achieve state-of-the-art results by fine-tuning mT5
on a cleaned subset of the DaNewsroom dataset
(Varab and Schluter, 2020) consisting of news
articles and their corresponding abstractive sum-
maries.

1.2 Previous work

This work builds on the authors’ earlier attempts
to develop an automatic summarization model
for Danish, here referred to as DanSumT5pilot.
This previous work utilized the DaNewsroom
dataset, but with smaller and less thoroughly fil-
tered subsets, and without systematic hyperparam-
eter search. An mT5 model trained on a sub-
set representative of the full dataset performed
similarly to extractive baselines validated on the
full dataset (Varab and Schluter, 2020). However,
upon further inspection, the resulting summaries
were predominantly extractive, likely due to the
amount of extractive summaries in the dataset.
mT5 models trained on more abstractive subsets
of the full dataset displayed more qualitatively
and quantitatively abstractive behaviour, though
the resulting summaries yielded lower quantita-
tive results. The models predominantly generated
short and repetitious summaries, possibly result-
ing in artificially inflated ROUGE performance.

The previous studies yielded two tentative but
significant insights. Firstly, we established that
fine-tuning an mT5 model capable of producing
abstractive summaries does not ensure abstractive
summarization. Secondly, our work emphasized
the need for employing more nuanced quantitative
metrics, as well as qualitative inspection of model
output, to determine the quality and abstractive-
ness of the generated summaries.

The current work expands on these previous ef-
forts by implementing several changes to the data,
model, evaluation, and fine-tuning procedure.

1.2.1 Multilingual language models
In this work, we use mT5 (Xue et al., 2021), a
multilingual T5 architecture (Raffel et al., 2020)
pre-trained on data from 101 languages. There

are several reasons for this, beyond the T5 ar-
chitecture being well-suited to text summariza-
tion tasks. While there is evidence to suggest
that monolingual models generally perform bet-
ter on monolingual tasks (Nozza et al., 2020;
Popa and Stefănescu, 2020; Rust et al., 2021)
(see also section 6), multilingual models seem
to increase performance for smaller languages,
likely by leveraging cross-lingual transfer (Con-
neau et al., 2020; Lauscher et al., 2020). Addi-
tionally, it has been suggested that this effect de-
pends on the size of the language-specific vocabu-
lary during pre-training, as well as lexical and ty-
pological proximity between included languages
(Lauscher et al., 2020; Rust et al., 2021). Indeed,
target language performance appears to be related
to both size of the target-specific pre-training cor-
pora, as well as linguistic similarity between the
target and source language (Arivazhagan et al.,
2019; Lauscher et al., 2020). We contrast the mul-
tilingual architecture with the recently developed
monolingual model, DanT5 (Ciosici and Derczyn-
ski, 2022).

1.3 Quantitative evaluation metrics

ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-L
(R-L) denote the co-occurrence of unigrams (R-
1) and bigrams (R-2) in the generated and ref-
erence summary (Lin, 2004; Varab and Schluter,
2020), as well as the Longest Common Subse-
quence (R-L) (Briggs, 2021; Lin, 2004). R-L is
thereby the only ROUGE measure capable of con-
sidering syntax, since it rewards longer identical
sequence overlaps. R-1 and R-2 might inflate per-
formance, even if the generated summary is syn-
tactically incoherent, if numerous co-occurrences
from the reference summary are present. ROUGE
scores have displayed some correlation with hu-
man evaluation of summary fluency and adequacy
(Lin and Och, 2004), and are the most commonly
used metric for automatic summarization.

It should be noted that ROUGE scores assess
lexical overlap of strings, with no reference to
semantic similarity. A qualitatively acceptable
abstractive summary could consist of completely
novel strings, with no overlaps relative to the
source text, which would be penalized by the
ROUGE metric. Alternative evaluation metrics in-
stead utilize the semantic and syntactic relations
captured in contextualised word embeddings pro-
duced by transformer-based architectures, such as
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BERT (Devlin et al., 2019). BERTScore (Zhang
et al., 2020) calculates the similarity between gen-
erated and reference summaries as the sum of co-
sine similarities between the contextual embed-
dings of tokens. Greedy matching is used to com-
pute a score for each embedding in the generated
summary and the most similar embedding in the
reference summary. In what follows, we evaluate
model performance using a combination of both
ROUGE and BERTScore.

2 Dataset

2.1 DaNewsroom dataset
The DaNewsroom dataset (Varab and Schluter,
2020), inspired by the English Newsroom dataset
(Grusky et al., 2018), is currently the only publicly
available dataset for Danish summarization. The
dataset consists of 1.1 million article-summary
pairs published over the past 20 years in various
Danish news outlets. The summaries were re-
trieved using a metadata tag and, in most cases,
correspond to the subheading of the article.

2.1.1 Data cleaning
To quantify the degree of abstractiveness of a
summary, we use the density score (Varab and
Schluter, 2020; Grusky et al., 2018), where lower
scores indicate more abstractive summaries, and
higher scores indicate increasingly more extrac-
tive summaries, i.e. summaries containing longer
identical sequence overlaps with the original text.
Density is defined as:

Density(A,S) =
1

|S|
∑

f∈F (A,S)

|f |2

Where (A,S) is an instance pair of an article and a
summary, and F(A,S) is the set of extractive frag-
ments f of longest common sequences of tokens in
A and S.

Based on this density measure, the reference
summaries in the DaNewsroom dataset are pri-
marily extractive. For the purpose of abstractive
summarization, we follow binned density thresh-
old categories (Grusky et al., 2018; Varab and
Schluter, 2020), and filter our dataset to contain
only abstractive text-summary pairs with a density
score between 0 and 1.5.

Several reference summaries in DaNewsroom
are short and/or incomplete, as in multiple cases,
the web scraping used to collect the dataset ex-
tracted incorrect or partial reference summaries.

Examples of short or single-word summaries in-
clude ‘2008’, ‘Et’, ‘Behandling’, and ‘P’. Sim-
ilarly, the dataset also contains some extremely
short and/or incomplete articles. In particular, a
number of the articles are just one-liners about
television scheduling or a paywall:

• Der er lukket for nye kommentarer til denne
artikel (This article is closed for new com-
ments)

• Svanerne i Slotsparken har fået fem unger
(The swans in Slotsparken have had five
cygnets.)

• ‘DR1 — Tirsdag d. 26. august kl. 20:00 -
20:45’. (DR1 — Tuesday 26 August at 20:00
- 20:45)

On the other hand, some of the articles are very
long. In some cases, the web scraping concate-
nated the article with a long thread of comments,
resulting in articles consisting of several thou-
sand tokens, including English content. We fur-
ther cleaned the dataset by filtering the summaries
and articles based on token length, with lower and
upper cutoffs defined respectively as the 2nd and
98th percentiles. Additionally, the data was stan-
dardized using ftfy (Speer, 2019) and filtered us-
ing various heuristic quality filters, including fil-
ters for removing repetitious text, text with a high
ratio of non-alphabetic tokens, and text with less
than two stop words. This filtering was performed
using an implementation similar to textdescrip-
tives (Hansen and Enevoldsen, 2023) and follows
an approach similar to Rae et al. (2022). The re-
sulting cleaned subset contained 258,146 abstrac-
tive article-summary pairs. Figure 1 shows the dis-
tribution of article and summary token lengths be-
fore and after this filtering procedure.

3 Model

3.1 Infrastructure
We fine-tuned all of our models using the Trans-
formers library (Wolf et al., 2020) and PyTorch
(Paszke et al., 2019) as the back end on 4
RTX8000 GPUs. We used Weights and Biases
(Biewald, 2020) for experiment tracking and vi-
sualizations.

3.2 Training and models specifications
For our hyperparameter tuning, we trained for
1800 steps with a batch size of 120, and validated
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Figure 1: Distribution of summary and article token lengths
before and after data cleaning.

with the same batch size, using the full valida-
tion set. All models were trained on our filtered
dataset using an 80-10-10 split. Due to computing
constraints, the hyperparameter search was per-
formed using small-sized models ( 300M param-
eters) and for a limited number of steps. The hy-
perparameter search showed only a few consistent
trends and based on this we chose a learning rate
of 3.0×10−4, a dropout rate of 0.01, and a polyno-
mial learning rate schedule. For information about
the hyperparameter search, see Appendix A1.

Articles and reference summaries were trun-
cated to a maximum length of 1024 and 128
tokens, respectively. Mixed precision training
was employed to lower the memory impact dur-
ing training. The models were trained using the
AdamW optimiser (Kingma and Ba, 2017) with a
polynomial learning rate schedule using a learn-
ing rate of 3.0 × 10−4, 2000 warmup steps, and
a realized batch size of 16 (a batch size of 8 with
an accumulation step of 2). Due to memory con-
straints, a smaller batch size was used for training
as compared to hyperparameter tuning. The mod-
els were trained for ten epochs with a dropout rate
of 0.01.

For decoding, we used beam search with two
beams and a repetitive 3-gram penalty. Addition-
ally, to encourage longer summaries, we set min-
imum and maximum generation lengths of 9 and
128 and employed a length penalty of 5. The
best model was determined according to the cross

1Or see the Weight and Biases dashboard at https://
tinyurl.com/3zfuf6vx

entropy loss, and the resulting model was tested
using a held-out test set of abstractive reference
summaries, according to binned density. From
this sample of 25,830 article-summary pairs, gen-
erated summaries were evaluated by calculating
mean density and mean F1-scores for R-1, R-2,
R-L (Lin, 2004), and BERTScore (Zhang et al.,
2020). The large XLM-RoBERTa model was used
to create the embeddings for the BERTScore re-
sults (Conneau et al., 2020).

The mT5 model has been made available in dif-
ferent sizes, with larger sizes generally leading to
improved performance (Xue et al., 2021). We fine-
tuned three different mT5 model sizes; small, base
and large, as well as a small DanT5 for compari-
son. All other parameters were kept constant.

Additionally, we validated the performance of
the LEAD-3 and TextRank approaches on our test
set. Importantly, both of these methods are ex-
tractive, and thus are not necessarily meaningful
comparative baselines for abstractive summariza-
tion. Still, they provide a benchmark for quanti-
tative comparison, though it should be noted that
the test set comprises abstractive reference sum-
maries. We also include performance metrics for
DanSumT5pilot, which was the best performing
abstractive summarizer from our previous unpub-
lished work.

4 Results

4.1 Quantitative results

Table 1 shows R-1, R-2, R-L, and BERTScore re-
sults for our three fine-tuned mT5 models and the
DanT5 model. Additionally, we present a version
of our previous work, DanSumT5pilot, trained and
evaluated on the same data splits of our current
work. We compare these results to the perfor-
mance of two extractive baseline models, LEAD-3
and TextRank, on the test set.

Mean F1 scores for all metrics are reported. Ad-
ditionally, 95% confidence intervals for all met-
rics are calculated using bootstrap resampling with
1000 samples, following the original ROUGE Perl
implementation (Li, 2020).

Table 2 shows the mean F1 density scores for
the aforementioned models. 95% confidence in-
tervals are calculated using bootstrap resampling
with 1000 samples.

The best performing model according to quan-
titative metrics is DanSumT5large. Furthermore,
this model generates the lowest-density sum-
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Model R-1 R-2 R-L BERTScore

LEAD-3 18.31 [18.21, 18.42] 4.60 [4.55, 4.66] 12.31 [12.25, 12.39] 86.77 [86.75, 86.79]
TextRank 14.80 [14.71, 14.89] 2.82 [2.78, 2.87] 10.03 [9.98, 10.09] 85.86 [85.84, 85.88]

DanT5small 20.68 [20.54, 20.82] 5.92 [5.83, 6.02] 15.55 [15.44, 15.67] 88.06 [88.04, 88.09]
DanSumT5pilot 19.74 [19.57, 19.90] 6.63 [6.52, 6.74] 16.71 [16.57, 16.85] 88.02 [87.99, 88.05]
DanSumT5small 21.42 [21.26, 21.55] 6.21 [6.11, 6.30] 16.10 [15.98, 16.22] 88.28 [88.26, 88.31]
DanSumT5base 23.21 [23.06, 23.36] 7.12 [7.00, 7.22] 17.64 [17.50, 17.79] 88.77 [88.74, 88.80]
DanSumT5large 23.76 [23.60, 23.91] 7.46 [7.35, 7.59] 18.25 [18.12, 18.39] 88.97 [88.95, 89.00]

Table 1: Mean F1 ROUGE and BERTScore performance by model with 95% bootstrapped confidence intervals. Best score is
highlighted in bold. Abstractive and extractive methods are delineated.

Model Density

LEAD-3 26.01 [25.84, 26.18]
TextRank 32.23 [32.07, 32.40]
DanT5small 2.91 [2.89, 2.93]
DanSumT5pilot 2.76 [2.74, 2.78]
DanSumT5small 2.66 [2.65, 2.68]
DanSumT5base 2.32 [2.30, 2.34]
DanSumT5large 1.91 [1.90, 1.93]

Table 2: Mean F1 density of generated summaries for the
different models with 95% bootstrapped confidence intervals.
Summaries with a density below 1.5 are considered abstrac-
tive, while summaries with a density above 8.19 are consid-
ered extractive.

maries, which indicates more abstractive sum-
maries.

4.2 Human evaluation
To manually evaluate the models, we ran-
domly sampled 100 articles in the test set,
along with both reference and generated sum-
maries. Two of the authors were selected as
raters and tasked with reading the articles and
ranking the four summaries (DanSumT5small,
DanSumT5base, DanSumT5large, and the refer-
ence summary) according to preference2. Both
raters are women educated to master’s level, and
both are native speakers of Danish. The rating was
blind, with ratings being unaware of the origins
of the summaries. The raters were asked to rate
based on preference. This rating procedure does
not quantify the objective quality of each summary
but instead evaluates the relative quality between
summaries. Consequently, we cannot determine

2See GitHub for the full ratings. Located in the data folder
https://github.com/Danish-summarisation/
DanSum.git

Figure 2: The mean rank obtained for each model through
human evaluation. Error bars display the 95% bootstrapped
confidence intervals.

why the summary was preferred, or which aspect
of the summary contributed to the decision, such
as grammaticality or factuality. The two raters had
an agreement of 74.8% (95% CI: [71.2, 78.2]).
The agreements are calculated based on each pair
of comparisons, i.e. every possible comparative
relation between summaries. Both raters generally
preferred the reference summaries over the gener-
ated summaries, as shown in Figure 2.

The best performing model according to subjec-
tive evaluation was DanSumT5large. The gener-
ated summaries are generally grammatically cor-
rect and cover the main content of the article,
though they tend to suffer from factual inconsis-
tencies (See Appendix B for five randomly chosen
examples of reference and model-generated sum-
maries).

5 Discussion

5.1 Evaluation

As seen in Table 1, DanSumT5large achieves
higher ROUGE scores and BERTScores than
our previous work DanSumT5pilot. We have
thus achieved state-of-the-art results for Dan-
ish abstractive summarization. Furthermore,
DanSumT5large generates relatively low-density
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summaries. Notably, the mean density falls just
outside the abstractive binned density category.
Still, the generated summaries are of lower density
than those generated by the other models, or by
the extractive comparisons. All DanSumT5 mod-
els outperform extractive baselines, likely at least
partly due to the test set comprising only abstrac-
tive reference summaries.

Human evaluation reveals that DanSumT5large
generally creates summaries that were highly rated
relative to the other summaries. For instance,
the DanSumT5large summaries were preferred
over the reference summaries in 21.43% of cases.
One limitation of summaries generated by all
DanSumT5 models is that many of them suffer
from factual inconsistencies, as illustrated in Ap-
pendix B, Table 7 where DanSumT5small states
that artists were hit by a snowstorm, though in ac-
tuality, an artificial snowstorm was part of their
performance.

5.2 Limitations and Future Directions

5.2.1 ROUGE and BERTScore

Given the inherent limitations of ROUGE scores
for evaluating abstractive summaries, we opted to
employ BERTScore which does not penalize lex-
ical diversity. Since BERTScore is fully differen-
tiable, it could be used to compute a loss metric
for optimisation of both training and evaluation
(Zhang et al., 2020). However, some limitations
of ROUGE also apply to BERTScore, inasmuch
as precision, recall and F1 scores depend on the
length of the generated and reference summary.
For both ROUGE and BERT metrics, generating
very short summaries or using very short reference
summaries might inflate performance, since co-
occurrences in short sequences are disproportion-
ately rewarded for high relative overlap between
reference and model output. Additionally, a high
BERTScore is also not a guarantee of factual or
grammatical consistency.

Many quantitative evaluation metrics reward
similarity with the reference summary; however,
this might not be optimal. For instance, since
many reference summaries in the DaNewsroom
dataset correspond to isolated article subheadings
with dangling anaphoras, these issues could trans-
fer to generated summaries. A possible way to
remedy this would be to utilize anaphoric informa-
tion, for instance by checking co-references of the
generated summary, and locating errors relating

to anaphoric resolution (Steinberger et al., 2007;
Sukthanker et al., 2020). Also, despite additional
filtering, some reference summaries and articles
in the dataset were still incomplete. Mismatched
or incomplete summary-reference pairs compli-
cate the task of the model, leading to nonsensi-
cal or unrelated outputs: In Appendix B, Table 6,
the model-generated summaries contain factual er-
rors and nonsensical phrases, while the reference
summary appears unrelated to the accompanying
article (full article not included due to copyright).
This is because the article was incompletely sam-
pled, whereby critical information was omitted.
In these cases, comparisons between generated
and reference summaries are illogical. Alternative
quantitative metrics suggest omitting the reference
summary and evaluating performance using only
the original text, for instance by calculating the in-
crease in task performance gained by access to the
generated summary (Vasilyev et al., 2020).

Recent research shows that most quantitative
metrics do not correlate well with human evalua-
tions of generated summaries in important dimen-
sions such as coherence, consistency, fluency, and
relevance (Fabbri et al., 2021; Liu et al., 2017).
Indeed, it has also been argued that there is no
best practice for reliable human evaluation of sum-
maries, and that human evaluations often do not
correlate with other human evaluations of the same
summaries (Fabbri et al., 2021; Iskender et al.,
2021). Though human evaluations are often pre-
sented as the gold standard, evaluator demograph-
ics, expertise, and task design hugely affect hu-
man evaluations (Harman and Over, 2004; Louis
and Nenkova, 2013). Different summaries may fo-
cus on different aspects of the same article, with
no way to objectively conclude which is better.
Consequently, future research might benefit from
optimizing reference-free metrics to evaluate gen-
erated summaries independent of ”gold-standard”
counterparts.

5.2.2 Quantifying abstractiveness
There is no clear definition of what counts as an
‘abstractive summarization model’. Many stud-
ies on abstractive summarization do not report
or evaluate the density of the summaries in their
dataset, or of their model-generated summaries. A
high ROUGE score could correspond to a predom-
inantly extractive or simply very short reference
or generated summary, thereby inflating ROUGE
performance. We note that our model-generated
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summaries have a wide range of density scores,
with the largest model producing more abstractive
(low-density) summaries. Since abstractive sum-
marization allows high lexical diversity, it is not
likely to achieve as high ROUGE scores as extrac-
tive summarizers, and thereby low ROUGE per-
formance need not be strongly indicative of poor
abstractive summarization.

Finally, existing work tends not to present trans-
lated examples of model output. While translation
might not be the optimal reflection of non-English
summarization, it allows readers to evaluate an
approximation of the qualitative results. Lack of
transparency, therefore, makes it extremely chal-
lenging to evaluate whether the reported sum-
marizers are truly abstractive, or whether high
ROUGE performance reflects extractive, short or
repetitive summaries.

5.3 Model limitations
5.3.1 Factors limiting practical

implementation
Automatic summarization requires the model to be
factual to the source text, especially for real-world
practical implementations. However, none of the
evaluated metrics considers the factual correct-
ness of a generated summary (Falke et al., 2019)
and does not reward the model for being factually
faithful (Maynez et al., 2020).

Since DanSumT5 sometimes generates sum-
maries with obviously incorrect content (see Ap-
pendix B), it is unsuitable for practical imple-
mentations where factual accuracy is important,
such as summaries of news articles. One pos-
sible solution could be to use a separate system
to detect such errors in the generated summaries
(Falke et al., 2019), such as already existing sys-
tems for detection of errors related to quantities
(Zhao et al., 2020). Fine-tuning according to this
metric, or even using it for reinforcement learn-
ing, could alleviate concerns around accuracy and
quality. Another approach to enhancing factual
accuracy uses question asking to evaluate factual
consistency by checking if the generated summary
and article yield the same answer (Wang et al.,
2020). Future work could extend this approach to
Danish.

5.3.2 Data limitations and considerations
Many of the reference summaries suffer from dan-
gling anaphoras since they are scraped from the ar-
ticle’s subheading, often lacking the context of the

title. These were likely not intended to be read as
summaries, or even read in isolation from the arti-
cle’s title. This underlines the importance of data
quality, since it defines the upper limit for model
performance. We found that most of the 100 Dan-
SumT5 summaries inspected for evaluation avoid
dangling anaphoras, likely due to only a minor-
ity of the dataset suffering from this artefact, and
could thus be argued to be better than the reference
summaries in this aspect. For example, in the Ap-
pendix B, Table 5 the reference summary refers to
”the superstar”, while the model summaries men-
tion the actor by name.

The current paper demonstrates that it is possi-
ble to fine-tune a multilingual model to create a
performant text summarization model for a spe-
cific domain of Danish language. Other directions
for future work must therefore include further ex-
perimentation with different datasets. The practi-
cal costs of creating high-quality datasets for this
task are a challenge for a language such as Danish
which is relatively model-rich, compared to sim-
ilarly sized languages, and data-poor in terms of
high-quality data, compared to larger languages.
However, as shown in this paper, good results can
be obtained by fine-tuning a multilingual model on
a web-scraped dataset with minimal data cleaning.

6 Negative Results

During the training of these models, we attempted
a few additional ideas, most of which were shown
to be unpromising. This section briefly describes
these attempts:

1. As suggested by (Abdaoui et al., 2020) we
reduced the model by restricting the vocab-
ulary to Danish and English tokens. Mean-
ingful tokens were estimated using a filtered
version of the Danish Gigaword (Strømberg-
Derczynski et al., 2021)3 and English Giga-
word (Graff and Cieri, 2003). Reducing the
model size allowed us to train these mod-
els with a larger batch size. While the re-
duced size led to similar performance to the
original architecture for the small and base-
sized models, the large pruned model proved
highly unstable during training.

2. During the early phases of development, we
also experimented with the recently released

3More information about the specific dataset can
be found at https://huggingface.co/datasets/
DDSC/dagw reddit filtered v1.0.0
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Danish T5 model, DanT5 (Ciosici and Der-
czynski, 2022). As part of the initial grid
search over hyperparameters, we discovered
that this monolingual model performed con-
sistently worse compared to the similarly
sized multilingual mT5 models. Table 1 illus-
trates this disparity on the full dataset. This
could be due to DanT5’s novel warm-starting
approach which utilises an English T5 model
checkpoint, but further experimentation is re-
quired in this area.

3. This work seeks to train models for abstrac-
tive summarization and thus filters out extrac-
tive summaries from the training data based
on a density threshold. We experimented
with lowering the density threshold for the
training set summaries to include increas-
ingly more extractive summaries. While we
obtained a lower loss when including moder-
ately more extractive references, the resulting
summaries were notably more extractive.

4. In an attempt to avoid potential overfitting
on the filtered dataset, we also experimented
with training a large mT5 model for only 1
epoch using similar hyperparameters with the
exception of a dropout rate of 0.1. In the
human evaluation, this model placed slightly
below the base-sized model of DanSumT5.

7 Conclusion

This paper presents DanSumT5, a set of mod-
els achieving state-of-the-art results in automatic
abstractive summarization for Danish news arti-
cles. These results were achieved by fine-tuning
mT5 models and implementing more thorough
cleaning of the DaNewsroom dataset. We present
state-of-the-art ROUGE and BERTScore perfor-
mance for Danish abstractive summarization with
our DanSumT5large. Human inspection of the rel-
ative quality of the generated summaries revealed
that they were generally grammatical and coher-
ent. We discuss several limitations of the quan-
titative metrics, emphasizing that ROUGE penal-
izes lexical diversity inherent to abstractive sum-
marization, while high quantitative performance
could obscure low qualitative performance. This
emphasizes the need for more transparency in the
field, and we argue that research should include
more nuanced metrics, as well as manual eval-
uation of the density and overall quality of the

model output. Limitations of our work include
data quality and the prevalence of factual errors in
the generated summaries. All code related to this
project is open-sourced via Github4, and the model
is made freely available via Huggingface for pub-
lic use5.
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Appendices
A Hyperparameters appendix

Table 3 shows the hyperparameter search space.
For sampling, we use the Tree-structured Parzen
Estimator implemented in Optuna. The search
showed only a few consistent trends, and based
on this, we chose a learning rate of 3.0 × 10−4,
a dropout rate of 0.01, a polynomial learning rate,
and the mT5 model set.

For more information, see the Weights and
Biases dashboard at https://tinyurl.com/
3zfuf6vx.

Models DanT5small, mT5small

Learning Rate 0-0.1

Learning Rate Schedule Polynomial, Linear, Cosine, Constant

No Repeat N-Gram Size 3-5

Length Penalty 4-7

Max Grad Norm 1-10

Data Quality {True, False}

Table 3: Hyperparameters for Model Search.
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B Examples of generated summaries
appendix

This appendix consists of five randomly sampled
examples of automated summaries generated by
our models, along with the corresponding refer-
ence summary from the DaNewsroom dataset.
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Origin Summary

Reference Viborg-Esbjerg 0-5 Et hattrick fra den tidligere OB-spiller Rajko Lekic
sender Esbjerg på førstepladsen i Superligaen.
Viborg-Esbjerg 0-5 A hat-trick from former OB player Rajko Lekic sends
Esbjerg to first place in the Super League.

DanSumT5large Esbjerg fører nu Superligaen efter to sejre på stribe og en 5-0-sejr over
Viborg på egen bane.
Esbjerg now leads the Super League after two wins in a row and a 5-0
win over Viborg at home.

DanSumT5base Esbjerg satte Viborg på plads med en 5-0 sejr over Esbjerg, der dog
stadig har svært ved at score i de seneste to kampe i Superligaen. Esb-
jerg put Viborg in their place with a 5-0 victory over Esbjerg, who still
have difficulty scoring in the last two games in the Super League.

DanSumT5small Esbjerg satte Viborg på plads i Superligaen efter en skuffende 7.-plads.
Viborg er ude af sæsonen med en 6-0-sejr på 6-0 over Viborg. - Sport
Esbjerg put Viborg in place in the Super League after a disappointing
7th place. Viborg is out of the season with a 6-0 win of 6-0 over Viborg.
- Sports
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Origin Summary

Reference Superstjernen havde sine hunde med til Australien på ulovlig vis – det
kan komme til at koste dyrt
The superstar brought his dogs to Australia illegally – it could be ex-
pensive

DanSumT5large Hollywood-stjernen risikerer fængselsstraf for at have smuglet sine to
hunde til Australien, hvor han filmede med ”Pirates of the Caribbean”-
filmene. • Johnny Depp og Amber Heard sender hundene hjem • Billed-
serie: Johnny Deeps venner i Australien • Depp: Jeg elsker dem • Poli-
tiker: De er slemme at smide os ud • Politi: De elsker hundene • Politiet:
De har svært ved at slippe for straf • Depps hunde er farlige for
The Hollywood star faces jail time for smuggling his two dogs to Aus-
tralia, where he filmed the ”Pirates of the Caribbean” movies. • Johnny
Depp and Amber Heard send the dogs home • Photo series: Johnny
Depp’s friends in Australia • Depp: I love them • Politician: They are
mean to throw us out • Police: They love the dogs • Police: They have a
hard time escaping punishment • Depp’s dogs are dangerous to

DanSumT5base Johnny Depp og hans kone Amber Heards ulovlige medbringelse af
deres hunde til Australien kan koste dem op til ti års fængsel. - Kendte
Johnny Depp and his wife Amber Heard’s illegal bringing of their dogs
to Australia could cost them up to ten years in prison. - Famous people

DanSumT5small Johnny Depps ulovlige medbringning af deres to hunde i Australien må
måske gå i fængsel for deres ulovlig medbringing.
- Film og TV
Johnny Depp’s illegal bringing of their two dogs in Australia may have
to go to jail for their illegal bringing. - Movies and TV
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Origin Summary

Reference Hvad får voksne mennesker over 40 til at bruge flere timer om ugen
på at vække eventyret til live i den virtuelle verden? De gængse svar på
spørgsmålet bunder i fordomme, mener to inkarnerede computerspillere.
Her følger deres egen forklaring fra det virtuelle univers
What makes adults over 40 spend several hours a week bringing the
adventure to life in the virtual world? The usual answers to the ques-
tion are rooted in prejudice, say two inveterate computer gamers. Here
follows their own explanation from the virtual universe

DanSumT5large Interview: Det er svært at forestille sig, at livet uden for murene i Dan-
mark kan blive bedre, end man umiddelbart skulle tro. Det kræver
i hvert fald en særlig indsats, siger forfatteren Mathiador, der er ak-
tuel med bogen ”Kroniken” om en ung mands liv i skoven bagved ved
Grønland. Han fortæller, hvordan det er at blive klogere på livet ude i
verden, og hvorfor det er sådan en
Interview: It is hard to imagine that life outside the walls of Denmark
can be better than one would initially think. In any case, it requires a
special effort, says the author Mathiador, who is current with the book
”The Chronicle” about a young man’s life in the forest behind in Green-
land. He tells what it is like to learn more about life out in the world,
and why it is such a

DanSumT5base Interview: Journalisten Mathiador er en af de danske forfattere, der
har skrevet bogen ”journalisten”, der handler om livet som journalist.
Han er aktuel med en ny bog om bogen, der er fyldt med højdepunkter,
fortæller han i denne uges udgave af’Journalisten’. I dag er han aktuel i
en bog, som er baseret på bogen ’Avisen’, som handler direkte om jour-
nalisten og skuespilleren, der skriver klummer i Lokalavisen Assens.
Interview: The journalist Mathiador is one of the Danish authors who
wrote the book ”the journalist”, which is about life as a journalist. He
is current with a new book about the book, which is full of highlights,
he tells in this week’s edition of ’Journalisten’. Today he is current in
a book which is based on the book ’Avisen’, which is directly about the
journalist and actor who writes columns in the local newspaper Assens.

DanSumT5small Den danske forfatter og forfatter Mathiador fortæller om sin evne til at
blive kendt for sin kærlighed til livet i Danmark. Han er kendt som ”
Journalisten”, men i dag er han aktuel med at gøre det svært for ham at
komme i gang med at finde en plads i rummet, hvor han er i centrum af
en række af verdens mest prestigefyldte kunstnere, der elsker at skabe
kærligheden. Det er en sjælden kærlighed, når han rejser sig til landet.
The Danish writer and author Mathiador talks about his ability to be-
come known for his love of life in Denmark. He is known as ”The Jour-
nalist”, but today he is current with making it difficult for him to start
finding a place in the room where he is at the center of a number of the
world’s most prestigious artists who love to create love. It is a rare love
when he stands up to the country.
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Origin Summary
Reference De danske vikinger leverede en fejlfri præstation under den første prøve

ved Eurovision. Men ikke alle elementer fungerede optimalt.
The Danish Vikings delivered a flawless performance during the first
rehearsal at Eurovision. But not all elements worked optimally.

DanSumT5large Det danske Grand Prix-hold havde problemer med sneen til prøverne
tirsdag eftermiddag.
The Danish Grand Prix team had problems with the snow for the re-
hearsals Tuesday afternoon.

DanSumT5base Rasmussen og hans vikinger havde tirsdag første prøve i Eurovision
Song Contest, men sneen var det største problem. Se videoen her på
siden og læs mere.
Rasmussen and his Vikings had their first rehearsal in the Eurovision
Song Contest on Tuesday, but the snow was the biggest problem. Watch
the video on this page and read more.

DanSumT5small Det danske Grand Prix-håb Rasmussen blev tirsdag eftermiddag ramt
af en snestorm, der ifølge DRs underholdningschef blev en rigtig god
oplevelse for de danske deltagere i Melodi grand Prix i Portugal.
The Danish Grand Prix hope Rasmussen was hit by a snowstorm on
Tuesday afternoon, which according to DR’s entertainment manager
was a really good experience for the Danish participants in the Melodi
Grand Prix in Portugal.
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Origin Summary
Reference Flere anmeldere roser filmen om forhistorien til Harry Potter for at være

underholdende og velsmurt.
Several reviewers praise the film about the prequel to Harry Potter for
being entertaining and well-oiled.

DanSumT5large J. K. Rowlings Potter-filmatisering får ros af anmelderne, der roser in-
struktøren, men savner dramatik og en knap så nuttet hovedrolleinde-
haver.
J. K. Rowling’s Potter film adaptation is praised by critics, who praise
the director but missing drama and a not-so-cute lead.

DanSumT5base Harry Potter-fans kan godt begynde at glæde sig, hvis de følger in-
struktøren David Yates’ særlige præstation i ’Fantastiske skabninger og
hvor de findes’, mener flere anmeldere - og det er svært at se filmen,
siger de.
Harry Potter fans can start to rejoice if they follow the director David
Yates’ special performance in ’Fantastic Beasts and Where to Find
Them’, several reviewers believe - and it is difficult to watch the film,
they say.

DanSumT5small J.K. Rowlings manuskript til Harry Potter-serien er særligt hendes præs-
tation, men filmen er i fuld gang med at underholde publikum.
J. K. Rowling’s screenplay for the Harry Potter series is especially her
achievement, but the film is busy entertaining audiences.
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Abstract
Learning a new language is often difficult,
especially practising it independently. The
main issue with self-study is the absence
of accurate feedback from a teacher, which
would enable students to learn unfamil-
iar languages. In recent years, with ad-
vances in Artificial Intelligence and Auto-
matic Speech Recognition, it has become
possible to build applications that can pro-
vide valuable feedback on the users’ pro-
nunciation. In this paper, we introduce
the CaptainA app explicitly developed to
aid students in practising their Finnish pro-
nunciation on handheld devices. Our app
is a valuable resource for immigrants who
are busy with school or work, and it helps
them integrate faster into society. Fur-
thermore, by providing this service for L2
speakers and collecting their data, we can
continuously improve our system and pro-
vide better aid in the future.

1 Introduction

Proper pronunciation is needed to build confidence
in second language (L2) learners and is essential
for effective communication and language acqui-
sition (Gilakjani, 2012). L2 adult learners, who
might not have regular exposure to the target lan-
guage during their everyday life, may lack suffi-
cient opportunities to practise and receive correc-
tive feedback.

With recent advances in Automatic Speech
Recognition (ASR) technologies, computer-
assisted pronunciation training (CAPT) apps have
become more and more effective in helping L2
learners. These apps can immediately give the
users feedback on their pronunciation at their
convenience. However, while popular languages
such as English have many pronunciation ap-
plications (Kholis, 2021; Fouz-González, 2020;

Wellocution, 2023), there are fewer resources
available for Finnish L2 learners. To the best
of our knowledge, there was no similar app for
CAPT in Finnish before this work.

The main challenge in developing CAPT ap-
plications for Finnish and other low-resource lan-
guages is the lack of data from L2 speakers. Fur-
thermore, if the L2 corpus is not annotated at the
phoneme level, it makes developing an app for
mispronunciation detection (MD) more compli-
cated. We designed our CaptainA app to function
as well as possible using all available data and add
the possibility of collecting users’ data after the
pilot phase (figure 1). Such information will help
evaluate the app’s effectiveness for language train-
ing and improve our model’s performance to better
address students’ needs in later versions.

Figure 1: CaptainA app processing flowchart

Recent works from Wu et al. (2021) and Xu
et al. (2021) have demonstrated the effectiveness
of end-to-end systems with Transformer-based ar-
chitectures for English MD. While we focus more
on practicality, we use a similar approach without
a detailed annotation dataset for Finnish.
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2 Dataset

One of the major challenges that we needed to
overcome was the limited data at our disposal. We
should note that for the English language, sev-
eral datasets are available with phoneme level an-
notation (Zhao et al., 2018; Zhang et al., 2021;
Weinberger, 2015). Unfortunately, no such pub-
lic Finnish resources exist. Thus we opted to use
the data collected during the Digitala project (Al-
Ghezi et al., 2023) as our primary corpus. This
dataset includes ratings from language experts on
pronunciation, fluency, lexical, grammatical and
the holistic overall level for each audio file, but
it does not have phoneme level information.

The Digitala corpus consists of free-form and
read-aloud speech, from which we selected 768
short read-aloud samples as those matched our in-
tended scenario most closely. This gave us ap-
proximately 60 minutes of audio with the overall
pronunciation ratings ranging from 1 to 4, with 4
being the best. The rating is for the whole pro-
nunciation task and not individual phonemes. The
lowest pronunciation level (1) contains approxi-
mately 2,200 phones, the highest one (4) has only
576 phones, while the remaining 14,000 phones
are split almost equally between levels 2 and 3.
The corpus was also transcribed by third parties
who were not language experts.

The small size of the Digitala corpus and the
lack of phoneme annotation meant it was not suit-
able for training or finetuning for the MD task.
However, as there were no better alternatives, we
used the Digitala read-aloud transcript as a re-
placement for the evaluation set. Consequently,
we needed another dataset to train our models. Af-
ter some preliminary experiments, we selected the
Finnish Parliament corpus (Kielipankki, 2022), a
publicly available corpus without any statistically
significant use of dialects (Virkkunen et al., 2023).
By training our models for the ASR task with
suitably chosen native speakers’ samples, we ex-
pected the models could learn the features of na-
tive Finnish speech and have the potential to iden-
tify deviations made by L2 speakers. As a first
step, we filtered the most suitable portion of the
data, by selecting speeches with low or average
speaking rates (which is the most similar to how
L2 learners speak). As an additional step, we
also restricted the data by excluding older (50+)
speakers, since our target audience is generally
younger immigrants. The last step in data prepara-

tion was the splitting of the 281 hours of data into
75% for training, and 25% for tuning hyperparam-
eters and evaluating the speech recognition mod-
els. We should note that we also used two publicly
available reference models, called Finnish-NLP1

and Finnish-NLP-S 2. Both have been trained with
228 hours of Finnish Parliament data and approx-
imately 47 hours of data from other sources.

3 Implementation

3.1 Server

The core technology inside our server is based on
wav2vec 2.0 (Baevski et al., 2020), which was al-
ready proven to work exceptionally well even with
very limited amount of data (Wu et al., 2021; Xu
et al., 2021). We selected XLS-R (Babu et al.,
2022) and Uralic, a subset of VoxPopuli (Wang
et al., 2021), as our pre-train models, and use
the state-of-the-art model in Finnsh ASR, Finnish-
NLP, as our baseline. Except for entropy β, all
models used the same hyperparameters, and there
is no language model used for decoding.

Leveraging the phonetic nature of the Finnish
language, where each phoneme is represented by
exactly one grapheme3, we can use graphemes
as output units during the ASR training proce-
dure. Once the ASR models were trained, we used
the forced alignment algorithm for Connection-
ist Temporal Classification (CTC) from Kürzinger
et al. (2020) to determine the success of pronun-
ciation. This algorithm provides both time align-
ment and a probability score for each grapheme.
Inspired by the traditional Goodness of Pronunci-
ation method (Witt and Young, 2000), we use such
information to generate feedback for the user.

One major issue we had to overcome was the
overconfidence of the wav2vec 2.0 models. As it
is well known, the CTC algorithm often results in
spiky outputs (Zeyer et al., 2021), which in terms
would mean that we can only provide binary (cor-
rect/incorrect) feedback to the user. Naturally, a
good pronunciation training app should give more
detailed information (Engwall and Bälter, 2007),
thus, reducing the peakedness of the outputs was
important. To achieve this, we chose the negative
maximum entropy regularization technique Liu

1https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-
finnish-lm-v2

2https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-
300m-finnish-lm

3except “nk” [Nk] and “ng” [N:]
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Model Vocabulary Parameters Entropy β CER Recall Precision F1

Finnish-NLP
Grapheme

1bil
0%

15.4% 59.8% 33.3% 42.8%
Finnish-NLP-S 300mil 22.3% 65.0% 26.1% 37.2%
XLS-R Grapheme

300mil

0% 20.9% 61.1% 26.7% 37.2%
XLS-R-5 Grapheme 5% 19.5% 63.1% 30.0% 40.6%
XLS-R-10 Grapheme 10% 21.2% 63.1% 29.4% 40.1%
XLS-R-10-P Phoneme 10% 21.3% 63.2% 27.3% 38.1%
Uralic-10 Grapheme 10% 30.4% 64.3% 23.4% 34.3%
Uralic-10-P Phoneme 10% 29.6% 66.8% 22.6% 33.8%

Table 1: Speech models’ performance in ASR and MD on Digitala read-aloud set.

et al. (2018) during training, which redistributes
β% of the total probability mass uniformly to all
outputs, ensuring the smoothness of the final pre-
dictions.

3.2 Mobile app

We use Unity (Juliani et al., 2020) as our develop-
ment engine. With Unity we can simultaneously
publish our CaptainA app to multiple platforms:
Android, iOS and Windows. Our app contains var-
ious study materials, and Unity Editor allows us
to easily integrate those multimedia content into
the app. We make use of the engine to visual-
ize our pronunciation instructions with animations
and limit the rest to simple UI, thus lowering the
application’s power consumption.

Arapakis et al. (2021) estimated a 7 seconds
threshold where mobile (web search) users’ expe-
rience decreases significantly. To maintain a rea-
sonable response time, we use a manual VAD sys-
tem to remove the silent parts from the recording:
the users must press and hold the record button to
record their audio samples.

The app supports two modes; the “Topic” mode
supplies curated words and phrases for various
topics (Easy, Normal, Hard, Greetings, Grocery,
similar vowels pair, or classic Finnish literature...),
often along with English translation and audio
samples from native speakers. On the other hand,
the “Freestyle” mode enables users to practice any
word or phrase by first prompting for the text that
the user will attempt to pronounce.

The score for each phoneme is saved locally, en-
abling users to track their progress. The data is
valuable in developing speech applications for L2
speakers. In the future, with the users’ permission,
we can collect their records to evaluate the app’s
effectiveness and other metadata.

CaptainA also provides pronunciation instruc-

tions via sample audios, pictures, animations and
videos, which are beneficial for users during self-
practice (Engwall and Bälter, 2007). The audio,
photo and animation materials are directly stored
in the app, while the videos are accessible via a
public, ad-free platform. We should note that ex-
ternal links would generally have an adverse effect
on user experience, still we choose this solution to
supply high-quality tutorial videos while keeping
the size of the app reasonably small.

4 Results

To validate our models, we computed their charac-
ter error rate (CER), Recall (percentage of mispro-
nunciations correctly detected) and Precision (the
ratio of detected mispronunciations actually being
mispronunciation, according to a native Finnish
listener) using the Digitala read-aloud corpus. The
empirical results can be seen in Table 1. The first
thing that we noticed is that the large Finnish-
NLP produced significantly lower and the small
Finnish-NLP-S higher CER compared to the ma-
jority of our models. Next, we compared the mod-
els in terms of MD and saw that Finnish-NLP
yielded the highest overall F1 score. However,
the smaller XLS-R-5 and XLS-R-10 managed to
achieve comparable results with the help of en-
tropy regularization.

The benefit of entropy regularization is seen
when we increase the value of β and note that both
Recall and Precision also increase. From our ex-
periment, we found that β between 5% and 10%
produces the best result for MD task. Looking at
the detailed breakdown in table 2, we also found
that, the smaller XLS-R outperformed the Finnish-
NLP in Recall for pronunciation level 1 samples,
while slightly falling behind in Precision. The gap
in Precision widens as the speakers’ pronuncia-
tion skill improves. Considering the practicality of
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Langs Train-sources Type Train-size Architecture Params %Unk. Subw. Reference
ratio

LLM

DANISH-BERT-botxo DA web, wiki, subtitles
-D+L

10gb Bert-base 111M 0.15 1.28 github.com/certainlyio/nordicbert
RØBÆRTA-base-danish DA web ? Roberta-base 125M 0.00 1.58 hf.co/DDSC/roberta-base-danish
ÆLÆCTRA-danish-small-cased DA legal, social, web, wiki, news 1,045M words Electra-small 14M 0.04 1.39 github.com/MalteHB/-l-ctra

BERTWEET-Base EN social

+D-L

850M tweets Roberta-base 135M 0.10 1.65 Nguyen et al. (2020)
BERTWEET-Large EN social 850M tweets Roberta-large 355M 0.00 1.90 Nguyen et al. (2020)
TWITTER-ROBerta-base EN social 58M tweets Roberta-base 125M 0.00 1.90 Barbieri et al. (2020)

TWITTER-XLM -roberta-base 30+ social
+D-L

198M tweets XLM-r base 278M 0.01 1.45 Barbieri et al. (2022)
BERNICE 66 social 2.5B tweets Roberta-base 278M 0.00 1.44 DeLucia et al. (2022)
TWHIN-bert-large 100+ social 7.5B tweets new 561M 0.01 1.45 Zhang et al. (2022)

TREEBANK

LINES EN �ction, non�ction, spoken -D-L 57,372 words Ahrenberg (2015)
TWEEBANK2 EN social +D-L 24,753 words Liu et al. (2018)
DDT DA �ction, non�ction, spoken, news -D+L 80,378 words Johannsen et al. (2015)

Table 1: An overview of the used language models and POS �ne-tuning sets. %Unk. is the percentage of
unknown subwords in our development data; Subw. ratio is the average amount of subwords per word.
Capitalized name parts are handles.

COMMENTS TOKENS TYPES TTR

Dev 429 4,000 1,520 0.38
Test 430 4,028 1,519 0.38

Total 859 8,028 2,512 0.31

Table 2: DanTok dataset statistics.TTR is type-
token ratio.

Sanguinetti et al. (2020). We used the Danish dic-
tionary3 for cross-referencing, as many originally
English words are now considered Danish.

Certainty Following Bassignana and Plank
(2022), the annotator's certainty of a POS tag was
annotated as either 0 (certain) or 1 (uncertain).

2.3 DanTok Statistics

Our �nal dataset consists of 8,028 tokens and
2,512 unique types (Table 2). A comparative POS
tag distribution is given in Appendix C. In Dan-
Tok, we observe that 16.66% of the tokens re-
quired normalization, 5.03% were code-switched
(all to English), and 5.12% had annotation uncer-
tainty. Overall, these annotation layers allow us to
investigate how Danish is used on contemporary
internet platforms with respect to syntax, and how
sociolinguistic factors such as code-switching can
impact downstream performance.

3 Experiments

3.1 Setup

For a highly specialized dataset such as DanTok,
transfer learning is key, as there is no training data

3https://dsn.dk/ordboeger/
retskrivningsordbogen/

matching the domain and language. We therefore
investigated 36 combinations of in/out-of-domain
(+D/-D)4 and in/out-of-language (+L/-L)5 training
data and large language models (LLMs). We se-
lected English as the -L transfer language due to
dataset and language model availability. All ex-
periments were replicated on the normalized ver-
sion of DanTok. The Danish LLMs are trained on
web data, including some forum data, but none
are explicitly optimized for social media. The
LLMs and training sets used in our experiments
are given in Table 1. All the models consist of an
LLM encoder plus a linear layer for POS label-
ing (both fully �netuned) and are implemented in
MaChAmp v0.4 (van der Goot et al., 2021b) us-
ing default hyperparameters with the development
data for model selection. To avoid over�tting on
DanTok, we use the transfer data's development
set for model selection (Artetxe et al., 2020).

3.2 Results

Our main results are given in Table 3. Unsurpris-
ingly, the combination of in-domain, in-language
(+D+L) training data and LLMs results in the
best overall performance. In general, having in-
language data is more bene�cial than in-domain
data; however, when training on a single dataset,
the in-domain English dataset (+D-L) leads to sur-
prisingly high performance with the multilingual
language models, even outperforming all scores
obtained with the Danish training data (-D+L).
One reason for this could be the relatively high
frequency of code-switched tokens (5%). Inter-

4+D: social media data, -D: data from other domains.
5+L: trained on Danish, -L: trained on other languages.
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M ODEL

DATA -D-L +D-L -D+L +D-L + -D+L
L INES TWB DDT TWB+DDT

-D
+

L DANISH-BERT 44.02 49.60 77.98 84.08
RØBÆRTA 58.43 60.82 70.17 78.72

ÆLÆCTRA 49.50 63.30 74.20 84.95

+
D

-L

BERTWEET-B 27.80 38.00 67.90 79.47
BERTWEET-L 25.92 36.55 67.40 81.50

TWITTER-ROB 25.02 37.30 64.05 79.40

+
D

+
L TWITTER-XLM 67.58 77.15 72.15 83.28

BERNICE 70.45 78.22 72.95 83.28
TWHIN 69.30 81.38 72.65 85.92

Table 3: POS tagging accuracy on the DanTok
development set using combinations of in/out-of-
domain (+D/-D) and in/out-of-language (+L/-L)
models and training data, plus a concatenation
covering +D and +L.

M ODEL

DATA -D-L +D-L -D+L +D-L + -D+L
L INES TWB DDT TWB+DDT

-D
+

L DANISH-BERT 42.69 48.12 80.19 85.75
RØBÆRTA 60.79 63.48 73.80 82.36

ÆLÆCTRA 50.87 61.69 78.48 88.45

+
D

-L

BERTWEET-B 28.24 38.48 70.88 82.83
BERTWEET-L 27.46 37.48 70.98 85.35

TWITTER-ROB 25.75 38.13 68.76 84.19

+
D

+
L TWITTER-XLM 69.85 80.12 75.16 86.26

BERNICE 72.01 80.27 75.61 85.15
TWHIN 70.95 83.09 75.33 88.80

Table 4: POS tagging accuracy on the normalized
DanTok development set using combinations of
in/out-of-domain (+D/-D) and in/out-of-language
(+L/-L) models and training data.

estingly, model size (see Table 1) is not a good
predictor of performance: Although the largest
model,TWHIN, obtains the highest score overall,
it requires large amounts of pre-training data and
a specialized pre-training objective based on rich
social engagements (Zhang et al., 2022). Mean-
while, ÆLÆCTRA's performance is very close, de-
spite being 41 times smaller. Given these results,
we conclude that the best strategy for obtaining
a high-quality tagger would be to use domain-
speci�c models when available (even if multilin-
gual) and use in-domain �ne-tuning data even if in
another language (+ in-language if available).

Table 4 shows that using normalized data gives
a consistent boost of 2–5 % points across all se-
tups, with only a few exceptions. Furthermore,
performance varies less compared to the non-
normalized data (Table 3).

LLM - NORM +NORM

TWHIN 86.05 88.18
ÆLÆCTRA 85.80 88.55

Table 5: Results on the DanTok test set of our two
best models trained on TWEEBANK and DDT.

On Test Data TWHIN performs similarly on the
development and test data. After normalization,
the smaller ÆLÆCTRA model outperformsTWHIN

slightly (Table 5).

4 Analysis

4.1 Subword Analysis

The Subword ratio (Table 1) does not show a
clear correlation with performance, so we quali-
tatively evaluate the subword segmentation of the
two best-performing models,TWHIN and ÆLÆC-
TRA. Surprisingly, we �nd that the multilin-
gual model (TWHIN) seems more capable of inter-
preting in�ection suf�xes than the Danish model.
It correctly splits morphemes indicating de�nite-
ness, plurality, or adverbial status, which the Dan-
ish model sometimes fails to do. Examples of
this arebatterier (“batteries”) split intobatteri-
er (“batteri-es”) andd	arligt (“badly”) split into
d	arlig-t (“bad-ly”) only by the multilingual model,
whereas the Danish model does not split these to-
kens at all.

4.2 Strati�ed Analysis

We explore the accuracy on different subsets of the
development set according to our additional anno-
tation layers (Table 6). We observe that the mod-
els, perhaps unsurprisingly, struggle more with
tokens that were normalized, as well as tokens
that annotators were also uncertain of. For code-
switched tokens, we observe a large performance
drop for the in-language LLM (ÆLÆCTRA) de-
spite �ne-tuning on English in-domain data. Sur-
prisingly, the multilingual model, likewise �ne-
tuned on Danish and English in-domain data, also
struggles with code-switched tokens.

4.3 Qualitative Error Analysis

The most frequent tag confusions for the best
ÆLÆCTRA model are given in Figure 2.TWHIN

follows a similar pattern. Over half of the er-
rors made by each tagger on the original data are
shared with the other tagger. Some of the errors
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LLM POS CERTAINTY NORMALIZED IN FINE-TUNE VOCAB CODE-SWITCHED
n - + n - + n - + n - +

TWHIN 203 62.1 87.2 3,338 88.9 70.8 1,234 83.3 87.1 3,808 86.3 78.1
ÆLÆCTRA 58.6 86.4 88.6 66.8 83.1 85.8 86.1 62.5

Table 6: Strati�ed accuracy on the 4,000-token dev set of the two best models trained on TWEEBANK

and DDT.n is the number of tokens in the - category, e.g., 1,234 words were not seen during �ne-tuning.
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Figure 2: The 11 most frequent tag confusions for
the ÆLÆCTRA model.

are caused by erroneous annotations in DanTok.
The most frequent error types can be categorized
as follows:

VERB vs. AUX In DanTok, the present tense of
the copula verbvære(“to be”) has been labeled
VERBwhen it is the only verb in the sentence.
However, the models prefer the tagAUXin 91.6%
and 85.0% of cases, respectively. This seems to
be in line with the UPOS guidelines and is likely
a result of the annotation ofer in theDDT training
set; here, 78.85% ofer tokens have been tagged as
AUX(the remaining being tagged asVERB).

Pronoun Confusions Tokens that may be multi-
ple parts of speech confuse the taggers. The most
frequent issue isPRONandDETconfusion, which
is arguably non-trivial in Danish6. PRONandADV
confusion is also prevalent; e.g., the tokender can
be either a relativePRON, the preliminary subject
“there”, or anADVof place. In the erroneous pre-
dictions,der is generally tagged asADV.

Proper Noun Inconsistencies Orthographic
variations in social media language throw off the
models. For example, names written in lowercase
are often tagged asNOUNrather thanPROPN.
On the normalized data,PROPN(gold) ! NOUN
errors decreased by 75% for ÆLÆCTRA and 62%

6Consider, e.g.,den/PRON bog/NOUN vs. den/DET
gamle/ADJ bog/NOUN(“ that book” vs. “the old book”).

for TWHIN. Likewise, when capitalized names
are used in context, the models labeled them as
PROPN, whereas we annotated the syntactical use
of the token, e.g.,�lming a TikTok/NOUN.

ADV vs. ADP These are errors made on tokens
like af (“of, off”) and for (“for, too”) which may
function as both prepositions and adverbs7. In a
few cases, the models do not recognize whenfor
is used as an adverb of degree.

ADJ vs. ADV For adjectives that end in-t, the
models seem to prefer theADVtag. While-t can
indicate an adverb, it may also indicate the gender
of an adjective. The tokenher (“here”), an ad-
verb, also poses a challenge when it occurs before
a noun, e.g.den her bog(“this book”). In such
cases, the models seem to prefer the erroneous tag
sequenceden/DET her/ADJ bog/NOUN.

Interjection Confusions Tokens that are meant
to imitate pronunciation have been labeled as
INTJ in DanTok, but the models seem to pre-
fer a more concrete labeling8. The models also
preferINTJ for tokens with character repetition,
whereas we tagged these tokens according to their
presumed intended function.

5 Conclusion

We presented DanTok, the �rst linguistically an-
notated TikTok dataset and the �rst Danish social
media dataset with POS annotation. We conducted
an extensive analysis of how to best transfer to a
highly specialized domain in a mid-resource lan-
guage, and we demonstrated that LLMs bene�t
from common approaches such as normalization,
while struggling with the same cases as the human
annotators. Simultaneously, our results show that
although in-language data and models form the
basis for high performance, in-domain data, even
from another language, should not be neglected in
order to achieve state-of-the-art results.

7For may also be used as a conjunction.
8E.g., “It's nuclear, notnucular,” should be tagged as if it

saidnucleartwice.
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Appendix

A Data Statement

The following dataset characteristics are outlined
following Bender and Friedman (2018):

A. CURATION RATIONALE This dataset
aims to provide high-quality, linguistically
annotated data from contemporary Danish
social media, in order to allow for analyses
of how language use is evolving in these spe-
cialized domains, and how NLP methods can
best be adapted to these changes.

B. LANGUAGE VARIETY The data con-
sists of comments from TikTok videos col-
lected in January 2023. The language cov-
ered is manually veri�ed Danish (da-DK)
with code-switching to English (en), and or-
thographic variations speci�c to the social
media domain.

C. SPEAKER DEMOGRAPHIC Nothing
speci�c is known about speaker demograph-
ics, as the data was scraped from 75 videos
spanning different topics.

D. ANNOTATOR DEMOGRAPHIC Three
Master's students, all native Danish speakers,
one with previous experience in dataset cre-
ation for POS tagging. The annotators were
paid for their efforts.

E. SPEECH SITUATION Comments un-
der TikTok videos represent informal, writ-
ten language produced largely spontaneously
with the intent to address the video creator or
express an opinion to other viewers.

F. TEXT CHARACTERISTICS The text
contains domain-speci�c terms and abbrevi-
ations, some degree of typographical and or-
thographic errors as well as occasional el-
lipsis of sentence subject. Code-switching
to English makes up 5% of tokens in the
full dataset (development + test), though the
dataset contains several additional tokens that
exist with the same meaning in both English
and Danish, e.g.,shit andlike.

G. RECORDING QUALITY N/A

H. OTHER N/A

I. PROVENANCE APPENDIX N/A

B Data Collection Details

B.1 Hashtags

Videos from the following 15 hashtags were
scraped during data collection:

• #børn (“children”)

• #danskememes (“Danish memes”)

• #danskhumor (“Danish humor”)

• #glædeligjul (“merry Christmas”)

• #godtnyt	ar (“happy new year”)

• #gørdetselv (“do it yourself”)

• #landsholdet (“the national team”)

• #madlavning (“cooking”)

• #mitarbejde (“my job”)

• #morgenrutine (“morning routine”)

• #parforhold (“relationships”)

• #selvtak (“you're welcome”)

• #sommerprojekt (“summer project”)

• #tobiasrahim (“Tobias Rahim”)

• #træning (“workout”)

B.2 Deduplication Details

Figure 3 plots the number of tokens and their
token-type ratios (TTR) after applying merge
deduplication (Section 2.1) with thresholdt.
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Figure 3: Deduplication using varying merge
thresholds. A lowt merges all comments into one,
a hight contains more tokens and less token-type
diversity.

C POS Tag Distribution

Figure 4 presents an overview of the POS tag
distribution in DanTok compared to the English
L INES, TWEEBANK2 and DDT.
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Abstract

This study evaluates three different
lemmatization approaches to Estonian—
Generative character-level models, Pattern-
based word-level classification models, and
rule-based morphological analysis. Ac-
cording to our experiments, a significantly
smaller Generative model consistently out-
performs the Pattern-based classification
model based on EstBERT. Additionally, we
observe a relatively small overlap in errors
made by all three models, indicating that
an ensemble of different approaches could
lead to improvements.

1 Introduction

Recently, two different approaches have been
adopted for model-based lemmatization. The Gen-
erative approach is based on encoder-decoder mod-
els and they generate the lemma character by char-
acter conditioned on the word form with its relevant
context (Qi et al., 2020; Bergmanis and Goldwater,
2018). The Pattern-based approach treats lemmati-
zation as a classification task (Straka, 2018), where
each class is a transformation rule. When the cor-
rect rule is applied to a word-form, it unambigu-
ously transforms the word-form to its lemma.

Our aim in this paper is to compare the perfor-
mance of these two lemmatization approaches in
Estonian. As a third approach, we also adopt the
Estonian rule-based lemmatizer Vabamorf (Kaalep
and Vaino, 2001). As all three approaches rely on
different formalisms to lemmatization, we are also
interested in the complementarity of these methods.
The Generative approach is the most flexible, it
has the largest search space and therefore it can
occasionally result in hallucinating non-existing
morphological transformations. On the other hand,
the search space of the Pattern-based approach is
much smaller as the model only has to correctly

choose a single transformation class. However, if
the required transformation is not present in the set
of classes then the model is blocked from making
the correct prediction. Similarly, the rule-based
system can be highly precise but if it encounters a
word that is absent from its dictionary the system
can be clueless even if this word is morphologically
highly regular.

One problem with the recently proposed pattern-
based approach implemented in the UDPipe2 is
that the transformation rules mix the casing and
morphological transformations. This means that
for many morphological transformations there will
be two rules in the ruleset—one for the lower-cased
version of the word and another for the same word
with the capital initial letter that needs to be low-
ered for the lemma—which increases the size of
the ruleset considerably and thus artificially com-
plicates the prediction task. Thus, in many cases
a more optimal approach would be to treat casing
separately from the lemmatization. Additionally, in
the UD Estonian treebanks, lemmas include anno-
tations of derivational and compounding processes
marked by special symbols. However, these anno-
tations are inconsistent in the data which confuses
the models and also complicates the transformation
rules. Thus, for our evaluation to be unaffected
by these factors, we also train our models on the
lowercased data with the special symbols removed.

Lemmatization models are commonly token-
based, meaning that if the same word-form (with
its relevant context) appears several times in the
dataset, these repeating instances are kept in the
data and thus the training and evaluation sets re-
flect the natural distribution of words. In contrast,
for the morphological reinflection task, the custom
has been to train type-based models, in which each
lemma and morphological feature combination is
presented to the model only once. We were in-
terested in how well the type-based approach can
work for lemmatization and thus we also experi-
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(a) Generative approach.

(b) Pattern-based approach.

Figure 1: Schematic representations of the genera-
tive and pattern-based approaches.

mented with type-based models where appropriate.
In sum, our contributions in this paper are

first comparing three different lemmatization ap-
proaches on two Estonian datasets with different
domains with the goal of assessing the complemen-
tarity of these systems. Secondly, we investigate
the effect of casing and special symbols as well
as type- vs token-based training and evaluation for
each comparison system.

2 Lemmatization approaches

This section gives a brief overview of the current
approaches to lemmatization.

2.1 Generative approach

Generative lemmatization involves using a neural
network to convert a word form, represented as a
sequence of characters, into its lemma, also repre-
sented as a sequence of characters. The model is
trained to predict the lemma in an auto-regressive
manner, meaning that it makes predictions one char-
acter at a time based on the previously predicted
characters. Commonly, generative lemmatization
makes use of part of speech and morphological in-
formation as context (Qi et al., 2020). However,
it is not necessarily limited to that. For example,
Bergmanis and Goldwater (2018) propose using

surrounding words, subword units, or characters as
context for a given word form.

2.2 Pattern-based approach

In the Pattern-based lemmatization, the model as-
signs a specific transformation class to each word
form, and then uses a predetermined rule to trans-
form the word form to the lemma. The approach
is not bound to any specific method of classifi-
cation, or for that matter, representation of input
features. For instance, in the UDPipe2 (Straka,
2018), the patterns are sequences of string edit op-
erations, while the Spacy’s lemmatizer uses an edit
tree structure as a pattern (Müller et al., 2015).

2.3 Rule- and lexicon-based approaches

Rule-based approaches to lemmatization use var-
ious rule formalisms such as rule cascades or fi-
nite state transducers to transform the word form
into lemma. For instance, the rule-based machine
translation library Apertium also includes rule-
based morphological analyzers for many languages
(Khanna et al., 2021). For the Estonian language,
there is a morphological analyzer called Vabamorf
(Kaalep and Vaino, 2001). In the dictionary-based
approach, the lemma of a word is determined by
looking it up in a special dictionary. The dictio-
nary may include word forms and their POS tags
with morphological features, which can be used to
identify the correct lemma. Such morphologial dic-
tionaries include for instance Unimorph (McCarthy
et al., 2020) and UD Lexicons (Sagot, 2018).

What these approaches have in common is that,
intrinsically, they are not able to fully consider the
context in which a given word form appears, which
prevents them from disambiguating multiple candi-
dates. So, for that purpose they have to rely on sep-
arate tools, such as Hidden Markov Models. They
are also language-specific. The advantage, how-
ever, is that they are not dependent on the amount
of training data, and can be quite precise.

3 Data

We use the Estonian Dependency Treebank (EDT)
and the Estonian Web Treebank (EWT) from the
Universal Dependencies collection version 2.10.
The EDT comprises several genres such as newspa-
per texts, fiction, scientific articles, while the EWT
is composed of texts from internet blogs and fo-
rums. The statistics of both datasets are given in
Table 1.
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train dev test

EDT # of sentences 24633 3125 3214
EDT # of tokens 344953 44686 48532

EWT # of sentences 4579 833 913
EWT # of tokens 55143 10012 13176

Table 1: Number of sentences and tokens per split
in Estonian Dependency Treebank and Estonian
Web Treebank as of version 2.10.

4 Implementation

For the Generative approach, we adopted the neural
transducer by Wu et al. (2020), previously used for
morphological reinflection. Neural transducer is a
character-level transformer, which takes individual
characters of a word form and morphological tags
as input, and outputs the resulting lemma character-
by-character.

For the Pattern-based model we adopted an ap-
proach similar to UDpipe2 (Straka, 2018). We used
a transformer-based token classification model by
fine-tuning EstBERT (Tanvir et al., 2020) to predict
the correct transformation class (form→ lemma)
for every token in a sentence. Our model uses Hug-
gingFace (Wolf et al., 2020) TokenClassification
implementation. Moreover, we reuse the code to
generate transformation classes from UDpipe2.1

For the rule-based approach, we adopted
the Estonian rule-based morphological analyzer
Vabamorf (Kaalep and Vaino, 2001). We used
Vabamorf via EstNLTK, which is a library that
provides an API to various Estonian language tech-
nology tools (Orasmaa et al., 2016). We utilized
Vabamorf’s HMM-based disambiguation capabili-
ties to output a single lemma for each token.

5 Results

Tables 2 and 3 show the results on the EDT and
EWT validation sets respectively. Overall, the
Generative model (in the token-based training set-
ting, see below) outperforms both the Pattern-
based model and the rule-based Vabamorf on both
datasets.

The first column (Original) in Table 2 shows
results on the EDT data in its original case sensi-
tive form and including special symbols marking
derivation and compounding. The second column

1https://github.com/ufal/udpipe/blob/
udpipe-2/udpipe2_dataset.py

Original No Sym Type Eval

Gen Token 95.49 97.59 97.61
Gen Type 91.55 95.64 95.10

Pattern-based 95.04 96.34 –

Vabamorf 87.78 91.66 –
Vabamorf Oracle 99.31 99.47 –

Table 2: Lemmatization accuracy on the EDT val-
idation set. Original: unaltered EDT, No Sym:
lowercased EDT with special symbols removed,
Type Eval: evaluation on distinct word types with
No Sym setting.

Trained on EWT EDT

Gen Token 95.88 96.28
Gen Type 94.63 95.97

Pattern-based 95.02 87.97

Vabamorf 91.75 91.74
Vabamorf Oracle 96.98 96.98

Table 3: Lemmatization accuracy on the EWT val-
idation set. The first column contains results for
models trained on EWT, the results for models
trained on EDT are shown in the second column.

(No Sym) shows the results of models trained on
lowercased data with special symbols removed. All
approaches show a noticeable improvement in ac-
curacy in the simplified environment. Although the
improvement with the Pattern-based model is the
smallest, it has the largest implications—ignoring
casing and removing special symbols halves the
number of transformation classes.

The top part of the Tables 2 and 3 compare the
results of the Generative model trained on word to-
kens and word types. Additionally, the last column
of the Table 2 also shows the evaluation on unique
types of both the token-based and type-based mod-
els trained in the No Sym setting. The Generative
model trained on word tokens always performs bet-
ter than the model trained on unique word types
even when evaluated on word types. We conclude
that there does not seem to be any disadvantages to
token-based training.

In Table 3, EWT validation set is evaluated in
two settings. The first column shows the results
of the in-domain models trained on the EWT train
set, the results in the second column are obtained
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with the out-of-domain models trained on the EDT
train set. We observe that the Generative models
perform well in the cross-domain environment, and
outperform the model trained on the EWT train set.
Meanwhile, the Pattern-based model trained on the
EDT shows a significant drop in performance when
evaluated on EWT. Vabamorf also demonstrates a
degraded performance on EWT.

The last row in both Tables 2 and 3 show the
performance of the Vabamorf in the oracle mode,
in which case the prediction is considered correct
if the true lemma appears in the list of generated
candidates. We observe a significant improvement
in the accuracy of Vabamorf in the oracle mode.
This means that a large chunk of errors made by
the rule-based approach is the result of poor dis-
ambiguation, rather than incorrect morphological
analysis.

In addition to comparing the performance of dif-
ferent approaches, we are interested in whether
there is any complementarity in the errors made
by models based on different approaches. Figure 2
presents a Venn diagram of the token-level errors
made by each system. We note that the area of the
intersection of all three models is relatively small,
meaning that the number of words where all mod-
els make an error is quite small, suggesting that
different approaches can complement each other in
an ensemble setting.

6 Discussion

Because the UDPipe2’s pattern-based approach
was highly successful in the Sigmorphon 2019
shared task (Straka et al., 2019), we expected it
to perform well also in our case, especially because
instead of the frozen BERT weights used in the
UDPipe2, we fine-tuned the full model. However,
the best shared task lemmatization scores for the
Estonian language were obtained with the genera-
tive contextual lemmatizer by Bergmanis and Gold-
water (2018), which perhaps explains the success
of the Generative model also in our experiments.
When analyzing the errors made by each three ap-
proaches, we can see that the set of errors where all
models overlap is relatively small (302 out of 5194,
5.8%), which suggests that different approaches
can potentially compensate for each other and thus
an ensemble of different methods can be useful.

The rule-based Vabamorf made the largest num-
ber of errors. However, when we evaluated it in the
oracle mode on EDT, it covered the vast majority of

346 860
252

3044

179
211

302

Generative

Pattern-
based

Vabamorf

Figure 2: Venn diagram of the token-level lemma-
tization errors made by each model on the EDT
validation set.

correct answers. This implies that Vabamorf could
gain a lot from a better disambiguator than the cur-
rent HMM-based one. This was not the case for
EWT which, being a web treebank, contains more
word forms (such as neologisms, more recent loan-
words, and so on) missing from the Vabamorf’s
lexicon. Thus, while Vabamorf can be a good solu-
tion for formal and grammatically correct Estonian,
it is less suitable for more noisy web texts.

The approach to creating transformation rules
suggested by the developers of UDpipe may output
equivalent rules, i.e., when applying these rules to
a surface form, the result is identical. We noticed
that the Pattern-based model is able to identify such
cases. This means that an incorrectly predicted
label can result in a correct lemma. For exam-
ple, two rules ↓0;d¦---+m+a and 0;d¦-+m→-
transform the third person plural present tense form
into the corresponding -ma infinitive (vabandavad
→ vabandama “to apologize”). The difference be-
tween these rules is that the former rule removes
three last letters and adds ma-suffix, while the lat-
ter removes the last letter, and then replaces the
existing letter preceding the existing a with m. We
suggest that such a peculiarity may be used to probe
language models for morphological knowledge.

The five most common rules are shown in Ta-
ble 4. The most common rule is the “do-nothing”
rule, which accounts for more than half of the oc-
currences in the EDT train set. The next three most
common rules with smaller but still considerable
frequency involve removing suffixes of varying
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% Rule Description

54.1 ↓0;d¦ Do nothing
8.3 ↓0;d¦- Remove the last letter
5.2 ↓0;d¦-- Remove two last letters
3.4 ↓0;d¦--- Remove three last letters
3.3 ↓0;d¦-+m+a Replace the last letter with ma

Table 4: Top 5 most common transformation rules
present in the train split of the EDT dataset.

length. The last rule fitting into our top-5 list is
specific to verbs, replacing the last character with
the lemma suffix for verbs. The total set contains
a very long tail of transformation rules that appear
only a few times or just once, such as rules corre-
sponding to the transformation of infrequently used
suppletive forms.

7 Conclusion

We compared three lemmatization approaches on
two Estonian datasets from different domains and
found that on both datasets the Generative encoder-
decoder approach trained from scratch outperforms
both the rule-based Vabamorf as well as the Pattern-
based approach fine-tuned from a large pre-trained
language model. We observed complementary er-
ror patterns for each three approaches, which sug-
gests that ensembling techniques can take advan-
tage of the complementary strengths of each indi-
vidual approach.
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Abstract
We describe work on enhancing the per-
formance of transformer-based encoder-
decoder models for OCR post-correction
on modern and historical Icelandic texts,
where OCRed data are scarce. We trained
six models, four from scratch and two fine-
tuned versions of Google’s ByT5, on a
combination of real data and texts pop-
ulated with artificially generated errors.
Our results show that the models trained
from scratch, as opposed to the fine-tuned
versions, benefited the most from the ad-
dition of artificially generated errors.

1 Introduction

Optical Character Recognition (OCR) is used to
digitize texts by converting scanned documents
into machine-readable text. Unfortunately, OCR
errors are prevalent, particularly when it comes
to old texts, where data tends to be scarce, and
post-correction is often required to improve the ex-
tracted texts’ accuracy (e.g. Nguyen et al. 2021).

Transformer-based encoder-decoder models
have been shown to be effective in various natural
language processing tasks, including machine
translation (Vaswani et al., 2017; Chen et al.,
2018) and text summarization (Garg et al., 2021).
In this study, we investigate the use of such
models for OCR post-correction under scarce data
condition, as a sequence-to-sequence problem,
similar to how neural machine translation (NMT)
systems approach the problem of translation. To
address the lack of resources available for training
models when dealing with OCRed texts, we
propose the use of artificially generated errors to
improve the performance of the models, which has
been shown to be an effective way of generating
data for text correction (Kasewa et al., 2018).
The main contribution of this study is an exam-
ination of the effectiveness of using artificially

generated errors to improve the performance of
transformer-based encoder-decoder models for
OCR post-correction when data scarcity is a
limiting factor. Furthermore, we publish our best
performing models under the Apache 2.0 license.1

The paper is structured as follows. Section 2
discusses related work while Section 3 describes
the dataset and error generation methods used in
this study. Section 4 presents the proposed mod-
els and training methods. Section 5 presents the
experimental results and analysis, Section 6 dis-
cusses limitations and future work, and finally
Section 7 concludes.

2 Related Work

Previously, Daðason et al. (2014) developed a tool
for post-processing Icelandic 19th century texts
based on an error model containing statistical in-
formation on word and character errors and an n-
gram language model. Their tool correctly identi-
fies and corrects 52.9% of errors in their evaluation
set.

Poncelas et al. (2020) report a 63% error cor-
rection rate with their OCR post-processing tool
on an English text from the 18th century. They
used a scoring system based on string-similarity to
find possible substitutions for perceived errors and
a language model to evaluate the edited sentences.

Richter et al. (2018) use a hidden Markov model
alongside a modified version of the Viterbi al-
gorithm and a dictionary to decode OCRed texts
in Faroese into a hypothetical corrected version.
They reduced the word error rate of 7.8% from the
OCR base process to 5.4%.

1Models available at the following
URLs: http://hdl.handle.net/20.500.12537/271,
http://hdl.handle.net/20.500.12537/309,
https://huggingface.co/atlijas/byt5-is-ocr-post-processing-
modern-texts, https://huggingface.co/atlijas/byt5-is-ocr-post-
processing-old-texts.
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Original Corrected Frequency
p þ 2,779
i í 1,141
li h 247
rn m 166
m rn 77

Table 1: Examples of the extracted errors.

3 Data

We used a combination of real OCRed texts, pro-
cessed by ABBYY FineReader,2 and digital texts
not scanned with OCR, the latter of which were
populated with artificially generated errors, for
training and evaluating our OCR post-correction
models. The evaluation data solely comprised real
OCRed texts, alongside their manually corrected
counterparts, which were used to ensure that the
models’ performance is reflective of real-world
OCR output. The ground truth (GT),3 i.e. the data
from which the errors were extracted, consists of
around 375k tokens from 80 texts published be-
tween 1874 and 1913, which were manually cor-
rected, while the data used in training and valida-
tion, which include the OCRed texts as well as the
texts populated with the artificial errors, amount to
roughly 9.2M tokens.

The data into which the artificial errors were
inserted were taken from the Icelandic Gigaword
Corpus (IGC; Steingrímsson et al. 2018) and the
Icelandic Text Archive (ITA).4 Their publication
dates range from the late 18th century to the early
21st century, with roughly 40% of them having
been published between 1830 and 1920.

Overall, the training data consist of 7.8M to-
kens, whereas the validation set, which is ap-
proximately 15% of the whole dataset, consists
of around 1.4M tokens. The evaluation set, to-
talling 44k tokens, is composed of manually cor-
rected texts. All datasets contain texts from dif-
ferent eras, including texts from the 19th century
and the early 20th century, as well as texts from
the last two decades of the 20th century. It should
be noted that none of the data are based on texts
printed in Gothic font, which has been reported to

2https://pdf.abbyy.com/
3The GT is a product of the project Language Change

and Linguistic Variation in 19th-Century Icelandic and the
Emergence of a National Standard, led by Ásta Svavarsdóttir
at the Árni Magnússon Institute for Icelandic Studies (e.g.
Svavarsdóttir et al. 2014).

4https://clarin.is/en/resources/textarchive/

Model 1 Model 2
embeddings size 512 512
ffn embeddings 2,048 2,048
attention heads 4 4
encoder layers 5 5
decoder layer 5 5
tokenizer WordPiece SentencePiece
vocab. size 3,000 3,000

Table 2: The architecture of the two models
trained from scratch.

be harder to recognize than other fonts (Furrer and
Volk, 2011; Drobac et al., 2017). The evaluation
set is divided into two parts, with 26k tokens being
from modern texts and 18k tokens from texts from
the 19th century and the early 20th century. This al-
lows for an evaluation of the model’s performance
on different types of texts and OCR errors, which
is crucial to ensure that the model is robust and
generalizable.

It is important to note that the dataset used
in this study is relatively small in size. One of
the reasons is the scarcity of available corrected
OCRed texts. Additionally, we observed that too
large a proportion of modern texts in the training
set resulted in the models over-generalizing and
changing historical spellings to modern spellings.
However, we aim for diplomatic transcription, pre-
serving the original spelling. Therefore, we en-
sured that the dataset included texts from differ-
ent eras while also avoiding over-generalization
and alteration of historical spellings by limiting
the amount of modern texts into which we inserted
artificial errors.

3.1 Extracting the Errors

The extraction of errors from the manually cor-
rected OCRed texts was performed by analysing
the 375k token dataset. The data were man-
ually aligned, and then a line-by-line compari-
son was conducted between the OCRed texts and
their corresponding manually corrected texts us-
ing Python’s SequenceMatcher. In the process of
extracting errors, tokens were considered to be the
same if they shared the same index in a given line
and had a similarity score greater than 0.66.5 This
twofold restriction, taking into account both index

5Calculated by finding “[...] the longest continuous
matching subsequence that contains no “junk” elements”,
see: https://docs.python.org/3/library/difflib.html.
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Older texts Modern texts
OCR Model 1 Model 2 ByT5 (5 ep.) OCR Model 1 Model 2 ByT5 (1 ep.)

chrF 94.79 94.80 96.00 96.22 95.27 95.52 95.75 96.09
BLEU 97.19 97.19 98.24 98.54 97.73 97.63 98.06 98.24
WER 6.49% 7.56% 4.22% 3.25% 5.52% 5.73% 4.58% 4.56%
WERR Ø -16.37% 35.04% 49.96% Ø -3.80% 17.02% 17.37%
CER 1.39% 1.79% 1.14% 0.92% 1.17% 1.63% 1.43% 1.41%
CERR Ø -28.53% 18.34% 33.83% Ø -38.58% -21.34% -20.34%

Table 3: Our models trained on the GT compared to the base output from the OCR process.
WER(R) = Word Error Rate (Reduction), CER(R) = Character Error Rate (Reduction).

and similarity, acted as a confidence threshold to
ensure that the identified tokens were different ver-
sions of the same intended token.

The differences between the tokens, specifically
focusing on character or character n-gram substi-
tutions, such as rn→m and þ→p, were extracted
as OCR errors. In total, 2,644 such error types
were extracted, which were then filtered down to
the 600 errors that occurred more than three times
in the dataset. In addition, the frequency of each
error was recorded, which allowed for the imple-
mentation of a weighting system during the arti-
ficial error generation process, ensuring that the
errors were distributed in a way that somewhat re-
flected their real-world frequency. Examples of
extracted errors are shown in Table 1.

Error pairs that consist of an original and cor-
rected string length 1 (character count) comprise
around 40% of the error set. An example of this
is the erroneous pessi for þessi ‘this’. In 30% of
error pairs the original has a length of 2 and the
corrected a length of 1, such as rnaður for maður
‘man’, and in about 15% of them the length of both
is 2, e.g. gdbur for góður ‘good’. The total num-
ber of errors in the dataset amounts to 27,369.

3.2 Inserting the errors

To create the training dataset, we gathered texts
from IGC and the ITA. Texts ranging from the late
18th century to the 21st century were collected to
provide a diverse set of texts for model training.

Error types, as extracted and described in Sec-
tion 3.1, were then inserted into the training
dataset by randomly replacing characters or char-
acter n-grams via a lookup table. Whitespace was
also removed from between tokens and added into
the tokens at random. The artificial errors were in-
serted randomly, with the frequency of error types

based on the frequency in the GT in order to mimic
the distribution of errors that occur in OCR out-
put. This way, more frequent errors in the GT
were made to appear more frequently than other
errors in the training dataset. However, to prevent
the same errors from appearing excessively often
in the dataset, we used the log10 frequency of the
errors.

4 Models

In total, six models were trained. Two of them fol-
low the architecture of model 1, laid out in table 2,
two of them follow the architecture of model 2 in
the same table, and the others are a fine-tuned ver-
sion of ByT5-base6 (Xue et al., 2022), a token-free
transformer model that operates directly on UTF-
8 encoded bytes and is trained on mC4, a multi-
lingual corpus, which consists of texts in 101 lan-
guages, including Icelandic (Xue et al., 2021). The
models are all encoder-decoder transformer mod-
els.

For every pair of the models, one was trained
on the 375k tokens in the GT, and the other one on
the whole dataset, around 7.8M tokens. This was
done to study the artificially generated errors’ im-
pact on the models’ output. We experimented with
various hyperparameter configurations, evaluating
the models we trained from scratch on the valida-
tion sets, and these specific configurations resulted
in the highest performance.

It is well established that transformer models
require large amounts of data to be trained effec-
tively. In this study, our GT had a limited num-
ber of examples, which likely contributed to the

6Note that the ByT5 model was trained for five epochs, re-
sulting in five different models. The one trained for one epoch
performed the best on modern texts while the one trained for
five epochs performed the best on older texts. We report on
these two ByT5 models in Table 3.
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poorer performance of the models trained from
scratch on the smaller dataset, in some instances
even performing worse than the base OCR pro-
cess.

4.1 Tokenizers

As seen in Table 2, the two models trained from
scratch use different tokenizers, both of which are
based on subword tokenization algorithms. Model
1 uses WordPiece (Song et al., 2021) and model 2
uses SentencePiece (Kudo and Richardson, 2018).
As mentioned before, the ByT5 model operates di-
rectly on UTF-8 encoded bytes.

Different tokenization algorithms can have an
impact on a given task. SentencePiece and Word-
Piece can produce different subword units for the
same text, which might affect the models’ ability
to capture language-specific nuances and patterns.
It is possible that the choice of tokenizer had some
impact on their performance. However, further re-
search would be needed to determine the specific
effects of the tokenizer choice on OCR error cor-
rection.

5 Results

The six models we trained for post-processing of
OCRed texts were applied to modern and histori-
cal texts to measure the impact and viability of us-
ing artificial errors to improve such models when
available data are scarce. The results of these mod-
els were compared to the base output from the
OCR process using four metrics: chrF (Popović,
2015) and BLEU (Papineni et al., 2002), charac-
ter error rate (CER) and word error rate (WER).
BLEU score is calculated by comparing texts on
a word-level, while chrF score is calculated on a
character-level and can be more accurate for in-
flected languages (Dowling et al., 2020).

Table 3 shows the results of our models trained
on the GT compared to the base OCR output.
Model 2 and the ByT5 model show moderate im-
provements for older texts, while model 1 per-
forms similarly or worse than the base OCR out-
put. Generally, the models do worse on the mod-
ern texts, as opposed to the historical ones, when
only trained on the GT, which is to be expected as
the GT solely consists of historical texts.

Table 4 shows the results of our models trained
on the whole dataset compared to the base OCR
output. The models all show substantial improve-
ments compared to the models only trained on the

GT, which suggests that the artificial errors have
something to offer. Furthermore, the difference
between word error rate reduction (WERR) for the
different text types was less than for the models
only trained on the GT.

Note that while the models generally perform
better on the historical texts, the addition of artifi-
cial errors improve their performance proportion-
ally more on the modern ones. This could stem
from the fact that the artificially-erroneous dataset
includes modern texts, while the GT does not.

When evaluating the models on modern texts,
we found that they were less capable in reducing
errors in modern texts than in historical texts. This
could be due to the fact that the GT only comprised
historical data, suggesting that using solely histor-
ical OCRed texts is not a viable approach when
designing an OCR post-processing tool for mod-
ern texts. The lower error rate reduction (ERR) on
the modern texts presumably also stems from the
higher base score on the modern texts, as opposed
to the base score of the historical ones, leaving less
room for improvement.

6 Limitations and Future Work

The cost of manually correcting OCR output is
high, making it difficult to obtain a larger dataset
for training. This has a direct impact on the ability
of the models to perform well on a wider range of
texts and OCR errors.

The models have the unwanted tendency to
adapt to modern spellings when using a large
amount of modern texts populated with artificial
errors. This could lead to the alteration of his-
torical spellings, which is not in line with our ob-
jectives, to produce diplomatic transcriptions. To
mitigate this risk, more corrected texts are needed
for the period of texts being OCRed.

Moreover, the use of artificially generated errors
to enhance the performance of the models may
not fully capture the complexity and diversity of
real-world OCR errors. Future studies may benefit
from incorporating a more diverse range of error
types and more realistic error generation methods.

We are interested in investigating optimal meth-
ods for generating realistic errors to use in training
the models. As previously mentioned, the artificial
errors used in this study were generated by ran-
domly inserting errors that were extracted from the
GT into other texts. However, there may be more
effective methods for generating errors that better
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Older texts Modern texts
OCR Model 1 Model 2 ByT5 (5 ep.) OCR Model 1 Model 2 ByT5 (1 ep.)

chrF 94.79 96.84 96.84 96.73 95.27 96.83 96.86 96.7
BLEU 97.19 98.45 98.79 98.65 97.73 98.45 98.64 98.57
WER 6.49% 4.95% 3.08% 2.92% 5.52% 4.52% 3.60% 3.15%
WERR Ø 23.79% 52.60% 55.07% Ø 18.00% 34.67% 42.97%
CER 1.39% 1.03% 0.73% 0.90% 1.17% 1.06% 1.0% 1.15%
CERR Ø 26.29% 47.55% 35.12% Ø 10.01% 15.20% 1.93%

Table 4: Our models trained on the whole dataset compared to the base output from the OCR process.

simulate real-world OCR errors. By finding and
implementing these methods, the performance of
OCR error correction models could be further im-
proved. Furthermore, it could be beneficial to ex-
plore different architectures or different data aug-
mentation techniques, such as including multiple
versions of the same texts. It should also be noted
that our evaluation dataset was rather small, and
further testing on larger datasets may provide a
more robust evaluation of the models.

7 Conclusion

Our findings demonstrate that while fine-tuning
pre-trained models on smaller datasets is an ef-
fective approach to improving the performance
of OCR error correction models, it is possible to
achieve comparable results by training an encoder-
decoder transformer model from scratch. Model
2, which was trained from scratch, emerged as the
best performer in our study, achieving a 52.60%
word error rate reduction (WERR) and a 47.55%
character error rate reduction (CERR) on the his-
torical texts, and a word error rate reduction of
34.67% and a character error rate reduction of
15.20% on the modern texts, see Table 4.

These results indicate that with proper architec-
tural design, it is possible to train effective OCR
error correction models without relying on pre-
trained models or large datasets.

However, the use of artificially generated errors
in the training process was found to be effective in
countering the challenges posed by data scarcity.

The fact that the models’ performance improved
proportionally more on the modern texts after the
introduction of the artificial errors, which were by
and large inserted into modern texts, indicates that
in order to train a designated OCR post-processing
tool for modern texts, a dataset consisting of mod-
ern texts is needed.
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Abstract

The purpose of text sanitization is to edit
text documents to mask text spans that may
directly or indirectly reveal personal infor-
mation. An important problem in text sani-
tization is to find less specific, yet still infor-
mative replacements for each text span to
mask. We present an approach to generate
possible replacements using a combination
of heuristic rules and an ontology derived
from Wikidata. Those replacement options
are hierarchically structured and cover vari-
ous types of personal identifiers. Using this
approach, we extend a recently released
text sanitization dataset with manually se-
lected replacements. The outcome of this
data collection shows that the approach is
able to suggest appropriate replacement op-
tions for most text spans.

1 Introduction

Most texts contain Personally Identifiable Informa-
tion (PII), which is information that can be used to
directly or indirectly identify an individual. This
raises privacy problems, as privacy frameworks
such as GDPR (GDPR, 2016) enshrine the right
of each individual to control the availability and
sharing of their personal information.

Although full, GDPR-compliant anonymization
is difficult to achieve (Weitzenboeck et al., 2022),
it is often desirable to apply text sanitization tech-
niques to mask (i.e. remove or replace) PII from a
given text and thereby conceal the identity of the
persons referred to in the document. Those PII can
either correspond to direct identifiers (e.g. names,
addresses, telephone numbers or social security
identifiers) or take the form of so-called quasi-
identifiers which are information that do not iden-
tify a person when seen in isolation, but may do so
when combined together (Elliot et al., 2016). Ex-

amples of quasi-identifiers are postal codes, gender,
age, employer or profession.

Most text sanitization approaches operate by (1)
detecting text spans that convey PII and (2) replac-
ing them with a default string such as ’***’ or a
black box (Lison et al., 2021; Pilán et al., 2022).
However, this considerably reduces the utility of
the sanitized document. An alternative is to re-
place the detected text spans with more general
values that are less risky from a privacy perspec-
tive, but remain more informative than a default
string. For instance, Drammen may be replaced by
[city in Norway], Telenor by [telecommunications
company] and February 5, 2023 by [2023].

The paper makes two contributions:

• An approach (illustrated in Figure 1) that gen-
erates suitable generalization options for dif-
ferent types of PII, based on heuristic rules
and an ontology derived from Wikidata.

• WikiReplace, an extension of the dataset from
Papadopoulou et al. (2022a) in which human
annotators select for each text span the most
suitable replacement among the possible alter-
natives produced by the above approach. The
dataset is made freely available1.

The paper focuses on the specific problem of
generating replacement choices for text spans ex-
pressing PII. The problem of how those text spans
should be detected and classified lies therefore out-
side the scope of this paper. This span detection can
be implemented using various types of sequence
labelling models, as detailed in Dernoncourt et al.
(2017); Lison et al. (2021); Pilán et al. (2022)

The rest of the paper is constructed as follows.
Section 2 describes previous work in this task,
while Section 3 presents the replacement approach.
In Section 4 we present the dataset and evaluate its
quality. We conclude in Section 5.

1https://github.com/anthipapa/
bootstrapping-anonymization
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Figure 1: Generation of replacement options for text spans. Depending on the entity type, the replacements
are produced using either heuristics or the Wikidata-derived ontology.

2 Related work

How to replace text spans expressing PII has been
investigated in both Natural Language Processing
(NLP) and in Privacy-Preserving Data Publishing
(PPDP). Most NLP approaches (Bråthen et al.,
2021; Dernoncourt et al., 2017; Pilán et al., 2022;
Papadopoulou et al., 2022b) simply replace the de-
tected text spans by a default string or a black box.
Some alternatives include replacing text spans by
pseudonyms (Dalianis, 2019; Volodina et al., 2020)
or synthetic surrogates (Carrell et al., 2012). In
the medical domain, identified names in patient
records can be replaced with random names from
a list (Dalianis, 2019). One can also rely on lexi-
cal substitution, in which target words are replaced
with similar lexical entities, e.g. a synonym or
hypernym (McCarthy and Navigli, 2007). This
substitution can be implemented using various neu-
ral language models (Zhou et al., 2019; Arefyev
et al., 2020).

Within the field of PPDP, the C-sanitize ap-
proach (Sánchez and Batet, 2016) frames the re-
placement of quasi-identifiers through an automatic
sanitization process that mimics manual sanitiza-
tion. It replaces identifiers with suitable general-
izations, selected from a knowledge base, and an
a parameter that can be adjusted to trade between
privacy protection and data utility. t-plausibility
(Anandan et al., 2012) generalizes identifiers so
that at least t documents are derived through spe-
cialization of the generalized terms.

3 Generation of potential replacements

We follow the categorization of text spans express-
ing PII detailed in Pilán et al. (2022):

PERSON Names of people.

CODE Numbers and identification codes.

LOC Places and locations.

ORG Names of organizations.

DEM Demographic attributes of a person, such as
job title, education, ethnicity or language.

DATETIME Specific date, time or duration.

QUANTITY Quantity, including percentages or mon-
etary values.

MISC Every other type of information not belong-
ing to the categories above.

Entities of type PERSON, QUANTITY and DATE-
TIME are replaced using the heuristics in Section
3.1. Entities of type LOC, ORG, DEM and MISC
are replaced by generalizations found in the ontol-
ogy through entity linking, as described in Section
3.2.1. If no generalization can be found in the on-
tology, the system queries Wikidata directly. If
this query does not return any generalization, ’***’
is returned. As entities of type CODE cannot be
generalized, they are replaced by ’***’.

3.1 Rule-based generation
We developed a set of heuristic rules to generalize
entities of type PERSON, QUANTITY and DATETIME:
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• PERSON entities are replaced by the text span
[PERSON N], where N is an integer:
"Ada Lovelace"→ [PERSON 1]
Terms that are found to refer to the same indi-
vidual (based on e.g. coreference resolution)
are assigned to the same integer.

• QUANTITY entities are replaced by X followed
by the unit of measurement if applicable:
"23 e"→ [X e].

• DATETIME entities are generalized to the year,
decade, or [DATE] as default value:
"March 12, 1994"→ [1994] or

[date in the 1990s]
"the following day"→ [DATE].

Heuristics were chosen for these types of entities
since they are usually not part of knowledge graphs
that can be used to create ontologies.

3.2 Ontology-based generation
Entities of type LOC, ORG, DEM and MISC are gen-
eralized using an ontology. The ontology was con-
structed using Wikidata2, a knowledge graph where
pieces of information are linked together by proper-
ties. We consider specific membership properties,
namely instance_of (P31), subclass_of (P279),
part_of (P361), and is_metaclass_for (P8225),
which express a hierarchical relation from specific
to more general, as seen in Table 1.

ID Label Example
P31 instance_of Oslo→ capital city
P279 subclass_of capital city→ city
P8225 is_metaclass_for genre→ creative work
P361 part_of door→ house

Table 1: Wikidata properties employed to construct
the generalization ontology.

The ontology contains all terms related to hu-
mans and their generalizations extracted using the
properties mentioned above, with the addition of
terms for countries and nationalities.

3.2.1 Entity linking
The text span to generalize must first be linked to an
appropriate term in the ontology. We first search for
exact matches, followed by a contained_in search

2See https://www.wikidata.org. The dump file was
downloaded on Sept. 13, 2022.

in the ontology. Finally, if no entity is found, ap-
proximate string matching is employed to tenta-
tively match the PII.3.

If the above entity linking fails (which means
that this term is absent from the ontology), we
query Wikidata directly to get a match. If a match
is found then we return the results, otherwise ’***’
is suggested as an appropriate replacement. Mask-
ing the term with ’***’ is both proposed when no
match is found and as a final option for all PII, to
provide an alternative when the provided general-
ization options are inappropriate.

3.2.2 Ontology traversal
Every term related to a human in the ontology was
used to fetch generalization options using the mem-
bership properties in Table 1. In the case of several
available property options, the first one is selected.
The ordering of properties added to the ontology
was: P31, P279, P8225 and finally P361. Below
is a list showing the generalizations of the term
’drummer’ based on the P31 property, and of the
term ’mother’ based on the P279 property.

drummer→ [percussionist]→
[instrumentalist]→ [musician]→ [artist]→
[creator]→ [person]→ ***

mother→ [parent]→ [first-degree relative]→
[kin]→ [person]→ ***

The generalizations range from the most specific
(most informative, but also potentially most risky
in terms of identity disclosure) to the less specific
(least risky, but also least informative).

4 Dataset

The dataset used for the data collection consists
of 553 Wikipedia articles already annotated for
text sanitization by Papadopoulou et al. (2022a).
Wikipedia articles are suitable for this task as they
are both dense in PII and publicly available. For
each article, human annotators labelled the text
spans that needed to be masked to protect the iden-
tity of the mentioned individual, while also retain-
ing as much of the utility of the resulting text as
possible. Each text span is also assigned to one of
the 8 categories enumerated in Section 3.

3A term is considered a match if the character-level edit
distance is below a given threshold, set in our implementation
to 15% of the length of the entity string.
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Type Level 1 Level 2 L. > 2 ***
DATETIME 1025 1032 360 764
DEM 265 202 242 318
LOC 356 419 263 524
MISC 272 622 481 964
ORG 652 773 430 1066
PERSON 2478 85 0 18
QUANTITY 381 5 0 5
Total 5429 3138 1776 3726

Table 2: Levels of generalization per semantic type.

4.1 Annotation
We expanded the above dataset with the general-
ization options proposed by the system, and then
recruited 9 annotators to select the most suitable
replacement among the possible alternatives. To
this end, we developed a web based annotation tool
through which the annotators received a link to
a web page containing the documents they were
assigned to annotate. The annotators were also pro-
vided with annotation guidelines (see Appendix A
5). The annotators were required to select exactly
one option per marked text span. Each annotator an-
notated 81 documents, whereof 59 were randomly
selected, with the remaining 22 documents being
multi-annotated. Two examples of text before and
after the annotation process is shown below:

Example 1
Original: Joey Muha is a Canadian drummer from

Port Dover, Ontario.

Generalized: [PERSON 1] is a Canadian [musician] from

[town], Ontario.

Example 2
Original: Joakim Lindner (born 22 March 1991) is a

Swedish footballer who plays for Varbergs BoIS as a mid-

fielder. He is son to the competitive sailor Magnus Olsson.

Generalized: [PERSON 1] (born [date in the 1990s]) is a

Swedish footballer who plays for [association football club]
as a midfielder. He is son to the competitive sailor [PERSON
2].

4.2 Analysis
Table 2 details the level of generalization selected
by the human annotators according to the entity
type. Overall, only 36% of the selections landed
on the default ’***’, meaning that a majority of
text spans could be mapped to more meaningful
replacement options.
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Figure 2: Pairwise agreement between annotators.

The generalization options were sorted from
most specific to the most general following the
hierarchical structure in Wikidata. Table 2 shows
a clear preference for first level generalizations,
meaning the annotators selected the least general
option more frequently. It should be noted that
some semantic categories (PERSON, QUANTITY)
had fewer options. For instance, after manual in-
spection, we observe that 98 % and 96% of all selec-
tions made for QUANTITY and PERSON respectively
are the least general option. For the MISC category,
the corresponding percentage is only 20%.

A subset of the documents were annotated by
multiple annotators. We estimated the inter anno-
tator agreement using Light’s kappa (L-kappa), as
it allows annotators to select from a set of alterna-
tives. It is computed as the mean of the Cohen’s
kappa of each annotation pair (Conger, 1980). A
score of −1 indicates a direct disagreement, while
1 suggests perfect agreement. The L-kappa score
obtained this data collection is 0.61, indicating a
moderate to substantial agreement. Variations in
the agreement between annotator pairs range from
0.46 to 0.85, as shown in Figure 2.

5 Conclusion

We presented an approach to generate replacements
for detected PII based on heuristic rules and an
ontology derived from Wikidata properties. The
approach is employed to enrich an existing text
sanitization dataset with suitable replacements for
each text span. Those replacements were manually
selected by annotators among a set of alternatives
generated by the above approach.
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The collected data highlights the benefits of this
replacement strategy, with 64% of the text spans
being mapped to a generalization other than the de-
fault ’***’. However, the moderate inter-annotator-
agreement also illustrates the difficulty of the task,
which may admit multiple solutions.

Future work will focus on enriching the ontology,
resolving entity linking ambiguities and using the
dataset to train a neural model to select appropriate
generalizations for PII spans.
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Appendix A. Annotation guidelines

The annotation guidelines describing the task, along with examples, are presented below.

Replacement Choices in Text Sanitization:

Annotation Guidelines

This annotation effort is part of a larger research project that seeks to under-
stand how to automatically remove personally identifiable information from text
documents (a problem called text sanitization). Personally identifiable informa-
tion refers to any piece of information that may directly or indirectly reveal the
identity of a particular individual. Text sanitization is an important problem
when dealing with sensitive documents where we need to conceal the identity
of given person(s) to protect their privacy.

The result of your annotation work will be included in a new, public dataset
released under an open-source license.

The Task

In this task, you are given a number of short biographies extracted fromWikipedia.
To conceal the identity of the individual described in the biography, some text
spans have already been marked as needing to be replaced. Each text span is
shown in a drop-down menu where the values correspond to possible replace-
ments. The original text span for which you will choose a replacement is also
provided to help in the decision making process.

Your job is to select in each drop-down menu the best replacement for the
text span according to the following two criteria:

1. The replacement should not disclose (directly or indirectly) the person’s
identity.

2. Provided that the above criteria is satisfied, the replacement should be as
informative and readable as possible.

For example, in the sentence:

PERSON 1 lives and works in Oslo ...

possible choices for ’Oslo’ might include [capital of Norway], [city in Nor-
way], [city] and ’***’. The first choice is not general enough since it is as
informative as the word Oslo. The second choice is more general, followed by
the third choice, and finally the default ’***’, which is least informative (but also
least risky from a privacy perspective). Person names are by default replaced
by PERSON X (where X is an integer).

1
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Procedure

The annotation work consists of the following steps:

• Step 1 Read through the text once.

• Step 2 For each marked span, look at the list of possible replacements
and pick the most appropriate one. Only one replacement can be selected
for each text span.

• Step 3 When you are done with all replacements, review the text one final
time. The selected replacements should not disclose the person identity,
and the text should be as informative and readable and possible.

Many suggested replacements will be incorrect or irrelevant – this is normal
and expected. If none of the suggested replacements are suitable for a given
text span, you should choose the default ’***’ option.

The ’***’ option

In all the dropout lists of possible replacements, there will be an ’***’ option.
Use this if you find that no other replacement is appropriate.

Sometimes the ’***’ is the only suitable option, since you might encounter
cases where the automatic generation of suggested replacements failed to come
up with good options.

Corner cases

There might be cases where a replacement looks appropriate but does not en-
tirely fit the form of the sentence. For example, in the following sentence:

PERSON 1 was born on May 18, 1943 [...]
The possible replacements will be [1943], [date in the 1940s] and ’***’. The

most suitable choices in this case are [1943] and [date in the 1940s] (although
it might necessitate some rephrasing to fit the current form of the sentence),
not ’***’.

Example

Below you will find a step-by-step example of the annotation steps.
Start by briefly reading the text (Step 1)
Then for each of the spans choose one replacement (Step 2). Following is

a possible set of replacements chosen.
For example, the two decades could be replaced with the ’***’ option since

they provide additional information along with the rest of the personal informa-
tion still left in the text (e.g. British, gay rights activist, general secretary etc.)
that could lead to the person being identified easier, which we wish to prevent.

2
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Figure 1: Step 1

Figure 2: Step 2

Note that there is no one correct solution, as long as the identity of the
individual is not disclosed and the replacement choices result in an (as much as
possible) informative text.

NB!You have to choose a replacement option. The original string is provided
(first option in the drop-down list that cannot be chosen) in order to help choose
the most appropriate one. The Submit and go to next button can only be clicked
if replacements for all the spans have been selected.

Read the text with the selected replacements one last time (Step 3). Make
sure that you have chosen replacements for all text spans. Click on Submit and
go to next to continue with the rest of the texts for this task.

Figure 3: Step 3

A short message will appear on your screen when your assigned number of
texts have been annotated.

3
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Abstract

This paper introduces a medical Dan-
ish BERT-based language model (MeDa-
BERT) and medical Danish word embed-
dings. The word embeddings and MeDa-
BERT were pretrained on a new medi-
cal Danish corpus consisting of 133M to-
kens from medical Danish books and text
from the internet. The models showed im-
proved performance over general-domain
models on medical Danish classification
tasks. The medical word embeddings1 and
MeDa-BERT2 are publicly available.

1 Introductions

Large language models (LLM) are powerful rep-
resentation learners and have become the back-
bone structure of many modern natural language
processing (NLP) systems. To learn text repre-
sentations, LLM are first pretrained on a large-
scale text corpus using self-supervised learning,
e.g., masked language modelling. After pretrain-
ing, LLM are fine-tuned on specific downstream
tasks where they have achieved state-of-the-art re-
sults on NLP benchmarks such as GLUE (Wang
et al., 2018).

However, directly applying these general pre-
trained models to specialized domains such as the
medical have led to unsatisfactory results (Peng
et al., 2019). As a solution to this, a second round
of in-domain pretraining (domain-adaptive pre-
training) has shown to improve the performance
of LLMs that were first trained on a general do-
main corpus (Gururangan et al., 2020). Domain-
adaptive pretraining adjusts the weights of the

*Equal contribution
1https://huggingface.co/jannikskytt/

MeDa-WE
2https://huggingface.co/jannikskytt/

MeDa-Bert

LLM to better capture the terminology, style, and
nuances that are relevant to the target domain.

Resource-rich languages such as English have
large domain-specific corpuses available that have
been used to develop e.g., biomedical (Lee et al.,
2020), clinical (Alsentzer et al., 2019), scien-
tific (Beltagy et al., 2019), and financial (Peng
et al., 2021) LLMs that perform better than mod-
els trained on general corpuses. These models
could potentially be used to improve human de-
cision making, save time, and reduce costs, e.g.,
by extracting information from scientific articles,
identifying potential drug interactions, and help-
ing with NLP tasks such as text classification,
named entity recognition, and question answering
for each of their specialized domains.

For the Danish language, only LLMs trained
on a general domain have been made publicly
available3. This paper presents a medical Dan-
ish BERT model (MeDa-BERT)—a LLM trained
on a new medical Danish text corpus. We also
used the medical corpus to train medical word
embeddings as they still have value in the clin-
ical domain (Laursen et al., 2023). To evaluate
the medical word embeddings and MeDa-BERT,
we used existing medical Danish classification
datasets. We found that an LSTM model using the
medical word embeddings outperformed a similar
model using general-domain word embeddings,
and that MeDa-BERT performed slightly better
than a general-domain BERT model.

2 Method

This section first describes how the medical cor-
pus was collected and used to pretrain the medical
Danish word embeddings and MeDa-BERT. Next,
the datasets used to compare model performances
and the fine-tuning procedure is described.

3Pedersen et al. (2022b) developed a clinical transformer
model but it is not publicly available
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Corpus Type Date retrieved Tokens

Clinical guidelines Guidelines
October -
November 2022

80,567,576

Medicin.dk Information portal June 2021 28,878,335
FADL Books January 2022 12,531,373
Sundhed.dk Information portal May 2022 6,767,409
Netdoktor.dk Information portal October 2022 3,227,051
Wikipedia Encyclopedia October 2022 1,992,796
Total 133,964,540

Table 1: Number of tokens and date retrieved for
each data source

2.1 Danish medical corpus

We collected data from the internet and from med-
ical books. The owners of the data resources ap-
proved that we used their data in this study. We
describe the data collection for each text contrib-
utor below. An overview of the text corpuses and
their size can be seen in Table 1.

2.1.1 Clinical guidelines

We collected text from the document management
systems of the five Danish regions. The docu-
ments contain guidelines and instructions for diag-
nostics and treatment of patients and all workflows
that support this. The document systems also in-
clude non-medical documents from e.g. purchas-
ing, logistics, and service departments which were
removed. All departments that were excluded and
the number of tokens retrieved from each region
can be seen in Appendix A.

2.1.2 Medical information portals

We collected text from webpages that provide in-
formation to medical doctors and patients. The
text was collected from Medicin.dk, Netdoktor.dk,
and Sundhed.dk. The resources provide informa-
tion about diseases, symptoms, and medical treat-
ments. Moreover, the resources contain informa-
tion specifically for health care professionals, e.g.,
medication guidelines and information about best
practices in the field. Text not related to the med-
ical domain and text written by non-professionals
were removed from the corpus. A description of
this process can be seen in appendix A.

2.1.3 Books

This part of the corpus consisted of 107 medical
books from publisher FADLs Forlag that publishes
books for medicine and nursing school.

2.1.4 Wikipedia
We used PetScan4 to search for medical Wikipedia
documents within predefined categories and its
subcategories. We used a maximum depth of 5 for
searching for subcategories. The following cate-
gories were used: anatomi, physiology, diseases,
medication, epidemiology, diagnostics, medical
procedures, medical specialities, medical physics,
and medical equipment. We excluded documents
with the categories: persons and companies. This
process resulted in 5,391 documents. Next, we
manually removed non-medical articles from that
list which resulted in 5,266 documents.

2.2 Preprocessing of data
For all text corpusses, we defined a sample as one
paragraph, i.e., a continuous stream of text without
line breaks. We inserted spaces between alphanu-
meric and non-alphanumeric characters. Samples
were further preprocessed to fit the pretraining
procedure for either word embeddings or the trans-
former model, as detailed below.

2.2.1 Danish medical transformer model
MeDa-BERT was initialized with weights from a
pretrained Danish BERT model5 trained on 10.7
GB Danish text from Common Crawl (9.5 GB),
Danish Wikipedia (221 MB), debate forums (168
MB), and Danish OpenSubtitles (881 MB).

For domain-adaptive pretraining, samples from
the collected medical corpus were appended a
[CLS] and [SEP] token in the start and end of
each sample, respectively. Samples were concate-
nated to fit the maximum sequence length of 512
tokens and document boundaries were indicated
by adding an extra [SEP] token in between sam-
ples. After this process, we removed duplicates
corresponding to 0.2% of the total corpus. The
model was trained using Adam (Kingma and Ba,
2015) with a weight decay of 0.01 as described
in (Loshchilov and Hutter). Using gradient ac-
cumulation, the model was trained with a batch
size of 4,032, a learning rate of 1e-4, and a lin-
ear learning rate decay warmed up over 1 epoch.
The model was pretrained for a total of 48 epochs
and evaluated after 16, 32, and 48 epochs. We
used 5% of the samples as a validation set to
evaluate the model during pretraining and trained
the model on the remaining data using dynamic

4https://petscan.wmflabs.org/
5https://github.com/certainlyio/

nordic_bert
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Dataset Label Train Validation Test

Bleeding Positive 10,331 1,300 1,300
Negative 10,331 1,300 1,300

Bleeding site

Airways 1,000 125 125
Cerebral 1,000 125 125
Ear-nose-throat 1,000 125 125
Eyes 1,000 125 125
Gastrointestinal 1,000 125 125
Gynecological 1,000 125 125
Internal 1,000 125 125
Skin 1,000 125 125
Urogenital 1,000 125 125
Unknown 1,000 125 125

VTE Positive 9,064 1,100 1,100
Negative 9,064 1,100 1,100

VTE site
Airways 1,600 200 200
Lungs 1,600 200 200
Unknown 1,600 200 200

Table 2: Dataset distributions

masked language modeling. The model was opti-
mized using four Tesla v100 GPUs using the Hug-
gingface (Wolf et al., 2020) library. All model pa-
rameters and pretraining losses are shown in Ap-
pendix B.

2.3 Danish medical word embeddings

We trained 300-dimensional FastText (Bo-
janowski et al., 2017) word embeddings. The
embeddings were trained for 10 epochs using a
window size of 5 and 10 negative samples. The
hyperparameters were chosen to be able to com-
pare the produced embeddings with the Danish
FastText word embeddings from Grave et al.
(2018) that were trained on a general domain.

2.4 Datasets

We compared performances between models us-
ing four medical datasets: bleeding classification,
bleeding site classification, venous thromboem-
bolism (VTE) classification, and VTE site classifi-
cation. All samples were annotated with a consen-
sus label from three medical doctors. The dataset
distributions can be seen in Table 2 and examples
of samples can be seen in Appendix C.

2.4.1 Bleeding classification

The bleeding dataset (Pedersen et al., 2021) is
a binary classification problem with 25,862 sam-
ples. The dataset was constructed from 900 Dan-
ish electronic health records (EHR) from Odense
University Hospital. The samples had an average
token length of 13.3.

2.4.2 Bleeding site classification
The bleeding site dataset (Pedersen et al., 2022b)
is a 10-class classification problem with 11,250
unique bleeding-positive samples annotated for
the bleeding site. The bleeding site labels were:
airways, cerebral, ear-nose-throat, eyes, gastroin-
testinal, gynecological, internal, skin, urogenital,
and unknown. The dataset was constructed from
149,523 Danish EHR notes from Odense Univer-
sity Hospital. The samples had an average token
length of 14.4.

2.4.3 VTE classification
The VTE dataset (Pedersen et al., 2022a) is a bi-
nary classification problem with 22,528 samples.
The dataset was constructed from 94,520 Danish
EHR notes from Odense University hospital. The
samples had an average token length of 13.8.

2.4.4 VTE site classification
The VTE site dataset (Pedersen et al., 2022a) is
a 3-class classification problem with 6,000 VTE-
positive samples annotated for the VTE site. The
VTE site labels were: airways, lungs, and un-
known. The dataset was constructed from 94,520
Danish EHR notes from Odense University Hos-
pital. The samples had an average token length of
14.5.

2.5 Fine-tuning

2.5.1 MeDa-BERT and BERT
We used the [CLS] token followed by a classi-
fication layer to classify samples of the datasets.
We searched for the best models five times using
Adam with learning rates [5e-5, 3e-5, 1e-5], i.e.,
we fine-tuned each model 15 times. The models
were trained for a maximum of 10 epochs.

2.5.2 LSTM
We used the medical word embeddings as input
to a bidirectional LSTM layer with a hidden layer
size of 512. The last hidden state of the LSTM
was followed by a dropout layer with probability
0.2, a dense layer of size 256, a ReLU activation
function, a dropout layer of probability 0.2, and a
dense classification layer. This model is referred
to as LSTM+MeDa-WE.

The performance of the model is compared
with another LSTM model (LSTM+General-WE)
with the same parameters but using FastText em-
beddings trained on the general domain as in-
put (Grave et al., 2018). We searched for the best
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Bleeding Bleeding site VTE VTE site
LSTM+General-WE 83.8.7 69.3.8 88.5.2 86.4.7
LSTM+MeDa-WE 91.4.3 84.91.1 94.1.3 93.4.4
BERT 94.3.6 86.7.8 96.7.3 94.7.3
MeDa-BERT 16 94.7.3 88.4.6 97.1.4 95.5.2
MeDa-BERT 32 95.1.5 88.7.6 96.9.3 95.7.3
MeDa-BERT 48 95.3.4 89.1.2 97.0.5 95.8.3

Table 3: Mean accuracy and standard deviation
(subscript) for each model on four medical clas-
sification tasks. Best results for the LSTM and
BERT-based models highlighted in bold. MeDa-
BERT 16 denotes the MeDa-BERT model pre-
trained for 16 epochs.

models five times using Adam with learning rates
[5e-5, 3e-5, 1e-5], i.e., we fine-tuned each model
15 times.

For all models we report the mean test set accu-
racy and standard deviation for the five best per-
forming models on the validation dataset.

3 Results

Table 3 shows the results of each model on the four
classification datasets.

3.1 Word embedding comparison

Using the medical word embeddings as input
to an LSTM model resulted in large improve-
ments compared to using general word embed-
dings. On average, LSTM+MeDa-WE outper-
formed the LSTM+General-WE model by 8.9 per-
centage points (PP). The largest improvement was
seen on the 10-class bleeding site classification
with an improvement of 15.6 PP.

3.2 Language model comparison

Comparing BERT and MeDa-BERT, the perfor-
mance improvements were smaller. MeDa-BERT
performed better on three of the datasets with an
average improvement of 1.2 PP. The largest im-
provement was on the 10-class bleeding site clas-
sification with an improvement of 2.4 PP.

4 Discussion and limitations

This paper presented a new Danish medical cor-
pus that was used to train NLP models. The cor-
pus included medical books and text scraped from
medical websites that provide information for both
citizens and healthcare professionals. We applied
different techniques to filter out non-medical data,
e.g., by removing documents from non-medical

departments or text written by non-healthcare pro-
fessionals. While these steps did remove a large
part of non-medical text, some non-medical text
might still be present in the corpus. However,
the results showed that models pretrained on the
medical corpus performed better than general-
domain models, especially for multiclass classifi-
cation problems.

For the Danish language, few medical evalua-
tion datasets are available and therefore the models
were only evaluated on classification tasks. More-
over, the evaluation datasets were constructed
from EHR text which has its own nuances com-
pared to the text of the medical pretraining corpus,
e.g., EHR text contains many spelling mistakes
whereas the medical corpus contains few gram-
matical errors. These factors might limit the gen-
eralizability of the results. Future work should
evaluate the models on other tasks, e.g., named-
entity recognition and question answering which
will provide a better understanding of the models’
capabilities.

We found continuous small performance im-
provements by pretraining MeDa-BERT for more
epochs. The model might improve with further
pretraining but because of limited computational
resources and the small rate of improvement, we
did not explore this further. The model would
also benefit from more medical pretraining data.
Although this paper presented a large part of the
available medical Danish text, more data could be
collected, e.g., from other medical book publish-
ers and websites.

The medical datasets used to evaluate the mod-
els are not publicly available because of privacy
concerns. For future work, we will strive to pub-
lish parts of the medical corpus which requires
permission from the text owners. We advise in-
terested researchers to contact us for sharing pos-
sibilities.

5 Conclusion

This paper presented a Danish medical corpus
consisting of 133M tokens. The corpus was used
to pretrain medical word embeddings and lan-
guage models. The models trained on the med-
ical corpus performed better than similar models
trained on a general domain.
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Appendices

A Preprocessing of text corpuses

A.1 Medical information portals
Netdoktor.dk provides information about dis-
eases, symptoms, medication, and treatment. Net-
doktor.dk contains sections that are not related
to the medical domain and discussion forums
where users can communicate. Therefore, we re-
moved documents having links containing the fol-
lowing strings: debat, kultur, testdigselv, behan-
dlerguiden, nyhedsbrev, nyheder, privacypolicy,
kontaktnetdoktor, cookieinformation, disclaimer,
sponsorindhold and discussions. Moreover, citi-
zens can ask medical questions 6 that are answered
by health care professionals. We only included the
answers to these questions.

Medicin.dk has three sub-pages: www.min.
medicin.dk that provides information to citi-
zens, www.pro.medicin.dk that provides in-
formation to health care professionals, and www.
indlaegssedler.dk that contains informa-
tion about medicine. We included all documents
from these webpages.

Sundhed.dk provides information for medi-
cal professionals 7 and citizens 8 about diseases,
symptoms, medication and treatment. We in-
cluded all documents from these webpages.

A.2 Clinical guidelines
We collected clinical guidelines from the 5 regions
of Denmark: The Capital Region of Denmark,
The Region of Northern Denmark, The Region of

6https://www.netdoktor.dk/brevkasser/
7https://www.sundhed.dk/

sundhedsfaglig/
8https://www.sundhed.dk/borger/

Region Categories removed (in Danish) Date retrieved Tokens

Capital Region

Den sociale virksomhed
Center for ejendomme
Center for HR
Center for Regional Udvikling
Region Hovedstadens Apotek
Steno Diabetes Center Copenhagena

October 2022 13,443,269

Northern Region

Logistik afdeling
Teknisk Afdeling Himmerland
Teknik
Logistik
Service

October 2022 6,505,559

Southern Region
Administration
Service
PsykInfo

September -
November 2022

29,075,187

Region Zealand

Administration
HR organisation og ledelse
Indkøb
IT
PortørCentral
Rengøring
Økonomi
Uddannelse

November 2022 6,387,083

Central Region November 2022 25,156,478

Table 4: Categories removed and number of to-
kens from each of the Danish regions.

Parameter Value
Architecture

Number of layers 12
Hidden size 768
FFN inner hidden size 3072
Attention heads 12
Attention head size 64
Dropout 0.1
Attention dropout 0.1
Max seq. length 512

Optimization
Learning rate 1e-4
Optimizer AdamW
Adam weight decay 0.01
Adam epsilon 1e-6
Adam beta1 0.90
Adam beta2 0.98
Learning rate decay Linear
Batch size 4032
Warm up 1 epoch
Epochs 16, 32, 48
Gradient clipping 1.0

Table 5: Architecture and optimization parameters
for pretraining MeDa-BERT

Southern Denmark, The Region of Zealand, and
The Central Region of Denmark. For each region
we removed non-medical documents, seen in Ta-
ble 4.

B Model parameters and pretrainng loss

Table 5 shows the architecture and optimization
parameters for pretraining MeDa-BERT. Table 6
shows the masked language modelling loss for
MeDa-BERT during pretraining.

306



Train loss Validation loss
MeDa-BERT 16 2.122 2.019
MeDa-BERT 32 1.874 1.792
MeDa-BERT 48 1.766 1.673

Table 6: Masked language modelling loss for
MeDa-BERT during pretraining. MeDa-BERT 16
denotes the model pretrained for 16 epochs.

C Dataset examples

Figure 7 shows a sample from each dataset trans-
lated from Danish to English.

Dataset Example Label
Bleeding Positive

Bleeding site Urogenital

VTE Positive

VTE site

”Girl hospitalized on 14.05.11 with bleeding tendency. 1½ years ago, noticed
bleeding on both arms, under the armpits and on the inner thighs. Subsequently
blood discharges on the mucous membrane of the cheeks and quite heavy men-
strual bleeding, which is unusual for pt.”
”19-year-old man referred by on-call doctor due to sudden onset of macro-
scopic hematuria and left-sided flank pain.”
”Pt has severe heart failure and hence dyspnoea and the feeling of air hunger,
and, in addition, pt has pulmonary embolisms and COPD. Treatment with
Fragmin has started.”
”Irregular contours on the left side in the transverse sinus and beginning part
of the sigmoid sinus compatible with partial thrombosis.”

Brain

Table 7: Example of a sample from each dataset translated from Danish to English.
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Abstract 

Pronunciation dictionaries allow 

computational modelling of the pronunciation 

of words in a certain language and are widely 

used in speech technologies, especially in the 

fields of speech recognition and synthesis. On 

the other hand, a grapheme-to-phoneme tool is 

a generalization of a pronunciation dictionary 

that is not limited to a given and finite 

vocabulary. In this paper, we present a set of 

standardized phonological rules for the 

Faroese language; we introduce FARSAMPA, 

a machine-readable character set suitable for 

phonetic transcription of Faroese, and we 

present a set of grapheme-to-phoneme models 

for Faroese, which are publicly available and 

shared under a creative commons license. We 

present the G2P converter and evaluate the 

performance. The evaluation shows reliable 

results that demonstrate the quality of the data.  

1 Introduction 

Pronunciation dictionaries are important 

components in speech technology (i.e. for ASR 

and TTS). They are used to link orthographic 

forms with their pronunciations. There are many 

kinds of pronunciation d ictionaries; some that 

only provide a standard pronunciation (Weide, 

1998), and some that also provide dialectal 

variants (Robinson, BEEP dictionary). However, 

dictionaries are always going to be limited to their 

entries; it is therefore that one would train 

grapheme-to-phoneme (G2P) models on 

pronunciation dictionaries and use those models 

                                                           
1 The BLARK for Faroese is open source, published under a 

CC BY 4.0 licence on the platform OpenSLR (Debess et al., 

2022). 

to automatically transcribe unknown words 

(Nikulásdóttir et al., 2018). 

In recent years, there has been steady progress 

in Faroese speech technology, and the work is 

ongoing (e.g. Ingason et al., 2012; Hernández 

Mena et al., 2022a; 2022b; 2022c). A Faroese 

pronunciation dictionary was created for the first 

Faroese ASR project, Ravnur and published in 

2022 as part of a Basic Language Resource Kit 

(BLARK) for Faroese (Debess et al., 2022; 

Simonsen et al., 2022)1. A BLARK is defined as 

the minimal collection of language resources 

needed to develop language technology for a 

specific language (Krauwer, 2003; Maegaard et 

al., 2006). However, the BLARK is not limited to 

ASR, but can be used to develop a wide range of 

LT for Faroese. 

The dictionary from the Ravnur project uses 

the variation spoken in the capital of the Faroe 

Islands as a standard (an arbitrary choice as 

discussed in Section 5). When creating the 

grapheme-to-phoneme (G2P) models, it was 

decided to expand the dictionary into two 

different pronunciation dictionaries based on 

dialectal difference, one CENTRAL and one 

EAST. This way, we could cover more ground 

and open up the possibility to expand the work 

further in the future.  

Because this was the first open source Faroese 

dictionary of its kind, Ravnur also had to create a 

Faroese SAMPA alphabet (called FARSAMPA 

here) to use for the pronunciations. The process 

and decisions made when creating FARSAMPA 
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and the Faroese pronunciation dictionary have 

never been published until now. We therefore set 

out to describe the work that went behind creating 

these fundamental language resources and how 

we adapted them to create a reliable G2P model. 

In Section 2, we present FARSAMPA. Section 

3 outlines some of the most common grapheme-

to-phoneme conversions of Faroese, while 

Section 4 presents the standardization of phonetic 

variation for the G2P. In Section 5, we discuss 

Faroese dialectal variation and the decision to 

make two different pronunciation dictionaries to 

train G2P models on. Finally, we introduce our 

G2P models that have been trained on the two 

pronunciation dictionaries, present an evaluation, 

and conclude. 

  
Table 1: Overview of FARSAMPA mapped to 

IPA-symbols2.  

                                                           
2 Note that the FARSAMPA also includes length 

distinction, primary and secondary stress (:, %, ~), but these 

suprasegmental attributes have not been used in the 

phonetic transcriptions of the words in the data set for this 

project making the G2P-tool and will therefore not be 

introduced further at this point. 
3 The use of the term SAMPA stems from this project: 

https://www.phon.ucl.ac.uk/home/sampa/. The Faroese 

2 FARSAMPA – Faroese SAMPA3 

This section introduces FARSAMPA: a machine-

readable character set suitable for phonetic 

transcription of Faroese. This character set is a 

phonetic alphabet consisting of an inventory of 

ASCII symbols mapped onto symbols of IPA (the 

International Phonetic Alphabet). The inventory 

content is based on Faroese phonetic and 

phonological knowledge and research (e.g. 

Petersen, 2021; Thráinsson et al., 2012), and 

transcription conventions for Faroese were 

considered when creating the alphabet. All 

phonemes in the G2P tool introduced in this 

article are written in FARSAMPA, as the lexical 

data of the tool is transcribed in FARSAMPA. See 

Table 1 for an overview of the inventory and 

characters in FARSAMPA. FARSAMPA was 

developed as a part of the BLARK in the Ravnur 

project. The alphabet covers all Faroese 

phonemes and a few allophones. The alphabet was 

used for transcribing all words in the Ravnur 

lexicon (350.000 word forms) and has thereby 

been tested, adjusted, and proved suitable and 

sufficient for Faroese phonetic transcription when 

working with language technology. Every 

character in the alphabet is directly translatable to 

an IPA character, making all transcriptions readily 

convertible to IPA or other systems mapped up 

against IPA. 

The primary purpose of FARSAMPA is to 

make phonetic transcriptions machine-readable 

and ready for automatic processing, and even 

though the value of characters is arbitrary to a 

machine, we need to keep in mind that phonetic 

transcription also entails a manual element and 

needs to be somewhat human-readable as well. 

The designation of characters to phones was 

based on simplicity, efficiency, and intuition. The 

basic guidelines4 are summed up as follows: 

 All IPA symbols that coincide with a 

lowercase letter from the latin alphabet 

are designated the same character in 

FARSAMPA (e.g. ‘p’, ‘f’, ‘o’). 

SAMPA from the Ravnur project is not originally published 

under the name FARSAMPA, but we will use FARSAMPA 

to refer to the Faroese SAMPA in this article. 
4 Based on the original SAMPA recommendations for 

Danish, Dutch, English, French, German and Italian, 

https://www.phon.ucl.ac.uk/home/sampa/. 
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 Categorical similarities, e.g. ‘O / ɔ’ and 

‘N / ŋ’ (based on standard SAMPA 

guidelines). 

 Graphic similarities, e.g., ‘S / ʃ’ and ‘U / 

ʊ‘. 

 With no letter available, numbers are used 

over other keyboard symbols as they are 

easily accessible on qwerty-keyboards 

language wide and easier to name. 

 Avoid designating counterintuitive 

characters, e.g. ‘T’ for a vowel. In those 

cases, numbers or other symbols are 

preferable. 

Not all allophones are represented, as that level 

of detail does not benefit accuracy or efficiency of 

language technology purposes. Four unvoiced 

allophones of the sonorant phonemes /m, n, N, l/ 

are included, as they are acoustically very 

different from their voiced counterparts. The only 

diacritic included with its own character is the 

preaspiration /H/. Postaspiration and other 

relevant diacritics for Faroese (e.g. 

voiced/unvoiced) are integrated in the character 

system and not denoted via symbols of their own 

(e.g. [p] and [b] only differ by postaspiration, [m] 

and [M] only differ by voicing).  

3 Phonological rules of Faroese 

In this section, we will outline some of the most 

common grapheme-to-phoneme conversions of 

(central) Faroese. For dialectal variation, see 

Section 5. The conversions are based on 

Thráinsson et al. (2012). Almost all of the rules 

listed have exceptions, and there are other 

phonological rules as well. For a more thorough 

overview, see Thráinsson et al. (2012). 

Furthermore, the phonetics of Faroese are 

generally understudied (Lamhauge, 2022), and 

therefore, many phonological conditions have not 

been sufficiently studied or described. Some of 

these phonological conditions will be discussed as 

well. 

3.1 Grapheme-to-phoneme conversions 

In native Faroese words, stressed vowels are short 

when followed by two or more consonants, except 

after the following consonant clusters: pr, pl, tj, 

tr, kj, kr, kl, sj5. Stressed vowels are long in all 

other positions. Table 3 (next page) shows the 

                                                           
5 This is not true for the dialect of Suðuroy. 

different graphemes representing vowels in 

Faroese and their phonemic counterparts. 

Table 2 shows the most frequent pronunciation 

of the consonants in Faroese. In certain grapheme 

combinations, the consonants have different 

pronunciations. Some of these are listed in Table 

4. 

Grapheme 

combinations 

Phoneme Example 

b, bb [b], [b:] bátur ‘boat’, abbi 

‘grandfater’ 

d, dd [d], [d:] dust ‘dust’, koddi 

‘pillow’ 

g, gg [g], [g:] gala ‘to crow’, 

sjagga ‘to 

twaddle’ 

p, pp [p], [Hb:] pílur ‘arrow’, 

mappa ‘folder’ 

t [t], [Hd:] tekja ‘roof’, detta 

‘fall’ 

k [k], [Hg:] kaka ‘cake’, 

krakkur ‘stool' 

f [f], [f:] fara ‘to go’, skaffa 

‘to provide’ 

v [v] øvund ‘envy’ 

n, nn [n], [n:] nú ‘now’, kanna 

‘jug’ 

n before g or k [N], [X] ganga ‘to walk’, 

banka ‘to knock’ 

m, mm [m], [m:] koma ‘come’, 

ramma ‘frame’ 

l [l] ala ‘breed’ 

r [r]6 læra ‘to learn’, 

marra‘nightmare’ 

h [h] hús ‘house’ 

j [j] ja ‘yes’ 

s, ss [s], [ss] siga ‘to say’, 

kassi ‘box’ 

Table 2: The most frequent pronunciation of 

consonants in Faroese. 

Palatalization occurs in Faroese of the phonemes 

/g, k/ in front of the front, unrounded vowels /i, e, 

EJ/, e.g. geyla ‘yell’ [‘dZEJ:la]. The letter 

combinations gj, dj, kj, tj and hj also have 

alveopalatal sounds, e.g. tjóvur ‘thief’ 

[‘tSOW:wUr], and when /s/ is followed by j, kj, tj 

or k followed by the aforementioned front 

unrounded vowels, /s/ is palatalized as well, e.g. 

skip ‘ship’ [‘Si:b]. These are all general rules, but 

exceptions to the rule exist. 

Table 4 shows some combinations of vowels 

and consonants that have an unexpected 

pronunciation. Note that in the list, we include the

6 /r/ can have multiple pronunciations in Faroese, including 

alveolar and trill. We have opted for the most frequent 

pronunciation, namely the alveolar.  
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Table 3: The different graphemes representing vowels in Faroese and their phonemic counterparts. 

Note that length is not represented in our G2P-dictionaries. 

pronunciations relevant to the central dialect only 

(see Section 5 for more on dialects). 

3.2 Some phonological considerations 

Most descriptions of Faroese state that the 

phonemes /lmnr/ are devoiced before /ptk/ and in 

front of /s/ as well (e.g. Thráinsson et al., 2012). 

However, recent work in progress sheds doubt on 

this traditional description of devoicing in front of 

/s/. Lamhauge (2022) finds a dialectal difference 

between the northern and southern dialects of 

Faroese, suggesting that these sonorants are not as 

categorically devoiced as the literature describes 

them. However, the Ravnur project chose to 

phonetically transcribe the sonorants in front of /s/ 

as voiced sonorants.  

Furthermore, when /s/ is followed by a short 

diphthong ending in a high vowel, i.e. the 

graphemes í, ý, ei, and oy, the /s/ can be 

pronounced as [S] (Lockwood, 2002), e.g. píska 

‘whip’. However, in this condition, /s/ is 

transcribed [s] in the Ravnur lexicon. 

 

 

                                                           
7 In loanwords, -ll(-) is pronounced as [l:], e.g. ball 

‘party’. 

Table 4: Grapheme combinations and their 

phonemic representations. 

 

8 When /r+n/ are combined in the inflection of a word, it 

is pronounced [rn], e.g. far+nir (m.pl. of farin). There are 

other exceptions to the /r+n/ rule as well (Thráinsson et 

al. 2012). 

 Long vowel Short vowel 

Grapheme Phoneme Example Phoneme Example 

á [OA:] gráur ‘grey’ [O] grátt ‘grey (n.)’ 

a [EA:], [a:] 

(in 

loanwords) 

glaður ‘happy’, tomat 

‘tomato’ 

[a] glatt ‘happy (n.)’ 

æ [EA:] læra ‘teach’ [a] lærdi ‘taught’ 

e [e:] meta ‘estimate’ [E] metti ‘estimated’ 

i [i:] fita ‘fatten’ [I] fitna ‘get fat’ 

y [i:], [y:] fyri ‘for, before’, myta ‘myth’ [I], [Y] fyrr ‘earlier’, mystiskur ‘mythical’ 

í [UJ:] lítil ‘small’ [UJ] lítli ‘small (def. m.) 

ý [UJ:] sýta ‘refuse’ [UJ] sýtti ‘refused’ 

o [o:] tosa ‘talk’ [O] toldi ‘endured’ 

ó [OW:] rópa ‘yell’ [9] rópti ‘yelled’ 

u [u:] gulur ‘yellow’ [U] gult ‘yellow (n.)’ 

ú [3W:] púra ‘quite, entirely’ [Y] púrt ‘quite, entirely’ 

ø [2:] søtur ‘sweet’ [9] søtt ‘sweet (n.)’ 

ei [aJ:] heitur ‘warm’ [aJ] heitt ‘warm (n.)’ 

ey [EJ:] reyður ‘red’ [E] reytt ‘red (n.)’ 

oy [OJ:] royna ‘try’ [OJ] royndi ‘tried’ 

Grapheme 

combination 

Phoneme Example 

-ógv- [Egv] krógv ‘inn’ 
-úgv- [Igv] búgv ‘home’ 
-ang- [ENg] svangur ‘hungry’ 
-angi- [EndZI] svangir ‘hungry  
-ank- [ENg] blanka ‘polish’ 
-eingi- 

-einki- 
[OJndZI] 

[OJxdZI] 
dreingir ‘boys’, 

einki ‘nothing’ 
hv- [kv] hvør ‘who’ 
-ll(-)7 [dl] øll ‘everyone’ 

-rn8 [dn] bjørn ‘bear’ 

-nn- after ei, oy [dn] seinni ‘later’ 

-ðr- [gr] veðrur ‘ram’ 

-ðg- [g:] steðga ‘stop’ 

-ðk- [hk:] blíðka ‘make 

gentle’ 

-gd- [d:], [gd] løgdu ‘laid (pl.), 

løgd ‘laid (f.)’ 

-vd- [d:], 

[Wd] 

høvd ‘head’, høvd 

‘rise’, resp. 

-rs- [z] mars ‘March’ 

-um (unstressed) [Un] monnum ‘men’ 
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The Ravnur project decided to make the 

pronunciations in the dictionary distinct, 

phonological pronunciations. This means that the  

unstressed vowels [I] and [U] are transcribed as 

such, even though they have merged to [8] in 

central Faroese spontaneous speech (Petersen, 

2022). A word like mammu ‘mother (acc.)’ would 

therefore be pronounced [mam:8] in the Central 

dialect, but is transcribed as [mam:U] in the 

Ravnur dictionary. Also, the unstressed syllables 

–arnir, -arnar, -irnar and –urnar are fully 

phonetically transcribed, e.g. hundarnir ‘the 

dogs’ [‘hUndarnIr], although these are frequently 

pronounced without an /r/ in spontaneous speech, 

e.g. [hUndanIr] (Adams and Petersen, 2014). 

These decisions made by the original Ravnur 

group have been followed in both our CENTRAL 

and EAST dictionary. Research remains to show 

how these phonological conditions are actually 

produced, and whether or not there is dialectal 

difference.  

4 Representing pronunciation 

variations in one form 

For developing the G2P-tool, we used the open 

source pronunciation dictionary from project 

Ravnur (Debess et al., 2019; Simonsen et al., 

2022). However, we only use one single 

pronunciation per word. The original dictionary 

had many entries with multiple pronunciations, 

and for this project of developing the G2P-tool we 

had to prioritize just one of them. Being a 

descriptive dictionary, some words were assigned 

multiple pronunciations due to language variation 

(differences in dialect, sociolect or other lects) and 

assimilation of different kinds. In cases of 

dialectal variations, the pronunciations of the 

central dialect were chosen, as the different 

dialects are represented through separate 

dictionaries. In cases of other variation with no 

research to base the decision on, the choice was 

based on (by the Faroese linguist) perceived 

frequency of the forms, choosing the more 

frequent as the primary - knowing the limitations 

of this method. 

Quite many of the word forms with multiple 

pronunciations were due to homographs. As the 

dictionary version for the G2P tool only operates 

with the values of orthography and pronunciation 

and no grammatical or semantic information, 

homographic word forms that belong to different 

lexemes melt into one, with their respective 

pronunciations being registered as pronunciation 

variations of the same form. As this tool strictly 

focuses on the relationship between graphs and 

phones, the semantics and grammar to 

differentiate homographic word forms are of 

course obsolete, but the omission of these values 

also presents challenges. Choosing one 

pronunciation over another in these cases, where 

both forms are considered to be valid in Faroese 

language, blurs the depiction of the linguistic 

reality, but is necessary for this linear conversion 

tool and might even increase accuracy of the tool. 

In cases of multiple pronunciations due to 

homographs, one pronunciation has been chosen 

to be primary based on the main criteria of 

frequency and second phonological heritage 

(detailed below), having functionality and error 

rates of the tool in mind.  

Frequency derived from searches in available 

corpora or web-search-based frequency was not 

always sufficient due to the relatively small 

volume of the resources, many of them not tagged, 

making it difficult to distinguish homographic 

forms. In these cases, other frequency measures 

were also taken into account: 

 

 Native speaker intuition. Example: havi 

‘to have’ PRES.1.SG /hEAvI/ > havi 

‘garden’ SG.NOM /ha:vI/. 

 Function words > content words. 

 Grammatical case of the word form (the 

genitive is very rare (Thráinsson et al., 

2012), and the pronunciation pairs were 

often due to a genitive word form 

opposite a word form with another 

grammatical case or from another part of 

speech). Example: loksins ‘finally’ 

(adverb) /lOgsIns/ > loksins ‘lid’ 

SG.GEN.DEF /lo:gsIns/. 

 Frequent > obscure inflectional forms.  

Though frequency being the main criteria, we also 

took into account and implemented rules of  

phonological heritage: 

 Words of linguistic heritage > loan words 

(even though the loan word is well 

implemented in Faroese). This ensures 

the systematic phonological rules of 

Faroese a broader representation in the 

data. Example: banki ‘to knock’ 

PRES.1.SG /bExdZI/ > banki ‘bank’ 

SG.NOM /baxdZI/ 

 Common nouns > proper nouns. Proper 

nouns in general follow the phonological 
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rules to a lesser extent than common 

nouns. Examples: allan ‘all’ 

SG.MASC.ACC.DEF [adlan] > Allan 

‘Alan’ (person name) [alan]. 

5 Two dictionaries for Faroese 

The original dictionary from the Ravnur project is 

based on the dialect of the capital in the Faroe 

Islands. Even though there is no official standard 

dialect for Faroese (Petersen, 2022), there is 

believed to be some kind of central Faroese based 

partly on the dialect of the capital and partly on 

the written language (Jacobsen, 2011; 

Knooihuizen, 2014). However, in working with 

this G2P tool, we wanted  to have greater diversity 

and decided to make two versions of the original 

dictionary reflecting two different dialect areas. 

The two dialect areas are the central dialect area, 

where the capital is located, called CENTRAL 

henceforth, and part of the northwest dialect area, 

called EAST henceforth (see Figure 1). The 

CENTRAL dialect area has the largest number of 

inhabitants, and the EAST dialect area has the 

second highest number of inhabitants. Combined, 

these two dialect areas comprise around 71% of 

the population9. 

The islands in the northwest area are for 

several reasons classified as being the same 

dialect area in the most recent dialect 

classification (Petersen, 2022). However, there is 

one important phonetic difference between the 

westernmost islands and the more central and 

eastern islands in that dialect area, and therefore, 

the westernmost part of the dialect area is not 

included in our EAST dictionary (the dotted line 

in Figure 1 marks the two parts of the northwest 

dialect area). This phonetic difference is the 

pronunciation of the digraph ei. For the same 

reason, we have given this dictionary the name 

EAST. This way, it is possible to make WEST, 

NORTHERN and SOUTHERN dictionaries as 

well, should the possibility present itself. 

In Section 3, we presented the general 

phonological rules for (central) Faroese. In the 

following section, we will outline the main 

dialectal differences between the CENTRAL and 
                                                           
9 https://hagstova.fo/fo/folk/folkatal/folkatal 
10 The terms ‘fortis’ and ‘lenis’ are often used on an abstract 

level to distinguish between the stop series /ptk/ and /bdg/ 

(Helgason 2002; Hejná 2015; among others). In using these 

terms, we are simply following this tradition, not implying 

any specific phonetic differences between the two series. 

the EAST dictionaries. For further information on 

dialectal differences in Faroese, see Thráinson et 

al. (2012) and Petersen (2022). 

5.1 Phonological differences between 

CENTRAL and EAST  

The main dialectal differences between the 

CENTRAL and EAST dialect area are as follows: 

1) The letter ó  is pronounced [OW] in the 

central dialect area and as [9W] in the east dialect 

area, 2) the digraph ei is pronounced [aJ] in the 

central area and as [OJ] in the east area, and 3) 

lack of preaspiration after long, non-high vowels 

before fortis10 stop closures in the central area and 

preaspirated stop closures in the same condition in 

the east area (Petersen, 2022).11 We will go 

through each of these three features in turn and 

explain how we did the changes, exceptions to the 

rule etc. 

  

 

 

 

 

 

 

 

 

 

Figure 1: The four main dialect areas based on 

Petersen (2022). The area to the west of the 

dotted line is the area from the northwest dialect 

area that is not part of our EAST dictionary. 

Variation in pronunciation of ó 

The CENTRAL dictionary being the starting 

point for creating an EAST dictionary, we needed 

to convert all [OW] sequences in the dictionary to 

[9W] sequences. The conversion was straight 

forward. Exemptions to this conversion were 1) 

Others call these series hard and soft, respectively 

(Thráinsson et al. 2012). 
11 As the phonetics of Faroese in general are understudied 

(Lamhauge 2022), there might be other dialectal differences 

that have not been described or studied yet, as is shown in 

Lamhauge (2022) in the case of sonorant devoicing. In 

cases of doubt, we have followed the decisions made by the 

original Ravnur project. 
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loan words and 2) words with the orthographic 

sequence -ov-. Loan words or foreign words 

(especially from English), which have not been 

implemented enough in Faroese language to adapt 

to dialectal differences in pronunciation, were not 

converted, e.g. Windows [vIndOWs] (proper 

noun) and karaoke [karaOWki]. 

The letter sequence -ov- can also manifest in 

an [OW]-pronunciation in Faroese, e.g. in 

bakarovnur ‘oven’ SG.NOM [bEAgarOWnUr] 

and flovislig ‘embarrassing’ SG.FEM.NOM 

[flOWwIsli]. The -ov- based [OW] has no 

dialectal variation and is pronounced the same 

throughout all the dialects. In the conversion 

process of [OW] to [9W], words with the 

orthographic sequence -ov- together with an [OW] 

in pronunciation were therefore exempt, and their 

transcriptions were not converted.  

The pronunciation of phonologically short ó is 

not relevant for distinguishing CENTRAL and 

EAST and is not discussed further here. 

Variation in pronunciation of ei 

The pronunciation of the phonologically long 

digraph ei is dialectally distributed as mentioned 

in the previous section. We converted all [aJ] 

sequences in CENTRAL to [OJ] sequences in 

EAST. Exemptions to this conversion were 1) 

loan words and 2) proper nouns. Loan words or 

foreign words (especially from English), which 

have not been implemented enough in Faroese 

language to adapt to dialectal differences in 

pronunciation were not converted. This applies to 

loan words, e.g. gurkumeia ‘turmeric’ SG.NOM 

[gUzgUmaJja] or bei ‘bye’ [baJ]12. Proper nouns 

with long ei behave quite differently regarding 

pronunciation than other parts of speech, and even 

though there is a variation in the pronunciation 

(between [aJ] and [OJ]), the variation seems to be 

non-systematic and idiolectal. For this reason, 

proper nouns were exempt from the conversion 

process. The exemptions of loan words and proper 

nouns were done manually. 

 

                                                           
12 Words with the [aJ] pronunciation can also be found with 

other spelling than ei, e.g. wifi ‘wifi’ [vaJfaJ] and kai ‘dock’ 

SG.NOM [kaJ], but this is due to the foreign heritage of the 

words. All words with [aJ] and other spelling than ei were 

also exempt.  
13 For example, Lamhauge (2022) has found in her work in 

progress a dialectal split in the pronunciation of non-

Variation in preaspiration 

Table 5 shows an overview of the phonological 

conditions in which preaspiration occurs in 

different Faroese dialects. In some phonological 

conditions, preaspiration occurs in all the dialects, 

i.e. between a short vowel and a long stop closure, 

or after a short vowel and before a stop closure 

followed by a sonorant. However, between a long, 

non-high vowel and a short consonant, only some 

dialects preaspirate. If the vowel is high in this 

condition, none of the dialects preaspirate 

(Thráinsson et al., 2012). There are other 

phonological conditions as well, in which 

preaspiration might or might not occur. However, 

as these have not been studied sufficiently, they 

are not included in this overview.13 

Phonological 

condition 
Example Dialects 

VCː(ptk) Átta ‘eight’ 

[OHd:a] 
All dialects 

VC(ptk)C(mn) 

VC(t)C(l) 

Vatn ‘water’ 

[vaHdn] 
All dialects 

Vː(non-high)C Kaka ‘cake’ 

[kEA:Hga] 
Only some dialects 

(including EAST, 

excluding 

CENTRAL) 
Table 5: An overview of the phonological 

conditions in which preaspiration occurs in 

different Faroese dialects (based on Thráinsson 

et al., 2012). 

This means that in the CENTRAL dictionary, 

there is no preaspiration in the VːC condition. We 

therefore had to insert preaspiration in this 

condition in the EAST dictionary. As the 

CENTRAL dictionary does not have length marks 

neither on vowels nor on consonants, the process 

could not be done automatically.  We searched 

for all of the relevant phonological conditions, 

but as there are quite a few exceptions to the 

rules, i.e. in loanwords, all of the instances had 

to be checked manually before implementing the 

change. Furthermore, as there is actually not 

much known about the pronunciation of stops in 

loanwords, we have made educated guesses based 

on native speaker intuitions at times. For example, 

homorganic stops. In these cases, we have followed 

decisions made by the original Ravnur project, and we have 

made no changes to these decisions in the EAST dictionary. 

See Thráinsson et al. (2012) and Helgason (2002) for a 

more thorough overview of preaspiration in Faroese. 
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in loanwords that end in –at, we have chosen to 

insert preaspiration, e.g. salat ‘salad’ [‘salaHd]. In 

other cases, the decision was made on a word 

basis. 

6 G2P 

The "Faroese G2P Models" is a set of two models 

trained with the software tool "Sequitur-G2P" (for 

details on Sequitur-G2P, see Bisani and Ney, 

2008), which is a trainable grapheme-to-phoneme 

tool developed at RWTH Aachen University 

(https://www.rwth-aachen.de/) by Maximilian 

Bisani. One of the models is for Central Faroese 

and the other is for the East variant. 

The set also includes two files with the 

corresponding repertory of phonemes for the 

Central (central.phones) and the East 

(east.phones) variants. 

6.1 The training set  

In order to train the Sequitur-G2P, it is necessary 

to provide it with a pronunciation dictionary that 

will play the role of training set. This 

pronunciation dictionary was taken from BLARK 

1.0 and double-checked by experts and finally 

split into one set for the Central and East variants 

of Faroese. The characteristics of both training 

dictionaries are the following: 

 Both dictionaries contain 197,757 unique 

words each.  

 Words with symbols other than letters of 

the Faroese alphabet (e.g. kt-vinnu, 

stóra_dímun) were excluded from the 

training dictionaries because those 

symbols do not have a correspondence in 

phonemes. 

 The pronunciations are based on the 

FARSAMPA alphabet provided in the 

BLARK 1.0. 

 Multiple pronunciations for one 

particular word are not accepted. 

Therefore, there is only one 

pronunciation associated with each word. 

This is to avoid providing Sequitur with 

inconsistencies (see more in Section 5)14. 

 The number of phonemes for the Central 

variant is 60, which is a subset of the East 

variant, which has 63. 

                                                           
14 This is also explains why we trained one model for each 

dialect, instead of training one joint model and apply rules 

as a post-processing step. 

Most of the entries in both dictionaries are the 

same, the only difference occurs with words that 

can be pronounced differently in both variants. 

As the Sequitur models are destined to do ASR 

experiments, the diacritics for length (:), primary 

stress (%), secondary stress (~) and emphasis (!) 

were not taken into account, because we saw that 

they do not offer any advantage to the ASR 

experiments but they make the models 

unnecessarily more complex instead15. 

6.2 Evaluation and results 

In order to evaluate the performance of the 

Sequitur models, a set of 1000 words with 

pronunciation was randomly selected for each 

variant. The resulting test sets do not contain the 

same words, and the test sets are not included in 

the training dictionaries. 

The evaluation was performed using the 

evaluation command provided by Sequitur. Table 

1 shows a summary of the results obtained: 

 Central Model East model 

Total 1000 strings, 

9703 Symbols 

1000 strings, 

9615 symbols 

Successfully 

translated 

100% strings, 

100% symbols 

100% strings, 

100% symbols 

string errors 22 (2.20%) 31 (3.10%) 

symbol errors 29 (0.30%) 44 (0.46%) 

insertions 7 (0.07%) 4 (0.04%) 

deletions 3 (0.03%) 5 (0.05%) 

substitutions 19 (0.20%) 35 (0.36%) 

translation 

failed 

0% strings, 0% 

symbols 

0% strings, 0% 

symbols 

total string 

errors 

22 (2.20%) 31 (3.10%) 

total symbol 

errors 

29 (0.30%) 44 (0.46%) 

Table 8: Evaluation results obtained from 

Sequitur's evaluation command 

As can be seen in Table 8, the translation errors 

are below 5% in both models, indicating that the 

models are reliable and not far away from other 

models found in the literature (Milde et al., 2017). 

15 In the case of TTS, it would be beneficial to train a 

different model for that purpose that includes the diacritics. 
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7 Conclusion 

A standardized pronunciation dictionary of good 

quality is crucial for the development of spoken 

language technologies.  This work describes the 

definition, development and the establishment of 

a Faroese pronunciation dictionary and a 

grapheme-to-phoneme tool to go along with it.  

This work is also important in understanding 

spoken Faroese and can be used to study regional 

differences in accents and dialects. It is clear that 

this will form a basis of further studies of Faroese 

and development of spoken language 

technologies such as ASR and TTS. 
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Abstract

Large pre-trained language models domi-
nate the current state-of-the-art for many
natural language processing applications,
including the field of clinical NLP. Several
studies have found that these can be sus-
ceptible to privacy attacks that are unac-
ceptable in the clinical domain, where per-
sonally identifiable information (PII) must
not be exposed.

However, there is no consensus regard-
ing how to quantify the privacy risks of
different models. One prominent sugges-
tion is to quantify these risks using mem-
bership inference attacks. In this study,
we show that a state-of-the-art member-
ship inference attack on a clinical BERT
model fails to detect the privacy benefits of
pseudonymizing data. This suggests that
such attacks may be inadequate for eval-
uating token-level privacy preservation of
PIIs.

1 Introduction

State-of-the-art results in natural language pro-
cessing typically rely on large pre-trained lan-
guage models (PLMs) such as BERT (Devlin
et al., 2019) or models in the GPT family (Rad-
ford et al., 2019). Multiple studies have found
that their large number of parameters can cause
PLMs to unintentionally memorize information in
their training data, making them vulnerable to pri-
vacy attacks (Carlini et al., 2019, 2021). At the
same time, other studies have shown that training
PLMs using domain-specific data yields better re-
sults on domain-specific tasks (Lee et al., 2020;
Lamproudis et al., 2021). In the clinical domain,
these combined findings pose a significant chal-
lenge: training PLMs with clinical data is neces-
sary to achieve state-of-the-art results. However,

PLMs can be vulnerable to privacy attacks that are
especially dangerous when training with clinical
data. Broadly speaking, these attacks can be di-
vided into two classes: training data extraction at-
tacks and membership inference attacks.

1.1 Privacy Attacks

Training data extraction attacks are the more se-
vere class of attacks. An adversary who success-
fully mounts such an attack can extract details
about training data that were used to train a PLM.
Carlini et al. (2021) show that GPT-2 is vulner-
able to such attacks. Several studies (Nakamura
et al., 2020; Lehman et al., 2021; Vakili and Dalia-
nis, 2021) have tried to mount similar attacks on
BERT models. To this date, there are no exam-
ples of successful training data extraction attacks
targeting BERT models.

Membership inference attacks (MIAs) do not
aim to extract training data from models. Instead,
these attacks try to discern whether or not a data-
point was present in a model’s training data. Infer-
ring that a datapoint has been present in the train-
ing data is less severe than extracting it but could,
for example, reveal if a patient has visited a set of
clinics.

MIAs have been proposed as a proxy for mea-
suring the degree of memorization in machine
learning models (Shokri et al., 2017; Murakonda
and Shokri, 2020; Mireshghallah et al., 2022).
Both training data extraction attacks and MIAs
rely on some degree of memorization in the model.
However, MIAs do not require any algorithms that
generate the memorized data. By focusing solely
on detecting memorization, MIAs are used to es-
timate a worst-case degree of privacy leakage. In-
deed, MIAs are the basis for the ML Privacy Meter
developed by Murakonda and Shokri (2020).
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1.2 Protecting Datapoints or Tokens?

One special property of natural language data is
that many words in a sentence can be replaced
with synonyms without changing the overall se-
mantics of the sentence. This feature is interest-
ing from a privacy perspective and is the basis for
pseudonymization.

Pseudonymization is the process of replacing
sensitive information with realistic surrogate val-
ues. For example, names are replaced with other
names or with placeholders. These kinds of sensi-
tive words or phrases are rarely important for the
utility of the data, neither for fine-tuning models
(Berg et al., 2021; Vakili and Dalianis, 2022), pre-
training models (Verkijk and Vossen, 2022; Vak-
ili et al., 2022), nor for general research purposes
(Meystre et al., 2014a,b). One important exam-
ple of this is MIMIC-III (Johnson et al., 2016),
which contains a large number of electronic health
records in which sensitive words or phrases have
been manually replaced with placeholders. This
dataset is widely employed in clinical machine
learning and is considered to be relatively safe.

One fundamental assumption of pseudonymiza-
tion is that the higher-level semantics of a text are
not important from a privacy perspective. For ex-
ample, an electronic health record describing a pa-
tient visiting a hospital is not sensitive if we cannot
infer who the patient is, when the visit took place,
and so on. One way of viewing this is that the data
are not primarily sensitive on the datapoint level,
but on the token level.

1.3 Membership Inference Attacks and
Pseudonymization

Manual pseudonymization is a time-consuming
process. Many institutions lack the resources to
manually pseudonymize data on the scale required
for modern machine learning models or even
for less data-intensive qualitative clinical research.
An alternative is to use automatic pseudonymiza-
tion. Automatic pseudonymizers typically rely on
named entity recognition (NER) to detect sensitive
information. The detected entities are then either
replaced with realistic surrogates or with place-
holders. However, NER systems are rarely per-
fectly accurate. Imperfect recall leads to some sen-
sitive entities remaining after processing the data,
which is undesirable from a privacy perspective.

Because systems performing automatic
pseudonymization fail to detect some sensitive

entities, it is important to measure the privacy
implications of this. A straightforward approach
is to consider the recall of the NER model that
powers the system. This metric can be used to
estimate the number of sensitive entities that
remain in the data. Such estimates are useful for
determining the sensitivity of an automatically
pseudonymized dataset. However, they are less
ideal for judging the privacy risks of a machine
learning model trained using the dataset. Assum-
ing that the trained model has memorized every
single sensitive entity is overly pessimistic.

Estimating the privacy risks of models us-
ing MIA, as suggested by Mireshghallah et al.
(2022), is an attractive alternative that would al-
low pseudonymization to be compared to other
privacy-preserving techniques. However, MIAs
are designed to measure the memorization of en-
tire datapoints rather than the memorization of
sensitive tokens. This poses a challenge to the
paradigm of using MIAs to estimate the privacy
risks of machine learning models trained using
pseudonymized data.

In this study, we show that the state-of-the-art
MIA described by Mireshghallah et al. (2022) can-
not distinguish between a model trained using real
or pseudonymized data. These results suggest that
using this attack to quantify privacy risks fails to
capture privacy gains from pseudonymizing train-
ing data.

2 Methods and Data

This study closely mirrors the experimental setup
used by Mireshghallah et al. (2022) in order
to minimize discrepancies stemming from differ-
ences in implementation details. The datasets
and models are based on resources introduced by
Lehman et al. (2021). The experiments aim to
examine whether or not membership inference at-
tacks can distinguish between a model trained us-
ing real or pseudonymized data.

2.1 Data

This study uses the ClinicalBERT-1a model
trained by Lehman et al. (2021). They train a
model using pseudonymized clinical notes from a
subset of MIMIC-III. This specific model is of the
same size as BERT-base (Devlin et al., 2019) and
uses this model’s parameters as a starting point
for continued pre-training to adapt the model to
the clinical domain. The corpus used to train
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Figure 1: Our experiments use a filtered subset of MIMIC-III that only contains records with named
(but pseudonymized) patients. One subset, the Pseudo subset, has been used to create the Clinical-
BERT model used as the target for the attack. Another version, referred to as the Real dataset, is re-
pseudonymized and acts as a stand-in for the original sensitive raw data.

the model is also available. Mireshghallah et al.
(2022) perform their membership inference exper-
iments using the training data for the BERT model
and MIMIC-III data that was not used for train-
ing the model. The method also needs a refer-
ence model, and this study follows their example
by also using PubMed-BERT (Gu et al., 2021) for
this purpose.

This study focuses specifically on MIAs’ abil-
ity to discern whether or not a model has been
trained using pseudonymized data. A filtered ver-
sion of MIMIC-III containing only sentences with
names is created to ensure that the results reflect
this distinction. This dataset contains a total of
236,114 datapoints. A pseudonymized version of
the dataset is created in which all names have been
replaced with other names.

After replacing all the names, we have two
datasets where each sentence differs solely in what
names are used. The dataset used to train the
model will be referred to as the Pseudo dataset,
and the re-pseudonymized dataset will be referred
to as the Real dataset. This mimics the situa-
tion where we have a model trained on perfectly
pseudonymized training data. Figure 2 illustrates
the scenario that is simulated. Ideally, the mem-
bership inference attack should indicate that re-
placing all names with pseudonyms has made the
model much safer.

2.2 Predicting Membership

This study uses the same procedures as
Mireshghallah et al. (2022) since their method is
the current state-of-the-art membership inference

attack targeting masked language models like
BERT. The method works by analyzing how the
target model reacts to a datapoint as compared to a
reference model. The target and reference models,
in our case ClinicalBERT and PubMed-BERT,
differ in that the target model has been trained
using sensitive data that the reference model has
not been exposed to.

A variety of different measurements can repre-
sent the reaction of the model. Following the ex-
ample of Mireshghallah et al. (2022), we use the
normalized energy values calculated for every dat-
apoint. These values Eθ(S) are calculated by es-
timating the probability of a sequence of tokens
S given a set of masking patterns M for a model
with the parameters θ:

Eθ(S) =
1

|M |
∑

m∈M
eθ(S,m)

eθ(S,m) =
∑

i∈m
log

[
pθ(Si | Sm)

]

Si is the token at index i and Sm is the altered
sequence S to which the masking pattern m has
been applied. These normalized energy values are
calculated for three datasets, for both the target
model and the reference model:

In-data Parts of the dataset used to train the tar-
get model. In this study, the two datasets de-
scribed in Section 2.1 fill this function, as il-
lustrated in Figure 1.

Out-data A second dataset known not to belong
to the target models training data. This subset
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Figure 2: This study simulates the scenario in which a perfectly pseudonymized dataset has been used
for continued pre-training of a BERT model. The version of MIMIC-III used to create the ClinicalBERT
model from Lehman et al. (2021) is re-identified with pseudonyms and is used in experiments (A) and
(B). We refer to this dataset as the Pseudo dataset. In experiment (C), we simulate the original, pre-
pseudonymized MIMIC-III by populating the data with other names and call this version the Real dataset.

of MIMIC-III is also used in Mireshghallah
et al. (2022).

Threshold data A third dataset disjoint from the
Out-data and known not to belong to the tar-
get models training data. A subset of i2b2
(Stubbs and Uzuner, 2015) is used, as in
Mireshghallah et al. (2022).

The normalized energy values of the target and
reference models are compared for the threshold
data, resulting in a threshold. This threshold is
used to classify if a datapoints belongs to the In-
data or the Out-data based on the difference be-
tween the energy values of the datapoint obtained
from the models. The intuition behind this method
is that if the target model has memorized a dat-
apoint, then its energy value will be noticeably
higher relative to the reference model’s energy
value. The threshold is set so that 90% of the data-
points in the threshold dataset are correctly classi-
fied as non-members (Mireshghallah et al., 2022).
We also calculate the AUC to provide a threshold-
independent assessment of the privacy risks.

This study examines the claim that membership
inference attacks can be used to quantify privacy
gains from using various privacy-preserving tech-
niques. The scenario modeled in these experi-
ments simulates the situation where the privacy-
preserving technique is perfect pseudonymization.
Every datapoint with a named patient in the train-
ing data for ClinicalBERT has a corresponding
datapoint in the Real dataset where the name is
different. In such a scenario, no real names are left
in the training data to memorize. Thus, the risk of
leaking any name of a patient is zero, represent-

ing a substantial increase in privacy. If the attack
accurately quantifies these privacy gains, then we
would expect it to perform worse when the data
has been pseudonymized.

3 Results

Three different attacks are performed using three
different datasets as the in-data. The accuracy, pre-
cision, and recall values of each attack are listed in
Table 1. Experiment (A) mirrors the setup used by
Mireshghallah et al. (2022). Experiments (B) and
(C) use the subsets of MIMIC-III that only con-
tain names. There are only very small differences
in the correctness of the classifications, regardless
of the configuration used.

Table 1 also lists the AUC, which represents
a threshold-independent evaluation of the MIAs.
The AUC varies more than the other three metrics.
However, the difference between experiments (A)
and (B) is larger than that between experiments
(B) and (C). This is despite the fact that the In-
data for experiments (A) and (B) come from the
same population. The difference in AUC between
experiments (B) and (C) is 0.017.

Experiments (A) and (B) represent cases where
we have not performed any pseudonymization of
the training data. That is, the In-data are used
to train the BERT model without employing any
privacy-preserving techniques. Experiment (C) is
the result of the simulated scenario where perfect
pseudonymization is employed to preserve the pri-
vacy of the data. In other words, the model is not
exposed to any real names during training. The
privacy gains from using this technique are not re-
flected by the metrics in Table 1.
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In-data Out-data Threshold Accuracy Precision Recall AUC

(A) Pseudo, random sample Held-out i2b2 0.771 0.990 0.548 0.916
(B) Pseudo, names only Held-out i2b2 0.780 0.990 0.566 0.882
(C) Real, names only Held-out i2b2 0.770 0.990 0.548 0.865

Table 1: The membership inference attack is run with three different configurations. Experiment (A)
uses a random sample of MIMIC-III used in Mireshghallah et al. (2022) as in-data, and all experiments
use the same out-data as they do. Experiments (B) and (C) use the datasets described in Section 2.1 for
the in-data. The accuracy of each attack is displayed alongside the recall and the precision values. The
threshold-independent AUC value is also listed.

4 Discussion and Conclusions

This study focuses specifically on protecting
names. Future research would benefit from ana-
lyzing additional categories of PII. However, the
data and models created by Lehman et al. (2021)
focus specifically on names. This class of PII is
used in this study to facilitate comparisons with
earlier studies.

The results from the three experiments in
Table 1 are very similar to each other. At the
same time, experiment (C) represents a scenario
in which a very strong privacy-preserving measure
has been employed to increase the privacy of the
target model. If the studied MIA is an accurate
way of quantifying the privacy benefits of using
pseudonymization, then we would expect the MIA
to be much less accurate in experiment (C). The
fact that the MIA works nearly as well for exper-
iments (A) and (B) as for (C) indicates that using
this attack to quantify memorization does so on a
datapoint level. This may be useful for evaluat-
ing techniques such as differentially private pre-
training (Li et al., 2022), which operate on entire
datapoints.

It remains to be shown which of the datapoint’s
characteristics are used to separate members from
non-members. The results of our experiments sug-
gest that using this MIA does not accurately quan-
tify the privacy gains from using pseudonymiza-
tion, which instead operates on the token level.
While the scope of this short paper was limited
to evaluating a state-of-the-art MIA for BERT
models, future research should also evaluate other
MIAs and a wider range of privacy-preserving
techniques.

Acknowledgements

We want to thank Fatemehsadat Mireshghallah for
sharing the data and code used in Mireshghal-

lah et al. (2022). We are also grateful to the
DataLEASH project for funding the research pre-
sented in this paper.

References
Hanna Berg, Aron Henriksson, Uno Fors, and Hercules

Dalianis. 2021. De-identification of Clinical Text
for Secondary Use : Research Issues. In Proceed-
ings of the 14th International Joint Conference on
Biomedical Engineering Systems and Technologies
(BIOSTEC 2021) - Volume 5: HEALTHINF, pages
592–599. SciTePress.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
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Abstract
Sentiment classification is valuable for lit-
erary analysis, as sentiment is crucial in
literary narratives. It can, for example, be
used to investigate a hypothesis in the liter-
ary analysis of 19th-century Scandinavian
novels that the writing of female authors in
this period was characterized by negative
sentiment, as this paper shows. In order
to enable a data-driven analysis of this hy-
pothesis, we create a manually annotated
dataset of sentence-level sentiment anno-
tations for novels from this period and use
it to train and evaluate various sentiment
classification methods. We find that pre-
trained multilingual language models out-
perform models trained on modern Dan-
ish, as well as classifiers based on lexi-
cal resources. Finally, in the classifier-
assisted corpus analysis, we both confirm
and contest the literary hypothesis and fur-
ther shed light on the temporal develop-
ment of the trend. Our dataset and trained
models will be useful for future analysis
of historical Danish and Norwegian liter-
ary texts.

1 Introduction

Sentiment analysis, the computational study of
emotions, opinions, and evaluations expressed in
text, has become an important tool in natural lan-
guage processing. It is based on the premise
that words are associated with sentiments or va-
lence, and that these associations can be quantified
(Thomsen et al., 2021). However, its application
in literary studies has been limited. Literary texts,
such as novels, poems, and plays, provide a unique
cultural window into past attitudes, beliefs, and
emotions. By analyzing the sentiment expressed
in these texts, researchers can gain a deeper un-
derstanding of the cultural and societal attitudes

of the past and how they have shaped our present
understanding of the world. However, traditional
sentiment analysis techniques in the investigation
of literary texts may be less effective due to the use
of an archaic vocabulary, literary ambiguity, and
figurative language, as well as the limited training
data, the difficulties of generalizing models trained
on modern text, and the challenges of annotation.
Therefore, there is a need for new methods and
approaches to analyze sentiment in historical and
literary texts to uncover the valuable insights they
can provide. However, there is no existing bench-
mark for sentiment analysis of the texts we are in-
terested in, and it is not known how well existing,
general methods perform on them, and whether
they can be used for a meaningful analysis of lit-
erary hypotheses.

In this paper, we (1) introduce an annotated
sentiment dataset of historical literary Danish
and Norwegian, (2) evaluate various classifica-
tion models on the dataset, and (3) use an accu-
rate classifier to analyze a large historical liter-
ary corpus and provide initial evidence for a lit-
erary hypothesis as outlined in the following sec-
tion. Our code and data are available at https:
//github.com/mime-memo/unhappy.

2 Literary Context: The Unhappy Texts

In our experiments, we focus on literature from
the so-called ‘Modern Breakthrough,’ which de-
notes the literary currents embedded in the new
social realist and naturalist literature which blos-
somed in Scandinavia during the 1870s and the
1880s as well as a cultural and societal transforma-
tion, encompassing politics, morals, gender roles,
etc (Ahlström, 1947). On the whole, the historiog-
raphy of the breakthrough, largely concentrated on
a few canonical male authors, does not reflect the
diversity of the period’s literary production, espe-
cially in terms of gender. Women were most no-
ticeable among the new groups of authors stepping
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forward from 1870-1900. As a rule, female au-
thors were not recognized by contemporary (male)
criticism; the famous critic Georg Brandes intro-
duced the term breakthrough in a book grouping
only male Scandinavian authors, The Men of the
Modern Breakthrough (Brandes, 1883). and, a
generation later, the influential literary historian
Vilhelm Andersen dubbed the period’s female lit-
erary production as an ‘odd province’ of literature
(Andersen, 1925). While Andersen recognized the
period’s literary production by Danish female au-
thors, a much later literary handbook Hovedsporet
(Jørgensen, 2005) does not. Its chapter on the de-
bates on gender in the period’s literature has the
heading ‘Women’s literature, written by men’.

In fact, for many decades of the 20th century,
the female breakthrough authors were overlooked
and mostly left out of literary histories, but in
the 1970’s and 80’s, as a part of a greater femi-
nist wave in Scandinavian literary studies, scholars
made a great effort to reinterpret the period. A re-
sult of this was the prevalent hypothesis about the
works of the female authorships from the period
being characterized as ‘unhappy texts’ (Dalager
and Mai, 1982; Jensen et al., 1993). The argument
is unfolded in greatest nuance in Pil Dahlerup’s
doctoral dissertation, The women of the modern
breakthrough (Dahlerup, 1984). Dahlerup argues
that because the women of the period were re-
strained by the patriarchal society, they also wrote
fictional characters who lacked agency, were un-
happy and disillusioned. Meanwhile the scholars
highlight that the emancipated female characters
of the period are first and foremost present in the
works of male authors, arguing that the male au-
thors, who enjoyed both private and public lib-
erty, had the capacity to portray fictional charac-
ters with the same liberties (Dahlerup, 1984).

Our investigation will revisit this hypothesis
with two points of departure, one regarding em-
pirical selection and scale, and another regarding
methodology. The hypothesis of the unhappy texts
is based solely on texts by female authors and of-
ten on relatively few texts. The first point of depar-
ture is thus to revisit the hypothesis with a quan-
titative perspective, also including the works au-
thored by men. Our second point of departure, in
revisiting the hypothesis of the unhappy texts, is
based on a theoretical framework from the field of
gender studies and feminist literary studies. Cen-
tral to our inquiry are new insights from affect

theory and the notion of sentiment and affects as
something humans ‘do’ rather than an underlying
a priori structure as is the case in the psychoan-
alytic assumptions that the hypothesis of the un-
happy texts is based on. We thus set out to find
new methodologies to test the hypothesis of un-
happy texts. In this experimental methodologi-
cal phase, we find that sentiment analysis, ana-
lyzing the valence associated with a given word,
sentence, or text, is a meaningful starting point be-
cause of its juxtaposition of affect theoretical and
quantitative perspectives.

3 Related Work

In this section, we present sentiment-related works
in both literature and historical corpora.

3.1 Sentiment Analysis on Literature

The study of emotions in literature has become
an integral part of literary analysis with the emer-
gence of digital humanities. This field of research
focuses on using computational methods to under-
stand emotions in literature. This encompasses a
wide range of topics, from tracking changes in the
plot to analyzing the emotional content of texts
(Kim and Klinger, 2019).

Emotion and sentiment classification involves
classifying text into predefined classes based on
emotions/sentiment. This task is applied in the lit-
erature to group literary texts based on their emo-
tional properties. Some studies have focused on
classifying the emotions in works of Francisco de
Quevedo’s poems (Barros et al., 2013), American
poetry (Reed, 2018), and early American novels
(Yu, 2008). Volkova et al. (2010) annotated in
fairy tales, while Ashok et al. (2013) used sen-
timent polarity to predict the success of a book.
Zehe et al. (2016) used sentiment classification to
classify 212 German novels into happy or non-
happy endings. They showed encouraging results
using support vector machines. While some stud-
ies approach the task as a classification problem,
others focus on the structural changes of sentiment
and emotions. Heuser et al. (2016) explore the re-
lationship between emotions and geographical lo-
cations and Taboada et al. (2006) track sentiment
and emotions towards certain groups.

3.2 Sentiment Analysis on Historical Text

Identifying and tracking the sentiment of text over
time is challenging due to language variation, the
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dynamic nature of sentiment, and the scarcity of
historical corpora. Sentiment can change depend-
ing on a variety of factors, such as context, culture,
and time. Additionally, historical and diachronic
data may have different characteristics than con-
temporary data, such as changes in language use
and writing styles. Along with the above chal-
lenges, the main focus of research nowadays is on
temporal corpora in the news (Souma et al., 2019),
and social media (Hazimeh et al., 2019), while lit-
tle attention has been devoted to the historical do-
main (Sprugnoli et al., 2016).

Several techniques are used for sentiment anal-
ysis on diachronic and historical corpora. Schmidt
and Burghardt (2018) used sentiment analysis on a
German drama text corpus and evaluated the per-
formance of different German sentiment lexicons
using a manually annotated gold standard of 200
speeches. This study created an annotated cor-
pus for the sentiment analysis of historical texts
and revealed key issues related to the annotation
and pre-processing of historical texts. Sprugnoli
et al. (2016) analyzed an Italian corpus of writ-
ings of Alcide De Gasperi and developed a new
lexical resource for sentiment analysis. The study
found that crowd-sourcing was more effective for
sentiment analysis of historical texts than using a
sentiment lexicon. Hills et al. (2019) analyzed na-
tional subjective well-being using millions of dig-
itized books in six different languages and coun-
tries. They found that Gross Domestic Product
(GDP) and life expectancy have a strong positive
effect on well-being, while conflict has a negative
effect. These studies demonstrate the challenges
and potential of sentiment analysis of historical
texts and the importance of manual annotation and
crowd-sourcing for accurate analysis.

Schmidt et al. (2021) analyzed emotional ex-
pression in historical German plays using vari-
ous methods, including lexicon-based, traditional
machine learning, word embeddings, and pre-
trained and fine-tuned language models. The lat-
ter achieved state-of-the-art results, while lexicon-
based and traditional machine learning consis-
tently outperformed. However, performance de-
creases significantly with multiple sub-emotions.

To summarize, the challenges in sentiment anal-
ysis of historical texts, including lack of native
speakers, limited data, unusual textual genres, and
historical language, call for innovative and ro-
bust methods (Sprugnoli, 2021). Pre-trained lan-

Main Corpus Sub-corpus

Total novels 839
Total sentences 3,229,137 2,748
Total words 52,724,457 55,333
Average sentences per novel 3,849
Average words per novel 62,842
Average words per sentence 16 20

Table 1: Corpus statistics for the main corpus and
sub-corpus used in sentiment analysis.

guage models can address these challenges by be-
ing trained on large corpora, fine-tuned on small
datasets, and able to identify sentiment in diverse
texts (§5).

4 Dataset of Historical Literary Text

This section describes our main corpus of histor-
ical literary text and a sub-corpus annotated for
sentiment.

4.1 Main Corpus
We rely on the MEMO corpus (Bjerring-Hansen
et al., 2022), comprising 839 Danish and Norwe-
gian novels spanning the last 30 years of the 19th

century and including more than 50 million words
in total. We refer to this corpus as the ‘main cor-
pus’. The corpus is a rich and diverse collection
of texts that will provide valuable insights into the
registered sentiments and emotions of the period
under investigation. Table 1 shows statistical in-
formation about the corpus.

4.2 Annotated Sub-Corpus
To ensure the accuracy and reliability of our sen-
timent classifiers, we systematically annotated a
representative subset of sentences from our main
corpus. We carefully selected 2,748 sentences, av-
eraging 3.3 sentences per novel, to create a diverse
sample. To minimize bias, we employed random
sampling by shuffling the sentences and selecting
3-4 sentences from each novel. This method en-
sured that the annotations accurately reflect the
sentiment distribution in the entirety of the corpus
and laid a strong foundation for further research in
sentiment analysis of historical novels. Addition-
ally, Table 1 provides further statistical informa-
tion regarding the sub-corpus.

4.3 Annotation Process
The annotation was conducted by three trained lit-
erary scholars: a master’s student, a Ph.D. stu-
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dent, and an associate professor. All three are na-
tive Danish speakers and annotated 690, 1029, and
1029 text segments from the corpus, respectively.
The annotators shared domain knowledge in 19th

century Scandinavian literature, with overarching
and intertwining areas of expertise, but also partic-
ular interests (gender, history of ideas, and cultural
history).

Guidelines. With respect to the principle that
clear and simple instructions are crucial for obtain-
ing high-quality annotations (Mohammad, 2016),
and acknowledging the array of intricacies and
bafflements, which an emotional analysis of lit-
erary texts based on small fragmentary segments
raises, the guidelines were rigorously minimalist
and pragmatic. Our guidelines are a simple senti-
ment annotation questionnaire with clarifying an-
notation directions.

1. The text segments were to be labeled either
‘Positive’, ‘Negative’, or ‘Neutral’. The an-
notator was to assess which of these labels
was most descriptive of the overall sentiment
expressed in the segment.

2. Only the segment in question should be con-
sidered. Contextualisation and ‘guessing’ on
what might go on before or after the segment
were ruled out. In cases of doubt, the label
should be ‘Neutral’.

3. Attention should be paid to the historical fluc-
tuations in language and semantic change. As
an example the adjective ‘besynderlig’, today
means ’weird’, while it in the 19th century
also had the meaning ’special’ or ’curious’.
This means that the following sample should
be labeled as positive, rather than, and con-
trary to an anachronistic reading, negative:

‘Hun blev strax noget fortumlet over disse
uforberedte Kjærtegn ; men da hun laa i
hans Arme , saa’ hun op paa ham med
et besynderligt, ikke fornærmet Blik’ (En-
glish translation: ‘She was at once some-
what taken aback by these unprepared ca-
resses; but as she lay in his arms, she
looked up at him with a curious, not of-
fended, look’)

4. Finally, pragmatism was to be deployed by
the annotators. Since the segments are short
and heterogeneous (containing both dialogue,
non-dialogue/description, or a mixture), no
extra weight could be given to particular

word classes (such as verbs, adjectives, or
nouns).

Challenges. Since sentiment analysis has tradi-
tionally been used on texts with a strong valence
and subjectivity (e.g. reviews or tweets), liter-
ary texts such as novels pose a challenge because
they often are characterized by ambiguity and can
be understood and interpreted in several differ-
ent ways. Therefore, a moderate inter-annotator
agreement (IAA) is also to be expected (Schmidt
et al., 2019).

Another fundamental challenge in the annota-
tion of imaginative texts reflects a key question in
narratology (i.e., the study of narrative structure in
texts): Who is speaking? In this context, distinc-
tions are made between the text’s (implied) author,
narrator, and characters as well as between ‘mood’
and ‘voice’ as levels in literary texts (Genette,
1983). Since the narratological structure is of-
ten unclear, the annotation cannot aim at deciding
whether the dialogue or text voices reflect the au-
thor’s sentiment. At the risk of not taking into ac-
count literary devices such as irony and unreliabil-
ity, the annotation can only address the dominant
sentiment in the segment.

In addition, particular attention was paid to the
following issues:

Lack of context. Often, segments with clear in-
dications of emotion are ambiguous or vague due
to a lack of context. We decided to label such in-
stances as ‘Neutral’, even though they in reality,
might have formed parts of negative vis-à-vis pos-
itive discourses. Example (translated): ‘When the
letter, finally, was finished, she folded it and went
with a beating heart to the nobleman’s door’. Here
the valence is clear (something emotional is go-
ing on), but the polarity is unclear (is it something
good or bad?).

(Unconscious) Contextualization. We tried our
best to rely on our judgments on close read-
ing combined with our familiarity with historical
modes of morality and sensibility, including stan-
dards of courtesy and decorum, as expressed in
speech as well as gesture and action. However, it is
difficult not to contextualize or to rule out the role
of (unconscious) contextualization. For instance,
our knowledge of individual authors or texts and
their distinctive traits (e.g., the Norwegian author
Amalie Skram, famous for her coarse and unsenti-
mental naturalistic style, permeated with negativ-
ity) or paratextual effects such as the connotations
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of a book title (e.g., the novel En Krise (1892),
‘A Crisis’ by Johanne Schjørring, inevitably giv-
ing the reader a negative vibe towards the text).

Gender. Finally, and crucially in this context,
is the fact that cultural values and norms change
over time. Awareness of the issue of cultural value
change over time, affecting the annotation (gender
roles, gendered behavior, then and now). Rely-
ing on fundamental insights from social construc-
tivist gender theory, understanding gender as a cat-
egory subject to change in form and meaning over
time, special attention was paid to segments in-
volving gendered behavior and dialogue. A few
examples can illustrate how cultural change poses
challenges to annotation. First, we have a segment
highlighting a male character, whose dominant be-
havior would be interpreted more negatively today
than in the past:

‘aa ja , men ofte gjorde han sig med Vilje haard
, ti saaledes, var det bedst for dem, han havde at
gøre med: “du skal!”’ (Translation: ‘oh yes, but
often he made himself tough on purpose, for this
was the best for those he had to deal with: “you
must!”’)

In the thematization of female gender roles, a
modern understanding could potentially come at
odds with the intentions in 19th century texts. This
is highlighted in the following segment presenting
a female character:

‘Men allerhelst laa hun dog i Vinteraftenernes
Skumring i sin Yndlingsstilling i Armstolen og
grublede og drømte og ventede og ventede —
ligesom Prinsessen i Eventyret.’ (Translation:
‘But preferably she would lie in the twilight of
the winter evenings in her favourite position in
the armchair and pondering and dreaming and
waiting and waiting — like the princess in the
fairy-tale.’

Today, the character’s passivity, dreamfulness,
and nostalgia are more likely to be perceived as
negatives than positives.

4.4 Annotation Results
The sentiment annotations for all sentiment
classes are illustrated in Table 2, which displays
the distribution of the samples and sentiment
classes.

Agreement. We use Cohen’s Kappa to deter-
mine IAA on 100 samples annotated by all three
experts, resulting in a score of 0.59, which indi-
cates moderate agreement among annotators. This
is likely a result of the subjectivity of the task and
the challenges encountered in determining senti-
ment with limited context (see Challenges above).

Sentiment Class Total Samples Percentage

Negative 1,139 41.4%
Neutral 788 28.7%
Positive 821 29.9%

Total 2,748 100%

Table 2: Distribution of sub-corpus samples and
sentiment categories.

5 Experiments

The dataset is split into three sets: training, val-
idation, and testing to facilitate the development
and evaluation of our models. The training set
comprises 2376 examples, accounting for approxi-
mately 86% of the dataset. The validation set used
for hyperparameter selection consists of 272 sam-
ples, representing about 10% of the entire dataset.
Lastly, the testing set, which is utilized to evaluate
the final performance of the model, contains 100
examples, representing approximately 4% of the
total dataset. In the case of the training and valida-
tion sets, annotations were performed by a single
expert. However, for the testing set, samples were
annotated by all three experts, and the final label
was determined through a majority vote. We use
F1-score as our evaluation metric.

5.1 Lexicons and Models

In this section, we outline the lexicons and mod-
els evaluated in our sentiment classification exper-
iments using both lexical-based, supervised with-
out fine-tuning, and supervised with fine-tuning
methods. Importantly, all lexicons and models
are based on modern Danish lexica and/or training
data, with no exposure to historical Danish or Nor-
wegian. It should be noted that, until 1907, writ-
ten Norwegian was practically identical to written
Danish (Vikør, 2022). In section 5.2, 5.3, and 5.4,
we show detailed information on how these re-
sources were employed to achieve sentiment clas-
sification results. The following provides a con-
cise overview of the lexicons and BERT models
employed in our experiments.

Sentida. A Danish lexicon1 comprised of the ex-
isting Danish sentiment lexicon AFINN and a list
of new words. It scores sentences based on their
words and provides either an average sentiment

1https://github.com/Guscode/Sentida
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score or a total score. Sentida takes into account
adverb-modifiers, exclamation marks, and nega-
tions in its sentiment scoring process (Lauridsen
et al., 2019).

TextBlob. A Python package2 that utilizes a
lexicon-based approach in which sentiment is
determined by the semantic orientation and the
strength of each word in the sentence, using a pre-
existing English dictionary that categorizes words
as negative, neutral, or positive. We employ a
two-step process to ensure accurate sentiment in
Danish text. First, we utilize Google Translate3 to
translate Danish text to English. Then, we feed the
translated text into TextBlob.

VADER. VADER (Valence Aware Dictionary
and sEntiment Reasoner) is a lexicon and rule-
based sentiment analysis tool attuned explicitly to
sentiments expressed in social media and works
well on texts from other domains (Hutto and
Gilbert, 2014).4 To adjust the VADER sentiment
analysis technique for Danish, we use a Danish
sentiment lexicon (Nimb et al., 2022; Pedersen
et al., 2021)5 containing a list of words and their
associated sentiment scores.

Danish Model BotXO. This BERT model was
developed by Certainly (previously BotXO) (De-
vlin et al., 2019). It has been pre-trained on 1.6
billion Danish words and is freely available6. This
particular model has not been fine-tuned on senti-
ment classification.

Danish BERT Tone. The BERT Tone model7

was developed to detect sentiment polarity (pos-
itive, neutral or negative) in Danish texts. The
model was constructed by fine-tuning the BotXO
Danish BERT model.

Danish Sentiment. This model8 is a fine-tuned
version of the multilingual pre-trained model
XLM-RoBERTa-base (Conneau et al., 2020). It

2https://textblob.readthedocs.io/
3https://translate.google.com/
4https://github.com/cjhutto/

vaderSentiment
5https://github.com/dsldk/

danish-sentiment-lexicon
6https://huggingface.co/Maltehb/

danish-bert-botxo
7https://huggingface.co/alexandrainst/

da-sentiment-base
8https://huggingface.co/vesteinn/

danish_sentiment

Lexicon/BERT Model Valid. Test

Lexicon-based

Sentida 0.64 0.63
TextBlob 0.56 0.52
VADER 0.59 0.62

Supervised (without fine-tuning)

Danish BERT Tone 0.59 0.62
Danish Sentiment 0.71 0.74

Supervised (with fine-tuning)

Danish BERT BotXO 0.50 0.52
Danish BERT Tone 0.59 0.70
Danish Sentiment 0.63 0.72

Table 3: Lexicon-based and supervised sentiment
classification F1-Score using different methods on
validation and testing sets.

has been fine-tuned on 198M tweets specifically
for sentiment analysis.

5.2 Lexicon-based classification experiment

Lexicon-based sentiment analysis is a technique
used to determine the sentiment of a given text by
assigning positive, negative, or neutral values to
individual words based on their meanings. This
approach relies on a pre-built sentiment lexicon,
which contains a list of words and their corre-
sponding sentiment values. The sentiment of a text
is then calculated by summing the sentiment val-
ues of the individual words within the text. We
evaluate the performance of our sentiment clas-
sifiers on the validation and testing split of the
sub-corpus dataset on the Sentida, TextBlob, and
VADER lexicons.

The Sentida classifier achieves the best results
with 64% and 63% on the validation and testing
sets, respectively. The results of the other two lex-
icons are presented in Table 3. Further analysis
reveals that Sentida is the best at transferring to
the unseen domain and language variation of his-
torical literary Danish and Norwegian.

5.3 Supervised classification experiments
(without fine-tuning)

To predict sentiment from a pre-trained model
without fine-tuning, we first load the pre-trained
model, format the input data and make predictions.
However, without fine-tuning the model to rec-
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ognize patterns specific to a particular sentiment
analysis task, its performance may be limited.

We evaluate the performance of two pre-trained
Danish BERT models, the Danish BERT Tone,
and Danish Sentiment. The results show that the
Danish Sentiment overpasses the Danish BERT
Tone in both, evaluation and testing sets.

5.4 Supervised classification experiments
(with fine-tuning)

The dataset used in lexicon-based and supervised
without fine-tuning classification is also utilized in
conducting supervised classification experiments.
We fine-tune and evaluate three different pre-
trained language models (BERT BotXO, Danish
BERT Tone, and Danish Sentiment) in our dataset.

In this experiment, we fine-tune the described
pre-trained BERT models on a task-specific
dataset for sentiment classification. The dataset
consists of 2,748 labeled sentences, with an almost
balanced distribution of positive, neutral, and neg-
ative sentiments. We use a batch size of 32 and
train the model for 30 epochs, using the AdamW
optimizer with a learning rate of 10−3 (Loshchilov
and Hutter, 2017). We evaluate the performance
of each model using F1-score. Here we observe
larger differences between validation and testing,
which is a result of the fact that model selection
(number of training epochs) was performed using
the validation set. The Danish Sentiment model
achieved the highest F1-score of 63% and 72% on
the validation and test sets, respectively. Table 3
shows details about the obtained results from each
model.

6 Classifier-assisted Corpus Analysis

We employ the ’Danish Sentiment’ BERT model,
which has shown to be the top-performing model,
for predicting the sentiment of all sentences in the
main corpus. We align the sentiment with the au-
thor’s gender and the novel’s year of publication.
In Figure 1, the distribution of sentiment levels is
depicted in relation to the author’s gender and the
percentage of sentences. Notably, female authors
tend to exhibit a higher proportion of both negative
and positive sentiments compared to male authors,
on average.

These results provide insights into potential dif-
ferences in sentiment expression between male
and female authors in the analyzed data. The lit-
erary hypothesis about female authorships being

Figure 1: Distribution of sentiment and the au-
thor’s genders. The X-axis is the sentiment class.
Y-axis is the percentage of sentences per sentiment
category.

‘unhappy’ is partly confirmed by our analysis. The
female authors did express more negative senti-
ment, but also more positive sentiment than the
male authors. Thus the implied positivity of the
male authors, which is also part of the literary hy-
pothesis, is not confirmed. A preliminary new hy-
pothesis could therefore be that the female authors
of the period wrote with a more expressed senti-
ment, whilst the male authors had a tendency to-
wards a more unaffective style of writing.

Figure 2 provides a detailed analysis of the
sentiment distribution over time concerning the
author’s gender. This figure shows the changes
in sentiment tendencies across different gender
groups and how these sentiments evolve over a
given period. The results provide valuable insights
into the dynamic nature of sentiments based on
gender and can aid in understanding the evolv-
ing nature of sentiments and gender influences.
The figure demonstrates that female authors ex-
hibit more negative and positive sentiments over
time than male authors.

Additionally, we calculated the overall senti-
ment by using a weighted average approach that
considered both the sentiment distribution and
weights of positive, neutral, and negative senti-
ments. Specifically, we assigned a weight of 3 to
negative sentiment, 2 to neutral sentiment, and 1
to positive sentiment. To compare the sentiment
of male and female authors over time, we com-
puted the average sentiment scores over a period
of 29 years and plotted them in Figure 3. Higher
scores indicated more negative sentiment, while
lower scores indicated more neutral or positive
sentiment. The results in the figure show that, on
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Figure 2: Distribution of sentiment over time. The X-axis is the years. The Y-axis is the percentage of
sentences of a particular sentiment out of all sentences by authors of the same gender from that year.

Figure 3: Average sentiment for both male and fe-
male authors over time.

average, the negative sentiment scores of female
authors are higher than those of male authors in
16 out of the 29 years analyzed.

The significance of our findings was assessed
by performing a t-test for each sentiment category,
with the null hypothesis that the mean number of
sentences with that category across the years is the
same for sentences by male and female authors.
In statistical analysis, a p-value lower than 0.05
is generally considered statistically significant and
enables us to reject the null hypothesis, indicating
the counts are statistically different. Table 4 shows
small, statistically significant p-values for all sen-
timent classes.

Sentiment Class p-value

Negative 5.20× 10−6

Neutral 5.13× 10−8

Positive 4.57× 10−10

Table 4: Significance of sentiment class differ-
ences: p-values from t-tests comparing mean male
and female sentiment groups over the years, re-
vealing statistically significant differences in sen-
timent trends.

7 Discussion

These initial analyses of a literary corpus with
the newly developed sentiment classifier both con-
firm and contest the thesis of the ‘unhappy’ female
texts. On the face of it, it seems that the female au-
thors in the corpus express not only negative but
also positive sentiments. At the same time, the
second (implicit) part of the thesis is refuted, as the
male authors do not write more positively. Clearly,
this is reopening the literary discussion of the un-
happy text with a level of complexity that these
results cannot account for alone.

Further work is needed. In terms of com-
putational interventions, a more in-depth analy-
sis would call for us to investigate polarity in
greater detail (how positive or negative are the
novels?), while also paying more attention to
narrative structures (how does polarity relate to
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plot?).
More trivial analytical next steps involve em-

ploying segmentation of data and comparisons
of sub-corpora. Are there, for example, certain
works or authors that are outliers in terms of gen-
der or valence? Are there any correlations when
comparing canonized works and popular litera-
ture? By zooming in on either part of the novels
(the endings, for example) or parts of the corpus
(with regards to time slots or subgroups of produc-
ers/individual authors), specific strong trends may
stand out.

Also, by working with smaller subsets of the
corpus, we could perhaps challenge the essential-
ist idea of an ‘Écriture Féminine’, a unique fem-
inine style of writing. Indeed, instead of simply
asking whether there is a difference between male
and female authorship in the period, we would
also be able to explore how this difference is cre-
ated in the corpus and possibly cultural, histori-
cal, gendered, and narratological reasons for it. In
this connection, the fact that male authors seem-
ingly write more ‘neutrally’ while female authors
write with a higher degree of valence might be put
into perspective through Sara Ahmed’s theory of
the ‘stickiness’ of emotions. Inspired by perfor-
mativity theory, Sara Ahmed is interested in what
emotions or affects do, rather than what they are
(Ahmed, 2004). Both ‘positive’ affects, such as
(naı̈ve) joy, and ‘negative’ affects, such as shame
have, especially during the period in question but
also still today, clung to the feminine, while hege-
monic masculinity has been and is associated with
the rational and unsentimental (Connell, 1995).

In other words, a further refinement of the an-
alytical steps goes hand in hand with critical in-
teractions with the theoretical framework and spe-
cific historical contexts concerning the concepts of
gender and emotion.

8 Conclusion

In this work, we used the MEMO corpus to create
a high-quality human-annotated sentiment dataset
for historical literary Danish and Norwegian. De-
spite multiple challenges, we showed that the task
is feasible and that inter-annotator agreement is
sufficiently high to warrant the use of the dataset
for the training and evaluation of sentiment clas-
sifiers. In an extensive evaluation of such mod-
els, we found that the best performance is ob-
tained with XLM-RoBERTa fine-tuned on senti-

ment analysis of modern Danish tweets and then
further on the training set from our dataset. Using
this model to annotate the whole MEMO corpus
automatically, we observe that, as the literary the-
ory predicts, female authors expressed more neg-
ative sentiments than male authors in the period.
However, the hypothesis of the unhappy texts is
only partially confirmed by our analysis as the
numbers also suggest that the female authors, in
contrary to the hypothesis, expressed more posi-
tive sentiments than the male authors who collec-
tively expressed more neutral sentiments than their
female counterparts.

In future work, we intend to experiment with
further improvements of the classifier, including
pre-training a language model on the whole cor-
pus as a basis for fine-tuning the sentiment dataset.
Furthermore, we intend to complement the clas-
sifier with topic models to investigate the evolu-
tion of sentiment towards specific topics (cultural
change) over time and the evolution of words used
to express a sentiment (language change).

From a literary perspective, a sentiment classi-
fier trained on Scandinavian novels from the end
of the 19th century holds great potential outside of
the context of our specific test case. To give just
one example, it would be interesting to study the
so-called ‘naturalism’ from the time of the Modern
Breakthrough. This literary movement or current
is often said to be characterized by a pronounced
pessimistic worldview. One can assume that nega-
tive segments predominate naturalist writings, and
if that is in fact the case, the numbers would be
interesting to compare with the rest of the litera-
ture from the period, i.e., canonical, realistic nov-
els and this period’s many forgotten texts.

From a literary theoretical perspective, a clas-
sifier such as this can be used to shed light on
the importance of narratological layers at a macro
level. Although the human reader is far superior
to algorithms in separating character, narrator, and
(implied) author, the numerical output of the com-
puter is very interesting for existing research in
the period. Questions like ’Does the sentiment
distribution correspond to the overall assertions of
the individual works?’ and ’How does sentimen-
tal quantity relate to literary expression?’ become
possible to investigate.
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Abstract
In this study, we aim to find a parser for
accurately identifying different types of
subordinate clauses, and related phenom-
ena, in 19th–20th-century Swedish liter-
ature. Since no test set is available for
parsing from this time period, we propose
a lightweight annotation scheme for an-
notating a single relation of interest per
sentence. We train a variety of parsers
for Swedish and compare evaluations on
standard modern test sets and our targeted
test set. We find clear trends in which
parser types perform best on the standard
test sets, but that performance is consider-
ably more varied on the targeted test set.
We believe that our proposed annotation
scheme can be useful for complementing
standard evaluations, with a low annota-
tion effort.

1 Introduction

Dependency parsers can be useful tools for ana-
lyzing large text materials, and as such can en-
able large-scale studies within many scientific dis-
ciplines. Modern parsers can achieve very high
scores on standard test sets, at least for languages
with large treebanks, but these test sets are often
limited to only a few domains, and typically to
publication-level modern language, such as news
or Wikipedia. For more challenging text types, for
instance, noisy data like Twitter or historical texts,
parsers typically perform considerably worse even
for high-resource languages.

Parsers are typically evaluated on a treebank
that is split into training, development, and test
sets. This can overestimate the parser perfor-
mance, since parsers are then trained on data that
matches its test set in all relevant aspects, such
as genre, time period, and annotation style. Fur-
thermore, parser evaluation is typically done using

metrics that give a holistic score for the full tree,
such as (un)labeled attachment score. In many
real-world scenarios, such as ours, we are not in-
terested in the full tree, but in a subset of relations.

This study is part of a larger project with
the overall aim to identify and explore language
change in Swedish literature during the period
1800–1930. During the 19th century, the Swedish
language changed in several aspects. This change
includes various linguistic levels and also involves
lexical aspects. Overall, the changes led to a
smaller difference between spoken and written
Swedish since the written language moved closer
to the spoken vernacular (see Section 3). The goal
of the project is to cover morphological, syntac-
tical, and lexical changes. In this paper, how-
ever, we focus only on syntactic aspects, focusing
on subordinate clauses. The changes in the 19th
century resulted in a less complex language —
not least as far as subordinate clauses and related
phenomena are concerned. To enable large-scale
analysis of subordinate clauses, we require a high-
quality parser for our target domain, Swedish lit-
erary novels and short stories from 1800–1930. In
this paper, we explore whether parsers can be eval-
uated for this domain, without requiring a large
manual annotation effort.

To evaluate a parser for a new text type and task,
as in our case 19th century literature with a focus
mainly on subordinate clauses, we would ideally
like to have an annotated treebank for the target
text type. However, this is a human annotation
task that is time-consuming, and thus costly, and
which requires an expert on dependency grammar.
For many practical projects, this is not feasible.
We propose a lightweight annotation task for our
target task, which consists of only annotating one
type of phenomenon per sentence. The focus is on
four phenomena related to subordinate clauses, for
which we annotate a small targeted test set for our
target text type. For comparison, we also evaluate

335



Relation Example Translation Class
CLEFT Det var här han skulle *anfallas* . ’It was here that he would be *attacked* .’ Correct
CLEFT Det skola vi *göra* klockan åtta . ’That we should *do* at eight o’clock’ Wrong
RELCL Hvad hon beundrar Mauritz , som kan *stå* så

lugn !
’How she admires Mauritz , who can *stand*
so calmly !’

Correct

RELCL Men kan du säga hvar vi *äro* ? ’But can you tell me where we *are* ?’ Wrong
CCOMP Se till att du inte *halkar* . ’Make sure that you do not *slip* .’ Correct
CCOMP Må den aldrig mer *komma* för mina ögon ! ’May it never again *come* before my eyes !’ Wrong
NO-AUX Jag har fått hvad du i natt *skrifvit* till mig . ’I have received what you [have] *written* for

me tonight .’
Correct

NO-AUX Enhälligt ha vi *kommit* fram till detta slut : ’Unanimously , we have *reached* this end :’ Wrong

Table 1: Examples of sentences shown to the annotators, marked as either correct or wrong.

on standard Swedish test sets. Table 1 shows ex-
amples of each class, where the task is to identify
if a given word is the head of a specific subordi-
nate clause type or if it is a clausal complement
without the auxiliary ’have’.

We compare several variants of three genera-
tions of parsers trained on different subsets of the
Universal Dependencies (UD) treebanks (Nivre
et al., 2020), and evaluate them on UD, both with
holistic metrics and for a subset of relations of in-
terest, as well as on our targeted test set. On the
UD test sets we see clear trends that a modern
transformer-based parser is better than BiLSTM-
and SVM-based parsers, and that it is better to
train on several North Germanic languages than
only on Swedish. However, on our new targeted
test set, the results are more mixed, and we see
less clear trends, which is in line with earlier work
for German (Adelmann et al., 2018). We think that
our targeted test set is able to give a complemen-
tary view to standard evaluations, but that the sam-
pling procedure can be improved.

In Section 2 we review related work, followed
by a description of our project focused on Swedish
language change in Section 3. In Section 4 we de-
scribe the data and in Section 5 we describe the
parsers evaluated, including the multilingual train-
ing setup. We present the results in Section 6, dis-
cuss them in Section 7, and finally, we conclude in
Section 8.

2 Related Work

Dependency parsers have continuously devel-
oped, from ’old school’ parsers like MaltParser
(Nivre et al., 2007) and MSTparser (McDonald
et al., 2005) based on classical machine learning,
like support vector machines, to modern neural
parsers. Many of the first strong neural parsers
were based on recurrent neural networks, as most
of the best parsers in the CoNLL 2017 shared

task on dependency parsing (Zeman et al., 2017).
Next, models based on deep contextualized em-
beddings have been taking over, and most strong
parsers today are based on fine-tuning contextu-
alized models like BERT (Devlin et al., 2019) or
XLM-R (Conneau et al., 2020), e.g. Machamp
(van der Goot et al., 2021) and Trankit (Nguyen
et al., 2021).

The standard way to evaluate dependency
parsers is by calculating holistic metrics such as
labeled attachment score (LAS), which measures
the percentage of words which gets both their head
word and label correct. There are, however, exam-
ples of more detailed evaluations (e.g. McDonald
and Nivre, 2007; Kulmizev et al., 2019; Salomoni,
2017), focusing on aspects such as arc and sen-
tence lengths, non-projective dependencies, and
scores for specific POS-tags and dependency re-
lations. The overall conclusion is typically that
different parser types have different strengths, e.g.
that graph-based parsers tend to perform better
than transition-based parsers on long-distance de-
pendencies (McDonald and Nivre, 2007). As far
as we are aware, there are no datasets and evalua-
tions like our proposal, focused on a single relation
per sentence.

Highly relevant to our study is the work of
Adelmann et al. (2018), who evaluate a set of six
parsers for digital humanities research, focusing
on German novels and academic texts. Like us,
they are also interested in specific relations, for in-
stance, related to speaker attribution, and not only
in holistic evaluation. Unlike us, they perform
a full dependency tree annotation effort for three
sample texts. In addition, they do not include any
neural parsers in their evaluation. They find that
several parsers do well on the holistic metrics, but
that the results are considerably worse for several
of the specific relations of interest, such as apposi-
tions, and that it is not always the overall strongest
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parser that is the best choice for a specific rela-
tion. Salomoni (2017) performed a detailed eval-
uation on parsing German 17th-century literature,
for which he annotated two excerpts of text with
full dependency annotations. Again, no neural
parsers were included in the study, which found
a drop compared to in-domain results, but where
the relative performance of the two parsers evalu-
ated was consistent on different metrics, possibly
because of the large difference in performance be-
tween them.

Swedish literary texts from different eras have
been analyzed for different purposes before, re-
quiring taggers and/or parsers. Dahllöf (2022)
aims to characterize differences between dialogue
and narrative in contemporary fiction, whereas
Stymne et al. (2018b) analyze prose rhythm in a
novel from 1940. However, in none of these stud-
ies, the choice of tagger and/or parser is moti-
vated. There have also been some earlier smaller-
scale studies focusing on the transition towards a
more colloquial written Swedish. For instance,
language development in Swedish literature dur-
ing the 19th century has been explored, but only on
a small scale focusing on individual authors (e.g.
Lindstedt, 1922; Von Hofsten, 1935).

3 Language Change in 19th Century
Swedish

This study is part of a larger project with the over-
all aim to identify and explore language change in
Swedish literature during the period 1800–1930.
In the history of the Swedish language, this pe-
riod is characterized by modernization in the sense
that the written language was influenced by the
spoken vernacular. In this process of moderniza-
tion, fictional prose is of certain interest since it
has been suggested that linguistic change spread
from literary dialogue (Engdahl, 1962; Teleman,
2003). By investigating a corpus of literary texts
the project will not only contribute with a more de-
tailed account of language change in 19th-century
Swedish but also address the question of how lin-
guistic change increased in the community.

The modernization of the Swedish written lan-
guage during the 19th century affected several lin-
guistic aspects. As for the lexicon, it is well-
known that formal function words were replaced
by colloquial counterparts. Much attention has
also been devoted to the loss of verbal agreement,
i.e. the use of the vernacular singular variant in

both singular and plural. On the syntactic level,
Engdahl (1962) has shown a remarkable change
in sentence length during the end of the 19th cen-
tury. Engdahl’s study focuses on non-fictional
prose, periodicals from 1878 to 1950, but his re-
sults call for a more detailed account of syntactic
complexity during the period, and hence we will
focus on subordinate clauses and phenomena re-
lated to them in this paper.

For this study, we have chosen to focus on three
types of subordinate clauses, based on UD de-
pendency labels, and one phenomenon related to
subordinate clauses: (i) relative clauses (RELCL),
(ii) cleft constructions (CLEFT),1 (iii) clausal
complements not determined by obligatory con-
trol (CCOMP), and (iv) auxiliary drop (NO-AUX).
Whereas the first three types can be used in order
to measure syntactic complexity, auxiliary drop
has been suggested to mark written style, and
hence almost never occur in spoken language (cf.
Wellander, 1939). Since auxiliary drop of fi-
nite verbs is restricted to subordinate clauses in
Swedish, we have included it as related to sub-
ordinate clauses. In this study, we only include
auxiliary drop that occurs in clausal complements,
CCOMP. Examples of the selected clause types are
shown in Table 1.

4 Data

In this section, we will describe the existing data
from UD and the new targeted dataset we con-
structed for this project

4.1 Universal Dependencies Treebanks
We use data from Universal Dependencies (Nivre
et al., 2020) version 2.11 (Zeman et al., 2022) for
training our parsers and for the standard evalua-
tion. Besides dependency annotations, UD also
contains lemmas, universal and language-specific
part-of-speech tags (UPOS/XPOS), and morpho-
logical features. Our main focus is on Swedish,
for which there are three treebanks, Talbanken,
LinES, and PUD, where PUD only contains a test
set. In addition, we use data from related North
Germanic languages: Norwegian (both variants:
Bokmål and Nynorsk), Danish, Faroese, and Ice-
landic. The treebanks used are summarized in Ta-
ble 2. The intuition behind also using related lan-

1In UD, both relative clauses and cleft constructions are
subtypes of ACL, clausal modifier of noun, and are denoted
ACL:RELCL and ACL:CLEFT. In this paper, we will use
shorter names, excluding the prefix.
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Language Treebank Code Genres Train Test

Swedish

Talbanken sv t news, nonfiction 67K 20K
PUD sv p news, wiki – 19K
LinES-M sv lm fiction, nonfiction, spoken 18K 73K

Norwegian
Bokmaal no b blog, news, nonfiction 244K 30K
Nynorsk no n blog, news, nonfiction 245K 25K
NynorskLIA no nl spoken 35K 10K

Danish DDT da fiction, news, nonfiction, spoken 80K 10K
Faroese FarPaHC fo bible 1.5K 6.6K
Icelandic Modern is news, nonfiction 7.5K 10K

Table 2: Treebanks used, with info about genres (as defined in UD) and the number of tokens in test and
training data. LinES-M refers to our modified version of LinES.

guages is twofold, first, it has been shown to im-
prove parsers (e.g. Smith et al., 2018a), second,
we believe it may make the parser more robust
to non-standard Swedish, which has many differ-
ences from the modern Swedish of the Swedish
treebanks. Written Norwegian and Danish, in par-
ticular, are very similar to Swedish, and are con-
sidered mutually intelligible.

As can be seen in Table 2, the genres, according
to the UD specification, of the treebanks used are
mixed. To be able to, at least some extent, investi-
gate whether it would help to have an in-genre test
set, we create a modified version, LinES-M, of the
LinES treebank (Ahrenberg, 2007) which consists
of three genres: literary fiction, Microsoft manu-
als, and European parliament proceedings. The lit-
erary part contains a set of novels translated from
English, published 1977–2017. While this is not a
perfect match to our target of novels and short sto-
ries written originally in Swedish during an earlier
time period, this was the closest we could get to
an in-domain test set, without any re-annotation.
We re-split LinES by merging the data from the
training and test sets, and moving all literature2 to
a new test set, and all other texts to a new training
set, referred to as LinES-M in Table 2.

For evaluation on the UD test sets, we report la-
beled attachment score (LAS). For LinES-M, we
also report F1-scores for the three relations in fo-
cus for our targeted test set and AUX, which is rel-
evant for identifying auxiliary drop.

4.2 Targeted Literature Dataset

In this section, we will describe the sampling
and annotation of the targeted literary dataset an-
notated for this project as an alternative way of

2The literary works are in documents 2,3,4,6,7, and 8;
document 1 contains Microsoft manuals and document 5 con-
tains parliament proceedings (Lars Ahrenberg, personal com-
munication).

evaluating the performance of parsers on specific
phenomena in a specific text type. The targeted
dataset is publicly available under the Creative
Commons license, CC BY-NC-SA.3

4.2.1 Text Selection and Processing
Our target data is literary texts from 1800–1930,
focusing on novels and collections of short sto-
ries. Such works have been made available by
Litteraturbanken.4 We choose to work only with
the subset of works that have been proofread af-
ter going through OCR, available in an XML for-
mat. We extracted all novels and short stories
available in this format from the time period of
interest. From these texts, we extracted the raw
text paragraphs, and tokenized the text. For an-
other sub-project, we had already extracted a set
of novels where quotation marks are used to mark
dialogue, and used the quotation marks to separate
dialogue and narrative, which we use also in this
study. This sample consists of 165 novels and col-
lections of short stories. The data was parsed early
on in the project, using Swepipe and UUparsers

with Swepipe tags (see Section 5).
The annotation task was designed to be simple

and fast. Thus we decided to focus on a single
relation of interest per sentence. From the parse
trees, we extracted all sentences containing an arc
labeled with a relation of interest and marked the
modifier of the arc, which is the headword of
the specific subordinate clause.5 Figure 1 shows
a parsed example sentence, containing a relative
clause, with an arc from the headword Mauritz to
the modifier stå (’stand’), which is the head of the

3https://github.com/UppsalaNLP/
SweSubEval

4https://litteraturbanken.se/
5It would also be possible to consider other more complex

annotations, such as also including the head of the relevant
arc, to ensure that the subordinate clause is attached at the
correct position, or to require that the span of the subordinate
clause is correct.
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Hvad hon beundrar Mauritz , som kan stå så lugn
What she admires Mauritz , who can stand so calmly

root

mark

nsubj obj
punct

nsubj

aux

acl:relcl

advmod

xcomp

Figure 1: Parsed dependency tree (UUParser) for the sentence Hvad hon beundrar Mauritz, som kan
*stå* så lugn ’How she admires Mauritz, who can *stand* so calmly’, with English glosses added. The
arc of interest, ACL:RELCL with ’stand’ as a modifier, is marked in blue.

relative clause som kan stå så lugn (’who can stand
so calmly’), where the marked word thus would
be stå, as an instance of the type RELCL. For NO-
AUX, we also checked that there was no outgoing
AUX relation from the marked word. It is not un-
common to have several instances of a single re-
lation type in a sentence, but we only marked a
single occurrence per example, to make the anno-
tation consistent between sentences. From this set,
we randomly sampled 200 sentences for each rela-
tion type, except CLEFT, for which we only found
74 examples, which were all included. Table 1
shows annotated examples of each class, where we
also see examples of old plural verb forms like äro
(modern: är, ’are’) and old-fashioned spelling like
’skrifvit’ (modern: skrivit, ’written’).

4.2.2 Annotation
The annotation was performed by the last two
authors, both native Swedish speakers, and re-
searchers in Scandinavian languages with exper-
tise in Swedish grammar. The annotators were
given the example sentences in Excel, and for each
sentence, they were to decide whether the marked
head word belonged to the given type or not. For
each type, 20 examples were annotated by both
annotators, and the remaining examples were split
between them. After the first round, there were
a few disagreements in the doubly annotated sets,
which were discussed by the annotators, followed
by a re-annotation of all examples. The initial
round of annotation was very quick, roughly be-
tween 15–30 minutes per 100 examples, with a
somewhat longer time needed for CCOMP. Table
3 shows the number of correct and wrong exam-
ples for each class. Note that the dataset is skewed
towards positive examples.

4.2.3 Evaluation
We evaluate on the targeted dataset by calculat-
ing the number of times the parser assigns the cor-

Relation Correct Wrong
CLEFT 64 10
RELCL 133 67
CCOMP 141 59
NO-AUX 170 30

Table 3: Class distribution in our annotated dataset

rect relation to the focus word, and for NO-AUX,
that there in addition is no aux-dependent. We
then calculate precision and recall for each rela-
tion type. Note that recall may be overestimated
by this procedure since we do not cover any exam-
ples not identified by a parser. This evaluation is
different from standard evaluation of dependency
parsers where we evaluate a full tree. In this case,
we instead evaluate a single relation of interest for
each sentence.

5 Parsers

In order to investigate how well the different types
of evaluation work, we explore three generations
of parsers. As a baseline, we use the easily
accessible Swepipe with its provided model for
Swedish. We also use two generations of neu-
ral parsers, UUParser and Machamp, for which
we also experiment with multilingual parsing. We
train each model three times with different random
seeds and report average scores.

5.1 Swepipe

As a baseline parser, we wanted an easily acces-
sible parser, which comes with a trained parsing
model, and which might be used by non-experts
in a digital humanities project. Our choice was to
use the Swedish annotation pipeline, Swepipe.6,
a pre-trained model covering all steps needed to
analyze Swedish texts from scratch, including tok-
enization, tagging, and parsing. Swepipe is similar

6https://github.com/robertostling/
efselab
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to several other systems targeted at this user group,
such as the web-based Swegram,7 which uses the
same parser and tagger (Megyesi et al., 2019).

Swepipe is pre-neural and uses efselab (Östling,
2018) for tagging and MaltParser (Nivre et al.,
2007) trained on Talbanken for parsing. Malt-
Parser is a classical transition-based parser, using
a support vector machine for classification, based
on a feature vector with words, POS-tags, and al-
ready built relations.

5.2 UUParser

UUParser (de Lhoneux et al., 2017; Smith et al.,
2018b) is a neural transition-based dependency
parser with a BiLSTM feature extractor, based on
Kiperwasser and Goldberg (2016). Word repre-
sentations are fed to a BiLSTM, to create contex-
tualized word representations, which are given as
input to an MLP classifying the next transition.
We use an arc-hybrid transition model (Kuhlmann
et al., 2011) with a swap transition (Nivre, 2009)
and a static-dynamic oracle (de Lhoneux et al.,
2017). As input word representation we use word
embeddings, character-based word embeddings,
UPOS-tag embeddings, and treebank embeddings,
which represent the treebank of a sentence. All
embeddings were initialized randomly at training
time. When applying UUparser on new texts, we
need a proxy treebank that indicates which of the
treebanks from training for use as the treebank
embedding at test time, for which we always use
Talbanken, since it is present in all models, and
it performed well in Stymne et al. (2018a). We
use the default UUparser settings (Smith et al.,
2018b), except for adding drop-out with a rate of
0.33 for UPOS-embeddings, since the parser is
trained with gold tags. At test time, we use two
different sets of POS-tags, from Swepipe/efselab
and from Machamp. We will call these variants
UUparsers and UUparserm respectively. To coun-
teract the differing sizes of the training data, we
limited the number of sentences used per treebank
to 4,300 per epoch.

5.3 Machamp

Machamp (van der Goot et al., 2021) is a toolkit
for multitask learning covering several NLP tasks,
based on fine-tuning a pre-trained contextualized
model, like BERT (Devlin et al., 2019). In a multi-
task setup, each task has a separate decoder. The

7https://cl.lingfil.uu.se/swegram/

Group Included treebanks/languages
Talbank Swedish-Talbanken
Swedish Talbank+ Swedish-LinES-M
SweNor Swedish + Norwegian (*3)
Scand SweNor + Danish
NorthG Scand + Faroese + Icelandic

Table 4: Groups of languages/treebanks used for
multilingual training. See Table 2 for specific tree-
banks.

dependency parser is a graph-based parser using
deep biaffine attention (Dozat and Manning, 2018)
to score word pairs, and the CLU algorithm (Chu
and Liu, 1965; Edmonds, 1967) to extract trees.
For tagging, a greedy decoder, with a softmax out-
put layer is used.

In this work we use Machamp in a multi-task
setup, to jointly learn tagging of UPOS, XPOS,
and morphological features, and dependency pars-
ing. We experiment with two sets of language
models, multilingual BERT (mBERT Devlin et al.,
2019),8 trained on 104 languages including all
languages used in our study except Faroese, and
the Swedish model KB-BERT (Malmsten et al.,
2020), trained only on Swedish. We will call these
systems Machampm and Machampk respectively.
For both models, we used the cased version.9 KB-
BERT has been shown to improve Swedish named
entity recognition and POS-tagging (Malmsten
et al., 2020), but as far as we are aware, it has
not been used in multilingual dependency pars-
ing models. We use the default parameters of
Machamp. To counteract the differing sizes of the
training data, we applied sampling smoothing set
to 0.5.

5.4 Multilingual Training

For UUParser and Machamp, we explore multi-
lingual training. We limit ourselves to the North-
Germanic languages, all relatively closely related
to Swedish. We train two Swedish models, on
Talbanken only, to be comparable with Swepipe,
and also with LinES-M. In addition, we train three
models with different subsets of the other North
Germanic languages. For our multilingual mod-
els, we first combine Swedish with Norwegian,
which has three treebanks covering both variants

8https://github.com/google-research/
bert/blob/master/multilingual.md

9We used models from HuggingFace (https://
huggingface.co/models), for KB-BERT: KB/bert-
base-swedish-cased and for mBERT: bert-base-multilingual-
cased.
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LAS F1, LinES-M
LinES-M TB PUD CLEFT RELCL CCOMP AUX

Swepipe-Talbank 71.75 79.69 78.82 – 61.31 54.98 88.45
UUparserm-Talbank 72.10 83.75 76.66 26.82 64.67 59.62 93.99
UUparserm-Swedish 75.51 83.76 77.50 29.12 67.37 61.65 94.21
UUparserm-Norswe 79.69 85.60 81.50 39.92 74.34 66.79 94.35
UUparserm-Scand 79.74 85.43 81.34 41.74 73.03 64.93 94.20
UUparserm-NorthG 79.33 85.35 81.27 41.71 72.82 64.70 94.27
Machampk-Talbank 80.54 92.24 86.05 56.73 79.07 74.59 95.44
Machampk-Swedish 80.26 90.72 86.83 49.67 75.84 71.29 93.94
Machampk-Norswe 83.13 91.63 86.79 55.42 81.29 75.32 95.29
Machampk-Scand 83.16 92.31 87.21 55.54 81.21 74.27 95.97
Machampk-NorthG 83.03 92.35 87.17 56.00 82.27 74.78 95.85

Table 5: Results on standard Swedish UD test sets. LAS for all three Swedish test sets, and F1-scores
for four relations of interest for LinES-M.

Precision Recall
CLEFT RELCL CCOMP NO-AUX CLEFT RELCL CCOMP NO-AUX

Swepipe-Talbank – 66.33 70.41 84.62 0.00 99.25 98.57 97.06
UUparserm-Talbank 92.46 93.32 94.11 98.14 50.35 82.37 63.97 51.44
UUparserm-Swedish 92.49 93.45 95.84 97.60 69.79 81.45 65.95 50.85
UUparserm-NorSwe 92.12 94.65 97.39 98.30 84.55 81.20 70.87 56.21
UUparserm-Scand 94.64 95.69 96.73 98.72 84.20 79.62 70.48 61.05
UUparserm-NorthG 93.31 95.55 96.06 99.05 75.00 79.37 74.13 61.57
Machampk-Talbank 94.12 95.16 94.63 98.52 59.90 83.46 75.48 65.69
Machampk-Swedish 94.92 96.19 95.09 98.81 53.12 82.21 73.81 65.10
Machampk-NorSwe 95.38 96.71 94.77 99.13 72.92 79.70 73.33 67.25
Machampk-Scand 96.61 95.11 94.29 99.01 59.38 87.47 66.90 58.82
Machampk-NorthG 95.38 93.83 93.46 99.00 64.06 87.72 68.10 58.04

Table 6: Precision and recall for our targeted test set.

of Norwegian. We then add Danish, to train a
Scandinavian model. The reason for adding Nor-
wegian first, despite the fact that Danish is consid-
ered a closer relative to Swedish, is the availabil-
ity of more data for Norwegian with variability in
language variants. Our final model, NorthG, also
adds Faroese and Icelandic, which are more dis-
tant from Swedish, and not mutually intelligible.
The language groups are summarized in Table 4.

6 Results

Tables 5 and 6 show results from the standard and
targeted evaluations for Swepipe, UUparserm with
Machampk POS-tags and Machampk trained with
KB-BERT. In all tables, we mark the three best
results for each metric in bold. While our focus
is on Swedish, which is reported in this section,
we also report results with Machamp for the ad-
ditional languages used for training our parsing
models in Appendix A.

Table 5 shows results on UD test sets. We see
no obvious differences between the LAS perfor-
mance pattern on the in-genre LinES-M and the
other two Swedish test sets, indicating that genre
may not play a big role in this case; contempo-

rary novels are likely relatively close to the news,
non-fiction, and wiki texts in the other Swedish
treebanks. Swepipe has overall the lowest scores,
followed by UUparserm, and then Machampk. For
the two Swedish models, the differences between
using only Talbanken and adding the small LinES-
M training set are typically small, but sometimes
with a positive effect for UUparserm and a nega-
tive effect for Machampk.10 Adding Norwegian
leads to improvements in nearly all scores, of-
ten quite substantial, whereas adding additional
languages has a smaller impact. The difference
between parsers varies for the different relation
types. Swepipe does not find any CLEFTs, and
falls behind UUparserm on all other relation types,
especially for AUX. Machampk improves consid-
erably over UUparserm for all explored relations,
except AUX, where both neural parsers perform
well, possibly since they both use the POS-tags of
Machampk.

10This may be due to the fact that in Machamp, treebanks
are simply concatenated, but in UUparser, they are distin-
guished by treebank embeddings, which has been shown to
improve results when training on different treebanks for the
same language (Stymne et al., 2018a). We leave an investiga-
tion of this issue to future work.
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LAS F1, UD LinES-M P, litt
LinES-M TB PUD CLEFT RELCL CCOMP AUX CLEFT RELCL CCOMP NO-AUX

Swepipe-Talbank 71.75 79.69 78.82 – 61.31 54.98 88.45 – 79.52 82.14 90.41
UUparsers-Talbank 70.80 82.35 75.78 26.08 63.01 58.39 91.31 92.80 92.52 93.05 96.50
UUparsers-Scand 77.63 83.39 80.25 30.77 70.55 62.22 90.82 93.86 94.07 94.66 97.95
UUparserm-Talbank 72.10 83.75 76.66 26.82 64.67 59.62 93.99 92.46 93.32 94.11 98.14
UUparserm-Scand 79.74 85.43 81.34 41.74 73.03 64.93 94.20 94.64 95.69 96.73 98.72
Machampm-Talbank 77.20 89.35 84.21 38.47 72.87 69.09 92.91 92.94 96.13 93.00 98.23
Machampm-Scand 80.13 89.50 85.79 43.09 77.67 71.18 93.49 93.41 96.98 92.47 99.08
Machampk-Talbank 80.54 92.24 86.05 56.73 79.07 74.59 95.44 94.12 95.16 94.63 98.52
Machampk-Scand 83.16 92.31 87.21 55.54 81.21 74.27 95.97 96.61 95.11 94.29 99.01

Table 7: Comparison of parser variants, on standard test sets and our test set.

The results in Table 6 for our targeted test set
show a partially different picture. First, we note
that Swepipe has a very high recall for all re-
lation types except CLEFT, which it never pre-
dicts. We think this is mainly an artifact of the
sampling procedure for this test set, where the
annotated sentences were sampled from Swepipe
and UUparsers, with Swepipe POS-tags, which
means that they were mostly predicted as correct
by Swepipe. The other parsers do not have this
advantage and thus have a lower recall, which we
believe is more predictive of real performance,
even though it still may be overestimated due to
the sampling procedure. Swepipe has consider-
ably lower precision than the other parsers for
all relation types. We believe that the evalua-
tion should still be fair in comparing UUparserm

and Machampk, from which no samples were
taken. Compared to the standard evaluation where
Machampk was clearly better than UUparserm,
we now see a more mixed picture, where there
is no clear overall advantage of Machampk over
UUparserm, and the results are mixed across re-
lation types and precision/recall. The trends be-
tween training languages are also less clear, with
some combinations standing out in performance
for some relation types. Machampk trained with
Scand and NorthG has a considerably higher re-
call on RELCL than the other models, with only a
small drop in precision. On CCOMP and NO-AUX,
on the other hand, these two models instead have
a low recall, without gaining much on precision.
We do not see this pattern for UUparserm, where
the Scand model is overall strong.

In Table 7 we show a summary of results for
both variants of UUparser and Machamp, showing
only precision for the targeted test set, since recall
is biased towards Swepipe and UUparsers due to
the sampling.11 We can see that UUparsers does

11To save space, we only show results for two training

not consistently improve on LAS over Swepipe
when trained on the same Talbanken data, but
that adding the Scandinavian treebanks improves
the results considerably both for the UD evalua-
tions and on the targeted test set. When we com-
pare the two variants of UUparser and Machamp
we see that UUparserm and Machampk beat their
variant consistently on the UD evaluation, and in
most cases on the targeted test set. We also see
that training on Scand is better than training on
Talbanken in the majority of cases, both for UD
and on precision for the targeted test set, however,
from Table 6, we know that Scand is sometimes
not as strong on recall.

7 Discussion

An important question is whether the parser per-
formance on our target task is good enough to
use for our study of change in the Swedish writ-
ten language. Overall, both Machamp and UU-
parser have good precision for all our relations
of interest, always scoring above 90, and reach-
ing scores above 96 for some parsers for each re-
lation type. The recall, however, is considerably
lower. This means that the instances of each rela-
tion type the parser finds are mostly good, but it
does miss a substantial part of relevant instances,
especially given the fact that all examples are sam-
pled from a parser, and we might have missed ad-
ditional instances. The recall is highest for RELCL,
where it is well above 80 for several of the mod-
els both for Machamp and UUparser. This ap-
proaches a level that is usable for our end project,
of finding syntactic features in 18th–19th-century
literature, and tracking them over time. Other re-
lation types have a more mixed performance, as
CLEFT, for which UUparserm trained on NorSwe
and Scand performs very well, with a recall of over

language groups. The other groups exhibit largely the same
trends.
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84, but where other models perform considerably
worse. The recall of CCOMP, and especially of
NO-AUX is lower, and we would need to improve
parser performance for those relation types, possi-
bly by using domain adaptation techniques, before
they would reach a useful level. The varying per-
formance of parsers for different relation types is
in line with the results for German by Adelmann
et al. (2018), who recommend choosing different
parsers for different end goals.

On the standard evaluation, Machamp is clearly
overall better than UUparser, training on Scand is
better than training only on Swedish, KB-BERT is
better than mBERT for Machamp, and UUparser
is better with Machamp tags than with Swepipe
tags. For our targeted test sets, however, we
see fewer clear trends, and there is much more
variation among the systems. Machampk and
UUparserm tend to perform better than their coun-
terparts, and the multilingual models may have
a small advantage over the Swedish-only mod-
els. Swepipe clearly seems to fall behind the
other parsers on precision, whereas its high recall
can be explained by the sampling procedure. A
side-effect of our study is that we have found that
Machampk trained on Scand or NorthG is a very
strong parser for modern Swedish as measured by
the UD test sets.

Our targeted test set does suffer from an issue
with sampling from only two parsers, which af-
fects its recall mainly for Swepipe, but also for
UUparsers. We believe UUparserm is less affected
since it relies on a different set of POS-tags. The
dataset is also relatively small, especially for the
CLEFT relation. However, we think it still con-
tributes to showing that when selecting a parser
for a particular target task and text type, we can-
not rely solely on evaluation scores on standard
test sets, as also shown by Adelmann et al. (2018).
Even if we focus on the F1-score for the relations
of interest in Lines-M, rather than on the full tree,
we see no clear similarity of parser ranking to the
evaluation of the same relation types in our tar-
geted test set. To further investigate whether this
type of test set can indeed be useful, we would
need to perform further analysis. It would be in-
teresting to learn more about where the main im-
provements shown on UD evaluation for a parser
like Machampk actually occurs. We also think it
would be useful to consider the sampling for the
test set, specifically to also annotate some raw text,

in order to find out what type of instances are not
identified by any of our parsers. Another issue that
we did not yet explore, is whether parsing perfor-
mance varies over the time period in question.

8 Conclusion

We describe a study of Swedish dependency
parsers with the goal of tracking changes in the
use of certain types of subordinate clauses and re-
lated phenomena in Swedish literature from 1800–
1930. Since standard test sets do not cover this
time period or genre, and we did not have the re-
sources to perform a full annotation of dependency
trees, we propose a smaller-scale annotation task,
focusing on single relation types. We evaluated a
set of parsers on UD and on our targeted test set.
While there was a clear and relatively consistent
order between the parsers on the UD evaluation,
the performance was more mixed on our targeted
test set, without a clear overall best parser across
relation types. We believe that our proposed an-
notation scheme can be useful in complementing
standard evaluations, with a low annotation effort,
but that more analysis is needed.
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Löwenskiöld. Nysvenska studier, 15:150–183.

Erik Wellander. 1939. Riktig svenska: en handledning
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nadová, Esha Banerjee, Ruli Manurung, Antonio
Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo
Mendonça, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. 2017. CoNLL 2017 shared task: Multi-
lingual parsing from raw text to Universal Depen-
dencies. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–19, Vancouver, Canada.
Association for Computational Linguistics.

A Results for Additional Languages

Table 8 shows results for all treebanks used
during training when parsed with Machamp ei-
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sv t sv lm sv p no b no n no nl da fo is
Talbank KB-BERT 92.24 80.54 86.05 72.33 64.33 45.62 62.61 18.56 11.00

mBERT 89.35 77.20 84.21 77.93 75.10 51.89 67.73 37.15 48.31
Swedish KB-BERT 90.72 80.26 86.83 71.78 63.84 46.03 62.14 17.03 9.76

mBERT 86.43 76.77 84.21 77.82 74.68 51.87 67.71 35.53 46.62
SweNor KB-BERT 91.63 83.13 86.79 91.51 90.91 75.01 69.15 20.81 13.85

mBERT 89.56 79.82 85.68 92.28 91.77 75.98 72.25 37.08 50.38
Scand KB-BERT 92.31 83.16 87.21 91.73 91.36 75.57 86.44 21.42 14.50

mBERT 89.50 80.13 85.79 92.01 91.63 75.41 87.13 38.36 49.62
NorthG KB-BERT 92.35 83.03 87.17 91.94 91.47 75.68 86.54 63.49 31.94

mBERT 89.49 79.99 85.77 92.15 91.49 75.94 87.24 71.82 60.30

Table 8: Results for all languages used for training models with Machamp fine-tuned based on Swedish
KB-BERT or multilingual mBERT. Codes for treebanks refer to Table 2. Scores marked in italics indicate
languages that were not present in the parser training data. All languages except Faroese are present in
the mBERT pre-training data.

top of the Swedish KB-BERT model as on top
of the mBERT model trained on 104 languages
including Norwegian and Danish. It thus seems
that for very similar languages a strong language
model for a close language is just as good as
a multilingual model containing many unrelated
languages. However, this only holds when Dan-
ish and Norwegian are among the languages in the
parsing training data; when the parser is trained
only on Swedish, it is better to use mBERT than
KB-BERT. Icelandic and Faroese are less closely
related to Swedish than Danish and Norwegian,
and for these languages, it is always better to use
mBERT than KB-BERT. It is also notable that
the performance is much poorer than for Danish
and Norwegian. Faroese, which is not present
in mBERT, performs quite poorly both with KB-
BERT and mBERT when not present in the parser
training data, but quite well with both models
when present in the training data, whereas Ice-
landic even in that case performs poorly with
KB-BERT. Overall, we see that Machamp with
mBERT trained with the NorthG model is a strong
parser for all the included languages. However,
adding Icelandic and Faroese to the Scandinavian
model has only a minor impact on the Scandina-
vian languages.

346



Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages 347–357
May 22-24, 2023 c©2023 Association for Computational Linguistics

An Empirical Study of Multitask Learning to Improve Open Domain
Dialogue Systems

Mehrdad Farahani1 Richard Johansson1,2

1Chalmers University of Technology, 2University of Gothenburg
{mehrdad.farahani, richajo}@chalmers.se

Abstract

Autoregressive models used to generate re-
sponses in open-domain dialogue systems of-
ten struggle to take long-term context into ac-
count and to maintain consistency over a dia-
logue. Previous research in open-domain dia-
logue generation has shown that the use of aux-
iliary tasks can introduce inductive biases that
encourage the model to improve these qualities.
However, most previous research has focused
on encoder-only or encoder/decoder models,
while the use of auxiliary tasks in decoder-only
autoregressive models is under-explored. This
paper describes an investigation where four dif-
ferent auxiliary tasks are added to small and
medium-sized GPT-2 models fine-tuned on the
PersonaChat and DailyDialog datasets. The
results show that the introduction of the new
auxiliary tasks leads to small but consistent im-
provement in evaluations of the investigated
models.

1 Introduction

In recent years, open-domain dialogue systems
have experienced increased research due to the
availability of large corpora of dialogue and ad-
vances in deep learning techniques (Gao et al.,
2018). Unlike task-oriented dialogue systems de-
signed for specific domains or tasks, such as flight
booking, hotel reservation, customer service, and
technical support (Budzianowski and Vulić, 2019;
Budzianowski et al., 2018; Chao and Lane, 2019),
open-domain dialogue systems aim to have long-
term connections with users by satisfying their emo-
tional, social, and communication needs. There-
fore, such a system must comprehend the dialogue
context and user demands in order to select the ap-
propriate skill at the appropriate time and generate
consistent (Li et al., 2016b; Luan et al., 2017) and
grounded (Ghazvininejad et al., 2018; Moon et al.,
2019) interpersonal responses. Open-domain dia-
logue systems can include single-turn or multi-turn

dialogues, where the context and topic of the con-
versation may change throughout the interaction
(Dinan et al., 2020).

Multi-turn open-domain dialogue systems need
to maintain the context of the conversation, gen-
erate appropriate responses concerning the con-
text and predefined characteristics (persona), and
handle various forms of input. A persona is a set
of characteristics or attributes that describe a vir-
tual agent’s background, personality, and behavior.
These attributes include the agent’s name, age, gen-
der, profession, interests, and other aspects (Zhang
et al., 2018), while a conversation context refers
to the background information or previous inter-
actions relevant to the current conversation, with
word-level and utterance-level dependencies (Zhao
et al., 2020).

Recent developments in transformer-based archi-
tectures (Vaswani et al., 2017; Raffel et al., 2020;
Lewis et al., 2020) for large-scale pre-training, such
as OpenAI’s GPT-2 (Radford et al., 2019), have
shown exceptional results. Later, the models are
fine-tuned via more technical steps and at differ-
ent scales on a large-scale dialogue corpus (Zhang
et al., 2020; Adiwardana et al., 2020; Thoppilan
et al., 2022; Shuster et al., 2022).

Pre-trained models on conversational datasets
typically process dialogue context (a list of utter-
ances) as a sequence of tokens per utterance to gen-
erate responses. Although these approaches show
effective results compared to previous approaches,
they still need to catch the latent information in
more complex structures rather than just tokens (Gu
et al., 2021; Zhao et al., 2020). A conversational
domain is distinguished by the presence of another
component called utterances1 that plays an impera-
tive role in conveying higher-level information in
addition to tokens and their local relationships. Re-
cent research has put forth the use of auxiliary tasks

1An utterance is a spoken or written sentence or phrase
that is used to convey meaning or participate in a dialogue.
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as a form of regularization during the fine-tuning of
models as a means to address the aforementioned
issue. A majority of these additional training objec-
tives are implemented solely on the encoder-only
and encoder-decoder architectures.

However, while the use of auxiliary tasks
has led to improvement in encoder-only and en-
coder/decoder models, recent work has not ex-
plored the application of auxiliary tasks in decoder-
only models. In this research, we propose incor-
porating auxiliary tasks on top of an autoregres-
sive decoder-only model to examine and enhance
the quality of generated responses concerning the
latent information present within utterances. Ad-
ditionally, we demonstrated the impact of various
auxiliary tasks on distinct elements of dialogue
across two benchmark datasets. By examining the
effect of different auxiliary tasks on various com-
ponents of dialogue, we aimed to provide a deeper
understanding of how these tasks can influence the
performance and outcomes of conversational sys-
tems. Additionally associated code to this research
can be found in our GitHub repository.2

2 Related Works

The motivation for this research is drawn from re-
cent investigations into the utilization of auxiliary
tasks to enhance the generated responses in open-
domain dialogue systems by considering the con-
text. To this end, we present and analyze these
recent studies in this section. Previous studies
in this field can be broadly classified into three
general categories. The first category pertains to
the widespread use of encoder-decoder models in
dialogue response generation, which have been
observed to produce generic and uninteresting re-
sponses (e.g., "I’m good", "I don’t know"). Zhao
et al. (2020) proposed an encoder-decoder archi-
tecture with two auxiliary tasks at token and utter-
ance levels that can effectively exploit conversation
context to generate responses, including order re-
covery and masked context recovery. Analogously,
Mehri et al. (2019) examined a range of unsuper-
vised pre-training objectives for acquiring dialogue
context representations via encoder-decoder mod-
els by incorporating four auxiliary tasks, including
next-utterance retrieval, next-utterance generation,
masked-utterance retrieval, and inconsistency iden-
tification.

DialogBERT is a unique design that employs a
2https://github.com/m3hrdadfi/MoGPT

hierarchical Transformer architecture to compre-
hensively capture the context of dialogue (Gu et al.,
2021). Using two training objectives, similar to
BERT (Devlin et al., 2019), allows the model to
understand a conversation’s nuances effectively. In
the first objective, masked context regression, the
model is trained to predict the missing context from
a dialogue, and in the second objective, distributed
utterance order prediction, the model is trained to
predict the order of spoken utterances in a conver-
sation so that it understands the flow and logic.

Lastly, decoder-only models, like DialoGPT
(Zhang et al., 2020), make use of only the final
component of the encoder-decoder structure. Di-
aloGPT in particular, extends the GPT-2 (Radford
et al., 2019) architecture by being specifically de-
veloped and trained on a large corpus of dialogue
data to generate responses in a conversational con-
text. However, despite its ability to perform well
in single-turn conversation, its lack of capability
to capture latent information behind utterances in
a multi-turn conversation, results in an inadequate
understanding of the context. The utilization of
auxiliary tasks in decoder-only models is a well-
established practice. For instance, the GPT-2 based
model TransferTransfo (Wolf et al., 2019), which
adopts a multi-task objective, showed improvement
over the basic GPT-2. These auxiliary tasks primar-
ily take the form of sequence classification tasks.

3 Method

3.1 A Problem Definition

In this section, the necessary notations utilized are
presented, and the learned tasks are briefly out-
lined. Let d(i) = (p1, p2, . . . , pN , u1, u2, . . . , uT )
denote the i-th dialogue session in the dataset D,
where C = (u1, u2, . . . , uT−1) is the dialogue con-
text (history), P = (p1, p2, . . . , pN ) is the dialogue
persona (personality of the system) and uT is the
response regarding to the persona and the context.
Each ui =

(
wi
1, w

i
2, . . . , w

i
|ui|

)
in C is an utter-

ance and wi
j is the j-th word in ui. Then, we

aim to generate contextually relevant responses
for multi-turn conversations using self-supervised
auxiliary tasks. Our approach involves two ma-
jor components, a language model trained based
on the GPT-2 and a classification model on top of
the GPT-2 used for auxiliary parts. This simple
structure has been found to be effective in produc-
ing consistent responses. As such, two auxiliary
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tasks have been designed over language modeling
(LM) to improve the system’s performance further.
Order and masked recovery tasks are designed to
enhance the self-attention module’s capacity to cap-
ture linguistic affinities. The utterance permutation
task enhances the self-attention module’s ability
to grasp word and utterance sequences, while the
masking task seeks to reinforce semantic connec-
tions between words and utterances by optimizing
the self-attention mechanism. These auxiliary tasks
are critical in providing additional supervision sig-
nals to the model, leading to improved language
modeling performance. Figure 1 illustrates the
model. Lastly, a total loss function is defined to
incorporate these auxiliary tasks and the primary
objective of language modeling. It serves as the
optimization target during training and guides the
model toward producing accurate and consistent
responses.

L = LLM + αLaux (1)

Here, α is a hyper-parameter that controls the
trade-off between LM and the objectives of the
auxiliary tasks.

3.2 Auxiliary Tasks

Recent research (Sankar et al., 2019) has shown
that Transformer-based autoregressive models are
robust to unrealistic perturbations at both the ut-
terance and word levels. However, despite this ro-
bustness, the study suggests that these models have
learned a bag-of-words-like representation rather
than genuinely understanding language structure
and meaning. On the other hand, understanding
context is crucial to producing coherent and con-
sistent responses in open-domain dialogue systems.
While the connections between words within an
individual utterance are essential for determining
the meaning, it is also necessary to consider the re-
lationships between utterances to fully understand
the context of the conversation. To enhance the
language model’s comprehension and its ability to
generate accurate and consistent outputs, it was
deemed necessary to provide additional means to
understand the relationships between the order of
utterances and their meaning and to capture the
sequential structure of language, as well as to com-
prehend the relationships between individual words
in an utterance to grasp the semantic structure of
language. We propose two auxiliary tasks for this
purpose in this paper.

3.2.1 Utterance Permutation (UP)

In order to retain the sequential structure of lan-
guage, re-ordering utterances is defined as an auxil-
iary generator in two ways: detection or recovering
methods by rearranging 10% of utterances in a dia-
log chosen by 15% of all dialogues in the collection.
Depending on the dataset, this task can be imple-
mented based on a persona, context (history), or
both.

In this work, we considered two approaches to
implementing UP as auxiliary tasks:

• detecting (UPD), implemented as a binary to-
ken classification task.

• recovering (UPR), implemented as a non-
binary token classification task.

In UPR, we attempt to predict the correct tokens
regarding the re-ordered tokens; in UPD, we only
determine whether or not the tokens are in the right
place.

3.2.2 Utterance Masking (UM)

In our effort to comprehend the semantic structure
underlying utterances, we devised the utterance
masking task. This task is executed using two dis-
tinct approaches, analogously to the two methods
described above:

• detecting the tokens in the masked utterances
(UMD), implemented as a binary classifica-
tion task.

• recovering the tokens in the masked utterance
(UMR).

In both methods, 15% of the tokens within each di-
alogue are selected, with 80% of these tokens being
replaced in the non-binary approach by the <mask>
token and by synonyms in the binary approach. In
the non-binary method, 10% of the tokens were ran-
domly substituted from the dictionary, while in the
binary approach, they are replaced with antonyms.
The final 10% of tokens were preserved in their
original form.

4 Dataset and Experiments

The following section provides detail on the dataset
and experimental settings used in our experiments.
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LM	Head

<bos><persona>My	mom	is	my	best	friend	.	<sep> I	have	four	sisters	. <sep>	I	believe	that	mermaids	
are	real	.	<sep> I	love	iced	tea	.	<dialog> Hi	,	how	are	you	doing	today	?	<sep>	I	am	spending	time	
with	my	4	sisters	what	are	you	up	to	.	<sep>Wow	,	four	sisters	.	Just	watching	game	of	thrones	.	

<sep>	That is	a	good	show	I	watch	that	while	drinking	iced	tea	.	<eos>

Auxiliary	Builder

That is	a	good	show	I	watch	that	while	
drinking	iced	tea	.	<eos>

<bos><persona>My	mom	is	my	best	friend	.	
<sep> I	have	four	sisters	. <sep>	I	believe	that	
mermaids	are	real	.	<sep> I	love	iced	tea	.	
<dialog> how?	Hi	you	are	today	
doing,<sep>	I	am	spending	time	with	my	4	
sisters	what	are	you	up	to	.	<sep> Wow	,	four	
sisters	.	Just	watching	game	of	thrones	.	<sep>	
That is	a	good	show	I	watch	that	while	
drinking	iced	tea	.	<eos>

Utterance	permutation	[context]
[Binary/Non-Binary]

<bos><persona>My	mom	is	my	best	friend	.	
<sep> I	have	four	sisters	. <sep>	I	believe	that	
mermaids	are	real	.	<sep> I	love	iced	tea	.	
<dialog> Hi	,	how	are	<mask> doing	today	?	
<sep>	I	<mask> spending	TV with	my	4	boys
what	are	you	up	to	.	<sep> Wow	,	four	sisters	.	
Just	watching	footbal of	thrones	.	<sep>	That
is	a	good	show	I	watch	that	while	drinking	
iced	tea	.	<eos>

Utterance	masking	[context]
[Non-Binary]

<bos><persona>My	mom	is	my	best	friend	.	
<sep> I	have	four	sisters	. <sep>	I	believe	that	
mermaids	are	real	.	<sep> I	love	iced	tea	.	
<dialog> Hi	,	how	are	we doing	today	?	<sep>	
You am	saving time	with	my	4	sisters	what	
are	you	up	to	.	<sep> Wow	,	four	sisters	.	Just	
observing game	of	thrones	.	<sep>	That is	a	
good	show	I	watch	that	while	drinking	iced	
tea	.	<eos>

Utterance	masking	[context]
[Binary]

Feed	Forw
ard

Layer	N
orm

Feed	Forw
ard

N x

G
PT

-2

Prediction	Head

[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	1,	0,	0,	…	
0,	0,	1,	0,	0,	0,	0,	1,	…,	1,	0,	0,	0,	0,	0,	0,	0,	0]

Binary	
[Detecting]

[50257,	50262,	…,	764,	220,	50261,	314,	423,	…,	
50261,	314,	1975,	326,	…,	220,	50261,	314,	1842,	
...,	50264,	15902,	837,	…,	716,	4581,	…,	644,	389,	

345,	…,	50258]

Non-Binary	
[Recovering]

Figure 1: This figure illustrates the auxiliary tasks and the proposed model. The input to the model (our prompt)
includes a combination of persona, context, and the last conversation. Each component is separated into special
tokens and preceded by a unique token that signifies its component. The model’s objective (LM objective) is to
generate the final conversational component of the agent’s response while disregarding any prior parts.

4.1 Dataset

The experiments in this paper are conducted using
two benchmark datasets for open-domain dialogue
generation, PersonaChat (Zhang et al., 2018) and
DailyDialog (Li et al., 2017). PersonaChat is a
large-scale dataset collected by encouraging two in-
dividuals to engage in open-domain conversations
while exchanging personal information to create
personas. The dataset contains over 163,064 utter-
ances (11,907 dialogues) for training and 15,0264
utterances (968 dialogues) for testing. The con-
versations are naturally diverse, covering various
topics and perspectives. In addition, the personal
information provided allows the model to gener-
ate more informed and coherent responses due to
predefined personalities. A true-cased version of
PersonaChat3 is used in the experiments to main-
tain consistency with the other datasets. On the
other hand, the DailyDialog is a small dataset con-
sisting of 13,118 multi-turn dialogues collected
from various daily situations. Both datasets are
pre-processed to ensure that all conversations are
well-formed and coherent and that the data is in a

3bavard/personachat_truecased

suitable format for training and the auxiliary gener-
ator. The datasets are split into training, validation,
and test sets for experimentation.

4.2 Baselines

We compared our approach to DialoGPT (Zhang
et al., 2020), a Transformer-based response gener-
ation model. We design a new prompt that is suit-
able for our auxiliary tasks. In order to ensure a fair
comparison, we fine-tune the GPT-2 model on both
of the two multi-turn datasets with the new prompt
and using the same configurations introduced by
DialoGPT (also known as VanillaGPT-2). This
allows us to compare our approach to DialoGPT
under the same conditions.

4.3 Implementation Details

Our implementation of both approaches is carried
out using PyTorch Lightning4 and Huggingface
Transformers.5 We train the baseline and our ap-
proach on two GPT-2 scales (small 124M and
medium 354M parameters). Our approach depends

4https://www.pytorchlightning.ai/
5https://huggingface.co/
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on the dataset we implement the auxiliary tasks
on different components persona, context, persona,
and context, and by random. All the models are
optimized with the AdamW optimizer (Loshchilov
and Hutter, 2017) using an initial learning rate of
5e-5 and 3e-5, respectively, for the DailyDialog
and PersonaChat datasets, and by using the adap-
tive learning rate scheduler with 5,000 warm-up
steps and weight decay of 0.001. Experiments are
performed on NVIDIA A100 for five epochs and
a different range of hyperparameters regarding the
auxiliary tasks, as seen in Table 1.

Auxiliary Task α Pdo Preordered Pmasked Pchanged

UPD 3.0 0.15 0.1 - -
UPR 1.0 0.15 0.1 - -
UMD 3.0 0.15 - 0.8 0.5
UMR 1.0 0.15 - 0.8 0.5

Table 1: Hyperparameters used in the experiments.

4.4 Evaluation Metrics
The assessment of the models is performed in an
automated manner utilizing well-established met-
rics such as perplexity (Vinyals and Le, 2015),
BLEU (Papineni et al., 2002), and Rouge-L (Li
et al., 2016a). In addition, we also incorporate two
additional methods (similarity and correlation with
human judgement) for automatic evaluation. These
are the Embedding Average (Average), Embed-
ding Extrema (Extrema), and Embedding Greedy
(Greedy) metrics (Serban et al., 2017), which pro-
vide a deeper understanding of the correspondence
between the model’s responses and the reference
responses. Furthermore, we compute the BertScore
(Zhang et al., 2020) and MoverScore (Zhao et al.,
2019) to assess the level of agreement between
the generated text and human evaluations, and to
determine the overall quality of the generated text.

5 Results

Table 2 presents the results of incorporating a
combination of objectives and language modeling
into various components of open-domain dialog
systems. The evaluation was conducted on two
benchmark datasets and two different scales
of GPT-2. The results demonstrate that the
improvement of the model depends on the type
of auxiliary objective used in conjunction with
language modeling. As demonstrated in the table,
utilizing utterance permutation in binary form has
a notable impact on reducing the perplexity of the
model, with a reduction of 2% being observed.

Furthermore, compared to other auxiliary tasks,
the use of utterance masking in the binary form
leads to improvements in metrics such as BLEU,
ROUGE-L, MoverScore, and Extrema. The results
also suggest that using auxiliary tasks in larger
models improves performance. The comparison
between the Persona-Chat dataset highlights the
significance of using auxiliary tasks simultaneously
in both the Persona and Context components,
which results in even better performance. Tables 3
and 4, located in Appendices A and B respectively,
present sample generated responses for the two
benchmarks, encompassing both the baseline and
the optimal auxiliary model.

What is the difference between binary and
non-binary auxiliary tasks? The results clearly
demonstrate that the model only has access to the
left context due to the specific type of attention
mechanism employed in GPT (Masked Causal
Attention). This limited exposure to context
makes it challenging for the model to identify
the distorted token correctly. Despite having
access to the left context, the model’s ability
to recognize the scrambled token remains impaired.

What is the impact of implementing these auxil-
iary tasks on different components of dialogue?
Determining the exact part of dialogue that will
benefit the most from these tasks is challenging,
but it can be agreed upon that combining both
the Persona and Context components leads to
improved outcomes.

Why do the results vary across these two
datasets? The difference can be attributed to the
distinct structures of the two benchmarks, as one
provides access only to the context and the other to
both persona and context.

Does access to both persona and context result
in higher quality answers? This depends on the
degree to which the persona aligns with the context.

6 Conclusion

In conclusion, our research has focused on improv-
ing the quality of generated responses using GPT-2
by proposing two auxiliary tasks. The first task,
referred to as utterance permutation, aims to en-
hance the model’s ability to comprehend the in-
terconnections between words in a sentence and
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DailyDialog

Scale Model PPL BLEU ROUGE-L BERTScore MoverScore Average Greedy Extrema
SM

A
L

L VanillaGPT-2 11.463 1.188 0.187 0.885 0.045 0.875 0.737 0.881
UPD [context] 11.445 1.108 0.186 0.884 0.042 0.873 0.735 0.877
UPR [context] 11.607 0.984 0.179 0.883 0.038 0.870 0.734 0.880
UMD [context] 11.484 1.365 0.188 0.885 0.047 0.870 0.736 0.881
UMR [context] 11.859 0.999 0.184 0.884 0.040 0.871 0.735 0.879

M
E

D
IU

M VanillaGPT-2 10.344 2.603 0.208 0.889 0.072 0.880 0.743 0.881
UPD [context] 9.958 2.393 0.203 0.888 0.064 0.881 0.745 0.883
UPR [context] 10.192 2.068 0.199 0.887 0.060 0.877 0.739 0.882
UMD [context] 10.659 2.458 0.208 0.889 0.075 0.879 0.745 0.882
UMR [context] 10.554 1.886 0.195 0.886 0.055 0.874 0.740 0.880

PERSONA-CHAT

Scale Model PPL BLEU ROUGE-L BERTScore MoverScore Average Greedy Extrema

SM
A

L
L

VanillaGPT-2 13.149 1.489 0.099 0.879 0.056 0.878 0.694 0.872
UPD [persona] 13.100 1.545 0.098 0.878 0.055 0.878 0.694 0.872
UPD [context] 13.101 1.537 0.098 0.879 0.056 0.878 0.693 0.872
UPD [persona+context] 13.089 1.426 0.097 0.878 0.054 0.877 0.693 0.872
UPD [random] 13.108 1.552 0.097 0.878 0.055 0.877 0.693 0.872
UPR [persona] 13.111 1.489 0.097 0.879 0.055 0.878 0.693 0.872
UPR [context] 13.132 1.431 0.096 0.878 0.055 0.878 0.693 0.872
UPR [persona+context] 13.125 1.586 0.097 0.879 0.055 0.878 0.694 0.872
UPR [random] 13.128 1.427 0.097 0.878 0.054 0.877 0.694 0.872
UMD [persona] 13.073 1.393 0.098 0.878 0.055 0.878 0.693 0.873
UMD [context] 13.126 1.538 0.099 0.879 0.056 0.878 0.694 0.873
UMD [persona+context] 13.079 1.504 0.097 0.878 0.054 0.878 0.692 0.872
UMD [random] 13.055 1.423 0.096 0.878 0.055 0.877 0.693 0.872
UMR [persona] 13.309 1.488 0.097 0.878 0.055 0.878 0.693 0.872
UMR [context] 13.265 1.459 0.098 0.879 0.055 0.878 0.694 0.872
UMR [persona+context] 13.362 1.371 0.096 0.878 0.053 0.878 0.693 0.872
UMR [random] 13.263 1.454 0.098 0.878 0.055 0.878 0.694 0.872

M
E

D
IU

M

VanillaGPT-2 10.975 1.657 0.100 0.879 0.060 0.878 0.695 0.873
UPD [persona] 10.969 1.712 0.101 0.880 0.061 0.879 0.696 0.873
UPD [context] 10.992 1.734 0.101 0.880 0.061 0.879 0.696 0.873
UPD [persona+context] 10.960 1.693 0.101 0.879 0.060 0.879 0.695 0.873
UPD [random] 10.978 1.690 0.101 0.879 0.060 0.878 0.694 0.872
UPR [persona] 10.987 1.703 0.102 0.879 0.060 0.878 0.695 0.873
UPR [context] 11.006 1.593 0.100 0.879 0.059 0.879 0.695 0.873
UPR [persona+context] 11.000 1.660 0.100 0.879 0.060 0.879 0.695 0.873
UPR [random] 11.004 1.575 0.099 0.879 0.059 0.879 0.695 0.873
UMD [persona] 10.977 1.660 0.101 0.879 0.060 0.879 0.695 0.873
UMD [context] 11.025 1.659 0.100 0.879 0.060 0.879 0.695 0.873
UMD [persona+context] 11.004 1.714 0.101 0.879 0.060 0.879 0.696 0.873
UMD [random] 10.957 1.593 0.099 0.879 0.059 0.879 0.694 0.872
UMR [persona] 11.063 1.551 0.098 0.879 0.057 0.877 0.693 0.872
UMR [context] 11.092 1.560 0.099 0.879 0.058 0.878 0.694 0.873
UMR [persona+context] 11.102 1.468 0.099 0.879 0.057 0.878 0.694 0.873
UMR [random] 11.044 1.540 0.099 0.879 0.058 0.879 0.695 0.873

Table 2: Results of the evaluation are based on automatic metrics. For each metric, colored numbers indicate the
best-performing model.

produce grammatically accurate responses. The
second task, utterance masking, is designed to im-
prove the coherence and consistency of the gener-
ated responses by challenging the model to predict
masked words based on the surrounding context.

Our experiments indicate that combining these two
auxiliary tasks substantially improves the quality
of generated responses. This includes improved
grammar, coherence, and consistency, which are
crucial aspects of generating high-quality NLP re-

352



sponses. Furthermore, these results demonstrate
the potential of incorporating auxiliary tasks with
language models to enhance their performance and
improve the quality of generated responses in NLP
applications.
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A A comparison of Vanilla GPT-2 and GPT-2 with Auxiliary Tasks in Conversational
Contexts for the DailyDialogue Dataset
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Conversation Ground response Generated response
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]

- By the way miss, where is the toilet?
- Toilets are in the rear, I am afraid all the
toilets are fully occupied at the moment.
- What? Oh, what we live! Thank you very
much for your help, miss.

You are welcome.

- Thanks.
- I’ll see you in Beijing in
a few days.
- Goodbye, bye.
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t]

- By the way miss, where is the toilet?
- Toilets are in the rear, I am afraid all the
toilets are fully occupied at the moment.
- What? Oh, what we live! Thank you very
much for your help, miss.

You are welcome.

- Don’t mention it.
- You are welcome.
- You are welcome.

V
an

ill
aG

PT
-2

[m
d]

- Yeah, look at all those new buildings going
up! Mr. Zhang, the traffic is pretty smooth.
But we were told the roads from the airport
to downtown were quite crowded and traffic
jams could be as long as half an hour.
- Yes, they were. But it has already past. The
traffic from the airport to downtown has been
relieved after the completion of Yan’an Aerial
Road.
- We’ve never expected that Shanghai is such a
big metropolis, same as New York city. David,
would it be a good idea to rent a car here?
I’ve got an international driver’s license with a
pretty good record in the States.

That’s wonderful. OK.
I’ll remember that. But
I have to warn you that
you must drive very
carefully in the down-
town area, for there’re
no separate lanes for
motor vehicles and bi-
cycles in some places,
and still quite a few
people don’t take road
regulations seriously.

- Oh, yeah, you’d better
have it.
- Oh, no, that’s stupid.
You’d better drive a taxi!
- That’s a good idea.
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]

- Yeah, look at all those new buildings going
up! Mr. Zhang, the traffic is pretty smooth.
But we were told the roads from the airport
to downtown were quite crowded and traffic
jams could be as long as half an hour.
- Yes, they were. But it has already past. The
traffic from the airport to downtown has been
relieved after the completion of Yan’an Aerial
Road.
- We’ve never expected that Shanghai is such a
big metropolis, same as New York city. David,
would it be a good idea to rent a car here?
I’ve got an international driver’s license with a
pretty good record in the States.

That’s wonderful. OK.
I’ll remember that. But
I have to warn you that
you must drive very
carefully in the down-
town area, for there’re
no separate lanes for
motor vehicles and bi-
cycles in some places,
and still quite a few
people don’t take road
regulations seriously.

- Mr. Zhang, I can assure
you that the traffic isn’t
that bad here. There’s a
traffic island at the edge of
the city to ease the traffic.
But I still prefer to drive
my own car.
- Mr. Zhang, I can assure
you that the traffic isn’t
that bad here. There’s a
traffic island at the edge of
the city to ease the traffic.
But I still prefer to drive
my own car.
- That would be great!

Table 3: A comparison of Vanilla GPT-2 and Utterance Permutations (binary) models with small and medium scales, demon-
strating ground truth responses and generated responses for various dialogues. Overall, the responses are more or less related to
the context, but the GPT-2 with the auxiliary tasks produces responses that are more closely related to the context.
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B A comparison of Vanilla GPT-2 and GPT-2 with Auxiliary Tasks in Conversational
Contexts for the PersonaChat Dataset
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Persona Conversation Ground response Generated responses
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PT
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[s
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]

- I love to drink wine and dance
in the moonlight.
- I am very strong for my age.
- I’m 100 years old.
- I feel like I might live forever.

- Hi, how are you doing today?
- Good! you! Celebrating with fellow cente-
narians.
- Nice. I’m playing some card games with my
family.
- That sounds like fun. I like wine and dancing
too!
- Same. I try to get a small workout in a three
mile walk for me is key.
- Awesome! Walking like that you might live
forever like me!!
- That’s true. My favorite way to unwind is
reading a book.

You sound very like
minded, just add
some wine.

- I know! Where do you live?
I’m still 100 years from retire-
ment!
- What is your favorite book? Do
you like to read?
- That’s a big idea! I love books
too.

V
an

ill
aG

PT
-2

[s
m

]

- I’m now looking for a new job.
- My favorite movie is Friday.
- I am a doctor.
- My daughter is a child prodigy.

- Hello, I’m sitting here with my dog. How are
you?

I’m well friend.
Looking for new
employment at the
moment.

- Hi my name is Dr. Robert.
- Hi how are you today.
- Hi. how are you doing?
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ra
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om
]

- I love to drink wine and dance
in the moonlight.
- I am very strong for my age.
- I’m 100 years old.
- I feel like I might live forever.

- Hi, how are you doing today?
- Good! you! Celebrating with fellow cente-
narians.
- Nice. I’m playing some card games with my
family.
- That sounds like fun. I like wine and dancing
too!
- Same. I try to get a small workout in a three
mile walk for me is key.
- Awesome! Walking like that you might live
forever like me!!
- That’s true. My favorite way to unwind is
reading a book.

You sound very like
minded, just add
some wine.

- That sounds like a lot of fun.
Very healthy. I’m really strong.
You should try to eat healthy!
Books are fun. I have tons.
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- I’m now looking for a new job.
- My favorite movie is Friday.
- I am a doctor.
- My daughter is a child prodigy.

- Hello, I’m sitting here with my dog. How are
you?

I’m well friend.
Looking for new
employment at the
moment.

- I’m doing good. Just finished
my shift at the hospital. How are
you?
- I’m doing well, and yourself?
- I am well, how about yourself.

V
an
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aG

PT
-2

[m
d]

- I prefer being inside.
- I am a recording engineer and
own my own studio.
- Whats up I am a 46 year old sin-
gle dad 46 a kids.
- I live in California but the
recording artist market was dead
last year.

- Hello, call of duty is my favorite game. Do
you game?

Yes I do after all I
am a engineer.

- Not as much as my daughter
she’s my baby.
- No I am just a big time record-
ing engineer.
- I prefer the movie games and tv
shows. I have a studio in Califor-
nia.

U
M

B
[m

d]
[r

an
do

m
] - I prefer being inside.

- I am a recording engineer and
own my own studio.
- Whats up I am a 46 year old sin-
gle dad 46 a kids.
- I live in California but the
recording artist market was dead
last year.

- Hello, call of duty is my favorite game. Do
you game?

Yes I do after all I
am a engineer.

- I don’t play game like that. I’m
a live video coordinator.
- Not really. What do you do?
- I am not sure I’ve the computer
but the tv show is my favorite.

Table 4: An examination of Vanilla GPT-2 and Binary Utterance Masking (random in context and persona) models in small and
medium sizes, showcasing authentic responses. The responses generally have a degree of contextual and persona relevance, but
when the GPT-2 is integrated with auxiliary tasks, the responses demonstrate a stronger connection to the context and persona.
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Abstract

This paper introduces Bayesian uncer-
tainty modeling using Stochastic Weight
Averaging-Gaussian (SWAG) in Natural
Language Understanding (NLU) tasks.
We apply the approach to standard
tasks in natural language inference (NLI)
and demonstrate the effectiveness of the
method in terms of prediction accuracy
and correlation with human annotation
disagreements. We argue that the uncer-
tainty representations in SWAG better re-
flect subjective interpretation and the nat-
ural variation that is also present in human
language understanding. The results re-
veal the importance of uncertainty mod-
eling, an often neglected aspect of neural
language modeling, in NLU tasks.

1 Introduction

Arguably, human language understanding is not
objective nor deterministic. The same utterance or
text can be interpreted in different ways by differ-
ent people depending on their language standards,
background knowledge and world views, the lin-
guistic context, as well as the situation in which
the utterance or text appears. This uncertainty
about potential readings is typically not modeled
in Natural Language Understanding (NLU) re-
search and is often ignored in NLU benchmarks
and datasets. Instead, they usually assign a single
interpretation as a gold standard to be predicted
by an artificial system ignoring the inherent ambi-
guity of language and potential disagreements that
humans arrive at.

Some datasets like SNLI (Bowman et al., 2015)
and MNLI (Williams et al., 2018) do, however,
contain information about different readings in the
form of annotation disagreement. These datasets

include the labels from five different rounds of an-
notation which show in some cases clear disagree-
ment about the correct label for the sentence pair.
Those labeling discrepancies can certainly be a re-
sult of annotation mistakes but more commonly
they arise from differences in understanding the
task, the given information and how it relates to
world knowledge and personal experience.

Moving towards uncertainty-aware neural lan-
guage models, we present our initial results us-
ing Stochastic Weight Averaging (SWA) (Izmailov
et al., 2018) and SWA-Gaussian (SWAG) (Mad-
dox et al., 2019) on the task of Natural Language
Inference. SWAG provides a scalable approach to
calibrate neural networks and to model uncertainty
presentations and is straightforward to apply with
standard neural architectures. Our study addresses
the two main questions:

• How does uncertainty modeling using SWAG
influence prediction performance and gener-
alization in NLI tasks?

• How well does the calibrated model reflect
human disagreement and annotation vari-
ance?

In this paper, we first test the performance of
SWA and SWAG in SNLI and MNLI tasks. We
then study if adding weight averaging improves
the generalization power of NLI models as tested
through cross-dataset experiments. Finally, we
analyse the probability distributions from SWA
and SWAG to test how well the model uncertainty
corresponds to annotator disagreements.

2 Background and Related Work

2.1 Uncertainty in human annotations

In a recent position paper Plank (2022) argue that
instead of taking human label variation as a prob-
lem, we should embrace it as an opportunity and
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take it into consideration in all the steps of the ML
pipeline: data, modeling and evaluation. The pa-
per provides a comprehensive survey of research
on (i) reasons for human label variation, (ii) mod-
eling human label variation, and (iii) evaluating
with human label variation.

Pavlick and Kwiatkowski (2019) studied hu-
man disagreements in NLI tasks and argue that we
should move to an evaluation objective that more
closely corresponds to the natural interpretation
variance that exists in data. Such a move would
require that NLU models be properly calibrated to
reflect the distribution we can expect and, hence,
move to a more natural inference engine.

Chen et al. (2020) propose Uncertain NLI
(UNLI), a task that moves away from categorical
labels into probabilistic values. They use a scalar
regression model and show that the model predic-
tions correlate with human judgement.

2.2 Representing Model Uncertainty

The approach to uncertainty modeling that we
consider is related to the well-established tech-
nique of model ensembling. Stochastic optimiza-
tion procedures applied in training deep neural
networks are non-deterministic and depend on
hyper-parameters and initial seeds. Ensembles
have been used as a pragmatic solution to aver-
age over several solutions, and the positive impact
on model performance pushed ensembling into the
standard toolbox of deep learning. Related to en-
sembling is the technique of checkpoint averaging
(refer to e.g. Gao et al., 2022), which is also known
to improve performance.

Intuitively, ensembles and checkpoint averages
also reflect the idea of different views and interpre-
tations of the data and, therefore, provide a frame-
work for uncertainty modeling. Stochastic Weight
Averaging (SWA, Izmailov et al. (2018)) and
SWA-Gaussian (SWAG, Maddox et al. (2019))
both build on this idea. SWA proposes using the
first moments of the parameters of the solutions
traversed by the optimizer during the optimiza-
tion process, as mean estimates of the model pa-
rameters. Using such mean values have been ar-
gued to result in finding wider optima, providing
better generalization to unseen data. On top of
these mean estimations procured by SWA, SWAG
then adds a low-rank plus diagonal approxima-
tion of covariances, which, when combined with
the aforementioned mean estimations, provide us

with corresponding Gaussian posterior approxi-
mations over model parameters. Posterior distri-
bution approximations learned this way then rep-
resent our epistemic uncertainty about the model
(Kiureghian and Ditlevsen, 2009), meaning the
uncertainty stemming from not knowing the per-
fect values of the model parameters, since we do
not have infinite data to train on. During test time,
instead of making estimates from a single model
with deterministic parameters, we sample N dif-
ferent models from the approximated posteriors
for each model parameter, and use the average
of their prediction distributions as the model re-
sponse.

Note that as both of these methods use the opti-
mizer trajectory for the respective approximations,
they provide significant computational efficiency
as compared to the vanilla ensembling baseline. In
this paper, we use SWA mainly as another baseline
for SWAG, which needs to outperform SWA in or-
der to justify the additional computation required
for the covariance approximation.

SWA (Izmailov et al., 2018) is a checkpoint av-
eraging method that tracks the optimization trajec-
tory for a model during training, using the average
of encountered values as the eventual parameters:

θSWA =
1

T

T∑

i=1

θi, (1)

with θSWA denoting the SWA solution for parame-
ter θ after T steps of training.1

SWAG (Maddox et al., 2019) extends this
method to estimate Gaussian posteriors for model
parameters, by also estimating a covariance matrix
for the parameters, using a low-rank plus diagonal
posterior approximation. The diagonal part is ob-
tained by keeping a running average of the second
uncentered moment of each parameter, and then at
the end of the training calculating:

Σdiag = diag(
1

T

T∑

i=1

θ2i − θ2SWA) (2)

while the diagonal part is approximated by keep-
ing a matrix DDT with columns Di = (θi − θ̂i),
θ̂i standing for the running estimate of the param-
eters’ mean obtained from the first i samples. The
rank of the approximation is restricted by keeping
only the final K-many of the Di vectors, and drop-
ping the previous, with K being a hyperparameter

1In this work, we use one sample from each epoch.
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of the method:

Σlow-rank ≈
1

K − 1
DDT (3)

=
1

K − 1

T∑

i=T−K+1

(θi − θ̂i)(θi − θ̂i)
T

(4)

The overall posterior approximation is given by:

θSWAG ∼ N (θSWA,
1

2
(Σdiag +Σlow-rank)). (5)

Once the posteriors are thus approximated, in test
time, the model is utilized by sampling from the
approximated posteriors for N times, and tak-
ing the average of the predicted distributions from
these samples as the answer of the model.

One of the advantages of SWAG is the possi-
bility to seamlessly start with any pre-trained so-
lution. Approximating the posterior is then done
during fine-tuning without the need to change the
underlying model.

2.3 Stochastic Weight Averaging in NLP

Previous work on Stochastic Weight Averaging
in the context of NLP is very limited. Lu et al.
(2022) adapt SWA for pre-trained language mod-
els and show that it works on par with state-of-the-
art knowledge distillation methods. Khurana et al.
(2021) study pre-trained language model robust-
ness on a sentiment analysis task using SWA and
conclude that SWA provides improved robustness
to small changes in the training pipeline. Kaddour
et al. (2022) test SWA on multiple GLUE bench-
mark tasks (Wang et al., 2018) and find that the
method does not provide clear improvement over
the baseline.

Maddox et al. (2019) test SWAG in lan-
guage modeling tasks using Penn Treebank and
WikiText-2 datasets and show that SWAG im-
proves test perplexities over a SWA baseline. To
the best of our knowledge our work is the first to
apply SWAG to NLU tasks.

3 Experiments

We test the performance of SWA and SWAG on
the natural language inference task using three
NLI datasets, including cross-dataset experiments,
and study the effect on both hard and soft labeling.
Code for replicating the experiments is available

on GitHub: https://github.com/Helsi
nki-NLP/uncertainty-aware-nli

3.1 Datasets

We use Stanford Natural Language Inference cor-
pus (SNLI) (Bowman et al., 2015) and Multi-
Genre Natural Language Inference (MNLI) cor-
pus (Williams et al., 2018) as the datasets in our
experiments. We also study cross-dataset gener-
alisation capability of the model with and without
weight averaging. For those experiments we also
include SICK (Marelli et al., 2014) as a test set. In
cross-dataset generalization experiments we first
fine-tune the model with a training data from one
NLI dataset (e.g. SNLI) and then test with a test
set from another NLI dataset (e.g. MNLI-mm).

SNLI The Stanford Natural Language Inference
(SNLI) corpus is a dataset of 570k sentence pairs
which have been manually labeled with entail-
ment, contradiction, and neutral labels. The
source for the premise sentences in SNLI were
image captions from the Flickr30k corpus (Young
et al., 2014).

MNLI The Multi-Genre Natural Language In-
ference (MNLI) corpus is made of 433k sentence
pairs labeled with entailment, contradiction and
neutral, containing examples from ten genres of
written and spoken English. Five of the genres are
included in the training set. The development and
test sets have been split into matched (MNLI-m)
and mismatched (MNLI-mm) sets, where the for-
mer includes only sentences from the same genres
as the training data, and the latter includes gen-
res not present in the training data.2 The MNLI
dataset was annotated using very similar instruc-
tions as for the SNLI dataset and, therefore it is
safe to assume that the definitions of entailment,
contradiction and neutral are the same across these
two datasets.

SICK SICK is a dataset that was originally de-
signed to test compositional distributional seman-
tics models. The dataset includes 9,840 examples
with logical inference (negation, conjunction, dis-
junction, apposition, relative clauses, etc.). The

2As the test data for MNLI have not been made publicly
available, we use the development sets when reporting the
results for MNLI.
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dataset was constructed automatically by taking
pairs of sentences from a random subset of the
8K ImageFlickr (Young et al., 2014) and the Se-
mEval 2012 STS MSRVideo Description (Agirre
et al., 2012) datasets by using rule-based approach
to construct examples for the different logical in-
ference types.

3.2 Methods

In all the experiments we fine tune a pre-trained
RoBERTa-base model (Liu et al., 2019) from the
Hugging Face Transformers library (Wolf et al.,
2020). As a common practice in the NLI tasks, we
use the majority-vote gold labels for training.

We add stochastic weight averaging to the
RoBERTa model by using the SWA implementa-
tion from PyTorch 1.123 and the SWAG imple-
mentation by (Maddox et al., 2019)4. To study
how well SWA and SWAG perform in NLI as
compared to a baseline model, we ran the same
fine-tuning with SNLI and MNLI datasets, while
utilizing SWA and SWAG for mean and variance
estimations of parameters undergoing fine-tuning.

3.3 Results

The standard evaluation for the NLI task is the ac-
curacy on aggregated gold labels. However, as two
of the test data sets (from SNLI and MNLI) also
contains multiple human annotations, we also use
those for measuring the cross entropy of the pre-
dicted distribution on the human label distribution
(soft labeling, e.g. Peterson et al., 2019; Pavlick
and Kwiatkowski, 2019).

3.3.1 Accuracy

The basic classification results are in Table 1. We
report average accuracies and standard deviation
over 5 runs with different random seeds.

Both SWA and SWAG provide clear improve-
ments over the baseline without weight averaging.
SWAG performs slightly better than SWA across
all the three experiments.

In order to test if weight averaging improves the
generalization capability of NLI models, we fur-
ther performed cross-dataset generalization tests

3https://pytorch.org/docs/1.12/optim.
html#stochastic-weight-averaging

4https://github.com/wjmaddox/swa_gaus
sian

Dataset Method Acc (%) SD ∆
SNLI base 90.80 0.26 -
SNLI SWA 91.47 0.24 +0.67
SNLI SWAG 91.59 0.14 +0.79
MNLI-m base 86.53 0.20 -
MNLI-m SWA 87.60 0.19 +1.07
MNLI-m SWAG 87.76 0.12 +1.23
MNLI-mm base 86.31 0.26 -
MNLI-mm SWA 87.34 0.29 +1.03
MNLI-mm SWAG 87.51 0.19 +1.20

Table 1: Comparison of SWA and SWAG perfor-
mance on NLI benchmarks (mean accuracy and
standard deviation over 5 runs). ∆ is the differ-
ence to the baseline result (base) with no weight
averaging.

Dataset Method Acc (%) SD ∆
SNLI → MNLI-m base 77.31 0.57
SNLI → MNLI-m SWA 79.67 0.37 2.36
SNLI → MNLI-m SWAG 79.33 0.21 2.02
SNLI → MNLI-mm base 77.40 0.78
SNLI → MNLI-mm SWA 79.44 0.19 2.04
SNLI → MNLI-mm SWAG 79.24 0.29 1.84
SNLI → SICK base 57.08 0.77
SNLI → SICK SWA 57.09 0.32 0.01
SNLI → SICK SWAG 57.17 0.37 0.08
MNLI → SNLI base 82.84 0.74
MNLI → SNLI SWA 84.15 0.35 1.31
MNLI → SNLI SWAG 84.45 0.27 1.61
MNLI → SICK base 56.63 0.94
MNLI → SICK SWA 56.17 0.60 -0.46
MNLI → SICK SWAG 56.53 0.91 -0.10

Table 2: Cross-dataset experiments with and with-
out weight averaging (mean accuracy and standard
deviation over 5 runs with different random seeds),
where the left hand side of the arrow is the training
set and the right hand side is the testing set.

following (Talman and Chatzikyriakidis, 2019).
The results are reported in Table 2.

The results of cross-dataset experiments are
slightly mixed: We do not notice a clear advan-
tage of SWAG over SWA, but with the exception
of training with MNLI and testing with SICK, we
do notice improvement for weight averaging ap-
proaches as compared to the baseline. The perfor-
mance on SICK drops significantly in all cases and
the difference between the approaches is minimal,
showing that the NLI training data is not a good
fit for that benchmark. The other cross-dataset re-
sults highlight the advantage of stochastic weight
averaging, which is in line with the findings of (Iz-
mailov et al., 2018) that the method is able to lo-
cate wider optima regions with better generaliza-
tion capabilities.
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Dataset Method Cross Entropy ∆
SNLI base 0.83
SNLI SWA 0.75 -0.08
SNLI SWAG 0.69 -0.14
MNLI-m base 0.87
MNLI-m SWA 0.80 -0.07
MNLI-m SWAG 0.73 -0.14
MNLI-mm base 0.84
MNLI-mm SWA 0.77 -0.07
MNLI-mm SWAG 0.69 -0.15
SNLI → MNLI-m base 1.13
SNLI → MNLI-m SWA 0.90 -0.23
SNLI → MNLI-m SWAG 0.80 -0.33
SNLI → MNLI-mm base 1.12
SNLI → MNLI-mm SWA 0.88 -0.24
SNLI → MNLI-mm SWAG 0.79 -0.33
MNLI → SNLI base 1.04
MNLI → SNLI SWA 0.97 -0.07
MNLI → SNLI SWAG 0.89 -0.15

Table 3: Comparison of cross entropies between
data annotation distributions using base, SWA and
SWAG methods. ∆ is the difference to the base-
line cross entropy values.

3.3.2 Cross Entropy

We also test how well these weight averaging and
covariance estimating methods help towards bet-
ter modeling annotator disagreement and annota-
tion uncertainty in the NLI testsets of SNLI and
MNLI. These two datasets come with five differ-
ent annotation labels for every data point, often
with high disagreement between human annota-
tors, indicating inherently confusing data points
with high aleatoric uncertainty (Kiureghian and
Ditlevsen, 2009). For quantifying the goodness of
fit of the model predictions, we calculate the cross
entropy between the predicted and annotation dis-
tributions.5

Table 3 depicts the resulting cross entropy val-
ues, with lower values denoting more faithful pre-
dictions. SWA and SWAG result in consistently
more similar distributions with that of annotations,
complementing their overall better accuracy re-
sults (Section 3.3). In contrast to the accuracy re-
sults, here SWAG outperforms SWA in all cases,
indicating that the modeling uncertainty through
the approximation of Gaussian posteriors helps to
model annotator disagreements more accurately.
The results also carry over to the cross-dataset ex-
periments as shown on the table.

The comparison between system predictions

5Note that for the Baseline and SWA models, we consider
the output from the eventual softmax function as the predicted
distribution, while for the SWAG model, we use the average
output distribution from N = 20 sampled models.

and annotator variation deserves some further
analysis. Preliminary study (refer to examples
in Appendix A) indicates that the prediction un-
certainty in SWAG for individual instances very
well follows human annotation confusion. Fur-
thermore, we identified cases with a larger mis-
match between system predictions and human dis-
agreement where the latter is mainly caused by er-
roneous or at least questionable decisions. This
points to the use of SWAG in an active learning
scenario, where annotation noise can be identified
using a well calibrated prediction model.

4 Conclusions

Our results show that weight averaging provides
consistent and clear improvement for both SNLI
and MNLI datasets. The cross-dataset results are
slightly mixed but also show the trend of improved
cross-domain generalization. Finally, we demon-
strate a clear increase in the correlation with hu-
man annotation variance when comparing SWAG
with non-Bayesian approaches.

For future work we consider making use of mul-
tiple annotations also during training and exten-
sions of SWAG such as MultiSWAG (Wilson and
Izmailov, 2020). We also plan to test the methods
on different NLU datasets, especially those with a
high number of annotations (e.g. Nie et al., 2020),
and compare the annotation variation and system
predictions in more detail. Finally, in our future
work we will explore other uncertainty modeling
techniques, like MC dropout (Gal and Ghahra-
mani, 2016), in NLU and see how they compare
with stochastic weight averaging techniques.
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A Appendix

Here we showcase and discuss three randomly
selected data points from the SNLI dataset, and
compare the predictions of the N = 20 samples
from the SWAG model with the annotation distri-
butions for each of these points. Table 4 presents
two cases (left and middle) in which the SWAG
model makes the correct prediction, and another
case (right) in which the model makes an incorrect
prediction. In the high agreement cases, indicated
by lower cross entropies between the annotations

and prediction, the SWAG model not only selects
the correct label for the instance, but also predicts
the annotator disagreement correctly when such a
disagreement exists (middle) versus when it does
not (left).

The third figure presents a case where the pre-
dictions of the SWAG samples are more certain
than expected: Annotators disagree on whether
the hypothesis is entailment or neutral, whereas
the model predictions place all probability mass
to the neutral class. The corresponding cross en-
tropy is high, which reflects this disagreement. It
should be noted that this is also a fairly contro-
versial and difficult data point, and to conclude
Entailment requires making some strong assump-
tions. Ideally, such disagreements between system
predictions and annotator distributions may also
be used as cues within the training process itself.
Two potential venues are (1) using the incongru-
ence between the two distributions as the loss sig-
nal to drive the optimization process directly (as
opposed to using only the gold label and the pre-
dicted class label), and (2) using the incongruence
in predictions in an active learning scenario.
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Correct Prediction Incorrect Prediction

Premise
Two female martial artists demon-

strate a kick for an audience.

A group of boys playing street soc-

cer.

People shopping at an outside mar-

ket.

Hypothesis
Two martial artists demonstrate

moves for the audience.
A team is playing street soccer.

People are enjoying the sunny day

at the market.

Annotations E-E-E-E-E E-E-N-N-N E-E-E-N-N

Cross-Ent 0.02 0.69 3.88

Table 4: Comparison of probability distributions of human annotations vs. SWAG model predictions,
for three randomly selected data points from the SNLI dataset. (Left and middle) Correctly predicted
cases, as indicated by low cross entropy, (Right) A incorrectly predicted case, as indicated by high cross
entropy. SWAG points indicate the outputted probability distributions from N = 20 samples.
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Abstract

Two Danish open access lexicographic re-
sources have appeared in recent years:
lexemes in Wikidata and Det Centrale
Ordregister (COR). The lexeme part of
Wikidata describes words in different lan-
guages and COR associates an identifier
with each different form of Danish lex-
emes. Here I described the current state
of the linking Wikidata lexemes with COR
and some of the problems encountered.

1 Wikidata

Wikidata (Vrandečić and Krötzsch, 2014), the
large collaboratively edited knowledge graph, has
a special namespace for words and the first lexeme
in this namespace was created in 2018 (Nielsen,
2019).1 Since then the number of lexemes has
steadily grown. In February 2020, Wikidata had
over 250,000 lexemes (Nielsen, 2020). As of Jan-
uary 2023, there were over 980,000 lexemes, over
12 million forms and over 290,000 senses. Wiki-
data records, e.g., over 213,000 German lexemes
and over 16,000 Danish lexemes. A lexeme in
Wikidata describes forms and senses with a grow-
ing set of properties. Each lexeme, form, and
sense has a unique identifier. An example of a
property for Danish lexemes is the link to words
in the Danish wordnet resource DanNet (Pedersen
et al., 2009).

Four templates for Lucas Werkmeister’s Wiki-
data Lexeme Forms tool2 are so far set up to help
enter Danish words in Wikidata: For adjectives,
verbs, and common and neuter gender nouns.

1The Sumerian word for mother, https://www.
wikidata.org/w/index.php?title=Lexeme:
L1&action=history&dir=prev

2https://lexeme-forms.toolforge.org

2 Det Centrale Ordregister

Det Centrale Ordregister (COR) (Dideriksen et al.,
2022) is a Danish lexicographic resource with
an initial test dataset released in May 2022 and
since then updated. The resource and its descrip-
tion are available at https://ordregister.
dk/. COR mostly describes the forms of lexemes
and gives each form an identifier. Work on the
semantic part of COR is underway (Nimb et al.,
2022; Pedersen et al., 2022), but here I will not
consider this part. The version of COR I consider
is version 1.02 of the core COR and the 1.0 version
for COR-EXT.

3 COR Wikidata properties

For linking Wikidata and COR, the Wikidata com-
munity has created two Wikidata properties for
COR identifiers: One for the lexeme and one
for the form. For instance, for the Wikidata
lexeme Sudan (L993787) the COR lemma ID,
level 1 identifier (P10831) is “COR.09978” while
the COR form, level 1 identifiers (P10830) are
“COR.09978.500.01” and “COR.09978.500.01”
for the non-genitive (Sudan) and the genitive
(Sudans) forms, respectively. The current reg-
ular expression contraint for the lexeme form
is COR\.(EXT\.\d{6}|\d{5}) allowing the
core COR as well as the level 2 COR-EXT identi-
fiers, — and it could be extended if other resources
appear. The two COR Wikidata properties were
created in June 2022. As of February over 2,100
COR lexemes/lemmas and over 1,800 COR forms
are linked from Wikidata.3 Around 390 Danish
Wikidata lexemes have so far been annotated as
not being present in COR. Most of these lexemes
are compounds. Proper nouns and a few interjec-
tions comprise most of the rest.

3https://ordia.toolforge.org/
statistics/
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4 What is a lexeme and a form?

For linking Wikidata and COR it is important that
there is a correspondence between the items of the
two resources.

Danish words may have spelling variants, e.g.,
højtaler and højttaler. In COR, they are grouped
under the same lexeme and as different variants.
In Wikidata, spelling variants may be grouped
under the same form. For instance, the English
form L1347-F1 is currently listing both color and
colour, separating them with different language
specifications (en and en-gb). In Danish, the
spelling variants do not arise due to different lan-
guages and the current Wikidata interface cannot
handle spelling variants within the same language
in one form. So far the Danish lexemes in Wiki-
data create separate forms for each spelling vari-
ants, e.g., L229388-F1 is højtaler and L229388-
F2 is højttaler, making one COR spelling variant
map to one Wikidata form. Two Wikidata spelling
variant forms can be linked with the symmetric al-
ternative form property (P8530).

In Wikidata, we have so far followed the scheme
of Den Danske Ordbog (DDO) for Danish nouns
with multiple genders and use only one lexeme
for these cases. For instance, øl has common and
neuter versions of the noun under the same lemma
in DDO.4 In Wikidata, this is also one lexeme:
L39743. In COR there are two lexemes for øl:
COR.45830 and COR.48125, thus in this case we
get a one-to-two relationship between Wikidata
and COR. Other examples of this type are vand
and kirsebær. COR has safran (COR.93857) also
as both common and neuter gender represented
with one lexeme. The indefinite form, which does
not reveal the gender, has two forms in COR:
COR.93857.110.01 and COR.93857.120.01. Such
a word often occurs in the bare form with no arti-
cle or morphological gender suffix, so it may be
impossible to detect the gender of the form in the
context. Lexeme linking will have an ambiguity
in this case. The current entry in Wikidata has just
one (non-genitive) indefinite form. The same is-
sue appears, e.g., for kanel (COR.57435) and druk
(COR.86399).

Homographs that only have one gender are
well-aligned between COR, Wikidata, and DDO,
e.g., the noun(s) fyr has 3 separate lexemes in
Wikidata and also has 3 separate lexemes (lem-

4https://ordnet.dk/ddo/ordbog?query=
%C3%B8l.

mas) in COR.
Superlative may be regarded as a derivation

from the positive form (Hansen and Heltoft, 2019,
p. 186–7), but both in COR and the Danish lex-
emes in Wikidata, the superlative is forms under
normal adjective lexemes that also has the positive
and comparative forms.

Centaur nouns (Danish: kentaurnominaler) are
developed from verbs with an -en suffix. In both
Wikidata and in COR (i.e., COR-EXT), they are
regarded as separate lexemes, — and not a form
of the verb lexeme.

Danish perfektum participium (adjective forms
of the verb) exists in the borderland between be-
ing forms of a verb and an adjective derived from
a verb (Holm and Christensen, 2019, p. 118). So
should perfektum participium forms be grouped
under a separate lexeme? COR does usually not
record the adjective form of the verb separate
from the verb. For instance, barberet in et bar-
beret ansigt (a shaved face, COR.38323.213.01)
is grouped under the verb barbere (COR.38323).
There is an advantage in making a derived lexeme
for the adjective forms, as it allows for the descrip-
tion of the sense, e.g., for barberet the antonym
ubarberet can be specified. In Wikidata, the sense
of the adjective barberet (L940943) is linked via
the antonym property (P5974) to the sense of
ubarberet (L940942) and vice versa. If the ad-
jective was not a separate lexeme, but just part of
the verb lexeme, it would not be straightforward
to make this antonym link. With the adjective bar-
beret as an individual lexeme, words such as glat-
barberet and nybarberet becomes compounds, and
the senses of the two compounds can be linked to
the sense of barberet via the hypernym property.

In COR, it is not all verb-derived -et adjec-
tives that are not separated from a corresponding
verb, e.g., snobbet (COR.24113) is separate from
the verb snobbe (COR.37973). In these cases,
the verb still has the perfektum participium forms.
Surprisingly, overstimulere is in COR as a verb
(COR.32555) and overstimuleret is not in COR as
a separate adjective, while understimulere is not in
COR, while understimuleret is a separate adjective
(COR.23107).

Adverbs from adjectives are grouped under the
adjective lexeme in COR. In Wikidata, lexemes
must be associated with a single lexical category
(e.g., adverb or adjective). We have created sepa-
rate lexemes for Danish adverbs from adjectives
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in Wikidata (for the few entered so far), e.g.,
the adverb hurtigt with forms hurtig, hurtigere
and hurtigst has the Wikidata lexeme identifier
(L691405) that is separate from the adjective lex-
eme (L42201) and with the COR lemma identifier
(COR.15444) duplicated between the two Wiki-
data items.

5 Lexical categories

Below I will go through some of the most impor-
tant lexical categories and how Wikidata and COR
aligns. Small lexical categories such as conjunc-
tions and prepositions are fully linked, with a few
oddities: DDO and Wikidata have dels as a con-
junction. It is an adverb in COR. Wikidata has
plus at as a conjunction. It does not exist in COR.

5.1 Pronouns

What is a form and a lexeme for a pronoun varies
between resources. For instance, COR has han,
ham and hans (he, him, his) collected in one lex-
eme (COR.01880), while DDO separates them
among three different dictionary entries. In Wiki-
data we have followed DDO and have three dif-
ferent lexemes for the three Danish words. In the
English part of Wikidata, he, him, his and himself
are collected into one lexeme (L485).

There are unusual grammatical features for
some of the forms in COR, e.g., ingens has
two forms indicated with “pron.gen” (pronoun,
genitive) and “pron.sg.fk.gen” (pronoun, singular,
common gender, genitive). Currently, the former
links to the plural genitive form in Wikidata.

5.2 Numeral

COR has genitive forms for numerals, while the
few numerals in COR-EXT do not. We started
with no genitive forms for Danish numerals in
Wikidata but now have begun to enter them. A few
numerals in COR-EXT includes Arabic numerals,
e.g., “94” as a form (COR.EXT.129099.600.02).
Arabic numerals do not appear in the core COR
and we have so far not included them in Wikidata.

5.3 Nouns

The non-genitive forms are not annotated as ex-
plicitly non-genitive in COR. In Wikidata, we can
explicitly annotate forms that are not genitive with
the non-genitive item (Q98946930).

Some forms are recorded in CORs but should
perhaps not be present, while other forms are not

recorded but perhaps should be. For instance,
drukning (COR.61517) has no plural forms in
COR while Den Danske Ordbog (DDO)5 records
plural forms and an Internet search6 returns some
examples of the plural form. forundring has nei-
ther plural forms in COR nor DDO but appears
though infrequently, e.g., in the title “Syv forun-
dringer over resiliensbegrebet”. COR records vejr
(COR.44355) with plural forms while the com-
pound blæsevejr (COR.66305) is without plural
forms. DDO records them without plural forms
and in Wikidata vejr has been labeled a singulare
tantum.

At one point Danish nouns in Wikidata did not
record the genitive forms. This was based on a
discussion on the Danish -s as a clitic.7 The Dan-
ish genitive -s can attach to phrases, e.g., even ad-
verbs (Herslund, 2001), so if nouns should have
genitive why not other lexemes from other lexical
categories? Given that COR is representing nouns
with genitive forms, we have started to add geni-
tive forms for nouns in Wikidata.

Centaur nouns are often missing from dictionar-
ies (Rajnik, 2009; Gregersen, 2014; Hansen and
Heltoft, 2019). Many centaur nouns are miss-
ing in the core part of COR, but are listed in the
COR-EXT, e.g., søgen and banden are not in the
core part, but in COR-EXT. indsynken and indsæt-
ten used in medical texts (“indsynken i sig selv”
and “akut indsætten”) are centaur nouns that are
missing in both resources. Other missing cen-
taur nouns are malen and truen, both described
in (Holm and Christensen, 2019). Centaur nouns
are claimed to have no genitive form (Hansen
and Heltoft, 2019, p. 612). Nevertheless COR-
EXT records genitive forms, e.g., søgens and ban-
dens and the rare genitive forms appear: An Inter-
net search yields “denne søgens forløsning” and
“denne søgens neutralitet”.

5.4 Verbs

The initial entries of Danish verbs in Wikidata did
not model the passive forms completely: The -es
forms were annotated as one passive form. Fol-
lowing COR, we have now started to annotate the
Danish verbs in Wikidata with two -es forms: The

5https://ordnet.dk/ddo/ordbog?query=
drukning&search=Den+Danske+Ordbog

6A Google search with “"drukninger" site:dk”
7See https://www.wikidata.org/wiki/

Wikidata_talk:Lexicographical_data/
Archive/2018/10

368

https://www.wikidata.org/wiki/Lexeme:L691405
https://www.wikidata.org/wiki/Lexeme:L42201
https://ordregister.dk/id/COR.15444
https://ordregister.dk/id/COR.01880
https://www.wikidata.org/wiki/Lexeme:L485
https://ordregister.dk/id/COR.EXT.129099.600.02
https://www.wikidata.org/wiki/Q98946930
https://ordregister.dk/id/COR.61517
https://ordregister.dk/id/COR.44355
https://ordregister.dk/id/COR.66305
https://ordnet.dk/ddo/ordbog?query=drukning&search=Den+Danske+Ordbog
https://ordnet.dk/ddo/ordbog?query=drukning&search=Den+Danske+Ordbog
https://www.wikidata.org/wiki/Wikidata_talk:Lexicographical_data/Archive/2018/10
https://www.wikidata.org/wiki/Wikidata_talk:Lexicographical_data/Archive/2018/10
https://www.wikidata.org/wiki/Wikidata_talk:Lexicographical_data/Archive/2018/10


passive–infinitive and passiv–present tense.
Verbs with multiple different conjugation are

entered in Wikidata as different forms, e.g., fise
has fes, fiste and fisede with the same temporal
and grammatical features. Further Danish verbs
that diverge from the normal 9-form conjugation
scheme in Wikidata are deponent verbs that lack
some forms and verbs ending with -ere where the
imperative has an alternative spelling.

In COR 1.02, there are unusual perfektum par-
ticipium forms for some of the common verbs,
e.g., hafte (COR.30035.214.01) and skullede
(COR.30128.214.01). They are not found in Ret-
skrivningsordbogen nor in DDO.

5.5 Adjective

It has been unclear which grammatical fea-
tures should be assigned to the different forms
of Danish superlative (-st and -ste). Standard
works in Danish grammar regard them as a kind
of definite (or definite-ish) inflection (Diderich-
sen, 1962; Hansen and Heltoft, 2019). Dan-
ish Wiktionary8 and the Swedish lexemes in
Wikidata use the grammatical features predica-
tive and attributive, see, e.g., rolig (L53287).
COR 1.02 has 3 superlative forms, e.g., for travl:
travlest (COR.15021.305.01, singular, indefinite),
travleste (COR.15021.306.01, singular, definite)
and travleste (COR.15021.307.01, plural). In
Wikidata lexemes, we have only recorded two su-
perlative forms: indefinite (-st) and definite (-ste).

COR includes comparative and superlative
forms of adjectives that er quite rare, e.g., ra-
dioaktivere, radioaktivest and radioaktiveste from
COR.26147 and ugennemtænkere, ugennemtænk-
test, ugennemtænkteste from COR.26148. With
a simple Internet search, I was not able to find
any examples of these forms, other than elec-
tronic dictionaries, while the periphrasic ver-
sions (e.g., mere radioaktiv) occur. Even apro-
pos and forleden—which in the online version
of Retskrivningsordbogen are regarded as unin-
flectable adjectives9—have comparative and su-
perlative forms in COR 1.02.

Some of the superlative forms in COR are ques-
tionable: Adjectives that have no positive form,
e.g., ypperst is specified with the positive form yp-
perst, but this should rather be superlative. COR

8See, e.g., https://da.wiktionary.org/wiki/
ynkelig.

9E.g.,https://dsn.dk/soegning/
?soegeord=apropos

has highly unusual ypperstest as the superlative
form. Special cases are the compas adjectives
østre, nordre, vestre og søndre. According to
DDO they are originally comparative to øst, nord,
vest og syd. COR regards these adjectives as
in their positive form and records a comparative
form, e.g., nordrere, and the superlative forms.

Nominalization of an adjective may result in a
new lexeme noun in COR, e.g., the noun indre
(COR.48793) is separate from the adjective and
has a genitive form. These nominalizations are
rare and adjectives do not have genitive in COR.
Genitive forms have so far not been added to the
adjectives in Wikidata.

6 Semantics

A few of the entries in COR have a short text for
disambiguation of homographs. In a few cases it
has been used as a gloss to the sense of a Wikidata
lexeme, e.g., for æg COR disambiguates with “fx:
fugleæg” (e.g., bird’s egg) and “skarp kant” (sharp
edge) for the two homographs and the Wikidata
sense L39239-S1 “skarp kant” has been noted as a
gloss referencing COR. For the other homograph,
Wikidata has currently two senses (biological egg
and egg as food) making the application of the dis-
ambiguation text as a sense gloss difficult. Such a
case is not uncommon making automated setup or
alignment of senses based the COR disambigua-
tion text not feasible or at least difficult.

7 Discussion

There are Wikidata tools for mass-entry of lex-
emes and with COR data Danish Wikidata lex-
emes could be set up en masse. So far I have
setup the links manually exploring the problems
of ontology linking the two resources. I find per-
fektum participium, inflections of adjectives and
nouns with both neuter and common gender are
among the issues where one should be careful with
matching. After the publication of COR, we have
changed the entry of genitive for nouns and nu-
merals and passive forms of verbs in Wikidata. I
suspect that we might see a revision of inflections
of adjectives in COR around comparative and su-
perlative forms.
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Abstract

Bilingual word lexicons are crucial tools
for multilingual natural language under-
standing and machine translation tasks, as
they facilitate the mapping of words in one
language to their synonyms in another lan-
guage. To achieve this, numerous papers
have explored bilingual lexicon induction
(BLI) in high-resource scenarios, using a
typical pipeline consisting of two unsuper-
vised steps: bitext mining and word align-
ment, both of which rely on pre-trained
large language models (LLMs).

In this paper, we present an analysis of
the BLI pipeline for German and two of
its dialects, Bavarian and Alemannic. This
setup poses several unique challenges, in-
cluding the scarcity of resources, the re-
latedness of the languages, and the lack of
standardization in the orthography of di-
alects. To evaluate the BLI outputs, we an-
alyze them with respect to word frequency
and pairwise edit distance. Addition-
ally, we release two evaluation datasets
comprising 1,500 bilingual sentence pairs
and 1,000 bilingual word pairs. They
were manually judged for their semantic
similarity for each Bavarian-German and
Alemannic-German language pair.

1 Introduction

Learning in low-resource settings is one of the key
research directions for modern natural language
processing (NLP; Hedderich et al., 2021). The
omnipresent pre-trained language models support
high-resource languages by using increasingly
large amounts of raw and labeled data. However,
data scarcity hinders the training and evaluation
of NLP models for less-resourced languages. At

the same time, the participation of native speak-
ers of different languages in the world of digital
technologies increases the demand for supporting
more language varieties. This encourages stud-
ies to explore suitable transfer learning and cross-
lingual techniques.

Local varieties (dubbed as dialects) may fall
under the umbrella of low-resource languages.
Processing dialects faces unique challenges that
should be addressed from a new perspective.
Large volumes of writing in dialects such as news-
papers or fiction are rarely produced and access to
conversational data in social media is limited and
difficult to reliably collect. Besides, dialects are
non-standardized, they lack unified spelling rules
and exhibit a high degree of variation (Millour
and Fort, 2019). Finally, dialects may additionally
show a significant rate of code-mixing to standard
languages (Muysken et al., 2000).

The mainstream of cross-lingual transfer re-
search towards low-resource languages, e.g.,
(Muller et al., 2021; Riabi et al., 2021), builds
upon cross-lingual representations, namely static
embeddings (Lample et al., 2018) or multilingual
pre-trained language models (Devlin et al., 2019;
Conneau et al., 2020). As shown by Muller et al.
(2021) various factors can influence the perfor-
mance, including the degree of relatedness to a
pre-training language and the script. As there is
no winning technique for all languages, it is im-
portant to understand how cross-lingual represen-
tations act for each particular language or a lan-
guage family and whether the results in processing
standard languages are transferable to its dialects.

In this paper, we focus on the ability of cross-
lingual models to make semantic similarity judg-
ments in German and two of its dialects, namely
Bavarian (ISO 639-3:bar) spoken in South Ger-
many, Austria, South Tyrol, and Alemannic (ISO
639-3:gsw) spoken in Switzerland, Swabia, parts
of Tyrol, Liechtenstein, Alsace, and Italian re-
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gions. Using the available raw data in Wikipedia
(Section 3) we induce two bilingual lexicons,
mapping words from Bavarian / Alemannic to
German. To do so, we first mine bitext sen-
tences (Section 4) and exploit machine translation
aligners next (Section 5). The output lexicon ex-
hibits an evident tendency for a German word to
be aligned to multiple dialect synonyms due to
spelling variations. Finally, we manually evaluate
the output of each step: we evaluate the semantic
similarity in (i) 1,500 bilingual sentence pairs ac-
cording to the Likert scale and (ii) 1,000 bilingual
word pairs according to a binary scale. Our results
demonstrate the discrepancy between natural writ-
ing and linguistic dictionaries.

To sum up, this paper explores the following re-
search question (RQ): How effective are standard
pipelines for inducing bilingual lexicons for Ger-
man dialects, and what factors influence their per-
formance? To answer this question we make the
following contributions: (i) We conduct a thor-
ough analysis of cross-lingual models’ behavior in
two tasks of bitext mining and word alignment for
the German language and two of its dialects. (ii)
We release the evaluation datasets for bitext min-
ing (1,500 samples each) and for bilingual lexi-
con induction (1,000 samples which). We make
mined bitext dataset and induced bilingual lexi-
cons for the Bavarian and Alemannic dialects pub-
licly available. (iii) We publish the code to repro-
duce bitext extraction and word alignment in open
access.1

2 Related work

NLP for German dialects. Previous efforts in
processing German dialects mainly concentrate on
speech processing. BAStat comprises the record-
ings of spoken conversational speech from main
areas of spoken German (Schiel, 2010). Dogan-
Schönberger et al. (2021) build a parallel cor-
pus of spoken Alemannic dialect, in which a sen-
tence in German is matched with spoken and writ-
ten translations into eight dialects. ArchiMob is
a general domain spoken corpus equipped with
transcriptions and part-of-speech labeling (Scher-
rer et al., 2019). In the domain of written text
processing, machine translation techniques have
been applied to re-write sentences from dialect
to standard German (Honnet et al., 2018; Plüss
et al., 2020; Lambrecht et al., 2022). Other works

1https://github.com/mainlp/dialect-BLI

tackle sentiment classification (Grubenmann et al.,
2018), part-of-speech tagging (Hollenstein and
Aepli, 2014) and dialect identification tasks (von
Däniken et al., 2020). Burghardt et al. (2016)
have collected a bilingual Bavarian-German lexi-
con using the knowledge of Facebook users, while
Schmidt et al. (2020) hire expert native speak-
ers to build a bilingual Alemannic-German lexi-
con. Language resources used to collect raw di-
alect data are Wikipedia, social media (Gruben-
mann et al., 2018), regional newspapers, and fic-
tion (Hollenstein and Aepli, 2014). For a more
comprehensive review, we refer to the concurrent
survey of Blaschke et al. (2023).

Bitext mining. Sentence representations are
core to mining bitext (dubbed as parallel or
comparable datasets) in an unsupervised fashion
(Hangya et al., 2018). Pires et al. (2019) show
that [CLS]-pooling with multi-lingual encoders
performs reasonably well for the task. Most re-
cent studies proposed learning sentence embed-
dings from encoder-decoder models with a ma-
chine translation objective (Artetxe and Schwenk,
2019), by extending a monolingual sentence
model to cross-lingual encoding with knowledge
distillation (Reimers and Gurevych, 2020), or
from dual encoders with a translation ranking
loss (Feng et al., 2022). Bitext datasets col-
lected from Wikipedia (Schwenk et al., 2021a)
and the Common Crawl corpus (Schwenk et al.,
2021b) serve to train machine translation mod-
els (Briakou et al., 2022) and to improve cross-
lingual methods for structured prediction (El-
Kishky et al., 2021). Chimoto and Bassett (2022)
show that cross-lingual sentence models scale
across unseen languages. We adopt the recent
state-of-the-approach of (Reimers and Gurevych,
2020), which scores sentences embeddings, ob-
tained from cross-lingual embedders, with cosine
similarity measure in order to retrieve most similar
sentence pairs.

Bilingual lexicon induction (BLI). Works in
bilingual lexicon induction can be cast into
two groups. Mapping-based approaches project
monolingual word embeddings into a shared
cross-lingual space with a varying degree of su-
pervision (Lample et al., 2018; Artetxe et al.,
2018; Joulin et al., 2018). Corpora-based meth-
ods combine bitext mining with word alignment
(Shi et al., 2021). Intrinsic evaluation compares
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Manual labelling Bilingual lexicon induction
Language # dialects # pages # sent. # tokens #types # bitext # synonyms # bitext # synonyms

Bavarian 9 43k 230k 3.7mln 350k 1,254/1,500 860/1,000 17k 11k
Alemannic 32 71k 500k 9.5mln 600k 644/1,500 774/1,000 50k 194k

German 3mln 56mln 106.4mln 1.12mln

Table 1: Left-hand part: Data statistics for Bavarian and Alemannic dialect Wikipedia. Alemannic
Wikipedia is bigger than Bavarian, both are magnitudes smaller than standard German Wikipedia. Both
Wikis label pages according to fine-grained dialects (# dialects). Center part: the number of sentence
pairs manually labelled as similar (labels 4 and 5) out of 1,500 sentence pairs, the number of word pairs
manually labelled as correct translations out of 1,000 word pairs. Right-hand part: the overall number of
extracted bitext sentences, the overall number of extracted synonyms with a cutoff threshold of 0.8 for
MBERT alignment probability.

induced bilingual lexicons to gold standard dic-
tionaries (Rapp et al., 2020). Extrinsic evalu-
ation is conducted through cross-lingual down-
stream tasks (Glavaš et al., 2019). Finally, several
factor affect the quality of induced bilingual lexi-
cons: edit distance, contextual and topical similar-
ity between words in source and target languages
(Scherrer, 2007; Irvine and Callison-Burch, 2017).

In this project, we apply best practices for bi-
text mining and bilingual lexicon induction and
demonstrate their strengths and weaknesses in the
low-resource settings of German dialects.

3 Data

Wikipedia offers articles written in more than 300
languages.2 It is recognized that some parts of
Wikipedia are human-translated (Schwenk et al.,
2021a); examples are shown in (Table 2). The
sentences for our bitext mining and bilingual
lexicon induction experiments were extracted
from Wikipedia pages in Bavarian3, Alemannic4,
and German5. The Bavarian and Alemannic
Wikipedias contain pages marked with nuanced
variations in local dialects depending on the re-
gion of use. Of the nine dialects of the Bavarian
Wikipedia, the most popular is Westmittelbairisch
(Westmiddlebavarian), with nearly 3k pages. The
Alemannic Wikipedia covers 32 dialect varieties,
of which Schwizerdütsch (Swiss German) is the
largest, containing 19k pages. In this work, we do
not distinguish between these varieties and treat
each Wikipedia as a single corpus.

2en.wikipedia.org/wiki/List_of_
Wikipedias, as of 01 Nov 2022

3bar.wikipedia.org/, as of 01 Nov 2022
4als.wikipedia.org/, as of 01 Nov 2022
5de.wikipedia.org/, as of 01 Nov 2022

We used the Wikipedia2corpus6 tool to extract
raw sentences. The texts were split into sentences
and tokenized with the SoMaJo sentence splitter
and tokenizer7 (Proisl and Uhrig, 2016). The sen-
tences were filtered by the 5-to-25 token range.
Incomplete sentences were removed according to
simple heuristics, such as the number of opening
and closing brackets or the presence of a bullet
point. Sentences containing non-German charac-
ters (e.g. letters from Greek, Cyrillic, and Hebrew
alphabets) were filtered out. The left-hand part of
Table 1 reports the total number of sentences, the
number of tokens, and types per language in the
resulting Wikipedia datasets. They illustrate the
low-resource status of the Germanic dialects com-
pared to the standard. The center part of Table 1
reports the size of manually labelled datasets for
both tasks considered: bitext mining and bilingual
lexicon induction in Bavarian and Alemannic. The
right-hand site of Table 1 reports the sizes of au-
tomatically constructed datasets for both tasks in
both dialects.

4 Bitext mining

Method. We start from the assumption paral-
lel sentences are most often found on parallel
pages, e.g. pages that are inter-linked between
Wikipedias in two languages. We collect inter-
lingual links between pages in dialect Wikipedia
and German Wikipedia. Overall, we found 11k
parallel pages for Bavarian and 32k parallel pages
for Alemannic out of 43k and 71k, correspond-
ingly. Given two parallel pages split into sen-
tences, we embed each sentence with a language
model. For each dialect sentence, we retrieve the
nearest neighbors using the cosine similarity. Ta-

6github.com/GermanT5/wikipedia2corpus
7github.com/tsproisl/SoMaJo
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ble 2 provides examples of the found parallel sen-
tences and the corresponding cosine similarity val-
ues. We aim to select the best-performing embed-
ding model and the optimal cutoff value.

Models. We leverage the SentenceTransformer
toolkit8 (Reimers and Gurevych, 2020) for bitext
mining. The experiments are with the following
mono- and multi-lingual encoders and sentence
models released as a part of HuggingFace library9

(Wolf et al., 2020):
• MBERT (Devlin et al., 2019) was pre-trained

on Wikipedia data. MBERT uses 110k
shared across languages WordPiece vocabu-
lary. Note that MBERT supports Bavarian
and German.

• GBERT (Chan et al., 2020) was pre-trained
on a range of different German language cor-
pora. Training GBERT was carried out with
the code-base used to train MBERT. Thus
GBERT uses WordPiece tokenization. The
size of vocabulary is 31k. Note that the expo-
sure of GBERT to dialects is not mentioned
explicitly.

• GBERT-large-sts-v210 is a version of
GBERT fine-tuned the semantic textual
similarity (STS) datasets of German sentence
pairs.

• LaBSE (Feng et al., 2022) was pre-trained on
the concatenation of mono-lingual Wikipedia
and bilingual translation pairs. LaBSE uses
the WordPiece tokenizer (Sennrich et al.,
2016) trained with a cased vocabulary ex-
tracted from the model’s training set. The
vocabulary size is 501,153. LaBSE supports
German but not its dialects.

We test both [CLS] and [mean] pooling11

to obtain sentence representations from MBERT
and GBERT. GBERT-large-sts-v2 and LaBSE
are sentence models and can be used out of the
box to compute the similarity between sentences.
LaBSE is the current state-of-the-art-model for bi-
text mining (Reimers and Gurevych, 2020).

Human evaluation. We sampled two random
sets of 1,500 bitext instances with LaBSE similar-

8https://www.sbert.net
9https://huggingface.co

10https://hf.co/deepset/gbert-large-sts
11The sentence representation obtained through [CLS]

pooling uses the [CLS] token, while the sentence represen-
tation obtained through [mean] pooling averages token em-
beddings.

ity values in the [0.4; 0.95] range to be manually
labeled for semantic similarity and further justifi-
cations (see next and Appendix for details). We
start from the LaBSE model since it is the cur-
rent state-of-the-art model that has been shown to
produce high-quality sentence embeddings (Ham
and Kim, 2021). These embeddings capture both
semantic and syntactic information, making them
useful for a range of natural language process-
ing tasks, including bitext mining. Furthemore,
LaBSE was trained on a large-scale multilingual
corpus, which makes it more robust and better able
to handle variations in language and text structure
(Feng et al., 2022).

The annotation schema utilized in our study is
a five-point Likert scale, with a score of 5 indi-
cating equivalence between the dialect sentence
and the German sentence, and a score of 1 indi-
cating no relation. Annotators were instructed to
provide justifications for assigning scores that de-
viated from 5, by assessing the factual similarity
between two given sentences, considering whether
one sentence provided more information than the
other. Additionally, annotators were asked to
identify any significant differences in grammatical
structure between the two sentences. The anno-
tation instructions are provided in Section A. The
Likert scale is a standardized approach to measur-
ing sentence similarity, providing a more balanced
set of response options when compared to binary
judgments (Agirre et al., 2012). The annotations
were carried out by a native German speaker with
a linguistic background and significant exposure
to dialects.12 To ensure the quality of annotations,
a smaller sample of 200 sentences was labeled by
a second annotator, one of the authors, who is flu-
ent in German.

The annotators were instructed to abstain from
labeling sentence pairs with a Likert scale if they
lacked a full understanding of the content, if the
sentence was written in standard German rather
than the dialect, or if the sentence contained a
mixture of both. The inter-annotator agreement
between the two annotators yielded a score of
0.80/0.78 for exact match and Pearson correlation,
respectively, for Bavarian, and 0.9/0.6 for Ale-
mannic. Notably, the primary source of confusion
between the annotators was in labeling sentence
pairs with scores that were in close proximity,

12The annotator was hired and received fair compensation
according to the local employment regulations.
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Bavarian German . COS

Da Geiselbach speist ob da Omersbachmindung
oanige Weiher.

Der Geiselbach speist ab der Omers-
bachmündung einige Weiher.

5 0.94

Alemannic German . COS

Dr Film verzellt d’Geschichte vume Polizis-
tepaar, dem si Idealismus im Lauf vu dr Handlig
schwindet.

Der Film erzählt die Geschichte eines Polizis-
tenpaares, deren Idealismus im Laufe der Hand-
lung schwindet.

5 0.92

Table 2: Examples of parallel sentences in Bavarian and German (top) and Alemannic and German
(bottom). . denotes a human score (see Section 4 for more details on human evaluation), COS stands
for the cosine similarity between LaBSE embeddings.

specifically (2,3) and (3,4). Notably, there were
no instances in which the annotators disagreed and
assigned opposite scores of 1 and 5. Additionally,
the annotators were instructed to reject incomplete
sentences or those not written in dialect, resulting
in the rejection of 83 and 162 sentences, respec-
tively. The remaining 1,417 and 1,338 sentence
pairs in Bavarian and Alemannic were included for
further analysis.

The results from the human annotation show
that the distribution of labels is different for the
two dialects: 1,254 sentences were labeled as sim-
ilar (5) or near similar (4) for Bavarian and al-
most twice as less, 644 – for Alemannic. In the
250 Alemannic sentences marked with the label
3, the annotator pointed out that bitext sentences
differ in minor factual details. Sentences in Bavar-
ian differ less from their German counterparts, so
that fewer than 100 sentences are marked as hav-
ing differences in minor factual details. There are
250/350 Bavarian/Alemannic sentences labeled as
using different grammatical structures such as ac-
tive VS passive, imperfect VS perfect. In sum-
mary, based on this annotation study, we conclude
that the authors of the Bavarian Wikipedia are
more inclined towards literal translation, while the
authors of the Alemannic Wikipedia rely less on
translation.

Model comparison. Many of the retrieved sen-
tence pairs have high similarity values. For in-
stance, LaBSE assigns the scores of 0.8 or above
to 42% and 24% of the dataset for Bavarian and
Alemannic, correspondingly. Overall, the dis-
tribution of cosine values tends to be skewed
to higher values for all embedders. GBERT-
large-sts-v2 shows the least reasonable perfor-
mance: the average similarity value is 0.98 and
the standard deviation is close to 0.01 for both
dialects, leaving no discriminative power to se-

lect a precise cutoff threshold. This may hap-
pen due to over-fitting to semantic similarity tasks.
The choice of pooling strategy does not affect the
performance of MBERT: MBERT+[CLS] and
MBERT+[mean] output strongly correlated co-
sine values (0.81 and 0.82 for Bavarian and Ale-
mannic). This is not the case for GBERT, for
which both [CLS] and [mean] pooling strate-
gies lead to less correlated results (≈0.5 for both
dialects). We include the MBERT, GBERT, and
LaBSE models in our comprehensive comparison
of their abilities in bitext mining and bilingual lex-
icon induction (Section 5).

The resulting annotated dataset helps to eval-
uate whether the embedders can judge semantic
similarity and assign lower scores to unrelated
sentences. At the same time, we may use it to
calibrate the cutoff threshold, which distinguishes
between similar and unrelated sentence pairs. Fig-
ure 3 and Figure 4 in Appendix C show the cosine
similarity values, derived with MBERT+[CLS],
GBERT+[CLS], and LaBSE models, grouped
according to Likert scale values. Although none of
these models can divide the data into five groups,
there is more evidence that LaBSE better sepa-
rates unrelated sentences (scores 1, 2) from nearly
similar or similar sentences (scores 4, 5) leaving
somewhat similar sentences (score 3) in between.
After careful consideration, we have chosen to use
LaBSE in subsequent BLI experiments, setting
the cutoff for the cosine similarity of nearly simi-
lar sentences to 0.7.

Results. Our bitext mining efforts resulted in
17k and 50k parallel Bavarian-German and
Alemannic-German sentence pairs, respectively,
sourced from Wikipedia. These pairs comprise
13.5% and 10% of the total number of sentences in
their Wikipedia dumps, as shown in Table 1. After
comparing various models, we have determined
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that MBERT and LaBSE are the most closely
aligned with human evaluation. This is likely due
to MBERT’s previous exposure to dialect data,
and LaBSE’s use of a sentence similarity objec-
tive during pre-training.

5 Bilingual lexicon induction

Method. We use the state-of-the-art awesome-
align toolkit13 (Dou and Neubig, 2021) with
MBERT and GBERT as backbone models.
Awesome-align supports an unsupervised mode,
so there is no need to fine-tune the models on the
parallel data. The word alignments are extracted
from parallel sentences by evaluating the similar-
ity between word representations. Awesome-align
produces one-to-one alignment by default. When
the source dialect sentence uses the perfect tense
and the target German sentence uses the preterite
tense, in the vast majority of cases, the auxiliary
verbs align with the preterite verb.

We feed the extracted parallel dialect-German
sentences to the aligner. The outputs are word
pairs, in which one of the words is written in di-
alect and the other in German (see Table 3 for ex-
amples of word-level aligned parallel sentences).
Each word pair is assigned with alignment proba-
bility (see Table 4 for sample output).

Next, we use several strategies to evaluate col-
lected word pairs. We excluded word pairs that
contained a non-word token, such as a number,
typographical symbol, or punctuation mark. Pre-
vious research has demonstrated that the perfor-
mance of BLI methods is highly dependent on
word frequency, with higher frequency source
words generally resulting in more accurate trans-
lations (Søgaard et al., 2018). To account for this,
and to increase coverage of low-frequency words,
we employed a stratified sampling approach for
word selection in our evaluation. Specifically,
we computed the frequency of each dialect word
in Wikipedia and divided word pairs into four
groups based on quartiles of dialect word fre-
quency. From each group, we randomly selected
250 word pairs for further analysis.

Dictionary-based evaluation. To the best of our
knowledge, there are no high-quality Bavarian-
German or Alemannic-German lexicons, that can
be easily accessed for computational experi-
ments, so we turn to community-based resources.

13https://github.com/neulab/
awesome-align

Glosbe14 is a collection of community-maintained
dictionaries, including Bavarian-German and
Alemannic-German dictionaries. Since Glosbe
does not provide an API, we manually look up
German words and record the suggested transla-
tions into dialects.

Table 5 shows that the Glosbe dictionary pro-
vides better coverage for high-frequency words.
The ratio of obtained translation sinks from
29% to 5% from high-frequency words to low-
frequency words for Bavarian and from 26% to 4%
for Alemannic. The low coverage of the Glosbe
dictionary can be partially attributed to the ab-
sence of compounds, which are naturally present
in Wikipedia writing. For instance, words such
as Laubwoidgebiet (Bavarian, deciduous forest re-
gion) do not exist in Glosbe.

The mismatch between the induced transla-
tion and the dictionary-based translation is mainly
caused by orthographic variations (see Table 6
for examples, in which both the induced and the
Glosbe translations appear to be correct, but differ-
ent from each other). This is especially evident in
Alemannic, where only the 43% of high-frequency
word pairs match to induced dictionaries.

Human evaluation. In addition to the
dictionary-based evaluation, we also performed a
human evaluation of the same word pairs using
a binary scale to assess semantic similarity. Our
aim was to determine whether a German word is
a correct translation of a dialect word. The word
pairs were presented without the surrounding
context, and annotators were given the option
to reject a word pair if they did not understand
the dialect word. The use of a binary scale was
chosen because it simplifies the assessment of
semantic similarity and provides a clear indication
of whether a word pair is a correct translation or
not. The same annotators who participated in the
evaluation of the bitext (Section 4) were recruited
for the task. We provided annotators with guide-
lines that are detailed in Appendix B. To assess
the level of agreement between annotators, we
included a control sample consisting of 200 word
pairs for each dialect. The exact match between
annotators was high, with a score of 0.96 for
Bavarian and 0.85 for Alemannic. Disagreements
between annotators were mainly caused by judg-
ments of overlapping words (Turm – Kirchturm,
steeple – church steeple, in Bavarian).

14https://glosbe.com/
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Bavarian to German word alignment

Des Kloster Gunzenhausen is a obgongans Benediktinakloster im Bistum Eichstätt .
Das Kloster Gunzenhausen ist ein abgegangenes Benediktinerkloster im Bistum Eichstätt .

Alemannic to German word alignment

Um 1267 isch dr Heinrich I . Münch , dr Vater vom Hartung Münch , as Basler Bürgermäister erwähnt worde .
Um 1267 wurde Heinrich I . Münch , Vater von Hartung Münch , als Basler Bürgermeister erwähnt .

Table 3: Examples of word level alignment in parallel sentences in Bavarian (top) / Alemannic (bottom)
and German . Underscore stands for unaligned words. MBERT is the backbone model.

Bavarian German # P

Eihgmoant Eingemeindet 112 0.99
Sidlichn Südlichen 71 0.96
Augschburg Augsburg 39 0.91

Alemannic German # P

Dytsche Deutsche 290 0.77
Yywohner Bewohner 189 0.83
Uniwersidäät Universität 126 0.95

Table 4: Examples of aligned word pairs in Bavar-
ian (top) / Alemannic (bottom) and German. #: the
frequency of the word pair. P stands for alignment
probability. MBERT is the backbone model.

The evaluation of BLI through human annota-
tion is presented in Table 5. The results indi-
cate that the alignment quality of low-frequency
and mid-frequency words is high, with a range of
85% to 95% in both dialects. However, for high-
frequency words, the alignment quality drops sig-
nificantly to 65% in Bavarian and 40% in Aleman-
nic. This decline can be attributed to a higher
prevalence of high-frequency prepositions, pro-
nouns, and forms of auxiliary verbs that are often
misaligned. Additionally, high-frequency words
may contain multiple different spellings of the
same word, leading to further noise in the align-
ment. This effect is more pronounced in Aleman-
nic, where the number of fine-grained dialects is
higher compared to Bavarian (as evidenced by Ta-
ble 1 and the examples in Figure 1).

Interestingly, for mid-frequency words, one of
the main sources of errors is the alignment of
words that may be used in similar contexts but
are not synonyms. For example, the word pair
“Soizsään – Mineralquellen” in Bavarian, which
translates to “salt lakes - mineral springs” in Ger-
man, was found to be misaligned. Overall, the an-
notation study identified 860 and 774 out of 1,000

Dictionary Human
Q. - 4 .

Bavarian: overall 860 words

1 5% 50% 85%
2 6% 50% 95%
3 16% 65% 90%
4 29% 60% 65%

Alemannic: overall 774 words

1 4% 70% 94%
2 5% 63% 95%
3 9% 81% 80%
4 26% 43% 40%

Table 5: Dictionary-based evaluation of induced
bilingual lexicons, created from sentences, aligned
with LaBSE and MBERT used as the aligner’s
backbone model. The results are grouped by the
frequency quartile of German words, with 1 rep-
resenting the low-frequency bin and 4 represent-
ing the high-frequency bin. Each bin contains
250 words. The percentage of words found in the
Glosbe dictionary is denoted by -, while 4 rep-
resents the percentage of matched word pairs be-
tween the dictionary and induced lexicons. The
percentage of word pairs labeled as correct in hu-
man evaluation is denoted by ..

synonym word pairs between Bavarian and Ger-
man, and Alemannic and German, respectively.

Baseline. We use supervised MUSE embed-
dings (Lample et al., 2018) as a baseline for bilin-
gual lexicon induction. We employ fasttext em-
beddings, pre-trained on mono-lingual Wikipedia
(Bojanowski et al., 2017), with identical charac-
ter words as seeds. Following the project’s guide-
lines,15 we set up the dialect embeddings as the

15https://github.com/facebookresearch/
MUSE
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Jahr

Anno

Joa

Joahr

Joar

Joo
Feier

Fir

Jubiläum

Fiir

Fyyr

Fyr

Figure 1: Manually picked examples of one-to-many correspondence from Bavarian-German (left) and
Alemannic-German (right) bilingual lexicons. German words are in yellow, dialect words are in blue.

Bavarian German Glosbe (de→bar)

Obapfäjza Oberpfälzer Obapfejza
Zamm Zusammen Z’samm, zaum

Bavarian German MUSE(de→bar)

Vagressade Vergrößerte Großhadern
Freizeidzentrum Freizeitzentrum Sportpark

Alemannic German Glosbe(de→als)

Barlemäntarischi Parlamentarische Parlamentarischi
Nobelprys Nobelpreis Nobelpreis

Alemannic German MUSE(de→als)

Flüssige Flüssiger Wassermolekül
Epos Heldengedicht Heldenepos

Table 6: Differences between word pairs induced
with MBERT and the Glosbe dictionary, MUSE
synonyms.

source space and German embeddings as the tar-
get space. For each dialect word, we retrieve the
nearest neighbor according to cosine similarity.

The MUSE embeddings retrieve 48 (out of
860) and 74 (out of 774) word pairs (Bavar-
ian/Alemannic), identified as correct translations
in the annotation study. Table 6 shows examples of
cases, in which MUSE embeddings induce words
that are different from those induced from bitext.
These words have a similar spelling or can be used
in similar contexts, but are not synonyms of source
dialect words. Note, that the two-step approach for
bitext mining and bilingual lexicon induction and
the baseline MUSE embeddings leverage upon the
same data source, namely, Wikipedia. However,
our two-step approach leads to inducing more lit-
eral synonyms due to accessing larger contexts.

Model comparison. We conducted a compari-
son of two backbone models for the awesome-
align toolkit in the binary classification setup.
Specifically, we varied the threshold on alignment
probability within the range of [0.7; 0.99] and clas-
sified word pairs according to whether their prob-
ability was above or below the threshold. Negative

0.70 0.75 0.80 0.85 0.90 0.95 1.00
alignment probability

0.84

0.86

0.88

0.90

0.92

0.94

F1
-s

co
re

bar MBERT
bar GBERT
als MBERT
als GBERT

Figure 2: Comparison of two backbone models
for Bavarian (blue) and Alemannic (orange). X
axis: the cut-off threshold for alignment probabil-
ity. Y axis: F1 scores. The solid line stands for
MBERT, and the dashed line stands for GBERT.
MBERT consistently outperforms GBERT for
both dialects.

and positive labels were assigned accordingly. We
then compared these predictions to human yes/no
labels and computed the F1 score. The results are
depicted in Figure 2.

Based on our analysis, it appears that the per-
formance of MBERT reaches a plateau within
the threshold range of [0.7; 0.8] and gradually
decreases as the threshold increases beyond this
range. As a result, setting the cut-off threshold at
0.8 represents a reasonable choice. Furthermore,
our results suggest that MBERT consistently out-
performs GBERT. The superior performance of
MBERT may be attributed to several factors, such
as the inclusion of dialect data in its pre-training or
the larger size of its tokenizer vocabulary.

Edit distance. Following prior works (Hangya
et al., 2018), we explore the contribution of the
edit distance to the word alignment probability.
We compute the edit distance and normalize it
with the sum of the number of characters in two
words divided by two. The correlation coefficient
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between the normalized edit distance and the av-
erage alignment probability makes −0.4 / −0.38
and −0.49/ − 0.56 for Bavarian with MBERT /
GBERT backbones and Alemannic, respectively.
This means, first, that the words, spelled similarly
have higher chances to be aligned. Second, both
backbone models significantly rely on the surface-
level similarity between words. In our evaluation,
edit distance was utilized solely for the purpose
of assessment and not as a baseline. Despite its
widespread use, edit distance is computationally
expensive and is limited in its ability to capture se-
mantic similarities. In lieu of this, we conducted
a comparative analysis with MUSE embeddings,
which take into account both surface and semantic
similarity to provide a more comprehensive evalu-
ation of the performance of our pipeline.

Results. After applying a cutoff threshold of 0.8
for MBERT alignment probability, we obtained
bilingual lexicons containing 15,000 and 68,000
word pairs for Bavarian and Alemannic, respec-
tively, as summarized in Table 1.

However, the resulting lexicons suffer from a
high degree of word form repetition, as multi-
ple dialect spellings are often linked to a single
German word (see 1 for an illustrative example).
Unfortunately, we were unable to merge different
forms of the same word due to the lack of dialect
stemmers, lemmatizers, or phonemizers. Words of
different parts of speech were sometimes aligned,
and we were unable to control for part of speech
consistency due to the absence of dialect taggers.
Clustering similar word forms presents an interest-
ing avenue for future research.

6 Conclusion and Future Work

The project developed a two-stage pipeline for in-
ducing bilingual lexicons for German and its di-
alects, Bavarian and Alemannic. The first stage
involved extracting parallel sentences from pub-
lic data, specifically Wikipedia, while the second
stage used an alignment tool to induce word pairs
from these parallel sentences. Both stages relied
heavily on pre-trained LLMs, which were cali-
brated based on the results of annotation studies
that judged the semantic similarity between ex-
tracted sentences and induced word pairs.

Returning to the research question raised, we
may conclude that existing LLMs have a cer-
tain capacity for inducing bilingual lexicons. Our
results have identified two key factors that in-

fluence their performance: (i) whether the pre-
training included multilingual or dialect data, and
(ii) whether the model was trained with a task-
specific objective. Our evaluations demonstrate
that the German GBERT is surpassed in both
tasks, indicating that its monolingual pre-training
is insufficient to effectively process related di-
alects. However, the main conundrum that re-
mains is developing linguistic pipelines to process
diverse and non-standardized dialect data. The de-
velopment of dialect-specific tools such as lemma-
tizers, taggers and phonemizers can help improve
the accuracy and consistency of bilingual lexicon
induction.

Future work includes exploring the effect of
fine-tuning cross-lingual LLMs on German and di-
alect data for bilingual lexicon induction, differ-
entiating between several Bavarian/Alemannic di-
alects, and extending the experiments to other Ger-
man dialects.

Limitations. While our study provides a com-
prehensive evaluation of induced bilingual lexi-
cons for the Bavarian-German and Alemannic-
German language pairs, there are some limitations
to our approach. These limitations come with the
low-resource setup.

Single domain. There is no large-scale dialect
data source available, so we stick to Wikipedia as
almost the only reasonable domain.

No extrinsic evaluation. One limitation is the
lack of extrinsic evaluation due to the absence
of annotated downstream datasets for these lan-
guage pairs. We relied solely on intrinsic evalu-
ation methods, which limits our ability to assess
the usefulness of the induced lexicons in practical
settings.

No multi-word expressions. Our evaluation
focused on the alignment of individual words
rather than multi-word expressions (MWEs).

Overall, the two-step pipeline of bitext mining
and word aligning has its own disadvantages, such
as resulting in one-to-one sentence / word align-
ment and over-relying on surface-level features.
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A Bitext Annotation. Are these two sentences similar?

Task. Compare two sentences. One sentence is written in a Bavarian dialect. Another sentence is written
in the standard German language. Your task is to compare these two sentences and decide how similar
or different they are. You will be asked questions about sentence meaning, if one sentence provides
more information than the other, and if the dialect sentence can potentially be a translated version of the
German sentence.
Meaning. On a scale from 1 to 5, rate how close the meaning of sentences is. Choose the “idk” option if
you do not understand the sentence to judge the similarity and skip the rest of the questions. Choose “n/a”
if the first sentence is not in a Bavarian dialect and skip the rest of the questions. Choose “incomplete”
if the dialect sentence is not complete or some parts of the sentence are missing and skip the rest of the
questions. The scores can be interpreted in the following way.

Label Explanation

idk I do not understand the dialect sentence.
n/a The dialect sentence is not written in the dialect.
incomplete The dialect sentence is not complete (see below).

1 The sentences are completely unrelated.
2 The sentences have minor details in common (shared generic topic).
3 The sentences refer to same entities, but there are major differences (shared specific topic).
4 The sentences refer to same entities, but there are minor differences.
5 The sentences have identical meaning.

Table 7: The markup schema for bitext annotation.

Try to judge the differences between the sentences from the context. Do you learn the same things
from these sentences or not? If one sentence adds more information, is it something really important?
Incomplete sentences. might look like these in Table 8 and should be labelled with 5.

Sentence Is it complete?

Bédouès, Cocurès, Florac, Fraissinet-de-Lozère, La Salle-Prunet, Le Pont-
de-Montvert, Saint-Andéol-de-Clerguemort, Saint-Frézal-de-Ventalon, Saint-
Julien-d’Arpaon.

No. Reason: This looks like a
part of a list.

House” Haus und des “Mordecai Lincoln House” Haus san historische Gebaide
in Springfield und im National Register of Historic Places aufgfiaht.

No. Reason: It looks like a few
words in the beginning of the
sentence are missing.

Table 8: Examples of incomplete sentences.

Identical meaning. We consider sentences like these in Table 2 to have identical meaning.

Bavarian German Label

Da Geiselbach speist ob da Omersbachmindung
oanige Weiher.

Der Geiselbach speist ab der Omersbachmündung
einige Weiher.

5

Am 31. Dezemba 1990 werd Schladerlmühle ois
unbewohnt und in Treffelstein aufgonga bezeichnt.

Am 31. Dezember 1990 wird Schladerlmühle als
unbewohnt und in Treffelstein aufgegangen beze-
ichnet.

5

As Gebiet vo da Metropolitanstod Neapel is a bli-
abds Reisezui vo in- und ausländischn Touristn.

Das Gebiet der Metropolitanstadt Neapel ist ein be-
liebtes Reiseziel in- und ausländischer Touristen.

5

Table 9: Examples of sentences with identical meaning

Factual similarity. If the sentences do not have identical meaning, choose from the drop down list one
of the following explanations, how they differ:

• The dialect sentence misses details.
• The dialect sentence adds details.
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Bavarian German Meaning Factual similarity

Seitm 1. Mai 2008 isa Easchta
Buagamoasta vo da Gmoa Hafen-
lohr.

Seit dem 1. Mai 2008 ist er Er-
ster Bürgermeister der Gemeinde
Hafenlohr und Kreisrat im Land-
kreis Main-Spessart.

4 The dialect sentence misses de-
tails. Reason: The standard
German sentence provides ad-
ditional information (Kreisrat
im Landkreis Main-Spessart).

De Gmoa eastreckt se iwa uma
54km².

Die Gemeinde erstreckt sich über
etwa 55km².

4 Minor factual inconsistency.
Reason: 54km² does not equal
to 55km², but the numbers are
almost the same.

Hafenlohr is duach des Zwoate
Gmoaedikt am 17. Mai 1818 a Tei
vo da Gmoa Hafenlohr gewoadn.

Hafenlohr ist der Hauptort der
Gemeinde Hafenlohr.

3 Major factual inconsistency.
Reason 1: The dialect sentence
provides additional information
(duach des Zwoate Gmoaedikt
am 17. Mai 1818). Reason
2: The dialect sentence uses
”Tei”. The standard German
sentence uses “Hauptort”.

As Spuin hod a recht wichtige
Funktion in da Entwicklung vo
Menschnkinda.

Von besonderer Bedeutung ist hier
der Verlauf der individuellen Wach-
stumskurve.

2 Minor common details. Factual
similarity is not applicable.

A Klassika vo humoristischa
Litratua is aa da Ignát Herrmann.

Sein Werk ist ein lyrisches
Poem, das hochromantisch und
hochdramatisch ist.

1 Unrelated sentences Factual
similarity is not applicable.

Table 10: Examples of sentence with scores from 1 to 4.

• Different details: both sentences add some new details and miss different details.
• Minor factual inconsistency.
• Major factual inconsistency.
• n/a: if the sentences are completely unrelated, you can not make a judgment about their factual

consistency.
Table 10 shows instructions on how to score less similar sentences.

Grammar differs? This is a checkbox: mark yes, if there is a difference between the grammar structure
of two sentences. If there is no difference or you can not tell it, skip this section.
Free form comment. Is there anything else you would like to notice about these two sentences? Can
you explain the reason behind your judgment?

B Bilingual Lexicon Annotation. Is the translation acceptable?

Task. This project aims to evaluate bilingual word pairs. Each word pair consists of:
a. a word in Bavarian;
b. a word in Standard German.

The task is to label each word pair as an acceptable translation from Standard German to Bavarian. Label
each word pair with:

1. yes, if the translation is acceptable;
2. no, if it is not acceptable;
3. idk, if you can not tell;
4. check in the box “different part of speech”, if the two words belong to different parts-of-speech

only if you are sure you can tell it without full context.
5. check in the box “partial match”, if the words partially match and one word is a part of another

(e.g. Turm - Kirchturm, Sässl – Bürosessel).
Free form comment. Put down free-form comments when necessary.
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C Comparison of models for measuring sentence similarity
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Figure 3: X axis: human scores in sentence similarity for Bavarian. Y axis: Cosine similarity values.
The overall number of annotated sentences is 1,417.
Left: MBERT + [CLS], middle: GBERT + [CLS], right: LaBSE. The gap between unrelated and
similar sentences is the most evident using LaBSE model.
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Figure 4: X axis: human scores in sentence similarity for Alemannic. Y axis: Cosine similarity values.
The overall number of annotated sentences is 1,338.
Left: MBERT + [CLS], middle: GBERT + [CLS], right: LaBSE. The gap between unrelated and
similar sentences is the most evident using LaBSE model.
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Abstract

Knowledge graphs have shown promise
for several cybersecurity tasks, such as
vulnerability assessment and threat analy-
sis. In this work, we present a new method
for constructing a vulnerability knowledge
graph from information in the National
Vulnerability Database (NVD). Our ap-
proach combines named entity recognition
(NER), relation extraction (RE), and en-
tity prediction using a combination of neu-
ral models, heuristic rules, and knowledge
graph embeddings. We demonstrate how
our method helps to fix missing entities in
knowledge graphs used for cybersecurity
and evaluate the performance.

1 Introduction

An increasing number of services are moving to
digital platforms. The software used on these dig-
ital platforms is, unfortunately, not without flaws.
Some of these flaws can be categorized as security
vulnerabilities that an attacker can exploit, poten-
tially leading to financial damage or loss of sensi-
tive data for the affected victims. The National
Vulnerability Database (NVD)1 is a database of
known vulnerabilities which, as of January 2023,
contains more than 200 000 vulnerability records.
The Common Vulnerability and Exposures (CVE)
program2 catalogs publicly disclosed vulnerabili-
ties with an ID number, vulnerability description,
and links to advisories. NVD fetches the data from
CVE and provides additional metadata such as
weakness type (CWE) and products (CPE). CWEs
are classes of vulnerabilities (CVEs), for exam-
ple, CWE-862: Missing Authorization contains all
CVEs related to users accessing resources with-
out proper authorization. A CPE is a URI string

1 https://nvd.nist.gov/
2 https://www.cve.org/

specifying the product and its version, for exam-
ple, cpe:2.3:a:limesurvey:limesurvey:5.4.15 is the
CPE for the survey app Limesurvey with version
5.4.15. Keeping the information in the database
up to date is important to patch vulnerabilities in a
timely manner. Unfortunately, patching becomes
increasingly difficult as the yearly number of pub-
lished vulnerabilities increases.3

To automatically extract relevant information
from vulnerability descriptions, named entity
recognition (NER) and relation extraction (RE)
can be applied as shown in Fig. 1. The extracted
information can be stored as triples in a knowledge
graph (KG). As the extracted triples might be in-
correct or missing, knowledge graph embeddings
(KGE) can be used to learn the latent structures of
the graph and predict missing entities or relations.

The work described in this paper is based on
the master thesis by the first author. We inves-
tigate how NLP and KGs can be applied to vul-
nerability records to predict missing software en-
tities. More specifically, we address the following
research question: RQ: Can our knowledge graph
predict vulnerability weakness types and vulnera-
ble products? The contributions of this paper in-
clude: (1) An approach for extracting and assess-
ing vulnerability data from NVD; (2) A vulnera-
bility ontology for knowledge graph construction;
(3) A rule-based relation extraction model.

2 Related Work

We distinguish the ensuing areas of related work:
Labeling: Labeled data may not always be avail-
able to train supervised learning models for tasks
including NER and RE. To address this prob-
lem, distant supervision aims at proposing a set
of labeling functions for the automatic labeling
of data. Bridges et al. (2014) applied distant su-
pervision using a cybersecurity corpus. Their ap-

3 https://nvd.nist.gov/general/nvd-dashboard
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An arbitrary  file upload vulnerability in the plugin manager of

v5.4.15 VERSION execute arbitrary code RELEVANT TERM

LimeSurvey APPLICATION

allows attackers to via a crafted PHP file.

Has Has

Figure 1: Example of a CVE with labels

proach includes database matching using the CPE
vector, regular expressions to identify common
phrases related to versioning, for example, ”be-
fore 2.5”, and gazetteers, which are dictionaries
of vulnerability-relevant terms, such as ”execute
arbitrary code”.

After manual validation of the labeled entities,
Bridges et al. (2014) report a precision of 0.99 and
a recall of 0.78.
Named Entity Recognition: Training NER mod-
els on labeled data are useful as distant supervi-
sion depends on assumptions about the input data,
which does not always hold. For example, in the
case of NVD, if the new data is missing CPE in-
formation. Machine learning models are not de-
pendent on such metadata, and, as a consequence
can generalize better to new situations. Bridges
et al. (2014) propose NER based on the Averaged
Perceptron (AP). The conventional perceptron up-
dates its weights for every prediction, which can
over-weight the final example. The averaged per-
ception keeps a running weighted sum of the ob-
tained feature weights through all training exam-
ples and iterations. The final weights are obtained
by dividing the weighted sum by the number of
iterations.

Gasmi et al. (2019) propose another NER model
based on a long short-term memory (LSTM) ar-
chitecture. The authors argue that it can be more
useful when the data set has more variation, as
the LSTM model does not require time-consuming
feature engineering. However, their results show it
is not able to reach the same level of performance
as Bridges et al. (2014).

SecBERT4 is a pre-trained encoder trained on
a large corpus of cybersecurity texts. It is based
on the BERT architecture (Devlin et al., 2019) and
uses a vocabulary specialized for cybersecurity.
SecBERT can be fine-tuned for specific tasks such
as NER.

Another pre-trained encoder similar to
SecBERT is SecureBERT, proposed by Aghaei
et al. (2022). SecureBERT leverages a customized

4https://github.com/jackaduma/SecBERT

tokenizer and an approach to alter pre-trained
weights. By altering pre-trained weights, Secure-
BERT aims to increase understanding of cyber
security texts while reducing the emphasis on
general English.
Relation Extraction: Relations between named
entities can be discovered with RE. Gasmi et al.
(2019) propose three RE models for vulnerability
descriptions from NVD based on LSTMs. Their
best-performing model achieves a precision score
of 0.92. For labeling the relations, Gasmi et al.
(2019), applies distant supervision (Jones et al.,
2015). Gasmi et al. (2019) does not manually eval-
uate their labels before using them in the LSTM
models; however, the approach is based on Jones
et al. (2015), which indicates 0.82 in precision
score after manual validation. Both NER and RE
are important components for constructing knowl-
edge graphs from textual descriptions. We explore
several knowledge graphs related to cybersecurity
in the next section.
Knowledge Graphs in Cybersecurity:

CTI-KG proposed by Rastogi et al. (2023), is a
cybersecurity knowledge graph for Cyber Threat
Intelligence (CTI). CTI-KG is constructed primar-
ily from threat reports provided by security or-
ganizations, describing how threat actors operate,
who they target, and the tools they apply. Rastogi
et al. (2023) manually labels a data set of approx-
imately 3000 triples with named entities and rela-
tions. This labeled data is then used for training
models for NER and RE for constructing the KG.
CTI-KG also uses KGE to learn latent structures
of the graph and predict incomplete information.

Here, Rastogi et al. (2023) applies TuckER,
a tensor decomposition approach proposed by
Balažević et al. (2019), which can be employed for
knowledge graph completion. TuckER can repre-
sent all relationship types (Balažević et al., 2019),
as opposed to earlier models. For example, TransE
proposed by Bordes et al. (2013) has issues model-
ing 1-to-n, n-to-1, and n-to-n relations (Lin et al.,
2015). An example of a 1-to-n relationship in a
cybersecurity context is the relationship between
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CVEs and CPEs. Whereas a CVE can have multi-
ple CPEs, a CPE can only have one CVE.

As CTI-KG focuses on threats, another KG,
VulKG (Qin and Chow, 2019), is constructed from
vulnerability descriptions from NVD. VulKG con-
sists of three components, a vulnerability ontol-
ogy, NER for extracting entities from the vulner-
ability descriptions, and reasoning for discovering
new weakness (CWE) chains. After extracting en-
tities, relations between these can be found using
the VulKG ontology (Qin and Chow, 2019). The
final step of the framework presented by Qin and
Chow (2019) is the reasoning component which is
based on chain confidence for finding hidden rela-
tions in the graph.

Similarly to VulKG, we construct our KG
from vulnerability descriptions in NVD. However,
VulKG depends on training NER models from
scratch, while we instead depend on a pre-trained
model fine-tuned to our data. Contrary to train-
ing the model from scratch, the pre-training ap-
proach utilizes an existing model already trained
on a large dataset. Consequently, fine-tuned mod-
els can learn patterns in the new data set more
quickly.

3 Methods

Our approach is shown in Fig. 2 and gives an
overview of the construction of the vulnerability
knowledge graph from CVE records. We discuss
the different steps below. For replication, we share
details about the hyperparameter tuning of various
models in the appendices.
Data: Our dataset is downloaded in JSON for-
mat from NVD, and the pipeline consists of mul-
tiple steps before predicting missing or incorrect
labels as the final step. The data set consists of all
CVE records from 2003 to 2022, which contains
approximately 175 000 CVEs. The CVE records
are labeled using the distant supervision approach
proposed by Bridges et al. (2014).
Named Entity Recognition: We train two archi-
tectures: Averaged Perceptron and SecBERT.
Averaged Perceptron (AP): AP is a feature-
engineered model, and we use the same features
as Bridges et al. (2014) Due to computational con-
straints in the AP model, we restricted our training
data to 4000 CVEs.

We first replicate their approach and separately
trained and evaluated two AP models, one for
IOB-labeling and one for domain-labeling, using

the distant supervision-generated labels. In prac-
tice, when a new CVE is published, we only have
access to the textual description. Since the IOB la-
bels are input features to the domain model, those
must be predicted first. Thus, in our second exper-
iment, we again train two AP models, but use the
predicted IOB labels as input to the domain label-
ing, instead of the generated labels.
SecBERT: In addition to AP, we use the pre-
trained SecBERT model for NER. A significant
difference from AP is that SecBERT jointly ex-
tracts IOB and domain labels. Moreover, as
SecBERT is significantly faster than AP, there is
no need to restrict the dataset. We split our data
into 60/20/20 for training, evaluation, and testing.
Relation Extraction: For relation extracting, we
use an ontology illustrated in Fig. 3, to guide their
creation: When two entities of type A and B are
detected in a CVE, a relation between the two is
created if the ontology has an edge between types
A and B.

Note that entities are connected to their corre-
sponding CVE-ID and CWE-ID, and we concate-
nate multi-word entities based on their IOB labels.

The vulnerability descriptions are generally
written so that vendors are followed by their prod-
ucts which are then followed by their versions.
Thus, we can derive relations between vendor,
product, and version by looking at the word or-
der. We also make relations from relevant terms to
the corresponding CVE ID entity, and through the
CVE-ID the relevant terms are connected to the
corresponding vendors, products, and versions.
Entity Prediction: To answer the RQ, our KG
should predict weakness types (CWEs) and prod-
ucts (CPEs). Given a head entity and a relation as
input, the task of entity prediction is to find the tail
entity, which is the final step of our KG. Hits@n
and mean reciprocal rank (MRR) are standard
metrics used for entity prediction. For each input
example, the embedding algorithm assigns a confi-
dence score to all possible triples. These triples are
then ranked by confidence scores, where the triple
with the highest confidence is the most plausible to
be true according to the model. The Hits@n met-
ric measures the number of times the true triple is
ranked among the top n triples. We use the pro-
cessed triples from the RE model as input to our
entity prediction model, where TuckER is the cho-
sen architecture. The triples from our RE model
are considered ground truth. TuckER removes the
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Figure 2: The figure illustrates the steps in our approach. We start by downloading our data from NVD,
pre-processing the data, and adding labels to the entities. With our labeled data, we perform NER and
RE to construct the KG. Because missing entities might occur in the KG, we predict these in the last
step.

Hardware

OS

Application
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Version

CWE

Figure 3: Ontology for relation extraction. The
edges should be interpreted as, for example, “a
vendor has a product”, “a product has a version”,
“a CVE vulnerability has a CWE type”

tail entities from the ground truth before predict-
ing these based on entity and relation embeddings.
We perform data augmentation by reversing all the
relational triples. The data set is split in 80/10/10
percent for training, validation, and testing. We
select the best model by refining the four combi-
nations proposed by Balažević et al. (2019) with
an additional grid search.

4 Results and discussion

Our empirical evaluation uses the CVE dataset dis-
cussed in Section 3. For replication, the parame-
ters of the best-performing models are in the ap-
pendices.
NER: NER results are presented in Table 1. We
see that SecBERT outperforms AP on all metrics.

We compare our reproduction results with the
results reported by Bridges et al. (2014) in Ta-

Table 1: NER evaluation results for the averaged
perception and the fine-tuned SecBERT model.

NER Model Precision Recall F1

Averaged perceptron 0.925 0.84 0.88
Fine-tuned SecBERT 0.93 0.93 0.93

Table 2: Our reproduction results compared to
those reported by Bridges et al. (2014)

Author Labeling Precision Recall F1

Høst et al. IOB 0.93 0.93 0.93
Domain 0.94 0.94 0.94

Bridges IOB 0.97 0.97 0.96
Domain 0.99 0.99 0.99

ble. 2. Where Table 1 shows the performance
with all labels in place, individual IOB and do-
main labeling performance are reported in Ta-
ble 2. The AP model was based on Bridges et al.
(2014), which implemented their experiments in
OpenNLP and Python. We reused their Python
code for our reproduction. Note that the results
on our data are below the reports by Bridges
et al.. The authors indicated that they experi-
enced slightly better performance using OpenNLP,
which could be the reason for the difference in
score. Unfortunately, they do not provide any ex-
planation of this difference or why it occurs. Con-
trary to Bridges et al. (2014), we are not interested
in the performance of IOB and domain labeling
measured individually. In our approach, the NER
model should be used to extract entities from new
data that can form triples in our KG. When a new
CVE is published, we can access the textual de-
scription without any labels. Using Bridges’ ap-
proach, we first need to use the IOB model, and
then the predicted IOB labels can be used as input
features to the domain model responsible for the
final prediction.

To the best of our knowledge, we can not analyt-
ically combine the IOB model and domain model
results reported by Bridges et al.. As such, we rely
on our own experimental results, which show that
the performance of the fine-tuned SecBERT model
outperforms the AP model.
Relation Extraction: We did not have any
ground truth data when evaluating our RE ap-
proach, as a consequence, we manually validated
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Table 3: Performance metrics for our entity pre-
diction model compared to Rastogi et al. (2023).

Model Hits@10 Hits@3 Hits@1 MRR

Høst et al. 0.760 0.728 0.682 0.710
Rastogi 0.804 0.759 0.739 0.75

a sample of 100 extracted triples. From this sam-
ple, we measured a precision score of 0.77. While
Jones et al. (2015) has proposed a semi-supervised
approach for labeling relations, they focus on a
broader data set than we do. We, therefore, choose
to identify relations based on our proposed ontol-
ogy in Fig. 3. Our RE approach could not reach
the level of Jones et al. (2015), which reported
0.82 in precision score. For future work, one idea
to improve RE is to utilize CPE vectors for re-
lation labeling in addition to our proposed rules.
Then we can train machine learning models on top
of our labeled data using pre-trained variations of
BERT models.
Entity Prediction: During the relation extraction,
we extracted approximately two million triples.
As we further reversed all triples, four million
triples were used as input to the model.

In Table. 3, we compare our best-performing
model with the results presented in Rastogi et al.
(2023), which uses the same model architecture,
TuckER, on threat reports. The input data are as-
sumed to be true, and evaluation performance is
not manually validated.

We choose TuckER as our embedding algo-
rithm for entity prediction as it is the current state-
of-the-art model measured on standard data sets
(Balažević et al., 2019). The idea is that TuckER
captures latent structures of our KG. TuckER en-
codes the input triples as vector embeddings based
on encoded characteristics and can use these em-
beddings to predict missing entities. For ex-
ample, if two CVEs share important characteris-
tics such as vulnerability-relevant terms and af-
fected products, then according to the theory, they
should belong to the same neighborhood in a vec-
tor space. Consequently, TuckER could predict
that the CVEs belong to the same CWE.
Hits@n and mean reciprocal rank (MRR) are

standard metrics used for entity prediction. Given
a head entity and a relation, the task is to predict
the tail entity. For each example, the embedding
algorithm assigns a confidence score to all possi-
ble triples. These triples are then ranked by con-

fidence scores, where the triple with the highest
confidence is the most plausible to be true accord-
ing to the model. The Hits@n metric measures
the number of times the true triple is ranked among
the top n triples.

As a benchmark to measure our performance,
we use the results presented in Rastogi et al.
(2023), which also uses TuckER for entity predic-
tion. Rastogi et al. (2023) has reported a Hits@10
metric of 0.804, which is better than our reported
results seen in Table 3. We believe that more pre-
cise and consistent input labels can be the reason
for this, where a limitation of our approach is that
we aim at predicting CVE-IDs which are unique
for each vulnerability description. We consider
the task of predicting CVE-IDs as less important
for our model as these will always be attached to
the CVE description from our raw data. Balažević
et al. (2019) addresses that future work might in-
corporate background knowledge on relationship
types. Avoiding predicting CVE-IDs is one exam-
ple of such background knowledge.

Another reason for the difference could be that
some CWEs overlap and share many of the same
entities making it more difficult for our model to
discriminate between CWEs.

5 Conclusion

This paper proposes a vulnerability knowledge
graph constructed from textual CVE records from
the National Vulnerability Database (NVD). The
graph construction relies on a pipeline including
NER, relation extraction, and an entity prediction
model based on the TuckER framework.

As future improvements, we are interested in
better labeling of relations through distant supervi-
sion approaches and the integration of BERT mod-
els for relation extraction.
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Appendices

A SecBERT NER Tuning

We first perform a grid search (four epochs) over
the 20 parameter combinations recommended by
the BERT authors.5 The grid consisted of batch
sizes: {8, 16, 32, 64, 128}, and learning rates:
{3e-4, 1e-4, 5e-5, 3e-5}. The most promising can-
didates were then trained for ten epochs.

5 https://github.com/google-research/bert

B Entity Prediction Tuning

For tuning hyperparameters, we follow two strate-
gies: First, we train the same four combinations
as was done by (Balažević et al., 2019). These
four models were run for 100 epochs and based
on the intermediate results, the most promising
model was run for additional 200 epochs such
that this model was trained for 300 epochs in
total. We select the best-performing model and
based on its characteristics set up an additional
grid search covering 36 hyperparameter combina-
tions on smaller subsets of the data. To avoid over-
fitting, two models were trained and evaluated for
each of the hyperparameter combinations on dif-
ferent subsets. Our grid consisted of values of hid-
den dropouts: {0, 0.1, 0.2}, learning rates: {0.001,
0.01, 0.1} and dimensions: {10, 30, 200}. The pa-
rameters from the most promising candidate were
used for training another model for 300 epochs on
the full dataset.

C Best Model for NER

The best SecBERT model for NER was trained
with a learning rate of 5e-5 and a batch size of 8.

D Best Model for Entity Prediction

The following are the hyperparameters of the best-
performing TuckER model:

Model TuckER

num iterations 300
edim 200
rdim 30
lr 0.001
input dropout 0.2
hidden dropout1 0.1
hidden dropout2 0
batch size 128
label smoothing 0.1
dr 1
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Abstract

Despite much progress in recent years, the
vast majority of work in natural language
processing (NLP) is on standard languages
with many speakers. In this work, we
instead focus on low-resource languages
and in particular non-standardized low-
resource languages. Even within branches
of major language families, often consid-
ered well-researched, little is known about
the extent and type of available resources
and what the major NLP challenges are for
these language varieties. The first step to
address this situation is a systematic sur-
vey of available corpora (most importantly,
annotated corpora, which are particularly
valuable for NLP research). Focusing on
Germanic low-resource language varieties,
we provide such a survey in this paper. Ex-
cept for geolocation (origin of speaker or
document), we find that manually anno-
tated linguistic resources are sparse and,
if they exist, mostly cover morphosyntax.
Despite this lack of resources, we observe
that interest in this area is increasing: there
is active development and a growing re-
search community. To facilitate research,
we make our overview of over 80 corpora
publicly available.1

1 Introduction

The majority of current NLP today focuses on stan-
dard languages. Much work has been put forward
in broadening the scope of NLP (Joshi et al., 2020),
with long-term efforts pushing boundaries for lan-
guage inclusion, for example in resource creation
(e.g., Universal Dependencies (Zeman et al., 2022))
and cross-lingual transfer research (de Vries et al.,

1We share a companion website of this overview at
github.com/mainlp/germanic-lrl-corpora.

Figure 1: Approximate locations of most of the
languages discussed in this article (not pictured:
PDC, YID, NOR, SWE, DAN, ENG, DEU). Based on
a map of Europe by Marian Sigler, CC BY-SA 3.0.

2022). However, even within major branches of
language families or even single countries, plenty
of language varieties are under-researched.

Current technology lacks methods to handle
scarce data and the rich variability that comes with
low-resource and non-standard languages. Never-
theless, interest in these under-resourced language
varieties is growing. It is a topic of interest not
only for (quantitative) dialectologists (Wieling and
Nerbonne, 2015; Nerbonne et al., 2021), but also
NLP researchers, as evidenced by specialized work-
shops like VarDial2, special interest groups for en-
dangered3 and under-resourced languages,4 and
recent research on local languages spoken in Italy
(Ramponi, 2022), Indonesia (Aji et al., 2022) and
Australia (Bird, 2020), to name but a few.

2sites.google.com/view/vardial-2023
3SIGEL, acl-sigel.github.io
4SIGUL, www.elra.info/en/sig/sigul
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In this paper, we provide an overview of the
current state of NLP corpora for Germanic low-
resource languages (LRLs) and dialects, with a
particular focus on non-standard variants and four
dimensions: annotation type, curation profile, re-
source size, and (written) data representation. We
find that the amount and type of data varies by
language, with manual annotations other than for
morphosyntactic properties or the speaker’s dialect
or origin being especially rare. With this survey,
we aim to support development of language tech-
nologies and quantitative dialectological analyses
of Germanic low-resource languages and dialects,
by making our results publicly available. Finally,
based on the experiences we made while compil-
ing this survey, we share recommendations for re-
searchers releasing or using such datasets.

2 Related surveys

Zampieri et al. (2020) provide an overview on re-
search on NLP for closely related language vari-
eties and mention a few data sets. Recently, several
surveys focusing on NLP tools and corpus linguis-
tics data for regional languages and dialects have
been released: for local languages in Italy (Ram-
poni, 2022) and France (Leixa et al., 2014), in-
digenous languages of the Americas (Mager et al.,
2018), Arabic dialects (Shoufan and Alameri, 2015;
Younes et al., 2020; Guellil et al., 2021), creole lan-
guages (Lent et al., 2022), Irish English (Vaughan
and Clancy, 2016), and spoken varieties of Slavic
languages (Dobrushina and Sokur, 2022). Fur-
thermore, Bahr-Lamberti (2016) and Fischer and
Limper (2019)5 survey digital resources for study-
ing varieties closely related to German, although
these do not necessarily fit our inclusion criteria
(cf. Section 4).

3 Language varieties

Our survey contains corpora for more than two
dozen Germanic low-resource varieties, selected
based on dataset availability (Appendix A contains
the full list). We focus on specialized corpora
showcasing regional variation, but not necessarily
global variation. This overview does not include
any corpora for Germanic-based creoles like Naija,
as those are included in the recent survey by Lent
et al. (2022). Figure 1 shows where most of the
doculects included in this survey are spoken.

5regionalsprache.de/regionalsprachen
forschung-online.aspx

4 Methodology

Similarly to Ramponi (2022), we search for cor-
pora on several online repositories for language
resources: the CLARIN Virtual Language Obser-
vatory (Van Uytvanck et al., 2010), the LRE Map
(Calzolari et al., 2012), the European Language
Grid (Rehm et al., 2020) OLAC (Simons and Bird,
2003), ORTOLANG (Pierrel et al., 2017), and
the Hamburg Centre for Language Corpora.6 We
also search for corpora on Zenodo and on Google
Dataset Search, and look for mentions of corpora
in articles hosted by the ACL Anthology and on
ArXiv.7 We search for mentions of the word “di-
alect” and the names of various Germanic low-
resource languages.

We use the following inclusion criteria:

• The corpus is accessible to researchers (imme-
diately via a website, or indirectly through a
request form or via contact information),8 and
this is indicated on the corpus website or in a
publication accompanying the corpus.

• The corpus can be downloaded easily (does
not require scraping a website) and does not
require extensive pre-processing (we are inter-
ested in file formats like XML, TSV or TXT
rather than PDF).

• The data are of a high quality, e.g., we ig-
nore OCR’ed corpora that were not carefully
cleaned.

• The corpus (mainly) contains full sentences
or utterances,9 and the data were (mainly) pro-
duced in the past century.

We base this survey only on the versions of cor-
pora that are easily accessible to the research com-
munity; e.g., if a corpus contains audio material,
but only the written material is available for down-
load (and thus as a data source for quantitative
research), the corpus is treated as a text corpus.10

6vlo.clarin.eu; lremap.elra.info;
live.european-language-grid.eu;
www.language-archives.org;
www.ortolang.fr/market/corpora; corpora.
uni-hamburg.de/hzsk/en/repository-search

7zenodo.org; datasetsearch.research
.google.com; aclanthology.org; arxiv.org

8The latter case is indicated with a lock µ in the tables.
9This excludes word lists and some heavily preprocessed

corpora, like the one by Hovy and Purschke (2018), which is
lemmatized and does not contain stop words.

10This is not a rare scenario, as the audio versions might
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Corpus Langs Annotation Size Rep.

UD Faroese OFT (Tyers et al., 2018) FAO POS (UPOS, Giellatekno-FAO), 1.2k sents ~
github.com/UniversalDependencies/UD_Faroese-OFT dep (UD), morpho (UD), lemmas

FarPaHC / UD Faroese FarPaHC FAO POS (mod. Penn-h, UPOS), 53k (FarP.) / ~
(Ingason et al., 2012; Rögnvaldsson et al., 2012) phrase struc.(mod. Penn-h), 40k (UD.) toks
hdl.handle.net/20.500.12537/92 dep (UD), morpho (UD)
github.com/UniversalDependencies/UD_Faroese-FarPaHC

LIA Treebank / UD Norwegian NynorskLIA NOR ½ POS (UPOS, mod. NDT), 77.7k toks (L.), CL*
(Øvrelid et al., 2018) dep (UD, mod. NDT), lemmas, 55k toks (UD)
tekstlab.uio.no/LIA/norsk/index_english.html morpho (UD)
github.com/UniversalDependencies/UD_Norwegian-NynorskLIA

github.com/textlab/spoken_norwegian_resources/tree/master/treebanks/Norwegian-NynorskLIA

NDC Treebank NOR ½ POS (mod. NDT), 66k toks CL*
(Kåsen et al., 2022; Johannessen et al., 2009) dep (mod. NDT), lemmas,
tekstlab.uio.no/scandiasyn/download.html morpho (mod. NDT)
github.com/textlab/spoken_norwegian_resources/tree/master/treebanks/Norwegian-BokmaalNDC

NorDial (subset) (Mæhlum et al., 2022) NOR POS (UPOS) 35+ tweets Ò
Contact authors µ

POS-tagged Scots corpus SCO POS (UPOS) 1k tokens Ò/~
(Lameris and Stymne, 2021) github.com/Hfkml/pos-tagged-scots-corpus

TwitterAAE-UD (Blodgett et al., 2016) ENG (AAVE) Dep (UD) 250 tweets Ò
slanglab.cs.umass.edu/TwitterAAE

UD Frisian/Dutch Fame FRY/NLD POS (UPOS), dep (UD), 400 sents ~
(Braggaar and van der Goot, 2021; Yılmaz et al., 2016) code-switching
github.com/UniversalDependencies/UD_Frisian_Dutch-Fame

UD Low Saxon LSDC (Siewert et al., 2021) NDS ½ POS (UPOS), dep (UD), 95 sents Ò C*
github.com/UniversalDependencies/UD_Low_Saxon-LSDC morpho (UD), glosses (GML), lemmas

Stemmen uit het verleden (annotated subset) VLS ½ V2 variation 1.4k sents L
(Lybaert et al., 2019; Van Keymeulen et al., 2019) doi.org/10.18710/NSFN2B

Penn Parsed Corpus of Historical Yiddish YID POS (Penn-h), phrase struc. (Penn-h) ca. 200k toks *
(Santorini, 2021) github.com/beatrice57/penn-parsed-corpus-of-historical-yiddish
Kontatto (Dal Negro and Ciccolone, 2020) BAR POS (unknown), 147k toks Á L
kontatti.projects.unibz.it µ (South Tyrol) lemmas (DEU)

Annotated Corpus for the Alsatian Dialects GSW (Alsatian) POS (UPOS, mod. UPOS), 798 sents Ò
(Bernhard et al., 2018, 2019) zenodo.org/record/2536041 lemmas, glosses (FRA)

Bisame GSW GSW (Alsatian) POS (mod. UPOS) 382 sents Ò
(STIH, 2020; Millour and Fort, 2018) hdl.handle.net/11403/bisame_gsw/v1

Geparstes und grammatisch annotiertes GSW (St. Gallen) POS (mod. Penn-h), 100k+ toks Á L
Korpus schweizerdeutscher Spontansprachdaten phrase struc. (Penn-h)
(Schönenberger and Haeberli, 2019) (contact authors µ)

NOAH’s corpus (Hollenstein and Aepli, 2015) GSW POS (mod. STTS, 115k toks Ò
noe-eva.github.io/NOAH-Corpus subset: UPOS and STTS)

UD Swiss German UZH GSW POS (UPOS, mod. STTS), dep (UD) 100 sents Ò
(Aepli and Clematide, 2018) github.com/UniversalDependencies/UD_Swiss_German-UZH

WUS_DIALOG_GSW (subset of GSW ½ POS (mod. STTS) 34.7k toks Ò C
What’s up, Switzerland?) (Stark et al., 2014–2020; Ueberwasser and Stark, 2017) whatsup.linguistik.uzh.ch µ

Table 1: Morphosyntactically annotated corpora. Abbreviations for the annotation tag sets are ex-
plained in Section 5.1.1, as are the orthographies of entries with an asterisk (*). Other abbreviations and
symbols: Rep. = ‘data representation,’ dep = ‘syntactic dependencies,’ phrase struc = ‘phrase structure,’
morpho = ‘morphological features,’ mod. = ‘modified,’ AAVE = ‘African-American Vernacular English,’
GML = ‘Middle Low Saxon,’ NLD = ‘Dutch,’ FRA = ‘French,’ µ = access is not immediate, ½ = fine-
grained dialect distinctions, L = phonetic/phonemic transcription, Ò = pronunciation spelling, ~ = LRL
orthography, C = normalized orthography.
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Corpus Langs Annotation Size Rep.

TaPaCo (subset) (Scherrer, 2020) NDS, GOS paraphrases 1107 sents (NDS), Ò
zenodo.org/record/3707949 122 sents (GOS)

Wenkersätze (Wenker, 1889–1923; Schmidt et al., 2020–) DEU* ½ translations 2210 samples×40 sents L/Ò
github.com/engsterhold/wenker-storage (across dialects, DEU)

SB-CH (subset) (Grubenmann et al., 2018) GSW sentiment 2.8k sents Ò
github.com/spinningbytes/SB-CH

SwissDial (Dogan-Schönberger et al., 2021) GSW ½, WAE topic, translations 2.5–4.6 hrs×8 lects Á Ò C
projects.mtc.ethz.ch/swiss-voice-data-collection µ (across dialects and into DEU)

xSID/SID4LR (subset) GSW, BAR slot and intent detection, 800 sents Ò
(van der Goot et al., 2021; Aepli et al., 2023) (South Tyrol) translations (14 langs)
bitbucket.org/robvanderg/sid4lr

Table 2: Corpora with semantic annotations or parallel sentences. Abbreviations and symbols:
Rep. = ‘data representation,’ µ = access is not immediate, ½ = fine-grained dialect distinctions, Á = audio,
Ò = pronunciation spelling, C = standard orthography. *The Wenkersätze contain samples from various
German dialects, but those are not annotated directly (only the town names are shared).

5 Corpora

Most of the language varieties we survey have no
or only a very recent written tradition. This unique
challenge is reflected in the different written for-
mats used to represent the data (if the corpora con-
tain any written material at all) and concerns both
the transcription of audio data (Tagliamonte, 2007;
Gaeta et al., 2022) as well as the elicitation of writ-
ten data (Millour and Fort, 2020). We opted to
discern between audio data Á and the following
written variants: standard orthographies (of the
doculects themselves where existing ~ (e.g., West
Frisian orthography), or of a closely related higher-
resource language otherwise C), ad-hoc pronun-
ciation spelling (by speakers of the doculect) Ò,
and phonetic or phonemic transcriptions (by lin-
guists) L. Appendix B provides examples.

The following corpora are sorted by annotation
and curation type. For an overview sorted by lan-
guage, see Appendix A. Some of the corpora share
the same data sources. Appendix C lists the cases
where we are aware of such overlaps.

5.1 Annotated corpora

This section only includes corpora with manual (or
manually corrected) annotations.

5.1.1 Morphosyntactic annotation
Table 1 provides an overview of datasets with mor-
phosyntactic annotations. These mostly contain

contain more personally identifying information (like the voice
of someone from a small speaker population), and it requires
more work to censor locations or personal names in audio data
than in text data (see also Seyfeddinipur et al., 2019).

part-of-speech (POS) tags and/or syntactic depen-
dencies. Such annotations are, for instance, of
interest to dialectologists studying morphosyntac-
tic variation (see for example Lybaert et al., 2019).
Automatically generating high-quality morphosyn-
tactic annotations for non-standard and/or low-
resource data is not trivial, and the more annotated
data are available for training, the better the results
tend to be (Schulz and Ketschik, 2019; Scherrer
et al., 2019a).

The annotation standards tend to either be gen-
eral and cross-linguistically applicable (inviting
comparisons between languages), or to be very
specific to the language variety at hand. In the for-
mer case, annotations follow the guidelines from
the Universal Dependencies project (Zeman et al.,
2022) (UD, UPOS). In the latter case, tag sets cre-
ated for a (usually closely related) higher-resource
language are modified so that they capture the
lower-resource language variety’s idiosyncrasies.
These specialized tag sets are based on: the an-
notations of the Giellatekno project (Wiechetek
et al., 2022), the annotations developed for the Penn
Parsed Corpora of Historical English (Penn-h),11

the tag set of the Norwegian Dependency Treebank
(NDT) (Solberg et al., 2014) (based on the Oslo-
Bergen Tagger’s tag set, OBT, (Johannessen et al.,
2012)), and the Stuttgart-Tübingen tag set (STTS)
(Schiller et al., 1999).

Most of the annotated corpora are presented only
in one written form, typically either written in
a standard orthography or pronunciation spelling.

11ling.upenn.edu/hist-corpora/
annotation/index.html
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Corpus Langs Size Rep.

Føroyskur talumálsbanki (Jacobsen, 2022) FAO 599.9k toks ~
clarino.uib.no/corpuscle-classic/corpus-list µ

BLARK 1.0 (Background text corpus) (Simonsen et al., 2022) FAO 25M toks ~
(incl. FTS (Språkbanken and Fróðskaparsetur Føroya) and Faroese Korp (Giellatekno)) maltokni.fo/en/resources

Nordic Dialect Corpus (subset) (Johannessen et al., 2009) NOR ½, OVD ½ 1.9M toks (NOR), C (NOR: L)
tekstlab.uio.no/nota/scandiasyn 15.7k toks (OVD) (OVD: ~)

LIA Norsk (Øvrelid et al., 2018) NOR ½ 3.5M toks L C
tekstlab.uio.no/LIA/korpus.html partially Á

Talemålsundersøkelsen i Oslo (TAUS) (Tekstlab, 2020) NOR 388k toks L C
tekstlab.uio.no/nota/taus/ (East/West Oslo) ½

NorDial (Barnes et al., 2021) (subset) NOR 348 tweets Ò
github.com/jerbarnes/nordial

American Nordic Speech Corpus (CANS) (Johannessen, 2015) NOR (US/Canada) ½, 773k toks (NOR), L C
tekstlab.uio.no/norskiamerika/korpus.html SWE (US) ½ 46k toks (SWE)

Parallel dialectal–standard Swedish data SWE (Finland) ½, 86.5k tokens LC
(Hämäläinen et al., 2020; Ivars and Södergård, 2007) zenodo.org/record/4060296

Danish Gigaword (subset) DAN (Bornholm) ca. 400k tokens unk.
(Strømberg-Derczynski et al., 2021; Kjeldsen, 2019) gigaword.dk

Scottish Corpus of Texts & Speech (SCOTS) SCO (unknown how many of mix of
(subset) (Anderson et al., 2007) scottishcorpus.ac.uk 4.6M toks in SCO) Ò C

Low Saxon Dialect Classification (LSDC) NDS, WEP, FRS, 88.9k sents Ò
(Siewert et al., 2020) github.com/Helsinki-NLP/LSDC/ TWD, ACT ½

LuxId (Lavergne et al., 2014) lrec2014.lrec-conf.org/en/ LTZ/DEU/FRA 924 sents (most ~
shared-lrs/current-list-shared-lrs code-switching with LTZ content)

DiDi (subset) (Frey et al., 2019) BAR (South Tyrol) unknown Ò
hdl.handle.net/20.500.12124/7

What’s up, Switzerland? GSW ½ 507k msgs / 3.6M toks Ò
(Stark et al., 2014–2020; Ueberwasser and Stark, 2017) whatsup.linguistik.uzh.ch µ

Swatchgroup Geschäftsbericht (subset) (Graën et al., 2019) GSW 79.6k toks Ò
pub.cl.uzh.ch/wiki/public/pacoco/start

Text+Berg (subset) (Bubenhofer et al., 2015; Graën et al., 2019) GSW 156 sents / 3.1k toks Ò
textberg.ch/site/en/corpora µ pub.cl.uzh.ch/wiki/public/pacoco/start

ArchiWals / CLiMAlp (Angster et al., 2017; Gaeta, 2020) WAE ½ 80+k tokens Ò
climalp.org µ

Table 3: Other curated text corpora. Abbreviations and symbols: Rep. = ‘data representation,’ µ = ac-
cess is not immediate, ½ = fine-grained dialect distinctions, L = phonetic/phonemic transcription, Ò = pro-
nunciation spelling, ~ = LRL orthography, C = normalized orthography.
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Corpus Langs Size Rep.

BLARK 1.0 (Transcr. recordings) (Simonsen et al., 2022) maltokni.fo/en/resources FAO ½ 100 h Á ~ (some L)

Faroese Danish Corpus Hamburg (FADAC Hamburg) (subset) FAO ½ 31 h Á ~
(Debess, 2019) corpora.uni-hamburg.de/hzsk/de/islandora/object/spoken-corpus:fadac-0.2.dan

NB Tale – Speech Database for Norwegian (Språkbanken) NOR ½ 365× 2 min (spon.), Á L C
nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-31/ 7.6k sents (reading)

Norwegian Parliamentary Speech Corpus (NPSC) NOR ½ 140 h Á C
(Solberg and Ortiz, 2022) nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/

Diachronic Electronic Corpus of Tyneside English (DECTE) ENG (UK: Tyneside) 72 h / 804k toks Á C
(Corrigan et al., 2012) research.ncl.ac.uk/decte/index.htm µ (some L)

Intonational Variation in English (IViE) ENG 36 h Á C
(Nolan and Post, 2014) phon.ox.ac.uk/files/apps/IViE/ (UK, Ireland) ½

Crowdsourced high-quality UK and Ireland English Dialect speech data set ENG 31 h Á C
(Demirsahin et al., 2020) openslr.org/83 (UK, Ireland) ½

Helsinki Corpus of British English Dialects ENG (UK) ½ 1 M toks Á C
(University of Helsinki, 2006) varieng.helsinki.fi/CoRD/corpora/Dialects/ µ

Nationwide Speech Project (NSP) (Clopper and Pisoni, 2006) u.osu.edu/nspcorpus ENG (US) ½ 60× 1 hr Á (some C)

Corpus of Regional African American Language (CORAAL) ENG (AAVE) ½ 135.6 hrs / 1.5M toks Á C
(Kendall and Farrington, 2021) oraal.uoregon.edu/coraal

Common Voice Corpus 12.0 (subset) (Ardila et al., 2020) FRY 150 h Á ~
commonvoice.mozilla.org/en/datasets

Frisian AudioMining Enterprise (FAME) FRY (some ½) 18.5 h Á ~
(Yılmaz et al., 2016) ru.nl/clst/tools-demos/datasets/ µ

Recordings of Dutch-Frisian council meetings FRY 26 h / 281k toks Á ~
(Bentum et al., 2022) frisian.eu/dutchfrisiancouncilmeetings

Corpus Spoken Frisian (Frisian Academy) www1.fa.knaw.nl/ksf.html µ FRY 200 h (65 h transcribed) Á (~)

Sprachvariation in Norddeutschland (SiN, Hamburg collection) NDS, FRS, DEU 300 h Á
(Schröder, 2011; Elmentaler et al., 2015) hdl.handle.net/11022/0000-0000-7EE3-3 µ

Regional Variants of German 1 (RVG1) DEU* ½ 500+× 1 min Á L C
(Burger and Schiel, 1998) hdl.handle.net/11022/1009-0000-0004-3FF4-3

Zwirner-Korpus (downloadable subset) NDS, WEP, SXU, 3 h / 24.8k toks Á C
(Zwirner and Bethge, 1958; IDS) dgd.ids-mannheim.de µ VMF, BAR, GSW, DEU** ½

Texas German Sample Corpus (TGSC) (Blevins, 2022) DEU (Texas) 13.5 h / 75k toks Á C
doi.org/10.18738/T8/IOX9ZA

Audioatlas Siebenbürgisch-Sächsischer Dialekte DEU 360 h / 450k toks Á C
(University of Munich) hdl.handle.net/11022/1009-0000-0001-27B9-3 µ (Trans. Saxon)*** (some L)

CABank Yiddish Corpus (Newman, 2015) ca.talkbank.org/access/Yiddish.html YID (New York) 1 hr Á L

SXUCorpus (Herms et al., 2016) Contact authors µ SXU ½ 500 min / 70k toks Á C

Kontatti (Ghilardi, 2019) kontatti.projects.unibz.it µ BAR (S. Tyrol), CIM unknown Á C

ArchiMob (Scherrer et al., 2019b) GSW ½ 70 h Á L C
spur.uzh.ch/en/departments/research/textgroup/ArchiMob.html (audio files: µ)

SDS-200 (Plüss et al., 2022) swissnlp.org/datasets/ µ GSW 200 h Á C

Swiss Parliaments Corpus (Plüss et al., 2021a) www.cs.technik.fhnw.ch/i4ds-datasets GSW 293 h Á C

Gemeinderat Zürich Audio Corpus (Plüss et al., 2021b) www.cs.technik.fhnw.ch/i4ds-datasets GSW 1208 h Á

All Swiss German Dialects Test Set (Plüss et al., 2021b) GSW, WAE ½ 13 h / Á C
www.cs.technik.fhnw.ch/i4ds-datasets 5.8k utterances

Walliserdeutsch/RRO (Garner, 2014; Garner et al., 2014) zenodo.org/record/4580286 µ WAE 8.3 h Á Ò

Table 4: Other audio corpora. Abbreviations and symbols: Rep. = ‘data representation,’ µ = access is
not immediate, ½ = fine-grained dialect distinctions, Á = audio, L = phonetic/phonemic transcription,
Ò = pronunciation spelling, ~ = LRL orthography, C = normalized orthography. *It is unclear whether
the RVG1 recordings are in regionally accented (Standard) German or whether they are in Low Saxon,
Bavarian and other regional languages spoken in Germany, Switzerland, Austria and Northern Italy.
**The Zwirner-Korpus contains samples from various dialects spoken in what used to be West Germany.
***Transylvanian Saxon is a variety of Moselle Franconian that does not have its own ISO code. It is
more closely related to Luxembourgish than to Standard German.
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Corpus Languages and sizes

Tatoeba (subset; with > 100 sents) in sentences: NDS (18.1k), YDD (12.8k), GOS (5.7k), FRR (2.9k),
tatoeba.org/en/downloads SWG (1.9k), LTZ (884), FRY (641), GSW (474), FAO (417), BAR (227)

Ubuntu opus.nlpl.eu/Ubuntu.php in toks: NDS (35.3k), FRY (22.4k), FAO (20.2k), LIM (18.4k), LTZ (17.0k)

KDE4 opus.nlpl.eu/KDE4-v2.php NDS (1.1M toks), FRY (0.3M toks), LTZ (28.8k toks)

GNOME opus.nlpl.eu/GNOME.php NDS (0.7M toks), LIM (0.4M toks), FRY (55.7k toks)

Mozilla-I10n mozilla-l10n/mt-training-data FRY (0.4M toks), LTZ (6.9k toks)

QED (Abdelali et al., 2014) opus.nlpl.eu/QED.php LTZ (19.2k toks), FAO (6.4k toks)

TED2020 (Reimers and Gurevych, 2020) opus.nlpl.eu/TED2020.php LTZ (1.7k toks)

Danish Gigaword (subset) DAN (South Jutish) (ca. 20k tokens)
(Strømberg-Derczynski et al., 2021) gigaword.dk

SwissCrawl (Linder et al., 2020) icosys.ch/swisscrawl µ GSW (500k+ sents)

SB-CH (Grubenmann et al., 2018) github.com/spinningbytes/SB-CH µ GSW (ca. 116k sents)

SwigSpot (Linder, 2018) github.com/derlin/SwigSpot_Schwyzertuutsch-Spotting GSW (8k sents)

Web to Corpus (W2C) (subset) in MB: YID (125), FAO (102), LTZ (81), FRY (72), SCO (35),
(Majliš, 2011; Majliš and Žabokrtský, 2012) hdl.handle.net/11858/00-097C-0000-0022-6133-9 NDS (24), LI (20)

CC-100 (subset) (Wenzek et al., 2020) data.statmt.org/cc-100/ FRY (174 MB), YID (51 MB), LIM (8.3 MB)

OSCAR (subset) (Abadji et al., 2022) in toks: YID (14.3M), FRY (9.8M),
oscar-project.github.io/documentation/ µ LTZ (2.5M), NDS (1.6M), GSW (34k)

Wikipedia (subset) dumps.wikimedia.org discussed in detail in Appendix D

Table 5: Uncurated corpora. µ = Access not immediate. The corpora in the top section contain parallel
sentences with many translations and are (also) distributed via the OPUS project (Tiedemann, 2012).

Some cases (marked with an asterisk* in the ta-
ble) require further explanation: The Norwegian
LIA and NDC treebanks (Øvrelid et al., 2018;
Kåsen et al., 2022) use normalized orthographies
(Nynorsk and Bokmål, respectively), but aligned
versions of the original phonetic and orthographic
transcriptions can be downloaded from the Tekst-
lab links in the table. The sentences in the UD Low
Saxon LSDC treebank (Siewert et al., 2021) are
presented both in the original ad-hoc pronunciation
spelling and in a recently proposed orthography for
Low Saxon, Nysassiske Skryvwyse. The Yiddish
corpus (Santorini, 2021) is romanized, partially ac-
cording to the YIVO transliteration system, and
partially in a non-systematic manner.

5.1.2 Semantic annotation and parallel
sentences

Very few resources with other types of annotations
exist; we were able to find only five (Table 2), all
of which have very different kinds of annotations:
sentiment or topic classification, intent detection
and slot-filling, translations and paraphrases.

5.1.3 Dialect annotation
Many corpora contain detailed annotations on the
dialect area (or more precise location) an utter-
ance’s speaker or the author of a document is
from. Such information is important for linguis-
tic research comparing related dialects (Wieling
and Nerbonne, 2015), for comparing the results
of traditional and quantitative dialectological ap-
proaches (e.g. Heeringa et al., 2009) and for evalu-
ating whether NLP systems perform differently on
different closely related language varieties (Ziems
et al., 2022). Since corpora with such annotations
belong to all of the categories of curated datasets
in this survey, they are not presented on their own,
but instead marked with a pin symbol ½ elsewhere.

5.2 Other curated corpora

5.2.1 Text corpora
Table 3 presents unannotated written corpora of
low-resource languages like Elfdalian or Faroese,
and corpora that showcase dialectal variation
through phonetic transcriptions or pronunciation
spelling. (While variation also occurs on linguistic
levels encoded in normalized text written in stan-
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dard orthographies – lexical, syntactic or pragmatic
variation – we focus on phonological variation, as
this is where specialized corpora are required.)

5.2.2 Audio corpora

In this survey, our focus lies on written resources,
and as such, this selection of audio corpora is not
exhaustive.12 However, many of the language va-
rieties surveyed in this article are predominately
spoken rather than written. Creating language tech-
nology for unwritten languages is a topic of interest
for NLP researchers (Scharenborg et al., 2020), and
this is also reflected by the number of recently cre-
ated speech corpora for Germanic LRLs.

Many of the audio corpora (Table 4) fall into
one of two categories: recordings created for di-
alectological research, and post-hoc collections of
already existing audio data (like radio broadcasts
or public recordings of council meetings). Most of
the audio corpora are at least partially transcribed,
typically according to a standard orthography.

5.3 Uncurated text corpora

A final type of corpus are uncurated text collec-
tions (Table 5). This includes data coming from
community-based data collection efforts unrelated
to research projects (Wikipedia, Tatoeba) and open-
source translations of (mostly) user interfaces, as
well as web-crawled data.

It is important to note that there are quality
issues with web-crawled corpora, especially for
low-resource languages (Kreutzer et al., 2022).13

Both CC-100 (Wenzek et al., 2020) and OSCAR
(Abadji et al., 2022) are cleaned versions of Com-
monCrawl14– and Abadji et al. (2022) specifically
remark on the low quality of the low-resource lan-
guage data in that dataset.

Some of the translated corpora also have quality
issues: the Low Saxon Ubuntu and GNOME cor-
pora (Tiedemann, 2012) both also contain some
Standard German content. We exclude subcor-
pora that contain mostly foreign language or non-
linguistic material (for instance, the West Flemish
QED subcorpus (Abdelali et al., 2014; Tiedemann,
2012)).

12Additional corpora documenting variation in spoken En-
glish can be found via the SPADE project (Stuart-Smith et al.,
2017-2020).

13However, see Artetxe et al. (2022) for an argument that the
linguistic quality of a corpus might not be the most important
factor for all downstream applications.

14commoncrawl.org

Wikipedia has editions in many Germanic low-
resource languages and at different activity and
contributor levels, as we survey in Appendix D.
Projects extend wiki dumps with automatically in-
ferred annotations (Pan et al., 2017; Schwenk et al.,
2021), or release automatically aligned German–
Alemannic/Bavarian bitext (Artemova and Plank,
2023).15 The linguistic quality of LRL wikis is
not always very high – the Scots Wikipedia made
the news in 2020, when attention was brought to
the fact that half of that wiki’s articles had been
created/edited by a non-Scots speaker writing in a
parody of Scots (Brooks and Hern, 2020). Quality
issues should be taken into account when work-
ing with data from small wikis without much over-
sight, e.g., with data or tools based on the Scots
Wikipedia before clean-up started in fall 2020.16

6 Outlook

Creating NLP resources and technology for LRLs
is an active field. At the time of writing this
paper, several additional resources were concur-
rently under construction or revision: UD Frisian
Frysk, a treebank for West Frisian (Heeringa et al.,
2021),17 Boarnsterhim Corpus, a West Frisian
audio corpus (Sloos et al., 2018),18 Schweizer-
deutsches Mundartkorpus, a Swiss German text
corpus (Weibel and Peter, 2020),19 and the Cor-
pus of Southern Dutch Dialects (Breitbarth et al.,
2018).20 Community-based projects are also being
actively developed: many of the small Wikipedias
have active editors (Appendix D), as do many of
the Tatoeba collections. We welcome contributions
to our companion website to track such progress.

Speaker populations of LRLs are not a monolith.
Accordingly, different speaker communities have
different interests in terms when it comes to the
development of language technologies (Lent et al.,
2022). The creation of downstream technologies
made for public use should be made in accordance
of the wishes and needs of the relevant speaker
communities (see also Bird, 2022).

15github.com/mainlp/dialect-BLI
16E.g., Scots is included in the language list of mBERT

(Devlin et al., 2019), which was trained on Wikipedia data
in 2019: github.com/google-research/bert/
blob/master/multilingual.md

17github.com/UniversalDependencies/
UD_Frisian-Frysk

18taalmaterialen.ivdnt.org/download/
tstc-boarnsterhimcorpus1-0

19chmk.ch/de/info_all
20gcnd.ugent.be
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We make the following recommendations for
researchers who work with LRL datasets:

• Investigate the quality of uncurated data, as it
might be especially poor for LRLs.

• Check whether (pre-)training, development
and test data are truly from independent
datasets – the dearth of high-quality LRL data
means that datasets may be likely to overlap.

• Consider quantitative work by dialectologists
and sociolinguists who might not publish in
typical NLP venues.

To researchers who create such datasets, we rec-
ommend to:

• Document the transcription principles (if the
data were originally in an audio format) / if
any standardized orthographies were used (if
the language variety does not have an official
orthography).

• The low number of available high-quality
datasets per language variety means that the
impact of losing such a resource is much
greater. Therefore, please upload your cor-
pus to an archive geared towards long-term
data storage (like the CLARIN Language Re-
source Inventory,21 the LRE Map or Zenodo).

• Provide easy-to-find documentation with de-
tails on the corpus size, data sources and the
annotation procedure.

7 Conclusion

We have presented an analysis of over 80 cor-
pora containing data in Germanic low-resource
languages, with a focus on non-standardized or
only recently standardized varieties. We addi-
tionally share the corpus overview on a pub-
lic companion website (github.com/mainlp/
germanic-lrl-corpora) that can easily be
updated as more language resources are released.
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Çöltekin, Miriam Connor, Daniela Corbetta, Ma-
rine Courtin, Mihaela Cristescu, Philemon Daniel,
Elizabeth Davidson, Leonel Figueiredo de Alen-
car, Mathieu Dehouck, Martina de Laurentiis,
Marie-Catherine de Marneffe, Valeria de Paiva,
Mehmet Oguz Derin, Elvis de Souza, Arantza
Diaz de Ilarraza, Carly Dickerson, Arawinda
Dinakaramani, Elisa Di Nuovo, Bamba Dione,
Peter Dirix, Kaja Dobrovoljc, Timothy Dozat,
Kira Droganova, Puneet Dwivedi, Christian Ebert,
Hanne Eckhoff, Sandra Eiche, Marhaba Eli, Ali
Elkahky, Binyam Ephrem, Olga Erina, Tomaž Er-
javec, Aline Etienne, Wograine Evelyn, Sidney
Facundes, Richárd Farkas, Federica Favero, Jan-
natul Ferdaousi, Marília Fernanda, Hector Fer-
nandez Alcalde, Jennifer Foster, Cláudia Freitas,
Kazunori Fujita, Katarína Gajdošová, Daniel Gal-
braith, Federica Gamba, Marcos Garcia, Moa Gär-
denfors, Sebastian Garza, Fabrício Ferraz Ger-
ardi, Kim Gerdes, Filip Ginter, Gustavo Godoy,
Iakes Goenaga, Koldo Gojenola, Memduh Gökır-
mak, Yoav Goldberg, Xavier Gómez Guinovart,
Berta González Saavedra, Bernadeta Griciūtė, Ma-
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A Resources by language

We include the languages associated with the
ISO 639-3 codes FAO (Faroese), OVD (Elf-
dalian), SCO (Scots), FRR (North Frisian),
FRY (West Frisian), STQ (Saterland Frisian),
NDS (Low Saxon), FRS (East Frisian Low Saxon),

GOS (Gronings), TWD (Twents), ACT (Achter-
hoeks), WEP (Westphalian), ZEA (Zeelandic),
VLS (West Flemish), LTZ (Luxembourgish),
LIM (Limburgish), KSH (Colognian), PFL (Palatine
German), PDC (Pennsylvania Dutch), YID (Yid-
dish), SXU (Upper Saxon), VMF (East Franconian),
BAR (Bavarian), SWG (Swabian), GSW (Swiss Ger-
man and Alsatian), WAE (Walser), and CIM (Cim-
brian). Our survey also encompasses data
for dialects/non-standard varieties of Norwe-
gian (NOR), Swedish (SWE), Danish (DAN), En-
glish (ENG), and German (DEU) that do not have
their own ISO codes.

We use ISO codes to refer to (groups of) lan-
guage varieties for practical reasons – despite their
shortcomings as labels for varieties from linguistic
continua (Morey et al., 2013; Nordhoff and Ham-
marström, 2011), they are widely used and recog-
nized, and many of the corpora in this survey are
described in terms that easily map to ISO codes.

In some cases, the codes or the corpus descrip-
tions are ambiguous. For instance, many Low
Saxon corpora contain entries that also belong to
one of the more specific Dutch Low Saxon codes,
and some Swiss German corpora also contain some
Walser content. Where possible (and where the
data instances themselves are labelled on a precise
enough level), we use the more specific codes.

Table 6 provides an overview of resource types
by language variety.

B Written representations

Table 7 provides examples of different types of
written representations and showcases how diverse
each category can be.

Examples 1a, 2a, 3a, 4a/b, 5a and 6a are written
in standardized orthographies (or in lower-cased
versions of standard orthographies with no pronun-
ciation). Of these, sentences 1a, 4a and 5a are
written in orthographies developed for their respec-
tive low-resource languages ~, while 2a, 3a, 4b
and 6a are normalized and written in the orthogra-
phies of closely related standard languages C (the
last two are Elfdalian written in Swedish and Swiss
German written in Standard German).

Sentences 5b and 7a present two examples of
ad-hoc pronunciation spellings Ò. These kinds
of spellings vary from speaker to speaker, and one
and the same speaker might also choose different
spellings of the same word at different times.

Phonetic or phonemic transcriptions L have
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Language Dialect/
Location

Morpho-
syntax Semantic Parallel

(curated)
Uncurated
text

Curated
data

North Germanic

FAO Faroese ½ Ë Ë Á L ~
NOR (non-std.) Norwegian ½ Ë Á L Ò C

OVD Elfdalian ½ ~ C
SWE (non-std.) Swedish ½ L C
DAN (non-std.) Danish ½ Ë ?

Anglo-Frisian

SCO Scots Ë Ë Ò ~ C
ENG (non-std.) English ½ Ë Á C

FRY West Frisian ½ Ë Ë Á ~
FRR North Frisian Ë
STQ Saterland Frisian Ë

Low German*

NDS Low Saxon ½ Ë Ë Ë Á Ò ~
FRS East Frisian Low Saxon Ë Á
GOS Gronings Ë Ë

TWD Twents Ë Ò
ACT Achterhoeks Ë Ò
WEP Westphalian Á C

Macro-Dutch

VLS West Flemish ½ Ë Ë L
ZEA Zeelandic Ë

Middle German

LTZ Luxembourgish Ë ~
KSH Colognian Ë
LIM Limburgish Ë

PFL Palatine German Ë
PDC Pennsylvania Dutch Ë
YID Yiddish** Ë Ë Á L
SXU Upper Saxon Á C

Upper German

DEU (non-std.) German Ë Á L C
VMF East Franconian Á C
BAR Bavarian Ë Ë Ë Ë Á L Ò C
CIM Cimbrian Á C

SWG Swabian Ë
GSW Swiss Ger. & Alsatian ½ Ë Ë Ë Ë Á L Ò C
WAE Walser ½ Ë Ë Ë Á Ò

Table 6: Corpora by language variety. For ease of reference, the language are sorted by Germanic
subbranches (based on Glottolog (Hammarström et al., 2022)). *For additional texts written in varieties of
Low German/Saxon with other ISO 639-3 codes, see the note on the Low Saxon Wikipedias in Table 8.
**Glottolog discerns between Eastern Yiddish (Middle German) and Western Yiddish (Upper German).
Symbols: Á = audio, L = phonetic/phonemic transcription, Ò = pronunciation spelling, ~ = LRL
orthography, C = normalized orthography.
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From the Faroese BLARK recordings (Simonsen et al., 2022):
1a ~ vit høvdu matpakka við og eg hugnaði mær óført
1b L vId h9dI m%EApaHga v%i: o e h%u:najI mar %OW:f9zd
1c L vId hœdI "mEa

“
phahga "vi: o e "hu:najI maô "Ou

“
:fœùd

“We had lunchboxes with us and I enjoyed myself greatly.”

From the Norwegian NB Tale corpus (Språkbanken):
2a C Etter litt godsnakk kom tre av kyrne mot han mens den fjerde glei og fall
2b L ""{t@4 l"it g""u:snAkk k"Om t4"e: "A:v C"y:n‘@ m"u:t "An m"ens d_= fj""{:d‘@ gl"eI "O: f"Al
2c L 2Et@ô 1lIt 2gu:snAkk 1kOm 1tôe: 1A:v 1çy:ï@ 1mu:t 1An 1mEns dn

"
2fjæ:ã@ 1glEI

“
1o: 1fAl

“After some coaxing, three of the cows came towards him while the fourth one slipped and fell.”

From the Norwegian part of the Nordic Dialect Corpus (Johannessen et al., 2009):
3a C det er slik at de fleste kommer jo att når de får # unger
3b L de e sjlik att dæi fLeste kjemme jo att nårr dæi fær # onnga
“The thing is that most people return when they have [brief pause] kids.”

From the Elfdalian part of the Nordic Dialect Corpus (Johannessen et al., 2009):
4a ~ wen wa wen war eð før ien månað ? juni ?
4b C vad va- vad var det för en månad ? juni ?
“What, wha-, what month was it? June?”

From UD Low Saxon LSDC (Siewert et al., 2021):
5a ~ Nu leyt em de böyse vynd disse nacht kyn ouge an enander doon.
5b Ò Nu leit em de baise Find düse Nacht kinn Auge an enander dohn.
“Now the wicked enemy didn’t let them get a wink of sleep that night.”

From the Swiss German ArchiMob corpus (Scherrer et al., 2019b):
6a C können sie ihre jugendzeit beschreiben
6b L chönd sii iri jugendziit beschriibe
“Can you describe your youth?”

From the BISAME corpus (STIH, 2020):
7a Ò Niema hat salamols gweßt as die Werter vum franzeescha kumma.
“Nobody knew then that these words came from French.”

Table 7: Examples of written representations. Symbols: L = phonetic/phonemic transcription, Ò = pro-
nunciation spelling, ~ = LRL orthography, C = normalized orthography.
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different styles depending on each corpus’s tran-
scription guidelines. Examples 1b and 2b are writ-
ten in modified versions of SAMPA and X-SAMPA,
and the corpora come with sufficient documenta-
tion to automatically convert these transcriptions
into IPA (1c, 2c). (The superscript symbols 1 and 2

in example 2c are commonly used to indicate the
Norwegian pitch accent.) The transcription styles
presented in examples 3b and 6b are based on Nor-
wegian and Standard German orthography, respec-
tively. What sets them apart from pronunciation
spellings is that they are consistent across the en-
tire corpus and that they follow linguistic rationales
that often are outlined in the corpus documentation.

C Overlapping data sources

Several of the corpora mentioned in this article
overlap with each other:

• UD Faroese OFT and the Korp subcorpus
of the background corpus of the Faroese
BLARK 1.0 contain material from the Faroese
Wikipedia.

• The NDC Treebank uses data from the Nordic
Dialect Corpus.

• The LIA Treebank and UD Norwegian
NynorskLIA are annotated subsets of LIA
Norsk, and they overlap with each other.

• The POS-tagged Scots corpus contains anno-
tated sentences from SCOTS.

• UD Low Saxon LSDC and LSDC overlap.

• UD Frisian/Dutch Fame is an annotated sub-
set if FAME.

• Many of the sentences in UD Swiss German
UZH are also in NOAH’s corpus. Both of
these corpora contain material from the Ale-
mannic Wikipedia.

• SB-CH contains NOAH’s corpus.

• The Annotated Corpus for the Alsatian Di-
alects contains articles from the Alemannic
Wikipedia that were explicitly tagged as Alsa-
tian.

• TaPaCo is a subset of Tatoeba.

• Any corpus that includes data from the inter-
net might overlap with the uncurated datasets
in Section 5.3.

D Wikipedia statistics

Table 8 provides a comparison of Wikipedia sizes
and user (vs. bot) activity.22 The sizes of the small
Germanic Wikipedias vary considerably from wiki
to wiki (there are just under 2k Pennsylvania Dutch
articles, while the (German) Low Saxon Wikipedia
has over 84k articles), as does the number of re-
cently active contributors (from 6 active non-bot
users per month for Ripurarian/Colognian, Palatine
German and Pennsylvania Dutch to 70 for Scots).

While bots can be used for automating many
tasks that are unrelated to the textual diversity of
a wiki (e.g., cleaning up article redirection pages),
they can also be used to automatically create short
template-based articles.23 The share of manual ed-
its (i.e., edits not by bots) is very varied across
wikis – only about a quarter of all edits in the
Pennsylvania Dutch Wikipedia have been made
manually, compared to 79 % in the North Frisian
Wikipedia. However, there is a clear trend towards
a much larger proportion of manual edits: the vast
majority of edits made only in the past year were
manual edits.

Some of the wikis are written according to
one or more orthographies, while others either
do not include any spelling recommendations at
all or encourage editors to use whatever pronun-
ciation spelling they prefer. The Dutch Low
Saxon Wikipedia, for instance, recommends Nysas-
siske Skryvwyse, whereas the German Low Saxon
Wikipedia recommends another orthography: Sass-
Schrievwies. The Ripurarian/Colognian Wikipedia,
conversely, encourages idiosyncratic spellings.24

22The data sources are the automatically updated list
of Wikipedia sizes at meta.wikimedia.org/wiki/
List_of_Wikipedias_by_language_group
#Germanic (last accessed 2023-01-31) and Wikime-
dia’s metadata via wikimedia.org/api/rest_v1/.
The scripts are available via github.com/mainlp/
wikistats.

23For an example for the latter, see
nds.wikipedia.org/wiki/Bruker:ArtikelBot

24These are the pages detailing orthographic con-
ventions we were able to find (sorted by wiki size):
nds.wikipedia.org/wiki/Wikipedia:Sass;
sco.wikipedia.org/wiki/Wikipedia:
Spellin_an_grammar; als.wikipedia.org/
wiki/Hilfe:Schrybig; bar.wikipedia.org/
wiki/Wikipedia:Wia_schreib_i_a_
guads_Boarisch%3F; frr.wikipedia.org/
wiki/Wikipedia:Spräkekoordinasjoon;
li.wikipedia.org/wiki/Wikipedia:Wie_
sjrief_ich_Limburgs; vls.wikipedia.org/
wiki/Wikipedia:Gebruuk_van_streektoaln;
nds-nl.wikipedia.org/wiki/Wikipedia:
Spelling; stq.wikipedia.org/wiki/;
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Several of these wikis include (some) articles
with metadata specifying which variety the docu-
ment is written in.25

Wikipedia:Hälpe_bie_ju_seelter_Sproake;
ksh.wikipedia.org/wiki/Wikipedia:
Schrievwies

25Sorted by wiki size: nds.wikipedia.org/wiki/
Kategorie:Artikels_na_Dialekt; als.
wikipedia.org/wiki/Kategorie:Wikipedia:
Dialekt; bar.wikipedia.org/wiki/Kategorie:
Artikel_nach_Dialekt; frr.wikipedia.org/
wiki/Kategorie:Spriakwiisen; li.wikipedia.
org/wiki/Categorie:Wikipedia:Artikele_
nao_dialek; vls.wikipedia.org/wiki/
Categorie:Wikipedia:Artikels_noar_
dialect; nds-nl.wikipedia.org/wiki/
Kategorie:Nedersaksies_artikel; ksh.
wikipedia.org/wiki/Saachjrupp:Wikipedia:
Atikkel_ier_Shprooche; pfl.wikipedia.org/
wiki/Sachgrubb:Adiggel_noch_em_Dialegd
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Wikipedia & Language Articles
(01/2023)

Manual
edits
(2001–2022)

Manual
edits
(2022)

Monthly
editors
(2022)

nds NDS (Germany)* (½) 84 k 44 % 99 % 30
lb LTZ 61 k 43 % 85 % 56
fy FRY 50 k 60 % 99 % 54
sco SCO 39 k 53 % 63 % 70

als GSW + SWG + WAE (½) 30 k 69 % 100 % 58
bar BAR (½) 27 k 68 % 63 % 39
frr FRR (½) 17 k 79 % 85 % 16
yi YID 15 k 49 % 97 % 35

li LIM 14 k 42 % 75 % 21
fo FAO 14 k 41 % 99 % 29
vls VLS (½) 8 k 45 % 79 % 16
nds-nl NDS (Netherlands)* (½) 8 k 40 % 68 % 14

zea ZEA 6 k 47 % 98 % 10
stq STQ 4 k 38 % 81 % 8
ksh KSH + other Ripuarian (½) 3 k 32 % 99 % 6
pfl PFL + oth. Rhen. Franc., Hessian (½) 3 k 65 % 72 % 6
pdc PDC 2 k 27 % 92 % 6

en ENG 6608 k 90 % 92 % 102 574
de DEU 2765 k 91 % 93 % 16 141
nl NLD 2114 k 68 % 66 % 3521
da DAN 289 k 63 % 64 % 711
is ISL 56 k 54 % 79 % 118

Table 8: Wikipedia statistics. ‘Manual edits’ include the proportion of edits (of content pages) performed
by registered non-bot users or anonymous editors (out of the total number of content page edits performed
by anyone, including bots). The number of monthly editors is the mean number of registered non-bot
users who edited at least one content page, per month. English, German, Dutch (NLD), Danish (DAN)
and Icelandic (ISL) are included for comparison. The wikis with a pin symbol ½ contain (some) articles
tagged by dialect; see footnote 25. *The nds and nds-nl wikis are primarily concerned with varieties
of Low Saxon spoken in, respectively, Germany and the Netherlands. The former also contains articles
written in varieties associated with the ISO 639-3 codes WEP and FRS, and the latter with ACT, FRS, GOS,
DRT (Drents), SDZ (Sallands), STL (Stellingwerfs), TWD and VEL (Veluws).
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Abstract

An important assumption in sociolinguistics
and cognitive psychology is that human beings
adjust their language use to their interlocutors.
Put simply, the more often people talk (or write)
to each other, the more similar their speech be-
comes. Such accommodation has often been
observed in small-scale observational studies
and experiments, but large-scale longitudinal
studies that systematically test whether the ac-
commodation occurs are scarce. We use data
from a very large Swedish online discussion
forum to show that linguistic production of the
users who write in the same subforum does usu-
ally become more similar over time. Moreover,
the results suggest that this trend tends to be
stronger for those pairs of users who actively
interact than for those pairs who do not inter-
act. Our data thus support the accommodation
hypothesis.

1 Introduction

Language is a tool not only for conveying infor-
mation, but also for expressing attitudes, construct-
ing identities and building relationships (Eckert,
2012). One manifestation of this fundamental prop-
erty of language is that how we speak (or write)
depends on whom we are speaking (or writing)
to. How exactly the audience affects the linguistic
production is a complex and multi-faceted process
which can be approached from various perspec-
tives. Consider, for instance, the audience design
theory (Bell, 1984), social identity theory (Reid
and Giles, 2008) and accommodation theory (Giles,
1973; Gallois et al., 1995).

In this paper, we perform a large-scale test of the
hypothesis that people adjust their production style
to their interlocutors. This phenomenon is known
as accommodation (sometimes attunement or lin-
guistic alignment) or convergence if the styles of
the interlocutors are becoming more similar (diver-
gence if they are becoming more different). While

it has received considerable attention within so-
ciolinguistics (Rickford et al., 1994; Cukor-Avila
and Bailey, 2001) and cognitive psychology (Gar-
rod et al., 2018), large-scale longitudinal studies
are wanting. An exception is a study by Nardy
et al. (2014), who have observed a group of French-
speaking children at a kindergarten for one year and
shown that children who interacted more frequently
adopted similar usages of a number of sociolinguis-
tic variables (such as, for instance, the dropping of
the consonant /R/ in post-consonantal word-final
positions).

Internet and social media in particular provide
us with a vast amount of data about how people
communicate and how they use language for other
purposes than information transmission (Nguyen
and P. Rosé, 2011). While in some respects these
data are not as informative as those collected by
direct observation or experimenting, in some other
respects they may be equally or even more useful,
providing very detailed information about who in-
teracted when with whom and how. Besides, it is
often possible to collect large datasets that enable
more systematic hypothesis testing.

We use data from a very large Swedish discus-
sion forum (Flashback) to test a widely held soci-
olinguistic assumption that “the more often people
talk to each other, the more similar their speech will
be” (Labov, 2001, p.288). In brief, we find pairs of
Flashback users which during some period of time
have actively interacted (see Section 2.2 for the
definition of “active interaction”). We define a mea-
sure of linguistic distance between users and show
that it is valid for our purposes (see Section 2.3).
For every pair of users, we then calculate the lin-
guistic distance between the two users’ production
before they have started interacting (∆before) and
after it (∆after), and the difference between these
distances (∆i = ∆before − ∆after). If the con-
vergence assumption is correct, we expect that the
distance will tend to become smaller and the aver-
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age ∆i will be positive.
A positive ∆i, however, can arise for different

reasons, of which arguably the most prominent
one is that distances between users become smaller
not because users accommodate to specific inter-
locutors, but rather converge on a certain style
adopted in the community (Danescu-Niculescu-
Mizil et al., 2013). To test whether this is a better
explanation, we perform a similar calculation for
those pairs who have never had a single interac-
tion, comparing texts written earlier (∆early) and
later (∆later) during their activity on the forum
(∆n = ∆early −∆later). If there is a convergence
to norm, the average ∆n should be positive.

It is also possible that both pairwise accommo-
dation and convergence to the community norm oc-
cur simultaneously. Moreover, they might even be
parts of the same process: if speakers do converge
on a certain norm, this convergence can emerge
(at least partly) due to pairwise interactions. It is,
however, also possible that only one of these pro-
cesses occurs. Speakers can, for instance, converge
on the community norm by adjusting to some per-
ceived “average” style and not specific individual
interlocutors. On the other hand, it can be imagined
that speakers do adjust to the individual interlocu-
tors, but that does not lead to the emergence of the
community norm (for instance, because different
interlocutors are “pulling” in different directions).
The purpose of this study is to provide some insight
into these not entirely understood processes.

We envisage four likely outcomes of our exper-
iments, summarized in Table 1. Other outcomes
are possible, but would be more difficult to explain.
We would, for instance, be surprised if ∆n turns
out to be larger than ∆i (since if there is conver-
gence to community norm, it should be affecting
actively interacting and non-interacting users in ap-
proximately the same way). Another unexpected
result would be a negative value of either ∆n or
∆i, since that would imply systematic divergence
(see discussion in Section 4).

2 Materials and methods

2.1 Corpora
We use Flashback,1 a very large Swedish discus-
sion forum covering a broad variety of topics which
has existed for more than two decades. In 2021, the
proportion of internet users in Sweden (excluding
those younger than eight years) who visited the

1https://www.flashback.org/

forum at least once during the last 12 months was
estimated to be 24% (Internetstiftelsen, 2021).

The forum is divided into 16 subforums, of
which we use five in the main experiment: Da-
tor och IT ‘Computer and IT’, Droger ‘Drugs’,
Hem, bostad och familj ‘Home, house and family’,
Kultur & Media ‘Culture and media’, Sport och
träning ‘Sport and training’. These five were se-
lected as being relatively large, of comparable size
and representing diverse and not directly related
topics. In addition, we use a smaller subforum For-
don och trafik ‘Vehicles and traffic’ to evaluate our
distance metric (see section 2.3).

To access the Flashback texts, we use the corpora
created and maintained by Språkbanken Text, a
Swedish national NLP infrastructure. The corpora
are available for download2 and for searching via
the Korp interface (Borin et al., 2012) and its API.3

The basic corpus statistics are summarized in
Table 2. The earliest available posts date back to
2000, and the corpora were last updated in February
2022. The number of users is estimated as a number
of unique non-empty usernames. We list separately
the number of “prolific” users, and we consider
users prolific if they have written 6000 tokens or
more. All other users will be discarded (many of
the prolific users will not pass additional thresholds
either, see Section 2.4).

Subforums may be further divided into subsub-
and subsubsubforums, which we do not take into
account. What is important for our purposes is that
messages (posts) are always organized in threads:
there is an initial message which starts a thread
(often a question) and then an unlimited number
of messages which either respond to the original
message or to later messages or in some other way
are related to the thread’s topic. The structure of
the thread is linear: that is, messages are posted in
a strictly chronological order.

2.2 Defining interaction

Two users are assumed to have had an interaction if
they have written messages within the same thread,
the two messages are separated by no more than
two other messages and there has gone no more
than five days between the two messages were
posted. This definition has been used by Hamilton
et al. (2017) and Del Tredici and Fernández (2018),

2https://spraakbanken.gu.se/resurser?
s=flashback&language=All

3https://ws.spraakbanken.gu.se/docs/
korp
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Outcome Interpretation
1 ∆i > ∆n > 0 Both pairwise accommodation and overall convergence to community norm are detected
2 ∆i = ∆n > 0 No pairwise accommodation; overall convergence to community norm is detected
3 ∆i > ∆n = 0 Pairwise accommodation is detected; no convergence to community norm
4 ∆i = ∆n = 0 No pairwise accommodation; no convergence to community norm

Table 1: Four likely outcomes of the experiment. ∆i is the change of linguistic distance between actively interacting
users, ∆n is the change of distance between non-interacting users.

Subforum tokens users prolific users
Computer 316M 187K 9.3K
Drugs 257M 123K 8.0K
Culture 434M 211K 12.2K
Home 348M 168K 10.0K
Sport 251M 105K 5.4K

Table 2: Basic statistics about the Flashback subforums.
Prolific users have written 6000 tokens or more

but without the temporal threshold. We consider
the temporal threshold useful, since Flashback can
have very long threads, sometimes spanning over
the years.

See the definition of “actively interacting users”
in section 2.4.

2.3 Measuring linguistic distance

Potential solutions. A traditional sociolinguistic
approach would be to identify a number of linguis-
tic variables (features for which variation is known
to exist) and use them for comparison (Nardy
et al., 2014).The main problem with this approach
is that most variables are not very frequent and
it is thus difficult to collect enough observations.
A traditional NLP approach would be to use
a language model (Danescu-Niculescu-Mizil
et al., 2013). Here, the main problem would be
to ensure that the model has enough training
data. We use a metric which is often applied in
authorship attribution studies, Cosine Delta (Smith
and Aldridge, 2011), a modification of Burrows’
delta (Burrows, 2002). Its main advantage is that
it can often be successfully applied to relatively
small datasets, and it is also computationally
efficient. It can also be considered a language
model, though a very simple unigram-based one.

Cosine Delta. To calculate Cosine Delta be-
tween two texts, the texts are represented as t-
dimensional vectors where every element is a z-
score (standard score) of the relative frequency of

one of t most frequent words. The cosine of the an-
gle between the two vectors gauges their proximity,
by subtracting it from 1, we get the distance (see
Equation 1).

∆∠(T, T
′) = 1− z(T ) · z(T ′)

||z(T )||2||z(T ′)||2
(1)

Cosine Delta has been shown to outperform Bur-
rows’ Delta and other similar measures (Jannidis
et al., 2015; Evert et al., 2015).

Evaluating the metric. A typical usage of Co-
sine Delta is to compare text X of unknown or
disputed authorship with texts by authors A and B
in order to see whose style is more similar to the
one used in X and whether the similarity is strong
enough to attribute the text. This is not the same
task that we have in mind. We want to compare
texts written by authors A and B at time P and
then at a later time Q in order to see whether the
styles of the two authors have become more simi-
lar. In other words, we are not trying to infer who
authored which text (we know that). Instead, we
want to be able to measure the distance between
two different authors.

To test whether Cosine Delta is suitable for that,
we run the following experiment. The main require-
ment for an evaluation is a meaningful benchmark
which can represent the ground truth. In order to
evaluate a distance measure we need a set of texts
between which true distances are known. We cre-
ate such a set by mixing texts produced by two
authors in different proportions. For two Flashback
users (A0 and A1), an equal amount of tokens is ex-
tracted and used to create six texts: Base (contains
solely the A0 production), 1 (80% of production
belongs to A0, 20% to A1; every token is randomly
selected), 2 (60% A0, 40% A1), 3 (40% A0, 60%
A1), 4 (20% A0, 80% A1) and 5 (100% A1), see
Figure 1.

We accept as ground truth that the distance be-
tween the Base text and, say, Text 1 should be
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Figure 1: The artificial benchmark for evaluating the
linguistic distance measure: six texts with different
proportions of the authors’ (A0 and A1) production.

smaller than between Base and Text 5. We use Co-
sine Delta to compare Texts 1–5 with the Base text,
rank them by their distance from Base and then
measure Spearman correlation coefficient between
this ranking and the true one (1, 2, 3, 4, 5).

We run the ranking test on 50 artificial sets, each
consisting of six texts generated from two differ-
ent authors’ production, as described above. All
data were extracted from the subforum Fordon och
trafik ‘Vehicles and traffic’ (not used in the main ex-
periment). The data were extracted consecutively
without any randomization, i.e. the extraction script
started from the beginning of the corpus, tried to ex-
tract a predefined number of tokens for every new
user it encountered and stopped when it collected
enough data for 100 unique users.

We try several combinations of two parameters:
t, the dimension of vectors (the number of the most
frequent words the frequencies of which will be
used), and n, the minimum size of the texts to
be compared (larger texts are expected yield more
reliable estimates). The frequency list is compiled
using the whole Flashback corpus (uncased). The
results are reported in Table 3.

The performance of the ranking system is very
high and increases as n increases. Unfortunately,
increasing n decreases sample size, since less user
pairs will be able to pass the thresholds (see Sec-
tion 2.4). We judge that the best balance be-
tween reliability of Cosine Delta and sample size is
reached with n = 3000 (ρ ≥ 0.95). For n = 6000,
the performance of Cosine Delta is better, but sam-

n t ρ ∆

1500 150 0.936 (0.1) 0.16 (0.06)
1500 300 0.936 (0.1) 0.15 (0.06)
1500 450 0.940 (0.1) 0.15 (0.06)
1500 600 0.944 (0.1) 0.15 (0.06)
3000 150 0.950 (0.1) 0.15 (0.07)
3000 300 0.952 (0.1) 0.14 (0.06)
3000 450 0.952 (0.1) 0.13 (0.06)
3000 600 0.952 (0.1) 0.13 (0.06)
4500 150 0.976 (0) 0.14 (0.08)
4500 300 0.978 (0) 0.13 (0.07)
4500 450 0.978 (0) 0.13 (0.07)
4500 600 0.978 (0) 0.13 (0.07)
6000 150 0.994 (0) 0.14 (0.06)
6000 300 0.994 (0) 0.13 (0.07)
6000 450 0.994 (0) 0.13 (0.07)
6000 600 0.994 (0) 0.13 (0.06)

Table 3: Evaluating Cosine Delta on 50 ground-truth
sets. n is the number of tokens in the compared texts, t
is the number of frequent words used to construct the
vector, ρ is the average Spearman correlation coefficient,
∆ is the average difference between authors A0 and
A1 (between base and text 5). Interquartile ranges are
provided in parentheses.

ple sizes (number of analyzable user pairs) are too
small. We use t = 300, since larger values do
not yield any gain for the chosen n values. Using
Pearson correlation coefficient instead of Spearman
yields approximately the same results (the values
are 1-2 percentage points lower, but the trends are
almost the same).

We also calculate average distance between
authors A0 and A1 (that is, between Base and
Text 5) to obtain a very rough estimate of average
distance between two different users. Later, when
we measure how linguistic distance changes over
time, we will use this estimate as a reference
point, something to compare the change against,
so that we can judge how large the effect size is.
For n = 3000 and t = 300, the average distance
is about 0.13 (though there is, unsurprisingly,
considerable variation).

Topic sensitivity. An important potential prob-
lem with measures like Cosine Delta is that they are
topic-sensitive, that is, the distance values can be af-
fected not only by differences in the authors’ styles,
but also by the topic, i.e., what the specific texts
are about (Mikros and Argir, 2007; Björklund and
Zechner, 2017). This is extremely undesirable for
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Figure 2: A visualization of how the periods before and after the active interaction has started are defined. Vertical
lines represent interactions, the horizontal lines represent time. n earliest tokens are sampled from the “before”
period, n latest tokens are sampled from “after”

Figure 3: Visualization of the threshold requirements.
Let the table cells represent how many tokens the User
has written in the Subforum in the given period. The
following condition must be met for the user pair to
be accepted: ((A1 ≥ n AND A2 ≥ n) OR (B1 ≥
n AND B2 ≥ n)) AND ((C1 ≥ n AND C2 ≥
n) OR (D1 ≥ n AND D2 ≥ n))

our purposes, since there is a risk that we observe
that a convergence which is not in fact linguistic:
the two authors do not start writing in a more simi-
lar way, they just start writing about more related
topics. To eliminate or at least mitigate this risk,
we always compare authors A and B by using texts
that A wrote in one subforum and B in another sub-
forum. While it is not completely impossible that
the authors discuss similar topics in different subfo-
rums, it seems unlikely that “topical convergence”
will systematically occur across subforums.

Note also that in the evaluation experiment de-
scribed above all users come from the same sub-
forum. Moreover, their production was extracted
from the corpus consecutively and thus at least
parts of it come from the same threads. That means
that the users are likely to discuss related topics,
and the ranking system must be able to capture
differences in style despite potential similarities in
topic, which it does very well.

2.4 Calculating distance change

As mentioned in Section 2.3, all our calculations
are always based on two subforums at once (for
instance, Home and Sport or Drugs and Computer).
We will call such pairs of subforums duplets (to
distinguish them from user pairs).

Two users are considered to have gone through a
period of active interaction if they have had at least
10 interactions within a year in each of the subfo-
rums (that is, no less than 20 interactions in total).
By requiring that the users actively interact in both
subforums we ensure that there is a theoretical rea-
son to expect convergence in both subforums and
that the data are generally more comparable. We
compare the production of users before and after
the active interaction period, but ignore the period
itself.

Within a subforum, the active period can have
any length from one day to 365 days. We do not
measure how often the users interact after the ac-
tive period, but we discard all texts that have been
produced more than one year later after the last
interaction (it may be that users continue to interact
and there are no messages to discard).

In other words, the general idea is that produc-
tion before the active period includes everything
written before the first interaction, production after
the active period includes everything written after
the tenth interaction (given that it is no more than
one year apart from the first interaction), but no
later than one year after the last interaction. We are,
however, dealing with two subforums at once, and
thus have two dates for each of the three seminal
interactions. For convenience, we want the active
period to be defined in the same way for both sub-
forums. We achieve that by using the earlier of
the dates for the first interaction and the later of
the dates for the tenth generation (this can lead to
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joint active period being longer than a year). When
discarding the messages that were written after the
users have stopped interacting (if any), we use the
later of the last interaction dates. See the visual
summary in Figure 2.

Users who have never had a single interaction are
labelled as non-interacting. We compare them to
actively interacting users and ignore all that end up
in between: that is, have had some interactions but
failed to pass the criteria outlined above (e.g. have
had less than 10 interactions in total or have had
more, but never 10 within a year). The reason for
that is that we want the difference between groups
(non-interacting and actively interacting users) to
be as large as possible, so that potentially small
effects can become visible.

Remember that we always want the linguistic
distance to be calculated using text from different
subforums. The procedure is as follows. For every
pair, if before the active period, User 1 has pro-
duced at least n (n = 3000) tokens in Subforum 1,
and User 2 has produced at least n tokens in Sub-
forum 2, we calculate the distance between them,
taking n tokens for User 1 from Subforum 1 and n
tokens for User 2 from Subforum 2.

Obviously, if User 1 has n or more tokens in
Subforum 2, and User 2 has n or more tokens in
Subforum 1, the distance is calculated using tokens
from Subforum 2 for User 1 and from Subforum 1
for User 2. If both conditions are met (Condition
1: User 1 has n or more tokens in Subforum 1 and
User 2 has n or more tokens in Subforum 2; Con-
dition 2: User 1 has n or more tokens in Subforum
2 and User 2 has n or more tokens in Subforum 1),
we calculate both cross-subforum distances and use
their arithmetic mean as the final result. If neither
of the conditions is met, the pair is discarded. This
procedure is visualized in Figure 3. The same user
can occur unlimited times in different pairs.

Note that when we calculate distance between
users A and B, we always use the same amount of
tokens (n) for A and B (since using texts of differ-
ent sizes might skew the Cosine Delta). For the
“before” period, we extract the earliest n tokens, for
the “after” period, the latest n ones (see Figure 2).
The idea is to maximize the temporal distance be-
tween the periods in order to see stronger effect.

For non-interacting users, it is not obvious how
to define “before” and “after”, since the active pe-
riod is not defined. We do the following: find the
earliest first interaction date and the latest last in-

teraction date across all actively interacting pairs.
Then we take the date which is exactly in the mid-
dle between those two as the active period (the
length of the active period is thus one day, which
is common for interacting pairs, too). Then exactly
the same procedure as for actively interacting pairs
is applied, using the middle date to divide the data
into “before” and “after”.

There are many more non-interacting pairs than
actively interacting ones, and calculating the dis-
tance change for all of them is computationally
expensive. We go through the list of all non-
interacting pairs in a randomized order and stop
when m pairs have met the conditions, where m is
five times the number of actively interacting pairs
that have met the conditions. The reason for this
decision is that the number of actively interact-
ing pairs is rather small for some combinations of
the subforums, and it makes sense to have some-
what larger samples at least for the non-interacting
group.

3 Results

We perform the comparisons for all possible com-
binations of subforums (ten duplets in total). The
results are summarized in Table 4. For every duplet
and every type of user pair (actively interacting
vs. non-interacting) we report sample size, average
distance change (∆before − ∆after) and the pro-
portion of pairs for which the change was positive
(the distance became smaller). Results for samples
where the number of pairs is less than 20 are not
reported.

Remember that in the evaluation experiment
(Section 2.3) we roughly estimated the average
distance between two different users to be around
0.13 for the chosen parameter values. While there
clearly is large variation, and while the average dis-
tance can be larger for the main experiment (since
the users’ texts come from different subforums, not
the same one), the estimate still provides us with a
reference point and helps to put the observed dis-
tance changes in perspective. For Home-Sport-i,
for instance, the average change is 0.033, which
is approximately 25% of 0.13. This means that
on average, actively interacting users in this duplet
change their styles so much that they cover one
quarter of an average distance the styles of two
different persons.

Overall, the distance tends to become shorter
both for interacting and non-interacting pairs. The
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Subforum1 Subforum2 type pairs positive change IQR
home sport i 29 0.828 0.033 0.042
home sport n 145 0.524 -0.012 0.081
computer drugs i 15 - - -
computer drugs n 75 0.680 0.048 0.096
sport drugs i 67 0.612 0.015 0.110
sport drugs n 335 0.546 0.002 0.094
home computer i 46 0.630 0.060 0.121
home computer n 230 0.617 0.029 0.089
home drugs i 22 0.682 0.101 0.201
home drugs n 110 0.664 0.028 0.081
sport computer i 89 0.607 0.031 0.153
sport computer n 445 0.600 0.027 0.105
home culture i 105 0.686 0.042 0.090
home culture n 525 0.608 0.020 0.078
sport culture i 332 0.506 -0.014 0.119
sport culture n 1660 0.619 0.009 0.101
drugs culture i 25 0.680 0.077 0.190
drugs culture n 125 0.584 0.023 0.115
computer culture i 144 0.694 0.058 0.114
computer culture n 720 0.640 0.032 0.107

Table 4: Results across the subforum duplets. Listed: whether the pair of users actively interacts or not (type);
total number of pairs in the sample; proportion of pairs for which ∆before −∆after is positive; average change
∆before − (∆after) and the corresponding IQR. Shaded are rows where sample size is smaller than 20 pairs
(considered unreliable)

Subforum1 Subforum2 ∆pos ∆change Outcome Comment p(∆pos) p(∆change)

home sport 0.304 0.045 3 div. for non-int.? 0.002 0.013
computer drugs - - - sample too small - -
sport drugs 0.066 0.013 1 or 2 0.180 0.177
home computer 0.013 0.031 1 or 2 0.485 0.134
home drugs 0.018 0.073 1 0.519 0.001
sport computer 0.007 0.004 2 small diff. 0.491 0.409
home culture 0.078 0.022 1 0.076 0.013
sport culture -0.113 -0.023 ? div. for int.? 1.000 0.994
drugs culture 0.096 0.054 1 0.242 0.018
computer culture 0.054 0.026 1 0.121 0.037

Table 5: Classification of outcomes (see Table 1) per duplet (see Table 4). ∆pos = difference between the proportions
of presumably accommodating pairs for interacting and non-interacting users (column positive in Table 4). ∆change

= difference between the average distance changes for interacting and non-interacting users (column change in
Table 4). p-values are significance values obtained by bootstrapping (those below 0.05 are boldfaced). Positive
values of ∆s and small values of ps indicate Outcome 1.
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proportion of pairs which (presumably) accommo-
date is larger than 0.5 in 19 cases out of 19 (though
only marginally so for Sport-Culture-i). The aver-
age change is positive in 17 cases out of 19 (but
note that IQR is very large in most cases, which
means considerable variation across pairs).

We compare the observed results with the pos-
sible outcomes in Table 5. We concentrate on the
effect size and the robustness of effect (how of-
ten the same pattern can be observed across du-
plets and thresholds) rather than statistical signifi-
cance testing (see Wasserstein et al. (2019) about
the limitations and pitfalls of this approach in gen-
eral and Koplenig (2019) in corpus linguistics in
particular). Nonetheless, we also calculate p-values
to estimate how likely it is that the observed (or
larger) differences between interacting and non-
interacting pairs could have arisen by chance. We
use a bootstrapping method: we randomly divide
all pairs into two samples of the same sizes as the
samples of interacting and non-interacting pairs
10,000 times and calculate the proportions of cases
when ∆pos and ∆change are larger than or equal to
actual values.

Out of nine duplets with sufficient sample size,
seven demonstrate the effects which are compat-
ible with either Outcome 1 (overall convergence
to a community norm and pairwise accommoda-
tion on top of that) or Outcome 2 (just overall con-
vergence) in Table 1. If we use the conventional
0.05 threshold for the p-values, then for four du-
plets (Home-Drugs, Home-Culture, Drugs-Culture,
Computer-Culture) at least one of the two p-values
is significant. We judge these four duplets to be
most compatible with Outcome 1. In the Sport-
Computer duplet, the differences are small, while
p-values are large, which indicates no difference
between interacting and non-interacting pairs, i.e.
Outcome 2. For Sport-Drugs and Home-Computer,
the differences are rather large, but the p-values
are above the threshold, which makes it difficult
to choose between Outcome 1 and Outcome 2. In
the Home-Sport duplet, there is a clear difference,
but the average distance change for non-interacting
users is negative, suggesting divergence. The pro-
portion of converging pairs is, however, marginally
larger than 0.5. We label this case as Outcome 3:
no clear effect for non-interacting users, thus no
evidence for convergence to a community norm.
Finally, the Sport-Culture duplet exhibits an un-
expected effect: the non-interacting users seem to

accommodate, while the interacting users do not
(according to the proportion measures) or even di-
verge (according to the average change).

4 Discussion

From Section 3 it is clear that not all the results
unambiguously point in the same direction. It is,
however, obvious, that in most cases distance does
become shorter, that is, users do converge. Nega-
tive results (distance becomes longer) are not only
less frequent, but also weaker than most of the
positive ones.

By comparing distance changes with the average
distance between two different users we show that
the effect sizes can be viewed as considerable.

The shortening trend tends to be stronger and
more robust for actively interacting pairs, but in
some cases there is not enough evidence to prefer
Outcome 1 over Outcome 2.

More direct insight into the process of conver-
gence would of course be desirable before it can
be stated with certainty that it is caused by inter-
actions. Nonetheless, our results provide evidence
that it actually can be so. In other words, we show
that convergence can exist (a necessary condition
is meant: distance changes are observed), but not
that it definitely exists.

Note that while a reversed causal link can be
suggested: users who have similar writing styles
will interact more often, or “birds of a feather flock
together” (McPherson et al., 2001), it can hardly
explain our results on its own: why would users
who write on the same subforum and especially
those who interact become linguistically closer
over time?

There are several reasons to why our results are
not as clean as one might want them to be (apart
from the obvious “random noise”). First, users
in the pairs that we label as “non-interacting” can
still interact in other Flashback subforums. Second,
while we showed that Cosine Delta is a very good
measure for linguistic distance, the definition of
an interaction is more arbitrary. There is already
a tradition of using the “post-nearby-in-the-same-
thread” measure (Hamilton et al., 2017; Del Tredici
and Fernández, 2018), but it has not really been
evaluated. Overall, further exploration of the same
(or similar) data is of course desirable. Different
experimental designs, different thresholds, differ-
ent measures would show how robust the observed
effects are.

422



We find the following questions particularly ap-
pealing for future studies.

• If we compare accommodation across inter-
acting pairs, will it be correlated with the num-
ber/intensity of interactions?

• What happens if we consider not only direct
connections between users, but also indirect
ones? If A interacts with B, B interacts with
C, but A does not directly interact with C: do
A and C become closer?

• What happens if A and C from the previous
example are pulling the style of B into differ-
ent directions?

• Why do we sometimes observe negative val-
ues that suggest divergence (the distance in-
creases)? Danescu-Niculescu-Mizil et al.
(2013) observe an increasing divergence be-
tween the community norm and the produc-
tion of a user who is become less active in the
community (and will eventually leave), but it
is unclear whether this can explain our results.

• Is it possible to explain convergence and di-
vergence better if we take into account the
content of the users’ posts and the relation-
ship between users?

5 Conclusions

We show that writing styles of users who partici-
pate in the same subforums do become more sim-
ilar over time and that this increase in similarity
tends to be stronger for pairs of users who actively
interact (compared to those who do not interact),
though this is not an exceptionless trend. These
results support the accommodation hypothesis (let
us repeat Labov’s wording: “the more often people
talk to each other, the more similar their speech
will be”).

It is desirable to see if the observed effects can
be replicated in similar studies with different exper-
imental settings.

All data and scripts necessary to reproduce the
study are openly available.4

4https://github.com/
AleksandrsBerdicevskis/
LinguisticConvergence
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Abstract

This paper reports on efforts to improve
the Oslo-Bergen Tagger for Norwegian
morphological tagging. We train two
deep neural network-based taggers using
the recently introduced Norwegian pre-
trained encoder (a BERT model for Nor-
wegian). The first network is a sequence-
to-sequence encoder-decoder and the sec-
ond is a sequence classifier. We test
both these configurations in a hybrid sys-
tem where they combine with the ex-
isting rule-based system, and on their
own. The sequence-to-sequence system
performs better in the hybrid configura-
tion, but the classifier system performs so
well that combining it with the rules is ac-
tually slightly detrimental to performance.

1 Introduction

The Oslo-Bergen Tagger (OBT, Hagen and Johan-
nessen 2003; Johannessen et al. 2012) is a widely
used tool for morphological tagging of Norwe-
gian text. It has existed in various incarnations
for around 25 years, first as a purely rule-based
system and later coupled with a statistical mod-
ule for disambiguation. In this paper, we report
on our recent efforts to bring the system into the
age of neural networks. The question that arises
is whether combining the neural system with the
existing rules will boost accuracy over a purely
neural system. We build two kinds of neural net
configurations, one encoder-decoder transformer
framework (sequence-to-sequence, seq2seq) and
one sequence classification (seqClass) approach.
We show that there are challenges in combining
rules and neural nets due to divergent tokenisa-
tions when the seq2seq approach is employed. In
the seqClass approach, on the other hand, the neu-
ral net performs so well that combining it with

the rule-based approach is actually detrimental to
performance, showing that rule-based methods are
not required in the morphological tagging of a
language like Norwegian, where a large language
model is available (NbAiLab, 2021) and there is
sufficient labeled data for fine-tuning. However,
we still believe that the rule-based system can be
useful for lemmatisation and compound analysis,
which we do not consider here.

The structure of the paper is as follows: In sec-
tion 2 we give some historical background on OBT
and in section 3 we describe the current status of
its rule-based component. Section 4 describes the
training and evaluation data that we have used in
developing the new systems. Section 5 then pro-
vides the details of how our neural systems were
trained. Section 6 describes how they were com-
bined with the rule system. Section 7 evaluates
the performance of each of the neural systems on
their own as well as in combination with the rules.
Section 8 concludes.

2 History of the Oslo-Bergen Tagger

The Oslo-Bergen Tagger was originally developed
between 1996 and 1998 by the Tagger Project at
the University of Oslo. Rules for morphologi-
cal and syntactic disambiguation were written in
the first version of the Constraint Grammar frame-
work (Karlsson et al., 1995), retrospectively called
CG1. The input to CG disambiguation rules is
multitagged text, i.e., text where each token has
been annotated with all possible lexical analyses.
Hence, the project also developed a lexicon with
lemmas and inflected forms (later known as Norsk
ordbank1) and a combined tokeniser/multitagger.
The tagger was developed for both Bokmål and
Nynorsk, the two written varieties of Norwegian.
In this article, we will only focus on the Bokmål

1https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-5/
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version of the tagger, and only on the tokeniser and
the morphological disambiguation.

On an unseen evaluation corpus with a wide va-
riety of text genres, OBT achieved an F1-score of
97.2 (Hagen and Johannessen, 2003, 90), with a
precision of 95.4 and a recall of 99.0. At the time,
this was considered acceptable as the tagger was
mostly used to annotate written corpora for lin-
guistic research, where a high recall was consid-
ered more important than a high precision.

Since 1998, both the tokeniser and the CG rule
interpreter have been changed or modernised sev-
eral times by different projects (Johannessen et al.,
2012). The latest version has an updated lexicon
and a tokeniser written in Python which in most
cases mirrors the original tokeniser, with the ma-
jor exception that multiword expressions like blant
annet (‘among other things’ - adverb) have been
removed from the lexicon and are now dealt with
in the CG module. The CG1 rules have been trans-
lated to the more efficient and expressive CG3
format and are used with a rule interpreter made
by the VISL project at the University of Southern
Denmark. Remaining morphological ambiguities
and lemma disambiguation are dealt with by a sta-
tistical module, implemented as a Hidden Markov
Model. This OBT+Stat system achieved an accu-
racy of around 96% (Johannessen et al., 2012).

3 The rule-based tokeniser and tagger

In this section, we first present some of the main
tasks for the tokeniser and multitagger before we
give a short description of the constraint gram-
mar module. The multitagger uses a lexicon with
all possible lexical readings, where a reading is a
combination of a lemma and a morphosyntactic
tag chosen from a set of 149 possible analyses.2

The main principle for tokenisation is to split to-
kens on blank space or a sentence delimiter like a
full stop or a question mark. For each token iden-
tified, the original word form is looked up in the
lexicon. Non-sentence initial capitalised words are
identified as proper nouns, while other words that
exist in the lexicon are assigned all readings found
there. If the word is not found in the lexicon and is
not identified as a proper noun, the word is sent to
a compound analyser. Most unknown words will
get an analysis here, as many of them are produc-
tively created compounds. Some words will still

2The complete list is available at http://tekstlab.
uio.no/obt-ny/morfosyn.html.

get the tag ukjent (‘unknown’) from the tokeniser.
These words are often dialect words not standard-
ised in the lexicon or foreign words. Figure A in
the Appendix shows how the tokeniser and mul-
titagger deals with the sentence TV-programmet
"Ut i naturen" begynner kl. 21.15. (‘The TV pro-
gram "Ut i naturen" starts at 21.15.’), which has
quotation marks, abbreviations, and a time expres-
sion.

The tokeniser also identifies sentence bound-
aries using sentence delimiters, a list of known
abbreviations and linguistic rules. Headlines are
identified by rules as well and get their own tag.

The constraint grammar module takes tokenised
and multitagged text as input and its main task is
to reduce the number of readings to ideally one per
word. The number of readings left by the multitag-
ger varies a lot. In the test corpus used in this arti-
cle (which will be further described in Section 4)
there are on average 2,04 readings per word. After
the CG rules are applied, there are on average 1,09
readings left per word.

Figure B in the Appendix shows the output from
the CG module in debug mode for the sentence
Rosa cupcakes hører kanskje med når man skal
ha bloggtreff? (‘Pink cupcakes might be part of
a blog meeting?’). Readings that have been re-
moved start with “;” and the ID numbers of the
rules applied are appended to each reading. Note
that the English loan word cupcakes is not iden-
tified in the lexicon or in the compound analyser
and has got the tag ukjent ‘unknown’. The com-
pound bloggtreff ‘blog meeting’ was not in the
lexicon but has got two readings from the com-
pound analyser. As the examples show, there are
both REMOVE rules (remove a reading) and SE-
LECT rules (select a reading). A rule can be very
simple, like rule 2430 in Figure 1 that says “select
the verb infinitive reading if the verb to the left is
a modal auxiliary and not in the set of dangerous
infinitives (= not likely infinitives)”.

#:2430
SELECT:2430 (verb inf) IF
(NOT 0 farlige-inf)
(-1 m-hj-verb)
;

Figure 1: Simple SELECT rule

Figure 2 shows an example of a more complex
rule with linked context conditions somewhere to
the right in the sentence. The rule says: “choose
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the subjunction reading – if somewhere to the right
there is a safe noun or pronoun (stop looking if a
word on the way has a reading that is not an ad-
verb, adjective or determinative) – and – if there
is a word in the present or past tense after the
noun/pronoun (adverbs between are fine).”

#:2579
SELECT:2579 (sbu) IF
(...)
(**1C subst/pron BARRIER

ikke-adv-adj-det)
(**1C subst/pron LINK *1

ikke-adv LINK 0 pres/pret)
;

Figure 2: More complex SELECT rule

The CG grammar for Bokmål has more than
2300 rules. 1995 of them are SELECT rules.
Some rules apply to all possible words, while
some are rules for specific word forms. REMOVE
rules look the same as SELECT rules but remove
a reading instead of selecting it. During devel-
opment, we checked the impact of each rule on
the recall and precision on a training corpus of
100 000 words from novels, newspapers and mag-
azines before it was added to the rule set.

4 Training and evaluation data

The training and evaluation corpora that were used
in earlier stages of development of the OBT sys-
tem are no longer suitable because the tagset and
the tokenisation principles have evolved. Instead
of bringing this corpus up to date, we chose to
use the Norwegian Dependency Treebank (NDT,
Solberg et al. 2014) in the development of the
latest version of OBT. The Bokmål part of NDT
is around 300 000 tokens and consists of blog
text, news text, parliament proceedings and gov-
ernment white papers. A problem that we only
later became aware of is that most of the raw
text contained in the NDT probably went into
the Norwegian BERT encoder that we use in our
machine learning experiment, which may have
caused some data leakage, even if the model did
not see the tagged text.

While the principles for annotation in NDT and
OBT are close, there are still differences in detail.
To ensure that the annotations were as aligned as
possible, we ran OBT without statistical disam-
biguation on the pure text of the NDT and com-
pared the output to the NDT annotations. If the
NDT analysis was not among the analyses pro-

duced by OBT, we either corrected the NDT an-
notation if that was the source of the error, or
changed the rules of the OBT system if that could
easily be done. This process was iterated a few
times. The goal was to improve the quality of the
training data for the neural component and to align
the output of the OBT with the NDT as the an-
notation guidelines were slightly different. Also,
since the plan was to combine OBT with a neu-
ral system, ambiguity reduction by OBT was not
a goal in itself if we thought the ambiguity could
be resolved by the neural component. Notice that
during this period, the whole data set was used
for development, which inflates the performance
of the rules (and hence the hybrid system we dis-
cuss later on) somewhat. But in practice, relatively
few changes were made and we did not achieve a
full alignment of the annotation guidelines.

The performance of the rule-based system by
the end of this phase is shown in Table 1. We
see that OBT produces a correct and unambigu-
ous analysis for 90.7% of the tokens and only (one
or more) incorrect analyses for 1.8% of the tokens.
For 7.5% of the tokens, OBT produces an ambigu-
ous analysis containing the correct tag as one pos-
sibility, and the role of the statistical system in a
hybrid setup is to pick the correct analysis in these
cases. The results are noticeably different from
those reported during testing in the nineties (see
Section 2), probably because we were not able to
fully align the annotation principles of OBT and
NDT, and because the precision was calculated
differently back then (for example, both the mas-
culine and the feminine reading were regarded as
one correct reading for ambiguous feminine and
masculine nouns in unmarked contexts).

result freq
unambiguous correct 280650 (90.7%)
ambiguous incl. correct 23219 (7.5%)
wrong 5413 (1.8%)

Table 1: Performance of the rule-based system

Finally, for the neural systems, we split the cor-
pus into train-dev-test sets. While doing this, we
applied a simple process for making sure the out-
put tags in the training set covered all output tags
in the dev and test sets. The aim is to ensure that
the model was trained with samples from all tags.
We do this by, first, initializing the Python random
seed as 0, then, splitting the data and checking if
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the training set covers all tags. If it does not, we
increase the random seed by one and do the same
until we find a training set that covers all the tags
in the other sets. This way, we randomly split the
dataset into 80-10-10 percent partitions to obtain
train-dev-test datasets respectively.

5 The neural systems

Recently, a BERT (Devlin et al., 2018) pre-trained
encoder (nb-bert-base) was published by the Nor-
wegian National Digital Library (Kummervold
et al., 2021). This pre-trained encoder for Norwe-
gian provides a rich feature set that was previously
lacking for the language. Furthermore, since the
tagged corpus is very small in comparison to the
corpus the pre-trained model was trained on, it is
important to use the pre-trained model to be able
to generalise to unseen data. We use two different
neural system configurations that incorporate this
encoder.

5.1 The seq2seq configuration

With this configuration, we follow an approach
similar to that of Omelianchuk et al. (2020) to
tag the sentences using the pre-trained model.
Seq2seq models have two main components: an
encoder and a decoder. The encoder side is set
as the encoder nb-bert-base (NbAiLab, 2021). For
the decoder, we randomly initialise 6 layers of size
768 with 12 attention heads. The decoder also has
cross-attention layers as it was shown to be effec-
tive in seq2seq training (Gheini et al., 2021). We
freeze the encoder weights throughout the train-
ing since using the encoder as a feature extraction
mechanism in this way was shown to be benefi-
cial (Zoph et al., 2016) and is a common prac-
tice (Gheini et al., 2021). We use the EncoderDe-
coderModel provided by the HuggingFace trans-
formers library (Wolf et al., 2020) to configure and
train a model.

The encoder-decoder model gets as its input the
identifiers of the tokens (token numbers) in the in-
put vocabulary and outputs the token numbers in
the output vocabulary. Thus, the input and output
are tokenised using these vocabularies. Since the
encoder model had already been trained (nb-bert-
base) using the widely-utilised sub-word tokeniser
Wordpiece (Wu et al., 2016), we use that tokeniser
as provided by the Huggingface Tokenizers li-
brary. For the decoder side, since our vocabulary
size is very small and obvious (82 tags and 5 extra

special tokens such as [CLS] and [SEP]), we do
not need to train a special tokeniser. We define the
vocabulary manually with these output tokens for
use by the Wordpiece tokeniser.

The data were formatted to train the seq2seq
network. Figure 3 shows an example of input and
output for a sentence. The input is the tokenised
form of the sentence. The output is the sequence
of serialised tags for each token in the input. The
token <next_token> is an indicator that all tags of
the corresponding input token have finished and
tags of the next input token start afterward.

INPUT: Men det er bare noe jeg tror .

OUTPUT:
:konj: clb <next_token>
:pron: 3 ent nøyt pers <next_token>
:verb: pres <next_token>
:adv: <next_token>
:pron: 3 ent nøyt pers <next_token>
:pron: 1 ent hum nom pers <next_token>
:verb: pres <next_token>
$punc$ :clb: <punkt>

Figure 3: A sample of sentence input and output
for seq2seq training.

The training configuration is as follows: We use
the Adam optimiser (Kingma and Ba, 2015) with
a learning rate of 0.0001. We set the batch size
to 16 sentences as this is the amount the graphic
cards could handle. We use the negative log-
likelihood loss (Yao et al., 2020) to compute the
loss in each batch between the model output and
the expected output. For any other parameter not
mentioned in this section, we use the default value
defined by version 4.17.0 of the Transformers li-
brary in the objects of the following types: Bert-
Config, EncoderDecoderModel, EncoderDecoder-
Config, and BertModel.

We evaluate the model using the dev set dur-
ing the training. We do this by using the BLEU
score (Papineni et al., 2002) that is widely uti-
lized to evaluate seq2seq models. We compute
the BLEU score between the expected output and
the model output for each sentence. We get the
average of these scores for the whole dev set.
We run the training for 300 epochs and keep the
model that results in the maximum average BLEU
score for the dev set. To combine the model out-
put with the rules, we use the model’s .gener-
ate() function (HuggingFace, 2023a) implemented
by the library. We set the early_stopping, re-
turn_dict_in_generate, and output_scores param-
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eters to True. We set num_return_sequences and
num_beams to 10 to get the 10 most probable
readings given a sentence.

5.2 The seqClass configuration

Sequence classification – also referred to as to-
ken classification – is a method used to classify
a sequence (one or more tokens) into one or more
classes such as the type (person, organisation) or
sentiment (positive, negative). BERT models have
multiple layers that are pre-trained on the lan-
guage. The Norwegian pre-trained BERT outputs
12 layers (also called hidden states) where each is
a 768-dimension vector for each token. Thus, this
output is input to a classifier to classify each to-
ken. The HuggingFace transformers library (Hug-
gingFace, 2023b) provides a token classification
framework that can be used for this purpose. It
adds a linear layer on top of the hidden states to
make sequence classification possible using the
pre-trained encoder.

The dataset has 82 different tags which are used
together in different combinations. We observe
that the training set has 327 different uses of these
combinations.3 Thus, we treat each combination
as a class for this computation. We classify each
token into one of these classes which indicates a
tagset for that token. We do this by labeling each
class as a sequence of zeros and ones where each
digit corresponds to one tag. Figure 4 shows an ex-
ample of tokens and classes of those tokens, where
the length of the class names (0’s and 1’s), which
is really 82, is shortened to fit into the figure. The
position of 1’s in the string indicates the tag as-
signed to the token. For example, for the first
token “Men” the first two columns are assigned
which indicate the “:konj:” and “clb” tags (see
also Figure 3 for tags of this sentence).

Men 1100000000000000000000000000000000
det 0011111000000000000000000000000000
er 0000000110000000000000000000000000
bare 0000000001000000000000000000000000
noe 0011111000000000000000000000000000
jeg 0000100000111000000000000000000000
tror 0000000110000000000000000000000000
. 0000000000000111000000000000000000

Figure 4: A sample of a sentence’s tokens and
their classes used in sequence classification.

3In addition to the 149 morphosyntactic analyses (see
footnote 2), this includes combinations with various tags that
do not convey morphosyntactic information and are ignored
during evaluation.

Throughout the training, we use the default pa-
rameters defined in the library. We use the Adam
optimiser (Kingma and Ba, 2015) with an adaptive
learning rate starting from 0.00005. The library
uses Cross Entropy Loss (Zhang and Sabuncu,
2018) and picks the model that performs best on
the dev set by computing an F1 score. We check
the dev set performance for each epoch and run
the training for 30 epochs. When combining the
model output with the rules, we use the unnor-
malized final scores of the model (logits) and use
torch.topk() to get the topmost 10 probable read-
ings given a sentence.

6 Combining neural nets and rules

To combine the output of a neural tagger with the
CG tagger, we need to find the intersection of the
tag assignments produced by the two taggers. Ide-
ally, we would be able to find such intersections
for each individual token separately. However,
since the probability of a reading for a particu-
lar token depends on the selected readings for all
other tokens in the sentence, the only viable op-
tion is to consider readings for entire sentences.
Thus, for each input sentence, we extract the ten
most probable tag assignments produced by the
network. Then, for each reading in this list, or-
dered by decreasing probability, we go through
each token and check whether the tag assigned by
the network is also found among those left by the
CG disambiguation rules. If it is not found, we
skip to the next reading in the list. If it is found,
we go on to check the next token, and so on until
we reach the end of the sentence, at which point
the reading is picked as the selected one for the
sentence. When the tokenisations are different, it
is not clear what to do. But if the tokens are the
same, but the intersection of the sets of possible
tags left by the CG system and the neural net is
empty, we can default to the most probable read-
ing in the neural net output.

Figure 5 shows a case where the tokenisation
of the seq2seq neural system does not match with
that of OBT. The neural system has split the ini-
tial, unknown proper name at a hyphen, whereas
the CG tagger keeps it as one token. Since tokeni-
sation is part of a preprocessing step and misalign-
ments in tokenisation is a problem to be solved
separately from tag assignment, we simply disre-
gard such sentences in the evaluation. However, it
should be noted that this problem is only acute for
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the seq2seq system, which produced mismatching
tokenisation in 205 out of 2003 sentences (10.2%).
For the seqClass system, the problem is smaller:
57 out of 2003 sentences (2.8%).

Neural net: Garosu - gil , som betyr [...]

CG: Garosu-gil , som betyr [...]

Figure 5: Mismatching tokenisation

Figure 6 shows the problem of mismatching
tags. For the first word, the CG tagger has left
five possible analyses, and the neural net has cor-
rectly disambiguated to the plural adjective read-
ing. However, OBT did not recognise the sec-
ond word, cupcakes, and has therefore left an uk-
jent (‘unknown’) tag while the neural system has
no analysis with that tag. Notice that the figure
only shows the neural system’s most probable as-
signment of tags to the whole sentence. The ac-
tual output is a probability distribution over tag
assignments, but in this case, no probability was
assigned to any tag assignment containing the uk-
jent tag for cupcakes, which is the only analysis
produced by the rule system.

Neural net:
Rosa adj fl pos
cupcakes subst appell fl mask ub <---
hører verb pres
kanskje adv
med prep
når sbu
man pron ent hum nom pers
skal verb pres
ha verb inf
bloggtreff subst appell ent nøyt ub
? clb <spm>

CG:
Rosa adj fl pos

adj nøyt ub ent pos
adj ub m/f ent pos
subst appell ubøy
subst appell fem be ent

cupcakes ukjent <---
hører verb pres
kanskje adv
med prep
når sbu
man pron ent hum nom pers
skal verb pres
ha verb inf
bloggtreff subst appell ent nøyt ub

subst appell fl nøyt ub
? clb <spm>

Figure 6: Non-intersecting tags

For such cases, we default to the most proba-
ble analysis generated by the neural net. This is
not necessarily the best option: as we will see in

system accuracy
pure seq2seq 92.71

seq2seq + OBT 94.15
pure seqClass 100.0

seqClass + OBT 99.99

Table 2: Accuracy of different systems

Section 7, the seq2seq system is often incorrect in
cases where the tag assignments do not intersect.
Moreover, the problem of mismatching tag assign-
ments is quite common, happening in 386 out of
the 2003 sentences (19.3%).

In the seqClass system, non-intersecting tag as-
signments are even more frequent, at 466 sen-
tences (23.3%). However, as we will see in the
next section, the neural net in this configuration is
more precise than the rules, so that defaulting to
its output yields the correct reading.

7 Evaluation and error analysis

We evaluate both the seq2seq system and the seq-
Class system on their own and as combined with
the rule-based system in the way described in Sec-
tion 6. This yields four different systems. The per-
formance of the four systems is shown in Table 2.

These numbers are only computed over sen-
tences where the tokenisation matches. This
means that the seq2seq system, in both its pure
and hybrid form, is tested only on sentences where
the seq2seq system, the OBT tagger and the gold
agree on the tokenisation. As we saw in section 6,
this means that 10.2% of the test data are left
out. It would have been possible to test the pure
seq2seq system on the sentences where its tokeni-
sation agrees with the gold, without considering
what OBT does, but since we want to compare the
pure neural system to the hybrid system, we held
the evaluation set constant between these two se-
tups. Similarly, for the seqClass system, we left
out the 2.8% of sentences where either OBT or
the neural system had tokenisation that does not
match the gold for both the pure and the hybrid
system. Notice that this means the seqClass sys-
tem is tested on a larger set of sentences than the
seq2seq system.

Overall, we see that the seqClass system per-
forms best and in fact achieves a perfect score.
This is of course a rather debatable result, which
we will look into in section 7.2. But notice that
the 2.8% of sentences with diverging tokenisations
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are incomparable and therefore not evaluated here,
though they could obviously be considered errors
of the system.

7.1 The seq2seq system

The seq2seq system performs reasonably well on
its own, but clearly benefits from being intersected
with the rules, yielding a 1.3% accuracy boost to
94.1%. By contrast, the widely used Spacy tagger
reports an accuracy of 95.0% for morphological
tagging of Norwegian UD.4

Most of the errors in this setup comes from
the fact that we default to the best neural analy-
sis when there is no intersection. As it turns out,
the neural system is wrong in most of these cases.
If we restrict attention to only sentences where the
tags intersect (70.5% of the total), accuracy is at
99.0%. Put another way, when we reduce the test
set in this way, its size decreases by 8036 tokens
from 26648 to 18612, but the number of errors de-
creases from 1940 to 565. This indicates an error
rate of 17.1% on the tokens in sentences where the
intersection of the tag assignments from the neural
system and the CG tagger is empty.

Turning now to the kind of errors the seq2seq
system makes, we show the twelve most common
error types of the pure and the hybrid system in
Table 3 and Table 4 respectively. We see that the
most common error is mixing up the distinction
between neuter and common gender adjectives,
which in many cases is not expressed morpholog-
ically. Other than that, most errors involve either
over- or underpredicting the tag :prep: (preposi-
tion). This error source is somewhat reined when
the system is interfaced with the rules. But many
errors of this kind remain, either because this anal-
ysis is also suggested by the rules and so picked as
the most probable tag, or more likely because there
is no intersection between the tag assigments, i.e.
neither :prep: nor any other tag suggested by the
neural system is among the tags left by the rule-
based system.

Overall, this confusion around the :prep: tag
seems a distinct deficit of the seq2seq model.
Other errors, such as those involving gender, or the
number of indefinite neuter nouns (which make
no morphological singular/plural distinction), or
the identification of perfect participles which of-

4See https://spacy.io/models/nb. As the Nor-
wegian UD corpus (Øvrelid and Hohle, 2016) is an automatic
conversion of the NDT corpus, the complexity of the tasks
should be comparable, although the test split is not identical.

ten co-exist with homonymous adjectives in Nor-
wegian (as in other Germanic languages, cf. En-
glish ‘bored’) are more as one would expect from
any system because there might not be enough
signal in the training data to pick up the distinc-
tions, which often depend on subtle properties of
the context. However, what we observe here is that
intersecting with the rules actually worsens the ac-
curacy. The hybrid system overapplies the adjec-
tive analysis in two different varieties for a total
of 17+13 errors. By contrast, in the pure seq2seq
setup, this error is not frequent enough to figure
in the table. It does occur in 21 cases, but that is
still notably less than in the hybrid system. This
shows that the CG rules wrongly disambiguate
these cases, which is not surprising since the dis-
tinction as made according to the NDT guidelines
relies on semantic distinctions. It would be hard to
tune the CG rules to those distinctions, and we did
not make any attempt at that, but there seems to be
enough signal in the data for the seq2seq system
to pick it up to some extent.

7.2 The seqClass system

The seqClass system achieves a suspicious, per-
fect score on our test set when used alone, and
makes one error when combined with the rules.
This error is instructive in itself: it concerns
a single-word "sentence", namely the heading
"Justisdepartementet" (‘The Department of Jus-
tice’). The CG tagger considers this a common
noun. This is only the fifth most probable tag ac-
cording to the neural net, but it is among the pos-
sibilities and so it is chosen by the hybrid system,
although the gold considers it a proper noun.

This is the only instance of such an error. In
other words, the seqClass system not only assigns
the highest probability to the correct tag in ev-
ery case, but also performs well enough as to not
rank any incorrect suggestions by the CG system
among the top 10 readings that we consider for in-
tersection, except in this one case.

The looming question is of course how the sys-
tem manages to perform so well. Some degree of
overfitting must have taken place, but can hardly
explain everything. Moreover, as we noted in Sec-
tion 4, it is likely that all or at least most of the
raw text of NDT went into the Norwegian BERT
model, which may have caused some data leakage.
More worryingly, we cannot completely exclude
the possibility that the language model has been
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Gold tag Predicted tag Freq
[’:adj:’, ’ent’, ’nøyt’, ’pos’, ’ub’] [’:adj:’, ’ent’, ’m/f’, ’pos’, ’ub’] 24
[’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] [’:prep:’] 24
[’:prep:’] [’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] 19
[’:verb:’, ’pres’] [’:prep:’] 18
[’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] [’:subst:’, ’appell’, ’ent’, ’fem’, ’ub’] 18
[’:prep:’] [’:subst:’, ’prop’] 17
[’:subst:’, ’appell’, ’ent’, ’fem’, ’ub’] [’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] 16
[’:prep:’] [’$punc$’, ’:<komma >:’] 15
[’:prep:’] [’:verb:’, ’pres’] 14
[’:subst:’, ’appell’, ’fl’, ’mask’, ’ub’] [’:subst:’, ’appell’, ’fem’, ’fl’, ’ub’] 14
[’:subst:’, ’mask’, ’prop’] [’:subst:’, ’prop’] 14
[’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] [’:subst:’, ’appell’, ’ent’, ’nøyt’, ’ub’] 14

Table 3: Most frequent errors, pure seq2seq system

Gold tag Predicted tag Freq
[’:adj:’, ’ent’, ’nøyt’, ’pos’, ’ub’] [’:adj:’, ’ent’, ’m/f’, ’pos’, ’ub’] 22
[’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] [’:subst:’, ’appell’, ’ent’, ’fem’, ’ub’] 18
[’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] [’:prep:’] 18
[’:prep:’] [’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] 17
[’:verb:’, ’pres’] [’:prep:’] 17
[’:verb:’, ’perf-part’] [’:adj:’, ’<perf-part>’, ’ent’, ’m/f’, ’ub’] 17
[’:prep:’] [’:subst:’, ’prop’] 16
[’:verb:’, ’perf-part’] [’:adj:’, ’<perf-part>’, ’ent’, ’nøyt’, ’ub’] 13
[’:subst:’, ’appell’, ’fl’, ’mask’, ’ub’] [’:subst:’, ’appell’, ’fem’, ’fl’, ’ub’] 13
[’:prep:’] [’:verb:’, ’pres’] 12
[’:subst:’, ’appell’, ’ent’, ’nøyt’, ’ub’] [’:subst:’, ’appell’, ’fl’, ’nøyt’, ’ub’] 12
[’:verb:’, ’perf-part’] [’:prep:’] 11

Table 4: Most frequent errors, hybrid seq2seq system

exposed to the CONLL file (and hence the manu-
ally corrected tags), although it seems unlikely. In
any case, we would have expected some errors in
the tokens where we changed the analysis. More-
over, none of these factors would explain why the
model is also able to assign a very low probability
to the incorrect suggestions from the CG.

We plan to conduct a more thorough test of the
system on recent text which the BERT model can-
not have been exposed to. So far we have only
been able to conduct a very preliminary test. We
downloaded web text from nrk.no (the Norwegian
national broadcaster) from 2023, i.e. after the Nor-
wegian BERT was published. This text was tagged
both with the original system of OBT + HMM-
based disambiguation, and with the new seqClass
system. For the first 2000 tokens, we inspected
all mismatches between the two systems, on the
(questionable) assumption that whenever the two
systems agree, the tag is likely correct. We found
144 discrepancies, and by manual judgement 137
were considered errors by the old system, and 7
were considered errors by the pure seqClass sys-
tem. This evaluation method is obviously not per-
fect, but it does suggest that the pure seqClass sys-

tem makes very few errors. Further proper evalua-
tion must follow, but the results are clear enough to
discourage future work on the rule-based system.5

8 Conclusion

We have presented our efforts to improve the Oslo-
Bergen tagger for Norwegian morphological tag-
ging. Two neural systems were trained, based on a
sequence-to-sequence setup and a sequence clas-
sifier setup, both built on top of the Norwegian
BERT model of Kummervold et al. (2021). Both
were tested on their own and in combination with
the rule-based OBT system. The sequence-to-
sequence system did not outperform earlier bench-
marks on its own, but improved when combined
the rules. However, the sequence classification
setup was much better and in fact achieved a sur-
prising perfect score on the test set. While we will
explore the causes of this, preliminary testing on
new data supports the conclusion that the new sys-
tem makes very few errors, and we will focus on
validating this in a more proper evaluation setting.

5The seqClass model is available for download at
https://github.com/textlab/norwegian_ml_
tagger.
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Appendix: sample multitagger and CG output

<word>Tv-programmet</word>
"<tv-programmet>"
"tv-program" subst appell nøyt be ent
samset-leks <*program> <+programmet>

<word>«</word>
"<«>"
"$«" <anf>
<word>Ut</word>
"<ut>"
"ut" prep
"ut" adv
<word>i</word>
"<i>"
"i" prep
"i" subst appell mask ub ent
<word>naturen</word>
"<naturen>"
"natur" subst appell mask be ent
<word>»</word>
"<»>"
"$»" <anf>
<word>begynner</word>
"<begynner>"
"begynne" verb pres
"begynner" subst appell mask ub ent
<word>kl.</word>
"<kl.>"
"kl." subst appell fork
<word>21.15</word>
"<21.15>"
"21.15" subst <klokke>
"21.15" det kvant
<word>.</word>
"<.>"
"$." clb <<< <punkt> <<<

Figure A: Tokenised and multitagged sentence

<word>Rosa</word>
"<rosa>"
"rosa" adj fl pos
"rosa" adj nøyt ub ent pos
"rosa" adj ub m/f ent pos
"rosa" subst appell ubøy
"rose" subst appell fem be ent
; "rosa" adj be ent pos REMOVE:2311
<word>cupcakes</word>
"<cupcakes>"
"cupcakes" ukjent
<word>hører</word>
"<hører>"
"høre" verb pres
<word>kanskje</word>
"<kanskje>"
"kanskje" adv
<word>med</word>
"<med>"
"med" prep
<word>når</word>
"<når>"
"når" sbu SELECT:2579
; "nå" verb pres SELECT:2579
; "når" adv REMOVE:3383
<word>man</word>
"<man>"
"man" pron ent pers hum nom
SELECT:3451

; "man" subst appell fem ub ent
SELECT:3451

; "man" subst appell mask ub ent
SELECT:3451

; "mane" verb imp SELECT:3451
<word>skal</word>
"<skal>"
"skulle" verb pres <aux1/perf_part>
<aux1/infinitiv>

<word>ha</word>
"<ha>"
"ha" verb inf <aux1/perf_part>
SELECT:2430

; "ha" interj SELECT:2430
; "ha" subst symb REMOVE:3574
; "ha" verb imp <aux1/perf_part>
SELECT:2430
<word>bloggtreff</word>
"<bloggtreff>"
"bloggtreff" subst appell nøyt ub ent
samset-analyse <+treff>

"bloggtreff" subst appell nøyt ub fl
samset-analyse <+treff>

<word>?</word>
"<?>"
"$?" clb <<< <spm> <<<

Figure B: Tokenised, multitagged and disam-
biguated sentence
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Abstract

While discourse segmentation and pars-
ing has made considerable progress in
recent years, discursive analysis of con-
versational speech remains a difficult
issue. In this paper, we exploit a
French data set that has been manu-
ally segmented into discourse units to
compare two approaches to discourse
segmentation: fine-tuning existing sys-
tems on manual segmentation vs. using
hand-crafted labeling rules to develop a
weakly supervised segmenter. Our re-
sults show that both approaches yield
similar performance in terms of f-score
while data programming requires less
manual annotation work. In a second
experiment we play with the amount of
training data used for fine-tuning sys-
tems and show that a small amount
of hand labeled data is enough to ob-
tain good results (albeit not as good as
when all available annotated data are
used).

1 Introduction
Discourse parsing is the decomposition of texts
or conversations in functional units that en-
code participants intentions and their rhetori-
cal relationships. Segmentation in these units
is the first step for other levels of analysis, and
can help downstream NLP tasks.

Discourse parsing involves determining how
each part of a discourse contributes to the dis-
course as a whole—whether it answers a ques-
tion that has been asked, provides an explana-
tion of something else that was said, or signals
(dis)agreement with a claim made by another
speaker. The first step, then, is to decompose
a discourse into minimal parts that can serve

such discursive functions. We will use the
term elementary discourse unit (EDU; Asher
and Lascarides, 2003) to designate a minimal
speech act or communicative unit, where each
EDU corresponds roughly to a clause-level con-
tent that denotes a single fact or event. While
EDU segmentation of written documents has
received a lot of attention from the discourse
and NLP community, this is less true for seg-
mentation of conversational speech. Conversa-
tional data has mostly been approached from
either (i) a dialogue act segmentation and tag-
ging perspective, and usually on rather task-
oriented dialogues (Dang et al., 2020) or (ii)
punctuation prediction to enrich transcripts
obtained with Automatic Speech Recognition
(Batista et al., 2012).

We assume that this situation encourages a
bias toward written genres that can be prob-
lematic for discourse segmentation, because
those genres (newspapers, literature,...) tend
to include long complex sentences, while ac-
tual conversations are made of relatively short
contributions. Non-sentential units (Fernán-
dez et al., 2007), which often consist of only a
single word, are extremely frequent in conver-
sation and can convey full communicative acts,
such as an answer to a question or a commu-
nicative feedback, that are crucial for modeling
discourse structure.

In this paper we benefit from a fully seg-
mented corpus, the Corpus of Interactional
Data (CID; Blache et al., 2017), for running
a set of experiments on discourse segmenta-
tion. This data set is challenging as it consists
of 8 long conversations (1 hour each) alter-
nating between interactive narrative sequences
like (1) (with a clear dominant speaker hold-
ing long turns made of many discourse units)
and more dialogical sequences like (2) (made
of very short, very often incomplete, turns
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that sometimes need to be grouped together
to form a valid discourse unit).

(1) [on y va avec des copains]du [on
avait pris le ferry en Normandie]du
[puisque j’avais un frère qui était en
Normandie]du [on traverse]du1

[we went there with friends]du [we took
the ferry in Normandy.]du [since I had
a brother who was in Normandy]du [we
cross]du

(2) A : tu vois à peut près où ///c’est///2

you know more or less where ///it is///
B: ///oui///
///yes///
A: ouais
yeah

EDUs have become a central topic for dis-
course parsing (Zeldes et al., 2019a), and in
this paper we present two main experiments
designed to (i) compare EDU segmentation ap-
proaches on our challenging data set and (ii)
evaluate the impact of the amount of hand-
labeled data used for training. More precisely
we first compare the results of several base-
lines with (i) state-of-the-art level segmenta-
tion systems fine-tuned on the CID and (ii) a
weakly supervised approach bootstrapped by
hand crafted labeling functions. Our second
experiment consists in varying the amount of
hand-labeled data used either for training the
base model from scratch or for fine-tuning an
existing written text segmenter.

2 Previous and Related work

2.1 Discourse Segmentation
Discourse segmentation had been largely ne-
glected by work in discourse parsing, and
mostly applied to English corpora (Wang et al.,
2018), until a few years ago when the mul-
tilingual, multi-framework disrpt campaigns
were introduced (Zeldes et al., 2019b, 2021a).
The present paper relies heavily on the French
model, Tony (Muller et al., 2019), from those
campaigns. Built on the Allen NLP library
(Gardner et al., 2018), Tony is a sequential
tagging model over contextual embeddings,

1Color alternation is used to highlight discourse
units.

2///***/// indicates overlapping speech.

namely multilingual BERT (Devlin et al.,
2018), that treats segmentation as a token clas-
sification problem where each token is either a
beginning of a segment or not.

While the overall best segmenter on the
disrpt tasks is currently Gessler et al. (2021),
this segmenter requires syntactic parsing,
which is unreliable for highly spontaneous
conversational speech of the kind in CID.
Moreover, for the sake of our experiment,
simple pipelines (based on plain text for
Tony) are preferable to more sophisticated
ones. Finally, Tony is on par with the best
performing French model? (Bakshi and
Sharma, 2021). See (Zeldes et al., 2021b) for
details on the performance of existing systems.

Gravellier et al. (2021) adapted Tony to con-
versational data by (i) fine-tuning it on a con-
versational data set and (ii) adopting a data-
programming approach similar to what we pro-
pose here. However, the transcriptions used in
their work were obtained from a recording set-
ting with a unique microphone. In CID, each
participant is recorded on a separate chan-
nel, and the transcription of the corpus was
fully manual and even corrected several times
to reach very high transcription accuracy for
a conversational corpus. Moreover, only a
small portion of the corpus used by Gravellier
et al. (2021) contains gold EDU segmentation
(≈ 1100 units), as this corpus was segmented
to train a weakly supervised labeling model
guided by hand-crafted labeling rules. The
present work is grounded on a completely dif-
ferent data set, CID (Blache et al., 2009), that
has been fully manually segmented. This cor-
pus provides over 17000 discourse units to ex-
periment with, which allows us to evaluate the
quantity of supervised data that is needed to
equal or improve performance over the weakly
supervised model.

2.2 Weak supervision
For the weak supervision part of our ex-
periments, we rely on the so-called “data
programming” approach proposed by Ratner
et al. (2017). The general principle is to
design multiple overlapping heuristic rules for
a classification problem, then aggregate them
statistically to automatically produce noisy
labels on unannotated data that can then be
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fed to a regular supervised model.

This approach has been implemented in
the Snorkel library (Ratner et al., 2017) and
also independently adapted in the Skweak
framework of Lison et al. (2021) and the
Spear library (Abhishek et al., 2022). These
frameworks provide both an API to define
heuristic rules and an aggregation model for
the rules. Their output is a noisily annotated
data set that can then be used to train
the supervised model of one’s choice. This
approach has been used in discourse analysis
to enrich a discourse parser (Badene et al.,
2019), and is also the basis of the work in
Gravellier et al. (2021) mentioned above. For
our final supervised model, we adopted the
architecture of Gravellier et al. (2021), but
trained it on a different noisy data set.

As explained above, the general idea behind
data programming is to leverage expert knowl-
edge by writing a set of labeling functions
(LF) that can be developed and tested over a
very small amount of annotated development
data. The system builds a profile for each
(LF) and a model is trained by combining all
LFs (LFs being weighted by their accuracies).
This model is then used for labeling a training
set and finally a supervised model is trained
on the data set that had been automatically
annotated by the label model.

These frameworks leave open the choice of
the final supervised model, since their output
is just a (noisily) annotated data set. As the
final supervised model, we used the same archi-
tecture as previously mentioned work on seg-
mentation Gravellier et al. (2021), but only
train it on the noisy data set.

3 Gold EDU segmentations

The Corpus of Interactional Data (CID) (8
dyadic conversations, 1 hour duration for each)
(Blache et al., 2009, 2017) was segmented fol-
lowing guidelines designed for written docu-
ments (Muller et al., 2012) that were modified
for spoken conversational data. These guide-
lines thus combine semantic and discourse cri-
teria (used in particular in monological se-
quences like (1)) with dialogical and interac-

tional ones (that are more useful in dialogical
sequences like (2)). The CID displays highly
spontaneous data with colloquial sequences
like (3) or strong disfluencies like (4) making
discourse segmentation a much more difficult
task than on written genres, even for humans.
The whole data set consists of about 125 000
tokens for 15,463 discourse units (12,4% of
the tokens are EDU boundaries). EDUs are
obtained from at least two manual annota-
tions (obtained from 4 naive coders and 2
experts). The mean Cohen’s κ-score across
speaker for naive coders is 0.85 (min: 0.83 ;
max :0.87). Annotations were performed with
Praat (Boersma, 2002) in order to have ac-
cess to signal word-alignment when making
segmentation decisions. The discourse anno-
tations (Prévot et al., 2021) are available from
Ortolang platform : https://www.ortolang.
fr/market/item/ortolang-000918.

(3) A: [comme ça # ah ouais non c’était]du
A: [like that # oh yeah no it was]du
B: [ah ouais profitez profitez de vos
soirées]du
B: [oh yeah enjoy enjoy your
evenings]du
A: [ouais c’est pour ça]du
A: [yeah it’s for that]du

(4) [ou des euh non pas des f- pas des
frustrations]du [des # espèces de euh #
mhm # ouais des des vues différentes
sur le boulot quoi]du
[or some uh no not some f- not some
frustrations]du [some kind of uh #
mh # yeah some some different views
about work what]du

4 Method
In this work we use the existing imple-
mentation of Tony (Muller et al., 2019)
and that of Gravellier et al. (2021), called
tony-w(ritten) and tony-s(poken), respec-
tively, as baselines. Our first experiment con-
sists in comparing a supervised model (fine-
tuning ‘Tony’ baselines with our annotated
data) against the weakly supervised data-
programming approach. In a second experi-
ment, we explore the impact of the amount of
data used for fine-tuning the models.

Transcripts from the CID do not include any
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name Polarity Coverage Overlaps Conflict Correct Incorrect Accuracy
tony_written 0,1 1.000 0.976 0.0632 102446 8994 0.919
no_pause 0 0.898 0.898 0.0474 94706 5415 0.946
long_pause 1 0.054 0.054 0.0094 5353 683 0.887

very_long_pause 1 0.032 0.032 0.0051 3399 162 0.955
extreme_pause 1 0.022 0.022 0.0037 2357 48 0.980

pause_begin_pos 1 0.042 0.042 0.0101 4362 328 0.930
pause_ending_pos 1 0.036 0.036 0.0097 3338 652 0.837
non_ending_tok 0 0.323 0.323 0.0009 35579 365 0.990
pause_begin_tok 1 0.055 0.055 0.0111 5533 617 0.900
pause_ending_tok 1 0.005 0.005 0.0005 550 22 0.962

dm_bi_ini 1 0.012 0.012 0.0059 1146 222 0.838
non_begin_tok 0 0.005 0.005 0.0001 530 9 0.983
feedback_cluster 0 0.026 0.026 0.0012 2763 87 0.969

repeat 0 0.088 0.088 0.0124 8678 1141 0.884
filled_pause 0 0.071 0.071 0.0055 7428 570 0.929

truncated_word 0 0.016 0.016 0.0013 1629 169 0.906

Table 1: Labeling Function statistics

kind of punctuation ((punctuating conversa-
tional speech was taken to be a complex prag-
matic annotation task that relies on prosody
and other sources of information that are not
part of the transcription process). Punctua-
tion, however, is a crucial cue for existing dis-
course segmenters based on written text. We
therefore decided to introduce breaks by treat-
ing all pauses in our experiments that were
over 200 ms as introducing commas in the to-
ken sequence, and all pauses over 900 ms as
indicators of “document separation” (like a pe-
riod in written text). This allowed to help
the baseline models trained on textual data
and written genres. The idea behind such a
short (200 ms) pause duration is that pauses
signal places in which a discourse segmenta-
tion is likely to happen. When facing these
pause/comma tokens, the systems then try to
distinguish those corresponding to discourse
breaks from the other ones. This does not
mean that the system does not predict dis-
course boundaries at other locations.

4.1 Fine Tuning
Fine-tuning of both tony-w and tony-s–
where the latter results from fine-tuning the
former with data from a conversational cor-
pus using the data programming approach–
proceeded in the same fashion. We first contin-
ued to train the original models with the same
configurations but with CID labeled data. We
conducted a cross-validation experiment in

which 7 conversations (7 hours) are used for
fine-tuning both models and tested on the re-
maining eighth conversation, and performed a
permutation to obtain a cross-validation.

4.2 Data-Programming
Like Gravellier et al. (2021), we pulled from
our knowledge of conversational French to de-
fine hand-crafted rules (i.e. labeling functions)
for the data programming approach. Our ap-
proach differed in important ways from that
of Gravellier et al. (2021), however, stemming
in part from difference in the target data sets
and also preprocessing choices. While (Grav-
ellier et al., 2021) attempted to exploit more
prosodic and acoustic information in their la-
beling functions, our rules are based solely
on time-aligned (at token level) transcription,
NLP annotations (POS-tagging) and duration
(in particular pause duration). We also opted
for a different POS-tagger: while (Gravellier
et al., 2021) used Spacy (Honnibal and Mon-
tani, 2017) we chose Stanza (Qi et al., 2020)
because it offers a ‘spoken’ model for French
which proved to be more reliable than Spacy
for tagging crucial tokens specific to conversa-
tional speech. Both the original Tony model
and the model developed by Gravellier et al
are used to define heuristic LFs.

Table 1 presents the most important label-
ing functions (LF) retained after various exper-
iments on the development set. The columns
of this table are the ones produced by the La-
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@labeling_function()
def long_pause(x):

return BEG if (x["prev-tok"]=='#' and x['prev_dur'] > LONG_PAUSE) else ABSTAIN

@labeling_function()
def non_ending_tok(x):

return NOBEG if x["prev-tok"] in NON_ENDING else ABSTAIN

@labeling_function()
def pause_and_ending_pos(x):

if ((x["prev-tok"]=='#') and (x["prev_dur"] > PAUSE)
and (x["pprev-pos"] in ENDING_POS)):

return BEG
else:

return ABSTAIN

@labeling_function()
def repeat(x):

return NOBEG if x["tok"] in [x["prev-tok"],x["pprev-tok"],x['ppprev-tok']]
else ABSTAIN

@labeling_function()
def filled_pause(x):

return NOBEG if ((x["prev-tok"] in FP) or (x["tok"] in FP)) else ABSTAIN

@labeling_function()
def truncated_word(x):

if (str(x["prev-tok"])[-1]=='-'):
return NOBEG

elif ((str(x["pprev-tok"])[-1]=='-') and (x["prev-tok"] in [',','*','euh'])):
return NOBEG

else:
return ABSTAIN

Figure 1: Labeling Function examples

beling Function Analysis function provided by
Snorkel: Polarity states whether the LF la-
bels a boundary or the absence of a boundary;
Coverage corresponds to the percentage of in-
stances for which the LF was triggered; Over-
laps quantifies the proportion of times other
LFs are firing at same time as a given LF;
Conflict quantifies whether any other LFs pre-
dict a different label; Correct/Incorrect is the
amount of correct/incorrect labels based on
the development data set and this also defines
Accuracy.

Unsurprisingly, tony contributes signifi-
cantly to the prediction of segment bound-

aries. Rules based on pause duration (e.g.
long_pause in Figure 1) and POS also had
a considerable impact on results as did lists
of tokens associated with the presence or ab-
sence of EDU boundaries. Non-ending to-
kens, for example, include various pronouns,
determiners, prepositions, negations and ini-
tiating discourse markers (See full list in the
Appendix). Most of the selected rules in-
volving tokens and POS use pauses as addi-
tional criteria (pause_ending_pos). The rules
repeat, filled_pause and truncated_word
target disfluencies, which are generally asso-
ciated with the absence of an EDU bound-
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ary. Finally feedback_cluster targets se-
quences of acknowledgement tokens that gen-
erally constitute a single EDU (e.g., ah ouais
d’accord/oh yeah right).

The main interest of data-programming is
to aggregate sources of information to per-
form the classification task. For our pur-
poses, the core idea was to combine text-based
existing segmentation models with conversa-
tional/spoken expert knowledge expressed via
labeling functions, and thus our discussion in
Section 5 focuses on results the include tony.
We note, however, that it is possible to com-
pare the results with data-programming mod-
els that do not rely on an existing text-based
segmentation model. These models tend to
have much higher precision (> 0.75) but low
recall (< 0.6) and overall, a lower f-score (≈
0.67). This is due to the fact that the expert
LFs are rather precise but fail to cover many
cases common to monological sequences in con-
versation and monologue in text, where tony
excels. On the other hand, tony tends to pre-
dict too many boundaries, leading to the drop
in precision observed when its predictions are
taken into account.

4.3 Amount of labeled data
We experimented on varying the amount of la-
beled data used to train the supervised model
(10, 20, 30, 50 or 80%). This was done either as
fine-tuning of tony-w (ft) or as direct train-
ing from the base model (no-model) which is
a simple BERT model in our case.

5 Results and Discussion

5.1 Fine-tuning vs. Data programming
The results of the baselines, fine-tuning and
the data-programming approach constitute a
global coherent picture. Tony baselines show
a high recall (Figure 2) but with a relatively
low precision (Figure 3). tony-spoken starts
out significantly worse than tony-written.
This is probably due to (i) the relative low
quality of the transcriptions used for training
tony-spoken and perhaps the nature of our
data which is conversational but hosts a
significant amount of narrative sequences.

The baselines based on pause duration only
(we show here pause baselines at 200ms and

Figure 2: Boundary recall for various
configurations; green dashed line = Data-
programming

500ms) exhibit a surprisingly high precision,
showing the relevance of using this cue as
a signal for discourse units. They do miss
quite a few cases but overall perform well
(especially with a threshold of 200ms). The
missing boundaries are discourse units not
separated by any pauses, like in (1) for
example.

Figure 3: Boundary Precision for various
configurations, green dashed line = Data-
programming

Fine-tuning really helps tony models: recall
remains high and precision increases signif-
icantly (Figure 4). Fine-tuning allows the
model to distinguish which commas (pauses)
do not introduce discourse segments.

The comparison of f-scores (Figure 4) of
fine-tuning and data-programming approaches
does not yield significant differences. It seems
to validate the interest of the weakly super-
vised data programming approach since writ-
ing the labeling rules requires much less effort
than manually segmenting a large corpus.

441



Figure 4: Boundary F-score; green dashed line
= Data-programming

5.2 Amount of hand labeled data
In our second experiment, we incrementally
reduced the amount of annotated data used to
train a supervised model in order to determine
whether performance would decrease strongly
if only a small amount of annotated data were
provided.

Figure 5: F-score for the supervised models
trained on 1, 5, 10, 20, 30, 50, 80% of the
original training data set (nomodel: just base
BERT, ft: fine-tuned). We also indicate the
score of the data programming model (dp).
Bands are 95% confidence interval based on
the cross-validation.

The results presented in Figure 5 suggest
that even if more data is better, a small
amount of training data (here 10% corre-
sponds to about 1500 discourse units which is
still a significant annotation effort) is enough
to really improve the base model. This result
mitigates the previous finding: since efficiently
fine-tuning existing models does not seem to

require annotating a lot of data, the difference
in terms of efficiency between hand-labeling
and developing a set of labeling functions is
not huge, suggesting that both approaches are
worth exploring depending on the use case.

5.3 Error Analysis
Error analysis of both data programming
and the fine-tuned models yields interesting
observations. As expected, phenomena that
are really specific to conversational speech
are the main sources of errors. For exam-
ple ‘quoi’/‘what’ is a very common French
function word that is heavily used in final
position in conversational speech (with a
rather unclear function) (Delafontaine, 2020).
This item was a major source of error.

Relative clauses anchored on extremely light
hosts were also problematic, particularly when
they had a restrictive function as in (5). The
data-programming approach tended to seg-
ment after relative pronouns whether they in-
troduced restrictive or non-restrictive clauses,
which generated some over-segmentation.

(5) [genre des gens || qui étaient au même
niveau que moi]du
[like people || that were at the same
level as me]du3

Another important source of error was com-
plex disfluencies involving discourse markers
as illustrated in (6).

(6) [mais là # || mais euh || mais là c’ est
normal]du
[but in that case ||# but uh || but in
that case it is normal]du

The fine-tuned model introduced errors of its
own. It did not segment on certain discourse
marker cues like ‘mais’/‘but’ and ‘si’/‘if’. It
does not seem to judge them to be reliable
initiators of discourse units.

A second source of error for this model was
the repetition of presentative constructions
‘c’est’/‘it is’ of which an extreme example is
given in (7).

3In the error analysis examples, || stands for a false
positive (added a boundary in a wrong place) and $$
for false negative (missed a boundary).
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(7) [non c’ est plus de la recherche]du $$
[c’ est de la c’ est de la # c’ est #
a-]du # [ouais voilà]du # [c’ est de la
t- c- c’ est]du $$ # [co- comment ça
s’ appelle]du $$ [c’ est de la # || de la
capitalisation]du
[no it is not research anymore]du $$ [it
is some it is some # it is # a-]du #
[yeah that’s right]du [# it is some t- c-
it is h-]du # [how do you call it]du $$ [it
is some # some capitalisation]du

There are a wide range of other errors
represented, though they are less frequent.
They include (i) long pauses (>1s) that
do not actually split a discourse unit. As
explained above, our preprocessing step splits
‘documents’ based on pauses that last more
than 900ms, and while during fine-tuning,
the models see that a ‘document start’ does
not always correspond to a ‘discourse unit
start’, document starts tend to be used
for detecting boundaries (because they are
always in the model before fine-tuning); (ii)
dialogical structures (involving both speakers)
that are currently not handled; (iii) reported
speech (that was systemically segmented in
the manual annotation even if sometimes the
reported speech introduction was extremely
light in content).

In the CID, there are two kinds of sequences:
(i) narrative sequences in which one of the par-
ticipants tells a story (with an interactive fla-
vor involving feedback and production from
the other participant but in which there is a
clear main speaker and a narrative flow), and
(ii) transition sequences where the participants
comment and chat about these stories, as well
as negotiate who will tell the next story and
what it will be about. As expected, narra-
tive sequences are better handled by our mod-
els, even when produced at a relatively fast
pace that did not allow for pauses between dis-
course units like (8) which is the continuation
of our example (1) and in which there are no
pauses (longer than 200 ms) but several dis-
course units.

(8) [on y va avec des copains]du [on avait
pris le ferry en Normandie]du [puisque j’
avais un frère qui était en Normandie]du

[on traverse]du [on avait passé une nuit
épouvantable sur le ferry]du
–
[we went there with friends]du [we took
the ferry in Normandy.]du [since I had
a brother who was in Normandy]du [we
cross]du [we spent a terrible night on
the ferry]du

However, even in narrative sequences some
common spoken constructions seem to cause
problems for the models, including presenta-
tives such as y a/y avait (Lambrecht, 1988) in
(9).

(9) [on est rentré dans un bar # qui fai-
sait boîte]du $$ [y avait # que nous]du
# $$ [y avait la musique # à fond les
ballons]du
–
[we entered a bar # that was also a
nightclub]du $$ [there was # only us]du
# $$ [there was music # (that was) ex-
tremely loud]du

6 Conclusion and Discussion

In this work we have compared different ap-
proaches for building a discourse unit seg-
menter adapted to French conversations. We
had access to a manually segmented corpus of
significant size which allowed us to perform
a wide range of experiments. First we com-
pared the option of (i) using our conversational
data set to fine-tune an existing discourse seg-
menter developed and trained for written data,
(ii) a data-programming approach that makes
use of the same “text-based” discourse seg-
menter but enriched with manual defined rules
(Labeling Functions). We found that both ap-
proaches yielded similar results. This suggests
that both approaches are worth considering de-
pending on the exact use case. While data-
programming requires some heuristic rule en-
gineering, fine-tuning requires annotated data
that is costly to obtain, especially for relatively
expert tasks such as discourse segmentation.

We also ran a second experiment to investi-
gate (i) how much manually annotated data
is required before reaching the same perfor-
mance as the data-programming approach; (ii)
whether starting from a written base segmen-
tation model was useful at all (compared to
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training the segmenter directly over the BERT
pretrained language model). To the first ques-
tion, it is noteable that given the significant
variability between folds, only a small amount
of annotated data (∼ 20%) is sufficient to get
close to the best results we obtained. More-
over, starting from a written discourse seg-
menter model or directly from BERT did not
significantly change the results.

Overall, our findings suggest that annotat-
ing (segmenting) a large amount of conversa-
tion might not be necessary since both the
data-programming approach (that makes use
of an existing discourse segmenter developed
on written data) and a model trained with
little data (here about 2700 discourse units)
yielded results comparable to a model fined-
tuned on our whole training set (13500 dis-
course units).

Breaking down the performance of the dif-
ferent models, we see that both the fine-tuned
model and the weakly supervised one improve
over the pause baselines. While pauses are
strong predictors (rather high precision for a
baseline), many discourse units are not pre-
ceded by a pause, so extra cues are needed.
Both models seem to easily learn how to seg-
ment within “fluent monologues” (even with-
out pauses)—an result likely explained at least
in part by the role of the existing discourse
segmenter and the relevant language model.
However, when speech becomes strongly dis-
fluent,4, in particular when disfluency gets
tangled up with discourse markers that typi-
cally signal discourse segment starts, both ap-
proaches struggle. Finally, certain construc-
tions, such as presentatives, which are fre-
quent in conversational language but absent
from written data, are also an issue. Overall
while the models are definitely useful as dis-
course segmenters, their scores are way below
the state-of-the-art obtained on written text.
Apart from the fact that the task of EDU seg-
mentation is arguably more difficult for spo-
ken language, underlying biases carried by seg-
menters trained on written data could explain
in part why our models remain relatively con-
fused when facing token sequences found only
in conversational data sets, despite fine-tuning

4Both approaches seem to overcome simple disflu-
ency, like the presence a filled pause and/or a content
word repetition, relatively well.

or our attempt to add heuristic specific rules.
As future work, we plan to refine our ex-

periments by separating discourse units into
two categories: easy and difficult to segment.
Indeed, in conversation, a sizeable amount
(about 19%) of discourse units are trivial to
segment (single or lexical feedback items pre-
ceded and followed by long pauses) while some
others, as we have seen in error analysis, are re-
ally complex to delineate. Our opinion is that
separating these two cases at all stages (includ-
ing inter-coder agreement measures) will allow
us to learn more about discourse segmentation
of conversation and ultimately help in develop-
ing better performing models.
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A Useful token list for Labelling
Functions

• BEGIN_TOK = DM_INI + PRO_SUJ
+ FEEDBACK

• ENDING_TOK = quoi,hein

• NON_ENDING_TOK = PRO_SUB +
PRO_OTH + PRO_REL + DEM +
DET + PREP + OTHER + NEG +
DM_INI

with the following lists:

• PRO_SUB = je, tu, il, vous, on, nous,
elle, ils, elles, j’,c’,t’,y

• PRO_OTH = me, te, se, mes, tes, ses,
mon, ton, son, ma, ta, sa, nos, vos , leur
,ceux

• PRO_REL = qu’, que, qui, quel

• DEM = ce, cette, ces, cet

• DET = le, la, les, un, une, des , l’, d’

• PREP = à, de, par, pour, en, dans, chez,
sur, sous, pendant, avec

• OTHER = soit, juste, pendant, surtout,
chaque, quelque, quelques, sauf

• NEG = n’, ne

• DM_INI = mais, donc, parce, ah, alors,
c’est-à-dire, puisque, bah

• FEEDBACK = mh, ouais,
ah, oui, bon, voilà, putain,oh,
okay,ok,euh,ben,et,d’accord, non

B Part-of-Speech list for Labelling
Functions

• NON_ENDING_POS = DET, CCONJ,
SCONJ, ADP

• ENDING_POS = INTJ

• BEGINNING_POS = INTJ, CCONJ,
SCONJ

• NON_BEGINNING_POS = VERB,
AUX

• NO_RULES = ADJ, NOUN, ADV,
NUM, PROPN, X
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Université Paris Saclay & LISN

INRIA Paris
jose.rosales-nunez@inria.fr
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Abstract

This work presents a novel Variational
Neural Machine Translation (VNMT) ar-
chitecture with enhanced robustness prop-
erties, which we investigate through a de-
tailed case-study addressing noisy French
user-generated content (UGC) translation
to English. We show that the proposed
model, with results comparable or superior
to state-of-the-art VNMT, improves per-
formance over UGC translation in a zero-
shot evaluation scenario while keeping op-
timal translation scores on in-domain test
sets. We elaborate on such results by vi-
sualizing and explaining how neural learn-
ing representations behave when process-
ing UGC noise. In addition, we show that
VNMT enforces robustness to the learned
embeddings, which can be later used for
robust transfer learning approaches.

1 Introduction

The specificities of user-generated content (UGC)
leads to a wide range of vocabulary and gram-
mar variations (Foster, 2010; Seddah et al., 2012;
Eisenstein, 2013). These variations result in a
large increase of out-of-vocabulary words (OOVs)
in UGC corpora with respect to canonical parallel
training data and raise many challenges for Ma-
chine Translation (MT), all the more since com-
mon language variations found in UGC are actu-
ally productive (there will always be new forms
that will not have been seen during training).
This fact limits the pertinence of “standard” do-
main adaptation methods such as fine-tuning1 or
normalization techniques (Martı́nez Alonso et al.,
2016) and urges the development of robust ma-
chine translation models able to cope with out-

1As the fine-tuning data will only reflect a frozen state of
idiosyncrasies.

of-distribution (OOD) texts in a challenging zero-
shot scenario in which the target distribution is un-
known during training.

To address the problem raised by OOD texts,
an increasing number of works (Setiawan et al.,
2020; Schmunk et al., 2013; McCarthy et al.,
2020; Przystupa, 2020; Xiao et al., 2020) explore
the possibility to combine deep learning with la-
tent variable (LV) models, which are indeed able
to capture underlying structure information and to
model unobserved phenomena. The combination
of these models with neural networks was shown
to increase performance in several NLP tasks (Kim
et al., 2018). In this work, we focus on a specific
latent variable model for MT, Variational NMT
(VNMT) (Zhang et al., 2016) which has been
reported to have good performance and interest-
ing adaptability properties (Przystupa, 2020; Xiao
et al., 2020).

The goal of this work is twofold. First, we aim
to evaluate the performance of VNMT when trans-
lating a special kind of OOD texts: French social-
media noisy UGC. To account for the challenges
raised by the productive nature of UGC, we con-
sider a highly challenging zero-shot scenario and
assume that only canonical texts2 are available for
training the system. We hypothesize that, by lever-
aging on Variational NMT, latent models can build
more robust representations able to represent OOD
observations that are symptomatic of noisy UGC
and automatically map them to in-distribution in-
stances, which can be more easily translated.

Furthermore, to account for the diversity of
UGC phenomena, we introduce a new exten-
sion of VNMT that relies on Mixture Den-
sity Networks (Bishop, 1994) and Normalizing
Flows (Rezende and Mohamed, 2015). Intuitively,

2We consider the corpora generally used to train MT sys-
tems as “canonical” as they contain texts following the set
of standard grammatical and morphological source-language
rules.
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each mixture component extracts an independent
latent space to represent the source sentence and
can potentially model different UGC specifici-
ties. Interestingly, extracting embeddings from
our zero-shot model that has never seen any UGC
data and using them in a classic transformer-based
NMT model leads to a stronger, more robust to
UGC noise model. This is in line with the regular-
izing character of VNMT (Zhang et al., 2016).

Our contributions can be summarized as fol-
lows:

• we study the performance, in a zero-shot sce-
nario, of VNMT models and evaluate their
capacity to translate French UGC into En-
glish, which resulted in a consistent improve-
ment of translation quality;

• we introduce a new model that uses state-of-
the-art transformer as the backbone of a vari-
ational inference network to produce robust
representation of noisy source sentences, and
whose results outperform strong VNMT and
non-latent baselines when translating UGC in
a zero-shot scenario. Specifically, our model
demonstrates a high robustness to noise while
not impacting in-domain translation perfor-
mance;

• by probing the learned latent representations,
we show the importance of using several la-
tent distributions to model UGC and the posi-
tive impact of the ability of VNMT models to
discriminate between noisy and regular sen-
tences while maintaining their representation
closer in the embedding space;

• we report evidence that our VNMT models
act as regularizers of their backbone models,
leading to more robust source embeddings
that can be later transferred with a relatively
high performance gain in our zero-shot UCG
translation scenario.

2 Background and related works

Variational Neural Machine Translation Vari-
ational Inference (VI) methods (Kingma and Ba,
2015) are generative architectures capable, from
a distributional perspective, of modeling the hid-
den structures that can be found in a corpus. In
a sequence-to-sequence MT task, where x and y
are respectively the source and target sentences,
VNMT (Zhang et al., 2016) architectures assume

there exists an hidden variable z modeling the im-
plicit structure (i.e. relations) between the bilin-
gual sentence pairs. In the context of UGC trans-
lation, we believe that this latent variable can cap-
ture the variations between a source sentence and
its canonical, normalized form, recovering its un-
derlying meaning and ensuring that the represen-
tation of the former is close to the representation
of the latter.

To make computations tractable, in spite of the
latent variable, VI combines a so-called varia-
tional posterior qϕ(z|x,y) that is chosen to ap-
proximate the true posterior distribution, with
prior p(z|x); and a neural decoder generative dis-
tribution, pθ(y|x, z), in charge of generating the
translation hypothesis conditioned on the latent
variable. Once the family of densities q is chosen,
the parameters of the two distributions are jointly
estimated to model the output y by looking for
the parameters (θ,ϕ) that maximizes the evidence
lower bound objective function:

log pθ(y) ≥ Eqϕ(z|x,y)[log pθ(y|x, z)]
−DKL[qϕ(z|x,y)||p(z|x)]

(1)

Normalizing Flows One of the major caveats
of variational methods is that choosing the prior
q(z) is a complicated process that requires some
a priori knowledge of the task. In practice, a nor-
mal distribution with fixed parameters (generally
µ = 0.0 and σ = 1.0) is often chosen due to the
simplicity of its re-parametrization for sampling.
However, such an assumption can be restrictive
when modeling more complex processes.

Regarding this issue, Rezende and Mohamed
(2015) propose to enhance variational methods
with Normalizing Flows (NF) (Tabak and Turner,
2013). A chain of normalizing flows is a series
of simple bijective functions automatically cho-
sen to extract a more suitable representation for
the task at hand from a random variable, by alle-
viating the restrictions of choosing a default fixed
prior. Concretely, a base distribution q0(z0), that
generates the initial latent codes, z0, undergoes
a series of invertible and smooth transformations
f : Rd → Rd, called flows. Then, the random
latent variables z are transformed to the random
variable z′ = f(z) after each flow:

q(z′) = q(z)

∣∣∣∣det
∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det
∂f

∂z

∣∣∣∣
−1

(2)
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Finally, we can build an arbitrarily K-long
chain of fk transformations to generate the final
latent variables, zK , from the initial random vari-
ables, z0, which is drawn from the base distribu-
tion q0(z0) (often chosen to be N (0, 1)):

zK = fK ◦ ... ◦ f2 ◦ f1(z0)

ln(qK(zK) = ln(q0(z0))−
K∑

k=1

ln

∣∣∣∣det
∂fk

∂zk−1

∣∣∣∣
(3)

In MT, normalizing flows were recently used to
improve VNMT models: Setiawan et al. (2020)
show that using them in an in-domain evalua-
tion setting results in an increase of +1.3 BLEU

points on the IWSLT’14 (De-En) and +0.2 BLEU

points on the WMT’18 (En-De); in a simulated
out-domain evaluation, NF still improve transla-
tion quality: adding NF to the model trained on
WMT’18 result in a +0.9 BLEU score improve-
ments than the baseline Transformer system and
+0.6 compared to the VNMT without using NF.

Mixture Density Networks Mixture Density
Networks (MDN) are another interesting general-
ization of variational encoding for modeling UGC.
By using MDN, the posterior distribution of the
current decoding step p(z|x,yt) is no longer ap-
proximated by a single variational distribution
qϕ(z|x,y1:t−1) but by a linear combination of
variational posteriors q̃mϕ (z|x,y1:t−1):

p(z|x,yt) =

M∑

m=1

αm(x,y1:t−1)· q̃m(z|x,y1:t−1)

(4)
where αm are known as the mixing coefficients.
Intuitively, an MDN can be interpreted as a com-
bination of M variational encoders. Our intuition
is that, since UGC contains a large number of
different kind of variations, covering very differ-
ent aspects ranging from morphology to phonet-
ics, including lexicon and sentence structure (Sed-
dah et al., 2012); by using several independent
VI components we can account for multiple UGC
phenomena. Thus, with an MDN, it is possible
that each component of the variational encoder is
able to model different UGC specificities, allow-
ing us to better process UGC as a whole. In the
past, MDN has been used to address sequence-to-
sequence generative tasks, such as SketchRNN
(Ha and Eck, 2018) and modeling of sequential
environment states in reinforcement learning (Ha
and Schmidhuber, 2018).

Gumbel-Softmax sampling Regarding the
mixing coefficients definition, we also explore
the use of a categorical probability distribution,
for which probabilities are calculated by the
network, such as in Ha and Eck (2018). Unlike
theirs, our supervised end-to-end training requires
backpropagating the error gradient through the
variational network via reparametrized sampling
(Kingma and Welling, 2014) which poses op-
timization challenges because of the discrete
random variables used as latent vector for cat-
egorical distributions. For this reason, we use
the reparametrization of this distribution via the
Gumbel-Softmax sampling (Jang et al., 2017;
Maddison et al., 2017), such that, the argmax
function is approximated by a softmax and
generates the relaxed one-hot encoded samples,
which correspond to the mixing coefficients:

αm =
exp(log(πm) + gm)/τ)

∑M
j=1 exp((log(πj) + gj)/τ)

(5)

where gm...gM are i.i.d samples from the Gum-
bel(0,1) distribution (Gumbel, 1954; Maddison
et al., 2017), πi the probability associated to the m-
th MDN’s gaussian components, jointly generated
by neural networks along with the computations
of the corresponding parameters (µm, σm) for
m...M ; and τ the temperature parameter, which
controls variability of the sampling. When τ → 0,
the sampling exhibits a perfectly one-hot encoded
output, whereas, conversely, when τ → inf , the
distribution approaches an uniform one across all
the MDN’s components.

3 Extending Variational Methods for
Robust MT

Our model adopts a variational encoder-decoder
architecture inspired by SketchRNN (§2) that
uses an MDN on the decoder’s variational net-
work to model multiple and independent continu-
ous generative variational distributions. However,
unlike SketchRNN, we use a Transformer back-
bone for the encoder and the decoder and train our
model in a end-to-end manner on canonical par-
allel corpora. In the following, we will first de-
scribe the general architecture of our model, de-
noted multi-VNMT, and then detail the encoder
and decoder parameters.

General architecture Figure 1a represents the
architecture of our model. The input sentence is
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Figure 1: (a) VNMT-MDN architecture overview. (b) Directed graph of our encoder-decoder model varia-
tional inference. Dashed lines represent the variational approximation for the posterior distribution, and
solid lines stand for the generative models. The blue arrow depicts the generative networks for source-
side monolingual reconstruction distribution p(x|z).

first processed by a standard Transformer encoder,
the output of which is used by a Variational En-
coder enhanced with NF to predict a latent rep-
resentation of the input sentence. The latent rep-
resentation and the output of the last layer of the
Transformer encoder are combined using the gat-
ing mechanism of Setiawan et al. (2020).

This combined representation is then fed to the
decoder that has a similar architecture: it is made
of an “usual” Transformer decoder and a varia-
tional MDN that is sampled to obtain a prediction
that will be combined to the Transformer output
by (again) a gating mechanism.

The model can be trained in an end-to-end fash-
ion using the “reparametrization trick” of Kingma
and Welling (2014). In order to ensure that the es-
timated variances for the variational posteriors are
positive, we used the softplus activation function
(Zheng et al., 2015), as done in van den Berg et al.
(2018)’s implementation.

In addition, concerning the training of the de-
coder’s MDN, we compare two different ways to
compute the mixing coefficient: the first one con-
sists in a vanilla non-latent softmax, the second on
a relaxed categorical variational method that relies
on a Gumbel-Softmax sampling (§2).

The model has been implemented in
OpenNMT-py3 (Klein et al., 2018).

Encoder Our encoder backbone is the “stan-
dard” transformer of Vaswani et al. (2017), made
of 6-layered transformer layers each with 8 atten-
tion heads. the feed-forward layers have 2,048
parameters and the dimension of lexical embed-
dings is 512. The dimension of the encoder vari-

3https://github.com/josecar25/MDN-VNMT

ational network is 128. The network is extented
with 4-flows Normalizing Planar Flows (Rezende
and Mohamed, 2015).4

Following to Setiawan et al. (2020), we com-
bine the last Transformer layer output to the la-
tent vectors using a gating mechanism. We used a
feed-forward network to transform the represen-
tation of dimension 128 predicted by the varia-
tional network into a representation of size 512
that matches the Transformer representation di-
mension.

In Figure 1b, we show the Transformer and vari-
ational encoding latent state z as being estimated
(pθ(z|x)) approximating the posterior’s mean and
variance, both learned using the reparametrization
trick. In the figure, we can also observe how our
model’s encoder comprises the Transformer back-
bone and VI network.

Decoder As for the encoder, the first compo-
nent of the decoder is the “standard” Transformer
decoder of Vaswani et al. (2017) and uses the same
parameters as the Transformer encoder.

The Transformer decoder’s last layer output
is passed to a 128-component MDN, with train-
able parameters ϕ and π: ϕ encodes the mean
and variance of each multivariate gaussian com-
ponents; π contains the probabilities of the cate-
gorical distribution that generates the mixing co-
efficient for each component. Concisely, we esti-
mate a posterior as a series of M posteriors param-
eterized by ⟨ϕ, π⟩, i.e. q̃ϕ;πm (zdec|x,y1:t−1), con-
ditioned via the decoder’s Transformer, on both
the gated latent encoder’s output and previous pre-

4We used the implementation of https://github.
com/riannevdberg/sylvester-flows
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Corpus #sentences #tokens ASL TTR #chars

train set
WMT 2.2M 64.2M 29.7 0.20 335
OpenSub. 9.2M 57.7M 6.73 0.18 428

test set
OpenSub. 11,000 66,148 6.01 0.23 111
newstest 3,003 68,155 22.70 0.23 111

Corpus #sents #tokens ASL TTR #chars

UGC test
PFSMB 777 13,680 17.60 0.32 116
MTNT 1,022 20,169 19.70 0.34 122

UGC blind
PFSMB 777 12,808 16.48 0.37 119
MTNT 599 8,176 13.62 0.38 127
4Square 1,838 18,234 9.92 0.22 109

Table 1: Statistics on the French side of the corpora used in our experiments. TTR stands for Type-to-
Token Ratio, ASL for average sentence length and #chars for the number of different characters.

dicted tokens, y1:t−1. The MDN’s mixing coeffi-
cient (αm(x,y1:t−1)) network also takes the same
input and is computed separately, by either using a
fully-forward layer with softmax activation or the
relaxed categorical Gumbel distribution. Both net-
works computing q̃m and αm are jointly trained in
an end-to-end fashion, such that translation loss is
minimal for representations sampled from the re-
sulting mixture, obtained according to Equation 4.

4 Training models

All systems are trained using a batch size of 4,096
tokens using the Adam optimizer (Kingma and Ba,
2015) accumulating gradients every 2 steps, and
the Noam learning rate schedule (Vaswani et al.,
2017) with 8K warmup steps. Throughout train-
ing, learning rate attains a maximum of 7e−4 and
minimum of 1e−5. Both encoder and decoder
Transformers are trained using 0.1 dropout and
we employed 0.1 label smoothing (Szegedy et al.,
2016). Training for, at most, 300K training it-
erations on a single Nvidia V100 took about 40
hours to converge for the multi-VNMT models,
34 hours for VNMT-baseline and 28 hours for
the non-latent Transformer baseline. In order
to avoid posterior collapse, and as done in Seti-
awan et al. (2020), we use βC-VAE (Prokhorov
et al., 2019), with values β = 1 and C = 0.1.
Additionally, we used a Kullback-Leibler (KL)
annealing schedule of 100K iterations for train-
ing. We set a 10% probability of dropping the
target word (Bowman et al., 2016). We have cho-
sen, as initial experimental configuration, τ = 1.0
for the Gumbel-Softmax sampling temperature,
which was selected mainly aiming to avoid artifi-
cial gradient scaling during backpropagation (c.f.
Equation (5)). A beam of width 5 has been used
for evaluation.

5 Experiments

Datasets We train our different MT models on
two different French to English canonical par-
allel corpora: the first one is a subset of the
WMT corpus, i.e. Europarl (v7) and NewsCommen-
tary(v10) (Bojar et al., 2015) and the second one
is theOpenSubtitles’18 corpus (Lison et al.,
2018). We used BPE tokenization (Sennrich et al.,
2016) with 16K merge operations.

Detailed statistics on our corpora can be found
in Table 1.

UGC Test Sets To evaluate the different NMT
models, we consider two data sets of manually
translated UGC: MTNT (Michel and Neubig, 2018)
and the Parallel French Social Media Bank cor-
pus (PFSMB) (Rosales Núñez et al., 2019)5 which
extends the French Social Media Bank (Seddah
et al., 2012) with English translations. These two
data sets raise many challenges for MT systems:
they notably contain characters that have not been
seen in the training data (e.g. emojis), rare char-
acter sequences (e.g. inconsistent casing or user-
names) as well as many OOVs denoting URL,
mentions, hashtags or more generally named en-
tities (NE). Most of the time, sOOVs are exactly
the same in the source and target sentences.

We also consider the 4Square corpus (Be-
rard et al., 2019) as a blind test to validate our
conclusions. To analyze our neural representa-
tions (§7), we use a subset of the PFSMB, called
PMUMT, which contains 400 annotated and nor-
malized French to English UGC sentences (Ros-
ales Núñez et al., 2021).

Protocols Translation quality was evaluated us-
ing BLEU (Papineni et al., 2002) and chrF2
(Popovic, 2017) both computed by SACREBLEU

5https://gitlab.inria.fr/seddah/
parallel-french-social-mediabank
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(Post, 2018) with the ‘intl’ tokenization, after
detokenizing the systems outputs.

In all the experiments we used the hyper-
parameters values reported by Vaswani et al.
(2017) and only choose the number of components
of the MDN and the dimension of the latent repre-
sentation on the validation set.6 Regarding the la-
tent dimension, we conducted the same study with
128, 256 and 512 dimensions, with 128 being the
best value. A beam of size 5 has been used for
evaluation.

6 Results

In this section we present the main MT results to
study MT performance of our methods.

MT Performance Our first experiment aims
to compare the performance of multi-VNMT,
the model we introduced in Section 3, to that
of a “vanilla” Transformer model and of a
state-of-the-art VNMT system using NF.7 The
first baseline, a non-latent NMT architecture,
Transformer, corresponds to our model with-
out its VI components (i.e. with only the Trans-
former encoder and decoder); the second baseline,
VNMT-baseline, corresponds to the equivalent
of our NF setup (featuring 4 Planar Flows) from
Setiawan et al. (2020).

Results achieved by these systems are reported
in Table 2. We computed the 95% statistical sig-
nificance by using a 1,000-samples bootstrapping,
as in Koehn (2004). It should first be noted that
the performances of the three systems we con-
sider are identical when they are evaluated on
in-domain data, whatever the evaluation measure
considered (no statistically significant difference
between the models). This observation highlights
one of the strength of the proposed method: con-
trary to fine-tuning (arguably the most common
method to adapt a system to a new domain) that of-
ten hurts performance on in-domain evaluation be-
cause of catastrophic forgetting (McCloskey and
Cohen, 1989), the improvement of the quality of
UGCs by the proposed method is not at the ex-
pense of the quality of translation of canonical
texts.

It also appears that, on out-of-domain text,
multi-VNMT, the approach proposed in this

6For the number of components we tested the following
values 8, 16, 32, 64, 128 and 256 and found the optimal value
to be 128.

7We re-implemented the system of Setiawan et al. (2020).

work, outperforms the standard Transformer
model as well as the state-of-the-art VNMT
model, supporting our hypothesis that considering
several variational inference components allows to
better capture all the variations that can be found
in UGC and will result in improved translation
quality. Interestingly, our system also performs
better than Transformer when evaluated on
out-domain canonical data and not only on UGC
data. It should be noted, however, that the gains
of our model are consistent but small and statisti-
cally significant mainly when translation quality is
evaluated with chrF2.

Ablation study To better understand the impact
of the different components of our model, we
conduct an ablation study whose results are re-
ported in Table 3. Overall, we obtain the best
BLEU scores across all test sets for the “full”
multi-VNMT model.

In particular, it appears that static latent rep-
resentation (z static in Table 3), where in-
stead of sampling from the learned distributions,
we retrieve their mean as output, show slightly bet-
ter BLEU scores when translating the MTNT with
the model trained on OpenSubtitles and the
newstest’14 test set with the model trained on
WMT (+0.1 improvement in the two cases). How-
ever, results are inconsistent for UGC test sets and
otherwise worse than those of the full model for
both in-domain and canonical OOD test sets for
our two training configurations. This might be ex-
plained by the lack of stochastic perturbations pro-
vided by the sampling step during training, leading
the model to lose generalization during evaluation.

It is also interesting to note that using a cat-
egorical variational version of the mixing coef-
ficients rather than the usual choice of comput-
ing them with a softmax improves translations
quality: the latter is only performing better for
the newstest’14 test set when training on the
OpenSubtitles corpus (π non-latent). Fol-
lowing the same trend, the WMT training data con-
figuration also show improvements when using the
Gumbel-Softmax version, for which +0.8 and +0.3
BLEU point improvement were obtained for both
the PFSMB and MTNT UGC testsets, respectively.

Posterior collapse We have computed the av-
erage KL divergence of the variational decoder’s
block (i.e. DKL (qϕ(z|x, y)||pθ(z|x)) on the en-
coder side) of multi-VNMT and its ablated ver-
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WMT OpenSubtitles

PFSMB † MTNT † News⋄ OpenSubTest PFSMB † MTNT † News OpenSubTest ⋄ # params.
B

L
E

U Transformer 15.1 21.3 27.9 16.4 27.7 28.4 26.4 31.4 69M

VNMT-baseline 15.5 21.4 27.9 16.4 28.0 28.9 26.5 31.4 72M
multi-VNMT 16.0* 21.8 27.9 16.7* 28.4 29.2 26.4 31.5 77M

c
h
r
F
2 Transformer 37.8 45.1 54.4 38.6 46.9 48.3 52.6 48.9 69M

VNMT-baseline 38.3 45.1 54.6 38.6 47.6 49.2* 53.1* 48.9 72M
multi-VNMT 38.5* 45.5 54.6 39.0* 47.7* 49.6* 52.9* 49.0 77M

Table 2: BLEU and chrF2 test scores for our models. The † symbol indicates the UGC test sets,
and ⋄ in-domain test sets. Highest metric for each test set are in bold; scores significantly better than
Transformer (p < 0.05) are marked with a *.

WMT OpenSubtitles

PFSMB † MTNT † News⋄ OpenSubTest PFSMB † MTNT † News OpenSubTest ⋄ # params.

multi-VNMT 16.0 21.8 27.9 16.7 28.4 29.2 26.4 31.5 77M
π non-latent 15.8 21.0 27.8 16.4 28.1 28.5 26.6 31.3 77M
-NF 15.3 21.6 28.0 16.5 28.3 28.8 26.1 31.3 76M

Z STATIC 16.5 20.9 28.0 16.4 28.1 29.3 26.2 31.4 76M
-MDN 16.5 20.9 27.8 16.6 27.7 28.7 26.2 31.3 73M

Table 3: BLEU test scores our ablated variants. The † symbol indicates the UGC test sets, and ⋄ in-
domain test sets.

sion without the MDN module in an in-domain
setting. When trained (using the same KL an-
nealing schedule) on OpenSubtitles (resp.
WMT) this divergence is 0.21 (resp. 0.38) for
multi-VNMT and 0.15 (resp. 0.33) when remov-
ing the MDN block, suggesting that our proposed
architecture is less prone to suffer from the poste-
rior collapse phenomenon.

7 Analyzing Latent Representations

In this Section, we describe several experiments
aiming at understanding how multi-VNMT un-
covers more robust representations than the
VNMT baseline.

Impact of Noise in the Source First, to evalu-
ate the perturbations that the model suffers when
noise is present in the source, we measure the
cosine similarity between the representations of
the French noisy sentences and their normal-
ized version, taking advantage of the PMUMT
corpus (§5). More precisely, we compare the
source-side embeddings of the 400 original noisy
UGC sentences and their corresponding 400 fully-
normalized versions built by VNMT-baseline
and multi-VNMT. We observe that the average
cosine similarity between the noisy and normal-
ized learning representations of multi-VNMT is
0.36 compared to an average similarity of 0.26 for
the representations of VNMT-baseline, sug-

Figure 2: Distribution of cosine similarities be-
tween the representations of noisy and normal-
ized sentences of PMUMT built by the encoder of
VNMT-baseline and multi-VNMT.

gesting that the former provides more robust rep-
resentations of UGC than the latter, a conclusion
supported by the distribution of similarities shown
in Figure 2.

Noisy vs normalized data To complete the pre-
vious analysis, we have reported, in Figure 3,
the projection of the representations of noisy and
normalized sentences computed by t-SNE. We
can notice how both VNMT systems have a ten-
dency to separate noisy and normalized sentences
compared to Transformer, while both having
higher cosine similarity than the latter.
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(a)
Transformer

(b)
VNMT-baseline

(c)
multi-VNMT

Figure 3: t-SNE projection of the encoder source
embeddings for noisy sentences and their normal-
ized versions.

PFSMB † MTNT † News OpenSub.⋄

Transformer 27.7 28.4 26.4 31.4

Pre-trained init. 29.0 28.2 26.2 31.3

Frozen embs. 28.4 28.9 26.8 31.3

Fine-tuned 28.4 28.9 26.5 31.4

Table 4: Using VNMT-learned embeddings for
transfer robust learned representations to the
Transformer. The † symbol indicates the UGC
test sets, and ⋄ in-domain test sets.

Transferring learning representations As dis-
cussed above, in Figure 3 we noticed that VNMT
seems to enforce noisy morphology modeling to
the Transformer’s embeddings in an implicit way.
This motivated us to study whether the informa-
tion in such learning representations can be used
by the Transformer backbone model and ben-
efit from improved robustness while removing the
direct latent space contribution, and notably, with
the same number of parameters and architecture
as Transformer. Thus, in Table 4, we re-
port BLEU scores for the Transformer model
trained on OpenSubtitles, by either initializ-
ing the VNMT-pretrained source-side embeddings
before training, or fine-tuning (FT) the system. We
have performed FT using the same data configura-
tion as in OpenSubtitles and continued train-
ing for 3 epochs from the Transformer model
in Table 2 while replacing the Transformer’s
source embeddings by their VNMT-learned ver-
sion’s weights.

Results in Table 4 provide evidence that VNMT
enforces more robust embeddings, which per-
form consistently better over the PFSMB UGC
test set compared to the baseline, the system
Frozen embs giving the most consistent results
over UGC. This system also achieves the best
newstest’14 canonical OOD test set in the
OpenSubtitles setup, while taking advantage
of an increased robustness to UGC. These results

PFSMB
(Blind)

MTNT
(Blind) 4Square

Transformer 19.7 25.0 21.9
+FT emb. 19.4 25.3 22.0

VNMT-baseline 20.0 25.3 22.0

multi-VNMT 20.0 26.4 22.5

Table 5: BLEU scores of our best systems on blind
test sets.

indicate that our VNMT model leads to embed-
dings that are more robust to noise even when used
in a classic transformer-based NMT baseline. An
interesting path of research would be to evaluate
these embeddings in other tasks and scenarios (e.g.
Cross lingual UGC Q&A).

8 Blind test sets scores

We evaluated our best performing model
(multi-VNMT trained on OpenSubtitles)
on the blind test sets described in § 5, translat-
ing another set of tests to assess whether our
approach proves useful for generalization over
different types of UGC. We have also included
the 4Square corpus (Berard et al., 2019) to
validate our VNMT system on other domain
of UGC (restaurant reviews). We also display
the results when using the VNMT-baseline
baseline and the Transformer model to assess
improvement of our proposed architecture. We
report such results in Table 5, where we can
see that, when translating our blind UGC test
sets, multi-VNMT consistently outperforms the
baselines. It is interesting to notice that, although
the in-domain performances for these 3 systems
are very similar (between 31.4 and 31.5 BLEU in
Table 2), the performance gap of blind UGC test
sets is larger, i.e. +0.8 BLEU in average compared
to the non-latent baseline.

9 Discussion

How MDN behaves under noise In Ap-
pendix A, we discuss how MDN components are
activated when translating canonical in-domain
and OOD texts, as well as UGC and normalized
UGC. In Figure 4 and Table 6 in the Appendix,
we show that noisy UGC activates MDN’s com-
ponents with low correlation to other OOD canon-
ical texts and even to its normalized version, which
implies that the distribution of the kernels’ mix-
ing coefficients is relatively among, the 4 test sets
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considered, unique, i.e. relatively uncorrelated
from the activation of other canonical texts (in-
dom and OOD), when processing UGC. We can-
not conclude, however, whether this observation
is a consequence of the noise propagated through
the model’s networks, but the enhanced robust-
ness we witnessed in the translation results (much
better performance to UGC, while keeping on-
par or slightly better canonical (in-domain and
OOD) performance) suggests that these mixing
coefficients (that ultimately control the final de-
coding output) activate different variational poste-
riors (one per kernel) that can better process UGC.

Conclusions We introduced a novel VNMT ar-
chitecture that provides improved performance
and robustness over a state-of-the-art VNMT
model, specifically when translating French UGC.
An ablation study and blind test sets evaluation
validate our architecture choice in regards of ro-
bustness capabilities for such texts. In addition, by
exploring the learning representations trained by
our VNMT model, and through conducting trans-
fer learning experiments with such, we investi-
gate the robustness brought to UGC, and show
that VNMT enforces such property to the back-
bone model, bringing a promising avenue for more
robust pre-trained neural learning representations.
However, an open question arising from this work,
it is currently unclear if the performance gain we
observed is due to a better generalisation to distri-
butional shift or if it corresponds to a better adap-
tation to noise in the input. Future works will be
devoted to this question, which can be abstracted
away to study whether UGC idiosyncrasies are a
form of noise, some parts being learnable, or are
rather points to a new domain.
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drew M. Dai, Rafal Józefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. In Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning,
CoNLL 2016, Berlin, Germany, August 11-12, 2016,
pages 10–21. ACL.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proceedings of the 2013 confer-
ence of the North American Chapter of the associa-
tion for computational linguistics: Human language
technologies, pages 359–369.

Jennifer Foster. 2010. “cba to check the spelling”: In-
vestigating parser performance on discussion forum
posts. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 381–384, Los Angeles, California. Associa-
tion for Computational Linguistics.

Emil Julius Gumbel. 1954. Statistical theory of ex-
treme values and some practical applications; a se-
ries of lectures. Applied mathematics series ; 33.
U.S. Govt. Print. Office, Washington.

David Ha and Douglas Eck. 2018. A neural represen-
tation of sketch drawings. In 6th International Con-
ference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

David Ha and Jürgen Schmidhuber. 2018. Recurrent
world models facilitate policy evolution. In Ad-
vances in Neural Information Processing Systems

455



31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-
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A How do MDN’s components react to
UGC?

We proceeded to analyze and visualize how the
MDN mixture coefficients react when translating
our different test sets. In order to do so, in Figure 4
we report results for the canonical test sets, the
normalized PMUMT corpus, and its noisy original
UGC version. Each bar of the Wind Rose diagram
represents one of the 128 independent trained dis-
tributions’ mixture weights, which have been nor-
malized and scaled across the four graphics, and
where the 7th MDN component seems to be con-
sistently the one that drives most of the decoding
for the presented experiments. Furthermore, we
can notice that most mixing coefficients are, for
the most part, have around 50% probability of con-
tributing to the final inference mixture, despite not
enforcing this behavior with any specific method
(e.g. dropout). On the other hand, the visualization
suggests that both yellow (50-60%) and blue com-
ponents (30-40% of activation) are variable across
test sets, being very similar between PMUMT Norm
and OpenSubTest, which could indicate that the
mixture components are learning to encode differ-
ent types of texts, potentially working as an im-
plicit topic modeling module. Regarding the vi-
sualization when translating PMUMT Noisy, the
main MDN component identified above, seems
less important even when compared to the out-of-
domain newstest’14 set, which suggests that
the MDN uses more dense representations when
processing noisy texts.

In parallel, in Table 6 we display the covari-
ance of these coefficients’ distributions between
the combinations of their values when translating
different kind of texts, along with the standard de-
viation and sparsity to describe how the MDN’s
components behave.

Comparing the visualization in Figure 6, we
can notice how the noisy UGC PMUMT and the
out-of-domain newstest’14, diverge from the
in-domain OpenSubTest and normalized UGC
PMUMT corpus. This correlation is evidenced in
the results in Table 6, where PMUMT noisy has
the lowest score when compared to every other
corpus, even if its normalized version seems to
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be the most correlated to the in-domain evalua-
tion. Specifically, PMUMT Noisy is the least cor-
related to in-domain OpenSubTest and out-of-
domain newstest’14 corpora, which points to
the MDN reacting differently to content domain
and UGC specificities in the noise; this observa-
tion is also supported by the associated figure. It
is also interesting to notice that, according to the
standard deviation and sparsity values, the active
MDN components are more dense and variable for
out-of-domain evaluation conditions, for the same
Gumbel sampling temperature value.
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(a) PMUMT norm (b) PMUMT noisy

(c) OpenSubTest (d) newstest’14

Figure 4: Average MDN mixture weights for test sets of different natures.

PMUMT Noisy News OpenSubTest std. sparsity

PMUMT Norm 8.16 9.71 13.05 1.2e-3 0.387

PMUMT Noisy — 7.72 7.86 1.0e-3 0.382

News — — 9.42 1.1e-3 0.384

OpenSubTest — — — 1.1e-3 0.387

Table 6: Covariance between MDN mixture coefficients during inference for different types of test sets
and sparsity for each set. std. stands for the standard deviation.
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Abstract

We investigate the effectiveness of multi-
lingual automatic speech recognition mod-
els for Scandinavian languages by further
fine-tuning a Swedish model on Swedish,
Danish, and Norwegian. We first ex-
plore zero-shot models, which perform
poorly across the three languages. How-
ever, we show that a multilingual model
based on a strong Swedish model, further
fine-tuned on all three languages, performs
well for Norwegian and Danish, with a rel-
atively low decrease in the performance
for Swedish. With a language classifica-
tion module, we improve the performance
of the multilingual model even further.

1 Introduction

Automatic speech recognition (ASR) is the task
of transforming speech into text, often referred
to as transcription. Multilingual ASR tackles the
task in multiple languages with the same model
or pipeline. Modern ASR architectures such
as DeepSpeech (Hannun et al., 2014), Wav2Vec
(Baevski et al., 2020), and Whisper (Radford et al.,
2022) are capable of transcribing speech with
Word Error Rates (WERs) well below 10 percent.
To achieve this, models require copious amounts
of data, which is unavailable for the vast majority
of languages. For low-resource languages, multi-
lingual models as means of bootstrapping the per-
formance are often the only solution.

Conneau et al. (2021) demonstrate that a mul-
tilingual setting can be beneficial even for high-
resource languages. Pratap et al. (2020), however,
suggest that limiting models to smaller, typolog-
ically related languages is more productive than
training on all languages at once. As such, it can
be argued that Scandinavian languages are a great
fit for multilingual NLP models. Swedish, Danish,

and Norwegian all originate from old Norse and
share numerous similarities, such as largely over-
lapping lexicons and similar grammar. As noted
by Delsing and Lundin Åkesson (2005), the sim-
ilarities across the three languages are not linear,
since Swedish and Norwegian are most similar in
speech, whereas Danish and Norwegian are most
similar in writing. Nevertheless, Sahlgren et al.
(2021) argue that Scandinavian languages are so
similar that large text-based language models for
these languages should be trained jointly. It has
also been shown that utilizing the similarities be-
tween the Scandinavian languages can improve
text-based tasks such as machine translation (e.g.
Tiedemann, 2009) and parsing (e.g. Smith et al.,
2018). However, to the best of our knowledge,
there is no work where the usefulness of com-
bining the Scandinavian languages is reported for
speech-based tasks, such as ASR.

We focus on identifying whether a multilin-
gual ASR model for Swedish, Danish, and Nor-
wegian can be trained to utilize an existing high-
quality monolingual model, as we fine-tune a
strong Swedish end-to-end model to also handle
the Danish and Norwegian languages. In addition,
we analyze how well the monolingual ASR mod-
els transfer across the Scandinavian languages in a
zero-shot setting. We also evaluate how the multi-
lingual setting affects the quality of transcription
as opposed to monolingual settings. Lastly, we
show that a language classification module can
be used for selecting a language model in the
multilingual setting. We conduct all experiments
on the Wav2Vec 2.0 (Baevski et al., 2020) based
ASR models. Additional experiments, as well as
more in-depth analysis, can be found in Černiavski
(2022).

2 Previous Work

Language Models for ASR The usage of a lan-
guage model in speech recognition has contin-
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uously proven to boost the quality of transcrip-
tion. Positive results have been observed with
both statistical n-gram language models (Amodei
et al., 2016; Håkansson and Hoogendijk, 2020)
and transformer-based models, such as BERT
(Baevski et al., 2020). Most considerable im-
provements seem to result from domain-specific
language models, as contextualization and biasing
of models have repeatedly improved the quality of
transcription (Aleksic et al., 2015).

Multilingual ASR Transcription of multiple
languages via a single model or pipeline has been
made possible through a variety of architectures.
Approaches range from an assemble of monolin-
gual models connected through a preceding lan-
guage classification component (Lyu and Lyu,
2008; Mabokela and Manamela, 2013; Barroso
et al., 2010), to models sharing the phone mod-
els (Lin et al., 2009) or hidden layers of acoustic
models (Yu and Deng, 2015) across two or more
languages, to being conjunct on all levels, sharing
all components and treating all input languages as
one (Pratap et al., 2020; Conneau et al., 2021).

As a general rule, the effects of a multilingual
setting on the quality of transcription are twofold.
Low-resource languages tend to reap the bene-
fits, as models seemingly generalize from the pat-
terns learned in higher-resource languages (Yu and
Deng, 2015; Bhable and Kayte, 2020). High-
resource languages, however, tend to suffer (Lin
et al., 2009; Conneau et al., 2021), likely due to the
noise introduced through the exposure of models
to data in (a) foreign language(s). Nevertheless,
Pratap et al. (2020) demonstrated that there appear
to be ways of mitigating the toll of a multilingual
setting on the resource-rich languages by means
of a typologically motivated choice of languages
in a cluster as well as cluster-specific rather than
one-for-all decoders.

3 Methodology

We first evaluate the performance of monolingual
Swedish, Danish, and Norwegian models on the
test sets of each language (i.e. the Swedish model
was evaluated on Swedish, Danish, and Norwe-
gian test sets). For comparison, we also eval-
uate the performance of an English ASR model
on the three Scandinavian languages. We do so
first to obtain comparable word error rates of each
model for their intended language, except for En-
glish; second, to explore a zero-shot setting, where

we explore whether the typological similarity of
Scandinavian languages enables the ASR models
trained on one of the languages to transcribe the
data in the other two languages. We add English, a
more distant Germanic language, for comparison.

In a second set of experiments, we fine-tune trial
multilingual ASR models for Swedish, Danish,
and Norwegian. We aim to utilize the high quality
of the already fine-tuned Swedish model (Malm-
sten et al., 2022) to bootstrap the transcription in
Danish and Norwegian as opposed to training a
model on the three languages from scratch. As
such, we attempt fine-tuning the Swedish model
in the following settings:

1. Retraining DA+NO - using complete train-
ing sets in Danish and Norwegian, with no
Swedish training data (30,000 entries total)

2. Retraining DA+NO+SE half - using com-
plete training sets in Danish and Norwegian,
and half of the Swedish training data (37,500
entries in total)

3. Retraining DA+NO+SE full - using com-
plete training sets of all three languages
(45,000 entries in total)

For comparison, we also train a model on
all three languages (15,000 entries per language,
45,000 total) on the pre-trained, but not fine-tuned
Swedish model1. We train these models for 5
epochs and evaluate on the trilingual development
set every 1,000 updates. In order to investigate the
effect of adding a language model for the multi-
lingual models, we train a language classifier, see
Section 5 for details.

In our final experiment, we select the
best-performing trial model (Retraining
DA+NO+SE full) to train a multilingual model
for 20 epochs. We evaluate the model in two
settings. In the first, we use no language model in
the decoding. In the second, we use the language
classifier to predict the language, in order to
select a 4-gram language model for the predicted
language. We train the 4-gram language models
on the entirety of the original NST training sets,
except for Swedish, where we exclude the sample
used as test set.

We report Word Error Rate as our main evalua-
tion metric and perform a brief qualitative analysis
of the most common errors.

1https://huggingface.co/KBLab/
wav2vec2-large-voxrex
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4 Data and Models

Data We created testing, training, and develop-
ment subsets for Swedish, Danish, and Norwe-
gian from two datasets: Nordisk Språkteknologi
(NST)2 and Common Voice (CV) 8.0 (Ardila
et al., 2020). For testing subsets of Danish and
Norwegian, we used the entire test sets from NST,
which amount to 77.1 and 115.3 hours of speech
respectively. For Swedish, due to the lack of a
modernized version of the NST test at the time
of working on the project, we randomly sam-
pled 20% of the training set - roughly 73,2 hours
of speech. For training, we limit the subsets to
15,000 entries per language (roughly 7 hours of
speech) per language due to limited computational
resources. We ensure that the Swedish train and
test subsets do not overlap.

We use the CV dataset to construct a validation
set for the multilingual models. For Swedish and
Danish, we randomly sampled 2,000 validated en-
tries per language. No validated data were avail-
able for Norwegian Bokmål; we, therefore, used
a held-out sample of 2,000 entries from the Nor-
wegian NST training dataset. In total, we used
roughly one hour of speech per language for vali-
dation.

We processed each subset by downsampling the
audio to 16 kHz and normalizing the transcrip-
tions. The normalization involved lower-casing all
characters and removing non-alphanumeric char-
acters, such as punctuation markers.

Models For monolingual baselines in Swedish,
Norwegian, and English, we used Wav2Vec 2.0
models publicly available on Huggingface3. Due
to the lack of an existing fine-tuned Danish model
at the time, we fine-tuned one ourselves: we
used the publicly available pre-trained Danish
Wav2Vec 2.0 model4, which we then fine-tuned on
one GPU for 10 epochs on our Danish NST train
subset. In the encoder, we retain the original pa-

2Swedish: https://www.nb.no/sprakbanken/
en/resource-catalogue/oai-nb-no-sbr-56/;

Danish: https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-55/;

Norwegian: https://www.nb.no/sprakbanken/
en/resource-catalogue/oai-nb-no-sbr-54/

3Swedish: https://huggingface.co/KBLab/
wav2vec2-large-voxrex-swedish

Norwegian: https://huggingface.co/
NbAiLab/nb-wav2vec2-1b-bokmaal

English: https://huggingface.co/facebook/
wav2vec2-base-960h

4https://huggingface.co/Alvenir/
wav2vec2-base-da

Model Test Set No LM With LM

Swedish
Swedish 2.19% 2.74%
Danish 78.58% 72.69%
Norwegian 61.78% 52.06%

Danish
Swedish 120.10% 98.93%
Danish 19.14% 13.82%
Norwegian 104.56% 90.06%

Norwegian
Swedish 83.51% 73.82%
Danish 83.79% 75.05%
Norwegian 16.47% 12.03%

English
Swedish 110.06% 93.59%
Danish 99.50% 88.71%
Norwegian 102.52% 90.35%

Table 1: WERs of monolingual models on the
three Scandinavian languages, no language model
versus a 4-gram language model.

rameters of the pre-trained model, whereas in the
decoder, we set the batch size to 10, gradient ac-
cumulation steps to 3, learning rate to 1e-4, and
weight decay to 0.005.

5 Language Classification Module

The language classification module is initialized
on top of the same pre-trained Swedish Wav2Vec
2.0 model we used for ASR. We train it on 15,000
entries per language, randomly sampled from the
train sets (45,000 entries in total). We set the batch
size to 4, learning rate to 1e-4, and gradient accu-
mulation steps to 2, and use mean pooling.

We evaluate the classification module on a con-
catenation of the test sets from all three languages,
with results in Figure 1. The classifier reached
an overall accuracy of 98% across the three lan-
guages, with very few confusions between Danish
and Swedish. It is also noticeable that most errors
occur for short segments, often containing a single
word. For segments of at least five seconds, the
accuracy is near perfect.

6 Results and Discussion

WERs for Swedish, Danish, Norwegian, and En-
glish ASR models on the three Scandinavian lan-
guages are shown in Table 1. The results on zero-
shot ASR are poor. We can see some general pat-
terns in the performance across languages. The
Swedish and Norwegian models perform better for
all three Scandinavian languages than the English
model. However, the Danish model performs as
poorly on Swedish and Norwegian data as the En-
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(a) Classification Matrix (b) Accuracy and Duration

Figure 1: Evaluation of the language classification module. The accuracy in subgraph b is averaged over
the three languages.

glish model. This could stem from the fact that
our Danish model was trained on very little data
compared to the Swedish and Norwegian models,
as the Danish model performs poorly even on the
Danish data despite being trained on in-domain
data. However, it could be affected by the fact that
the pronunciation in Danish is quite different from
Swedish and Norwegian.

Even though the results are poor, we note
that the results for the Scandinavian languages
largely follow the patterns for mutual intelli-
gibility between human speakers (Delsing and
Lundin Åkesson, 2005); the Swedish ASR model
is better at transcribing Norwegian than Danish,
the Danish model is better for Norwegian than
Swedish, and the Norwegian model is somewhat
better for Swedish than Danish. The latter differ-
ence is more pronounced for character error rates,
see (Černiavski, 2022).

The scores confirm that the addition of a simple
n-gram language model leads to stable improve-
ments of the quality in transcription, even in a
cross-lingual setting. The Swedish model is an
exception, though, likely due to the overall high
quality of the model, which is only limited by such
a language model.

Lastly, qualitative analysis of the outputs re-
veals that some of the predictions considered to
be errors due to a deviation from the ground truth
are grammatically correct alternative spellings that
can have the same pronunciation. For instance,
in the output of the monolingual Swedish model,
some of the most common substitution errors are
skall instead of ska, i stället instead of istället, and

i dag instead of idag. Due to the usage of WER
as an evaluation metric, the latter two examples
are treated as 2 errors each. This is because WER
considers istället to be substituted with stället and
treats the preposition i to be an insertion error.
Similar patterns can be observed in the outputs for
the other two languages, which leads us to believe
that WER might not be the most suitable evalua-
tion metric for Scandinavian, and possibly other,
languages.

WER for the trial multilingual models are
shown in Figure 2. The results indicate that the ini-
tialization of the multilingual model from a mono-
lingual model is only effective in low-resource
settings. This is because a model trained from
scratch on all three languages reaches comparable
WER within roughly 5,000 steps. Nevertheless,
despite the subtle difference, the average WERs on
all three languages indicate that the model initial-
ized from a fine-tuned Swedish model and further
fine-tuned on complete training sets (Retraining
DA+NO+SE full) is second only to monolingual
baselines. Analogous patterns can be seen in terms
of character error rates (Černiavski, 2022). Hence,
we choose this setting for training our final multi-
lingual model.

The scores of the final multilingual ASR model
able to transcribe Swedish, Danish, and Norwe-
gian, as opposed to the monolingual baselines are
shown in Table 2. Using a language classifica-
tion model for selecting which language model to
add, leads to improvements for all three languages.
We observe stable improvement over monolingual
baselines for Norwegian and Danish both with
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Figure 2: Word Error Rates of the multilingual trial models and a monolingual baseline on the evaluation
set, mapped over training steps.

and without language models, with only a slight
drop in performance for Swedish. However, more
analysis is needed to investigate the influence of
matching the language versus matching the do-
main since both our training and test sets are from
the NST dataset.

We observe that the multilingual model per-
forms significantly better in Norwegian than it
does in Danish, which can also be seen from the
progression in the WERs of the trial models shown
in Figure 2. This is likely because the development
and test sets for Norwegian we used were from the
same domain, which was not the case for Danish,
but it may also be influenced by Norweigan pro-
nunciation being closer to Swedish than Danish
to Swedish. Černiavski (2022) presents a more
detailed qualitative analysis of the transcription
in the monolingual versus multilingual setting, as
well as with and without LM settings. We observe
that cross-lingual errors (e.g. when a Swedish
word is transcribed with a Norwegian spelling) are
very rare in a multilingual setting even when LMs
are not used.

7 Conclusions

Multilingual automatic speech recognition is of-
ten considered to be useful only for low-resource

Test Set Model No LM With LM

Swedish
Mono 2.19% 2.74%
Multi 4.61% 3.26%

Danish
Mono 19.14% 13.82%
Multi 12.69% 10.43%

Norwegian
Mono 16.47% 12.03%
Multi 9.64% 6.51%

Table 2: The performance Monolingual baselines
versus our Multilingual model.

languages. Though a multilingual model can
hardly compete in ultra-high-resource languages,
we show that the multilingual Scandinavian model
can perform comparably or even perform better
than monolingual models. Our results indicate that
it could be useful to combine the Scandinavian
languages not only for text, but also for speech
processing. More extensive evaluation of models
is needed to conclude whether the model bene-
fits from a multilingual setting, or only from in-
domain training. Further research could also ex-
plore the effects of a multilingual setting on the
ability to classify dialects of Scandinavian lan-
guages.
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Abstract

We present a method for analyzing char-
acter errors for use with character-based,
end-to-end ASR systems, as used herein
for investigating dialectal speech. As end-
to-end systems are able to produce novel
spellings, there exists a possibility that the
spelling variants produced by these sys-
tems can capture phonological informa-
tion beyond the intended target word. We
therefore first introduce a way of guaran-
teeing that similar words and characters
are paired during alignment, thus ensur-
ing that any resulting analysis of character
errors is founded on sound substitutions.
Then, from such a careful character align-
ment, we find trends in system-generated
spellings that align with known phono-
logical features of Norwegian dialects, in
particular, “r” and “l” confusability and
voiceless stop lenition. Through this anal-
ysis, we demonstrate that cues from acous-
tic dialectal features can influence the out-
put of an end-to-end ASR systems.

1 Introduction

Automatic Speech Recognition (ASR) has, like all
machine learning tasks, struggled with generaliza-
tion. That is, a model will perform well on the
task and data it was trained on but when presented
with new examples, especially examples that dif-
fer in some dimension from the training data, the
model will perform markedly less well. In the
task of ASR, this means that models often struggle
with generating correct transcriptions for speakers
whose age, gender, or dialect differs from that of
the speakers on which the model was originally
trained. Of specific focus in this paper is the im-
pact of dialect on a modern ASR system.

Dialect information has been used in different

ways in ASR. In some applications, such as Di-
alect Identification (DID), the goal is to correctly
identify the dialect for a given sample of speech.
Hämäläinen et al. (2021), for example, used a
combination of speech and text features to per-
form DID. In other cases, DID is combined with
ASR systems to improve transcription accuracy.
For example, Zhang and Hansen (2018) used bot-
tleneck features extracted via unsupervised deep
learning to perform DID for both Chinese and
Arabic. Similarly, Imaizumi et al. (2022) used a
multitask model for both DID and ASR. This mul-
titask approach outperformed the single task sys-
tems on both DID and ASR.

Beyond DID, the behavior of ASR systems has
been analyzed with respect to dialectal speech (as
we do in this paper). This in order to explore pho-
netic phenomena, as well as to gain insights into
the way those complex systems work. In these
studies, even when dialectal information is not an
explicit target, there is still an interest to under-
stand what phonetic and dialectal information has
been captured in ASR models. With traditional
ASR models, this investigation has been fairly
straightforward as these models have consisted of
three semi-independent components: the acoustic
model, the language model, and the lexicon. Be-
cause of the separate acoustic models within these
multi-component models, one could, for example,
perform clustering on the model parameters them-
selves such as (Salvi, 2003a,b, 2005). In this work,
Salvi performed clustering on the acoustic model
features and correlated the resulting clusters with
known dialectally realized phonemes. Instead of
directly using an acoustic model from an ASR sys-
tem, Chen et al. (2014) adapted the concept of an
HMM acoustic model to automatically discover
dialect-specific phonetic rules.

Unlike multi-component ASR systems, inves-
tigating modern, end-to-end models for pho-
netic and dialectal information is quite different.

467



Whereas parameters from an acoustic model may
be extracted and used independently, the acoustic
information in an end-to-end model cannot be so
easily excised. This design makes it more chal-
lenging, but not impossible, to investigate what
acoustic information is captured where in the net-
work. Belinkov and collaborators used the output
from each layer of an end-to-end system to train
phonetic, grapheme, and articulatory classifiers
(Belinkov and Glass, 2017; Belinkov et al., 2019).
Prasad and Jyothi (2020) investigated dialectal in-
formation captured by an end-to-end system us-
ing not only layer-wise classification but also gra-
dient and information-theoric analysis. All of
these works are focused on analyzing the network-
internal representations detached from actual net-
work output.

The output from ASR models is constrained by
the model architecture. Traditional ASR models
with lexicons are bound to output only words con-
tained within that lexicon. This means that all
transcripts generated by these models contained
only real, known words even if the transcribed out-
put did not necessarily match the word that was
spoken. Additionally, these models do not allow
for acceptable variation in spelling. For example,
the word, “favorite,” would always be spelled “fa-
vorite” never “favourite,” even if the latter might
better reflect the preference of a British English
speaker. Conversely, these newer end-to-end ar-
chitectures, trained using connectionist temporal
classification (CTC) loss, produce output at the
character instead of word level. This permits the
model to create novel words and spellings, poten-
tially better reflecting the phonetic realization of
the spoken word. Given that CTC models are al-
lowed to generate novel spellings, there exists the
potential that dialectal information will be cap-
tured by the model output itself via non-standard
spellings.

The goal of this paper is to investigate whether
dialectal acoustic information can impact spellings
with an end-to-end model. In order to test this, we
used wav2vec 2.0 (Baevski et al., 2020) to gener-
ate transcriptions of Norwegian speech. We then
performed an analysis of the resulting transcripts
for captured dialectal knowledge via a dialectal-
region based evaluation of character error pat-
terns. From this analysis we are able to see
known Norwegian dialectally-based phonological
patterns, specifically around “r” and “l” confus-

ability and stop consonant voicing. Thus we illus-
trate that strong enough acoustic dialectal cues can
effect the character output of an end-to-end ASR
system.

2 Norwegian language and dialects

In this paper, we focus our analysis on the Nor-
wegian language. Though spoken by a relatively
small population of a little over 5 million speak-
ers, Norwegian contains many dialects differenti-
ated in phonology, syntax, and lexicon. In addi-
tion to dialectal variation, Norwegian also main-
tains two official written standards: Bokmål and
Nynorsk; though neither written standard directly
corresponds with a spoken variant. Furthermore,
Norway does not recognize any official language
standard. Indeed, people are encouraged to use
their preferred written standard and native dialect
in all aspects of work and life.

The variety in dialects stems from Norway’s
challenging and rugged topography that has histor-
ically forced the populace to organize into many,
smaller communities. Over time, the diversity
we see in Norwegian dialects developed in these
small, isolated communities. As described by pho-
neticians, there now exist large dialectal phonetic
variations ranging from infinitive verb endings to
palatalization of consonants, to /r/ and /l/ realiza-
tions, to the various pronunciations for the per-
sonal pronoun for ”I”, jeg —ranging from [jæi] to
[eg] to [i] and more (Skjekkeland, 1997).

While the number of specific Norwegian di-
alects is quite large, we can group these dialects
into larger dialect groups for the purpose of this
investigation. These grouping could be either into
the regional names used by Skjekkeland or into
the even larger, cardinal regions of ”East,” ”West,”
”North,” ”South,” and ”Mid.” The analysis out-
lined in this paper relies on these cardinal regions.

3 Methods

3.1 Experimental setup and data

In order to investigate the impact of dialect on an
end-to-end ASR system, a well-performing base-
line model was required. Therefore, we used three
models trained by the Norwegian National Library
AI Lab and released publicly on the Hugging Face
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repository for our analysis 123. The first model
contained one billion parameters and was origi-
nally trained on the XLS-R (Babu et al., 2021).
It was then fine tuned using the Norwegian Parlia-
mentary Speech Corpus (NPSC) to transcribe Nor-
wegian Bokmål text. The other two models were
fine tuned from the 300 million parameter VoxRex
model (Malmsten et al., 2022). One of these 300
million parameter models was fine-tuned to tran-
scribe Bokmål, the other Nynorsk. All models
use a 5-gram word-based language model. In all
cases, the NPSC corpus was used to fine-tune the
models (Solberg and Ortiz, 2022). When evalu-
ated against the NPSC corpus, the Norwegian AI
lab reports a word error rate (WER) of 6.33% for
the 1 billion parameter model, 7.03% for the 300
million parameter Bokmål model, and 12.22% for
the Nynorsk model. These results indicate that
these models will make excellent candidates for
our analysis.

As stated earlier, the models to be used were
trained on the NPSC. This consists of record-
ings from the Norwegian Parliament and thus the
speech style can be considered mostly sponta-
neous, with perhaps slightly more planning than
everyday speech. For analysis purposes, the NPSC
was excluded. This is due to data sparsity in the
NPSC test set. While the whole test set is accept-
able for model evaluation, data becomes untenably
sparse when considered dialect-by-dialect. Thus
our analysis focuses on results from two unrelated
and more dialectally robust corpora: Rundkast and
NB Tale.

The Rundkast corpus consists of radio broad-
casts from the Norwegian Broadcasting Corpora-
tion (NRK) (Amdal et al., 2008). These transcripts
are in both Bokmål and Nynorsk which are treated
separately for analysis in this paper. Dialectal an-
notations were added by the transcribers during
corpus creation and are provided directly in the
speaker metadata.

NB Tale is publicly available from the National
Library of Norway’s Language Bank and con-
sist of recordings and transcripts of native and
non-native speakers of Norwegian. All speech
was transcribed using the Bokmål standard. Read

1https://huggingface.co/NbAiLab/
nb-wav2vec2-1b-bokmaal

2https://huggingface.co/NbAiLab/
nb-wav2vec2-300m-bokmaal

3https://huggingface.co/NbAiLab/
nb-wav2vec2-300m-nynorsk

speech was recorded from both the native and non-
native speakers whereas spontaneous speech was
only recorded for the native speakers. For the
analysis in this paper only speech from the native
speakers was used. For each speaker biographical
information was collected, including the munici-
pality in Norway where they lived as a child. From
this municipality, a manual mapping to dialect was
devised. This mapping then allowed us to infer the
speaker’s most likely dialect.

Data was prepared and standardized according
to the scripts provided in the combined data set, as
described by (Solberg et al., 2023). This converted
all audio to a mono, 16kHz format. The text was
normalized such that capitalizations, punctuation,
and hesitations were removed. Additionally, all
non-standard forms were converted into a standard
equivalent.

3.2 Word and character alignment

As our investigation into dialectal impact revolves
around analyzing trends in character errors, we
require an alignment between reference text and
model-generated hypothesis text where words that
only differ by a few characters are prioritized for
alignment. While character error rate (CER) com-
puted across a whole utterance is useful in un-
derstanding an aggregate of character errors, this
method loses awareness of word boundaries. For
example, “også kalt” and “og såkalt” would be
aligned in whole-utterance CER with an insertion
and a deletion of a space (resulting in “og så kalt”).
However, we prefer an alignment where we recog-
nize that “så” was removed from the first word and
“så” as added to the second word. Thus CER, as it
is generally used across entire utterances, does not
answer for our analysis purposes.

With traditional, word-level Levenshtein-based
alignments, word similarity is not considered. Any
pair of words that do not exactly match are treated
as completely different. However, by consider-
ing word similarity, the resulting alignments can
be used for analysis of broad trends of spellings
(e.g., a word ending in “a” instead of “e”) that can
indicate dialectal impact.

To accomplish such an alignment, an extension
to the traditional Levenshtein alignment was de-
veloped (Levenshtein, 1965). Typically edit costs
are fixed at a value before alignment is computed.
However, in our solution instead of a fixed cost
for substitutions, we allow it to be dynamically
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computed as the CER between the two candidate
words. This still ensures that there is no cost for
aligning words that are the same while also prefer-
ring substitutions of similarly spelled words.

voiced class nasal place rounding

“k” 0 0 0 5 0
“g” 1 0 0 5 0
“n” 1 0 1 2 0

Table 1: Example of the vectors for “k”, “g”, and
“n” for Norwegian. Indexes of the vector represent
features and values represent their realization.

height front rounding

“a” 2 0 0
“e” 1 2 0

Table 2: Example of the vectors for “a”, and “e”
for Norwegian. Indexes of the vector represent
features and values represent their realization.

Once word-level alignment is computed using
the dynamic substitution cost, we can investigate
spelling errors. To ensure characters within a word
are aligned optimally, we continue to use the dy-
namic substitution cost idea and compute the sub-
stitution cost between characters as the Euclidean
distance between two feature vectors. To support
this, articulatory feature vectors were created for
each letter in the Norwegian alphabet using the
International Phonetic Alphabet (IPA) charts as a
guide. Articulatory features were considered as in-
dexes in the vector and the values correspond to
the realization. For our work, consonants (see ex-
amples in Table 1) were defined and treated sepa-
rately from vowels (see examples in Table 2). As
the goal with these vectors is not to create an ac-
curate grapheme-to-phoneme mapping, nor to per-
fectly illustrate all possible IPA nuance, but in-
stead to align letters in a more logical way, these
vectors were sufficient.

To illustrate the necessity of these vectors, con-
sider the word pair of inngang (meaning “en-
trance”) and enkel (“easy”). Using a traditional
alignment method 4, where all characters substi-
tutions have the same cost, an alignment like in

4Alignment generated using the Python Levenshtein
package: https://github.com/maxbachmann/
python-Levenshtein

reference i n n g a n g
hypothesis e n k e l

Table 3: A possible alignment between inngang
and enkel, generated without accounting for char-
acter similarity.

reference i n n g a n g
hypothesis e n k e l

Table 4: A possible alignment between inngang
and enkel, generated by accounting for character
similarity.

Table 3 is generated. However, using articulatory
features as a distance, we are able to generate the
alignment in Table 4 where “g” and “k” (only dif-
fering by voicing), “a” and “e” (both being front
vowels), and “n” and “l” (both being sonorants)
are aligned.

While this solution is slightly phonologically
flawed —wholly ignoring the di- and trigraphs that
exist in Norwegian and instead treating the com-
ponent letters individually, for example —these
feature vectors do accomplish the goal of creat-
ing a logical character-level alignment. With con-
fidence in our word and character alignment we
can perform the investigation into character sub-
stitution trends that constitutes our results.

4 Results

4.1 WER by dialect

To first understand the general trend in recognition
across dialects, the WER was calculated for each
dialect across the whole of the Rundkast and NB
Tale corpora. Transcriptions were generated us-
ing both the 300 million and 1 billion parameter
Bokmål models for both corpora. Rundkast was
further transcribed with the 300 million parameter
Nynorsk model (since Rundkast actually contains
Nynorsk utterances, unlike NB Tale).

As displayed in Table 5 that shows WER across
both corpora and dialects, we can see WER values
ranging from the low teens to nearly 40%. These
values are markedly higher than the 6.33% WER
that was reported on the NPSC which highlights
the impact of domain mismatch on ASR; models
trained on one domain (the Norwegian Parliament)
do not generalize well to new domains (radio and
studio recordings).
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Dataset Dialect Utterances Speakers WER%
1B Bok 300M Bok 300M Ny

NB Tale —Bokmål utterances

Other 5087 120 25.79 26.04 —
West 4064 93 20.34 20.78 —
Mid 1789 40 18.14 20.02 —
North 2760 68 17.89 18.54 —
South 591 14 16.86 18.00 —
East 1898 42 16.44 17.15 —

Rundkast —Bokmål utterances

Unknown 199 12 19.54 18.28 38.82
West 7526 176 18.21 16.66 36.28
Mid 2917 124 17.06 17.35 37.30
North 2941 153 16.38 16.13 35.31
South 1372 56 16.16 15.11 35.67
East 51303 993 13.93 13.35 36.04

Rundkast —Nynorsk utterances

South 355 15 31.63 30.46 31.89
Mid 77 1 30.41 29.46 27.89
West 6024 161 29.35 28.26 23.99
East 2802 34 28.27 26.96 20.49
North 13 1 26.43 27.86 18.12
Unknown 3 3 0.00 0.00 0.00

Table 5: WER for Rundkast and NB Tale corpora. Transcribed using the all models. As there is no
Nynorsk text in the NB Tale corpus, we did not evaluate the Nynorsk model. The WER reported for
the models on the NPSC corpus are 6.33% for the 1B model, 7.03% for the 300M Bokmål model, and
12.22% for the 300M Nynorsk model.

For the Bokmål text in both corpora, we can see
that models perform best on the “East” dialect re-
gion whereas the “West” region has the worst per-
formance. It is unclear which model is generally
the best. The 1 billion parameter model performs
better than the 300 million parameter model on the
NB Tale text, but the 300 million parameter model
outperforms the 1 billion on the Rundkast text.

With the Rundkast corpus, we can see that
the Bokmål models perform, as expected, poorly
on the Nynorsk text with the converse (Nynorsk
model evaluated against Bokmål text) being true
as well. However, even when the Nynorsk model
is evaluated against Nynorsk text, the results are
still worse than the Bokmål model of the same size
evaluated against Bokmål text.

Of more concern than model accuracy, how-
ever, is data scarcity for Nynorsk text. Given
that Nynorsk is primarily used in the western part
of Norway, the nearly equal split of speakers be-
tween Bokmål and Nynorsk for the “West” region
is understandable. Moreover, for the other regions
(“North” and “Mid” in particular) there are too few
speakers to draw conclusions from. Therefore, as
we move forward with the character-based analy-

sis, we will be focusing on the Bokmål models and
their performance on the Bokmål text.

4.2 /r/ and /l/ confusiblity

In Norwegian, /r/ is generally realized as either a
voiced apical tap or a voiced velar approximant
(Kvale and Foldvik, 1992). These two differ-
ent pronunciations are considered dialect features,
with the approximant version predominating in the
“South” and “West” of the country and the tap be-
ing the norm in the rest of country. The maps
in (Kvale and Foldvik, 1999) and (Skjekkeland,
1997) nicely illustrate this distribution.

Similar to the Norwegian /r/, which can be real-
ized in several variants, the Norwegian /l/ also has
dialectally motivated realizations. Many speak-
ers in the “East”, “Mid”, and southern part of the
“North” region of the country produce a voiced
retroflex flap. The norm for speakers in the rest
of the country (“West”, “South”, and the remain-
ing part of the “North”) is a voiced dental/alveolar
lateral (Kvale and Foldvik, 1995).

Understanding these phonetic realizations, we
can anticipate that the tapped [R] and the lateral ap-
proximant [l] should be minimally confusing for
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NB Tale Rundkast

(a)

N/A

2.79%

1.34%

1.81%

2.16%

(c)

0.67%

4.24%

2.24%

1.56%

2.95%

(b)

0.42%

3.44%

2.79%

1.61%

1.95%

(d)

0.78%

3.87%

3.69%

1.67%

2.85%

Figure 1: Instances of “r” becoming “l”. The first column (a, c) show results on the NB Tale utterances;
second column (b, d) shows results on the Rundkast utterances.The first row (a, b) being results from the
300m model and the second row (c, d) being results from the 1b parameter model.

the model. The former being a brief interruption
in the airflow and the latter being a continuous,
smooth approximant. However, for speakers in
the “East” and “Mid” parts of the country, where
both the tapped [R] and flapped [ó] dialect features
are present, we would anticipate a greater degree
of confusion. Both tapped [R] and flapped [ó] are
seen as brief closures with acoustic differentiation
relegated to the F3 and F4 trajectories (Kvale and
Foldvik, 1995).

Therefore to evaluate how much of an impact
these potentially similar realizations have on the
model, we used the aligned Bokmål texts (as de-
scribed in Section 3.2) and calculated how fre-
quently “r” was transcribed instead of “l” and vice
versa. When analyzing instances of “r” transform-
ing into “l”, we only considered instances where
the “r” did not precede another alveolar consonant
(“t”, “d”, “n”, “l”, “s”). This is due to the fact that

“r”, when followed by an alveolar consonant, can
be interpreted as a digraph. In dialect regions with
the alveolar [R], speakers will realize the second
alveolar consonant as a retroflex instead of pro-
nouncing two distinct sounds. That is, “rt” would
be realized as [ú]). To ensure these realizations did
not cloud our analysis, we excluded all “r”s fol-
lowed by an alveolar consonant.

The maps in Figures 1 and 2 show the percent-
age of error. That is, for those instances where an
“r” was not transcribed correctly, the maps show
what percentage of those errors were because an
“l” was transcribed instead (Figure 1). And vice
versa for the “l” to “r” transformation (Figure 2).
This error calculation and plotting was done for
each of the cardinal dialect region. Darker colors
represent higher errors. In both figures the first
column (a, c) show results on the NB Tale utter-
ances; second column (b, d) shows results on the
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NB Tale Rundkast

(a)

5.13%

8.04%

8.18%

6.34%

4.69%

(c)

N/A

7.69%

12.97%

6.00%

7.79%

(b)

1.52%

6.74%

8.43%

9.93%

10.00%

(d)

13.24%

6.56%

7.21%

8.15%

8.43%

Figure 2: Instances of “l” becoming “r”. The first column (a, c) show results on the NB Tale utterances;
second column (b, d) shows results on the Rundkast utterances.The first row (a, b) being results from the
300m model and the second row (c, d) being results from the 1b parameter model.

Rundkast utterances. The first row (a, b) being re-
sults from the 300m model and the second row (c,
d) being results from the 1b parameter model.

For all Figures, except 2(b) and 2(d), the regions
with the most confusability between “r” and “l”
are the “East”, “Mid”, and “North”. Indeed, for all
Figures except 2(d) the “South” has the lowest in-
cidences of “r” and “l” confusion. By and large we
also see much clearer, more consistent trends with
the NB Tale data. This could be because the ut-
terances in the NB Tale corpora were selected for
phonological coverage and thus there were more
environments for “r” and “l” confusion.

4.3 Voiceless stop lenition
In addition to /r/ and /l/ confusability, we also in-
vestigated the distribution of voiceless stop con-
sonants. In the “South” region, voiceless stops
tend to lenite to their voiced counterparts in post-

vocalic environments (Skjekkeland, 1997). Thus,
we would expect [p], [t], and [k] to lenite to [b],
[d], and [g] when preceded by a vowel. To un-
derstand if this change is captured by the wav2vec
model, we found instances where a voiceless stop
was changed and then ensured that the change
was to its voiced counterpart. If a voiceless to
voice change occurred, we then ensured that both
the voice and voiceless stops were preceded by
a vowel. We counted occurrences of this post-
vocalic voicing change across all three stops of in-
terest. Results can be see in Figure 3 for the NB
Tale data and Figure 4 for Rundkast. The first col-
umn (a) shows results from the 300m parameter
model, second column (b) shows results from 1b
parameter model. Darker colors represent higher
errors.

For both the NB Tale and Rundkast corpora we,
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300m 1b

(a)

18.71%

6.98%

5.18%

4.25%

3.01%

(c)

18.67%

6.37%

5.17%

5.17%

1.70%

Figure 3: Percentage of postvocalic voicing error; that is, instances of (“p”, “t”, “k”) realized as (“b”,
“d”, “g”) as a percentage of total (“p”, “t”, “k”) errors on the NB Tale dataset. First column (a) shows
results from the 300m parameter model, second column (b) from the 1b parameter model

300m 1b

(a)

4.94%%

3.39%

1.39%

3.64%

2.55%

(c)

3.46%

3.76%

1.93%

2.85%

2.15%

Figure 4: Percentage of postvocalic voicing error; that is, instances of (“p”, “t”, “k”) realized as (“b”,
“d”, “g”) as a percentage of total (“p”, “t”, “k”) errors on the Rundkast dataset. First column (a) shows
results from the 300m parameter model, second column (b) from the 1b parameter model
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can see that the “South” region has the highest in-
stances of voicing. Though once again, we see
stronger trends in the NB Tale data then in Rund-
kast.

4.4 Personal pronoun jeg

As mentioned when discussing the Norwegian
language in Section 2, there are many ways for
Norwegain speakers to say the first person pro-
noun jeg. This was briefly investigated as well.
Confusion pairs for jeg were aggregated and trends
sought. Regardless, no trends in the words substi-
tuted for jeg in the transcripts could be found. This
lack of results could indicate that a word like jeg
occurs so frequently in all dialects that there is an
abundance of training examples for the model to
generalize from. Or, perhaps, the 5-gram language
model used, in addition to the wav2vec compo-
nent, had enough influence to ensure that only jeg
was produced.

5 Discussion

Due to the fact that we have been able to largely
see acoustic dialectal features surfacing through
our analysis, we find that this method of care-
fully aligning text and aggregating results has
promise. Furthermore, we infer that the mod-
els have learned enough about Norwegian to un-
derstand standard spellings and apply these gen-
eralizations to broader contexts. Additionally,
the phonetic information in the dialects is strong
enough to cause the models to utilize this general
spelling knowledge and create more acoustically
aligned outputs. However, going so far as to say
that the models have internalized some knowledge
about the dialects themselves (e.g., phonetic fea-
tures) is perhaps more than can be reasonably as-
serted from this analysis.

Through this paper we have explored a couple
of known dialectally-motivated phonological re-
alizations. There still, however, exist more that
could be explored. As mentioned in Section 4.2,
there exists a pattern of retroflexting of alveolar
consonants for certain Norwegian dialects. This
analysis could certainly be extended to those en-
vironments. However, there are also phonological
changes that are hard, or potentially impossible to
see in spelling changes. For example, alveolars
are palatalized (most strongly) in the “Mid” region
as well as in certain phonological environments in
the “North” and the northern parts of the “West”

and “East” regions. This palatalization would be
hard to see in spellings since there is no standard
way in Norwegian orthography of representing a
palatalized sound. Additional Norwegian phono-
logical features that have no written representation
(such as toneme) would also be invisible to the
analysis performed in this paper.

As the NPSC is derived from parliamentary
speeches, the distribution of parliament speakers
emulates the population distribution of the coun-
try. Thus our models, all of which were trained
on NPSC, have the same speaker representation.
That is, the “East” region would be the most rep-
resented in the training data. Given this, and the
results in Table 5, it would seem that the models
have best learnt the features which they saw the
most, as machine learning models are wont to do.
Therefore, if models are to be robust against di-
alects, it seems necessary to increase the training
data for the other regions. Additionally, it might be
possible to assign greater weight to these dialectal
character changes during training to encourage the
models to learn a better representation.

6 Conclusion

Through this paper, we demonstrate how an anal-
ysis of character errors in transcriptions generated
by an end-to-end ASR system can contain dialec-
tal trends mirroring those known through linguis-
tic descriptions. We showed increased confusabil-
ity between “r” and “l” in regions where those
phonemes are realized similarly. We also showed
increased incidences of voiceless stop lenition in
a region known for that phenomena. These errors
indicate that the end-to-end system has success-
fully learnt to spell in Norwegian, going so far so
as to slightly spell in dialect.
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Abstract

This paper describes the creation and eval-
uation of a synthetic dataset of Swedish
multiple-choice questions (MCQs) for
reading comprehension using GPT-3. Al-
though GPT-3 is trained mostly on En-
glish data, with only 0.11% of Swedish
texts in its training material, the model still
managed to generate MCQs in Swedish.
About 44% of the generated MCQs turned
out to be of sufficient quality, i.e. they
were grammatically correct and relevant,
with exactly one answer alternative being
correct and the others being plausible but
wrong. We provide a detailed analysis of
the errors and shortcomings of the rejected
MCQs, as well an analysis of the level of
difficulty of the accepted MCQs. In ad-
dition to giving insights into GPT-3, the
synthetic dataset could be used for training
and evaluation of special-purpose MCQ-
generating models.

1 Introduction

OpenAI’s GPT-3 (Brown et al., 2020) is the cur-
rent state-of-the-art model for text generation.
One of the more impressive properties of this
model is the way it can perform natural-language
tasks without any labeled examples, with so-called
zero-shot learning. In the case of GPT-3, zero-shot
learning entails that the model receives a prompt
describing the task verbally (for example, “Trans-
late from English to Spanish”), some input data
for the task (a text in English in this example), and
then produces the output (the Spanish translation
in the example).

Most research using GPT-3 has focused on En-
glish, because the bulk of GPT-3’s training data
(92.6% of words) is English text. Only 0.11%1

1Hyperlink to a CSV file with the training data statistics

of the training data is Swedish text. This might
sound insignificant at first, but it actually amounts
to 220.9 million words, which is quite a sizeable
corpus! In addition, Swedish and English are both
Germanic languages, so it is possible that some
cross-lingual learning has taken place during train-
ing. Taking all this into account, we want to test
whether GPT-3 would be able to handle tasks in
Swedish in a zero-shot fashion. Specifically, the
article has the following two goals.

1. Provide a pilot evaluation of GPT-3’s ability
to generate multiple-choice questions (MCQ)
in a zero-shot manner.

2. Create the first synthetic dataset of MCQs,
called Quasi,2 for testing reading comprehen-
sion of adult language learners of Swedish.

An MCQ consists of a text, a question (called the
stem) on the text, and a set of answer alternatives,
of which exactly one is correct (called the key) and
all the others are wrong, but plausible (called dis-
tractors). As we will show, GPT3 is good but far
from perfect in generating Swedish MCQs from
a Swedish text: more than half of the generated
MCQs were incorrect, sometimes in subtle ways.
This means that GPT-3 does not provide an ul-
timate solution to the MCQ-generation task, and
that special-purpose models are still required. The
synthetic dataset presented here could potentially
be used as extra training material for such special-
purpose models.

In this paper, we provide a detailed analysis of
the errors and shortcomings of the rejected MCQs,
as well as an analysis of the level of difficulty
of the accepted MCQs, giving insights into the
strengths and weaknesses of GPT-3.

2Raw data, annotations, the details on the annotation
setup, and the source code are available at https://
github.com/dkalpakchi/Quasi
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2 Related work

The idea of creating synthetic datasets is not new
both in NLP in general (Gessler et al., 2020; He
et al., 2022), and for Question Answering (QA)
specifically (Alberti et al., 2019). To the best of
our knowledge, no synthetic datasets of multiple
choice questions (MCQs) for testing reading com-
prehension have been created either for English or
Swedish. However, for English, the use of syn-
thetic MCQs has been explored for other domains,
such as natural sciences (Le Berre et al., 2022) or
factual QA (Puri et al., 2020).

QA for Swedish is an under-researched area
with very few existing datasets. There has
been an attempt to translate SQuAD (Rajpurkar
et al., 2016), which does not contain MCQs, into
Swedish3 with no information on whether trans-
lations were manually checked. To the best of
our knowledge, the only existing MCQ dataset in
Swedish is SweQUAD-MC (Kalpakchi and Boye,
2021), which has been manually constructed.

3 Data collection

3.1 Textual materials
We have collected 96 texts of varying length, type
and genre from the national tests of Swedish for
Immigrants courses (swe. SFI nationella prov)
using OCR. These texts have been specifically
adapted to test reading comprehension of adult
language learners of Swedish. The sought-after
synthetic data should consist of MCQs for each
given text, where each MCQ must fulfill a number
of requirements:

1. there must be 4 alternatives;

2. only one alternative must be correct;

3. the other 3 alternatives must be wrong, but
plausible;

4. the question must be answerable using the in-
formation in the given text.

For each text, a batch of MCQs fulfilling the re-
quirements above should be generated and the
number of MCQs in the batch should vary depend-
ing on the length of text: the longer the text, the
more MCQs should be available. Additionally, the
difficulty of MCQs in each batch should vary.

3https://github.com/Vottivott/
swedsquad

3.2 GPT-3 hyperparameters
We have employed OpenAI’s GPT-3 (Brown et al.,
2020), more specifically version text-davinci-003,
to generate synthetic data that fuifils the require-
ments from the previous section.

3.2.1 Prompt
Our approach to creating the prompt was to spell
out the aforementioned requirements as clearly as
possible. The results was the following prompt,
which has been fed to GPT-3 in Swedish.

Skriv Nq olika läsförståelsefrågor med
4 alternativ (a, b, c, och d) och ge varje
fråga en unik nummer (1, 2, 3, osv).
Första alternativet (a) ska alltid vara
rätt, medan de andra alternativen (b, c,
och d) ska vara felaktiga, men troliga.
Alla frågor måste kunna besvaras av den
följande texten. Ordna frågor från den
lättaste till den svåraste.

The number Nq was selected based on the length
of each text (the longer the text, the more MCQs
we asked for) using the heuristic detailed in Ap-
pendix A.

To help non-Swedish-speaking readers, we also
provide an English translation of the prompt be-
low, but we emphasize again, that all input to GPT-
3, including the prompt, was in Swedish.

Write Nq different reading comprehen-
sion questions with 4 alternatives (a,
b, c, and d) and give each question a
unique number (1, 2, 3, and so on). The
first alternative (a) should be always cor-
rect, while the other alternatives (b, c,
and d) should be wrong, but plausible.
All questions must be answerable of the
following text. Order questions from the
easiest to the hardest.

We did NOT perform any extensive experimen-
tation with prompt formulation. We have formu-
lated the prompt in a way that it includes all afore-
mentioned requirements in the most unambiguous
way possible. Some parts of the requirements are
ambiguous by necessity, for instance, the defini-
tions of MCQ difficulty vary among researchers
(see Section 4.1 for further discussion on the mat-
ter). The intention behind including the difficulty
requirement into the prompt was to check whether
GPT-3 could produce any variation at all when it
comes to MCQ difficulty.
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3.2.2 Generation hyperparameters
We did NOT perform any systematic search for
the generation hyperparameters (e.g., temperature,
top P for nucleus sampling, etc). Instead we used
the default settings (listed in Appendix B), except
for the extended maximum generation length to al-
low for longer texts and more MCQs.

The rationale behind this decision is that it is
impossible to define the degree to which we want
GPT-3 to generate repeated content. For instance,
if the text consists of one and only sentence:
“Stockholm is the capital of Sweden”, then one
of the few good reading-comprehension questions
would be “What is the capital of Sweden?”, with
the correct answer “Stockholm”. In this example,
all words from the text are repeated in the ques-
tion and the correct answer. One could, of course,
paraphrase the question to some degree, but then
that poses a risk of the question’s meaning “drift-
ing away”. For instance, the question “What is the
administrative center of Sweden?” is still a valid
question, but it is neither equivalent to the original
question, nor answerable from the given text.

4 Evaluation methodology

We are interested to know how well GPT-3 fol-
lowed the instructions given in our prompt. For
each given text, we investigated the following
properties:

Q1. Were Nq MCQs generated?

Q2. Did every MCQ include a stem and 4 alterna-
tives?

Q3. Did the formatting conform to the requested
one (MCQs are numbered, alternatives are la-
beled with letters a, b, c, d, etc)?

Q4. Were all MCQs distinct?

The next group of questions is interesting only for
distinct MCQs with a stem and 4 alternatives. We
will refer to these as D-questions, with “D” for
“distinct”.

D1. Were all stems grammatically correct and an-
swerable after reading the text?

D2. For MCQs having stems compliant with the
requirements in D1, were all alternatives
grammatically correct and relevant?

The final 3 questions are interesting only for
those cases where the answer was yes for both D1
and D2. We will refer to these as R-questions, with
“R” for “relevant”.

R1. Was only one alternative always correct,
while the others were always wrong, but
plausible?

R2. Was the correct alternative always a?

R3. Were the MCQs always ordered from the eas-
iest to the hardest?

Although requiring some manual annotation, the
questions above are all trivial to check, with the
exception of R3, which is non-trivial since the
concept of MCQ difficulty is not well-defined. In
fact, MCQ difficulty depends on many things that
are hard to keep constant, e.g., the reader’s skills
and background knowledge, whether the test is
taken under time pressure, etc. For the purpose
of this case study, we have relied on a definition of
difficulty outlined in the section below and further
detailed in Appendices C.1, C.2, and C.3.

4.1 MCQ difficulty

For defining MCQ difficulty we take inspiration
from the methodology proposed by I. Kirsch and
P. Mosenthal, which served as one the bases for
the TOEFL 2000 (Jamieson et al., 2000) and PISA
2018 (OECD, 2019) reading literacy frameworks.
In particular we consulted Kirsch and Mosenthal
(1995), because this work specifically deals with
assessing difficulty of multiple-choice questions.

Kirsch and Mosenthal (1995) have used the per-
centage pc of students who answered the question
correctly4 as a proxy for the MCQ difficulty. In an
attempt to explain performance differences, they
have defined a number of readability and read-
ing process variables, and ran a regression using
these variables as predictors of pc. They found the
following three variables to be particularly strong
predictors (later referred to as core predictors):

• Type of Information (TOI)

• Type of Match (TOM)

• Plausibility of Distractors (POD)
4In Kirsch and Mosenthal (1995), this quantity is called

p-value, but should not be confused with p-values from sta-
tistical hypothesis testing, which are also reported using p-
notation

479



Inspired by Kirsch and Mosenthal (1995), we eval-
uated each of the core predictors on a scale from 1
to 5 using the following scoring rules:

• TOI: The more abstract the stem, the higher
the score. Stems inquiring about concrete
things like places or people will get a score of
1, whereas those asking about more abstract
concepts will get increasingly higher scores,
up to 5 for the most abstract concepts, like
themes or patterns.

• TOM: The more inference required to match
the information in the stem and the key to the
text, the higher the score. This means a score
of 1 for MCQs requiring simple string match-
ing, up to a score of 5 for those matches re-
quiring reading between the lines.

• POD: The closer distractors are to the key in
the text, the higher the score. This means
a score of 1 for MCQs with no distractors
present in the text, up to a score of 5 in the
cases where two or more distractors are close
to the key in the text.

More precise definitions for scoring the core pre-
dictors are provided in Appendix C.1 for Type of
Information, Appendix C.2 for Type of Match, and
Appendix C.3 for Plausibility of Distractors.

5 Results

Recall that we collected 96 texts and asked GPT-
3 to generate Nq MCQs for each of them, where
Nq is calculated based on the length of each text
(the longer the text, the more MCQs we asked
for). In total, GPT-3 made 718 generation at-
tempts. To answer all questions posed in the pre-
vious section, we have made all required manual
annotations ourselves using an iterative annota-
tion process (annotating – discussing issues – re-
annotating). All annotations for this section have
been performed using the Textinator5 annotation
tool (Kalpakchi and Boye, 2022).

Q1. Were Nq MCQs always generated?
Answer: No, but very often (for 89.6% of the
texts)

For 86 out of 96 texts, GPT-3 generated exactly
the requested Nq MCQs. The mismatch between

5To facilitate reproducibility, the exact details of the Tex-
tinator setup are available in the GitHub repository associated
with this paper.
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Figure 1: Scatterplot of the relation between the
number of tokens (as provided by NLTK) and the
size of MCQ number mismatch, Ngen −Nq

the number of generated MCQs Ngen and Nq is
shown in Figure 1.

As can be seen, most of the mismatch happens
for longer texts and there are mostly fewer MCQs
generated than requested. One possible explana-
tion could have been that GPT-3 simply did not
have enough tokens in its context window. How-
ever, Figure 1 illustrates that in the vast majority
of cases, GPT-3 stopped generating MCQs after
reaching the stop token. In fact, only in one case
was the generation interrupted because the context
window was too short (GPT-3 failed even to pro-
duce a stem for this example). This means that
717 out of 718 generation attempts resulted in an
MCQ.

Q2. Did every MCQ include a stem and 4 alterna-
tives?
Answer: Yes

The only MCQ that did not was the one with the
id 0 28, which was the only failed generation at-
tempt discussed above. All other 717 MCQs con-
tained a stem with 4 alternatives.

Q3. Did the formatting conform to the requested
one (MCQs are numbered, alternatives are la-
beled with letters a, b, c, d, etc)?
Answer: Yes, with some minor variations.

The stems were always numbered using Arabic
numbers followed by a full stop. The alterna-
tives were always formatted in the same way both
within each MCQ and between all MCQs for each
text. The formatting itself has slightly differed be-
tween the texts, using either small or capital letters
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Figure 2: Distribution of the formatting types for
the alternatives in each test (using the first alterna-
tive a as an example). All MCQs within the test
were formatted in the same way.

from a to d, followed by either a right bracket or
a full stop. The distribution of different formatting
options is illustrated in Figure 2.

Q4. Were all MCQs distinct?
Answer: Mostly yes (around 4% duplicates).

MCQs can be duplicated to varying extents. We
define the following cases, which we call duplica-
tion levels:

• absolute – when both the stem and all alter-
natives are the same (ignoring the punctua-
tion), and the alternatives have been gener-
ated in the same order;

• partial – when either only the stem is the
same, or both the stem and all alternatives
are the same, but the alternatives have been
generated in a different order;

• paraphrased – when the stem (and possibly
a subset of alternatives) is a paraphrased ver-
sion of the stem (and possibly a subset of al-
ternatives) of the other MCQ(s).

If one MCQ is a duplicate of more than one MCQ,
we take only the strongest duplication level into
account. For instance, if X and Y are paraphrased
duplicates, whereas X and Z are absolute dupli-
cates, we include X as the case of absolute dupli-
cates in the descriptive statistics.

31 (4.32%) MCQs turned out to be duplicates
with a distribution of duplication levels provided
in Figure 3. As previously mentioned, all dupli-
cates are excluded from further analysis.
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Figure 3: Distribution of duplicated MCQs
(4.32% of all MCQs) per duplication level
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Figure 4: Distribution of grammatical error types
for stems. “AGR” stands for “agreement”, and
“prep.” – for “preposition”

D1. Were all stems grammatically correct and an-
swerable after reading the text?
Answer: No (roughly 1 in 5 MCQs did not
conform to these requirements)

There are multiple kinds of problems related to
D1. The first problematic category includes un-
grammatical stems, which we have classified fur-
ther into the types of grammatical errors, shown
in Figure 4. In total, 43 (6%) MCQs had ungram-
matical stems with a more detailed description and
examples for each grammatical error type given in
Appendix D.

The second problematic category concerns the
stems that are grammatically correct, but unan-
swerable for the given text. For the purpose of the
synthetic data at hand, we have defined the follow-
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Figure 5: Distribution of reasons for being unan-
swerable.

ing reasons to classify a stem as unanswerable.

• Contradictive, meaning that a presupposi-
tion in the stem contradicts what is written
in the text. For instance, suppose that in the
text it is written “John was very happy to fi-
nally resign”, and the stem is “Why was John
sad about resigning?”. Here the presupposi-
tion that John was sad is inconsistent with the
text. Another example could include the text
“John likes playing basketball, but his biggest
hobby is tennis” and the stem “What is John’s
hobby?”. This formulation of the stem pre-
supposes that John has one hobby, which is
not true and hence inconsistent with the text.

• Undiscussed, meaning that the text neither
provides the information necessary to find the
key for the stem, nor provides the way to re-
ject all but one alternative, while providing
some support for the remaining one. In either
case the information in the stem does NOT
contradict the text.

• Ambiguous, meaning that the information
provided in the stem is not enough to choose
one definite answer among the provided al-
ternatives, i.e., different alternative(s) could
be viewed as the key, depending on the inter-
pretation of the stem.

87 (12.13%) MCQs were deemed to have unan-
swerable stems with a more fine-grained distribu-
tion depicted in Figure 5.

The last, but not least problematic category in
D1 is that of grammatically correct stems that

could be answered without reading the text. This
category includes 20 (2.79%) MCQs.

D2. Were all alternatives grammatically correct
and relevant for the given stem and text?
Answer: No, but more than for stems
(around 3 in 20 MCQs did not conform to the
requirements above).

Similarly to D1, there are multiple kinds of prob-
lems related to D2. One problem is that of un-
grammatical alternatives, which uses exactly the
same categorization as for D1 (detailed and ex-
emplified in Appendix D) with one additional cat-
egory: “tautology”. In total 10 (1.39%) MCQs
with grammatically correct stems had at least one
ungrammatical alternative, with the error type dis-
tribution provided in Figure 6.

The other problem concerns cases when the al-
ternatives are grammatically correct, but irrelevant
for the given text. For the synthetic data at hand,
we have defined the following reasons to judge the
alternatives as irrelevant for the given text.

• Misfocused, meaning that at least one of the
alternatives does not provide the type of in-
formation, requested in the stem. One exam-
ple of such inconsistency would be the stem
“What is the capital of Sweden?”, accompa-
nied by the alternative “John Lennon”. Note
that even if the correct answer, “Stockholm”,
is within the provided 4 alternatives, but so is
“John Lennon”, the MCQ will still be catego-
rized as misfocused. The rationale is that in
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Figure 6: Distribution of grammatical error types
for alternatives.
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Figure 7: Distribution of reasons for being irrele-
vant.

such cases, the effective number of alterna-
tives becomes less than 4 and thus it becomes
easier to guess the correct answer.

• Heterogeneous, meaning that one or more of
the provided alternatives stick out and thus
provide a potential clue for the students. One
example would be the stem “Where is Nobel
Museum located?” and the alternatives “Stor-
torget 2, 103 16 Stockholm”, “Gothenburg”,
“Uppsala”, “Copenhagen”. The first alterna-
tive is clearly different from the others and is
also the correct answer in this case.

• Unanimously wrong, meaning that neither
of the provided 4 alternatives can be consid-
ered correct (the key).

90 (12.55%) MCQs were judged to be irrelevant
with the distribution of reasons for irrelevancy de-
picted in Figure 7.

To summarize, the R-questions will be evalu-
ated only on the MCQs that didn’t have any prob-
lems so far. This includes 717 − 31 − 43 − 87 −
20− 10− 90 = 436 MCQs (60.81%).

R1. Was only one alternative always correct,
while the others were always wrong?
Answer: No, around 3 in 10 of the remaining
MCQs (or 3 in 20 in total) had problems.

119 (16.6%) of the remaining 436 MCQs had
more than one correct answer, which leaves us
with 317 MCQs (44.21%) to be tested for the re-
maining conditions.
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Figure 8: Distribution of the positions of correct
alternatives

R2. Was the correct alternative always a?
Answer: No, a bit more than 3 in 10 of the
remaining MCQs (or 3 in 20 in total) had b,
c, or d as the correct alternative.

The distribution of positions of correct alternatives
for the 317 MCQs remaining after R1 is provided
in Figure 8. For 213 MCQs (29.71%) the alter-
native a was correct, whereas all the other were
wrong.

R3. Were the MCQs always ordered from the eas-
iest to the hardest?
Answer: No, but for 27 texts they were!

For this part of the analysis, we have included all
317 MCQs with exactly one correct answer (no
matter a or not) and without any problems spot-
ted before R2. Notably, 6 texts have lost all their
MCQs, so these 317 MCQs are spread over 90 out
of the initial 96 texts.

We have then annotated each MCQ using the
MCQ difficulty scheme outlined in Section 4.1
(and detailed in Appendices C.1, C.2, and C.3).
The distribution of total MCQ difficulty is shown
in Figure 9. Recall that the minimum possible
MCQ difficulty is 3 points, whereas the maximum
is 15 points. Each column in Figure 9 represents
one of the 90 texts and each row is an MCQ gen-
erated for this texts. The MCQs are ordered in
the order of generation from bottom to top (so the
first row from the bottom indicates the first MCQ
generated by GPT-3). Grey cells indicate MCQs
excluded prior to R2.

If GPT-3 followed the prompt and ordered
MCQs from easiest to hardest, one would expect
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Figure 9: Heatmap of MCQ difficulty. Each column represents one of the 90 survived texts. Each cell in
a column represents an MCQ generated by GPT-3 for this text. Grey cells indicate the MCQs excluded
because of insufficient quality, whereas cells of other colors represent the accepted MCQs. Difficulty
ranges from 3 to 15 and is represented by colors according to the legend on the right. Texts are ordered
by their length (from the longest to shortest), which is directly proportional to the requested number of
MCQs. MCQs are ordered by their generation order (those generated first reside in the first row from
the bottom). The columns with green stars indicate the texts which had more than 1 accepted MCQ
generated by GPT-3 in the order of their difficulty (from easiest to hardest).

the whole heatmap (except the grey cells) to fol-
low the same coloring as the legend. The easier
MCQs with difficulties close to the theoretically
minimal 3 points should be at the bottom of the
chart in light colors. The hardest MCQs should be
on top of every column in dark colors (with diffi-
culties close to theoretically maximal 15 points).
However, Figure 9 shows neither this pattern, nor
any pattern at all. Nevertheless, if we consider
texts which have more than one survived MCQ (72
out 90 texts), then MCQs were ordered in the non-
decreasing order of difficulty for 27 texts (marked
with green stars in Figure 9).

6 Discussion and conclusions

GPT-3 has been able to generate around 30% of
MCQs that conformed to all criteria (excluding
ordering by difficulty), and 44% of MCQs which
were of sufficient quality (also excluding the re-
quirement that a is the correct answer). Together
with our additional annotations, detailed with ex-
amples in Appendix E, these 44% of MCQs con-
stitute Quasi, the first synthetic dataset of MCQs
for testing reading comprehension of adult lan-
guage learners of Swedish (available at https:
//github.com/dkalpakchi/Quasi/
blob/main/annotated/quasi.json).

The fact that 44% of MCQs turned out to be of
sufficient quality is impressive, given that (a) it is
zero-shot, and (b) only 0.11% of GPT-3’s train-
ing data was in Swedish. Although GPT-3 did
not manage to order MCQs from easiest to hardest
for most of the texts, the model could still gener-
ate MCQs of varying difficulty levels. The eas-
iest MCQ scored theoretically minimal 3 points,
whereas the hardest scored 14 (just 1 off from the
theoretical maximum!).

That said, as 56% of MCQs turned out to be
of insufficient quality (available at https://
github.com/dkalpakchi/Quasi/blob/
main/annotated/poor_quality.json),
sometimes for subtle reasons, manual curation is
not only desired, but is in fact required (not least
to identify the correct alternative).

Why not ask GPT-3 to choose the correct al-
ternative? One counter-argument is that it would
consume more tokens, which leaves less tokens for
MCQs, and leads to higher costs. Another reason
is that there is no convincing argument why GPT-3
would be able to always provide the correct an-
swer. If it could, then it should have been able to
put it as alternative a all the time, which it did not.
Furthermore, it should have been able to always
generate only one correct answer, which it did not
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do for 16.6% of MCQs. In fact, this finding is
in line with the previously published evaluation of
a BERT-based model for generating distractors in
Swedish (Kalpakchi and Boye, 2021), where the
most frequent reason for rejecting distractors was
that they were not wrong (leading to more than 1
correct answer).

Could GPT-3 handle OCR errors, if there
were any? Yes, it could! To give an exam-
ple, one of the e-mail addresses in one of the
texts was incorrectly recognized by the OCR sys-
tem as “ifhs.info Qimh.se”, which we unfortu-
nately didn’t notice. GPT-3 was still able to gen-
erate “ifhs.info@imh.se” as one of the alterna-
tives. This is most probably, because there was “e-
post:” (eng. “e-mail:”) before this string, which
the GPT-3’s attention mechanism was able to cap-
ture. That said we didn’t do any rigorous eval-
uation to quantify how well GPT-3 can mitigate
OCR errors, so the caution is advised when trying
to generalize from this insight.
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A Heuristic for choosing the number of
generated MCQs

First we have calculated the average length of
the sentence in characters for different sources of
text (forum, news, blogs, etc), which could be
extracted by multiplying W̄ by C̄ from Table 1.
Then for each text T (belonging to category catT )
we have calculated NT

q as follows:

NT
q = α

CT∑
c∈catT W̄c · C̄c

, (1)
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where CT is the number of characters in T , W̄c

(C̄c) is the average number of words (characters)
per sentence in the corpus c belonging to the cate-
gory catT (if a text did not belong to any category,
we set catT to all categories), α is the assumed
number of MCQs to be asked per sentence.

Choosing α is a bit tricky. In reality one can
ask way more than 1 MCQ per sentence, but then
not all sentences are worth asking even 1 MCQ.
In hopes that these two groups cancel each other
out, we have assumed α = 1, meaning 1 MCQ per
sentence, for the purpose of this article.

B Hyperparameter settings for GPT-3

We have used OpenAI’s text-davinci-003 model
with the following generation hyper-parameters:

• temperature of 0.7

• “top p” (for nucleus sampling) of 1

• frequency and presence penalties of 0

• “best of” being equal to 1

• no custom stop sequences

• maximum length of 2048

C Scoring rules for process variables
included in MCQ difficulty calculation

Recall that the core predictors found by Kirsch and
Mosenthal (1995) are Type of Information (TOI),
Type of Match (TOM), and Plausibility of Distrac-
tors (POD). The way these predictors were pro-
posed to be operationalized is different depend-
ing on the nature of the provided textual material.
More specifically, Kirsch and Mosenthal (1995)
distinguished between the following two types of
materials:

Corpus c Source |Wc| W̄c C̄c

Familjeliv forum 885M 12.56 4.51
Flashback forum 711M 12.92 4.67
Bloggmix blogs 375M 13.82 4.69

Webbnyheter news 87M 15.31 5.42
SVT news 179M 13.65 5.40
Wiki info 314M 10.67 5.63

Table 1: Corpus statistics for deciding the value
of Nq. |W | denotes a number of words in a corpus,
W̄ – the average number of words per sentence, C̄
– the average number of characters per word

• prose, which refers to texts that consist of
sentences grouped into paragraphs, in partic-
ular narrative and expository texts were con-
sidered;

• documents, meaning any kind of material
where the structure of the document pro-
vides extra information for understanding the
contents, for instance, e-mails (with address
headers and footers), articles (with head-
lines), reports (with tables and graphs), ad-
vertisements, schedules, etc.

In the following section we discuss how we
adapted the scheme proposed by Kirsch and
Mosenthal (1995) to the needs of this article.

C.1 Type of Information
Kirsch and Mosenthal (1995) defined Type of In-
formation (TOI) as the nature of what the readers
are asked to identify in each given stem. The basic
rule is that the more concrete the TOI, the easier
the MCQ is, whereas more abstract TOI lead to
more complex MCQs. The scoring rules are as
follows.

• person, animal, or thing, score 1;

• amount, time, attribute, action, location,
score 2;

• manner, goal, purpose, condition, or predi-
cate adjective, score 3.

• cause, result, reason, evidence, or theme,
score 4.

• equivalent, score 5.

The same rules apply for both prose and docu-
ment materials.

C.2 Type of Match
Kirsch and Mosenthal (1995) defined Type of
Match (TOM) in terms of processes used to relate
information in the stem and the key to information
in the textual material (prose or document). This
is the most complex part of the scheme for eval-
uating MCQ difficulty, which we have simplified
and took only the core aspect of it.

For the sake of brevity, we denoted the rela-
tion between a stem and the textual material as
S-T, and the relation between a key and the tex-
tual material as K-T. For prose tasks, the majority
of which were multiple-choice questions (MCQs),
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Prose Document Score

when S-T and K-T are both LIT or SYN 1

when S-T or K-T requires LLTI, while the other requires LIT or SYN match 2

when S-T and K-T both require LLTI 3

when either S-T or K-T requires HLTI 4

when S-T and/or K-T requires HLTI, but
the nature of the corresponding relation(s)
needs to be defined by the reader

when S-T and/or K-T requires inferring a
causal pattern or trend, or making a unique
inference based on prior knowledge

5

Table 2: Scoring rules for Type of Match detailed for prose and document materials. S-T denotes
the relationship between the stem and the text, and K-T between the key and the text, LIT stands for
“literal”, SYN – for “synonymous”, LLTI – for “low-level text-based inference”, whereas HLTI – for
“high-level text-based inference”.

we have adopted the scoring rules of Kirsch and
Mosenthal (1995) as they are (see Table 2).

The scoring rules for document tasks were de-
fined using many special-case rules. However,
Kirsch and Mosenthal (1995) note that many of
the document tasks did not use a multiple choice
format, whereas in our case all tasks are guaran-
teed to be MCQs. Henceforth, instead of adopting,
we chose to adapt by keeping as many applicable
aspects of the rules for prose texts, as possible.

A clear similarity between prose and document
scoring rules is that tasks requiring literal or syn-
onymous match are still easier than those that need
low-level text-based inference, which, in turn, are
easier than those requiring a high-level text-based
inference. Hence we decided to keep the first 4
scoring rules as they are.

One clearly different thing is the definition of
the final level (when the MCQ should be awarded
5 points). We adopt this difference, but slightly
adapt it, as shown in Table 2.

Unfortunately, Kirsch and Mosenthal (1995) do
not provide clear definitions of what low-level or
high-level inference mean, or where the border be-
tween synonymous match and low-level inference
is. Hence, for the sake of this article, we have de-
vised the following definitions based on examples
of scoring MCQs, provided by Kirsch and Mosen-
thal (1995), and common sense.

Literal match (LIT) entails that the required
information exists in the given textual material
word-by-word. When applying this definition, it
is allowed to ignore:

• question words/phrases, for instance, “Vad”
(eng. “What”), “Hur mycket” (eng. “How
much”), “I vilket land” (eng. “In what coun-
try”);

• articles, for instance “en / ett”, “den / det /
de”, “denna / detta / dessa”;

• changes in the word form, when the word
stem6 remains the same (see examples in Ta-
ble 3);

• changes between parts of speech (e.g., nom-
inalization, adjectivization) when the word
stem remains the same (e.g., “drömmar” and
“drömmer”, “samlas” and “samling”)

For documents, there is a special case of LIT
when matching information requires identifying
structural part(s) in a document with a widely ac-
cepted structure. Such documents include, but are
not limited to, e-mails, letters, blog posts, sched-
ules. To exemplify, the question “Who is the
sender of an e-mail?” requires the reader to locate
the signature at the end of the email.

Synonymous match (SYN) encompasses cases
when one word is substituted for another word
with a similar meaning and the same grammatical
features (part of speech, voice, inflection, num-
ber, etc). One or more such substitutions are al-
lowed. Additionally, the following cases are in-
cluded in this category, although they are not typ-
ically counted as synonyms in linguistics.

6not to be confused with the stem of an MCQ
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TOM Description Example

LIT
conjugations of swe. vänta / väntar / väntade / väntat
regular verbs eng. wait / waits / waited / waited

LIT
conjugations of swe. gå / går, stå / står, ge / ger
some irregular verbs eng. go / go, stand / stand, give / give
to Present Simple

LIT noun inflections
swe. bil / bilen / bilar / bilarna / bils / bilens / bilars / bilarnas
eng. car / the car / cars / the cars / car’s / the car’s / cars’ / the cars’

LIT adjective inflections
swe. stor / stort / stora
eng. large / large / large

SYN
conjugations of swe. finna / finner / fann / funnit, bryta / bryter / bröt / brutit
strong verbs eng. find / find / found / found, break / break / broke / broken

SYN
most conjugations swe. går / gick / gått, står / stod / stått, ger / gav / givit
of irregular verbs eng. go / went / gone, stand / stood / stood, give / gave / given

Table 3: Examples of word form changes allowed different Type of Match levels

• Changes in the word form, when the word
stem becomes different (see examples in Ta-
ble 3).

• Using comparative and superlative adjec-
tives, e.g., “god / bättre / bäst” (eng. “good
/ better / best”.

• When a word is matched to a part of a
compound, e.g., “kurserna” in the stem and
“kursveckor” in the text.

• Using abbreviations, e.g., “tel.” for “tele-
fonnummer”, “kl.” for “klockan”, “Feb” for
“Februari”.

• When numbers are written as words and vice
versa, as well as colloquial names for num-
bers (“a pair” meaning 2).

Low-level text-based inference (LLTI) in-
cludes cases when:

• the required information needs to be “col-
lected” from multiple sentences (e.g., co-
reference resolution);

• requires local (within sentence) reasoning
(e.g., if the text says “John is older than
Mary”, while one of the alternatives is “Mary
is younger than John”);

• a word is substituted for another word with
a different word stem, but a similar mean-
ing, but different grammatical features (part
of speech, voice, inflection, number, etc);

• a word is substituted by a phrase or vice
versa;

• compounds (swe. sammansättningar) that
are split into separate words, for in-
stance, exchanging “grundutbildning” with
“grundläggande utbildning” (note that these
are very rare in English, but quite common in
Swedish);

• hierarchical relationships, e.g. “basketball”
and “sport”;

• the format needs to be recognized, e.g. that
“name@example.com” is an e-mail;

• a non-matching word denotes whether the
information should be included in/excluded
from a document (or a part of a document).

High-level text-based inference (HLTI) when
it is required to link multiple paragraphs of text.
These cases include, but are not limited to:

• counting entities (if they are not already
counted in the text), such as in the stem “How
many countries are represented in the event”;

• reading between the lines to find out the in-
formation, as in “Why did John write this let-
ter?”;

• using specific prior knowledge about content
or structure of the text, for instance, when one
writes “Otto, 27” at the end of the post on
social media means that “27” is most prob-
ably his age, or when it’s written “Opening
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hours 11 - 21”, it means that the closing time
is 21:00;

• asking whether the information is included in
the text, e.g. “What is not a hobby of John?”.

The last level, for the score of 5, requires the
reader to define the nature of the S-T and/or K-T
relations. In particular, this included the cases
when the reader needs to

• provide an interpretation of a phrase based
on the information in the text, e.g., “Vem av
personerna i texten är mest förespråkare för
förbud?” (eng. “Which of the people in the
text advocates the most for the ban?”);

• recognize the stance of a person in the text,
e.g. “Hur resonerar Joel Marklund kring
ekologiska produkter?” (eng. “How does
Joel Marklund reason about the ecological
products?”).

For all TOM levels, pleonasms (meaning re-
dundant linguistic expressions that are unneces-
sary to comprehend the stem) should be ignored.
For instance, consider the key is “make demands
on the children but show them love”. The pro-
noun “them” is only there because of grammar,
otherwise it is apparent from the context that love
should be directed towards children, even with-
out the pronoun. Note that in MCQs expressions
might become pleonastic with respect to the given
alternatives. For instance, consider the sentence
“Welcome to the interview on Wednesday 6/2 at
15:00” and the following MCQ.

What is the date for the interview?

a) Thursday 7/2

b) Wednesday 6/2

c) Wednesday 15/2

d) Thursday 6/2

Obviously, the word “date” is not mentioned in
the text and one needs to know what the date is,
so this appears to be a case of HLTI. However,
given the alternatives, one doesn’t need to under-
stand the word “date” and suddenly the match be-
tween the stem and the text gets downgraded to
LIT.

To give another example consider the following
e-mail.

Hi,

I was forced to pay $20 extra for the de-
livery of the laptop, which I think is un-
acceptable!

Best regards, Martin Jones

If we analyze the MCQ below at a first glance,
“Martin Jones” is not mentioned in the sentence
about extra $20 payment. Instead “I” there should
be resolved to “Martin Jones”, so it seems like a
case of LLTI. However, Martin Jones is the only
person that is in fact mentioned in the text, so
mention of his name in the stem becomes pleonas-
tic and hence the MCQ again gets downgraded to
LIT.

How much was Martin Jones forced to
pay?

a) $20

b) $15

c) $40

d) $2

What these two examples show is that the judge-
ment of Type of Match level if extremely text-
dependent and one and the same MCQ could get
different TOM-score, depending on the text at
hand.

C.3 Plausibility of Distractors
Inspired by (Kirsch and Mosenthal, 1995), we
make use of an implicit tree structure for both
prose and document materials. Each node of
such a tree should contain a unit of information
that cannot be split further into independent units.
The only type of nodes in prose texts are para-
graphs, whereas nodes in documents are general-
ized paragraphs by nature, but could also contain
more structured and/or graphical material (such as
charts, tables, maps, lists, etc).

Given the surface form of the correct answer,
we define the answer node (AN) as the first node
in the BFS traversal of the tree corresponding to
the textual material, containing information sup-
porting the correct answer.

Since many of the document tasks did not use
a multiple choice format, as noted by Kirsch and
Mosenthal (1995), the rules for scoring POD for
document materials must be adapted. If the format
is not MCQs, then it is only relevant to look into
distracting information in the text, i.e., pieces of
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Prose Document Score

There is no distracting information in the text 1

DIS are LIT or SYN match to the information not in AN 2

DIS represent PII not based on information related to AN 3

One DIS contains information that is related to the information in AN 4

Two or more DIS contain information that is related to the information in AN 5

One or more DIS represent PII based on information outside of the text 5

Table 4: Scoring rules for Plausibility of Distractors detailed for prose and document materials. DIS
stands for “distractor(s)”, LIT – for “literal”, SYN – for “synonymous”, PII – for “plausible invitied
inferences”, and AN – for “answer node”.

text that provide plausible grounds, although they
are still not correct. In stark contrast, MCQs al-
ready provide a number of alternatives, which the
reader is forced to choose between. Hence the dis-
tracting information is only relevant if one of the
distractors in the alternatives relies on it. Keeping
that in mind, we have adapted the POD scoring
rules for prose texts to the document texts by gen-
eralizing from paragraphs to nodes (see Table 4).

D Grammatical error types

The following is a list of grammatical error types,
which we adopted for this article. Note that this is
not an exhaustive list of grammatical error types,
but very much specific to the synthetic data at
hand.

• wrong verb forms, such as “meddelar” in the
stem “Vilka problem kan man meddelar om
man har ett akut problem?”;

• wrong noun forms, such as wrong case;

• wrong prepositions, such as “hos
anläggningen” instead of “i anläggningen”;

• wrong grammatical agreement (AGR), such
as “en krav” instead of “ett krav”, or “det
minst antalet” instead of “det minsta an-
talet”;

• syntax errors, most often errors in construc-
tions of sentences, e.g., “Är kursbok och ar-
betsmaterial ingår i kursavgiften?” (eng.
“Are the course book and work material in-
cludes in the course fee?”);

• spelling errors, such as “addressedes” in-
stead of “addresserades”, or “städt” instead
of “städat”;

• wrong lexical choice, when a word should
not be used in the provided context, for in-
stance the stem “Vilka huvudroller är med i
Lyckliga dagar?” (eng. “Which main roles
participate in The happy days”), or using the
pronoune “deras” instead of “sina”;

• logical errors, when a word/phrase is used
in a way that does not conform to its prop-
erties, for instance “cykelbana” in the stem
“I vilken sorts transportmedel finns en cykel-
bana?” (eng. “In what kind of transport does
the bicycle lane exist?”), or “lokalen” in the
alternative “lokalen tar för lång tid att spela”
(eng. “the premises take too long to play”);

• tautology, such as “poetiska dikter” (eng.
“poetic poems”).

E Additional annotations for Quasi

In addition to the annotations necessary for evalu-
ating the difficulty of each MCQ in Quasi, we also
provide the following annotations (exemplified in
Figure 10):

• the phrase/sentence that serves as the basis
for the key;

• the phrase/sentence that serves as the basis
for each distractor (for those distractors that
actually use information from the text);

• the answer nodes that the learner must read in
order to answer the question.
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Hej,

Min mobil verkar äntligen fungera nu när jag har betalat fakturapåminnelsen med en

förseningsavgift . Men att jag dessutom tvingades betala 160 kronor extra i öppningsavgift

tycker jag är upprörande . Vill bara att ni ska få veta.

Hälsningar,
Eva-Lena Hansson

2. Varför skrev Eva-Lena Hansson detta brev?
a) För att berätta att hennes mobil äntligen fungerade

b) För att berätta att hon hade betalat för sent

c) För att berätta att hennes mobil inte fungerade

d) För att berätta att hon hade betalat för mycket

Figure 10: Example of additional annotations in Quasi. The bases for each alternative are highlighted
in the text with the corresponding color. The required answer nodes are underlined. The key (correct
alternative) is highlighted in bold.
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Abstract
This paper describes a speech recognition
based closed captioning system for Esto-
nian language, primarily intended for the
hard-of-hearing community. The system
automatically identifies Estonian speech
segments, converts speech to text using
Kaldi-based TDNN-F models, and applies
punctuation insertion and inverse text nor-
malization. The word error rate of the
system is 8.5% for television news pro-
grams and 13.4% for talk shows. The sys-
tem is used by the Estonian Public Tele-
vision for captioning live native language
broadcasts and by the Estonian Parliament
for captioning its live video feeds. Qual-
itative evaluation with the target audience
showed that while the existence of closed
captioning is crucial, the most important
aspects that need to be improved are the
ASR quality and better synchronization of
the captions with the audio.

1 Introduction

Deaf and hard of hearing (DHH) individuals face
significant barriers when it comes to accessing live
television broadcasts. Without closed captioning,
they are unable to fully understand and engage
with the content being presented. An automatic
closed captioning system for live TV broadcasts
would help to address this issue and provide DHH
individuals with greater access to the same infor-
mation and entertainment as their hearing counter-
parts. Closed captioning is not only beneficial for
DHH individuals, but also for those who may have
difficulty hearing the audio on their television due
to background noise or other factors.

Until the beginning of 2022, Estonian Public
Television (ETV) provided DHH-focused subti-
tles for some pre-recorded native language pro-
grammes, but not for live programmes. From

Figure 1: Closed-captioned live YouTube stream
of the Estonian parliament.

March 2022, captions generated using auto-
matic speech recognition (ASR) technology were
added to the majority of live native-language pro-
grammes, such as news and talk shows. The same
technology is used to provide closed captions to
the live streams of the Estonian parliament ses-
sions (see Figure 1). This paper describes the sys-
tem used to generate the subtitles. We provide in-
formation on the architecture of the system, its dif-
ferent components, their training data and perfor-
mance. We also summarise the results of a quali-
tative evaluation of the live captioning system car-
ried out with the target audience, and discuss how
the system could be improved.

The reported system is free and available under
open-source license 1.

2 Previous Work

Real-time captioning systems based on speech
recognition have been in use for several decades.
Initially, such systems relied on so-called re-
speakers - trained professionals who repeat what
they hear in the live broadcast in a clear and ar-

1https://github.com/alumae/
kiirkirjutaja
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ticulate manner (Evans, 2003; Imai et al., 2010;
Pražák et al., 2012). This allows supervised
speaker adaptation of ASR acoustic models to be
used, resulting in very accurate output. In some
use cases, re-speakers also simplify and rephrase
the original speech, instantly check and correct
the resulting captions, and insert punctuation sym-
bols. In some captioning systems, ASR is ap-
plied directly to the speech in the live programme,
but a human editor is used to correct the ASR er-
rors (Levin et al., 2014). However, training re-
speakers and real-time editors is a long and ex-
pensive process. In addition, several re-speakers
and/or editors are usually required, as one person
cannot usually work continuously for more than
two hours without a break.

As the quality of ASR systems has improved
rapidly in recent years, there are more and more
cases where an ASR system is used directly to pro-
duce subtitles without any post-processing. For
example, ASR-based captions in multiple lan-
guages are available in online meeting platforms
such as Zoom, Skype and Teams. Moreover,
YouTube offers captioning for live streams, al-
beit exclusively in English at the time of writing.
Streaming ASR for Estonian is available through
several commercial vendors; however, recent eval-
uations have demonstrated that the ASR quality
provided by these services falls short compared
to the models developed at Tallinn University of
Technology (Vapper, 2023).

3 Closed Captioning System

3.1 Architecture
Our closed captioning system consists of the fol-
lowing components:

1. Speech input: speech is either read from stan-
dard input (as a 16-bit 16 kHz PCM audio
stream) or from a URL. Any stream type sup-
ported by ffmpeg is allowed, including video
streams.

2. Audio stream is segmented into 0.25 sec-
ond chunks and processed by a voice activity
detection model which detects speech start
and endpoints in the stream. We use the
open source Silero VAD model (Silero Team,
2021), available under the MIT License;

3. Speaker change detection model indicates
likely speaker change points in speech seg-
ments (see Section 3.2);

4. Each speaker turn is processed by a language
identification module that filters out segments
that are likely not in Estonian (Section 3.3);

5. Speech recognition, resulting in a stream of
words tokens (Section 3.4);

6. Inverse text normalization (mostly converting
text to numbers), implemented using hand-
written finite state transducer rules using the
Pynini library (Gorman, 2016);

7. Insertion of punctuation symbols and subse-
quent upperacasing (Section 3.5);

8. Confidence filter that hides decoded words
that are likely to be incorrect (Section 3.6);

9. Presentation: displaying the captions or send-
ing them to the API endpoint selected by the
user (Section 3.7).

3.2 Speaker Change Detection

In order to make captions for dialogue more legi-
ble speaker change points need to be marked by
a symbol such as ”-”. To detect change points
we use an online speaker change detection model2

which treats this as a sequence classification prob-
lem and labels each frame with either 1 or 0 de-
pending on whether a speaker change happened or
not.

The model is trained on an Estonian broadcast
dataset detailed further in Section 3.4.1. Train-
ing is done on samples from speech segments with
random lengths between 10 and 30 seconds. Back-
ground noise and reverberation are added to each
segment both with a probability of 0.3. Back-
ground noises come from the MUSAN corpus
(Synder et al., 2015). For reverberation, we used
small and medium room impulse responses as well
as real room impulse responses (Ko et al., 2017;
Szöke et al., 2019). A classification threshold is
learned on a 1-hour development split.

The model uses 1280-dimensional features ob-
tained from a Resnet-based extractor (Alumäe,
2020) which is pre-trained on VoxCeleb2 (Chung
et al., 2018). This is followed by two long
short-term memory (LSTM) layers both with 256-
dimensional hidden layers. A 1-second label de-
lay is used since the model needs to see past the
current frame to predict a change point. We use

2https://github.com/alumae/online_
speaker_change_detector
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a collar-based loss function that encourages the
model to predict a single positive frame in a 250ms
neighborhood of an annotated change point. This
training method has been shown to outperform the
standard binary cross-entropy loss for the SCD
task (Kalda and Alumäe, 2022). A further benefit
of this loss function is that the model outputs de-
velop peaks concentrated in a single frame. This
removes the need for post-processing to find the
exact timestamps of change points and decreases
overall latency.

3.3 Language Identification

Broadcast news programs often contain foreign
language segments, such as studio or field inter-
views. For those segments, no captions should
be shown, since an Estonian ASR system doesn’t
produce meaningful output for speech in other
languages. Furthermore, foreign language video
segments in television news programs often al-
ready have Estonian subtitles and automatic cap-
tions would interfere with them.

For filtering out non-Estonian speech segments,
we first process the first three seconds of every
speech turn using the open source Silero language
identificaton model (Silero Team, 2021), available
under the MIT License. During the initial devel-
opment phase, we found that the first 3 seconds are
sometimes unreliable for language detection, since
they often contain hesitation and/or other paralin-
gusitic speech sounds that confuse the language
detection model. Therefore, if a turn is rejected
based on the first three seconds, another test is per-
formed using the first five seconds of the turn. If
this test also indicates that the speech is not in Es-
tonian, the whole speech turn is ignored by the rest
of the pipeline and no captions are produced for
this speaker turn. Of course, this assumes that a
speaker doesn’t change the language during a sin-
gle turn which might not always be true.

The language classifier that we use discrimi-
nates between 95 languages and claims 85% val-
idation accuracy. However, we are not interested
in the actual language spoken in the segments, but
only in the the fact whether the segment is in Esto-
nian or not. This allows us to use a simple method
to increase the robustness of the language classi-
fier. Namely, we assume that our system is al-
ways used on streams where the input language
is mostly in Estonian, which means that the prior
probability of Estonian is much higher than the de-

Source Amount (h)
Broadcast speech 591
Spontaneous speech (Lippus, 2011) 53
Elderly speech corpus (Meister
and Meister, 2022)
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Talks, lectures 38
Parliament speeches 31
Total 761

Table 1: Acoustic model training data.

Source Tokens (M)
ENC19 Web Scrape 526
ENC19 Ref. Corpus 185
ENC19 Wikipedia 35
OpenSubtitles 98
Speech transcripts 6.1
Subtitles from ETV 3.8
Total 854

Table 2: Language model training data.

fault uniform probability Pu(l) = 1/95. There-
fore, we “fix” the conditional probability distribu-
tion P (l|x) returned by the language identification
model for input segment x to use the appropriate
prior:

P ′(l|x) =
P ′(l)
Pu(l)

× P (l|x)
Z

where Z is a normalizing factor and P ′(l) is the
prior probability for languages:

P ′(l) =

{
P ′(l = et), if l = Estonian
(1− P ′(l = et))/94, otherwise

Based on small-scale finetuning, we use a prior
probability P ′(l = et) = 0.5 for Estonian.

3.4 Speech Recognition

3.4.1 Data
Speech data that is used for training the speech
recognition acoustic model is summarized in Table
1. Only the duration of the segments containing
transcribed speech is shown, i.e., segments con-
taining music, long periods of silence and untran-
scribed data are excluded.

Most of the training data has been transcribed
by our lab in the last 15 years (Meister et al.,
2012), except the Corpus of Estonian Phonetic
Corpus of Spontaneous Speech that originates
from the University of Tartu (Lippus, 2011).
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Textual data used for training the language
model (LM) is listed in Table 2. Most of the data
originates from the subcorpora of the Estonian Na-
tional Corpus 2019 (ENC2019) (Kallas and Kop-
pel, 2019): Estonian web, a reference corpus con-
taining balanced data from the web, newspapers
and books, and Estonian Wikipedia. We also use
all available Estonian data from the OpenSubtitles
corpus (Lison and Tiedemann, 2016) and scraped
DHH subtitles from ETV.

Before using the text data for LM training, text
normalization is performed. Texts are tokenized,
split into sentences and recapitalized, i.e., con-
verted to a form where names and abbreviations
are correctly capitalized while normal words at the
beginning of sentences are written in lower case.
This is done with the help of the EstNLTK mor-
phological analyzer (Laur et al., 2020). Numbers
and other non-standard words are expanded into
words using hand-written rules.

3.4.2 Models
The ASR model is implemented using Kaldi
(Povey et al., 2011). The acoustic model is a fac-
tored time-delay neural network (TDNN-F) acous-
tic model (Povey et al., 2018) with six convolu-
tional layers and 11 TDNN-F layers. The acoustic
model has around 17 million parameters. Online
speaker adaptation is done using i-vectors. We use
standard Kaldi multi-condition data augmentation
(Ko et al., 2017) for acoustic training data: train-
ing data is 3-fold speed perturbed, and the speed
perturbed data is in turn augmented with reverber-
ation, various environment sounds, music or bab-
ble noise from the MUSAN corpus (Synder et al.,
2015). This increases the amount of training data
by 15-fold in total. The acoustic model is trained
for four epochs on the augmented data.

The LM of the system uses 200 000 compound-
split units (i.e., compound words are broken to
constituents). It is an interpolation of 4-gram sub-
models trained on each of the subcorpora, with in-
terpolation coefficients optimized on development
data. The final model is pruned so that the result-
ing HCLG transducer would allow decoding with
16 GB of RAM. After decoding, we apply out-of-
vocabulary (OOV) word recovery to reconstruct
the orthographic transcripts of the decoded un-
known words. Compound words are reconstructed
from the decoded constituents using a hidden-even
n-gram model (Alumäe, 2007). Various specifics
of language modeling are described in more de-

WER
TV news 8.5
Talkshows 13.4
Press conferences 8.1

Table 3: Word error rate of the ASR system on
various speech data.

tails in (Alumäe et al., 2018).
We validated the performance of the models on

a dedicated test set collected especially for this
project. It consists of TV main evening news, ca-
sual TV talkshows, and press conferences of the
Tallinn city council and the state’s health board,
with a total duration of 12 hours. Table 3.4.2
shows the word error rate (WER) of the ASR sys-
tem on each subcorpus. As can be seen, TV news
and press conferences produce noticably less ASR
errors than talkshows, which is probably related to
the higher degree of spontaneousness in talkshow
speech.

The decoding module is implemented using a
forked version of the Vosk Speech Recognition
Toolkit3 that supports word timestamps for inter-
mediate recognition hypotheses.

Closed captions on television generally do not
offer verbatim speech transcriptions, particularly
for spontaneous speech. Elements such as repeti-
tions, hesitations, pause fillers, false starts, and in-
terjections are typically omitted from the captions,
and sentences are reformatted to ensure grammat-
ical correctness. Presently, our system lacks any
modules to implement such modifications on the
generated ASR transcripts. Only filled pauses and
hesitations are excluded from the captions, since
they are not transcribed in the ASR training data.

3.5 Punctuation Insertion
In order to make the captions more readable, the
decoded stream of words is enriched with punc-
tuation symbols. This is done using an LSTM
model4. The model is trained on a mixture of
speech transcripts from our ASR training corpus
and a random sample of the LM training data, to-
talling in around 50 million words. The punctua-
tion model operates on BPE-tokenized text, using
a BPE vocabulary of 100K tokens. The model first
projects the input tokens into 512-dimensional
embeddings and then applies four unidirectional

3https://github.com/alphacep/vosk-api
4https://github.com/alumae/

streaming-punctuator
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LSTM layers, with a hidden layer dimensionality
of 512. For token corresponding to word endings,
the most likely punctuation symbol is predicted
from the vocabulary of [None, “.”, “,”, “?”, “!”].
A label delay of two is used, i.e., at each time step,
the model predicts a punctuation symbol for a to-
ken two timesteps in the past. This effectively al-
lows the model to predict a punctuation symbol,
given the past tokens and two upcoming tokens.

The model was validated on the transcripts of
the ASR validation set and resulted in a F1 score
of 72%, micro-averaged across all punctuation
marks.

3.6 Confidence Filter
In some situations, such as severe background
noise, overlapped speech or very spontaneous
speech, the quality of the ASR output degrades
significantly. In such cases, it is preferable not
to show any captions at all, since they are prac-
tically useless for understanding the content of the
speech and bring a lot of confusion to the viewer.
Therefore, the closed captioning system includes
an additional component that tries to hide captions
segments that are likely wrong.

The ASR decoder that we use outputs word
confidence values for all decoded tokens. The
confidence scores are computed by the Kaldi de-
coder from the confusion network of the Minimum
Bayes Risk (MBR) decoding result (Xu et al.,
2011). Since such confusion scores are often not
very reliable, the captioning system observes the
averaged confidence scores of the words calcu-
lated over a five word window, and hides words
whose averaged confidence score falls below a
threshold (we use a threshold of 0.75). Evaluat-
ing, finetuning and calibration of this component
remains currently for future work.

3.7 Presentation
The system can present the generated captions
in a variety of formats and modes. Currently,
it supports several commercial captioning deliv-
ery platforms as well as YouTube live stream-
ing. Most media streaming platforms that sup-
port closed captioning expect word-by-word cap-
tions: i.e., captions should be provided on a word-
by-word basis (possibly with a timestamp), and
words already displayed cannot be changed. This
poses some challenges for our captioning system,
as several factors cause the final part of the caption
to change dynamically: new words coming from

Figure 2: Closed-captioned ETV talk show.

the decoder may cause already decoded words to
change (e.g. due to word to number conversion),
punctuation may be inserted before the already de-
coded word (due to the two-word label delay of
the punctuation model). For this reason, the cap-
tion presentation module includes functionality to
delay the final output of generated words to the
currently used subtitle transmission platform un-
til it is certain that the word won’t change. This
(and the delay caused by the speaker change detec-
tion model and the language identification model)
results in a delay of approximately 3-5 seconds
relative to the speaking time of the words, which
can be mitigated by also delaying the transmission
of the multimedia stream. For those presentation
modes that allow dynamically changing captions,
a much lower delay or approximately 2 seconds is
possible.

4 Integrations

At the time of writing this paper, the closed cap-
tioning system is used by the Estonian Public Tele-
vision (ETV) and by the Estonian parliament.

In ETV, the captioning system runs continu-
ously, but the captions are actually delivered only
to specific native-language programs (see Figure
2). The system outputs captions on a word-by-
word basis to special caption transmission soft-
ware that formats the words into caption lines and
blocks. Due to the approximately 5-second delay
in the video signal caused by the encoding pro-
cess, the captions and video are roughly synchro-
nized, but the synchronization is currently not ex-
act: captions tend to be delayed at the beginning
of a speaker’s turn and arrive relatively faster at
the end of a turn.

Closed captions are transmitted on a dedicated
DHH digital closed captioning channel and are not
displayed by default. End users can enable closed
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captioning from the user interface of their device.

5 Qualitative Evaluation

5.1 Introduction
In order to better understand, how the automat-
ically generated captions on ETV are used and
experienced, and what are the most outstanding
shortcomings, we conducted a qualitative evalua-
tion with the intended focus group of the technol-
ogy. The purpose of this study was to investigate
the following research questions:

• How often do DHH individuals use the ASR-
generated closed captions on ETV?

• How do the closed captions improve the qual-
ity of life of DHH individuals?

• Which aspects of the system need to be im-
proved?

5.2 Methodology
This research study used semi-structured inter-
views to gather information. Since most of the
study participants were DHH individuals, three of
the interviews were conducted via e-mail, one via
a chat application, and only one via telephone.
Additional user feedback was collected via Face-
book in response to a call for comments by a per-
son followed by a large DHH community.

Participants were sought through personal con-
tacts of the researcher. Four of the participants
were hard-of-hearing individuals and one didn’t
have any significant hearing loss. Data collection
took place in January 2023.

5.3 Findings
Three participants with hearing impairments ac-
knowledged that their hearing loss prevents them
from understanding speech on television, even
when using a hearing aid. One individual with
hearing impairment mentioned that she could
comprehend the speech if the TV volume were sig-
nificantly increased, but she refrains from doing so
as she is the only person with hearing impairment
in her family. All the DHH participants reported
that they activate automatic subtitles whenever
they watch live ETV broadcasts daily. The only
participant without hearing loss revealed that he
watches programs with automatic subtitles multi-
ple times a week when ambient household noise
or background conversations make it challenging
to hear the television audio.

All the participants highlighted the importance
of having subtitles. Several people reported that
it enabled them to watch television with their fam-
ily. One participant expressed that subtitles helped
her feel included in society and enabled her to
stay better informed about events occurring in the
country.

All participants stressed that the most crucial
aspect of the existing captioning system requir-
ing improvement is its accuracy. One participant
highlighted that the quality of captions is currently
good for TV presenters, but often falls short for
”ordinary people” (i.e. interviewees on news and
talk shows). One person explained that although it
is sometimes difficult to understand what is actu-
ally being said (due to ASR errors), it is still im-
portant to have the captions. The second aspect
that was often highlighted was that in the current
captioning system, the captions are often not well
synchronized with the audio (as opposed to manu-
ally created subtitles). Other issues raised include
misrecognition of named entities, poor marking
of speaker turns, occasional dropping of the cap-
tions (i.e., when the confidence filter is activated)
and the fact that subtitles sometimes interfere with
other information on the screen, such as speaker
names. Several respondents also noted that subti-
tles are not currently available for all native lan-
guage broadcasts.

6 Conclusion and Future Work

This paper described an ASR-based realtime
closed captioning system for Estonian broadcasts.
The system consists of several open-source com-
ponents and is currently used for providing cap-
tions to Estonian public television native language
broadcasts and for captioning the live streams of
the Estonian parliament.

Qualitative evaluation with the hard-of-hearing
focus group showed that providing captions to live
TV broadcasts is of high importance to this com-
munity. The study emphasized that it is urgent to
further improve the ASR quality of the closed cap-
tions and to improve the synchronization between
audio and captions.

We are currently working on several aspects
of the system that would address some problems
highlighted in the qualitative evaluation. First, we
are preparing to migrate to end-to-end streaming
transducer ASR models that would provide im-
proved accuracy with relatively low latency. We
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are also experimenting with integrating the de-
coding of punctuation symbols to the main ASR
model, since currently the separate punctuation
symbol insertion model is a source of around two
second latency in subtitle presentation. Also, we
have already implemented modifications to the
system that would allow exact synchronization be-
tween the audio and displayed captions.

Acknowledgments

This research has been supported by the Centre of
Excellence in Estonian Studies (CEES, European
Regional Development Fund). The authors ac-
knowledge the TalTech supercomputing resources
made available for conducting the research re-
ported in this paper.

References
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Abstract

This paper presents a novel method for
creating relation extraction data for low-
resource languages. Relation extraction
(RE) is a task in natural language process-
ing that involves identifying and extract-
ing meaningful relationships between en-
tities in text. Despite the increasing need
to extract relationships from unstructured
text, the limited availability of annotated
data in low-resource languages presents a
significant challenge to the development
of high-quality relation extraction mod-
els. Our method leverages existing meth-
ods for high-resource languages to create
training data for low-resource languages.
The proposed method is simple, efficient
and has the potential to significantly im-
prove the performance of relation extrac-
tion models for low-resource languages,
making it a promising avenue for future re-
search.

1 Introduction

Relation extraction (RE) is a task in the field of
natural language processing, aimed at identify-
ing and extracting semantically meaningful rela-
tionships between entities present in text. A re-
lation is generally extracted as an ordered triple
(E1, R,E2) where E1 and E2 refer to the en-
tity identifiers and R refers to the relation type.
This task holds great significance in several prac-
tical applications, including information retrieval,
knowledge management, and question-answering
systems, among others (for a recent review,
see (Yan et al., 2021)). The increasing availabil-
ity of unstructured text data on the web has only
served to underline the importance of relation ex-
traction, as there is a pressing need to convert this
data into structured information that can be eas-

ily accessed and analyzed. This challenge is es-
pecially pertinent for low-resource languages like
Icelandic, where the limited availability of anno-
tated data presents a significant impediment to
the development of high-quality relation extrac-
tion models.

Relation extraction methods for English have
evolved over the years, with early methods rely-
ing on hand-crafted rules, patterns, and statistical
analyses (Soderland et al., 1995; Carlson et al.,
2010; Kambhatla, 2004; Jiang and Zhai, 2007).
With the advent of deep learning and the avail-
ability of large annotated corpora, more sophisti-
cated methods have emerged (Liu et al., 2013; Xu
et al., 2016; dos Santos et al., 2015). Deep learning
models have shown promising results in extracting
relationships between entities, outperforming tra-
ditional methods. Current state-of-the-art model,
REBEL (Cabot and Navigli, 2021), performs joint
relation extraction1. The progress in relation ex-
traction for English has demonstrated the potential
for using advanced techniques to extract meaning-
ful relationships from large amounts of text data.

The challenge of developing effective RE meth-
ods for languages like Icelandic lies in the scarcity
of annotated data. The performance of machine
learning models heavily relies on the availabil-
ity of large amounts of annotated training data.
The limited availability of annotated text in low-
resource languages creates a major challenge for
training high-quality relation extraction models.
To overcome this challenge, one way is to study
methods to efficiently create training data based on
existing methods for English. Our main question
is whether models from high-resource languages
can be used to efficiently create training and test-
ing data for low-resource languages.

In this paper, we present a novel method for ef-
ficiently creating relation extraction data for low-

1That is, entity extraction and relation extraction are not
two separate processes.
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resource languages like Icelandic. Our method is
based on replacing entities in the text with unique
identifiers, translating the text to a high-resource
language using machine translation, and then re-
placing the entities back in the translated text. Fi-
nally, we perform relation extraction on the trans-
lated text to obtain the relationships between enti-
ties. Our method is simple and only requires the
location of entities in the text and a machine trans-
lation model. This approach leverages the avail-
ability of specialized models in high-resource lan-
guages to create training data for low-resource lan-
guages, thereby addressing the challenge posed by
the scarcity of annotated data. Our method has the
potential to significantly improve the performance
of relation extraction models for low-resource lan-
guages, making it a promising avenue for future
research.

2 Purpose

In a previous paper, we proposed a way of boot-
strapping RE training data for low-resource lan-
guages (LRL) using a combination of machine
translation and open RE methods (Friðriksdóttir
et al., 2022). By automatically translating the LRL
data into English, we were able to feed it directly
into the high-resource language SOTA model be-
fore translating the relation triplets back to the
LRL where it can serve as training data for a new
LRL model.

While this method showed potential, the re-
sulting data was jumbled by errors in translation.
Some examples of this include people’s names
being perturbed by the multilingual translation
model (resulting in Alfreð being changed into Al-
fredo, Sveinn into Sweene etc.), entities getting di-
rectly translated and thereby loosing their mean-
ing (such as when the Icelandic name Erlendur
gets directly translated as foreign) and unfortunate
translation mishaps (such as when Dauðarósir, a
novel by the Icelandic author Arnaldur Indriðason,
gets translated as Deathly Hallows, a real novel by
a different author).

In this paper, we hypothesize that these transla-
tion errors can be ameliorated by encoding the en-
tities within the data before it gets translated, and
then decoding them before they get sent into the
high-resource RE model. Whereas the proposed
method remains the same, this extra step in pre-
processing the input data should result in more ac-
curate predictions made by the RE model, which

in turn makes for better training data.

3 Previous Work

Machine-translation has previously been used
to create cross-lingual named entity recognition
(NER) datasets, which led to improvement in NER
for several languages (Dandapat and Way, 2016;
Jain et al., 2019). In these earlier works, the text
was translated directly, without any modifications,
and the entities in the resulting text were matched
heuristically to the entities in the untranslated text
using word alignment methods. This works well
for entities that translate correctly or change little
in the translation process but can be limited by the
translation system, specifically if the system trans-
lates entities incorrectly.

For RE in low-resource languages, there has
been limited focus on building training and test-
ing data efficiently. However, crosslingual transfer
methods have been applied to improve RE mod-
els, such as using multilingual BERT (Nag et al.,
2021). Universal dependencies and sequence-to-
sequence approaches have also been employed for
RE in low-resource languages (Taghizadeh and
Faili, 2022). Finally, recent sequence-to-sequence
approaches for English have focused on extracting
both relations and relation types (Cabot and Nav-
igli, 2021).

Figure 1: Summary of the annotation process for
relation extraction studied in this paper.

4 Methodology

A general overview of the annotation approach is
demonstrated in Figure 1. Below, we outline the

501



methods used in the process.

4.1 Models

For translation, we use the model from Facebook
AI’s WMT21 submission (Tran et al., 2021). The
model is multilingual and has well-performing
Icelandic to English translation capabilities.

For relation extraction, we use REBEL (Cabot
and Navigli, 2021) a sequence-to-sequence rela-
tion extraction model that achieves a micro-F1
score of 75.4 on the well-studied CONLL4 cor-
pus (Roth and Yih, 2004) and 93.4 on the NYT
corpus (Riedel et al., 2010).

4.2 Data

For evaluating the precision of the relation ex-
traction method, we use the first 200 sentences
of each category from the MIM-GOLD-EL cor-
pus (Friðriksdóttir et al., 2022). The number of
unique and lemmatized entities for each category
are shown in Table 5 in the Appendix.

We also performed a further evaluation on 200
sentences chosen uniformly at random from the
sentences annotated above to get an estimate of
the precision, recall and F1-score on the evalu-
ated text for encoded vs. not encoded entities.
We used strict evaluation as in (Taillé et al., 2020),
and we additionally required that the name of the
entity perfectly matched the lemmatized version
of the entity’s name in the knowledge base. We
would like to emphasize that this annotation task
is cognitively more demanding than solely esti-
mating precision as no gold data exists for rela-
tion extraction in Icelandic. The task requires the
annotator to find all relations in a given text, in-
stead of just labelling the output of a model as cor-
rect/incorrect. As REBEL is an open relation ex-
traction model and thus accounts for a very large
amount of different relations, we restricted our-
selves to those that had already appeared in our
data (a total of 145 types).

4.3 Encoding Entities

We use gold-annotated entities. Each entity re-
ceives its own identifier and is replaced by it. The
first occurring entity in the text receives the identi-
fier E0, the next one E1, et cetera. For the sake of
clarity, we note that if an entity appears multiple
times in the text, it receives the same entity for all
occurrences. This makes it clear which encoding
refers to which original entity when decoded.

5 Results

Our results indicate that using the encoding
method proposed can increase the number of cor-
rectly identified relations between two entities by
up to 9.7% (Table 1). It is evident that a higher
number of relation triplets is proposed by REBEL
when the data is not encoded (Table 2) and we sus-
pect this is due to the text being more fluently En-
glish, i.e. it contains less foreign (in our case, Ice-
landic) words within the English translation which
should make it more natural for the monolingually
English RE model. On the other hand, having a
higher number of relation triplets proposed intro-
duces significantly more noise, making the per-
centage of correctly identified relation triplets in
fact lower. Additionally, encoding the data re-
duces the number of translation inconsistencies
and errors. Conjugation of nouns tends to be man-
gled by the translation model, creating examples
such as Steingríms [genitive] Davíðsson [nomi-
native], accents get dropped (Ása becomes Asa)
and Icelandic letters modified (Þorgrímur becomes
Thorgrímur). Summary statistics can be seen in
Table 4 and by category in Table 5 in the Ap-
pendix.

It’s worth noting that the text categories from
our corpora that contain news have the high-
est precision scores and improvements using our
method. This is not surprising since they were
translated using WMT21’s newsdomain parame-
ter which should make them better translated. All
categories score higher in correctly identified rela-
tion triplets when using the encoding method ex-
cept one, the adjudications category. This is likely
because there are few entities reported in that cat-
egory and most of them are anonymized, and not
counted as a relation because an anonymous per-
son A being related to an anonymous person B is
not informative for a knowledge base.

When looking at the overall performance of our
model in Table 3 we observe higher recall than
precision, which is explained by the high num-
ber of relations reported by the model. Having
a higher preference for recall than precision is
of great importance in a labelling task such as
this one since it is generally cognitively less de-
manding to label the output of the model as cor-
rect/incorrect rather than to identify the missing
relations in the text. However, the task becomes
longer with lower precision since most of the re-
ported relations will be irrelevant. When using

502



encoded entities we observed a big difference for
relation triplets where both items in the relation
consisted of entities, 11.5% F1-score for encoded
entities vs. 1.9% for non-encoding. When eval-
uating the correctness of all relations (i.e., not
only those between gold labelled entities), we
saw a slight drop in F1-scores using our encod-
ing method. This is not surprising, since the en-
coding method is intended to improve the extrac-
tion of relations between gold-annotated entities,
which could come at the cost of performance for
extracting other relations.

Category Not Encoded

Adjudications 3.4% 3.1%
Blog 1.0% 1.6%
Books 1.5% 5.3%
Emails 0.3% 5.5%
Newspaper 1 1.6% 8.9%
Newspaper 2 1.5% 7.1%
Laws 0.0% 0.5%
Radio/TV news 0.3% 7.6%
School essays 2.7% 4.0%
Scienceweb 1.3% 6.4%
Webmedia 2.1% 11.8%
Websites 1.3% 9.6%
Written to be spoken 1.9% 7.9%

Table 1: Precision score per category for all
relations between two established entities. The
reported numbers are the percentage of relation
triplets labelled as correct per text category within
our corpus.

Not Encoded

Total relations extracted 8910 8870
Entities in translation 3476 4368
Correct relations 2450 2078
Correct with entities 135 541

Table 2: Aggregated results on the data in Table 1.
Entities in translation refers to the number of times
that entities from MIM-GOLD-EL appear lemma-
tized in the resulting translation. Correct relations
refers to the total number of relations labelled as
correct, regardless of whether or not they contain
established entities. Correct with entities refers to
relation triplets that contain established entities as
both head and tail.

5.1 Qualitative Evaluation of Errors

We note that while technically correct, the ma-
chine translation model tends to give various dif-
ferent translations to a single entity which cer-
tainly influences the higher number of unique re-
lation triplets proposed by the RE model when
working with data that has not been encoded.
For instance, the Icelandic political party Sam-
fylkingin gets translated in four different ways
(Confederation, Alliance, Social democrats and
Social democratic party) as well as the rescue
worker association Landsbjörg (translated as ei-
ther accident insurance company, accident preven-
tion association, emergency rescue association or
accident prevention society). Encoding the data
avoids the problem of having to backtrack the
translations in order to figure out whether or not
they refer to the same original entity.

Using the encoding method, we can addition-
ally ensure that all extracted relation triplets con-
tain entities that include the entire, lemmatized
mention of the entity. As per Icelandic naming
conventions, a person is generally only referred to
by their full name the first time they are mentioned
in a given text and afterwards only referred to by
their first name. When working with data that has
not been encoded, we therefore get relation triplets
that include only the first name of a person, poten-
tially conjugated, while the encoded data always
ensures that the person’s entire, lemmatized name
is present within the triple. This creates more con-
sistency and avoids ambiguity in the output data.

It should, however, be noted that REBEL it-
self occasionally jumbles entity mentions itself
even though the data has been encoded. Exam-
ples of this include when REBEL proposes that
a person is a part of a family by that person’s
last name (i.e. (Ingibjörg Sólrún Gísladóttir, is a
member of, Gísladóttir) but this is not how things
work in Icelandic where patronyms are used in-
stead of traditional last names. Another example is
when REBEL adds international endings to web-
sites that already include their Icelandic endings
(such as when tonlist.is becomes tonlist.is.com).

6 Discussion

In this work, our focus was on evaluating an
encoding method that can lead to improved au-
tomated relation extraction in text such as Ice-
landic. To eliminate any errors due to the recogni-
tion of entities, we based this evaluation on gold-
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Method Precision Recall F1-score Evaluation

Encoded entities 26.1% 50.8% 34.5% All relations
6.3% 65.2% 11.5% Between two entities

No encoding 26.9% 62.0% 37.5% All relations
1.0% 30.4% 1.9% Between two entities

Table 3: Precision, recall and F1-scores for a subset of 200 examples chosen at random to estimate false
negatives and hence recall and F1-score.

annotated entities. However, for labelling rela-
tions, our method can be combined with existing
NER models such as from (Snæbjarnarson et al.,
2022) that achieves an accuracy of 98.8% for Ice-
landic. We further believe that it would be inter-
esting to study our approach for relation extrac-
tion methods that only report possible relations be-
tween entities instead of all possible relations in
the text, i.e., where the entities can be provided as
input to the relation extraction model. For further
study of efficiency, it could be interesting to com-
pare this method to heuristics that match entities
in translated text.

One limitation of our study is the strict evalua-
tion approach. We deemed the output of REBEL
to be incorrect if the entities were not in their
lemmatized form, shortened or otherwise modi-
fied. For example, when talking about someone
using their first name only, REBEL does not have
sufficient context to disambiguate the entity for
insertion into a knowledge-base. This could be
addressed by first disambiguating the entities be-
fore the text is processed in this manner. We did
not evaluate how much the performance could in-
crease, but we believe that a good disambiguation
model could have a significant effect on the result.

Our approach addresses the low-performance of
modern machine translation systems in translating
entities correctly. Therefore, we would expect that
improvements in machine translation would make
our approach obsolete. However, that would re-
quire better translations of named entities. Un-
fortunately, for Icelandic, we do not have a cor-
pus of entities translated to other languages such
as English. Transliteration of named entities is
the process of translating entities across languages
and has been performed for English and sev-
eral other languages (Grundkiewicz and Heafield,
2018). Transliterating named entities could be an
approach to improve machine translation for Ice-
landic and would possibly make it more reliable to

translate without any modifications to the source
text and use word alignment to match entities be-
tween the source text and the translated text.

For creating data on relation extraction, we use
machine-translation as an aid. However, to build
a good relation extraction system for Icelandic, it
might not be necessary to fine-tune the system on
Icelandic. As an example, multilingual QA sys-
tems have shown good performance on Icelandic
although they were not fine-tuned in QA for the
language (Snæbjarnarson and Einarsson, 2022).
We expect to see similar results for Icelandic and
the data from this work can serve as a test set to
measure the performance.

7 Conclusion

In conclusion, the proposed encoding method
shows great potential for LRL, improving the per-
centage of correctly identified relations between
entities by up to 9.7% for various categories of
text. The method is simple and does not require
any additional cost, making it ideal for languages
where data is scarce and budget is limited. We
note that this method can only be as good as the
quality of the machine translation models as well
as the RE methods for higher resourced languages.
However, the encoding avoids several issues in-
troduced by the bootstrapping method, making it
more efficient with minimal effort.
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Encoded Not Encoded

Total relations extracted 8870 8910
Unique triplets 1558 1805
Unique relation types 128 141

Table 4: Results on the overall data. Total relations refers to the total number of relations retrieved by
REBEL. Unique triplets refer to the total number of unique relation triplets.

Category # Unique Entities # Not encoded # Encoded

Adjudications 50 731 734
Blog 75 689 757
Books 118 752 740
Emails 89 355 343
Newspaper 1 207 696 676
Newspaper 2 213 722 690
Laws 96 694 651
Radio/TV news 132 708 686
School essays 89 747 753
Scienceweb 180 707 702
Webmedia 202 712 729
Websites 184 699 678
Written to be sp. 184 728 731

Table 5: The first column shows the number of unique, lemmatized entities in the first 200 sentences of
each category. The second column depicts the number of relations where the data has not been encoded
and the third the number of relations where the data has been encoded.
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Abstract
With large amounts of training data, it is
possible to train ASR models that gene-
ralize well across speakers and domains.
But how do you train robust models when
there is a limited amount of available
training data? In the experiments re-
ported here, we fine-tuned a pre-trained
wav2vec2 ASR model on two transcribed,
Norwegian speech datasets, one with par-
liamentary speech and one with radio
recordings, as well as on combinations of
the two datasets. We subsequently tested
these models on different test sets with
planned and unplanned speech and with
speakers of various dialects. Our results
show that models trained on combinations
of the two datasets generalize better to new
data than the single-dataset models, even
when the length of the training data is the
same. Our lexical analysis sheds light on
the type of mistakes made by the models
and on the importance of consistent stan-
dardization when training combined mo-
dels of this kind.

1 Introduction

Automatic speech recognition has experienced
tremendous development in the past decades. New
models have improved in sophistication as well
as complexity, see e.g., (Chorowski et al., 2015;
Chan et al., 2015; Amodei et al., 2016; Synnaeve
et al., 2019; J. Li et al., 2020; Baevski et al., 2020;
B. Li et al., 2021; Radford et al., 2022) and refer-
ences therein. However, these models are still at
best as good as the data they are trained on. Spo-
ken language presents many dimensions, such as

degree of spontaneity, dialectal variation, task do-
main, and age of speaker, that affect the perfor-
mance of a speech recognizer. Models trained on a
specific combination of those factors will perform
poorly in other conditions.

With sufficient computing capacity and data,
this problem can be mitigated by training large
models on even larger sets of data spanning several
conditions, both in terms of the spoken content
as well as transcription standards (e.g. Whisper,
Radford et al., 2022). However, when computing
power and quantity of data are limited, it is neces-
sary to provide a dataset with a common transcrip-
tion standard and enough variety of acoustic and
linguistic features to fully encapsulate the target
language. Such a dataset can then be used to fine-
tune a large pre-trained model such as wav2vec2
(Baevski et al., 2020); a process less computation-
ally expensive than training from scratch.

Until recently, freely available speech datasets
suitable for training Norwegian ASR models only
contained manuscript-read speech. However, in
2021, the Norwegian Language Bank released the
Norwegian Parliamentary Speech Corpus (NPSC),
containing 126 hours of transcribed speech from
Stortinget, the Norwegian Parliament. The dataset
contains a decent amount of spontaneous speech,
as well as dialectal variation. Solberg and Or-
tiz (2022) showed that ASR models trained on
the NPSC were better at transcribing sponta-
neous speech and dialects than models trained
on manuscript-read speech only. Researchers at
the National Library of Norway have fine-tuned
wav2vec2 ASR models on the NPSC training split.
Their 1B parameter model1 obtained a word error

1https://huggingface.co/NbAiLab/
nb-wav2vec2-1b-bokmaal
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rate (WER) of 6.4% on the NPSC test split (De la
Rosa et al., 2023).2

However, when we apply ASR systems trained
on the NPSC to speech data such as broadcasts and
informal speech, they tend to perform less well
than on parliamentary speech. This is understand-
able since parliamentary speech is rather formal
and contains few interruptions and instances of
real conversation. Moreover, the topics discussed
in Parliament are relatively restricted, and words
which occur frequently in everyday conversations
may be rare or nonexistent in such a dataset. Fi-
nally, the recording conditions are very homoge-
neous.

In this paper, we investigate the effect of fine-
tuning wav2vec2 models on more varied Nor-
wegian training data. Two models are trained
on single training sets with unplanned speech,
the NPSC and the broadcasting dataset Rundkast,
while two others are trained on combinations of
these datasets. We show that the models trained
on combined data sources generalize better to new
data than the models trained on single datasets and
that this effect cannot be attributed to the length
of the training data. Our analyses also show that
standardization, the process of making transcrip-
tions as uniform as possible across datasets, is key
when combining training data in this way.

The outline of the rest of the paper is as follows.
In Section 2, we describe the datasets used in the
experiments. Section 3 reports on how the models
were trained, as well as the experimental setup.
The results of the experiments are described and
discussed in Section 4, and we also use a technique
from corpus linguistics called keyword analysis to
get a deeper understanding of the differences be-
tween the models. Section 5 concludes the paper
and suggests some avenues for further develop-
ment and research, based on our results and the
state of Norwegian ASR.3

2 Datasets for Norwegian ASR

There are a number of datasets that can be used
for training and testing Norwegian ASR systems.
This section describes the most important, freely

2The data processing and training setup for those mod-
els are somewhat different from the NPSC-trained model in
the experiments reported in this paper, and thus the results
slightly differ.

3Code for the experiments is available at https:
//github.com/scribe-project/nodalida_
2023_combined_training.

accessible Norwegian speech datasets, as well as
one which is not freely accessible, Rundkast. All
of these datasets have transcriptions in Norwegian
Bokmål, the most commonly used of the two writ-
ten standards of Norwegian, while some also have
transcriptions in Nynorsk. In the experiments of
this paper, we only use the Bokmål transcriptions.

2.1 NST

The now defunct company Nordisk språktek-
nologi (‘Nordic Language Technology‘; NST)
made a large dataset for training and testing their
ASR system in the late 90s and the beginning of
the millennium. This dataset has been shared with
an open license at the Norwegian Language Bank
at the National Library of Norway since 2011.4

The NST dataset includes around 540 hours of
manuscript-read speech in Bokmål from close to
1000 informants. They read sentences from news-
papers, but also some repeated words and se-
quences of numbers. Since the dataset only con-
tains planned speech, there are few instances of
hesitations, repetitions, false starts, etc., which are
more frequent in unplanned speech. The speakers
come from different dialect areas, but since the
speech is scripted, the speech deviates less from
the Bokmål norm than unscripted speech. This ac-
counts for why models trained only on the NST
generalize less well to different dialects than sys-
tems trained on both NST and the NPSC in (Sol-
berg and Ortiz, 2022).

2.2 NPSC

The NPSC was developed by the Norwegian Lan-
guage Bank in 2019-2021 as an open dataset
for ASR of Norwegian unscripted speech (Sol-
berg and Ortiz, 2022).5 This dataset consists
of about 126 hours6 of recordings of meetings
from 2017 and 2018 at the Norwegian Parlia-
ment. These are transcribed manually by trained
linguists. There are transcriptions both in Bokmål
(87%) and Nynorsk (13%). Individual speakers
are transcribed consistently in one or the other
written standard, following the practice in the of-
ficial parliamentary proceedings. There are dif-
ferent versions of the transcriptions intended for
different use cases (cf. Solberg and Ortiz, 2022,

4https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-54/

5https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-58/

6Excluding breaks. The total duration is 140 hours.
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sect. 2.2). We use the version in which numbers,
dates and years are written with letters instead of
digits, and abbreviations are not used. The NPSC
also contains metadata about non-standard and/or
dialectal words, which we use to standardize tran-
scriptions, as described in subsection 2.5. There
are 267 speakers in the dataset.

2.3 NB Tale

NB Tale is also an open speech dataset from the
Norwegian Language Bank, published in 2015.7

It is divided into three modules, two of which
are used in this paper: Module 1 consists of
manuscript-read sentences from newspapers by
native speakers of different Norwegian dialects.
The sentences are chosen to cover as many phono-
logical phenomena as possible and are transcribed
both orthographically and phonetically. Only the
orthographic transcriptions are used in the exper-
iments reported here. Some of the sentences in
the dataset are read by all speakers, while others
are read by a subset of the speakers or only one
speaker. There are detailed metadata about each
speaker, including dialect, age, and gender. Mod-
ule 3 consists of recordings of the same speakers
as module 1, as well as some non-native speak-
ers (excluded from our analyses), speaking freely
for 2 minutes on a subject of their choice. These
are orthographically transcribed. There are 380
speakers in NB Tale. Module 3 is Bokmål only.
14.2 % of module 1 is in Nynorsk.

2.4 Rundkast

Rundkast, the only one of these datasets which
does not have an open license, was developed by
the Norwegian University of Science and Technol-
ogy in 2005-2006 (Amdal et al., 2008). It con-
sists of 77 hours of orthographically transcribed
radio news and actuality shows from NRK, the
Norwegian state broadcaster.8 The written stan-
dard of the transcriptions is either Bokmål (80%)
or Nynorsk (12%), depending on the dialect of the
speaker.9 Only the Bokmål transcriptions are used
here. The dataset includes read news, interviews,
debates, and commentary.10

7https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-31/

8A small subset is also phonetically transcribed.
98% are tagged as neither.

10Due to inconsistent uses of speaker names in Rundkast,
it is not possible to make a reliable speaker count for this
dataset.

2.5 Standardization and usage of combined
data

Naturally, the four datasets described above have
different transcription standards and metadata. We
provide a set of standardizing procedures that
aim to unify transcriptions from the aforemen-
tioned corpora such that they can be combined and
used together consistently.11 Of particular impor-
tance is the treatment of digits, abbreviations, non-
verbal noises (e.g., hesitations), and non-standard
and dialectal words across datasets. The most im-
portant changes to the original transcriptions are:

• Remove all special characters and punctua-
tion except for “é” and “-”, which appear of-
ten in Norwegian and can make a difference
in the words’ meaning.

• Substitute all the digits by letters according
to how they are pronounced. While numbers,
years and dates are written with letters in the
datasets used here, the original transcriptions
of the NPSC include some company names
etc. which contain digits.

• Substitute non-verbal noises by three vari-
ants: “mmm” (nasal hesitation), “eee” (vowel
hesitation), and “qqq” (other non-language
vocal sounds such as laughter or coughing).

• Non-standard words and dialectal words are
by default not standardized, for the purpose
of having orthographic transcriptions that re-
flect as close as possible what is actually
said. As a consequence, the transcriptions
may contain words that are not in standard
dictionaries of Bokmål.

The train, test and validation splits are per-
formed on NST, NPSC and Rundkast individually,
while NB Tale modules 1 and 3 are used for tes-
ting purposes only. For NPSC, we use the official
splits. Parliamentary meetings are used as the mi-
nimum unit, i.e. they are not divided across diffe-
rent splits. This is to minimize the overlap in to-
pics and vocabulary across splits (Solberg and Or-
tiz, 2022). For the NST, there was only an official
train and test split. We, therefore, split the official
test set into a test and validation set randomly. For
Rundkast we performed a split using full programs

11The code that implements all the procedures described
in this section, as well as the procedures for creat-
ing data splits, is available at https://github.com/
scribe-project/asr-standardized-combined
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as the minimum unit, and allocate programs with
the largest number of different speakers to the test
set, and then to the validation set. This is to bet-
ter evaluate the generalization capabilities of the
models. The Rundkast splits were kept as close as
possible to the proportion 80:10:10 in terms of du-
ration of the train, test and validation sets, respec-
tively. These are also the proportions of the official
NPSC splits (Solberg and Ortiz, 2022, sect. 3.4).

3 Experiments

The goal of our experiments is to verify to what
extent we get improvements in performance when
training on more varied spontaneous data than
the NPSC data alone. To this aim we fine-tuned
wav2vec2 models on both Rundkast and the NPSC
individually, as well as on combinations of the two
datasets. We then test the models on test sets from
the same domain as the training set, as well as
from different domains using the NB Tale and the
NST corpora.

3.1 ASR framework and hyperparameters

All models described in Section 3.2 are based
on the wav2vec2 architecture (Baevski et al.,
2020). Inspired by the fine-tuning of Norwe-
gian 300M parameter models in (De la Rosa et
al., 2023), we used the Swedish 300M parameter
wav2vec2 model trained in Sweden by Kungliga
Biblioteket12 (Malmsten, Haffenden, and Börje-
son, 2022) as a starting point, and fine-tuned it
to different sets of data. All training sessions
used the default hyper-parameters in Huggingface
transformer implementation, with the exception of
the initial learning rate for the Adam optimizer
that was set to 10−4. All models were trained
for 30 epochs, and the checkpoint with the low-
est WER on the validation set was chosen for the
recognition experiments on the test set.

Recognition was performed in two different set-
tings for each model (without and with language
model). In the first, the most likely token for each
time step is first computed based on the output ac-
tivations of the model. The sequence of best to-
kens is then passed to the tokenizer for decoding
into words. In the second setting, the output ac-
tivations of the model are passed directly to the
tokenizer that uses beam search and a language
model to produce the textual output. In this set-

12https://huggingface.co/KBLab/
wav2vec2-large-voxrex

ting, we used the 5-gram model produced by re-
searchers at the National Library of Norway13.

As a reference we also performed recognition
on our test sets with the large Whisper model
(1.55 billion parameters) trained on a total of
680000 hours of (multilingual) speech, including
266 hours of Norwegian. In this case, the model is
used without fine-tuning. When computing word
error rates, in this case, we used Whisper’s ‘ba-
sic’ text normalizer, followed by normalization of
most numerals to minimize the discrepancies be-
tween reference text and the Whisper transcrip-
tions. However, the corresponding results are not
directly comparable with the wav2vec2 results be-
cause Whisper is trained to produce a loose trans-
cription of speech rather than word-by-word trans-
criptions. Those results will therefore only be
used for discussion. It is worth noting that both
wav2vec2 and Whisper can output any sequence
of characters (not only words out of a fixed vo-
cabulary). For this reason, it is interesting to ana-
lyze not only the number of word errors, but also
spelling variants or mistakes. This will be done in
details in Section 4.3.

3.2 Models

We fine-tuned four models on four different train-
ing sets.14 To distinguish models from train-
ing sets, model names are written in small caps.
The model trained on the NPSC only is called
STORTINGET, the name of the Norwegian Parlia-
ment.

RADIO The RADIO model is trained on Bokmål
segments from the Rundkast training set with
a segment length above 1 second and below
15 seconds. This amounts to 43.6 hours of
audio.

STORTINGET The STORTINGET model is
trained on Bokmål segments from the NPSC
training set with a segment length above 1
second and below 15 seconds, which adds up
to 70.3 hours of audio. That is, 80.4% of the
original Bokmål training set.

COMBINED SHORT The COMBINED SHORT

model is trained on a random sample of
segments from the training sets of RADIO

13https://huggingface.co/NbAiLab/
nb-wav2vec2-kenlm

14These models are published on Huggingface: https:
//huggingface.co/scribe-project.
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and STORTINGET (half of the total duration
comes from each dataset). The total duration
of the training data for COMBINED SHORT

is 70.4 hours, only 4 minutes longer than
the training set of the STORTINGET model.
Thus, we cannot attribute performance
differences between the two models to the
size of training data.

COMBINED LONG Finally, the COMBINED

LONG model is trained on the combina-
tion of the training sets of RADIO and
STORTINGET without leaving anything out,
which amounts to 114 hours.

3.3 Test Sets
The models were tested on NB Tale modules 1
and 3 and the test sets of the NPSC, Rundkast and
NST. In all these datasets, we have filtered out seg-
ments shorter than one second and longer than 15
seconds.

Table 1 gives an overview of the duration, do-
main and use of the dataset samples used in the
experiments.

4 Results and Analyses

4.1 Results per dataset
Table 2 reports the WER per dataset, for each
model. When looking at the results, it makes sense
to inspect the NPSC and Rundkast test sets se-
parately from the others, since those are the test
sets of the models’ training data. As expected,
the RADIO model outperforms the STORTINGET

model on the Rundkast test set (17.8% vs. 24.0%),
and conversely, the STORTINGET model outper-
forms the RADIO model on the NPSC test set
(9.3% vs. 19.5%). The COMBINED SHORT model
has a slightly better WER than the RADIO model
(17.2%) on the Rundkast test set. This is not
necessarily surprising, given that the COMBINED

SHORT model is trained on a larger dataset than
the RADIO model. Still, COMBINED SHORT is
trained on less Rundkast data than RADIO, and
adding data from a different domain seems to
have a positive effect. The COMBINED LONG

model gives the best score on the Rundkast test
set (15.9%). For the NPSC test set, COMBINED

SHORT does not improve on STORTINGET (9.9%
vs. 9.3%). Again, COMBINED LONG has the low-
est score (7.9%).

COMBINED LONG is the best model on the
datasets which are not the models’ test sets: NB

Tale modules 1 and 3 and NST test. Further-
more, COMBINED SHORT has a better WER
than both non-combined models. Since COM-
BINED SHORT is trained on the same amount of
data as STORTINGET, this effect cannot be at-
tributed to the size of the training set, so the
improved generalization of the model seems to
be due to the mixing of datasets. It is interes-
ting to observe that RADIO performs better than
STORTINGET on NB Tale 1 (24.5% vs. 25.8%)
and on NST (10.6% vs. 11.2%). RADIO per-
forms worse than STORTINGET on NB Tale 3,
however (28.9% vs. 25.8%). NB Tale 1 and NST
are manuscript-read datasets, while NB Tale 3 is
spontaneous, which may be part of the explana-
tion for the difference. It is not clear why, though,
as neither STORTINGET nor RADIO are primarily
manuscript-read.

When we look at the results with a language
model, we see the same general trends, but with
lower WER values: COMBINED SHORT is con-
sistently better than STORTINGET on all datasets,
with the exception of the NPSC test.

In addition to the limited resource models, we
also tested the 1.55 billion parameter Whisper
model (Radford et al., 2022) which is trained on
massive amounts of heterogeneous data, from dif-
ferent sources, task domains and in multiple lan-
guages. As previously mentioned, the results from
Whisper are not directly comparable, because the
style of transcriptions from this model is different.
However, the Whisper performance on NB Tale 1
and 3 and on NST is as good or better than the
fine-tuned models (17.5%, 22.6% and 9.5% WER
respectively). On the other hand, Whisper’s per-
formance on NPSC, Rundkast is clearly lower than
our fine-tuned models (16.6% and 25.0% WER re-
spectively). A possible explanation is that data
from the NB Tale and NST datasets is not included
in the training material for fine-tuning, reducing
the effect of fine-tuning for these test sets, while
Whisper benefits from the much larger and het-
erogenous training data.

4.2 Results per dialect

We report results per dialect in Table 3. Here we
focus on NB Tale module 3 only because this part
of the dataset contains spontaneous speech by a
balanced set of dialect speakers, and is therefore
well-suited for dialect-wise testing.

The dialect region east includes the Oslo re-
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Dataset train test validation Domain Use
NPSC 70.3h 9.1h 9.6h mixed train/test/validation
Rundkast 43.6h 5.9h 5.5h mixed train/test/validation
NST n/a 25.6h n/a read test
NB Tale 1 n/a 9.3h n/a read test
NB Tale 3 n/a 7.4h n/a spontaneous test
Combined short 70.4h n/a 9.7h mixed train/validation
Combined long 114.0h n/a 15.1h mixed train/validation

Table 1: Overview for the datasets samples used in the experiments.

Model (training hours) NPSC Rundkast NST NBT1 NBT3
RADIO (43.6h) 19.5 (14.9) 17.8 (15.3) 10.6 (7.1) 24.5 (19.5) 28.9 (23.2)
STORTINGET (70.3h) 9.3 (8.1) 24.0 (20.5) 11.2 (7.8) 25.8 (20.7) 25.8 (21.5)
COMBINED SHORT (70.4h) 9.9 (8.3) 17.2 (14.6) 9.2 (6.3) 23.5 (19.1) 24.4 (19.9)
COMBINED LONG (114.0h) 7.9 (7.1) 15.9 (14.0) 8.6 (6.0) 21.9 (18.0) 23.0 (19.2)

Table 2: Word error rates (%) per model and test set. The best results with limited linguistic resources
(wav2vec2) are shown in bold and the second best are underlined. Results in parentheses are obtained
by combining the wav2vec2 models with a 5-gram language model.

gion and the counties in the southeastern part of
Norway. South groups together the dialects in the
county of Agder on the south coast. West includes
the dialects on the southwest coast of the country
in the counties of Rogaland, Vestland, and south-
ern Møre og Romsdal. Mid includes the dialects
in the county of Trøndelag and northern Møre og
Romsdal, while north covers the dialects north of
Trøndelag, in the counties of Nordland and Troms
og Finnmark.

As we saw in the previous section, RADIO

has poorer performance than STORTINGET on NB
Tale module 3 globally, and we see that this differ-
ence is reflected in all dialect regions.

All models perform best on the eastern dialects.
This is not surprising, as more than half of the pop-
ulation lives in this region (Thorsnæs, 2023) and
there is a bias in the models’ training data towards
the dialects in this region. Moreover, many of the
eastern dialects, in particular those in the Oslo re-
gion, are close to the written Bokmål norm.

From Table 3 we can see that all models strug-
gle most with the mid and west dialects. Many
dialects from these areas have inflections and lexi-
cal forms of words which differ substantially from
Bokmål. Moreover, the models are exposed to
limited amounts of western Norwegian, as many
of the speakers from the west coast are transcribed
in Nynorsk in Rundkast and the NPSC. Nynorsk

transcriptions are filtered out in the datasets used
for training and testing these models.

COMBINED SHORT improves on the single
dataset models for all dialect regions. The im-
provement from RADIO to COMBINED SHORT

is substantial across regions, ranging from a rel-
ative improvement of 13.5% for east to 17.9%
for south. Again, this is not surprising, as
COMBINED SHORT is trained on more data.
From STORTINGET to COMBINED SHORT, there
are also improvements, although less substantial:
COMBINED SHORT improves on STORTINGET by
a relative 10.2% for east, while for the mid region,
the WER is almost the same for the two models.
For the other regions, the relative improvements
are below 7%.

4.3 Lexical analysis
To better understand the kinds of errors the mo-
dels make we have used a technique from cor-
pus linguistics called keyword analysis (Dunning,
1994; Pojanapunya and Todd, 2018, and refer-
ences therein). Keywords are words that have a
surprising frequency, either surprisingly high or
surprisingly low, in a target corpus relative to a ref-
erence corpus. Words are assigned a value indicat-
ing their keyness. Two common statistics used to
compute keyness are log-likelihood (LL) and χ2.
In this study, we will use LL, which is the more
reliable statistics when the expected frequency of
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Model east west mid north south
RADIO 22.3 32.7 32.0 27.1 25.7
STORTINGET 21.5 28.6 27.7 24.6 22.3
COMBINED SHORT 19.3 27.2 27.4 22.9 21.1
COMBINED LONG 18.2 25.8 25.5 21.5 20.5

Table 3: Word error rates (%) per dialect in the NB Tale module 3 test set. The best results are shown in
bold and the second best are underlined.

a word is low (Dunning, 1994).
Keyword analysis is often used to characterize

a text’s genre or identify its ideological underpin-
nings. It can also be used to generate term lists
for a given field or topic (Pojanapunya and Todd,
2018). In this study, we used keyword analysis
to identify word forms that characterize a machine
transcription relative to the ground truth. For each
machine transcription, we looked through the list
of the 100 words with the highest LL value. Such
a keyword list can reveal the words contributing to
the machine transcription WER. Words that have
either an unusually high or an unusually low rel-
ative frequency in the machine transcription rela-
tive to the ground truth, will get a high LL and will
therefore appear in the keyword lists. Both cases
may reveal properties of the transcription. One
limitation of this method is that word forms oc-
curring only once in the target corpus and never in
the reference corpus will get a low LL and not ap-
pear in the keyword list. Therefore, we may miss
misspellings.

There are many instances of incorrectly spelled
words with a high frequency in the automatic
transcription and a zero frequency in the ground
truth. Often, the correctly spelled version is
also present in the list, with a higher frequency
in the ground truth than in the automatic tran-
scription. Typically, these words have a spelling
that is surprising given the pronunciation of the
word, such as foreign company names and loan
words. The genitive of Apple, “apples” has a fre-
quency of 241 in the ground truth and 0 in the
STORTINGET transcription.15 The STORTINGET

list contains misspellings of this name, only oc-
curring in the automatic transcription, such as “ap-
pels” and “apels”. Similarly, “rock” occurs 37

15All words are spelled with lowercase letters in the
datasets. Both NB Tale module 1 and NST contain many
repeated sentences, which likely accounts for the high fre-
quency of this genitive form. Note also that genitive forms
are spelled without an apostrophe in Norwegian.

times in the ground truth, but never in the ASR
output from STORTINGET.

We see a similar phenomenon with uncommon
words. As mentioned, the sentences in NB Tale
module 1 are chosen to cover as many phonolog-
ical phenomena as possible, and many sentences
are repeated by several or all informants. As a
consequence, there are quite a few uncommon
words in that dataset, and some of them appear
in the keyword analysis. An example is the word
“stokkmaur” (‘Carpenter ant’), which occurs 240
times in the ground truth, but only 56 times in the
STORTINGET transcriptions. The STORTINGET

list contains two misspellings of this word, how-
ever: “stokmaur”, “stokkmør”. RADIO prefers to
spell this word “stockmaur”.

There are quite a few examples of words where
a vowel is left out, possibly due to fast speech,
such as “tittlen”, instead of “tittelen” (‘the title’).
However, there are not many obvious examples
of dialect pronunciations, except for some very
frequent function words. This does not neces-
sarily mean that dialectal pronunciations do not
contribute to the WER of the models: Dialec-
tal transcriptions could be hapaces, forms occur-
ring only once, which will not get a high LL
value. The ground truth transcriptions of native
speakers has 9672 hapaces, while hapax count for
STORTINGET and RADIO is more than twice as
high. They have 20591 and 20215 hapaces re-
spectively. The hapax count goes down to 18676
for COMBINED SHORT and 17613 for COMBINED

LONG. An inspection of a sample of the ha-
paxes from the different models which don’t also
occur in the ground truth, reveal that they are,
to a large extent, misspellings. It is, however,
hard to tell from reading the misspellings whether
they are of dialectal origin or not. The hapax
count goes further down when a language model is
used (STORTINGET: 13576, RUNDKAST: 13125,
COMBINED SHORT: 12076, COMBINED LONG:
12065), which indicates that the language model
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Model NPSC Rundkast NST NBT1 NBT3
RADIO 17.4 (13.8) 16.0 (13.2) 9.7 (7.1) 22.5 (18.5) 27.2 (21.4)
STORTINGET 8.8 (7.4) 21.1 (17.0) 11.1 (7.8) 25.3 (19.9) 24.4 (19.5)
COMBINED SHORT 9.3 (7.6) 15.4 (12.5) 8.7 (6.3) 21.7 (18.1) 22.8 (18.2)
COMBINED LONG 7.2 (6.2) 14.1 (11.9) 7.8 (6.0) 19.5 (17.0) 21.2 (17.5)

Table 4: Word error rates (%) per model and test set with hesitations removed and with standardization of
compounds and acronyms. Best results are in bold and second best are underlined. Results in parenthesis
are obtained combining the wav2vec2 model with a 5-gram language model.

reduces the number of spelling mistakes.
The test sets have special markings for hesita-

tions, and the models are trained to produce such
markings too. This appears to be a source of er-
rors. In particular, nasal hesitations, marked as
“mmm”, occur 994 times in the ground truth, but
almost never in the automatic transcriptions, and
it is the word with the highest LL in the keyword
analyses of all the models. This kind of error
does not affect the semantics of the transcription,
and markings of hesitations will presumably be re-
moved in many downstream applications.

Another source of errors which does not im-
pede the understanding of the transcriptions, is in-
sufficient standardization of the different datasets.
When comparing the analyses of the two single-
dataset models, it turns out that STORTINGET

tends to transcribe compounds without a hyphen,
e.g. “arbeiderpartipolitikeren” (‘the Labor Party
politician’), while RADIO tends to use a hy-
phen: “arbeiderparti-politikeren”. The datasets
STORTINGET is trained on, the NPSC, also tran-
scribes compounds without a hyphen while Runk-
ast, which RADIO is trained on, uses a hyphen,
and this difference is not captured by the standard-
ization routines described in section 2.5. There
is a similar issue with acronyms. STORTINGET

transcribes acronyms such as NRK, the national
broadcaster, as “nrk”, while RADIO separates each
letter with a space, “n r k”, also due to a difference
in the training data which is not captured by the
standardization routines. Unsurprisingly, the com-
bined models produce a mix of these standards.

While hesitations and differences in transcrip-
tion standards contribute to the WER, they are
in a sense less important than misspellings and
wrong words, which may affect the comprehen-
sion and the usability of the transcriptions. We
would, therefore, like to check to what extent
these errors contribute to the WER. Can the higher
performance of COMBINED SHORT compared to

the single-dataset models be explained entirely by
these errors? To check this we have made a ver-
sion of the ground truth and the automatic tran-
scriptions where hesitations are removed, com-
pounds are written without hyphens, and where a
number of the most frequent acronyms are writ-
ten without a space between them. Table 4 re-
ports the results across datasets with these stan-
dardizations. The values in parentheses are the
WER with a language model. The results should
be compared to those in table 2. As before,
the COMBINED SHORT model outperforms the
single dataset models on all datasets except the
NPSC test set, where the STORTINGET model
is better. To see the effect of this cleaning of
hesitations, hyphens and spaces, we can look
at the global WER across all the datasets (ex-
cluding foreign speakers). Before cleaning the
global WER is 16.8% for STORTINGET, 18.1%
for RADIO, and 14.7% for COMBINED SHORT

without a language model. After cleaning, the
global WERs are 16.0%, 16.5%, and 13.6% re-
spectively. The relative improvement of the global
WER from STORTINGET to COMBINED SHORT

is 12.5% before cleaning and 15.0% after clean-
ing. For RADIO, the improvement is 18.8% be-
fore cleaning and 17.6% after cleaning. In other
words, when we exclude the errors we have ob-
served which stem from hesitation annotations or
differences in transcription standard, the gap be-
tween STORTINGET and COMBINED SHORT be-
comes somewhat larger and the gap between RA-
DIO and COMBINED SHORT becomes somewhat
smaller, but COMBINED SHORT still improves on
the single-dataset models. The difference between
the single dataset models and the combined dataset
models cannot be explained solely by the tran-
scription of hesitations and the differences in tran-
scription standards.
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5 Conclusion and future work

In this paper, we have shown that training ASR
models on a combination of parliament speech
data from the NPSC and broadcast data from
Rundkast results in better WER across different
test sets than models trained on these datasets in-
dividually. This effect persisted even when we
control for dataset length. While STORTINGET

is slightly better on the NPSC test set than the
combined model of similar length, COMBINED

SHORT outperforms both single dataset models on
all other test sets. In other words, the combined
models generalize better to out-of-domain speech
data, which makes them more suitable for down-
stream transcription tasks where different kinds of
speech data may be encountered, such as meeting
transcriptions and subtitling.

The study also highlights that it is important to
standardize the training and test data when com-
bining datasets in this way. This standardiza-
tion may require an intimate knowledge of the
transcription guidelines of the different datasets.
Even though we had standardized the datasets
prior to training, as described in section 2.5, we
did not discover the differences in the treatment
of acronyms and compounds until we investigated
the ASR outputs in detail.

To be able to train on combinations of datasets,
one needs to have access to ASR dataset of dif-
ferent types and genres. Before the release of
the NPSC in 2021, there were no large, open
datasets for ASR training with Norwegian un-
planned speech. The NPSC may be released
openly because parliamentary recordings are in
the public domain. Due to copyright and pri-
vacy issues, it is more difficult to make a dataset
with broadcast data such as Rundkast freely
available. A recent report from the Norwegian
Board of Technology points out that there are not
enough open ASR datasets for Norwegian, and the
datasets that exist are not sufficiently varied. It
suggests different ways to increase the amount of
open speech data, such as a major crowdsourcing
initiative (Tennøe and Wettre, 2022). While we
wait for more open data, it may be possible to
train ASR models on a combination of open and
non-open datasets and release the resulting mod-
els openly.

Finally, the results we obtained with Whisper
are not comparable to ours using WER. This is be-
cause the model is trained to produce transcrip-

tions of different standards. This emphasizes the
importance of developing new metrics that assess
the semantic content of the transcriptions rather
than the word accuracy.
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Abstract

In this work we investigate the hypothe-
sis that enriching contextualized models
using fine-tuning tasks can improve their
capacity to detect lexical semantic change
(LSC). We include tasks aimed to capture
both low-level linguistic information like
part-of-speech tagging, as well as higher-
level (semantic) information.

Through a series of analyses we demon-
strate that certain combinations of fine-
tuning tasks, like sentiment, syntactic in-
formation, and logical inference, bring
large improvements to standard LSC mod-
els that are based only on standard lan-
guage modeling. We test on the bi-
nary classification and ranking tasks of
SemEval-2020 Task 1 and evaluate using
both permutation tests and under transfer-
learning scenarios.

1 Introduction

The last few years have seen a growing interest in
language change, specifically in lexical semantic
change (LSC), from the NLP community. LSC is
the linguistic phenomenon in which words’ mean-
ing may change over time (for example by adding
senses, or broadening/narrowing in their meaning
scope). Originally, the study of lexical seman-
tic change aspired to understand the phenomenon
from a linguistic perspective (Dubossarsky et al.,
2016; Schlechtweg et al., 2017; Keidar et al.,
2022). However, it was also motivated by the need
for better handling of semantic change in other
text-based research disciplines that work with his-
torical texts (e.g., lexicographers, historians).

In more recent times, the understanding that
general purpose NLP models also need to ac-
commodate for the fluidity of word meaning has
reached the greater NLP community, bringing

with it the realization that LSC plays a vital role
(Barbieri et al., 2022). It is particularly visible in
the deterioration of model performance over time
because the language on which models and other
algorithms are (pre-)trained, starts to drift as time
passes (Rosin and Radinsky, 2022; Alkhalifa et al.,
2023). When deployed, these models process text
from time periods they were not trained on, which
hinder their performance.

This wide, multi-disciplinary interest in LSC,
has driven the development of many computa-
tional models for language change (Kutuzov et al.,
2018; Tahmasebi et al., 2021). In addition, much
work has been devoted to supporting this progress
by curating evaluation datasets that provide ap-
propriate testing of these new models. Most of
these datasets are in the form of SemEval tasks and
contain high quality, humanly annotated lists of
words. Each word has either changed its meaning
between the considered time periods, or remained
stable in meaning, and each list is accompanied by
relevant historical corpora. This has become the
de-facto evaluation standard in the field.

When reviewing the different models that are
evaluated in SemEval, most of them use the same
suit of methods that rely on standard distribu-
tional models of meaning. These models are ei-
ther trained solely on historical text (e.g., SGNS
or other static models), or use contextualized mod-
els pre-trained on a large “general purpose” text.1

All of these models generate meaning represen-
tations in vector form for words from a histori-
cal corpus and compare them to vectors represent-
ing the modern meaning of the same word. Al-
though the models differ (e.g., in terms of data or
training objectives), they all share the same basic
trait - they rely on meaning representation based
on neighboring words without additional linguis-
tic information.

1Some contextualized models are also fine-tuned on his-
torical corpora.
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This state of affairs raises a question: do models
that are based solely on collocation statistics and
trained exclusively on a masked-word prediction
task suffice for our purpose? That is, are classic
distributional models able to capture the full reper-
toire of word meaning, and then access it when an-
alyzing meaning change? In this work, we inves-
tigate several concerns that we think a-priori sug-
gest that additional linguistic information is bene-
ficial for unsupervised lexical semantic change de-
tection.

One direct path forward is fine-tuning pre-
trained models on additional tasks or domains like
Question Answering and Sentiment Analysis. It
has been demonstrated that fine-tuning of models
helps even when the fine-tuned tasks are differ-
ent than the target task (for example, fine-tuning
on textual summarization and testing on Question-
Answering) in a sort of a zero/few-shot transfer
learning (Peters et al., 2019; Merchant et al., 2020;
Khashabi et al., 2020). Therefore, it is reasonable
to assume that enriching a contextualized model
with additional fine-tuning tasks would lead to im-
proved performance also for LSC detection.

In this paper, we test this hypothesis with one
of the top-performing models of LSC detection in
English and explore the potential to improve it by
enriching it through a set of fine-tuning tasks. We
provide our code here.2

2 Related literature

2.1 Models of LSC and their evaluation
In the past years, we have seen an increas-
ing amount of models for unsupervised detec-
tion of lexical semantic change, almost exclu-
sively focused on distributional semantic models.
SemEval-2020 Task 1 was the first attempt at a
large-scale evaluation and comparison of methods
on four different languages. Two main classes
of methods were evaluated by the participating
teams. The first was based on type embeddings, ei-
ther those that require alignment between indepen-
dently trained models, (e.g., SGNS with Orthog-
onal Procrustes alignment (Arefyev and Zhikov,
2020)) or static embeddings without the require-
ment of alignment (Zamora-Reina and Bravo-
Marquez, 2020). The second class was based
on contextualized embeddings and combined with
e.g., a clustering algorithm to derive sense in-
formation (e.g., XLM-R with K-means clustering

2https://github.com/ChangeIsKey/LSC-AGG

(Gyllensten et al., 2020)) or other means of com-
paring vectors in each time period with each other
(Kutuzov and Giulianelli, 2020). The models were
evaluated on two tasks, binary classification and
ranking.

For the four SemEval datasets, the trend was
that type-based models outperformed contextual-
ized (token) models. It was also clear that good
performance on binary classification does not nec-
essarily indicate good performance on the rank-
ing task. Since SemEval-2020, more evaluation
tasks have been curated for Russian (Kutuzov
et al., 2021), Italian (Basile et al., 2020), Norwe-
gian (Kutuzov et al., 2022a) and Spanish (Zamora-
Reina et al., 2022), where we see stronger indi-
cations that contextualized models perform better
than type-based ones.

2.2 Contextualized models training

Training contextualized models requires a massive
amount of textual data, prolonged training time,
and considerable computational power. All these
have made the training of new models a compli-
cated procedure available only to selected research
labs over the world, as oftentimes researchers lack
the necessary resources to train their own models
(our interest in historical language poses a partic-
ular challenge in this regard, as historical texts are
usually much smaller in size).

To mitigate these requirements, speed up the
training process, and increase the usability of
these models, fine-tuning was developed. Us-
ing fine-tuning, models that were already trained
(now called pre-trained models) are continued
to be trained, albeit on much smaller data and
sometimes on a different task (pre-trained models
are usually trained on standard masked-word and
next-sentence prediction tasks).

This two-step training setup was found to
greatly improve the state-of-the-art performance
in many tasks and today, the use of fine-tuning
in contextualized models has become the domi-
nant paradigm in NLP (Howard and Ruder, 2018;
Devlin et al., 2019; Merchant et al., 2020). Im-
portantly, it was found that fine-tuning, henceforth
FT, can transfer to other tasks and languages and
thus improve performance on tasks and datasets it
was not trained on (Peters et al., 2019; Khashabi
et al., 2020), presumably because of shared infor-
mation that is required to process these different
tasks. In this paper, we aim to leverage the trans-
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fer capabilities and test whether FT a contextual-
ized model on a range of NLP tasks improves its
performance to detect LSC.

3 Method

Our aim is to test whether a state-of-the-art
method for detecting lexical semantic change,
based on pre-trained contextual embeddings, can
be improved by adding fine-tuned layers. There-
fore, we start with a BERT model and detect se-
mantic change following Kutuzov and Giulianelli
(2020). We chose their model as it was the
best-performing system in English in the post-
evaluation stage of SemEval-2020 Task 1. Next,
we add information from fine-tuning for tasks that
go beyond a masked language model objective.
We include tasks aimed to capture both low-level
linguistic information like part-of-speech tagging,
as well as higher-level (semantic) information
such as sentiment analysis, linguistic inference,
and machine reading comprehension.

3.1 LSC method
The task of detecting lexical semantic change can
be described as the following: given two corpora
C1 and C2 from time periods T1 and T2, as well
as a set of target words, detect which words have
changed between T1 and T2 as evidenced in C1

and C2. This is a special case of the general LSC
problem which includes arbitrarily many time pe-
riods T1, . . . , TN .

Following Kutuzov and Giulianelli (2020), we
use a pre-trained BERT base model to generate
the contextualized embeddings of each occurrence
of the target words in C1 in C2, resulting in two
corresponding embedding matrices U t1

w and U t2
w .

Given these embedding matrices, we calculate the
change scores of each target word in one of two
ways: inverted cosine similarity over word proto-
types (PRT); and average pairwise cosine distance
between token embeddings (APD).

PRT (U t1
w , U t2

w ) =
1

d(

∑
xi∈Ut1

w
xi

Nt1
w

,

∑
xj∈Ut2

w
xj

Nt2
w

)

(1)

APD(U t1
w , U t2

w ) =
1

N t1
w N t2

w

∑

xi∈Ut1
w ,xj∈Ut2

w

d(xi, xj) (2)

N t1
w , N t2

w stands for the number of occurrences of
w in T1 and T2. d is the cosine distance. For both
methods, higher values suggest a larger semantic
change.

3.2 Fine-tuning

The main contribution of this paper is the injec-
tion of richer meanings into contextualized em-
beddings using fine-tuning. Our fine-tuned models
are derived mostly from adapters (Pfeiffer et al.,
2020; Poth et al., 2021), which are trained lay-
ers that can be integrated directly into transformer-
based models (the most popular type of contextu-
alized models) in order to perform different tasks.
Using adapters enabled us to speed up our exper-
iments as they are readily available3 and can be
seamlessly integrated into the tested models.

In addition to using adapters, we also fine-tune
two models locally on sentiment classification and
part-of-speech tagging in order to compare the
performance of fine-tuned models with adapter-
based models. For sentiment classification, we
use the sst2 dataset (Pang and Lee, 2004) while
for part-of-speech tagging we use CoNLL2003
(Tjong Kim Sang and De Meulder, 2003). Since
there is no test set with gold labels for sst2, we
randomly sample 30% of the data from the valida-
tion set as a test set. The accuracy of the fine-tuned
models on the test set is 0.908 for sentiment anal-
ysis and 0.931 for part-of-speech tagging. We use
the BERT-base-uncased model for all our exper-
iments, both with adaptors and local FT. Table 1
details the FT tasks we used.

Task/Model Type

natural language inference (nli) pf
machine reading comprehension (reading compre) pf
sentiment (sst2) pf
sentiment (sst2-pfeiffer) pfeiffer
sentiment (sst2-hously) hously
semantic textual similarity pf
linguistic acceptability pf
grammatical error correction (error detect) pf
semantic tagging pf
named entity recognition (ner) pf
part-of-speech tagging (pos) pf
phrase chunking pf

sentiment (sst2-fine-tune) fine-tuned
part-of-speech tagging (pos-fine-tune) fine-tuned

Table 1: Fine-tuned models & tasks for adapters
(upper) and locally trained FT (lower). Type refers
to adaptors trained by Poth et al. (2021)(pf), Peif-
fer and Hously. Task abbreviations in parentheses.

3https://adapterhub.ml/
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4 Evaluation

For our experiments, we use a standard evaluation
dataset for LSC.

4.1 Evaluation data

We use the English dataset of SemEval-2020 Task
1 (Schlechtweg et al., 2020) for unsupervised lex-
ical semantic change detection. The task was the
first of its kind to provide manually annotated gold
data for the purpose of fair and comparable eval-
uation of methods for LSC. The task consists of
two sub-tasks aimed to measure change between
two time-specific corpora C1 and C2:

Binary Classification: for a set of target words,
decide which words lost or gained sense(s)
between C1 and C2, and which did not.

Ranking: rank a set of target words according to
their degree of LSC between C1 and C2.

These tasks are related but complementary. The
ranking task measures the degree of change and
takes into consideration lost or gained senses, but
also includes changes in existing senses (e.g., by
means of broadening or narrowing) which the bi-
nary classification task does not consider.

The English dataset of SemEval consists of 37
target words derived from the Clean Corpus of
Historical American English (CCOHA) (Davies,
2012; Alatrash et al., 2020). The two 50-year pe-
riods are C1 = 1810−1860 and C2 = 1960−2010
from which each target word has a set of 100 ran-
domly sampled sentences. These sentences have
been compared by human annotators and ranked
on a scale for lexical semantic change. Based on
the outcome of the roughly 29,000 human judg-
ments, words are classified as changing or stable
and assigned a change degree. The process is de-
scribed in detail by Schlechtweg et al. (2021)

4.2 Evaluation Metrics

We use two evaluation metrics.

Spearman correlation is used to compute
the rank correlation between model predic-
tions and gold labels in the ranking task.

AUC & ROC are used to evaluate the impact
of different thresholds on the model perfor-
mance in the binary classification task.

4.3 Validation through permutation

The work presented in this paper suggests that cer-
tain combinations of FT tasks improve LSC detec-
tion for both ranking and classification tasks. Im-
portantly, these combinations are chosen based on
improved performance in the SemEval tasks. Ide-
ally, we would consider this as the training set and
then test the chosen combinations on a held-out
dataset to examine if similar gains are acquired.
However, such a test set is lacking, and cannot be
constructed via standard train-test splits from the
37 words, from which only 16 have changed.4 We
propose permutation tests to mitigate this short-
coming, and to enable us to draw reliable conclu-
sions from our study despite this limitation.

For both tasks, we evaluate the probability that
the best combinations we report were found by
chance. We conduct a permutation analysis and
generate artificial FT task scores that are based on
the distributions of the existing FT values from the
14 FT models (Table 1). We then compute the
relevant evaluation metric (Spearman or AUC) for
each artificial FT, and repeat the process 100,000
times, creating a distribution of ranking or classi-
fication performance scores. We then compute the
proportion of times that the artificial random FT
combinations performed better than our best com-
binations, in the form of a p-value for our chosen
combinations. Ultimately, this allows us to test the
statistical significance of our results, and evaluate
how likely it is that our best combinations were
found by chance.

5 Experiments

Two models are used as baselines, relative to
which we test if adding FT (either adaptors or lo-
cal FT) improves performance. One of the base-
line models was used as the basis on top of which
the different FT combinations were tested.

We choose the best combination of FT tasks
by analyzing the results of the ranking task and
then test it on the binary classification task using
a modified decision criterion (i.e., ROC analysis).
Because the two tasks are different, this allows us
to use the latter as an ad-hoc evaluation test.

4Under these conditions it was also not feasible to conduct
a systematic regression analysis, which would have lacked
the statistical rigor to reach reliable results.
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5.1 Baselines

We make use of two rather different baseline mod-
els that are used together with the fine-tuning. Ku-
tuzov and Giulianelli (2020) whose model scored
the highest in the English part of SemEval (hence-
forth BERT), and HistBERT (Qiu and Xu, 2022)
which provides a contextualized model pre-trained
on historical English.5 Together, they provide
complementing baselines to test our research hy-
pothesis. All FT combinations where made on top
of the BERT baseline.

We also compute p-values from the permutation
tests for the two tasks (see Section 4.3), and for
each method (APD and PRT).

5.2 Ranking task

Given a fine-tuning task FTi, we obtain two em-
bedding matrices U t1

w and U t2
w for each target

word. We use these embedding matrices to calcu-
late the semantic change score of a target word by
means of APD and PRT. Once we have the change
scores for all target words, we produce a ranking
of the words. We then measure the performance
as Spearman correlation of the change score ranks
compared to the gold ranking. This is illustrated in
the following formula, where Pind stands for the
performance of the individual task. Score is the
scoring function (AUC or Spearman correlation).

Pind = Score(FTi, gold) (3)

There are in total FT1, . . . ,FT14 fine-tuning
tasks. In addition to their individual performance,
we are interested if they add complementary infor-
mation, and therefore want to measure their com-
bined performance. We thus enumerate all the
possible combinations of the tasks. For each com-
bination, we average the change scores produced
by each participating FTi. For instance, we can
combine change scores derived from Natural Lan-
guage Inference and Named Entity Recognition by
averaging the scores for each target. There are in
total FT1

14 + FT2
14 + . . .+ FT13

14 + FT14
14 combi-

nations. We measured the performance of each
combination by means of its Spearman correla-
tion. This is illustrated in the following formula,
where c is the combination of different tasks.

5There are four versions: HistBERT-prototype,
HistBERT-5, HistBERT-10, and HistBERT-full. They
differ in the size and time period of the training data. In this
study, we report the averaged scores of the four models.

Pc = Score

(
1

|c|
∑

i∈c
(FTi), gold

)
(4)

Method Rank-PRT Rank-APD

ner 0.218 0.285
nli 0.427** 0.634
pos 0.205 0.205
error detect 0.352 0.593
linguistic acceptability 0.364 0.622
phrase chunking 0.076 0.185
pos-fine-tune 0.277 0.087
reading compre 0.416 0.636
semantic tagging 0.265 0.255
sst2 0.422 0.608
sst2-hously 0.435** 0.627
sst2-fine-tune 0.123 0.210
sst2-pfeiffer 0.391 0.459
textual similarity 0.378 0.694

BERT 0.423 0.706
HistBERT-ave 0.264 0.441

Table 2: Spearman correlations for different FTs
on the ranking tasks. Best FTs in bold. Statistical
significance marks *, **, ***: for p-values<.05,
.01, .001, respectively.

5.3 Binary Classification task

For the binary classification task, we calculate the
AUC score of each FTi. One advantage of the
AUC score over accuracy is that we do not need to
define the threshold to determine a word changes
or not, given the change scores derived from PRT
and APD are continuous values

We carry out two experiments here: 1) testing
the best models found in the ranking task on the bi-
nary classification task, and 2) examining the per-
formance of individual FTi as well as combined
models. Our motivation for the first experiment is
that we want to evaluate our best models from a
new perspective given that the ranking and clas-
sification tasks feature different task profiles. In
the second experiment, we focus on the combina-
tion effect, and take the more challenging case, ex-
amining the FTs with the highest as individual FT
tasks.

6 Results

6.1 Ranking task results

We begin by reporting the results of individual
FTi. The results are presented in Table 2. For
PRT, the range of correlation between (the rank-
ing produced by) each FTi and the gold rank is

522



Method Combination(s) Correlation

APD best 5

BERT, nli, textual similarity, error detect , pos-fine-tune 0.723***
BERT, sst2, error detect, pos-fine-tune 0.722***
sst2, textual similarity, error detect 0.722***
BERT, sst2, textual similarity, error detect 0.721***
BERT, textual similarity, error detect 0.721***

APD baseline
BERT 0.706
BERT, random scores 0.462
HistBERT (averaged) 0.441

PRT best 5

nli, pos-fine-tune, sst2-fine-tune 0.531**
nli, sst2-pfeiffer, pos-fine-tune, ner, sst2-fine-tune 0.515*
BERT, nli, sst2-pfeiffer, ner, sst2-fine-tune 0.503*
nli, sst2-pfeiffer, pos-fine-tune, sst2-fine-tune 0.503*
nli, reading compre, sst2-pfeiffer, histBERT-10, pos-fine-tune, sst2-fine-tune 0.502*

PRT baseline
BERT 0.423
BERT, random scores 0.336
HistBERT (averaged) 0.264

Table 3: Ranking results for 5 best FT combinations, APD and PRT. p-values as reported in Table 2.

0.427 – 0.076. We find that most fine-tuned mod-
els do not beat the BERT baseline, with only 2 ex-
ceptions (nli and sst2-hously). For APD, individ-
ual FTis range from 0.694 to 0.086, with one FT
having a negative correlation of 0.211. Here, the
maximum baseline (BERT) is marginally higher
than any individual FT with a correlation value of
0.706. Overall, the results from Table 2 show that
most individual FTs do not improve task perfor-
mance further for both PRT and APD.

We now turn to combining different FT for the
ranking task, shown in Table 3. For PRT, the five
best models (0.531 – 0.502) all rank higher than
the baseline models (0.423 – 0.264). For APD, the
five best models (0.723 – 0.721) also rank higher
than the baseline models (0.706 – 0.441).

We note that although the performance gains
are statistically significant for both PRT and APD,
they are much more prominent for PRT. We also
note that not every combination leads to an im-
provement. Some tasks (or task combinations) can
yield lower performance. For instance, combing
part-of-speech and sentiment in APD actually de-
teriorates task performance. More details can be
found in the appendix.

The random permutations, where we average
BERT with scores sampled from the overall score
distribution, over 100,000 runs, corroborate our
findings. For PRT we get a mean correlation of
0.336 (s.d. of 0.107), and less than 1 per 100 ran-
domly sampled scores perform better than the best
PRT (0.531) (p-value<0.01). For APD, the corre-
sponding values are 0.462 (s.d. of 0.147), and less

than 2 per 1000 randomly sampled scores perform
better (p-value<0.01).

6.2 Classification task results

Method AUC-PRT AUC-APD

ner 0.688* 0.604
nli 0.646 0.714
pos 0.634 0.536
error detect 0.634 0.670
linguistic acceptability 0.628 0.676
phrase chunking 0.622 0.622
pos-fine-tune 0.634 0.643
reading compre 0.670 0.696
semantic tagging 0.649 0.631
sst2 0.658 0.664
sst2-hously 0.682* 0.685
sst2-fine-tune 0.673* 0.417
sst2-pfeiffer 0.631 0.613
textual similarity 0.661 0.741**

BERT 0.673 0.717
HistBERT-ave 0.657 0.659

Table 4: AUC scores for different FTs on the clas-
sification task. Best FTs in bold. p-values as re-
ported in Table 2.

We begin by reporting the results of individual
FTi, shown in Table 4. We report the AUC scores
to avoid threshold selection. We observe more
variance in APD than in PRT in terms of model
performance. For PRT, we observe that named en-
tity recognition provides the highest AUC score
(0.688) while phrase chunking generates the low-
est performance (0.622). As for APD, textual sim-
ilarity was the only FT to surpass the baseline and
achieve statistical significance with AUC score of
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Method Combination(s) AUC

APD best 3 nli, textual similarity 0.741*
textual similarity, nli, BERT 0.738*
textual similarity, BERT 0.735*

APD ind best textual similarity 0.741*

PRT best 3
ner sst2-hously, sst2-fine-tune (p-value = 0.054) 0.732
ner, sst2-fine-tune, reading compre (p-value = 0.090) 0.720
ner, sst2-hously, sst2-fine-tune, reading compre (p-value = 0.161) 0.714

PRT ind best ner (p-value = 0.161) 0.688

Table 5: Results of combining different FTs on the classification task. We present the best individual task
performance (APD/PRT individual best) for comparisons. * means statistically significant improvement
over the BERT baseline.

0.741. Similar to what we found for the ranking
task, it seems that most individual FTs do not im-
prove task performance neither for PRT or APD.

To test the performance of combinations, we
take the top 5 best-performing models for PRT and
APD separately. We then enumerate all possible
combinations from them and report the results in
Table 5. We find that combining different FTs im-
proves task performance in PRT but not in APD.
In PRT, we see a five percentage of AUC increase
when we combine Name Entity Recognition, sst2-
hously and sst2-fine-tune (from 0.688 to 0.732). In
APD, we do not observe performance gains over
the individual FTs.

6.3 Transferability scenario

As the ranking and classification tasks are curated
differently (see Section 4.1), we see this as an op-
portunity to use the latter as an ad-hoc evaluation
set by testing the transferability between the two
tasks. We ask: are the best combinations that we
found for ranking also useful (i.e., can be trans-
ferred) for the purpose of classification? We apply
the three best combinations found in Section 6.1
to the classification task, plot their ROC curves
and calculate their AUC scores. The results are
shown in Figure 1. We find that the best mod-
els found in the ranking task outperform BERT
baseline in the classification task. In PRT, the best
model achieves an AUC score of 0.774 compared
with the base model (0.673). In APD, though less
obvious, the best model still performs better than
the baseline (0.744 v.s. 0.717). While the ranking
and classification tasks are designed for different
purposes, this experiment suggests that the anal-
ysis of ranking results can guide the choice, and
thus transfer, of models for the classification task.

7 Discussion and Conclusion

In this paper, we investigate our hypothesis that
adding linguistic information to pre-trained lan-
guage models by means of fine-tuning can lead
to improved performance on unsupervised Lexical
Semantic Change detection. We chose two clas-
sic LSC tasks, ranking and binary classification,
from SemEval-2020 Task 1 (Schlechtweg et al.,
2020). To simplify and speed up the process of
fine-tuning we used adaptors (Pfeiffer et al., 2020),
which are pre-trained fine-tuning modules that can
augment existing contextualized models and are
readily and freely available for English.

First, we tried single FT tasks, which showed
little or no improvement over the BERT baseline.
Then we combined several FT tasks together by
means of simple averaging and found considerable
improvements.

Adding linguistic information, like part-of-
speech, to a standard (masked) language model
can offer additional information that improves the
ability of the models to detect lexical semantic
change. However, some kinds of information are
adjacent to semantic change and therefore make
the models capture change, but not necessarily se-
mantic change. In future work, we will conduct in-
depth analysis of the worst models, to see what in-
formation they capture instead and why this infor-
mation seems to hurt the performance of the LSC
model.

Our work is not the first to introduce linguis-
tically augmented contextualized models for the
task of LSC. Giulianelli et al. (2022) used an en-
semble method to inject linguistic information,
and reported performance gains in LSC tasks.
However, they focus on “low-level” morpho-
syntactic information. Our approach, in addi-
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Figure 1: ROC curves of the best 3 models in the ranking task as they perform on the classification task.
Left: PRT, right: APD. See Table 3 for combinations details.

tion to using a completely different ML method
for linguistic augmentation, spans both ends of
the linguistic-informative spectrum, ranging from
part-of-speech, to sentiment to logical inference.

One deficiency of our results is that they are
based on a small evaluation dataset, which means
that the improvements we report could be at-
tributed to chance (or model over-fitting). To mit-
igate this concern, and add scientific rigour to
our analyses, all results were tested in permu-
tation tests and are reported with their p-values.
Evaluation is also done with comparison to two
strong baseline models, each of which provides
different perspective to test our research hypoth-
esis. Outperforming the Kutuzov and Giulianelli
(2020) model suggests that enriching models with
additional linguistic information is highly bene-
ficial, and outperforming HistBERT supports the
idea that this information cannot be gained even
when a model is exclusively (pre-) trained on his-
torical text. Overall our results clearly suggest that
LSC models can be improved dramatically with
relatively simple steps of fine-tuning on a range of
standard linguistic tasks.

We note that there are differences between the
best performing FTs for the PRT and APD meth-
ods. Although certain FTs are shared (e.g., NLI
and POS), others appear more systematically in
PRT or APD. We interpret these inconsistencies as
stemming from differences between the PRT and
APD methods themselves, and do not view them
as negative. Instead, each method enriches the
baseline with different types of information and
hence allows the model to capture slightly differ-
ent aspects of LSC. Combined with the FTs, the
final results can be quite different. This comple-

menting view of the two LSC methods is sup-
ported by the results of Kutuzov et al. (2022b),
who recently reported that joining PRT and APD
improves LSC detection results. The most proba-
ble explanation for this is that the two LSC meth-
ods are sensitive to different aspects of change.

From a theoretical point of view, our con-
clusions are inline with how linguists describe
the phenomenon of LSC. Linguistic theory dis-
tinguishes between different types of LSC, and
emphasizes that changes are never “general” but
pertinent to certain aspects of meaning. There-
fore, computationally analyzing words’ meaning
change using a “single ruler” as is done by current
state-of-the-art LSC models, may be insufficient to
describe the richness and diversity of change. We
believe our findings provide an inroad for extend-
ing the capacity of LSC models and encouraging
future research in this direction.

This is but the first step in exploring the poten-
tial of using FT to enrich and improve contextual-
ized models of LSC. In our future work we will
corroborate these findings more rigorously: ex-
tending these to other languages, testing the gener-
alizability of the chosen FT tasks across LSC mod-
els, and test our approach in the discovery of new
cases of words that change their meaning to go be-
yond a small set of examples.
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A Appendix

Method Combination(s) Correlation

APD worst 3
pos-fine-tune, sst2-fine-tune -0.214
sst2-fine-tune -0.210
pos-fine-tune 0.087

APD baseline
BERT 0.706
BERT, random scores 0.462
HistBERT (averaged) 0.441

PRT worst 3
sst2-fine-tune, histBERT (full) 0.012
pos-fine-tune, sst2-fine-tune, histBERT (full) 0.014
pos-fine-tune, histBERT (full) 0.038

PRT baseline
BERT 0.423
BERT, random scores 0.336
HistBERT (averaged) 0.264

Table 6: Ranking results for 3 worst FT combinations
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Abstract
Recent advances in the field of language
modeling have improved the state-of-the-
art in question answering (QA) and ques-
tion generation (QG). However, the devel-
opment of modern neural models, their
benchmarks, and datasets for training them
has mainly focused on English. Finnish,
like many other languages, faces a shortage
of large QA/QG model training resources,
which has prevented experimenting with
state-of-the-art QA/QG fine-tuning meth-
ods. We present the first neural QA and
QG models that work with Finnish. To
train the models, we automatically translate
the SQuAD dataset and then use normal-
ization methods to reduce the amount of
problematic data created during the trans-
lation. Using the synthetic data, together
with the Finnish partition of the TyDi-QA
dataset, we fine-tune several transformer-
based models to both QA and QG and eval-
uate their performance. To the best of our
knowledge, the resulting dataset is the first
large-scale QA/QG resource for Finnish.
This paper also sets the initial benchmarks
for Finnish-language QA and QG.

1 Introduction

The purpose of question answering (QA) systems
is to help users find information more efficiently.
QA systems come in many forms and offer help in
everything from database querying to complex in-
formation search from the entire World Wide Web.
Recently, much attention has been directed toward
developing extractive QA models that can draw
answers directly from spans of text. Popular ap-
proaches have emerged that integrate components
that first retrieve documents relevant to a question,
with models for reading comprehension that pin-
point the answers in the retrieved documents.

A task closely related to QA, yet less researched,
is question generation (QG), where the object is
to generate natural and grammatical questions that
can be answered by a specific answer using some
given context. QG can be used to, e.g., automat-
ically create reading comprehension tasks, or to
improve the interactivity of virtual assistants. It
can also be used as a data augmentation tool—to
create new training data for QA systems.

Recently, the focus for both tasks has moved to
neural language models utilizing transfer learning—
e.g., BERT (Devlin et al., 2019) or XLNet (Yang
et al., 2019), at least for languages such as English.
Despite the advances in QA and QG, the lack of
training datasets has hindered the use of state-of-
the-art deep learning methods to develop modern
QA and QG models for Finnish. Finnish, like many
languages, lacks the resources to train models for
the two tasks. In fact, no monolingual Finnish QA
or QG models have been reported to exist at all.

In order to fine-tune models for Finnish extrac-
tive QA and answer-aware QG, we first create a
Finnish QA dataset by automatically translating the
SQuAD—Stanford Question Answering Dataset
dataset (Rajpurkar et al., 2016), from English to
Finnish, and then use automatic normalization to
clean up problematic data. We use the synthetic
data to train several transformer-based models for
QA and QG and evaluate their performance. We re-
lease the data to the research community to support
future research.1

The paper is organized as follows: in Section (2)
we review prior work on QA, QG, and generation
of synthetic resources. In Section 3, we review the
dataset creation, and introduce additional datasets
used to train and evaluate the models. Section 4
reviews the fine-tuning methods, and Section 5
discusses the results of the experiments. Section 6
concludes and offers directions for future work.

1https://huggingface.co/datasets/
ilmariky/SQuAD_v2_fi
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2 Related Work

2.1 QA and QG for Other Languages
Approaches to both question answering and ques-
tion generation have significantly evolved through-
out their history. More recently, along with new
datasets and novel deep learning methods, neural
approaches have become the state of the art for
both tasks.

It has become popular for information retrieval-
based QA systems to incorporate a neural machine
reading comprehension (MRC) component that ex-
tracts answers from a set of retrieved documents.
After the introduction of the transformer architec-
ture, models like BERT (Devlin et al., 2019) have
become a popular tool for the answer extraction
task. Many models have already surpassed human
performance on the SQuAD1.1 dataset (Yamada
et al., 2020; Yang et al., 2019) and some models
can also predict whether the passage contains the
answer to the question at all (Zhang et al., 2020).
Lee et al. (2019) presented a unified end-to-end
architecture capable of both retrieving and reading.

Since the mid-2010s, many RNN-based ap-
proaches have been proposed to QG (Zhou et al.,
2017; Du et al., 2017; Zhao et al., 2018). How-
ever, the Transformer architecture (Vaswani et al.,
2017) solved many problems that RNNs have, and
has also become a popular architecture for QG
models. The QG system by Wang et al. (2020)
employs the encoder and the decoder from the
Transformer. They combine the question gener-
ation and answer selection process in a joint model
and treat the answers as a hidden pivot for ques-
tion generation. Durmus et al. (2020) fine-tune a
pre-trained BART model (Lewis et al., 2020) to
generate questions from sentences. Chan and Fan
(2019b) fine-tune a BERT model to work in a se-
quential manner to generate questions from para-
graphs of text. Their model achieved state-of-the-
art results in paragraph-level QG.

2.2 QA and QG for Finnish
Very little research on Finnish QA exists to date.
Aunimo et al. (2004) presented two cross-lingual
QA systems, Tikka and Varis, that took Finnish
questions as input and found answers to them
from a collection of English-language documents.
Tikka is a simple baseline model, while Varis
is more sophisticated. The pipelines of both sys-
tems start with defining the question type with the
use of syntactic information and then translating

the question into English. Varis also tries to ex-
tract the answer type of the question using a named
entity recognizer. Tikka and Varis could cor-
rectly answer 22.5% and 29.0% of the questions
presented to them, respectively.

No previous work is found on monolingual or
cross-lingual QG systems that work with Finnish.
Therefore, to the best of our knowledge, the results
reported in this paper are the first ones for Finnish-
language question generation.

2.3 Generation of Synthetic QA Corpora

Large annotated corpora are essential for fine-
tuning pre-trained deep architecture but, unfortu-
nately, they are also scarce for Finnish. In the
context of QA, generation of synthetic corpora
often means creation of a dataset via, e.g., auto-
matic or semiautomatic translation of an existing
QA dataset, or automatic data extraction from raw
unlabeled data.

Recently, there have been several attempts to cre-
ate synthetic datasets for QA. Carrino et al. (2020)
translated an English QA dataset automatically to
Spanish using a method called Translate-Align-
Retrieve. The method is based on MT and an
unsupervised alignment algorithm. Alberti et al.
(2019) combined QG and answer extraction mod-
els with a technique they refer to as roundtrip
consistency-ensuring filtering to automatically cre-
ate a synthetic English QA dataset from unlabeled
text passages. Abadani et al. (2021) translated the
SQuAD2.0 QA dataset (Rajpurkar et al., 2018) au-
tomatically into Persian, and then finalized the data
into two datasets, of which one is corrected manu-
ally and the other automatically. The automatically
corrected one is many times bigger and also yielded
better results. The SQuAD dataset has also been au-
tomatically translated to Swedish (Okazawa, 2021)
and French (Kabbadj, 2018).

3 Data

3.1 SQuAD

SQuAD is a large English QA dataset created for
training machine learning models for the extractive
QA task. It is one of the most popular QA datasets,
and many other QA datasets have followed its
methodology (Clark et al., 2020; d’Hoffschmidt
et al., 2020; Lim et al., 2019). SQuAD has also
been a popular resource for answer-aware neural
question generation (NQG) (Chan and Fan, 2019a;
Du et al., 2017; Klein and Nabi, 2019).
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English Finnish translation
Passage The capital, Brazzaville, is located on the Congo

River, in the south of the country, immediately
across from Kinshasa, the capital of the Demo-
cratic Republic of the Congo.

Pääkaupunki Brazzaville sijaitsee Kongo-joen
varrella maan eteläosassa, vastapäätä
Kongon demokraattisen tasavallan

pääkaupunkia Kinshasaa.

Question What country does Kinshasa serve as capital of? Minkä maan pääkaupunki Kinshasa on?

Answer Democratic Republic of the Congo Kongon demokraattinen tasavalta

Table 1: An example of problematic data resulting from translating passages and answers separately. The
translated answer (in the nominative case) is not found within the translated passage (where it appears in
the genitive case) which is required for extractive QA.

The first version of SQuAD (SQuAD1.1) con-
tains over 100K passage-question-answer triplets
that crowdworkers extracted from 536 Wikipedia
articles. Each article is divided into several pas-
sages, and each passage has several questions re-
lated to its contents. Each question is linked with
an answer (a substring of the passage) and the posi-
tion of the answer’s first character in the passage.
The second version of the dataset, SQuAD2.0, con-
tains additional 50K questions, similar to the first
version’s questions but impossible to answer with
the given passage. The extension’s idea was to en-
able the development of models that can identify
unanswerable questions.

3.2 Dataset Translation and Normalization

We translated all the text data in the SQuAD2.0 into
Finnish using Google NMT (Wu et al., 2016) with
the Google Translate API. The passage, questions,
and answers were translated separately, which led
to many of the translated answers not being sub-
strings of the translated passage. That was some-
times caused by translation errors, but one ma-
jor factor was that the data was translated from
a weakly inflected, analytic language to a highly
inflected, agglutinative language. In other words,
the MT system has no way of knowing how to
inflect the words in the translation without any con-
text. The SQuAD format requires the answer to
be a substring of the passage as it is an extrac-
tive QA dataset. The problem is illustrated in Ta-
ble 1. Okazawa (2021) used a simple highlighting
technique to tackle this problem when translating
SQuAD2.0 into Swedish. Rather than translating
the passage and the answer separately, they put spe-
cial markers ([0]) around the answer substring be-
fore the translation and afterward simply extracted
the translated answer span between the markers
and then removed the markers. However, using it

would have required translating the same passages
multiple times with different answers marked since
passages are linked with several questions. This
was not feasible solely because using Google NMT
via API is not free.

After translation, we used simple normaliza-
tion methods to identify the answer substring in
the translated passage whenever it did not contain
the separately translated answer. In total, there
were four normalization steps: regular expressions,
lemmatization, stemming, and using the English
answer.. The script started with the first one and
moved to the next one if necessary.

In the first step, a set of regular expressions was
used to fix some inconsistencies (in, e.g., white
spaces and punctuation) that were found to occa-
sionally occur in the translations. In the next step,
both the passage and the answer were lemmatized,
and the script checked whether the now lemmatized
answer was included in the lemmatized passage. If
lemmatization did not lead to a match, the script
moved to the next step: stemming. Stemming was
done because the lemmatizer was observed to not
recognize many of the passage words as they were
often proper nouns. If no match was found after
stemming, the last step was to check whether the
English answer was included in the translated pas-
sage; if it was, it was used as the answer with the
assumption that the English answer was mistak-
enly translated. This was often the case with, e.g.,
English song and movie names when they were
translated with no context. If no match was found
after all normalization, the question-answer pair
was discarded from the final dataset.

If there was a match at any normalization step,
the script proceeded to search its location in the
passage. The answer search started from the En-
glish answer’s relative position in the translated
passage and continued to neighboring positions un-
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til the answer was found. This was done to reduce
the chance of choosing the starting position of a
wrong occurrence, as some passages contain the
answer string multiple times in different positions.
After finding the answer start position, the question-
answer pair was added to the final dataset.

With the normalization procedure, roughly 32K
answers were modified to match the passage strings.
The data consists of 101,120 passage-question-
answer triplets that are valid in the sense that the an-
swers are included in the passages. 66K of them are
answerable (from SQuAD1.1), and 34K are unan-
swerable with the given passage (from SQuAD2.0).
This means that roughly 28% of the data included
in the publicly available partition of SQuAD1.1
(92K questions) had to be discarded. The amount
is approximately the same when taking into account
also the “unanswerable” questions of SQuAD2.0.

3.3 Finnish TyDi-QA Corpus
TyDi-QA—Typologically Diverse Question
Answering (Clark et al., 2020), consists of two
QA datasets, covering 11 typologically diverse
languages with 204K question-answer pairs.
The data was collected from Wikipedia articles
by human annotators. Unlike with SQuAD,
the question writers formed questions without
knowing the answers to them. The authors chose
this strategy to reduce lexical overlapping between
questions and passages, which could be exploited
by machine learning systems.

One of the two datasets TyDi-QA consists of is
in the SQuAD data format, which makes it ideal to
combine with the SQuAD data. In total, it contains
7,635 Finnish questions. It is not much compared
to SQuAD, but to the best of our knowledge, it is
the only dataset that contains any Finnish data for
extractive QA purposes. Consequently, we decided
to include the Finnish partition of the TyDi-QA
dataset in our experimental dataset.

3.4 The QA100-fi Corpus
Because most of the data used to train, validate, and
test the models are synthetically generated, we de-
cided to also create an additional small Finnish
dataset for evaluation purposes only, QA100-fi.
One option would have been to simply use the
Finnish TyDi-QA data for evaluation. However, it
would not have been feasible due to the possible
differences with SQuAD questions caused by the
TyDi-QA annotators not knowing the answers to
their formed questions.

The QA100-fi dataset contains 100 questions
related to Finnish Wikipedia articles. It is in the
SQuAD format, and there are 10 questions for each
category identified by Rajpurkar et al. (2016). We
did not use any popularity-based ranking method to
select the articles, like the authors of SQuAD did.
Instead, we simply selected articles that appeared
to be of good quality and had a length of at least
three paragraphs. The dataset is tiny compared to
actual QA test sets, but it still gives an impression
of the models’ performance on purely native text
data collected by a native speaker.

3.5 Data Split

To train and evaluate models, we use data consist-
ing of the answerable questions of the translated
SQuAD1.1 data and the Finnish TyDi-QA data.
Mimicking the methodology of Du et al. (2017),
who used SQuAD data for English QG, we shuffled
and split the data on article level into training, vali-
dation, and testing partitions. We call the resulting
dataset SQuADTyDi-fi. The same SQuADTyDi-fi
splits were used to train, validate, and evaluate both
QA and QG models. We also use QA100-fi as an
additional evaluation dataset. The split sizes are
illustrated in Table 2.

Dataset Split Q-A Pairs Articles

Train 64,604 6,977

SQuADTyDi-fi Dev 4,903 567

Test 4,822 567

QA100-fi Test 100 67

Table 2: Dataset splits. Q-A Pairs refers to
the number of question-answer pairs in the cor-
responding split, and Articles tells how many
Wikipedia articles the split has data from.

4 Model Fine-tuning

We train three models for QA and four models for
QG. As the base models for fine-tuning, we use the
Finnish GPT-22 (Radford et al., 2019), FinBERT3

(Virtanen et al., 2019), and multilingual M-BERT,
(Devlin et al., 2019).

2https://huggingface.co/Finnish-NLP/
gpt2-medium-finnish

3We use bert-base-finnish-cased-v1, the cased
variant.
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4.1 BERT Question Answering
To use BERT for extractive QA, we employ the
method described in Devlin et al., 2019. BERT is
fine-tuned to “highlight” the answer when given
a question and a passage that contains the answer
as input. In practice, the model’s task is to output
two types of probabilities for each input token: 1)
being the answer span start 2) being the last token
of the answer span.

The input consists of a passage and a question,
separated with the [SEP] token:

X = ([CLS], ⟨P⟩, [SEP], ⟨Q⟩) (1)

where ⟨P⟩ is the input passage sequence and ⟨Q⟩ is
the question sequence.

4.2 BERT Question Generation
The BERT models are fine-tuned for QG using
the BERT-HLSQG (Highlight Sequential Question
Generation) method originally presented by Chan
and Fan, 2019b. In BERT-HLSQG, the previous
decoding results are considered when decoding
the next token. Tokens are generated one by one
using a strategy to modify BERT into generating
text in an autoregressive manner. Another key idea
in HLSQG is to highlight the answer in the input
passage with special tokens to tackle any ambiguity
caused by the answer appearing multiple times in
the passage.

At inference, the input X for an HLSQG model
is in the following format:

X = ([CLS], PHL,[SEP], Q̂,[MASK]) (2)

where PHL is the highlighted passage sequence
and Q̂ is the predicted question sequence.

At the first inference step, the highlighted pas-
sage is followed only by a [MASK] token, as the
predicted question sequence Q̂ = [q̂1, q̂2, ..., q̂|Q̂|]
is empty at the start. The passage highlighting is
done by placing special [HL] tokens around the
answer in the passage:

PHL = (p1, ...,[HL], ps, ..., pe,[HL], ..., p|P |)
(3)

where pn is the nth passage token, ps and pe
are the answer start and end tokens, and |P | is the
passage length.

During each step, the whole input is fed to the
model, and it outputs a prediction for the [MASK]
token. That prediction is considered the next token
in the question sequence, and a new [MASK] token

is placed after it. The same procedure goes on with
inputs updated with the newly predicted question
tokens until a [SEP] token is predicted. At that
point, the question is considered ready.

4.3 GPT-2 Question Answering
To fine-tune a GPT-2 model for QA (GPT-2-QA),
we use a prompt to encourage the model to generate
answers relevant to the given passage and question.
The model should learn the pattern of the prompt
and also the relation between the two input sections
(passage and question) in the prompt.

During fine-tuning, the prompt consists of three
lines. Each line starts with a word that describes the
content of the line and is followed by a matching
sequence. For example, the first two lines start
with Context: and Question: and continue with the
passage and question sequences. During training,
language modeling loss is computed only on the
section where the model should output the answer.
The fine-tuning prompt is:

X =

Context:⟨P⟩ Question:⟨Q⟩ Answer:⟨A⟩
where ⟨P⟩ is the passage sequence, ⟨Q⟩ is the ques-
tion sequence, and ⟨A⟩ is the answer sequence. Dur-
ing inference, the answer sequence is omitted from
the prompt, as the model’s task is to fill it in.

4.4 GPT-2 Question Generation
We train two GPT-2-based QG models,
GPT-2-QG and GPT-2-HLQG. The train-
ing and inference prompts of the GPT-2-QG
model are the same as the GPT-2-QA, but the
order of the last two rows is reversed. The
QG models should learn to use the passage to
generate a question that the second line’s sequence
answers. The training procedure is the same as
with GPT-2-QA, but instead of answers, the
training loss is computed on the generated ques-
tions. The two QG models differ in the prompts.
GPT-2-HLQG also highlights the answer in the
passage with [HL] tokens. The motivation for that
is the same as with BERT-HLSQG: to reduce the
possible ambiguity caused by the answer appearing
multiple times in the passage.

4.5 Implementation
All the pre-trained models were accessed via the
transformers4 Python package by Hugging

4https://github.com/huggingface/
transformers. Version 3.0.2 for BERT-HLSQG
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Face (Wolf et al., 2020). The fine-tuning scripts
were implemented using the same package along
with PyTorch.5. For fine-tuning BERT-HLSQG
models, we modified and used open-source code
by Lin (2020).6

We fine-tune the models using two Nvidia Volta
v100 GPUs and AdamW optimization with initial
learning rate 5× 10−5. The batch size varied from
2 to 24, depending on the task and the model ar-
chitecture. All the models were trained for six
epochs, and a validation set was used to keep track
of the training performance and thus select the best
model for evaluation on the test sets. QA BERT
models (FinBERT-QA and M-BERT-QA) had the
best validation results after two epochs, whereas
all the other models had the best validation perfor-
mance after six epochs. More details regarding the
fine-tuning are included in Appendix A.

5 Results

5.1 QA Results
The evaluation results for the QA models are in
Table 3. The scores are multiplied by 100 to mimic
the style of the official SQuAD leaderboard.7 With
both testing datasets, FinBERT-QA obtains the
best results. However, the fine-tuned M-BERT
model comes close, with EM scores 2-3% worse
and F1 scores 2.8-4.5 points behind FinBERT-QA.
The GPT-2 -based QA model achieves moderately
good results also, but both EM and F1 scores are at
least 20 points worse with both test sets.

Dataset Model Exact Match F1 score

FinBERT-QA 58.0 69.9

SQuADTyDi-fi M-BERT-QA 56.0 67.1

GPT-2-QA 37.2 46.9

FinBERT-QA 67.0 83.7

QA100-fi M-BERT-QA 64.0 79.2

GPT-2-QA 43.0 56.0

Table 3: Evaluation of QA models on two test sets.

GPT-2-QA model obtained the worst results on
both datasets. With an EM score of 37.2 and an F1
models and 4.8.1 for other models.

5Version 1.5.0+cu101 for BERT-HLSQG models and
1.9.0+cu111 for other models.

6https://github.com/chris4540/
StudyMaskedLMForQG

7https://rajpurkar.github.io/
SQuAD-explorer/

score of 46.9 on SQuADTyDi-fi data, it is appar-
ent that fine-tuning has contributed to the model’s
ability to answer questions. The model outputs rel-
atively short answers as expected, and it also seems
to have quite well learned the expected answer type
for each interrogative in the question. For exam-
ple, the model mostly seems to answer questions
starting with kuka (“who”) with names/people and
questions starting with montako (“how many”) with
numeral phrases. However, the results are still far
behind the best-performing models.

When the question contains very different vocab-
ulary than the passage (e.g., synonyms or idiomatic
expressions), GPT-2-QA seems to perform partic-
ularly poorly. A closer look at the results shows
that the GPT-2-QA model’s outputs occasionally
contain words that are slightly modified versions
of the ones in the passage. This problem is unique
to GPT-2 in the experiments as it is the only au-
toregressive model. Some other examples of such
errors are shown in Table 4. However, most of
the answers seem to be substrings of the input pas-
sages, as expected. GPT-2-QA seems to often fail
to “understand” what specifically is being asked.
Even when it seems to understand that the question
should be answered with a date and the answer
should be a substring of the passage, it often seems
to pick just any date. And sometimes, it even mod-
ifies the date, as seen in Table 4.

Predicted answer Target answer

Kenji Vatanabe Kenji Watanabe

20. lokakuuta 2000 21. lokakuuta 2000

Kypylän Midnan kypärän

3 vuotta kolme vuotta

Table 4: Examples of GPT-2-QA outputs that are
not substrings of the input passage.

The other QA models, FinBERT-QA and
M-BERT-QA, perform much better. They come in
quite close to each other as FinBERT-QA outper-
forms M-BERT-QA by 2-3 points on SQuADTyDi-
fi data with its EM and F1 scores of 58.0 and 69.9,
respectively. The difference between the scores
of FinBERT-QA and M-BERT-QA is slightly
bigger with the QA100-fi test data, with which
FinBERT-QA obtains an EM score of 67.0 and
an F1 score of 83.7. Using only Finnish data
and a lot larger amount of it in pre-training seems
to have been beneficial for FinBERT-QA. Like
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GPT-2-QA, also M-BERT-QA seems to occasion-
ally struggle when the question is phrased very
differently compared to the input passage.

As with GPT-2-QA, the longer the ground truth
answer, the more likely the BERT-based models
seem to predict it incorrectly. However, rather than
choosing a completely wrong span, FinBERT-QA
and M-BERT-QA often seemed only to pick too
few words. This is also reflected in the bigger
differences between EM and F1 scores of the other
two models, compared to GPT-2-QA. Other than
questions with longer answers, it is challenging to
identify any specific question/answer types with
which FinBERT-QA and M-BERT-QA have the
most difficulties. Additional examples of outputs
of the QA models are included in Appendix A.

The results of all QA models are better with the
QA100-fi test dataset. It is possible that because the
passages, questions, and answers in QA100-fi are
not machine-translated, they could be closer to the
Finnish language with which the models were pre-
trained. Another factor might be the lengths of the
passages, questions, and answers. Their average
lengths are shown in Table 5. The passages and
questions in the test partition of SQuADTyDi-fi are
longer on average, but the answers are longer in
QA100-fi. Longer passages are more challenging
for the models as there are more tokens from which
to choose the answer span start and end tokens.
However, the test sets are so different in size that it
is hard to say how much that affects the results.

Passage Question Answer
SQuADTyDi-fi (test) 74.5 6.6 2.5
QA100-fi 62.2 5.9 3.2

Table 5: Average word counts in the test partition
of SQuADTyDi-fi and QA100-fi.

As there are no other Finnish QA models to
compare with, we can gain some perspective by
comparing the results with English models trained
on a similar dataset. The top EM and F1 scores
for single BERT models in the English SQuAD1.1
leaderboard8 are around 85 and 90, respectively.
The overall best single model results are from
other transformer-based models, like LUKE (Ya-
mada et al., 2020) and XLNet (Yang et al., 2019),
which both obtain EM and F1 scores over 90

8Webpage mirroring SQuAD1.1 leaderboard:
https://paperswithcode.com/sota/
question-answering-on-squad11

and 95, respectively. The best Finnish results
(by FinBERT-QA) are quite far from the best-
performing English models. However, it is worth
noting that the Finnish models were fine-tuned us-
ing a smaller dataset which is probably of poorer
quality, as it has been automatically translated.
Finnish being a highly inflective language might
also make the QA task generally more challenging.

5.2 QG Results
The evaluation results for the QG models are in Ta-
ble 6. The FinBERT-based models obtain the best
results. As in the QA task, the results of the Fin-
BERT and M-BERT-based models are quite close
to each other, whereas the GPT-2 models are much
worse.

Dataset Model BLEU-4 METEOR

SQuADTyDi-fi FinBERT-HLSQG 0.11 0.17

M-BERT-HLSQG 0.10 0.16

GPT-2-QG 0.04 0.10

GPT-2-HLQG 0.04 0.10

QA100-fi FinBERT-HLSQG 0.18 0.22

M-BERT-HLSQG 0.13 0.20

GPT-2-QG 0.04 0.13

GPT-2-HLQG 0.04 0.11

Table 6: BLEU-4 and METEOR scores of QG mod-
els. Results on additional metrics in Appendix A.

Both GPT-2-QG and GPT-2-HLQG achieve a
BLEU-4 score of 0.04 on both datasets. Unlike in
Chan and Fan (2019b), using an answer highlight
technique in the passage did not lead to an increase
in the performance as the results of the two models
are nearly identical. This indicates that ambiguity
was not the root cause of the inferior performance
of the models.

Looking at the outputs of the GPT-2-based QG
models, it is clear that the models learn the gen-
eral structure of a question. The outputs mostly
start with the correct interrogative word and end
with a question mark. The questions also seem
mostly grammatical. The biggest problems seem
to be related to semantic validity and generating
questions that can be answered using the input an-
swer. However, the models occasionally seem to
generate questions that can be answered with the
input answer, but they are very different from the
ground-truth questions. They are good examples
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of why using automatic, n-gram-based evaluation
metrics to assess QG systems can be problematic.

Compared to the GPT-2-based QG models, the
BERT-based QG models perform roughly twice
as well on every metric. FinBERT-HLSQG and
M-BERT-HLSQG seem to output questions that
make more sense and have more common words
with the target question. For example, with tar-
get question Kuinka korkeaksi puu yleensä kasvaa
avoimilla alueilla? (“How tall does the tree usu-
ally grow in open areas?”), FinBERT-HLSQG out-
puts Minkä korkuinen on jousisoihtupuu avoimilla
alueilla? (“How tall is the pink trumpet tree
in open areas?”) and GPT-2-HLQG outputs
Minkä kokoisia puutalot ovat metsäalueiden ko-
rkeilta tasoilta? (“What size are the wooden
houses from the high levels of the forest areas?”).
GPT-2-HLQG’s output is nonsensical yet gram-
matical, whereas FinBERT-HLSQG’s output can
be considered correct, though the phrasing is quite
different from the target question. All models per-
form better with shorter passages and struggle at
inflecting rare words. Additional examples of the
outputs of all QG models are shown in Appendix A.

As on the QA task, the FinBERT-based model
achieves slightly better scores on the SQuADTyDi-
fi test set than the multilingual variant. How-
ever, in QG, the difference between the perfor-
mance of BERT-based models is bigger when
evaluating on the QA100-fi dataset. For ex-
ample, FinBERT-HLSQG obtains a BLEU-4
score of 0.18, while M-BERT-HLSQG yields 0.13.
Checking the outputs on QA100-fi, it seems that
M-BERT-HLSQG has more problems inflecting
words, and it occasionally uses word order and
phrasings that sound a bit unnatural in Finnish. It
is possible that these problems were exacerbated
when the model was tested on QA100-fi, which
consists of data collected by a native speaker.

Chan and Fan (2019b), who initially presented
the BERT-HLSQG method, report a BLEU-4 score
of 0.20 for their English QG model that was
fine-tuned on roughly 73K question-answer pairs.
FinBERT-HLSQG’s BLEU-4 score (0.11) on the
SQuADTyDi-fi test set is quite far from that,
whereas the BLEU-4 score on the smaller QA100-fi
test set (0.18) is a lot closer. It is likely that the pas-
sages and questions in QA100-fi being shorter on
average has a positive effect on the model’s perfor-
mance on the dataset. Chan and Fan (2019a) also
conclude that their BERT-HLSQG model works

better with shorter passages. As with the QA task,
it is possible that the smaller amount of training
data and its poorer quality, together with the more
complex Finnish morphology, partly explain the
differences that occur when compared to the En-
glish models.

6 Conclusion and Future Work

We have proposed an MT-based method for creat-
ing a Finnish QA dataset, and used it to train and
evaluate several transformer-based QA and QG
models. On both tasks, fine-tuned monolingual
BERT models obtain the best results. The multi-
lingual variants came close, while the fine-tuned
GPT-2 models were found to underperform. Pre-
training with only Finnish data seems to give the
models an edge in both QA and QG.

To the best of our knowledge, these are the first
monolingual Finnish QA and QG models. They
set a fair baseline for further research in Finnish
QA and QG. All data used in the experiments is re-
leased to the research community, to support future
research, and the models are released as bench-
marks. We believe that this is a valuable contri-
bution, since suitable datasets created by native
Finnish speakers are not yet available.

Given the promising initial results, we plan to
pursue several directions. (1) As the SQuAD2.0
data with the unanswerable questions was also
translated, it could be used to train the first Finnish
QA models that can also identify unanswerable
questions. (2) Lower-level natural language pro-
cessing (NLP) components can be employed to
study and improve performance. For example,
we can use syntactic parsing to check for ungram-
matical questions, to analyze the created synthetic
dataset; we can use name recognition to improve
QA results (Yadav and Bethard, 2019; Piskorski
et al., 2019), etc. (3) Real-world applications, such
as language learning systems, e.g., (Katinskaia
et al., 2018, 2017), can benefit from QA and QG—
by automatically generating reading comprehen-
sion questions from arbitrary authentic text. To in-
tegrate QG into such applications, a separate model
should be developed for choosing the appropriate
input answers. (4) To support (3), it is important
to study in detail on what types questions and an-
swers the QA and QG models do especially well or
especially poorly.
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Model Epochs
(best model)

Batch size

FinBERT-QA 2 16
M-BERT-QA 2 16
GPT-2-QA 6 2
FinBERT-HLSQG 6 24
M-BERT-HLSQG 6 16
GPT-2-QG 6 2
GPT-2-HLQG 6 2

Table 7: Training hyperparameters. With all models, we use the AdamW optimization algorithm with an
initial learning rate of 5× 10−5.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
FinBERT-HLSQG 0.29 0.21 0.15 0.11 0.17 0.33
M-BERT-HLSQG 0.29 0.20 0.14 0.10 0.16 0.31SQuADTyDi-fi
GPT-2-QG 0.18 0.11 0.06 0.04 0.10 0.20
GPT-2-HLQG 0.18 0.10 0.06 0.04 0.10 0.20
FinBERT-HLSQG 0.39 0.30 0.22 0.18 0.22 0.41
M-BERT-HLSQG 0.36 0.25 0.18 0.13 0.20 0.36QA100-fi
GPT-2-QG 0.22 0.12 0.07 0.04 0.13 0.22
GPT-2-HLQG 0.19 0.11 0.07 0.04 0.11 0.20

Table 8: All evaluation results of the QG models.

Input passage Ulkomuodoltaan hylkeet ovat sileitä ja pulleita. Ruumiinrakenne soveltuu
sulavaan vedessä liikkumiseen. Ranteesta ja kämmenestä ovat muodostuneet
etuevät ja nilkasta ja jalkaterästä takaevät. Evät ovat heikot eikä niitä voi käyttää
apuna maalla liikkumiseen . Hylkeet liikkuvatkin maalla siten, että ne siirtävät
painoa rinnan ja vatsan varaan. Erotuksena lähisukulaisistaan korvahylkeistä,
joihin kuuluvat muun muassa merileijonat, varsinaisilla hylkeillä ei ole ulkoisia
korvalehtiä. Varsinaisten hylkeiden uiminen tapahtuu evien ja ruumiin takaosan
sivuttaissuuntaista liikettä apuna käyttäen.

Input question Mihin hylkeiden evät eivät sovellu? (What are seal fins not suitable for?)

Target answer maalla liikkumiseen (to move on land)

Model Predicted Answer

FinBERT-QA maalla liikkumiseen. (to move on land.)

M-BERT-QA vedessä (in the water)

GPT-2-QA ui maalla (swim/swims on land)

Table 9: Output examples of the QA models. The ground truth answer is highlighted in the input passage.
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Input passage Jättiläismetsäkarju eli jättiläismetsäsika eli jättisika (Hylochoerus meinertzha-
geni) on keskisen ja läntisen Afrikan metsissä elävä elinvoimainen sorkkaeläin-
laji. Se on sukunsa Hylochoerus ainoa laji. Jättiläismetsäkarjut ovat suurimpia
luonnonvaraisia sikoja. Ne voivat kasvaa jopa 210 senttimetriä pitkiksi ja
painaa 275 kilogrammaa. Niiden ruumis on tanakka ja pää leveä, mutta jalat
ovat lyhyet. Nahkaa peittävät pitkät ja karkeat karvat, jotka nousevat pystyyn
eläimen kiihtyessä.

Input answer 210 senttimetriä

(210 centimeters)

Target question Kuinka pitkiksi jättiläismetsäkarjut voivat kasvaa?

(How long can giant forest hogs grow?)

Model Generated question

FinBERT-HLSQG Kuinka pitkäksi jättiläismetsäkarju voi kasvaa?

(How long can a giant forest hog grow?)

M-BERT-HLSQG Kuinka pitkiä jättiläismetsäkarjat voivat kasvaa? *

(How long can giant forest cattles grow?)

GPT-2-QG Miten pitkäksi afrikkalainen jättiläismetsäkarju voi kasvaa?

(How long can an African giant forest hog grow?)

GPT-2-HLQG Kuinka pitkä on jättiläismetsäkarjun pituus?

(How long is the length of a giant forest hog?)

Table 10: Output examples from the QG models. The input answer is highlighted in the input passage.
Outputs marked with * contain inflection errors, but they are ignored in the translation.
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Abstract
Contradictory results about the encod-
ing of the semantic impact of negation
in pretrained language models (PLMs)
have been drawn recently (e.g. Kass-
ner and Schütze (2020); Gubelmann and
Handschuh (2022)). In this paper we
focus rather on the way PLMs encode
negation and its formal impact, through
the phenomenon of the Negative Po-
larity Item (NPI) licensing in English.
More precisely, we use probes to identify
which contextual representations best en-
code 1) the presence of negation in a sen-
tence, and 2) the polarity of a neighbor-
ing masked polarity item. We find that
contextual representations of tokens inside
the negation scope do allow for (i) a bet-
ter prediction of the presence of not com-
pared to those outside the scope and (ii) a
better prediction of the right polarity of
a masked polarity item licensed by not,
although the magnitude of the difference
varies from PLM to PLM. Importantly, in
both cases the trend holds even when con-
trolling for distance to not. This tends to
indicate that the embeddings of these mod-
els do reflect the notion of negation scope,
and do encode the impact of negation on
NPI licensing. Yet, further control experi-
ments reveal that the presence of other lex-
ical items is also better captured when us-
ing the contextual representation of a to-
ken within the same syntactic clause than
outside from it, suggesting that PLMs sim-
ply capture the more general notion of syn-
tactic clause.

1 Introduction

Negation has recently been the focus of various
works aiming at determining the abilities of Pre-

trained Language Models (PLMs) to capture lin-
guistic knowledge.

Some works investigate the ‘semantic impact’
of negation, namely its impact in terms of truth
values, by interpreting how the presence of nega-
tion impacts the probability distribution at a
masked position. The rationale is that negating a
verb reverses the truth value of its clause, which
should be reflected in the probability distribution
at certain positions. Ettinger (2020); Kassner and
Schütze (2020) use factual statements such as (1),
and report that models output similar distributions
for the positive and negative variants of (1), and
conclude that models largely ignore negation.

(1) A robin is (not) a [MASK]

Gubelmann and Handschuh (2022) chose to
avoid factual statements and to focus rather on
multi-sentence self-contained examples, such that,
given the context provided by the first sentence,
one particular word is either likely (in positive
items) or ruled out (in negative items) at a masked
position in the second sentence. Because this par-
ticular word is substantially less often the top-1
prediction in the negative items than in the posi-
tive items, the authors draw the opposite conclu-
sion that PLMs do show sensitivity to negation.

A different line of works focused on finding out
to what extent negation is encoded in PLM embed-
dings. Celikkanat et al. (2020) train classifiers tak-
ing as input the contextual embedding of a verb or
its subject or direct object, and predicting whether
the verb is negated or not. The resulting high ac-
curacy allows them to conclude that these tokens’
embeddings do contain “traces” of not. More gen-
erally, several authors have investigated whether
the contextual representation of a token encodes
information about surrounding tokens. To ease
further reading, we will talk of a classifier taking
as input an input embedding, i.e. the contextual
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representation of an input token, and predicting
some target information about another token in
the sentence. For instance, Klafka and Ettinger
(2020) study how input embeddings encode ani-
macy, gender, and number of surrounding words in
a specific SVO context. Li et al. (2022) target the
number feature of French participles in the context
of object-past participle agreement. They show
that the performance of the classifier depends on
the syntactic position of the input token in the sen-
tence. We will build on their idea to compare per-
formance at predicting target information depend-
ing on the syntactic zone the input token belongs
to. In this paper, one of the probed target infor-
mation will be the presence or absence of a given
word within the sentence, which we call the target
token.

More precisely, our aim is to study PLMs’ abil-
ity to capture and encode structural information
concerning negation (namely negation scope). To
do so we first probe whether input embeddings can
serve to accurately predict the presence or absence
of a target not.1 Moreover, we wish to test PLMs’
ability to actually mobilize this encoding to cap-
ture phenomena that are direct consequences of
the presence of negation. To do so, we focus on
the licensing of Negative Polarity Items (NPI) by
not modifying a verb. Polarity Items (PI), either
positive (e.g. some), or negative (e.g. any), are
words or expressions that are constrained in their
distribution (Homer, 2020). A NPI will require
that a word or a construction, called the licensor,
be in the vicinity. More precisely, the licensor it-
self grammatically defines a zone of the sentence,
called the licensing scope, in which the NPI can
appear. The adverb not modifying a verb is one
such licensor. While any is licensed by negation
in (2-a) vs. (2-b), it is not licensed in (2-c), even
though the verb is negated, arguably because it is
not in the licensing scope2.

(2) a. Sam didn’t find any books.
b. *Sam found any books.
c. *Any book was not found by Sam.

Jumelet and Hupkes (2018) have shown that
LSTM embeddings do encode the notion of li-
censing scope (given an input embedding, a clas-

1We restrict our probing to not, which is by far the most
frequent negation clue (57% of the occurrences, while the
second most frequent, no, accounts for 21% of occurrences).

2We leave aside the uses of any and the like having free
choice interpretations, as for instance in ”Pick any card”.

sifier can predict the structural zone the input
token belongs to), a finding later confirmed for
transformer-based PLMs (Warstadt et al., 2019).
Focusing on when the licensor is a verb-modifying
not, we rather investigate whether this encoding
of the zones go as far as enabling a better pre-
diction of a PI’s polarity from inside the licensing
scope compared to outside the scope. So instead
of the question “Is this input embedding the em-
bedding of a token located within, before or after
the licensing scope?”, we rather ask the question
“Given a masked PI position, and an input embed-
ding of a neighboring token, what is the polarity
of the PI?”, and we study whether this question is
better answered when the input embedding is in-
side or outside the licensing or negation scopes.

Note that our methodology differs from that of
Jumelet and Hupkes (2018), who, given an in-
put token, predict the zone this token belongs to.
We instead predict the polarity of a neighboring
masked polarity item and then compare accuracies
depending on the input token’s zone. Our moti-
vation is that the polarity, being a lexical infor-
mation, requires less linguistic preconception, and
hence our probing method is a more direct trans-
lation of the NPI licensing phenomenon: we study
whether and where the information of “which PIs
are licit where?” is encoded, in the context of sen-
tence negation. This method also allows us to bet-
ter control the confounding factor of distance be-
tween the input embedding and the licensor not.

In the following, we define the linguistic no-
tions of negation scope and NPI licensing scope
in section 2, and show how we actually identified
them in English sentences. In section 3, we de-
scribe our probing experiments and discuss their
results, both for the encoding of not (section 3.1),
and the encoding of NPI licensing (section 3.2).
We then study the more general ability of PLMs to
deal with clause boundaries (section 4), and con-
clude in section 5.

2 Defining and identifying scopes

2.1 Negation scope

From a linguistic point of view, the scope of a
negation cue is the area of the sentence whose
propositional content’s truth value is reversed by
the presence of the cue. While in many cases it is
sufficient to use the syntactic structure to recover
the scope, in some cases semantics or even prag-
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matics come into play.3 Nevertheless, annotation
guidelines usually offer syntactic approximations
of negation scope.

To identify the negation scope for not4 mod-
ifying a verb, we followed the syntactic con-
straints that can be inferred from the guidelines
of Morante and Blanco (2012). Note though
that these guidelines restrict the annotation to fac-
tual eventualities, leaving aside e.g. negated future
verbs. We did not retain such a restriction, hence
our identification of the negation scope is indepen-
dent from verb tense or modality.

2.2 NPI licensing scope
Polarity items are a notoriously complex phe-
nomenon. To identify the NPI licensing scope,
we focus on specific syntactic patterns defined by
Jumelet and Hupkes (2018), retaining only those
involving not as licensor.5 Table 1 shows an ex-
ample for each retained pattern (hereafter the neg-
patterns), with the NPI licensing scope in blue.

Importantly, in the neg-patterns, the licensing
scope is strictly included in the negation scope:
within the clause of the negated verb, the tokens
to its left belong to the negation scope but not to
the licensing scope. E.g. in (3), anyone is not licit
as a subject of going, whether the location argu-
ment is itself a plain PP, a NPI or a PPI (3-b).

(3) a. I’m not going anywhere.
b. *Anyone is not going to the party/

somewhere/anywhere.

We thus defined 4 zones for the not+NPI sen-
tences, exemplified in Table 1: PRE (tokens be-
fore both scopes), PRE-IN (to the left of the li-
censing scope, but within the negation scope), IN
(in both scopes), and POST (after both scopes).

We note though that the restriction exempli-
fied in (3-b) only holds for non-embedded NPIs
(de Swart, 1998), so examples like (4), with an
embedded NPI in the subject of the negated verb
(hence belonging to our PRE-IN zone), are theo-
retically possible.

(4) Examples with any relevance to that issue
didn’t come up in the discussion.

3For instance in Kim did not go to the party because Bob
was there., negation may scope only over the matrix clause
or include the causal subordinate clause.

4In all this article, not stands for either not or n’t.
5We ignored pattern 4 (never instead of not as licensor),

and 6 (too few occurrences in our data). We merged patterns
1 and 2, and corrected an obvious minor error in pattern 5.

Yet in practice, we found that they are ex-
tremely rare: using the Corpus of Contempo-
rary American English (COCA, Davies 2015)6,
we extracted sentences matching one of the neg-
patterns, and among these, sentences having any
or any-body/one/thing/time/where in the IN zone,
the PRE-IN zone or both. As shown in Table 2,
any* in the PRE-IN zone are way rarer than in the
classical licensing scope (IN zone)7. Hence we
sticked to the usual notion of direct NPI licensing
scope, as illustrated in Table 1.

2.3 Building the not+NPI test set

Having defined these structural zones, we could
use them to probe the traces they carry and com-
pare the magnitude of these traces across the four
zones. To do so, we built a test set of COCA sen-
tences containing not licensing a NPI (hereafter
the not+NPI test set), matching one of the neg-
patterns of Table 1, and having at least one any,
anybody, anyone, anything, anytime or anywhere
within the licensing scope.

The scope of negation has been implemented
through an approximation using dependency
parses (from the Stanza parser (Qi et al., 2020)),
which proved more convenient than phrase-
structure parses: we took the subtree of the
negated verb, excluding not itself, and excluding
dependents corresponding to sentential or verbal
conjuncts and to sentential parentheticals.

More precisely, we identified the token having
not as dependent (which, given our patterns, can
be either the negated verb or a predicative adjec-
tive in case of a negated copula). Then, we re-
trieved the children of this head, except those at-
tached to it with a “conj”, “parataxis”, “mark” or
“discourse” dependency. In the complete subtrees
of the selected dependents, all tokens were anno-
tated as being inside the negation scope.

6We used a version with texts from 1990 to 2012. COCA
is distributed with some tokens in some sentences voluntarily
masked, varying across distributions. We ignored such sen-
tences.

7More precisely, the figures in Table 2 correspond to an
upper bound, because of (i) potential syntactic parsing errors
impacting the identification of the zones, (ii) cases in which
the NPI licensor is different from the not targeted by the pat-
terns, and (iii) cases in which any* is a free choice item rather
than a NPI.We inspected 250 examples of any* in the PRE-
IN zone, and 250 examples in the IN zone. In the former, we
found that almost all cases fall under (i), (ii) or (iii), less than
3% corresponding to examples such as (4)). In contrast, in
the IN zone the proportion of NPIs actually licensed by the
target not is 92%.
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Id Pattern Example and zones
1/2 (VP (VB*/MD) ( RB not ) VP ) I have my taxi and I ’m not going anywhere but my brother will leave Spain because he has a degree.

3 (VP (VB*) ( RB not ) NP/PP/ADJP ) Since it is kind of this fairy-tale land, there aren’t any rules of logic so you can do anything, she says.

5* (S ( RB not ) VP ) I went in early, not wanting anyone to see me and hoping for no line at the counter.

Table 1: The ”neg-patterns”: patterns adapted from Jumelet and Hupkes (2018), which we used to iden-
tify some cases of not licensing a NPI and to build the not+NPI test set. Col1: pattern id in Jumelet and
Hupkes (2018). Col2: syntactic pattern (defined as a phrase-structure subtree, using the Penn Treebank’s
annotation scheme), with the licensing scope appearing in blue. Col3: examples with colors for the four
zones: pink for tokens in the PRE zone (before both scopes), purple for PRE-IN (to the left of the licens-
ing scope, but within the negation scope), blue for IN (within both scopes) and green for POST (after
both scopes). The NPI licensor is not, and appears in yellow.

Total IN PRE-IN both

45,157 35,938 711 58

Table 2: Number of sentences from the COCA
corpus, matching the neg-patterns of Table 1:
Col1: total number, Col2-4: number having any*
in the IN zone, the PRE-IN zone, and in both zones
respectively.

with not 2,285,000
↪→ with NPI 143,000

↪→ pattern 1 30,896
↪→ pattern 3 2,529
↪→ pattern 5 1,020
↪→ pattern 6 < 100

Table 3: Statistics of the not+NPI test set: number
of COCA sentences matching the neg-patterns (cf.
Table 1), and having at least one any* in the IN
zone (licensing scope).

For the licensing scope, we parsed the cor-
pus using the PTB-style parser “Supar Parser”8

of Zhang et al. (2020), and further retained only
the sentences (i) matching at least one of the neg-
pattern of Table 1 and (ii) having a NPI within the
licensing scope (IN zone, shown in blue in Table
1), resulting in the not+NPI test set, whose statis-
tics are provided in Table 3.

3 Probing for the scopes

Our objective is to study how a transformer-
based PLM (i) encodes the presence of a negation
(the ”traces” of negation) and (ii) models lexico-
syntactic constraints imposed by negation, such
as the modeling of a NPI licensing scope. Us-

8
https://parser.yzhang.site/en/latest/index.html

ing the terminology introduced in section 1, we
probe whether input embeddings encode as target
information (i) the presence of not elsewhere in
the sentence, and (ii) the polarity of a masked PI.
The former focuses on a plain encoding of nega-
tion, whereas the latter focuses on whether the en-
coding of negation can be mobilized to reflect a
property (NPI licensing) that is directly imposed
by negation. To investigate whether such an en-
coding matches linguistic notions of scopes, we
contrast results depending on the zone the input
token belongs to (among the four zones defined
for not licensing a NPI, namely PRE, PRE-IN, IN,
POST) and its distance to not.

We studied four PLMs : BERT-base-case,
BERT-large-case (Devlin et al., 2019) and
ROBERTA-base and ROBERTA-large (Liu et al.,
2019). All our experiments were done with each
of these models, and for a given model, each ex-
periment was repeated three times. All the sen-
tences we used for training, tuning and testing
were extracted from the COCA corpus.

3.1 Probing for the negation scope

In preliminary experiments, we extended Ce-
likkanat et al. (2020)’s study by investigating the
traces of not in the contextual embedding of all the
tokens of a sentence containing not (instead of just
the verb, subject and object).

3.1.1 Training neg-classifiers
We trained binary classifiers (hereafter the m-neg-
classifiers, with m the name of the studied PLM)
taking an input contextual embedding, and pre-
dicting the presence or absence of at least one
not in the sentence. In all our experiments, the
PLMs parameters were frozen. We trained 3 clas-
sifiers for each of the 4 tested PLMs. To train and
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evaluate these classifiers, we randomly extracted
40,000 sentences containing exactly one not, and
40,000 sentences not containing any not. These
sentences were BERT- and ROBERTA-tokenized,
and for each model, we randomly selected one
token in each of these sentences to serve as in-
put token. Among these input tokens, we ig-
nored any token not, as well as all PLM tokens
associated to a contracted negation: for instance
don’t is BERT-tokenized into don + ’ + t, and
ROBERTA-tokenized into don’ + t. These tokens
were ignored since they are too obvious a clue for
the presence of a verbal negation. Furthermore,
in order to homogenize the handling of negation
whether contracted or not, we also set aside any
modal or auxiliary that can form a negated con-
tracted form. Hence, in She did leave, She did not
leave or She didn’t leave, the only candidate input
tokens are those for She and leave9. We used 64k
sentences for training (neg-train-sets), and the re-
maining 16k for testing (neg-test-set).

We provide the obtained accuracies on this neg-
test-set in Table 4, which shows that performance
is largely above chance. We provide a more de-
tailed analysis of the classifers performance in sec-
tion 3.2.

Model BERTb BERTl ROB.b ROB.l
Accur. 74.3 73.1 72.1 76.6

Table 4: Accuracies of the neg-classifiers on the
neg-test-set for each PLM (averaged over 3 runs).

3.1.2 Studying results on the not+NPI test set
To probe the negation scope, we then used the
not+NPI test set (cf. section 2), and compare ac-
curacies in PRE-IN vs. PRE, and in IN vs. POST.

Note though that distance to not is also likely to
impact the classifiers’ accuracy. Indeed, by defini-
tion the structural zones obviously correlate with
distance to not. For instance, a token at distance
3 to the right of not is more likely to be in the li-
censing scope than a token at distance 20. Hence,
to study the impact of the input token’s zone, we
needed to control for distance to the negation clue.

We thus broke down our classifiers’ accuracy on
the not+NPI test set, not only according to the in-
put token’s zone, but also according to its relative

9COCA sentences are tokenized and tagged. We detok-
enized them before BERT/ROBERTA tokenization, in order
to get closer to a standard input.

position to the negation cue. Table 5 shows an
example of not+NPI sentence, and the zone and
relative position to not of each token. The target
not has position 0, and so do all the PLMs’ sub-
word tokens involved in the negation complex, and
all preceding modal or auxiliary, to homogenize
across PLMs and across contracted/plain nega-
tion. By construction, the PRE and PRE-IN zones
correspond to negative positions, whereas IN and
POST correspond to positive ones.

The break-down by position for ROBERTA-
large is shown in Figure 1 (results for other mod-
els are in appendix figure 4). Two effects can be
observed, for all the 4 PLMs: firstly, there is a gen-
eral decrease of the accuracy as moving away from
not, for the four zones. This contrasts with the
findings of Klafka and Ettinger (2020), who did
not observe a distance effect in their experiments,
when probing whether the contextual representa-
tion of e.g. a direct object encodes e.g. the ani-
macy of the subject. The decrease is more rapid
before not than after it, which remains to be ex-
plained. It might come from the negation scope
being shorter before not than after it.

Secondly, when looking at fixed relative dis-
tances, there is a slight but consistent effect at al-
most all positions that the accuracy is higher when
the input token is in the negation scope (either
PRE-IN or IN), than when it is outside (PRE and
POST) (the differences are statistically significant
at p < 0.001, cf. Appendix B). This tendency is
more marked for the PRE vs. PRE-IN distinction
than for the POST vs. IN distinction.

This observation can be summarized by com-
puting the average accuracy gap, namely the ac-
curacy differences averaged across positions (the
average of the purple minus pink bars, and of blue
minus green bars in Figure 3), which provide an
average difference when a token is within or out-
side the negation scope. The average accuracy
gaps for the four tested models are given in Ta-
ble 6. It confirms that input embeddings of tokens
inside the negation scope do allow for a slightly
better prediction of the presence of not than those
outside the scope. Note that the average difference
is stable across models, whose size does not seem
to matter. It shows that the strength of the encod-
ing of not in contextual representations matches
the linguistic notion of negation scope.
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BERT tokens I see I don ’ t know anyone here , I must leave .

Zones PRE PRE PRE-IN not not not IN IN IN IN POST POST POST POST

Distance -3 -2 -1 0 0 0 1 2 3 4 5 6 7 8

ROBERTA tokens I see I don’ t know anyone here , I must leave .

Zones PRE PRE PRE-IN not not IN IN IN IN POST POST POST POST

Distance -3 -2 -1 0 0 1 2 3 4 5 6 7 8

Table 5: Example sentence from the not+NPI test set: structural zones and relative positions to not.
Any auxiliary or modal preceding the target not has position 0 too, to homogenize contracted and plain
negation, and BERT versus ROBERTA’s tokenization.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Relative Positions to "NOT"

50 50

60 60

70 70

80 80

90 90

Ac
cu

ra
cy

PRE-IN
PRE
POST
IN

Figure 1: Accuracy of the ROBERTA-large-neg-classifier (average on 3 runs) on the not+NPI test set,
broken down by zone (colors of the bars) and by relative position to not (horizontal axis). Further
distances are omitted for clarity. No licensing scope contains less than 2 tokens, hence positions 1 and
2 are always in the IN zone. The bar differences at each position and run are statistically significant at
p < 0.001 (cf. Appendix B). Figures for the other 3 models are provided in appendix figure 4.

BERTb BERTl ROBb ROBl

3.0 (0.6) 3.5 (0.2) 2.6 (0.2) 2.6 (1.3)

Table 6: Accuracy gaps for the neg-classifiers on
the not+NPI test set, for each tested PLM, aver-
aged over 14 relative positions and 3 runs (stdev
within brackets).

We also observed that the biggest difference is
at position -1, which mostly corresponds to a con-
trast between a finite vs. non-finite negated verb
(neg-patterns 1/2/3 vs. neg-pattern 5 in Table 1),
which seems well reflected in PLMs’ embeddings.

3.2 Probing for the licensing scope

We then focused on whether this encoding of not
can actually be mobilized to capture the licens-

ing of a NPI. We built classifiers (hereafter the m-
pol-classifiers10, m referring to the PLM), taking
an input contextual embedding, and predicting as
target information the polarity of a masked posi-
tion, originally filled with a positive or negative
PI. Importantly, the input embedding in the train-
ing set is randomly chosen in the sentence, and can
correspond to a position with no a priori linguistic
knowledge about the polarity of the PI (Figure 2).

We train on sentences originally having either a
PPI or a NPI, which we mask before running each
studied PLM. More precisely, in each COCA sub-
corpus (each genre), and for each of the 6 NPI/PPI
pairs listed by Jumelet and Hupkes (2018)11, we
randomly took at most 2,000 sentences containing

10Full details for all classifiers are provided in Appendix A.
11(any/some)(∅/where/one/body/thing/time)
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Figure 2: Illustration of the training of the pol-
classifiers.

the NPI, and the same amount of sentences con-
taining the corresponding PPI12. In each of these,
we masked the PI, randomly selected one token
per sentence to serve as input token (excluding the
masked position) and split these into 63,529 ex-
amples for training (pol-train-set) and 15,883 for
testing (pol-test-set).

Model BERTb BERTl ROB.b ROB.l
Accur. 64.2 63.7 56.6 68.6

Table 7: Accuracies of the pol-classifiers on the
pol-test-set for each PLM (averaged over 3 runs).

Accuracies on the pol-test-set for each PLM are
shown in Table 7. While still above chance, we
observe that it doesn’t exceed 69%, which is quite
lower than the accuracies of the neg-classifiers
(Table 4). This is not surprising since the task
is more difficult. First, as stressed above, some
of the training input tokens are independent, from
the linguistic point of view, of the PI’s polarity.
Second, the cues for predicting the polarity are
diverse. And third, in numerous contexts, both
polarities are indeed possible, even though not
equally likely. We did not control the training for
this, on purpose not to introduce any additional
bias in the data. We can thus interpret the pol-
classifier’s scores as how likely a given polarity is.

Next, we applied these classifiers on the
not+NPI test set. The objective is to compare the
classifiers’ accuracy depending on the structural
zone the input token belongs to. If PLMs have a
notion of licensing scope, then the polarity predic-
tion should be higher when using an input token
from the IN zone.

12For any/some(∅/one/thing), we took 2 × 2000 occur-
rences. For any/some(body/time/where), less occurrences
were available in some of the subcorpora. We took as many
as possible, but keeping a strict balance between NPI and PPI
sentences (between 2 × 169 and 2 × 958 depending on the
corpus genre and on the NPI/PPI pair).

3.2.1 Results
Once more, we controlled for distance of the

input embedding to not. The break-down by po-
sition and structural zone for ROBERTA-large is
provided in Figure 3 (results for other models are
in appendix figures 5).

Again, we observe a general accuracy decrease
as moving away from not, even faster than for the
previous experiment. The decrease is more rapid
in the PRE-IN zone than in the IN zone (e.g. at
distance -4 in PRE-IN, accuracy is less than 70%,
whereas it is still above it at distance 8 in the IN
zone), which could indicate that the traces of not
are more robust in the licensing scope.

Secondly, as for the previous experiment, for
each relative position, when the input token is in
the negation scope (either PRE-IN or IN), the
accuracy is higher than when it is outside (PRE
and POST). Even though we cannot exclude that
the relatively high overall accuracies may be ex-
plained by the classifier catching some regulari-
ties of the sentences containing a NPI rather than
a PPI (independently of the presence of not), it
remains that for the not+NPI sentences, accuracy
is higher when the input token is in the negation
scope than outside it. Moreover, this trend is much
more marked than for the previous experiment.

Thirdly, the amplitude of this observation de-
pends on the model. We provide the accuracy gaps
for each PLM in Table 8. We observe that the
trend is marked for ROBERTA-large and BERT-
base (gap of 8.7 and 7.4 accuracy points, actually
much higher than the accuracy gaps for predict-
ing the presence of not), but lower for ROBERTA-
base and BERT-large.

BERTb BERTl ROBb ROBl

7.4 (0.5) 3.1 (0.4) 1.4 (0.2) 8.7 (0.6)

Table 8: Accuracy gaps for the pol-classifiers on
the not+NPI test set, averaged over 14 relative po-
sitions and 3 runs (stdev within brackets).

This leads us to conclude that (i) PLMs do en-
code structural constraints imposed by not (NPI li-
censing), but to varying degrees across the PLMs
we tested, and (ii) that this encoding is stronger in
the negation scope than outside it, independently
of the distance to not. This only partially matches
the linguistic expectation that the strongest zone
should be the licensing scope rather than the en-
tire negation scope.
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Figure 3: Accuracy of the ROBERTA-large-pol-classifier (average on 3 runs) on the not+NPI test set,
broken down by zone (colors of the bars) and by relative position to not (horizontal axis). Further
distances are omitted for clarity. No licensing scope contains less than 2 tokens, hence positions 1 and
2 are always in the IN zone. The bar differences at each position and run are statistically significant at
p < 0.001 (cf. appendix figures 5).

4 Probing clause boundaries

We have seen that PLMs are able to encode nega-
tion scope, however this notion of scope often sim-
ply corresponds to the notion of syntactic clause.
So it might be the case that PLMs are mainly sen-
sitive to clause boundaries and that this sensitivity
is the unique/main source of PLMs ability to en-
code negation scope. In this section we report a
number of experiments designed to assess PLMs
ability to encode clause boundaries in general.

We chose to use the same setting as the one we
used with the neg-classifiers (section 3.1.1). In-
stead of using not as a target token, we chose var-
ious tokens with a similar number of occurrences,
but other POSs: often, big, house, wrote. We
trained classifiers to predict whether the target to-
ken is in the neighborhood of the input token. This
time, the objective is to compare these classifiers’
accuracies depending on whether the input token
is or isn’t in the same clause as the target token
(instead of whether the input token is within or
outside the negation scope). And just as we did
for the neg-classifiers, we will control for distance
to the target token by breaking down the accura-
cies according to the distance between the target
and the input tokens.

4.1 Training the classifiers with alternative
target tokens

To train such classifiers, we repeated the same pro-
tocol as for the neg-classifiers: for each target
word often, big, house, wrote, we randomly se-
lected a balanced number of sentences containing
and not containing it, and we randomly picked an
input token within each sentence, independently
of the presence of the target token, and in case of
presence, independently of the clause boundary of
the target token. We then split the examples into
training (25.5k) and test sets (6.5k). We restricted
ourselves to a single PLM, ROBERTA-large. The
performances on the training and test sets are pro-
vided at Table 9. We note that performance is com-
parable for all the four target tokens, and compara-
ble to that of the neg-classifiers (cf. Table 4, 76.6
for ROBERTAl): the negation clue not is not par-
ticularly better encoded in contextual embeddings
compared to other open-class target words.

Target token house often big wrote
Accur. 79.1 77.1 75.2 81.2

Table 9: Accuracy of the classifiers on test-sets,
for the four alternative target tokens, when using
ROBERTA-large embeddings (average on 3 runs).
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Target In Out Accuracy
token gap
house 83.7 79.0 4.7
often 82.0 76.5 5.5
big 80.5 79.4 1.1

wrote 85.7 82.4 3.3

Table 10: Average accuracy when the input token
is within a window of 8 tokens before and 8 to-
kens after the target token, broken down according
to whether the input token is (In) or isn’t (Out) in
the same clause as the target token, and accuracy
gap (In minus Out). The results are computed the
study-test-set of each target word, using the clas-
sifiers trained on ROBERTA-large embeddings.

4.2 Studying results when input tokens are
within or outside the same clause

In order to study whether PLMs do encode the
notion of syntactic clause, we compared the clas-
sifiers’ performance when the input token is or
isn’t within the same clause as the target token.
For each target word, we built a study-test-set of
40,000 COCA sentences containing it. We parsed
these sentences, and annotated each of their tokens
(1) according to their distance to the target token,
and (2) as belonging or not the the same clause as
the target token.13

As in section 3.1.2, we now define accuracy
gaps as the average difference between a classi-
fier accuracy on input tokens that are within the
same clause as the target token, minus the accu-
racy on input tokens from outside the clause. Ta-
ble 10 shows the average accuracy gaps, for input
tokens at distance at most 8 from the target token.

The results show that for the 4 tested target
words, predicting the presence of the target token
is better achieved using an input token from the
same clause than from outside the clause. Inter-
estingly, the gaps are higher when the target token
is a noun, verb or adverb, and less pronounced for
the adjectival target token. Strikingly, except for
the adjective big, the observed accuracy gaps are
even bigger than that obtained using not as target
token (cf. 2.6 for ROBERTAl in Table 6).14 This

13We identified the clause of the target token as the sub-
tree of the head verb of the target token, in the dependency
parse.

14The gaps are not strictly comparable though, due for our
defining the negation scope as a subset of the clause, filter-
ing out sentential conjuncts and sentential parenthetical, cf.
section 2.3.

tends to indicate that the encoding of the negation
scope observed in section 3.1 stems from a more
general encoding clause boundaries.

Moreover, breaking-down the results by relative
position to the target token (cf. figures 6 in Ap-
pendix), shows that the distance to the target token
remains by far the most impactful factor.

5 Conclusion

In this paper, we studied the way negation and its
scope are encoded in contextual representations of
PLMs and to what extent this encoding is used to
model NPI licensing.

We trained classifiers to predict the presence of
not in a sentence given the contextual represen-
tation of a random input token. We also trained
classifiers to predict the polarity of a masked polar
item given the contextual representation of a ran-
dom token. A test set of sentences was designed
with not licensing an NPI, inside which we identi-
fied the negation scope , and the licensing scope.

For these sentences, we found that the contex-
tual embeddings of tokens within the scope of a
negation allow a better prediction of the presence
of not. These embedding also allow a better pre-
diction of the (negative) polarity of a masked PI.
These results hold even when controlling for the
distance to not. The amplitude of this trend though
varies across the four PLMs we tested.

While this tends to indicate that PLMs do en-
code the notion of negation scope in English, and
are able to further use it to capture a syntactic
phenomena that depends on the presence of not
(namely the licensing of a negative polarity item),
further experiments tend to show that what is cap-
tured is the more general notion of clause bound-
ary. Indeed, negation scope is closely related and
often amounts to negation scope. Using alterna-
tive target tokens with varied parts-of-speech, we
find that classifiers are better able to predict the
presence of such target tokens when the input to-
ken is within the same syntactic clause than when
it is outside from it. These results lead us to con-
clude that knowledge of the negation scope might
simply be a special case of knowledge of clause
boundaries. Moreover, distance to the target to-
ken is way stronger a factor than the ”being in the
same clause” factor. We leave for further work the
study of other factors, such as the POS of the in-
put token, as well as the study of the differences in
amplitudes observed between the PLMs we tested.
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A Hyperparameter tuning for the
neg-classifiers and the pol-classifiers

The PLMs’ contextual representations were ob-
tained using a GeForce RTX 2080 Ti GPU.

The neg-classifiers, the pol-classifiers and the
classifiers used to predict the presence of other
taget tokens were trained on a CPU, each train-
ing taking about 15 minutes. Then, testing them
on the not+NPI test set took about 5 minutes.

To tune these classifiers, we performed a grid
search with: a number of hidden layers included
in [1, 2], number of units in each layer in [20, 50,
100 450, 1000], and the learning rate in [1, 0.1,
0.01, 0.001].

We selected a learning rate of 0.001, 2 hidden
layers, with size 450 each, based on the accura-
cies on the neg-test-set and the pol-test-set. Except
when the learning rate equaled 1, all hyperparam-
eter combinations resulted in similar performance
(less than 1 point of accuracy, in the results of fig-
ure 3).

The code and methodology was developed first
using the BERT-base model, and then applied to
the other models. Including code and method-
ology development, we estimate that the experi-
ments reported in this paper correspond to a total
of 160 hours of GPU computing.

B Statistical significance test

In this section we detail the test performed to as-
sess the statistical significance of the accuracy dif-
ferences illustrated in Figures 3 and 5.

For each of the four tested PLMs, and for each
of 3 runs of classifier training,

• for each position from -8 to -1 relative to the
not,

– we compare the accuracy of the pol-
classifier in the PRE-IN zone versus in
the PRE zone (i.e. the difference be-
tween the purple bar with respect to the
pink one).

– namely, we test the statistical signifi-
cance of the following positive differ-
ence : accuracy for tokens in PRE-IN
zone minus accuracy for tokens in the
PRE zone.

• for each position from 3 to 8,

– we test the statistical significance of the
following positive difference : accuracy
for tokens in IN zone minus accuracy for
tokens in the POST zone (i.e. the differ-
ence between the blue bar with respect
to the green one)

Each test is an approximate Fisher-Pitman
permutation test (with 5000 random permu-
tations, performed using the script of Dror
et al. (2018), https://github.com/rtmdrr/
testSignificanceNLP.git), and all the differ-
ences listed above result as statistically significant
at p < 0.001.

C Supplementary figures

The break-downs by position for the three models
not presented in the main text (BERT-base, BERT-
large and ROBERTA-base) are provided in Fig-
ures 4 (neg-classifiers) and 5 (pol-classifiers).

The break-downs by position for other target to-
kens are provided in Figures 6

551

https://github.com/rtmdrr/ testSignificanceNLP.git
https://github.com/rtmdrr/ testSignificanceNLP.git


-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Relative Positions to "NOT"

50 50

60 60

70 70

80 80

90 90
Ac

cu
ra

cy

PRE-IN
PRE
POST
IN

(a) BERT-base-cased
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(b) BERT-large-cased
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(c) ROBERTA-base

Figure 4: Accuracy (average on 3 runs) of the other neg-classifiers (BERT-base, BERT-large and
ROBERTA-base) on the not+NPI test set, broken down by zone (colors of the bars) and by relative
position to not (horizontal axis). Further distances are omitted for clarity. No licensing scope contains
less than 2 tokens, hence positions 1 and 2 are always in the IN zone. The bar differences at each position
and run are statistically significant at p < 0.001 (cf. Appendix B).
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(a) BERT-base-cased
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(b) BERT-large-cased
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(c) ROBERTA-base

Figure 5: Accuracy (average on 3 runs) of the other pol-classifiers (BERT-base, BERT-large and
ROBERTA-base) on the not+NPI test set, broken down by zone (colors of the bars) and by relative
position to not (horizontal axis). Further distances are omitted for clarity. No licensing scope contains
less than 2 tokens, hence positions 1 and 2 are always in the IN zone. The bar differences at each position
and run are statistically significant at p < 0.001 (cf. Appendix B).
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(a) big

(b) house

Figure 6: Accuracy (average on 3 runs) on trace identification tasks. The target tokens are big and house,
and the probed embeddings are from a ROBERTA-large LM. Results are broken down by zone (colors of
the bars) and by relative position to not (horizontal axis). Further distances are omitted for clarity. The
bar differences at each position and run are statistically significant at p < 0.001 (cf. Appendix B).
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Abstract

In this paper, we present several baselines
for automatic speech recognition (ASR)
models for the two official written lan-
guages in Norway: Bokmål and Nynorsk.
We compare the performance of models of
varying sizes and pre-training approaches
on multiple Norwegian speech datasets.
Additionally, we measure the performance
of these models against previous state-of-
the-art ASR models, as well as on out-
of-domain datasets. We improve the state
of the art on the Norwegian Parliamentary
Speech Corpus (NPSC) from a word er-
ror rate (WER) of 17.10% to 7.60%, with
models achieving 5.81% for Bokmål and
11.54% for Nynorsk. We also discuss the
challenges and potential solutions for fur-
ther improving ASR models for Norwe-
gian.

1 Introduction

Automatic Speech Recognition (ASR) is the task
of converting speech into text. ASR systems are
used in a wide range of applications, such as voice
assistants, transcription services, and speech-to-
text translation. It is also increasingly becoming
a tool for research in spoken language as the ac-
curacy of the more recent neural-based models is
approaching that of humans for certain metrics. In
a study by Amodei et al. (2016), the authors es-
timated that the word error rate (WER) in human-
produced transcriptions on the LibriSpeech bench-
mark (Panayotov et al., 2015) is roughly 5.83%,
while their end-to-end ASR model, DeepSpeech
2, achieved a WER of 5.33% on a clean test set,
although it was outperformed by humans on noisy
data. Since the introduction of DeepSpeech 2, the
field of ASR has progressed even further, with the
current leaderboard of the benchmark containing

over ten models with a WER below 2%. Despite
the high accuracy in resource-rich languages, ASR
models are currently unavailable for the vast ma-
jority of the world’s languages due to the lack of
gold annotated data to train such models. Re-
cent advances in unsupervised learning of acous-
tic models have decreased the need for transcribed
speech.

In this paper, we focus on developing and eval-
uating a new set of baselines ASR models for
Norwegian based on the wav2vec 2.0 architecture
(Baevski et al., 2020). We make use of existing
pre-trained models and combine them with other
language resources for the Norwegian languages
to further improve the accuracy of the resulting
ASR systems. Our models seem to perform no-
tably better than previous work on newly estab-
lished datasets.

2 Norwegian ASR

The Norwegian language has many spoken di-
alects, which differ lexically, grammatically, and
phonologically. Additionally, there are two of-
ficial written standards of Norwegian, Bokmål
and Nynorsk, which have somewhat different in-
flection, vocabulary, and spelling. Consequently,
high-quality datasets for acoustic modeling of
Norwegian require speech data in different di-
alects and should ideally include transcriptions in
both written standards.

Early work on Norwegian speech recognition
was mostly focused on very limited vocabularies
and numbers, tailored for telephone applications
and menu navigation (Svendsen et al., 1989; Pali-
wal, 1992; Ljøen et al., 1994; Kvale, 1996). Com-
pound words are more frequent in Norwegian than
English, but using traditional pronunciation dic-
tionaries seemed sufficient in controlled lexicons.
In Norwegian, natural numbers between 20 and
99 can be pronounced differently (e.g. “twenty-
four” and “four-and-twenty”), which poses a chal-
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lenge for natural number recognition. By the year
2000, and under the umbrella of a few EU-funded
projects, research focused mostly on overcoming
these limitations and extending the use cases to
dates, times, nouns, and the spelling out of words,
which yielded several important datasets (e.g.,
SpeechDat, SpeechDat-II, TABU.0) and technical
improvements over a short period of time (Am-
dal and Ljøen, 1995; Hoge et al., 1997; Kvale and
Amdal, 1997; Johansen et al., 1997; Amdal et al.,
1999; Martens, 2000). Most approaches were
based on hidden Markov models and some relied
on Mel Frequency Cepstral Coefficients (MFCC),
commonly by using the Hidden Markov Model
Toolkit (HTK) (Young and Young, 1993).

However, these approaches were not designed
for open-ended recognition and often struggled
with out-of-vocabulary words or real conversa-
tions. It was not until the introduction of newer
datasets in the last decade that systems with rea-
sonable performance started to appear.

2.1 NST

The Nordisk Språkteknologi (NST) dataset is
a multi-lingual speech recognition dataset with
speech in Swedish, Danish and Norwegian
Bokmål, and their corresponding transcriptions.
Developed by the now extinct technology com-
pany Nordisk Språkteknologi in the late 90s and
beginning of the 2000s, the data was manually
compiled and mostly validated. It contains tele-
phone conversations, office conversations, read
aloud passages, word spellings, and even hesita-
tions. The speaker metadata includes age, gen-
der, region of birth, and regional dialect. The au-
dio quality is generally high, and most recordings
have two channels recorded with separate micro-
phones, one placed close to the speaker and one
across the room. The dataset comes with train-
ing and testing sets. For Norwegian, the training
set contains 411.5 hours of speech, while the test
contains 115.3 hours. The amount of speech in
hours per the regional dialect of the speakers rep-
resented in the NST dataset is reported in Table
9 of Appendix C. However, due to its nature as
a manuscript-read dataset, the dataset has some
limitations, as it only contains planned speech and
does not include or contains limited degree of di-
alectal phenomena which deviate from the Bokmål
norm.

2.2 NPSC

In Solberg and Ortiz (2022), the authors present
the Norwegian Parliamentary Speech Corpus
(NPSC, The National Library of Norway, 2021),
an open dataset intended for acoustic modeling of
Norwegian unscripted speech. The dataset is de-
veloped and distributed by the Language Bank at
the National Library of Norway, and consists of
approximately 100 hours of recordings of meet-
ings at Stortinget, the Norwegian parliament, in
2017 and 2018. Orthographic transcriptions in
Norwegian Bokmål and Norwegian Nynorsk were
made. The dataset is public domain and can be
used with no restrictions. The dataset is split in
training, validation, and test sets (see Table 1).

Solberg and Ortiz trained and tested an ASR
system and the results showed that the use of
the NPSC dataset improved the recognition per-
formance when compared to the use of only
manuscript-read datasets. The authors argue that
the NPSC dataset is necessary to fill the gap in the
lack of available speech data for Norwegian ASR.

2.3 FLEURS

A very recent addition to the small pool of open
datasets suitable for training transformer-based
models for ASR comes in the form of a multi-
lingual speech benchmark. The Few-shot Learn-
ing Evaluation of Universal Representations of
Speech (FLEURS) benchmark (Conneau et al.,
2022) is a parallel speech dataset in 102 lan-
guages built on top of the FLoRes-101 bench-
mark for machine translation. FLEURS contains
approximately 12 hours of speech per language
and can be used for various speech tasks such
as automatic speech recognition, speech language
identification, translation, and retrieval. The goal
of FLEURS is to enable speech technology in
more languages and drive research in low-resource
speech understanding. The dataset is unique in its
coverage of over 100 languages and its suitability
for various speech tasks. In their paper, the authors
provide baseline results for the different tasks us-
ing multilingual pre-trained models, but do not re-
port on single monolingual ones. The almost 11
hours of Norwegian (see Table 2) included in this
dataset adhere to Bokmål and represent out of do-
main speech qualitatively closer to NST than to
NPSC.
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Language Train Validation Test
Hours Samples Hours Samples Hours Samples

Norwegian Bokmål 88.62 44,746 11.70 5,973 11.15 5,527
Norwegian Nynorsk 12.96 6,586 1.61 871 1.33 828
Total 101.58 51,332 13.31 6,844 12.48 6,355

Table 1: Distribution of number of hours and samples for each of the Norwegian written languages in
the NPSC dataset.

Train Validation Test
Hours Samples Hours Samples Hours Samples
10.91 3,167 0.58 163 1.25 357

Table 2: Distribution of number of hours and samples for each of the splits in Norwegian subset of the
FLEURS dataset.

3 Norwegian wav2vec 2.0

Introduced by Baevski et al. (2020), wav2vec 2.0
is a state-of-the-art self-supervised audio repre-
sentation learning architecture designed to extract
high-quality feature representations from raw au-
dio signals. After pre-training the acoustic model,
wav2vec 2.0 models can be used for a wide range
of tasks using a regular fine-tuning mechanism.
For ASR, these fine-tuned models can be plugged
to rather simple n-gram language models that
leverage the connectionist temporal classification
(CTC) classification loss to further improve recog-
nition.

Wav2vec 2.0 improves upon the original
wav2vec architecture by Schneider et al. (2019)
in several key ways. First, it uses a transformer-
based neural network to predict the audio signal
in a context window surrounding a masked center
frame. This enables the model to capture long-
range dependencies in the audio signal, leading to
more accurate feature representations. Second, the
model performs multiple prediction tasks simul-
taneously, including predicting the center frame,
predicting the entire context window, and predict-
ing future audio signals. The CTC loss is used
to compute the prediction error between the pre-
dicted and actual center frame. This multi-task
learning approach improves the representational
power of the model. Finally, wav2vec 2.0 has a
larger number of parameters and a larger training
data size, which leads to improved performance on
various audio representation learning benchmarks.

In early 2022, we released a series of wav2vec
2.0 models of different sizes. Available for

Bokmål in 300 million1 and 1 billion2 sizes and
for Nynorsk only in 300 million parameters3, these
models were fine-tuned on the NPSC dataset. The
1 billion parameter models were based on the mul-
tilingual XLS-R models, and the 300 million pa-
rameters models on the Swedish VoxRex model.
XLS-R models (Babu et al., 2021) are trained
on more than 436,000 hours of publicly available
speech recordings. The data used to train the XLS-
R models came from a variety of sources, includ-
ing parliamentary proceedings and audio books,
and covered 128 different languages. VoxRex,
developed by Malmsten et al. (2022) at National
Library of Sweden (KB), is a Swedish acoustic
wav2vec 2.0 model trained on the P4-10k cor-
pus which contains 10,000 hours of Swedish lo-
cal public service radio as well as 1,500 hours of
audio books and other speech from KB’s collec-
tions. The choice of a Swedish acoustic model
to fine-tune Norwegian ASR instead of using the
same size XLS-R model was motivated by the fact
that both languages belong to the North Germanic
language family, which all originated from Old
Norse, and share many spoken and written fea-
tures.

4 Methods

In this work, we evaluate these models, referred to
as NPSC-Bokmål and NPSC-Nynorsk, and fine-
tune new XLS-R 1 billion (1B) parameters and
VoxRex 300 million (300M) parameters models

1https://huggingface.co/NbAiLab/
nb-wav2vec2-300m-bokmaal

2https://huggingface.co/NbAiLab/
nb-wav2vec2-1b-bokmaal

3https://huggingface.co/NbAiLab/
nb-wav2vec2-300m-nynorsk
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using the same hyperparameters4. We train the
models on NPSC and ablate on different data
supplementing strategies derived from the NST
dataset.

The NST dataset was modernized and re-
organized by the National Library of Norway,
and is now available in a reader-friendly format
(Nordisk Språkteknologi, 2020). We omitted the
second channel of audio recorded with a distant
microphone due to no noticeable differences be-
tween the audio recorded with the close micro-
phone. The dataset is representative of the ma-
jor regions and the language variety spoken in that
region, although the representation of the dialec-
tal varieties of the Scandinavian languages in the
dataset is debatable (see Appendix C, Table 9). All
combinations of NPSC and NST training sets were
lowercased, and had removed non-letter characters
and accents from characters (aside from the Nor-
wegian ‘æøå’). Any samples with an audio clip
under half a second are removed. Transcripts con-
taining digits are also removed, as we expect any
numbers to be spelled out. NST data containing
words spelled out letter by letter were removed,
and instructions to stay silent or dictation com-
mands (e.g., comma, period) were replaced with
empty strings. For the hesitations in NPSC and
NST, most of the runs replace them using triple let-
ters, e.g. <ee> becomes eee. These models also
use the Bokmål translation of the Nynorsk data in
NPSC. The resulting models from the different ex-
periments are listed below:

• NST model. Fine-tuned on the NST dataset
as described, with no exta modificatons nor
additions.

• NST-NPSC model. These models are fine-
tuned using the Bokmål and Nynorsk subsets
of NPSC plus the NST dataset as described.

• NST-NPSC-Bokmål model. These models
are fine-tuned on the Bokmål subset of NPSC
plus the translated version of the Nynorsk
subset, the NST, and the hesitations subset
of NST. These models also replace the hes-
itations with single letters in the 1 billion pa-
rameters models, and the special character ĥ
shared between all types of hesitations in the
300 million parameters models since triple
letters require a pad character in between.

4Swedish Wav2vec 2.0 large VoxRex (C) and Multilin-
gual Wav2Vec2-XLSR-53.

• NPSC-Nynorsk. Since the NPSC-Nynorsk
model was only available as a 300 million pa-
rameter model, this model is a 1 billion pa-
rameters version fine-tuned on the Nynorsk
subset of NPSC plus the translated version of
the Bokmål subset.

We trained all models for 40 epochs on a single
NVIDIA RTX A6000 GPU with an effective batch
size of 24 by accumulating gradients every 2 steps
on a batch size of 12. The learning rate was set
to 2 · 10−5, with 2,000 steps of warmup and linear
decaying using an Adam optimizer with β1 = 0.9,
β2 = 0.999, and ϵ = 10−8. We used the PyTorch
models available in the HuggingFace hub.

After fine-tuning, separate Bokmål and
Nynorsk 5-gram Kneser-Ney language model
were added where appropriate5. Two versions of
the NST-NPSC model were also created, one with
the Bokmål 5-gram language model, and another
one with the Nynorsk language model, as we
evaluate the NST-NPSC model on both subsets of
NPSC. These language models were created using
a combination of the training and validation sets
of NPSC plus a few thousand random documents
from the Norwegian Colossal Corpus (Kummer-
vold et al., 2021, 2022). We processed a total of
78 million words by lowercasing, normalizing,
and filtering out the characters that were outside
the 28 Norwegian letters used for fine-tuning. We
used the implementation of Kneser-Ney models
(Ney et al., 1994) available in the KenLM library
(Heafield, 2011). The estimation of the CTC α
and β values was done by grid search over {0.001,
0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3} on the
validation set of the Bokmål subset of NPSC; we
established α = 0.5 and β = 0.001.

5 Results and Discussion

We evaluate the performance of the models group-
ing their scores by the written language of the test
sets in NPSC and NST. We report word error rates
as percentages6. For comparison purposes, we in-
clude the figures obtained in the original NPSC
paper by Solberg and Ortiz (2022), as well as the
work by Ortiz and Burud (2021) who also briefly
evaluated ASR on NPSC. Table 3 shows the WER
score of the 300 million and 1 billion parameters

5https://huggingface.co/NbAiLab/
nb-wav2vec2-kenlm

6For character error rates, please see Appendix B, Tables
6, 7 and 8.

558

https://huggingface.co/KBLab/wav2vec2-large-voxrex
https://huggingface.co/facebook/wav2vec2-large-xlsr-53
https://huggingface.co/NbAiLab/nb-wav2vec2-kenlm
https://huggingface.co/NbAiLab/nb-wav2vec2-kenlm


Size Model NPSC NPSC (Bokmål) NST

300M

No language model
NPSC-Bokmål 11.76 9.79 21.46
NST 24.50 22.45 5.52
NST-NPSC 9.58 8.86 5.44
NST-NPSC-Bokmål 10.37 8.33 5.49
5-gram language model
NPSC-Bokmål 9.07 7.14 19.19
NST 19.41 17.33 4.38
NST-NPSC 7.60 6.92 4.39
NST-NPSC-Bokmål 10.05 7.96 4.42

1B

No language model
NPSC-Bokmål 9.49 7.51 17.64
NST 25.07 22.94 5.08
NST-NPSC 8.99 7.14 5.25
NST-NPSC-Bokmål 8.69 6.46 4.93
5-gram language model
NPSC-Bokmål 8.37 6.41 14.94
NST 21.47 19.36 4.39
NST-NPSC 8.03 6.15 4.54
NST-NPSC-Bokmål 8.02 5.81 4.30
Ortiz and Burud (2021) 20.64
Solberg and Ortiz (2022) 17.10

Table 3: Test sets WER scores of all models fine-tuned on data containing Bokmål. Best scores in bold
for each size.

models. In both cases, it can be seen that models
trained on the Bokmål subset of NPSC perform
not too well on the test set of NST. Similary, mod-
els trained only on NST underperform on the test
set of the Bokmål subset of NPSC. Adding a 5-
gram language model yields significant improve-
ments across the board, ranging from a 5 points
increase on the worst performing pairs of model
and dataset, to a 1 point increase for the best per-
forming pairs. However, the biggest gain in per-
formance is the addition of extra data. The mod-
els fine-tuned on combinations of NPSC and NST
produce significantly better results. On the whole
NPSC, the 300M NST-NPSC model outperform
Solberg and Ortiz (2022) by 9.5 points and the pre-
vious state of the art NPSC-Bokmål model by 4.16
points. For the other datasets, the 1 billion param-
eters model NST-NPSC-Bokmål outperformed the
rest of models, yielding increases over the NPSC-
Bokmål model of 0.6 points on NPSC (Bokmål)
subset and of 14.89 points on NST. Interestingly,
the performance of the best 300M and 1B models
was very close.

An evaluation of the models for each region in

the test set of NST can also be found in Appendix
C with somewhat similar results and trends. We
found that there is virtually no difference in the
per region performance of the models, even for the
unbalanced (in terms of hours of speech in test set)
regions of Oslo and Sør-Vestlandet. It is important
to notice that the regions identified in NST do not
reflect the diversity of spoken dialects in Norway.

For Nynorsk, as shown in Table 4, our NST-
NPSC 300M model with a Nynorsk 5-gram lan-
guage model attached did not beat the exist-
ing NPSC-Nynorsk 300M model. However, our
newer NPSC-Nynorsk 1B model outperforms the
NPSC-Nynorsk 300M model by 1.14 points.

In order to evaluate the generalization capabil-
ities of our models, we use the Norwegian test
set of FLEURS. Transcriptions on FLEURS were
normalized as closely as possible to those present
in the NST and NPSC, with numbers and times
written out in text form. We compare the perfor-
mance of our models against the Whisper mod-
els (Radford et al., 2022), which despite being ar-
chitecturally different, and being trained in a su-
pervised fashion on almost twice the amount of
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Size Model NPSC
(Nynorsk)

300M

No language model
NPSC-Nynorsk 16.29
NST-NPSC 16.52
5-gram language model
NPSC-Nynorsk 12.68
NST-NPSC 14.23

1B

No language model
NPSC-Nynorsk 13.99
NST-NPSC 26.99
5-gram language model
NPSC-Nynorsk 11.54
NST-NPSC 25.38

Table 4: Test sets WER scores of all models fine-
tuned on data containing Nynorsk. Best scores in
bold for each size.

hours of XLS-R and with subtitles instead of tran-
scriptions, hold the state of the art on almost ev-
ery language in FLEURS. However, it is impor-
tant to notice that their WER scores are calculated
on non-normalized text and their parameter counts
do not match ours7. As shown in Table 5, our best
300 million parameters model more than doubles
the performance of Whisper small (244M), with a
WER of 9.88 versus 24.20. The 1 billion parame-
ters model NST-NPSC still outperforms Whisper
large by 1.53 points, and it is only a negligible
0.37 points from the version 2 of the Whisper large
model, that while having 550M fewer parameters
than Whisper large.

6 Future Work

Despite the improved performance of our mod-
els compared to the other baselines, ASR mod-
els for Norwegian still face several challenges.
One major challenge is the complex phonetics
and morphology of the different dialects, which
makes it difficult for models to accurately tran-
scribe the phonemes in the input speech to the
correct spelling. Another challenge is the limited
availability of high-quality datasets for Norwegian
speech, which limits the amount of training data
for ASR models.

To address these challenges, one possible to so-
lution is to combine multiple datasets and sources
of training data, such as transcribed speech and

7Whisper models are able to handle capitalization and
punctuation marks.

Size Model FLEURS

300M

No language model
NPSC-Bokmål 18.51
NST 13.94
NST-NPSC 12.43
NST-NPSC-Bokmål 12.51
5-gram language model
NPSC-Bokmål 12.98
NST 11.27
NST-NPSC 9.93
NST-NPSC-Bokmål 9.88
Whisper small (244M) 24.20

1B

No language model
NPSC-Bokmål 16.26
NST 13.05
NST-NPSC 11.17
NST-NPSC-Bokmål 11.53
5-gram language model
NPSC-Bokmål 13.03
NST 11.53
NST-NPSC 9.87
NST-NPSC-Bokmål 10.00
Whisper large (1.55B) 11.4
Whisper large-v2 (1.55B) 9.5

Table 5: Test sets WER scores on the Norwegian
subset of FLEURS for all models. Best scores in
bold for each size.

synthetic speech, to increase the amount of pre-
training data for ASR models. With enough tran-
scribed speech, even other more data-hungry ar-
chitectures could be tested, such as Whisper.

Finally, the prospect of training wav2vec 2.0 di-
rectly on non-normalized text is an interesting av-
enue for research, as it would make the models di-
rectly usable without having to transform the out-
put of the models to make them more readable.

7 Conclusion

In this paper, we presented several new models for
automatic speech recognition of Norwegian. We
evaluated these models on several datasets of Nor-
wegian speech and compared their performance to
previous work, outperforming the previous state
of the art. Given that we used almost the same
settings than the wav2vec 2.0 models released last
year, with the addition of extra training time and
data there are some interesting findings. First,
adding over 400 hours of extra planned speech to
the semi-improvised speech part of NPSC, perfor-
mance does not plummet, but actually increases
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from 6.41 to 5.81 WER for Bokmål in the 1B set-
tings. The 300M model seems more sensitive in
this regard and the WER decreases from 7.14 to
7.96 WER. For NST, the trend is exactly the same,
although the differences are smaller.

Interestingly, the out of domain performance of
the models is also greatly improved by adding the
planned speech in NST to NPSC. Models on both
sizes increase their WER scores from 12.98 to
9.88 for the 300M model, and from 13.03 to 9.87
for the 1B model.

We are releasing our best performing models
and evaluation code for replicability, and hope to
contribute to the advance of ASR for Norwegian.
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A Availability

The best performing models and the code use to
train and evaluate them are released with a per-
missive license in a model hub:

• NST-NPSC 300M model as
nb-wav2vec2-300m-bokmaal-v2.

• NST-NPSC-Bokmål 1B model as
nb-wav2vec2-1b-bokmaal-v2.

• NPSC-Nynorsk 300M model as
nb-wav2vec2-300m-nynorsk.

• NPSC-Nynorsk 1B model as
nb-wav2vec2-1b-nynorsk.

The results raw data is also available in a code
repository to replicate all tables and figures in this
work at nb-wav2vec2.

B Character Error Rates (CER)

Size Model NPSC
(Nynorsk)

300M

No language model
NPSC-Nynorsk 4.91
NST-NPSC 5.03
5-gram language model
NPSC-Nynorsk 4.38
NST-NPSC 4.80

1B

No language model
NPSC-Nynorsk 4.52
NST-NPSC 7.33
5-gram language model
NPSC-Nynorsk 4.12
NST-NPSC 7.07

Table 6: Test sets CER scores of all models fine-
tuned on data containing Nynorsk. Best scores in
bold for each size.

Size Model FLEURS

300M

No language model
NPSC-Bokmål 4.96
NST 3.96
NST-NPSC 3.48
NST-NPSC-Bokmål 3.46
5-gram language model
NPSC-Bokmål 3.83
NST 3.46
NST-NPSC 2.92
NST-NPSC-Bokmål 2.89

1B

No language model
NPSC-Bokmål 4.42
NST 3.88
NST-NPSC 3.13
NST-NPSC-Bokmål 3.24
5-gram language model
NPSC-Bokmål 3.73
NST 3.58
NST-NPSC 2.89
NST-NPSC-Bokmål 2.91

Table 7: Test sets CER scores on the Norwegian
subset of FLEURS for all models. Best scores in
bold for each size.

562

https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/
https://huggingface.co/NbAiLab/nb-wav2vec2-300m-bokmaal-v2
https://huggingface.co/NbAiLab/nb-wav2vec2-1b-bokmaal-v2
https://huggingface.co/NbAiLab/nb-wav2vec2-300m-nynorsk
https://huggingface.co/NbAiLab/nb-wav2vec2-1b-nynorsk
https://github.com/NbAiLab/nb-wav2vec2


Size Model NPSC NPSC (Bokmål) NST

300M

No language model
NPSC-Bokmål 3.63 3.13 5.05
NST 8.84 8.23 1.75
NST-NPSC 3.08 2.87 1.70
NST-NPSC-Bokmål 3.07 2.55 1.76
5-gram language model
NPSC-Bokmål 3.24 2.74 4.59
NST 8.17 7.53 1.55
NST-NPSC 2.83 2.62 1.52
NST-NPSC-Bokmål 3.31 2.75 1.56

1B

No language model
NPSC-Bokmål 3.17 2.67 4.23
NST 9.32 8.65 1.63
NST-NPSC 2.99 2.54 1.65
NST-NPSC-Bokmål 2.71 2.06 1.64
5-gram language model
NPSC-Bokmål 3.01 2.51 3.69
NST 8.75 8.09 1.52
NST-NPSC 2.85 2.39 1.53
NST-NPSC-Bokmål 2.62 1.98 1.53

Table 8: Test sets CER scores of all models fine-tuned on data containing Bokmål. Best scores in bold
for each size.

C NST regions

Region Train Test
Hours Samples Hours Samples

Oslo-området 53.2 38,688 25.3 17,729
Ytre Oslofjord 48.0 34,008 7.3 4,935
Bergen og Ytre Vestland 45.7 31,824 8.3 5,922
Sør-Vestlandet 42.2 29,328 10.3 6,909
Trøndelag 38.4 27,456 9.3 5,922
Sørlandet 36.9 26,600 9.0 5,922
Voss og omland 33.6 22,776 9.4 5,922
Troms 30.5 19,344 9.6 4,935
Nordland 28.0 20,591 8.8 5,922
Total 411.5 289,934 115.3 75,965

Table 9: Distribution of number of hours and speakers for each of the dialect regions (region of youth)
of the Norwegian subset of the NST dataset.
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Size Region NPSC-Bokmål NPSC-Nynorsk NST NST-NPSC NST-NPSC-Bokmål

300M

No language model
Bergen og Ytre Vestland 26.14 / 6.24 45.57 / 11.34 6.18 / 1.77 5.92 / 1.75 5.92 / 1.75
Hedmark og Oppland 19.22 / 4.08 42.36 / 10.31 4.71 / 1.12 4.56 / 1.06 4.56 / 1.14
Nordland 21.92 / 4.67 42.62 / 10.03 5.21 / 1.27 5.00 / 1.20 4.99 / 1.25
Oslo-området 20.21 / 5.90 42.50 / 11.87 6.67 / 3.29 6.60 / 3.21 6.65 / 3.26
Sunnmøre 22.72 / 5.00 41.56 / 9.64 5.02 / 1.16 5.04 / 1.15 5.10 / 1.21
Sør-Vestlandet 24.55 / 5.78 45.44 / 11.53 6.23 / 1.57 6.13 / 1.53 6.25 / 1.60
Sørlandet 21.99 / 4.77 44.04 / 10.52 5.52 / 1.34 5.45 / 1.31 5.48 / 1.37
Troms 21.66 / 4.35 42.56 / 9.71 4.21 / 0.97 4.25 / 0.95 4.28 / 1.01
Trøndelag 18.28 / 3.77 40.26 / 9.54 4.32 / 1.02 4.27 / 1.00 4.43 / 1.07
Voss og omland 20.22 / 4.32 38.84 / 8.86 4.10 / 0.98 4.21 / 0.98 4.24 / 1.04
Ytre Oslofjord 21.08 / 4.69 44.45 / 11.36 6.04 / 1.54 5.87 / 1.46 5.94 / 1.50
5-gram language model
Bergen og Ytre Vestland 22.75 / 5.58 42.64 / 10.81 4.91 / 1.52 4.83 / 1.54 4.70 / 1.55
Hedmark og Oppland 17.69 / 3.75 39.31 / 9.81 3.58 / 0.94 3.48 / 0.88 3.58 / 0.96
Nordland 19.59 / 4.20 39.76 / 9.58 3.89 / 1.04 3.89 / 1.00 3.91 / 1.04
Oslo-området 18.39 / 5.53 39.48 / 11.36 5.70 / 3.10 5.66 / 3.04 5.67 / 3.07
Sunnmøre 19.74 / 4.39 38.94 / 9.25 3.90 / 0.98 4.04 / 0.99 4.03 / 1.04
Sør-Vestlandet 21.44 / 5.17 42.45 / 10.97 4.74 / 1.31 4.84 / 1.31 4.87 / 1.36
Sørlandet 19.64 / 4.30 41.34 / 10.03 4.24 / 1.12 4.29 / 1.10 4.29 / 1.14
Troms 19.10 / 3.87 39.90 / 9.31 3.17 / 0.79 3.26 / 0.78 3.35 / 0.85
Trøndelag 16.78 / 3.48 36.68 / 8.94 3.34 / 0.85 3.38 / 0.84 3.55 / 0.92
Voss og omland 18.56 / 3.97 36.18 / 8.50 3.32 / 0.85 3.36 / 0.83 3.37 / 0.89
Ytre Oslofjord 18.53 / 4.14 40.97 / 10.75 4.51 / 1.26 4.53 / 1.21 4.57 / 1.24

1B

No language model
Bergen og Ytre Vestland 21.88 / 5.41 43.60 / 11.38 5.47 / 1.61 5.85 / 1.73 5.17 / 1.61
Hedmark og Oppland 14.48 / 3.06 39.23 / 9.89 4.29 / 1.02 4.29 / 0.99 4.15 / 1.04
Nordland 17.78 / 3.79 40.67 / 9.97 4.44 / 1.08 4.68 / 1.11 4.39 / 1.10
Oslo-området 16.70 / 5.10 40.45 / 11.58 6.27 / 3.15 6.30 / 3.12 6.14 / 3.16
Sunnmøre 20.41 / 4.57 39.73 / 9.67 4.59 / 1.07 5.19 / 1.19 4.51 / 1.09
Sør-Vestlandet 20.84 / 5.02 43.82 / 11.54 6.23 / 1.55 6.19 / 1.55 6.03 / 1.54
Sørlandet 17.69 / 3.72 41.63 / 10.26 5.23 / 1.29 5.30 / 1.27 4.92 / 1.24
Troms 17.22 / 3.42 40.30 / 9.44 3.75 / 0.86 3.92 / 0.87 3.47 / 0.83
Trøndelag 14.16 / 3.01 37.28 / 9.23 3.80 / 0.89 4.07 / 0.91 3.65 / 0.90
Voss og omland 16.50 / 3.52 36.05 / 8.62 3.72 / 0.90 4.04 / 0.93 3.78 / 0.93
Ytre Oslofjord 17.69 / 3.83 43.30 / 11.26 5.32 / 1.38 5.47 / 1.36 5.25 / 1.39
5-gram language model
Bergen og Ytre Vestland 18.34 / 4.67 41.20 / 10.92 4.69 / 1.49 5.03 / 1.58 4.54 / 1.50
Hedmark og Oppland 12.37 / 2.64 36.81 / 9.49 3.65 / 0.93 3.61 / 0.88 3.63 / 0.96
Nordland 14.97 / 3.24 38.22 / 9.55 3.68 / 0.96 3.88 / 0.97 3.70 / 0.99
Oslo-området 14.53 / 4.68 37.83 / 11.11 5.67 / 3.04 5.71 / 3.01 5.57 / 3.05
Sunnmøre 16.79 / 3.82 37.81 / 9.36 3.91 / 0.96 4.46 / 1.07 3.88 / 1.00
Sør-Vestlandet 17.63 / 4.32 41.68 / 11.09 5.30 / 1.41 5.31 / 1.40 5.19 / 1.41
Sørlandet 14.95 / 3.19 39.27 / 9.86 4.39 / 1.16 4.46 / 1.13 4.16 / 1.11
Troms 14.54 / 2.95 37.90 / 9.05 3.16 / 0.76 3.27 / 0.77 3.04 / 0.77
Trøndelag 11.86 / 2.54 34.62 / 8.70 3.27 / 0.80 3.44 / 0.80 3.11 / 0.81
Voss og omland 13.43 / 2.93 34.14 / 8.36 3.19 / 0.83 3.51 / 0.84 3.23 / 0.85
Ytre Oslofjord 15.36 / 3.35 40.32 / 10.72 4.42 / 1.22 4.64 / 1.20 4.41 / 1.24

Table 10: Per region test set word and character error rates (WER / CER) of all models fine-tuned on
NST.
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Abstract
The relation between the length of a text
and the number of unique words is in-
vestigated using several Swedish language
corpora. We consider a number of exist-
ing measures of vocabulary richness, show
that they are not length-independent, and
try to improve on some of them based on
statistical evidence. We also look at the
spectrum of values over text lengths, and
find that genres have characteristic shapes.

1 Introduction

Measures of lexical richness have several uses, in-
cluding author identification, other forms of text
classification, and estimating how difficult a text
is. One of the simplest and most obvious mea-
sures of lexical richness is to compare the size
of the vocabulary (that is, how many different
words) to the size of the text (how many words
in total). This can be done in several ways, most
straightforwardly as the type-token ratio (hence-
forth TTR), u/n, where u is the number of unique
words (types) and n is the total number of words
(tokens). Thus, for the sentence “this example is
this example”, there are three types and five to-
kens, so TTR is u/n = 3/5 = 0.6.

The obvious problem with TTR is that it
changes with the length of the text. As we write
a text, the more words we have already written,
the more likely it is that the next word will be one
that has already been used, so TTR goes down as
the text grows longer. Many attempts have been
made to transform this measure into something in-
dependent of the length of the text, but many of
those attempts were made in an age before “big
data”, or even before computers, and were based
on a priori reasoning rather than statistical analy-
sis (Tweedie and Baayen, 1998).

We will start by looking at some of these mea-
sures, and test them on a set of corpora to see how

they hold up for a wide range of different n. After
comparing some of the previous methods, we will
briefly look into using the empirical data to come
up with a better suggestion. The results give rise to
another question: What if instead of aiming for a
length-independent measure, we consider how the
values change with the length? Can that actually
tell us new and interesting things?

We find that if we analyse the type count for
different sample lengths, we see clear and con-
sistent differences between different types of text.
This may be useful for genre classification, or for
a more detailed description of the text complexity.

Although these measures are usually applied to
specific texts, we here apply them to entire cor-
pora. We will discuss the effects of this after see-
ing the results.

2 Data

Språkbanken (the Swedish Language Bank) at the
University of Gothenburg (spraakbanken.gu.se)
has a large collection of text corpora, mainly in
Swedish but including several other languages. In
this study, we use Swedish texts, focusing on large
and homogeneous corpora, listed in the appendix.

We extract the type count u for several differ-
ent lengths n. Words are case-independent but
otherwise counted as written, without lemmatisa-
tion. For each n, we divide the corpus in chunks
of length n, dropping any overflow at the end,
and take the mean value of u for each of these
chunks. (In some cases we remove the last value
for being an outlier; presumably this is because
it is the only value where a large part of the data
is dropped due to overflow.) We use a pseudo-
logarithmic scale for ease of reading, extracting
values for n = 10, 20, 50, 100, 200, 500, 1000...
up to the maximum possible for each corpus; the
largest go up to 500 million tokens.
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3 Testing existing measures

First of all, we can test and verify that TTR does
go down. Figure 1 shows TTR for 31 corpora.
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Figure 1: Type-token ratio

It seems likely that, as we compare different-size
corpora, effects of size changes might be best de-
scribed in terms of multiplicative changes rather
than additive, so we might try looking at the log-
arithms of n and u. We see in Figure 2 that the
result looks fairly close to a straight line.
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Figure 2: Type count

The first obvious method, then, is to assume that
this is indeed a straight line, and use the slope of
that line as our presumed length-independent mea-
sure of richness, that is, log u/log n. This was
proposed by Herdan (1964). We see in Figure 3
that the measure is decreasing quite steadily for
all the texts. The six corpora used here are chosen

partly for being large, and partly for having large
differences in type count; many other corpora are
not nearly as well separated.
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Figure 3: Herdan’s measure

Let us pause for a moment and consider what this
figure illustrates. The fact that the measure de-
creases is not in itself a problem; although we are
aiming for a near-constant, we should not expect it
to be perfect. The amount of variation is also not
relevant; we could change that by adding or multi-
plying by a constant. Regardless of how large the
variation is, we would also change the axes of the
graph, so a glance at the variation of a single curve
in the graph does not tell us whether the measure
is near-constant in a relevant sense.

What actually matters is comparing the curves.
If the measure is to reliably compare different
texts, regardless of the (sample) size for each text,
what we need is to have the lines separated inso-
far as possible. If the lowest point of curve A is
higher than the highest point of curve B, then we
have successfully determined that A has a higher
richness. We should also keep in mind that the first
few points of the curve are not as important – we
are probably not very interested in measuring rich-
ness for very short texts, so although the graphs go
all the way from 10, we can mostly ignore values
below 1000 or so. We would be content if the mea-
sure can separate the lines from that point on.

As we see in Figure 3, this is not quite the case
here. This measure works better than TTR, but the
curves are still close enough that their ranges over-
lap. We will compare with a few other measures.

Guiraud (in 1954, as cited by Hultman and
Westman (1977)) proposed the measure u/

√
n,
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shown in Figure 4. This does not separate the
curves particularly well, and does not seem to have
any advantage over the previous method.
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Figure 4: Guiraud’s measure

Dugast (1979) built on Herdan by suggesting
log u/log log n, seen in Figure 5. We find no ad-
vantage with this method, and only added concep-
tual complexity with the double logarithm.
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Figure 5: Dugast’s measure

Brunet (1978) proposed n∧(u−a), where usually
a = 0.172. This is shown in Figure 6. This too is
a fairly conceptually complicated method which
shows no sign of improving the results.

Maas (1972) found another approach, with
(log n−log u)/(log n)2, see Figure 7. This seems
marginally more effective at separating the curves.
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Figure 6: Brunet’s measure
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Figure 7: Maas’s measure

Hultman and Westman (1977) defined the OVIX

measure as

log n

log
(
2− log u

log n

)

which is seen in Figure 8. This is a measure com-
monly used in Sweden, including by Språkbanken.
As we see, this also does a passable job, but there
is a clear rising trend for most curves. This is con-
firmed by further testing on other corpora.

4 Improving measures

By analysing the way these measures depend on
n, we may be able to adjust and improve them. As
noted, the fact that the curve of log u against log n
is close to a line suggests that (log u/(log n) may
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Figure 8: Ovix

be a constant, as per Herdan. But that assumes that
the line passes through (0, 0); if the line passes
though (0,m) for some m, we should expect that
(log u − m)/log n is constant. We find that for
a subset of the corpora, the best-fitting line gives
m = 0.4, and we see in Figure 9 that (log u −
0.4)/log n does look a lot flatter. As before, we
pay less attention to the values where n < 1000.
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Figure 9: Herdan with constant term

On the other hand, we know that a text with one
word certainly also has one unique word, so log-
ically the curve of log u against log n must pass
though (0, 0). Empiricism is all good and well,
but if we want results that hold up for other data,
perhaps we are better off not violating basic logic.
What if instead of a line, we fit the points to a
polynomial curve with zero constant term? Trying
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Figure 10: Herdan with cubic fit
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Figure 11: Adjusted Guiraud

second, third and fourth order polynomials sug-
gests that third is a good compromise. We find
the best fit for six corpora, take the average for
the quadratic and cubic terms, and get the adjusted
measure

log u/log n+ 0.044(log n)− 0.0024(log n)2

You can see in Figure 10 that this separates the
curves considerably better than the pure Herdan
measure. From looking at the graph, this is proba-
bly the best option we have here, but we should
note that the coefficients vary quite a bit be-
tween corpora (standard deviations are 0.015 and
0.0017), so this is not universal enough to adopt as
some sort of standard measure.

We can also consider the Guiraud approach, and
try to adjust it. We notice that while TTR (u/n)
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goes steadily down, Guiraud (u/n0.5) goes up.
Perhaps we can find a middle ground? Figure 11
shows the results for u/n0.75, which looks overall
much flatter and better separating the curves. This
may not be a better result than the previous one,
but it does have the advantage of not depending on
experimentally determined coefficients.

5 Fixed-length measures

Is there another option, using only the length and
the type count? Yes, there is an option which is
in principle completely independent of text length:
Measure the type count (or equivalently TTR) for
a fixed length. One option would be to measure
only the first n words of a text, but that could mean
that a small part of the text has a large impact,
so probably a better method is to cut the text into
pieces of length n and take the average, exactly as
we have done above.
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Figure 12: TTR at n = 10 000

Figure 12 shows the results for n = 10 000, on 38
corpora. We see that it fairly well separates sev-
eral categories of text. The eight newspaper cor-
pora are above all but one other, with the three
oldest getting the highest value, followed by the
two from the late 1900s, then the two from printed

newspapers in 2000 and 2014, and last the web-
based news texts. (The difference may be partially
explained by OCR errors.) The social media and
blog texts are a little more scattered, but all be-
low the mean, except Twitter, which in both cases
is higher. The four corpora of novels are not quite
the same level, but all higher than all of the ones in
the “easy read” category. In that category, young
adult literature is the highest and children’s litera-
ture the lowest. Parliamentary data is all below the
mean but above “easy read”. Near the bottom we
find, perhaps surprisingly, the Bible, along with
Wikipedia, neither of which are primarily known
to be easy reads. Altogether, these results should
tell us that this is at least a meaningful measure.

That leaves the question of choosing an n. Very
low values might give strange effects, very high
values would make it unusable for shorter texts.
Other values were tested for comparison: n = 10
gives little useful information, while n = 100
ranks all the novels below most of social media,
and beyond that we get mostly unremarkable re-
sults from just looking at the ranking. Based on
these limited results, n = 10 000 is a good choice,
and for short texts we can settle for n = 1000.

6 Spectrum comparison

Instead of considering type counts for only one n,
what if we measure for many values of n, and look
at the whole spectrum? This is essentially what
we already did in all of section 3, and we could
see that the curves for the different corpora cer-
tainly did have different shapes – some of them
even crossed each other, which implies that any
one number is not going to tell us the whole truth.

To compare corpora instead of methods, we
need to pick one method, one way to transform
u based on n. Using plain TTR as seen in Figure
1 would make it difficult to tell the difference be-
tween shapes, and picking one of the tested meth-
ods seems like too arbitrary a choice. So for the
purposes of this section, we will evade the prob-
lem. We normalise the type count (or equivalently
TTR) for each n by subtracting the mean and di-
viding by the standard deviation. That is, the val-
ues on the vertical axis are in terms of standard
deviations above the mean, counted for each sepa-
rate value on the horizontal axis. (For high values,
the mean/sd change erratically because of corpora
dropping off. We adjust the normalisation to grad-
ually change from actual to extrapolated mean/sd.)
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Figures 13-22 show the spectra for each category.
Some curves are shorter because of limited data.
Figures 13-15 show different types of web-based
texts, one set of blog texts and two different in-
ternet forums. We can see that each category is a
little different, but all the curves share some char-
acteristics – a short rise, then a drop, then flatter,
and finally a small rise. Most of them start slightly
above the mean, and end below the mean.
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Figure 13: Spectrum for blog texts
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Figure 14: Spectrum for the Familjeliv forum

Figure 16 shows the “easy read” category. Despite
being unrelated, the curves share the same shape,
which is clearly different from the web-based cor-
pora – a drop, then a rise, peaking around 1000
without reaching the mean, then a drop.

Figures 17-18 show news texts, with Figure 17
showing three newspapers from the early 1900s,
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Figure 15: Spectrum for the Flashback forum
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Figure 16: Spectrum for easy-read texts

and Figure 18 showing four more recent newspa-
pers and one web-based news corpus. As with
the blog/forum collection, we see that these two
related categories have clear similarities: a slow
rise up to between 10 000 and 100 000, and then
a drop. But they are also visibly distinct, with the
older newspapers having higher values and rising
near the end. Aside from some unpredictable be-
haviour for n < 1000, the curves in each category
are remarkably similar in both shape and level.

Figures 19-20 show literary texts, with Figure
19 showing regular novels and Figure 20 showing
children’s fiction and young adult fiction. They are
all comparatively straight and dropping slightly.
Children’s literature is generally lower than young
adult literature, and they both drop faster than the
curves for books aimed at adults.
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Figure 17: Spectrum for old newspapers
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Figure 18: Spectrum for recent newspapers

Figure 21 shows religious texts. We see two trans-
lations of the Bible, with very similar curves –
both dropping, rising, levelling out, but unlike the
easy read category they level out at about the same
level where they started. Also included is a book
of church hymns, which happens to level out at a
similar level, but starts with a large rise.

Finally, in Figure 22, we see three uncate-
gorised corpora – one from a 1700s songwriter,
one from a popular science magazine, and one
from Wikipedia. As expected, they show very dif-
ferent shapes and levels, and are clearly distinct
from each other as well as all the other curves.

Explanations of the shapes are tentative at this
point, but we can guess at the meaning of high
richness in different regions of sample length: For
low values (roughly 100-1000), it may indicate

complex sentences with few function words; for
medium values (around 10 000), complexity in
topics, with many names etc.; and for high values,
variety in topics. This may explain why newspa-
pers peak in the middle (they address complex top-
ics with many names, but return to the same top-
ics), social media drop in the middle (they address
simpler topics but with a wider variety in topic and
style), and youth novels go down (they are on sim-
ple topics and consistent for entire books). Further
speculation is left for future work.

10 100 1000 1ᴇ4 1ᴇ5 1ᴇ6 1ᴇ7 1ᴇ8
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Sd
 a

bo
ve

 m
ea

n

Sample length

lb
romii
romg
romi

Figure 19: Spectrum for novels
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Figure 20: Spectrum for youth novels

7 Applicability

Is it reasonable to apply measures like these on an
entire corpus instead of just separate texts? First,
“separate texts” is not necessarily well defined. Is
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Figure 21: Spectrum for religious texts
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Figure 22: Spectrum for some other texts

a newspaper one text, or each article? Books in a
series? Multiple entries on a web page? Second,
for low values of n, running the entire corpus at
once should make little difference. For example, if
n = 100 and the typical length of a text is 10 000,
only about 1% of samples would contain two texts,
and the rest only one. For high values of n, using
only separate texts would leave us with no data at
all – it would be difficult to find singular coherent
texts spanning hundreds of millions of words. This
means that allowing corpora of multiple authors
and topics is our only option for large n.

But we can also look at the results. Are the dif-
ferences between the curves largely caused by dif-
ferences in text length? If that was the case, we
would expect that when a curve reaches the “crit-
ical n” where we go from a single text to multi-

ple texts, the vocabulary richness should increase
rapidly. The curve we would expect to see is one
that starts out mostly flat (because hardly any texts
are that short), then slowly decreases (as others
reach their critical n and bring up the mean), then
rapidly jumps up as it reaches its critical n, and
then slowly decreases again. This is not a pattern
that we see anywhere, so we can conclude that text
length is not the driving factor of the curve shapes.

8 Conclusion

The task of finding a length-independent measure
of vocabulary richness is difficult at best. We have
seen that many traditional measures are not satis-
factory, and made some suggestions as to how they
can be improved. Perhaps the most obvious ap-
proach is to use average TTR over a sample length,
with 10 000 words being a good sample length.

The figures show that the curves have very dif-
ferent shapes, and often cross. Thus, the ranking
of corpora changes depending on the length of the
text sample, so a perfect solution is not possible,
or at least cannot be expressed as a single number.

Is this spectrum method useful for genre classi-
fication? It is perhaps rare that we need to anal-
yse entire hundred-million-word corpora to see if
they are made up of novels or newspapers, but we
do see some differences even for much smaller
lengths. We have also gained insight into what
makes it difficult to find a good measure of vocab-
ulary richness. Most importantly, we have seen
that there are notable differences between genres,
and raised for future research the question of why.
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Heinz-Dieter Maas. 1972. Über den zusammenhang
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Appendix A. List of corpora

The following corpora were used, all of which
can be found at spraakbanken.gu.se/en/resources
(some only in scrambled versions). All texts are in
Swedish.

attasidor issues of the newspaper 8 sidor in easy
Swedish
barnlitteratur collection of children’s literature
bellman lyrics from the Swedish songwriter C.
M. Bellman (1740-1795)
bibel1873 full text of the 1873 Swedish Bible
translation
bibel1917 full text of the 1917 Swedish Bible
translation
bloggmix1999 collection of blog texts from 1999
bloggmix2000 collection of blog texts from 2000
bloggmix2011 collection of blog texts from 2011
dalpilen1920 issues of the newspaper Dalpilen
from the 1920s
dn1987 issues of the newspaper Dagens Nyheter
from 1987
familjeliv (FL) kropp webforum familjeliv.se,
subforum about the human body
familjeliv (FL) planerarbarn webforum familje-
liv.se, subforum about planning to have children
familjeliv (FL) pappagrupp webforum familje-
liv.se, subforum for fathers
flashback (FB) flashback webforum flash-
back.se, subforum about the forum itself
flashback (FB) livsstil webforum flashback.se,
subforum about lifestyle
flashback (FB) ovrigt webforum flashback.se,
subforum about miscellaneous topics
flashback (FB) samhalle webforum flashback.se,
subforum about society
fof issues of the popular science magazine Forsk-
ning & Framsteg
gp1994 issues of the newspaper Göteborgsposten
from 1994
jakobstadstidning2000 issues of the newspaper
Jakobstads Tidning from 2000
kalmar1910 issues of the newspaper Kalmar
from the 1910s
klarsprak administrative authority texts
lasbart collection of easy-read texts and chil-
dren’s books
lb the Swedish Literature Bank, a collection of
literature mainly from around 1900
osterbottenstidning2014 issues of the newspaper
Österbottens Tidning from 2014

ostgotaposten1910 issues of the newspaper
Östgötaposten from the 1910s
psalmboken the hymn book of the Church of
Sweden
rd-prop Swedish parliament texts, propositions
rd-prot Swedish parliament texts, protocols
rd-sou Swedish Government Official Reports
romg collection of older novels
romi collection of modern novels
romii collection of modern novels
twitter-2015 posts from twitter.com, 2015
twitter-2016 posts from twitter.com, 2016
ungdomslitteratur young adult literature
webbnyheter2005 collection of online newspaper
texts from 2005
wikipedia Swedish Wikipedia, collected in 2017
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Abstract
L1-L2 parallel dependency treebanks are
learner corpora with interoperability as
their main design goal. They consist of
sentences produced by learners of a sec-
ond language (L2) paired with native-like
(L1) correction hypotheses. Rather than
explicitly labelled for errors, these are an-
notated following the Universal Depen-
dencies standard. This implies relying on
tree queries for error retrieval. Work in this
direction is, however, limited. We present
a query engine for L1-L2 treebanks and
evaluate it on two corpora, one manually
validated and one automatically parsed.

1 Introduction

L1-L2 parallel dependency treebanks are learner
corpora where sentences produced by learners of
a second language (L2) are paired with correction
hypotheses, assumed to be native-like and there-
fore referred to as L1 sentences. Both the learner
originals and the corresponding corrections are an-
notated following the cross-lingual Universal De-
pendencies (UD) standard (Nivre et al., 2020).
The idea is that such morphosyntactical informa-
tion makes explicit error labelling unnecessary
and allows errors to instead be retrieved via tree
queries. This format, proposed by Lee et al.
(2017a), was in fact designed to address the inter-
operability issues arising from the coexistence of
the different markup styles and error taxonomies
normally employed for the annotation of learner
corpora. These tend not only to be language-
specific, but also to vary widely across different
same-language projects. An additional advantage
of using UD is the availability of several increas-
ingly fast and reliable parsers (Straka, 2018; Qi
et al., 2020). While not yet very robust to learner
errors (Huang et al., 2018), they can already speed
up the annotation process significantly.

L1-L2 UD treebanks exist for English (Berzak
et al., 2016), Chinese (Lee et al., 2017b) and Ital-
ian (Di Nuovo et al., 2022). Work on error re-
trieval tools, on the other hand, has been limited.
Only one of these corpora, the ESL (English as
a Second Language) treebank, is equipped with a
query engine.1 This tool, however, presents sev-
eral limitations, a major one being its reliance on
a pre-existing error taxonomy, in contrast with Lee
et al. (2017a)’s idea.2 Closer in spirit to the latter,
Choshen et al. (2020) have developed a method
to automatically derive dynamic syntactical error
taxonomies from L1-L2 treebanks, but do not pro-
vide a way to look for specific error patterns.

In this paper, we present a language- and er-
ror taxonomy-agnostic query engine for L1-L2
parallel dependency treebanks. The tool allows
searching for morphosyntactical errors by describ-
ing them in a pre-existing pattern matching lan-
guage for UD trees, which we extend to facilitate
comparing L2 sentences to their corrections, re-
sulting in what we call L1-L2 patterns. Our main
contribution is a sentence retrieval algorithm that
matches the L1 and L2 portions of a query pattern
on the corresponding treebanks in parallel, ensur-
ing that correspondences are found between seg-
ments that align with each other. Addressing an-
other limitation of the existing tools, we also make
it possible to extract the specific portions of an L1-
L2 sentence that match a given pattern. The engine
is part of L2-UD, a larger open source toolkit for
UD-annotated L2 data, available for download at
github.com/harisont/L2-UD.3

1As of 05.04.2023, the ESL treebank’s homepage,
esltreebank.org, seems to be no longer reachable,
but the user interface of the query engine can be inspected
at the Internet Archive: web.archive.org/web/
20220120204838/http://esltreebank.org.

2Note, however, that the ESL treebank actually predates
Lee et al.’s paper.

3The results reported in this paper were obtained with ver-
sion 0 of the engine: github.com/harisont/L2-UD/
releases/tag/v0 (last access 05.04.2023).
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Figure 1: UD trees for the Italian sentence Sono andat{o→a*} da entrambi (“I have been to both”), discrepancies highlighted
in bold. In the L2 sentence, displayed on the right, the gender of the participle andato, referring to the implicit subject of the
sentence, is incorrect, but without further context we have no way to infer the author’s gender. As a consequence, the error can
only be described in terms of its correction. Example adapted from the VALICO-UD treebank.

2 Related work

As mentioned in the introduction, learner corpora
exist in a variety of formats. Lee et al. (2017a)’s
proposal to use L1-L2 parallel dependency tree-
banks is not the only one aimed at overcoming the
interoperability issues that follow. Bryant et al.
(2017), for instance, introduced ERRANT, an ER-
Ror ANnotation Toolkit operating in the frame-
work of a taxonomy that exclusively relies on
dataset-agnostic information such as the POS (Part
Of Speech) tag and morphological features of the
tokens involved. In a sense, this can be seen as an
attempt to solve the problem by developing a “uni-
versal” error taxonomy. While ERRANT has be-
come dominant in Grammatical Error Correction
research, it still coexists with several other tagsets
which differ significantly both in their underlying
assumptions, often language-specific, and in the
granularity of the annotation, which varies accord-
ing to the intended use of each individual corpus.

Lee et al.’s idea, while only concerned with
morphosyntactical errors, is more radical, as UD-
annotated parallel treebanks have the potential
to remove the need for any explicit error pre-
categorization and instead allow to infer error tax-
onomies automatically and dynamically. Choshen
et al.’s work on syntactical error classification,
showing promising results even on automatically
parsed L1-L2 treebanks, goes in this direction.

While there is a wide variety of tools and lan-
guage to choose from for extracting information
from (monolingual) UD treebanks,4 not many op-
tions are available when it comes to retrieving ex-
ample sentences matching specific patterns of er-
ror from L1-L2 treebanks. To the best of our
knowledge, the above mentioned ESL treebank
query engine is the only tool specifically meant
for this task. While it is reasonable to assume
that the latter could easily be generalized to work

4PML-TQ (Pajas and Štěpánek, 2009), GREW-MATCH
(Guillaume, 2021), SETS (Luotolahti et al., 2015) and TÜN-
DRA (Martens, 2013), just to name a few.

with any L1-L2 treebank, it presents several limi-
tations from the perspective of the tree queries en-
visioned by Lee et al. (2017a). First and foremost,
searching for errors is primarily done by select-
ing an error label from a pre-defined set. A sim-
ple query language is also available, but it only al-
lows searching for sequences of word forms, POS
tags and dependency labels. In other words, UD
sentences are treated as lists of tokens rather than
trees. This can be restrictive since, for the pur-
poses of grammatical error retrieval, dependency
structure is often more relevant than linear or-
der. Furthermore, there is no coupling, other than
sentence-level alignment, between the L1 and L2
parts of the treebank. Patterns are therefore only
matched against L2 sentences, making it impossi-
ble to search for errors whose description requires
a comparison with the correction (cf. Figure 1 for
an example) or locate the relevant portions of their
L1 counterparts. A final, related limitation is that
the tool always returns complete sentences, while
it is sometimes useful to isolate the segments that
match the query.

3 Design and implementation

Addressing these limitations, we aim for a query
engine with the following characteristics:

1. no underlying error taxonomy: errors are
described in a pattern matching language
which allows treating UD sentences both as
sequences of tokens and as tree structures;

2. parallel L1-L2 matching: queries consist in
an L1 pattern, that has to be matched by a
correction hypothesis, and an L2 pattern to
be matched in the corresponding learner sen-
tence. This also allows formulating queries
by comparing learner sentences with their
corrections;

3. subsentence extraction: besides retrieving
full sentence pairs, it is also possible to ex-
tract the specific portions of an L1-L2 pair
actually matching the query.
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Figure 2: UD trees for the L1-L2 Swedish sentence Därför {vill jag → jag vill*} inte flytta (“Therefore I don’t want to move”),
discrepancies highlighted in bold. The L2 sentence, on the right, violates V2 word order. Example adapted from the DaLAJ
corpus.

3.1 Query language

A central part of the engine is its query language.
We start with an overview of the pre-existing pat-
tern matching language our system makes use
of. After that, we present the extensions through
which we adapt it to querying L1-L2 treebanks.

3.1.1 UD patterns

To describe morphosyntactical structures, we use
the Haskell-embedded pattern matching language
available as part of the GF-UD toolset for depen-
dency trees and interlingual syntax (Kolachina and
Ranta, 2016; Ranta and Kolachina, 2017).5 Al-
though not as widespread as some of the above
mentioned alternatives, it allows to express a wide
range of queries with an intuitive syntax, and it
was selected due to its ease of integration with the
other components of the project.

In essence, the language provides three types of
patterns:

• single-token patterns, e.g. POS "VERB",
matching all (sub)trees rooted in a verb. With
a similar syntax, it is possible to pattern
match based on the token’s XPOS, DEPREL,
FEATS, FORM or LEMMA, all of which corre-
spond to homonymous CoNNL-U fields;6

• tree patterns, in the form TREE p [ps],
where p is a pattern to be matched by the
root node and [ps] an ordered list of pat-
terns denoting its dependents. For instance,
the pattern TREE (POS "VERB") [DEPREL

"nsubj", DEPREL "obj"] matches all sub-
trees rooted in a verb having exactly two sub-
trees: a nominal subject nsubj and a direct
object obj, in this order;

5For an exhaustive description of the pattern match-
ing language, see the relevant GF-UD documentation:
github.com/GrammaticalFramework/gf-ud/
blob/master/doc/patterns.md (last access
05.04.2023).

6For an overview of the CoNNL-U format and a complete
list of the abbreviations used in this text, see Appendix A.

• sequence patterns, matching subtrees where
a certain sequence of patterns occurs with no
intervening words. For instance, in Subject-
Verb-Object (SVO) languages we might want
to write SEQUENCE [POS "VERB", DEPREL

"nsubj", DEPREL "obj"].

More liberal versions of some of these patterns,
using the original name followed by an under-
score, also exists. Namely, DEPREL_ d ignores
relation subtypes, FEATS_ fs matches all tokens
whose morphological features include (rather than
conicide with) fs, TREE_ p [ps] allows other de-
pendents to appear before, between and/or after
the explicitly listed ones and SEQUENCE_ ps does
not require the listed patterns to occur contigu-
ously. In addition, the language allows to combine
patterns with the logical operators AND, OR and NOT

and provides a TRUE pattern matching any subtree.
As a slightly more complex example, consider

TREE_
(POS "VERB")
[DEPREL_ "nsubj",
OR [DEPREL "obj", DEPREL "obl"]]

The above pattern matches any subtree rooted in
a verb which has at least two dependents: a nom-
inal subject (ignoring any subtyping) and a direct
object obj or oblique obl (not subtyped).

3.1.2 L1-L2 patterns
In some cases, errors can be described by a single
UD pattern to be looked for in the L2 treebank.
Often, however, it is more convenient and concise
(if not even necessary, as illustrated in Figure 1)
to describe errors by comparing an L2 sentence
to its correction. For this reason, queries in our
system are defined as pairs of UD patterns. This,
however, does not prevent writing queries as L2-
only patterns: any single-pattern query q is simply
expanded to a pair ⟨TRUE, q⟩.

As an example of the usefulness of L1-L2 pat-
terns, consider the sentence displayed in Figure 2:
in the L2 text displayed on the right, the learner is
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using Swedish’s default SVO order, with the pro-
noun jag preceding the auxiliary verb vill. The
sentence, however, starts with the adverb därför.
Being Swedish a language with verb-second (V2)
word order, the correction, displayed on the left,
moves the auxiliary in the second position, right
after the adverb itself. A way to find L2 sentences
presenting the same problem is to use a single se-
quence pattern, for instance:

SEQUENCE [
POS "ADV",
OR [POS "VERB", POS "AUX"],
DEPREL_ "nsubj"]

This does match sentences like the one above, but
does not cover all cases in which V2 order is vi-
olated: rather than with an adverb, the sentence
might for example start with a prepositional phrase
(cf. På grund av detta vill jag inte flytta, with the
similar meaning of “Because of this I don’t want
to move”). Rather than enumerating all possible
patterns of V2 order violation, it can be more con-
venient to express the error in terms of its correc-
tion, for instance with the following pair of pat-
terns, which disregards the opening phrase:

L1 : SEQUENCE [
OR [POS "VERB", POS "AUX"],
DEPREL "nsubj"]

L2 : SEQUENCE [
DEPREL "nsubj",
OR [POS "VERB", POS "AUX"]]

For the sake of conciseness, rather than writing
two separate patterns, we enclose the discrepant
portion in curly brackets and divide the L1 and L2
segments with an arrow:

SEQUENCE [
{OR [POS "VERB", POS "AUX"],
DEPREL "nsubj" →
DEPREL "nsubj",
OR [POS "VERB", POS "AUX"]}]

This is our first extension to the pattern matching
language described in Section 3.1.1.

To avoid repetition, we also introduce variables.
As an example use case, consider gender agree-
ment, a source af confusion for learners of many
languages. In a dependency tree, most errors of
this kind can be identified by checking whether the
gender of certain dependents matches the gender
of the token they are referred to. In Italian, for in-
stance, adjectives should agree with the nouns they
modify. This is not the case in the sentences like
Indossava una maglietta nero (“(S)he was wear-
ing a black t-shirt”), where the noun, maglietta,
is feminine, while the adjective is incorrectly in-

flected in its masculine form nero. This particular
sentence therefore matches the pattern

TREE_
(FEATS_ "Gender=Fem")
[AND [DEPREL "amod",

FEATS_ "Gender=Masc"]]

With the syntax presented until now, however,
looking for all noun-adjective gender agreement
errors requires a separate query for each possible
combination of genders.7 With variables, syntac-
tically characterized by capital letters preceded by
a $ sign, we can instead simply write

TREE_
(FEATS_ "Gender=$A")
[AND [DEPREL "amod",

FEATS_ "Gender=$B"]]

where $A is assumed to be different from $B. Vari-
ables are currently supported for morphological
features, Universal POS tags and dependency rela-
tions, all of which have a finite number of possible
values.

3.2 Sentence retrieval algorithm

Alongside the pattern matching language, GF-UD

provides a function that, given a pattern and a UD
tree, recursively checks if the former matches the
latter itself or any of its subtrees. One might be
prone to think that performing an L1-L2 query can
simply consist in applying this function to all trees
in the treebank, looking for L1 sentences match-
ing the L1 portion of the pattern and L2 sentences
matching its L2 portion. Doing that, however, gen-
erally leads to a significant amount of false posi-
tives. Consider, for instance, the following query,
intended for searching number agreement errors
between a head and its direct dependents:

TREE_
(FEATS_ "Number=$A")
[FEATS_ "Number={$A → $B}"]

Following this naïve approach, the sentence in
Figure 1 would match the pattern even if it does
not contain a number agreement error. This hap-
pens because the L1 sentence matches the L1 pat-
tern at sono andato (“(I) have been”, two singular
verb forms), while the L2 sentence matches the
L2 pattern at andata da entrambi (“been to both”),
where the head andata is again a singular but the
dependent entrambi is a pronoun in its masculine
plural form. In this case, in fact, both the original

7Two in Italian, whose only genders are masculine and
feminine, but already six for languages with neuter!
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sentence and its correction match both portions of
the pattern.

A key observation here is that sono andato and
andata da entrambi do not semantically corre-
spond to each other: to solve the problem, we
need to further align our L1-L2 treebank, re-
cursively putting L1 subtrees in correspondence
with their L2 counterparts. To do that, we use
the CONCEPT-ALIGNMENT Haskell library (Mas-
ciolini and Ranta, 2021). While originally de-
signed for extracting translation equivalents from
multilingual parallel treebanks, its alignment cri-
teria, i.e. the set of rules to decide whether two
subtrees correspond to each other, are configurable
and easy to adapt to the L1-L2 domain. Actu-
ally, accuracy on L1-L2 corpora tends to be better
than it is for multilingual treebanks. Learner sen-
tences and their corrections, in fact, usually share
the vast majority of the lemmas, something that
can be taken into account when defining custom
alignment criteria.

As a first step, then, we extract phrase- and
word alignments, in the form of pairs of L1-L2
UD trees, for each L1-L2 sentence pair. After that,
to decide whether a sentence pair matches a given
L1-L2 pattern, we apply a nonrecursive version
of GF-UD’s pattern matching function to check if
there is a pair of aligned subtrees whose L1 (resp.
L2) component matches the L1 (resp. L2) por-
tion of the pattern. Matching nonrecursively, only
on complete UD trees (altough extracted from full
sentences), is crucial here, as it is, in most cases,
what prevents L1-L2 patterns from being matched
in structurally similar but semantically unrelated
subtrees of the L1-L2 sentence pair.

The careful reader, however, will have noticed
that this does not solve the issue for the specific
example mentioned, where the subtrees matching
the L1-L2 pattern, sono andata and andata da en-
trambi, share the same head andata. The false pos-
itive is due to the fact that its dependents, sono and
da entrambi, do not correspond to each other. For
TREE and TREE_ patterns, then, we recursively per-
form the additional check that all dependents in-
volved in the match are aligned with each other.
A similar mechanism is in place for SEQUENCE

and SEQUENCE_ patterns, to avoid matching sub-
sequences that, while part of the same subtree, are
not semantically equivalent.

3.3 Subsentence extraction
By default, the output of the program is the list
of IDs of the sentences matching the given query.
Nontheless, extracting relevant subsentences can
be useful both for futher processing of the error-
correction pair and to more easily visualize dis-
crepancies in the context in which they occur.

The fact that our sentence retreival algo-
rithm applies patterns on sub-sentence alignments
makes it straightforward to locate the specific L1
and L2 subtrees where the match is found. Doing
so, however, is of very limited usefulness when the
root (or the head of a large subtree) is involved in
the error, resulting in too big subtree pairs. For this
reason, we prune the extracted subtrees by only
keeping the portions explicitly described by the
pattern: individual heads for single-token queries,
heads and their dependents that match a pattern in
ts for TREE_ ts patterns and, for sequence pat-
terns, rather than the whole subtree including the
given sequence, only subtrees matching one of
patterns explicitly listed in it. Implementation-
wise, this is done by converting the query’s UD
patterns into replacement patterns in GF-UD’s tree
manipulation language.8

The engine has options to either extract such
pairs of matching subsentences and write them to
CoNNL-U files or to output a Markdown report
where they are highlighted in the sentences where
they occur. Example reports obtained with the lat-
ter method can be found in Appendix C.

4 Evaluation

Aiming at assessing the performance of the query
engine, we tested it on two L1-L2 error-tagged
corpora in two different languages, one that comes
with manually validated UD annotation and one
that was only parsed automatically. In both cases,
we randomly selected 100 sentences to be used
during development and set the rest aside for test-
ing. Carrying out a systematic evaluation was not
possible: more often than not, an error tag maps
not to a single L1-L2 query, but to a potentially
rather large set of queries whose exhaustiveness
is hard to verify. As a consequence, we opted
for computing the sentence-level precision and re-
call obtained upon running, for each corpus, a

8The pattern replacement language is, in many
ways, analogous to the pattern replacement lan-
guage and documented alongside it: github.com/
GrammaticalFramework/gf-ud/blob/master/
doc/patterns.md (last access: 05.04.2023).
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single-token, a tree and a sequence example query,
all chosen to be descriptive of an error typical
of the language at hand. To automate evaluation
as much as possible, we also tried to make each
query match one of the error labels of the dataset
at hand. In this way, performance for a given query
can be assessed by simply comparing the sentence
IDs returned by the engine with those of the sen-
tences marked with the corresponding error label.
Finding exact correspondences was feasible for
single-token queries, but challenging for tree and
sequence patterns, which tend to be finer-grained.
In such cases, we formulated queries describing a
subset of the error cases denoted by a certain label
and manually inspected sentences marked with it
to select the relevant items. By comparing the re-
sults obtained on the two corpora, we also aim at
getting insights about the ways in which automatic
annotation affects the performance of the engine,
even though we cannot quantify its impact.

4.1 Experiments on manually validated data

4.1.1 Data

Our first treebank of choice is the 398-sentence
manually validated subset of the VALICO-UD
corpus (Di Nuovo et al., 2022), consisting of texts
written by Italian L2 learners with various L1
backgrounds. While much smaller than the above
mentioned ESL treebank, it was deemed prefer-
able due to its more complete UD annotation.9

Error tagging, present as sentence metadata, is
XML-like and based on Nicholls (2003), where
each label consists of a two-letter code, with the
first character representing the general class of er-
ror (inflection, omission etc.), and the second gen-
erally specifying the POS tag of the word(s) in-
volved. In some cases, VALICO-UD labels also
present a third letter, usually denoting an incorrect
inflectional feature.10 In the error tag IDG, for in-
stance, the three letters stand for "Inflection", "De-
terminer" and "Gender" and are meant to enclose
determiners incorrectly inflected for gender.

9Due to licensing issues, the UD annotation of the ESL
corpus is released separately from the learner essays them-
selves. Consequently, in order to prevent the text from being
reconstructed from the annotation, the LEMMA and FEATS
fields are left blank.

10An exhaustive description of the error annotation
guidelines is given at raw.githubusercontent.com/
ElisaDiNuovo/VALICO-UD_guidelines/main/
Error_Annotation_Guidelines_v.1.1.pdf (last
access: 05.04.2023).

Precision Recall
V1 43% (40%) 100%
V ′
1 100% (90%) 100% (64%)

V2 100% 40%
V3 - 0%
V ′
3 100% 100%

Table 1: Precision and recall of the example queries run on
the VALICO-UD corpus. Values in parentheses do not take
error annotation issues into account.

4.1.2 Queries
Gender being a notorious source of confusion for
learners of Italian, we chose the set of two L1-L2
patterns equivalent to IDG as our first test query:

V1: AND [
POS "DET",
FEATS_ "Gender={$A → $B}"]

A second, more complex query is
V2: TREE

(POS "NOUN")
[ {DEPREL "det", → }

DEPREL "det:poss" ]

which denotes a subclass of the MD (Missing De-
terminer) VALICO category describing the com-
mon error pattern for which the definite article that
should precede a possessive modifying a noun is
omitted (consider, for instance, the nominal phrase
{il→ _*} suo naso - “his nose”).

Word order is relatively free in Italian, and find-
ing recurrent patterns in such a small corpus is not
easy. Instead, we use a sequence pattern to find
particular occurrences of RD (Replacement of De-
terminer) errors:11

V3: SEQUENCE [
LEMMA "non",
LEMMA "ci",
LEMMA "essere",
LEMMA {"nessun*" − > "un*"}]

This pattern matches phrases that translate to
“there is/are no x”. In Italian, this is usually ex-
pressed with a double negation: not only is there
an initial negation, non, but the determiner intro-
ducing x (nessuno or nessuna, depending on x’s
gender) also has negative polarity. However, since
this is not the case in most other languages, it is
common for L2 speakers to simply use the indefi-
nite article (un/un’/uno/una).

4.1.3 Results
As displayed in Table 1, recall is perfect for the
first query. The low precision should not mis-

11Even though UD patterns do not support general regular
expressions, an asterisk at the beginning or end of a string can
be used as a wildcard.
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lead: one of the false positives is due to an in-
consistency in the error annotation and 8 of the
remaining 20 false positives are due to cascading
errors. It is often the case, in fact, that the gender
of the noun the determiner is referred to is wrong,
and the incorrect inflection of the determiner in-
troducing it is merely a consequence of that. In
this case, the incorrect noun is marked with the RN
(Replace Noun) label in case of a lexical error (cf.
la panca→ il banco*, “the bench→ the desk”) or
with the ING (Incorrect Noun Gender) label if the
noun is incorrectly inflected (cf. gli uccelli → le
uccelle*”, “the birds”), while the determiner gets
the IDGcascade tag. To avoid matching cascading
errors, we can turn V1 into a TREE query and check
whether the determiner’s gender agrees with the
noun’s:

V ′
1: TREE_

(AND [POS "NOUN",
FEATS_ "Gender=$A"])

[AND [POS "DET",
FEATS_ "Gender={$A → $B}"]]

As Table 1 shows, the precision for V ′
1 is signifi-

cantly higher. While recall appears to decline, all
of the false negatives can be traced back to errors,
inconsistencies or incompletenesses in either UD
annotation or error tagging (see Appendix B for a
complete list of issues found in the VALICO-UD
corpus).

When it comes to V2, there are no false posi-
tives, while the 3 false negatives are due to align-
ment errors. In every case, the sentence at hand
presents several errors, so that the L1 and L2 trees
differ significantly, increasing the difficulty of the
alignment task.
V3, on the other hand, only has one expected hit,

the sentence -Non c’è {nessun bacio→ una baci-
ata*} per me,- ha pensato tristemente. (-There’s
no kiss for me,- (s)he thought sadly.”), but no
matches. Again, the problem seems to be an align-
ment error, since the expected sentence id is in-
deed returned if we use a similar L2-only query:

V ′
3: SEQUENCE [

LEMMA "non",
LEMMA "ci",
LEMMA "essere",
LEMMA "un*"]

4.2 Experiments on parsed data

4.2.1 Data
To evaluate the tool on automatically annotated
data, we used a 2087-sentence subset of the

DaLAJ corpus (Volodina et al., 2021).12 Such cor-
pus is composed of L1-L2 sentence pairs auto-
matically derived from the error-annotated learner
corpus of anonymized L2 Swedish essays SweLL
(Volodina et al., 2019). More specifically, SweLL
essays are processed so that the L2 component of
each sentence pair in the DaLAJ corpus contains
exactly one morphological or syntactical error. Ar-
guably, this makes automatically parsing the L2
sentences and aligning them to their L1 counter-
parts significantly easier than it would be if multi-
ple, possibly cascading and/or overlapping errors
coexisted. Evaluating the tool on the SweLL cor-
pus itself, however, would have been extremely
impractical, as the original versions of the essays
are not sentence-aligned.

In terms of error-annotation, since DaLAJ en-
tries only contain one error each, sentence pairs
are simply assigned a SweLL error label. SweLL’s
error taxonomy, thorughly described by Rudebeck
and Sundberg (2021), is a two-level classifica-
tion: error labels are composed of a capital let-
ter, indicating the error’s macro-category (Ortog-
raphy, Lexicon, Morphology, Syntax or Punctua-
tion), followed by a secondary label giving addi-
tional information about the type of error and/or
the POS involved. The M-Case label, for instance,
indicates the presence of a morphological error
that has to do with the case inflection of a noun
or pronoun.

DaLAJ sentences were parsed with UD-
Pipe 1 (Straka et al., 2016) using the
swedish-talbanken-2.5 model. While
not state-of-the-art, UDPipe 1 was preferred
over alternatives with higher reported per-
formance due to its speed and ease of
use. The resulting dataset is available at
github.com/harisont/L1-L2-DaLAJ.13

4.2.2 Queries
We mentioned the M-Case label, used to mark in-
correctly inflected nouns and pronouns. Such a
label can be mapped to a rather straightforward
single-token query:

D1: FEATS_ "Case={$A → $B}"

In Swedish, nouns have a definite and an indef-
inite form. The correct use of these two forms is

12The preliminary version of the corpus presented in the
paper is exclusively composed of sentences presenting lexi-
cal errors. In this work, we used a more recent, soon-to-be-
released one also covering morphosyntactical errors.

13Last access 05.04.2023.
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Precision Recall
D1 77% (76%) 58%
D2 75% 90%
D3 89% 62%

Table 2: Precision and recall of the three example queries run
on the DaLAJ corpus. Values in parentheses do not take error
annotation issues into account.

typically difficult to aquire for L2 learners. As an
example of tree query, we therefore use

D2: TREE_
(FEATS_ "Definite={Def → Ind}")
[AND [DEPREL_ "det",

FEATS_ "Definite=Def"]]

This denotes sentences where a nominal (typically
a noun) is in its indefinite form despite being in-
troduced by a definite determiner (typically an ar-
ticle). In terms of SweLL error labels, these cases
are a fraction of those marked as M-Def, which is
used to indicate a wide variety of errors concern-
ing definiteness (adjective-noun agreement, miss-
ing determiners etc.).

Finally, along the lines of the sequence patterns
discussed in Section 3.1.2, we use

D3: SEQUENCE [
DEPREL_ "advmod",
{OR [POS "VERB", POS "AUX"],
DEPREL_ "nsubj" →
DEPREL_ "nsubj",
OR [POS "VERB", POS "AUX"]}]

to look for sentences where the V2 order is vio-
lated following an adverb or an adverbial clause.14

With this pattern, we cover some of the errors la-
belled as S-FinV, namely those involving the mis-
placement of a finite verb.

4.2.3 Results
As Table 2 suggests, precision is reasonably good
even on our automatically annotated data, while
recall fluctuates depending on the query.

When it comes to D1, false negatives are in
the almost totality of cases due to the fact that
the parser, as it is to be expected, asssigns to-
kens different dependency labels based on their
case (typically, subjects incorrectly inflected in
their accusative form are labelled as direct ob-
jects and objects in the nominative form become
obliques). The vast majority of the false posi-
tives is also due not to the query engine itself,
but to incorrect alignments deriving from parse
errors. In 11 out of 13 such cases, false posi-
tives are sentences containing a syntactical error,

14Note that, for simplicity, we are only looking for se-
quences where the verb is contiguous to the subject.

which seems to confirm the intuition that nonstan-
dard syntax causes the parser to annotate the sen-
tences incorrectly. In only one case a false posi-
tive is due to a wrongly assigned error label. More
interesting are the cases in which tokens are cor-
rectly aligned, but the correction of a syntax error
consists in a rephrasing that happens to also al-
ter the case of one of the words involved, such as
in the L2 phrase Rollerna för barn (literally “The
roles for the children”), corrected as Barnens roller
(“The children’s roles”), transforming the nomina-
tive barn into a genitive barnens.

The tree query, more specific, has only 10 ex-
pected matches, allowing for a thorough error
analysis. The only false negative seems to be due
to an alignment error whose cause is hard to pin-
point. Of three false positives, one derives from
incorrect morphological annotation, one from a
rephrasing that creates problems at the alignment
stage and one from the presence, in the L2 sen-
tence De ligger på första plats i den ligan! (“They
are in first place in that league!”), of the English
word “league”, annotated (arguably correctly) as
an indefinite but translated, in the correction, to
the definite ligan.

The relatively low recall for D3 is easily ex-
plained by the fact that, as we already discussed,
sentences containing syntactical errors are espe-
cially challenging for the parser.

5 Conclusions and future work

We presented a query engine for L1-L2 parallel
UD treebanks, the first in a larger collection of
tools for L2 UD treebanks. The tool, which does
not rely on an underlying error taxonomy, allows
to search for error-correction pairs via L1-L2 pat-
terns, i.e. pairs of morphosyntactical structures
expressed in a pattern matching language for de-
pendency trees, which we extended in order to
simplify its use on parallel treebanks. Our novel
retrieval algorithm allows searching for full sen-
tences as well as extracting their specific query-
matching portions.

Our first, small-scale evaluation of the tool gives
promising results, but also shows that the align-
ment component is often the bottleneck. This
propmts us to investigate alignment techniques
specifically meant for parallel learner corpora,
such as Felice et al. (2016)’s for L2 English. The
fact that, for automatically annotated data, many
alignment issues derive from parse errors also
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seems to confirm the scarce robustness of standard
tools to learner errors, pointing to a need to train
ad hoc models or explore new, more specific ap-
proaches.

In future versions of the tool, we plan to op-
timize variables and generalize them to all UD
fields, thus increasing expressive power of the
query language. Furthermore, while the tool is
designed with L1-L2 treebanks in mind, nothing
prevents us from testing it on multilingual paral-
lel UD treebanks, for example to find instances of
known translation divergences.

As for the future of L2-UD, our efforts in the
near future will be focused on extracting error pat-
terns from L1-L2 treebanks. Eventually, we hope
it will also be possible to integrate the two and en-
able using error-correction pairs to retrieve simi-
lar examples. This would help making the engine
more user-friendly, replacing explicit queries, but
could also be a strategy to provide L2 learners with
feedback, along the lines of Arai et al. (2019).
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Appendix A Abbreviations

A.1 UD standard

A.2 CoNNL-U fields
• DEPREL: dependency label;
• FEATS: list of morphological features;
• FORM: word form or punctuation symbol;
• LEMMA: lemma/stem of the word form;
• POS: Universal POS tag;
• XPOS: language-specific POS tag.

For the full specification of the CoNNL-U for-
mat, see universaldependencies.org/
format.html (last access 05.04.2023).

A.2.1 Universal POS tags
• ADP: adposition (pre- or postposition);
• ADV: adverb;
• AUX: auxiliary;
• DET: determiner;
• PRON: pronoun;
• VERB: non-auxiliary verb.

For a comprehensive list of UD POS tags, see
universaldependencies.org/u/pos
(last access 05.04.2023).

A.2.2 Universal dependency relations
• advmod: adverbial modifier of a predicate or

modifier word;
• amod: adjectival modifier of a nominal;
• aux: auxiliary;
• case: case-marking element treated as a sep-

arate word;
• det: determiner. The subtype poss indicates

a possessive;
• nsubj: nominal subject;
• obj: direct object;
• obl: oblique nominal, i.e. non-core verb ar-

gument or adjunct;
• root: root of the sentence, usually its main

(non-auxiliary) verb and, in general, a con-
tent word.

For a comprehensive list of UD relations, see
universaldependencies.org/u/dep
(last access 05.04.2023).

A.3 VALICO-UD error labels
• IDG: Determiner incorrectly Inflected for

Gender. The IDGcascade label is used in cases
where the incorrect inflection depends on an-
other error, typically ING or RN;

• ING: Noun incorrectly Inflected for Gender;
• RD: Determiner Replacement (wrong choice

of determiner);
• RN: Noun Replacement (lexical error involv-

ing a noun);
• SEU: Spelling error - Unnecessary apostro-

phE.

The complete error annotation guidelines
for the VALICO-UD treebank are avail-
able at raw.githubusercontent.
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com/ElisaDiNuovo/VALICO-UD_
guidelines/main/Error_Annotation_
Guidelines_v.1.1.pdf (last access
05.04.2023).

A.4 SweLL error labels
• M-Case: noun or pronoun incorrectly in-

flected for case;
• M-Def: definiteness-related error, namely ei-

ther:
– noun, pronoun, adjective or participle

incorrectly inflected for definiteness;
– incorrect, missing or redundant article;

• S-FinV: incorrect placement of a finite verb.

See Rudebeck and Sundberg (2021) for the full
SweLL correction annotation guidelines.

Appendix B Annotation inconsistencies

B.1 VALICO-UD corpus
• Sentence 34-12_en-3: {un → un’*} cor-

rectly labelled as SEU, but not as IDG15

• sentence 19-06_en-3 un in {un uomo →
un’uoma*} labelled as IDG rather than IDG-
cascade

• sentence 18-10_en-1 la in {sul braccio→
sul+la braccia*} labelled as IDG rather than
IDGcascade

• sentence 18-05_en-1 token sedile lacking
gender annotation in both the L1 and the L2
files

• sentece 17-07_en-2 token amante lacking
gender annotation in both the L1 and the L2
files

• sentece 3-13_fr-3 le in {gli uccelli → le
uccele*} labelled as IDG rather than IDGcas-
cade.

This list of error annotation issues refers to the
14.05.2022 version of the treebank.16 At the time
of writing, these observations have been discussed

15The sentence in question is Ho voltato la pagina e ho
iniziato a leggere {un → un’*} altro titolo. (“I turned the
page and started reading another title.”). This is an interesting
case: the UD annotation correctly states that the indefinite
article un is masculine while its L2 counterpart un’ (mind
the apostrophe) is feminine, but the manually assigned error
tag, rather than the expected IDG, is SEU, which indicates,
also correctly, a spelling error (unnecessary apostrophe). All
the more reasons not to rely on explicit error labelling!

16Available for download at github.com/
UniversalDependencies/UD_Italian-Valico
(last access 05.04.2023), with commit SHA
7c4fae4f1e6491ca9e648cfb902e1c675c179a42.

with the authors of the treebank and the annota-
tions in question, excepts for two cases in which
they were the result of a deliberate choice, are in
the process of being fixed.

B.2 DaLAJ corpus
• Sentence 1811 labelled as S-Clause rather

than M-Case.

This annotation error refers to the 04.02.2023 ver-
sion of the treebank and was corrected in a subse-
quent update.17

17Available for download at github.com/harisont/
L1-L2-DaLAJ (last access 05.04.2023), with commit SHA
94e133aa083e487cfb28a7c22dda4e1c240bcaf5.
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Appendix C Example program output: Markdown reports

The following reports, as well as all results presented in this paper, were obtained with L2-UD v0.18

C.1 TREE_ (AND [POS "NOUN", FEATS_ "Gender=$A"]) [AND [POS "DET",
FEATS_ "Gender=$A → $B"]] (V ′

1)
Sentence 30-09_de-2:

L1 sentece L2 sentece

Poi , lei si è arrabbiata e mi ha detto che questo
uomo con i grandi muscoli che si è sdraiato a terra
era il suo fidanzato e il suo grande amore .

Poi , lei si è arrabbiata e mi ha detto che questo
uomo con i grandi muscoli che si è sdraiato sulla
terra era il suo fidanzato e la sua grande amore .

Sentence 3-11_fr-3:

L1 sentece L2 sentece

La donna ringraziava il suo salvatore con un
abbraccio e chiudeva gli occhi .

La dona ringraziava suo salvatore con un braccio e
chiusa le occhi .

Sentence 10-07_es-1:

L1 sentece L2 sentece

Gli ho gridato alcune parolacce . L’ ho gridato alquini parolace .

Sentence 4-04_fr-2:

L1 sentece L2 sentece

Un altro uomo si trovava lì , seduto su una
panchina del di il parco , leggendo un giornale con
i suoi occhiali .

Un altra uomo , si trova li , seduto sul su il un
panchino del di il parco , leggendo un giornale con
i suoi occhiali .

Sentence 34-12_en-3:

L1 sentece L2 sentece

Ho voltato la pagina e ho iniziato a leggere un
altro titolo .

Ho voltato la pagina e ho iniziato a leggere un’
altro titolo .

Sentence 19-01_en-3:

L1 sentece L2 sentece

Ieri al a il parco , un uomo brutto è arrivato e ha
detto delle parole cattive a una donna .

Ieri al a il parco , un’ uomo brutto è arrivata e ha
detto le parole cattive a una donna .

Sentence 27-02_de-3:

18Download link: github.com/harisont/L2-UD/releases/tag/v0 (last access 05.04.2023).
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L1 sentece L2 sentece

Subito guarda come un altro uomo con grande
forza fisica e con malumore porta sulle sue spalle
una ragazza che grida .

Subito guarda come un altro uomo con grande
forza fisica e con malumore porta una ragazza
sulle sui spalle che grida .

Sentence 3-12_fr-3:

L1 sentece L2 sentece

Era un vero momento di benessere . Era una vero momento di benessere .

Sentence 27-08_de-3:

L1 sentece L2 sentece

« Il mio amore non dipende dal suo
comportamento . »

« Il mia amore non dipende dal suo
comportamento . »

Sentence 32-06_de-2:

L1 sentece L2 sentece

Un uomo molto forte , intelligente , sportivo e
carino mi ha salvato da questa ignorante persona
, Marco .

Un’ uomo molto forte , intelligente , sportivo e
carino mi ha salvato di questo ignorante persona
Marco .

Un uomo molto forte , intelligente , sportivo e
carino mi ha salvato da questa ignorante persona ,
Marco .

Un’ uomo molto forte , intelligente , sportivo e
carino mi ha salvato di questo ignorante persona
Marco .

C.2 SEQUENCE [DEPREL_ "advmod", OR [POS "VERB", POS "AUX"], DEPREL_
"nsubj" -> DEPREL_ "nsubj", OR [POS "VERB", POS "AUX"]] (D3)

Sentence 1958:

L1 sentece L2 sentece

Därför tycker jag om havet . Därför jag tycker om havet .

Sentence 1943:

L1 sentece L2 sentece

Tyvärr har någonting hänt som gör att jag inte
kan gå på kursen och jag önskar att få pengarna
tillbaka .

Tyvärr någonting har hänt som gör att jag inte
kan gå på kursen och jag önskar att få pengarna
tillbaka .

Sentence 1950:

L1 sentece L2 sentece

Därför vill jag inte flytta . Därför jag vill inte flytta .

Sentence 1965:
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L1 sentece L2 sentece

Där bodde jag i Göteborg med min mamma och
hennes hundar i hennes hus .

Där jag bodde i Göteborg med min mamma och
hennes hundar i hennes hus .

Sentence 1936:

L1 sentece L2 sentece

Ibland kan vi titta och lyssna på hur det funkar . Ibland vi kan titta och lyssna på hur det funkar .

Sentence 1139:

L1 sentece L2 sentece

Därför har man kommit med förslaget att ha en
kurs angående arbetslivet i gymnasiet .

Därför man kommit med förslaget att ha en kurs
angående arbetslivet i gymnasiet .

Sentence 1942:

L1 sentece L2 sentece

Lyckligtvis kan du spela piano , och där kan du
lära känna nya vänner .

Lyckligtvis kan du spela piano , och där du kan
lära känna nya vänner .

Sentence 1976:

L1 sentece L2 sentece

Ibland brukar man säga att kärleken har ingen
gräns och det är sant .

Ibland man brukar säga att kärleken har ingen
gräns och det är sant .

Sentence 1939:

L1 sentece L2 sentece

Men nu är jag inte intresserad av den längre . Men nu jag är inte intresserad av den längre .
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Abstract

We explore different approaches for filter-
ing parallel data for MT training, whether
the same filtering approaches suit differ-
ent datasets, and if separate filters should
be applied to a dataset depending on the
translation direction. We evaluate the re-
sults of different approaches, both manu-
ally and on a downstream NMT task. We
find that, first, it is beneficial to inspect
how well different filtering approaches
suit different datasets and, second, that
while MT systems trained on data pre-
pared using different filters do not dif-
fer substantially in quality, there is indeed
a statistically significant difference. Fi-
nally, we find that the same training sets
do not seem to suit different translation di-
rections.

1 Introduction

In recent years, machine learning (ML) research
has generally focused on creating better models
rather than better datasets. The focus on bench-
marking model performance spurs researchers into
adapting the largest existing datasets without fully
considering fidelity to the underlying problem the
model should solve (Mazumder et al., 2022). The
effectiveness of ML models, however, depends on
both algorithms and data. Aroyo et al. (2022) ar-
gue that as the datasets define the world within
which models exist and operate, more work is
needed on how the data can be optimized for more
effective use.

Filtering parallel data for machine translation
(MT) is the task of removing possible detrimen-
tal segments from data used for training MT mod-
els. Detrimental segments, in this context, are sen-
tence pairs in the training data that may degrade
the performance of an MT system trained on the

data. Filtering is usually carried out using a set
of rules, scoring mechanisms and/or classifiers, to
remove sentence pairs with the lowest perceived
quality.

In this work, we experiment with filtering the
raw data from two parallel corpora, ParaCrawl
(Bañón et al., 2020) and ParIce (Barkarson and
Steingrímsson, 2019), for the English–Icelandic
language pair. Our goal is to minimize detrimental
data while losing little or no useful data from the
texts, thus building a more accurate training set.

We investigate how shallow filters, four dif-
ferent scoring mechanisms and different classi-
fiers based on them are suited to score and fil-
ter English–Icelandic sentence pairs. We com-
pare these to Bicleaner (Sánchez-Cartagena et al.,
2018; Ramírez-Sánchez et al., 2020) and to how
the two corpora (ParaCrawl and ParIce) were fil-
tered for publishing.

Recent literature on parallel corpus filtering has
largely focused on filtering noisy data collected
from the web, as discussed in Section 2. We
want to investigate whether the same approaches
are suitable to filter noisy web-crawled corpora
and cleaner parallel corpora compiled from doc-
ument pairs that are known to be mutual trans-
lations. Furthermore, although the same training
data is usually used for training both translation
directions, source→target and target→source, for
a given dataset, we investigate whether that is opti-
mal or whether filtering separately for each trans-
lation direction is likely to bring improvements to
a downstream MT task.

Our primary goal is to find out how to filter
parallel corpora so as to compile a training set
that potentially gives the best results when used
to train an MT system. We seek an answer to
the following research questions: 1) Should the
same filtering approaches be used for a given
language pair, regardless of the datasets being
filtered? 2) Should the intended translation di-

588



rection of an MT system effect how the data,
used to train the system, is filtered? In order
to answer these questions, we build MT models
for both translation directions and multiple differ-
ent filtering approaches for each one, and evaluate
the results, both manually and automatically. We
find for best results, specific filtering approaches
should be chosen based on the dataset and transla-
tion direction being filtered.

2 Related Work

In their paper, Khayrallah and Koehn (2018)
show that incorrect translations, untranslated tar-
get text, misalignments, and other noisy segments
in a parallel corpus have a detrimental effect on
the output quality of NMT systems trained on
that corpus, as measured using BLEU (Papineni
et al., 2002). They specify five general classes
of noise commonly found in the German-English
ParaCrawl corpus: misaligned sentences, disflu-
ent text, wrong language, short segments, and un-
translated sentences. As this classification is rather
coarse, some variation can be expected within
each class; a misalignment in one sentence pair
does not have to be equivalent to a misalignment
in another sentence pair.

Briakou and Carpuat (2021) focus on fine-
grained semantic divergences within mostly
equivalent pairs (pairs of words, phrases or sen-
tences that have similar meanings and connota-
tions). An example given in the paper is fr: “votre
père est français” → en: “your parent is french”,
where the correct translation should be: “your fa-
ther is french”. These fine-grained divergences
can even be found in high-quality parallel cor-
pora. They find that the divergences cause degra-
dation on the MT output of a system trained on
the data, as measured by BLEU and METEOR
(Banerjee and Lavie, 2005), and that divergences
impact model confidence in their predictions. Lex-
ical substitution causes the largest degradation and
subtree deletion the least. Nevertheless, the im-
pact on divergences seem to be smaller than that
of noise. They argue that this suggests that noise-
filtering techniques are subobtimal to deal with
fine-grained divergences.

In early work on filtering web-scraped parallel
corpora, Rarrick et al. (2011) filter out machine-
translated content and show that removing large
amounts of training data can improve performance
of an MT system, challenging conventional wis-

dom at the time that more data is better.

Cross-lingual word embeddings have been used
to calculate distance between equivalences in dif-
ferent languages (Luong et al., 2015; Artetxe et al.,
2016). Defauw et al. (2019) treat filtering as a su-
pervised regression problem and show that Leven-
shtein distance (Levenshtein, 1966) between the
target and MT-translated source, as well as co-
sine distance between sentence embeddings of the
source and target, are important features.

The Conference on Machine Translation,
WMT, hosted three annual shared tasks on parallel
corpus filtering (Koehn et al., 2018, 2019, 2020),
focusing on filtering noisy web-crawled corpora.
Chaudhary et al. (2019) and Artetxe and Schwenk
(2019a) introduced approaches based on cross-
lingual sentence embeddings trained from parallel
sentences. When using cosine similarity to find
the nearest neighbours in an embedding space, co-
sine similarity is not necessarily globally consis-
tent and different scales of target candidates for
a given source sentence may affect their relative
ranking, causing the hubness problem, described
by Dinu and Baroni (2015). The problem is caused
by a few vectors in the embedding space that tend
to be “universal” neighbours, i.e., neighbours of a
large number of different mapped vectors, pushing
the correct ones down the neighbour list. Both pa-
pers tackle the scale inconsistencies of cosine sim-
ilarity by considering the margin between a given
sentence pair and its closest candidates to normal-
ize the similarity scores.

Bicleaner uses a set of handcrafted rules to de-
tect flawed sentences and then proceeds to use a
random forest classifier based on lexical transla-
tions and several shallow features such as respec-
tive length, matching numbers and punctuation. It
also scores sentences based on fluency using 5-
gram language models. Bicleaner AI (Zaragoza-
Bernabeu et al., 2022) is a fork of Bicleaner using
a neural classifier. It has been shown to give signif-
icant improvements in translation quality as mea-
sured by BLEU when used for filtering training
data for multiple language pairs, as compared to
the previous version of the tool. In contrast to tools
that implement a single method for parallel corpus
filtering, Aulamo et al. (2020) implement multiple
different filters in the OpusFilter toolbox. These
include heuristic based filters, language identifica-
tion, character-based language models and word
alignment tools.
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Herold et al. (2022) revisit the noise classes
specified by Khayrallah and Koehn (2018) to in-
vestigate how accurately two of the strongest fil-
tering approaches to date (according to them)
cross entropy (Rossenbach et al., 2018) and
LASER (Artetxe and Schwenk, 2019b) can filter
out different noise classes. They find that for a
common language pair, German→English, most
types of noise can be detected with over 90% accu-
racy, although misalignments and poor synthetic
translation can only be detected with an accuracy
of less than 70%. For a less common language
pair, Khmer–English, the performance of the fil-
tering system degraded significantly and the accu-
racy of identifying noise was lowered by 8–19%,
depending on the type of noise.

3 Experimental Setup

We compare a number of approaches and scor-
ing mechanisms and apply them to a web-crawled
corpus, on the one hand, and a parallel corpus
compiled from parallel documents, on the other.
We manually evaluate samples of the results us-
ing the taxonomy developed by Kreutzer et al.
(2022) to gain an understanding of what sort of
data each approach and scoring mechanism filters
out. We then train MT systems on datasets filtered
using the different approaches, as well as on pre-
viously published, filtered versions of the corpora,
and compare the quality of the resulting systems
in terms of BLEU scores. We measure BLEU
scores on the test set provided for the English–
Icelandic language pair in the WMT 2021 shared
task (Akhbardeh et al., 2021), using SacreBLEU
(Post, 2018).

3.1 Data Sets

The data sets we use for our experiments are
the English–Icelandic part of ParaCrawl and the
English–Icelandic parallel corpus ParIce. We
carry out the same experiments using both corpora
and compare the results.

ParaCrawl is compiled from web-crawled data.
Based on the evaluation by Kreutzer et al. (2022),
approximately 76% of sentence pairs are ac-
ceptable mutual translations, on average, in 21
language pairs from the ParaCrawl 7.1 datasets
cleaned for publication. There is also high vari-
ance between languages and low-resource datasets
tend to have lowest human-judged quality. Rik-
ters (2018) inspects the quality of the first ver-

sion of ParaCrawl and filters out 85% of the
English–Estonian ParaCrawl dataset. Although
there may be differences in noise ratio between
different versions of the corpus, for most language
pairs ParaCrawl can likely be made more useful
for training MT models by better filtering. This
has been emphasized by the results of the WMT
shared tasks on filtering parallel corpora. In our
work, we start with the raw data from version 9
of the corpus, consisting of 65,373,727 sentence
pairs in total. Our goal is to extract from the cor-
pus sentence pairs useful for training MT systems
on its own or to complement other data sets, and
leave out sentence pairs likely to be detrimental.

The English-Icelandic parallel corpus ParIce
differs from ParaCrawl in that it is compiled
from known parallel documents, which have been
aligned at the sentence level. When the corpus
was compiled initially, the filtering process re-
sulted in an estimated 20% reduction in corpus
size. Out of what remained, manual evaluation
of samples from the corpus indicated that approx-
imately 3.5% was in some way faulty (Barkarson
and Steingrímsson, 2019). The corpus is available
unfiltered, accompanied with semantic similarity
scores for each sentence pair and flags indicating
whether it is recommended to filter out the pair
or not. We work with the unfiltered data, version
21.10 (Steingrímsson and Barkarson, 2021).

3.2 Filters and Scoring
In order to find which sentence pairs are useful
and which ones to filter out, we use an array of
tools for scoring sentence pairs to find the highest-
quality data within the corpora. We start with shal-
low filters to remove pairs that are very likely to be
noise, and then proceed to run different tools, both
made available by others and of our own device.

Shallow Filters
Our shallow filters are inspired by Pinnis (2018),
who applies 17 different filters in his work. We do
not use all his filtering approaches but select the
ones likely to remove the highest portion of detri-
mental pairs as outlined by Khayrallah and Koehn
(2018). They are:

1. If both source and target sentence have 3 to-
kens or less, the pair is discarded.

2. All pairs, for which 60% or more of the to-
kens in one language are also present in the
other language, are removed.
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3. At minimum, 70% of characters in both sen-
tences should be alphabetical.

4. Both languages are in the top 2 prediction of a
language filter. We use fasttext (Joulin et al.,
2017) for language filtering.

5. Removal of near-duplicate pairs. We con-
sider sentence pairs with all non-alphabetical
symbols removed and if there are identical
pairs in the corpus we keep the one with the
highest score (Bicleaner score for ParaCrawl,
LASER, LaBSE and WAScore for ParIce).

6. Removal of near-duplicate source or target
sentence. We consider strings after remov-
ing all non-alphabetical symbols, and all to-
kens starting with a capital letter (removing
possible named entities) from the sentences.
If there are identical such strings in the same
language, we select the highest scoring pair.

Bicleaner Models
Bicleaner is an open source noise filter and classi-
fication tool to clean parallel corpora, released as
part of the ParaCrawl project and used to gener-
ate the filtered ParaCrawl datasets. Bicleaner uses
a set of hard rules for pre-filtering, n-gram mod-
els for fluency scoring, and a random forest clas-
sifier to produce a probability score using features
such as lexical similarity, sentence length, punctu-
ation and capitalization. Bicleaner AI is a fork that
uses a fine-tuned XLM-RoBERTa classifier to pro-
duce probability scores by training it on positive
samples from existing parallel corpora and nega-
tive samples which are created by corrupting the
same positive samples. In synthesising the noise,
the tool tries to emulate errors commonly intro-
duced by sentence segmentation and alignment.

We use two publicly available Bicleaner mod-
els, version 1.5, for English–Icelandic, and Bi-
cleaner AI 1.0 full model. In addition, we train
two new models using Bicleaner v0.15.2, one that
classifies lemmatized data and the other unlemma-
tized. For training each model, we used word fre-
quency information from the Icelandic Gigaword
Corpus (Steingrímsson et al., 2018) for Icelandic
and News Crawl (Barrault et al., 2020) for English,
a probabilistic dictionary (Steingrímsson et al.,
2022), and for parallel training data, 250k highest-
scoring sentence pairs from the 21.10 version
of ParIce (Steingrímsson and Barkarson, 2021),
based on the scores published with the corpus.

Scoring and Score-Based Classifiers
We use multiple scoring mechanisms to assess the
quality of the bilingual sentence pairs.
LASER (Artetxe and Schwenk, 2019b) uses a sin-
gle BiLSTM encoder with a shared byte-pair en-
coding (BPE) vocabulary (Sennrich et al., 2016)
for all languages and is trained on parallel corpora.
LaBSE (Feng et al., 2022) is trained and opti-
mized to produce similar representations for bilin-
gual sentence pairs. It uses dual encoder models,
with the encoder architecture following the BERT
Base model, and additive margin softmax which
extends the scoring function in the model by intro-
ducing a large margin around positive pairs, im-
proving the separation between translations and
nearby non-translations (Yang et al., 2019). An
available pre-trained model was trained on 109
languages, including Icelandic and English.
NMTScore (Vamvas and Sennrich, 2022) is based
on translation cross-likelihood, the likelihood that
a translation of segment A into some language,
could also be a translation of segment B into the
same language. An example could be the trans-
lation of the French ‘Bonjour!’ into the Swedish
‘Hej!’. To calculate translation cross-likelihood,
the French segment would first be translated to a
third language, say English, and the score is based
on the probability of the model getting the same
translation for the Swedish segment. The score is
symmetrized by averaging the translation proba-
bilities in both directions. We use the M2M100
multilingual translation model (Fan et al., 2021)
to calculate NMTScore.
WAScore is a word alignment-based score de-
vised to measure word-level parallelism, intro-
duced in Steingrímsson et al. (2021) to help with
identifying parallel bilingual sentence pairs in a
comparable corpus.

The scores are used to train classifiers for de-
termining acceptability of parallel sentence pairs.
We adapt a training set compiled for a classifier
used in mining comparable corpora (Steingríms-
son et al., 2021). The dataset was compiled of
50,000 randomly sampled non-parallel pairs from
two monolingual news corpora for negative exam-
ples and 1,000 parallel segments containing sen-
tence pairs from news media. LASER, LaBSE,
NMTScore and WAScore were calculated for all
51K sentence pairs, and used to train the classi-
fiers. We used scikit-learn (Pedregosa et al., 2011)
to train random forest (Breiman, 2001), support
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ParaCrawl shallow filtering
Filter Dataset Size CC (%) 3C (%) X (%) 3X (%)
0. ParaCrawl v9 Raw 65,373,727 14.40 69.20 8.00 30.80
0b. ParaCrawl v9 Clean 2,967,519 13.60 89.20 8.80 10.80
1.-3. Non-zero / low overlap (accepted) 31,094,385 23.60 94.80 4.40 5.20
1.-3. Non-zero / low overlap (discarded) 34,285,591 1.60 46.80 9.20 53.20
4.-5. Symbol+Language filter (accepted) 26,609,214 25.00 97.20 2.80 2.80
4.-5. Symbol+Language filter (discarded) 4,485,171 11.20 85.60 9.20 14.40
6. Similar pairs (accepted) 4,666,464 12.00 86.80 12.80 13.20
7. Similar segments (accepted) 2,081,354 14.80 95.60 3.60 4.40

ParIce shallow filtering
0. ParIce 21.10 filtered 1,776,049 73.60 95.20 4.80 4.80

Table 1: Size and manual evaluation results for the shallow filtering approaches. For each dataset 250
randomly sampled pairs are evaluated. 3C stands for all correct codes: CC, CB and CS. 3X stands for
all error codes: X, WL and NL. For comparison, we also evaluate the clean version of the corpus as
published by the ParaCrawl project. Note that we evaluated both accepted and discarded pairs for two of
the filtering steps.

vector machine (Cortes and Vapnik, 1995) and lo-
gistic regression (Cox, 1958) classifiers.

Sentence Perplexity using GPT-2
Manual evaluation of ParaCrawl sentence pairs re-
vealed that the Icelandic sentences in ParaCrawl
are frequently ungrammatical or have erratic syn-
tax, even though some, and in some cases most or
all, of the lexical semantics of the translations are
correct. This is likely because many web pages,
scraped by the ParaCrawl project, use MT mod-
els to generate texts in multiple languages, even
though the MT models do not generate fluent re-
sults. We try to find these badly formed sentences
by training a classifier to recognize fluent and dis-
fluent sentences. The classifier uses a pre-trained
GPT-2 model (Radford et al., 2019), trained on the
Icelandic Gigaword Corpus (Steingrímsson et al.,
2018).1 To train the classifier, we selected 10,000
sentences randomly from WikiMatrix (Schwenk
et al., 2021) and ParaCrawl v8, and manually clas-
sified them in two groups: coherent (6,570 sen-
tences) and incoherent (3,430 sentences).2 The
classifier uses the GPT-2 model to calculate per-
plexity for the sentences, and chooses potential
thresholds as the average between two adjacent
perplexity values. It then uses a maximization
function to decide on a threshold that yields the
most accurate prediction based on the training set.

1The model, trained by Jón Friðrik Daðason, is avail-
able on Hugging Face: https://huggingface.co/
jonfd/gpt2-igc-is/tree/v1.0.

2Dataset available here: https://github.com/
steinst/filter-align-datasets

3.3 Manual Evaluation

We manually annotated samples of the data sets
compiled by each filtering approach. In our eval-
uation, we followed the taxonomy developed by
Kreutzer et al. (2022), but slightly amended one
category, CB, to include partial alignments. The
taxonomy uses three codes for correct pairs and
three error codes:

• CC – Correct translation, natural sentence.

• CB – Correct translation, boilerplate, partial
alignments or grammatical errors.

• CS – Correct translation, short.

• X – Incorrect translation.

• WL – Either sentence in wrong language.

• NL – Either sentence is non-linguistic con-
tent.

Shallow Filters: We annotated 250 randomly se-
lected pairs from the datasets at different stages of
shallow filtering. Table 1 shows the size of the
datasets after applying shallow filters, and the per-
centage of sentence pairs in different categories.
The evaluation indicates that almost 70% of the
raw ParaCrawl data is potentially useful, while
over 30% is in the best case useless and possibly
detrimental. Note that this describes the dataset
before any filtering or deduplication has been car-
ried out. ParaCrawl also distributes a cleaned ver-
sion of the corpus, containing approximately 3M
sentence pairs. In that version, over 10% of sen-
tence pairs are still erroneous and, while almost
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Laser LaBSE
ParaCrawl ParIce ParaCrawl ParIce

CC 3C X 3X CC 3C X 3X CC 3C X 3X CC 3C X 3X
0.0 ⇒ 0.1 10 100 0 0 95 100 0 0 0 7 93 93 1 9 91 91
0.1 ⇒ 0.2 9 99 1 1 93 99 1 1 0 5 95 95 4 12 88 88
0.2 ⇒ 0.3 8 99 1 1 92 100 0 0 1 6 94 94 11 26 74 74
0.3 ⇒ 0.4 16 100 0 0 87 100 0 0 0 7 93 93 14 50 50 50
0.4 ⇒ 0.5 16 99 1 1 83 99 1 1 2 13 85 87 24 75 25 25
0.5 ⇒ 0.6 20 85 14 15 75 98 2 2 4 42 57 58 46 93 7 7
0.6 ⇒ 0.7 15 69 31 31 61 90 10 10 16 71 29 29 64 98 2 2
0.7 ⇒ 0.8 10 43 57 57 58 93 7 7 26 94 6 6 82 100 0 0
0.8 ⇒ 0.9 13 56 42 44 63 75 25 25 15 98 2 2 89 99 1 1
0.9 ⇒ 1.0 27 63 36 37 51 65 36 36 11 99 1 1 99 100 0 0

NMTScore WAScore
ParaCrawl ParIce ParaCrawl ParIce

CC 3C X 3X CC 3C X 3X CC 3C X 3X CC 3C X 3X
0.0 ⇒ 0.1 22 76 24 24 65 92 8 8 1 17 81 83 8 45 55 55
0.1 ⇒ 0.2 20 96 4 4 87 100 0 0 12 46 53 54 43 91 9 9
0.2 ⇒ 0.3 12 98 2 2 85 100 0 0 28 72 21 28 57 95 5 5
0.3 ⇒ 0.4 9 100 0 0 94 100 0 0 27 88 9 12 73 97 3 3
0.4 ⇒ 0.5 9 100 0 0 97 100 0 0 39 96 4 4 80 100 0 0
0.5 ⇒ 0.6 12 99 1 1 97 100 0 0 33 95 5 5 92 100 0 0
0.6 ⇒ 0.7 13 100 0 0 93 100 0 0 27 93 7 7 93 99 1 1
0.7 ⇒ 0.8 11 99 0 1 99 100 0 0 10 99 1 1 94 99 1 1
0.8 ⇒ 0.9 23 100 0 0 100 100 0 0 7 97 3 3 94 99 1 1
0.9 ⇒ 1.0 20 100 0 0 100 100 0 0 5 98 2 2 95 100 0 0

Table 2: Results of the manual evaluation of samples of 100 randomly selected sentence pairs from each
of ten bands for the scoring mechanisms used.

90% are potentially useful, only 13.6% are eval-
uated to be good mutual translations. We filter
the raw data and evaluate the changes after in be-
tween shallow filtering steps. All the filters dis-
card some mutual translations but proportionally
more inadequate pairs. While the 3C column indi-
cates the ratio of all pairs in the correct category, it
includes boilerplate and ungrammatical segments
not necessarily useful for MT. We want our filters
to keep as many sentence pairs from the CC cate-
gory and remove all from the X-categories. After
filters 1-7 (see Section 3.2) have been applied, we
see the number of pairs annotated as correct, CC,
is 14.8%. After filter 5 this was 25%, but the last
two filters lower the ratio because sentences that
are identical, except for numbers or other named
entities, have been reduced to one example.

We only manually evaluate the ParIce corpus af-
ter applying all the shallow filters and do not in-
vestigate the changes at each stage. This is be-
cause the data in the corpus all comes from known
document sources and should not contain as much
noisy data as ParaCrawl. We find that about 5%
of sentence pairs in the corpus are erroneous, a
number largely in line with the original ParIce pa-
per, where the evaluation indicated that 3.5% of
the alignments were bad, but we also find that
only about three out of every four sentence pairs
are mutual translations, with about 20% being ac-
cepted as correct while being imperfect in some
way, usually due to misalignments.

Scores: After evaluating the shallow filters, we
evaluated the effectiveness of the scoring mecha-

nisms. We divided the scores for each scoring ap-
proach into 10 bands, and manually evaluated 100
pairs for each band. The evaluation results, shown
in Table 2, indicate that all the scoring methods
have some merit and could probably be useful to
a classifier. On their own, the results usually dif-
fer depending on the parallel corpora used, with
the accuracy of the same scoring mechanism vary-
ing for different corpora. For example, the LaBSE
score has to be more than 0.7 for more than 90% of
sentence pairs in a scoring band to be acceptable
(3C) for ParaCrawl, but only 0.5 for ParIce.

The distribution of the scores differ between
scoring approaches, which can effect their useful-
ness. While NMTScore seems to be very accu-
rate when looking at the bands in the table, 83%
of the ParaCrawl sentences have a score of less
than 0.3, and 25% of the ParIce sentences have a
score of less than 0.1, indicating that even though
the results seem very good, using only this scor-
ing method may not be enough for accurate filter-
ing. It should also be noted that most approaches
do not seem to be very good at discerning finer
nuances such as whether a sentence pair contains
only mutual translations or if there is additional
content in at least one of the sentences. The ra-
tio of CC usually does not change as consistently
with rising scores as the 3C or 3X ratio. This may
indicate that if some sentence pairs classified as
CB are detrimental to MT training, we need other
approaches to identify them and filter out.

Filters: We annotated 100 pairs from each group
of stochastic filtering approaches. We use the clas-
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ParaCrawl Filters
Filter accepted (%) rejected (%)

No. pairs CC 3C X 3X No. pairs CC 3C X 3X
GPT-2 1,218,256 15 93 7 7 863.098 5 91 8 9
Logistic Regression 1,940,385 38 85 4 15 140,969 18 37 61 63
Random Forest 1,981,405 7 98 0 2 99,949 2 22 77 78
Support Vector Machine 1,991,924 12 98 2 2 89,430 0 22 78 78
Bicleaner baseline (0.50) 1,973,885 22 96 4 4 107,469 10 41 58 59
Bicleaner baseline (0.67) 1,705,042 15 98 2 2 376,312 20 80 20 20
Bicleaner retrained (0.50) 1,898,209 25 97 3 3 183,145 27 75 25 25
Bicleaner retrained (0.67) 1,615,913 20 98 2 2 465,441 24 81 18 19
Bicleaner lemmatized (0.50) 1,850,884 18 88 8 12 230,470 14 66 28 34
Bicleaner lemmatized (0.67) 1,512,437 30 93 5 7 568,917 21 70 29 30
Bicleaner AI (0.50) 1,235,771 33 99 1 1 845,583 6 85 13 15
Bicleaner AI (0.67) 1,096,288 25 97 3 3 985,066 8 92 8 8

ParIce filters
Filter accepted (%) rejected (%)

No. pairs CC 3C X 3X No. pairs CC 3C X 3X
GPT-2 1,444,956 81 96 4 4 331,093 68 91 9 9
Logistic Regression 1,560,346 85 100 0 0 215,703 49 77 23 23
Random Forest 1,667,847 86 99 1 1 108,202 20 51 49 49
Support Vector Machine 1,646,183 91 100 0 0 129,866 28 58 42 42
Bicleaner baseline (0.50) 1,546,216 85 99 1 1 229,833 35 79 21 21
Bicleaner baseline (0.67) 1,242,258 86 100 0 0 533,791 48 86 14 14
Bicleaner retrained (0.50) 1,499,610 85 99 1 1 276,439 42 90 10 10
Bicleaner retrained (0.67) 1,244,412 94 100 0 0 531,637 55 95 5 5
Bicleaner lemmatized (0.50) 1,463,780 89 100 0 0 312,267 50 90 10 10
Bicleaner lemmatized (0.67) 1,117,814 88 100 0 0 604,235 69 98 2 2
Bicleaner AI (0.50) 1,262,313 95 100 0 0 513,736 60 86 13 14
Bicleaner AI (0.67) 1,152,319 91 100 0 0 623,730 77 95 5 5

Table 3: Manual evaluation of datasets generated by different filtering approaches. We both evaluate
sentence pairs accepted by each filtering approach, and rejected by it.

sifiers and Bicleaner models described in section
3.2. We set cutoff score at two different levels for
each Bicleaner model, 0.5 and a higher threshold
of 0.67 to try to discover whether detrimental sen-
tence pairs can still be found at such a high level.

As evident in Table 3, the filtering mechanisms
are quite adept at removing erroneous sentence
pairs. We can see that for both corpora, all but two
filters return over 90% accepted sentence pairs,
and a low rate of erroneous data, and for ParIce,
in particular, almost all erroneous data is removed
for 8 out of 12 filtering approaches. However, as it
is important to keep as many of the good sentence
pairs as possible, the most useful approaches may
be the ones that remove the fewest mutual transla-
tions. We see that while the Bicleaner AI model
has the highest proportion of CC, mutual transla-
tions, it has the drawback of filtering out the high-
est proportion of sentences compared to almost all
other approaches. Almost half of the ParaCrawl
data was rejected, 985,066 out of 2,081,354 sen-
tence pairs, when the threshold score is set to 0.67,
of which 92% were rated in one of the correct cat-
egories. In order to investigate further what is best
for MT training, we next train multiple models,
using all the different data sets we have compiled,
in order to see how the translations generated by
these models compare to the results of our manual
evaluation.

3.4 Automatic evaluation

We evaluate the effect of different filtering ap-
proaches on a downstream NMT task by train-
ing different MT models for each of the compiled
datasets and evaluate them using BLEU. We use
fairseq (Ott et al., 2019) to train TransformerBASE

models, as described in Vaswani et al. (2017), ex-
cept that we set dropout to 0.2 and use BPE with
a shared vocabulary size of 32k. We train each
model on a single A100 GPU and use early stop-
ping with the patience set to 10 epochs on valida-
tion loss. We use the development and test sets
provided for the English–Icelandic news transla-
tion task at WMT 2021 (Akhbardeh et al., 2021),
using SacreBLEU.3 Following Koszowski et al.
(2021), we apply regular expressions to fix quota-
tion marks post-translation, making sure Icelandic
quotation marks are used in the Icelandic transla-
tions and English quotation marks in the English
translations.

We train baseline models using the cleaned
ParaCrawl dataset and the most recent published
version of ParIce, and compare them to models
trained on filtered datasets. Table 4 shows result-
ing BLEU scores. We used the pairwise bootstrap
test (Koehn, 2004) to calculate statistical signifi-
cance. Scores in bold are the highest, but not sig-
nificantly higher than scores in italics. When mod-
els are trained with a cleaner dataset, they seem

3SacreBLEU Signature: BLEU+numrefs.1+case.mixed
+tok.13a+smooth.exp+version.2.2.0

594



ParaCrawl training experiments ParIce training experiments
Dataset no. pairs en→is time is→en time no. pairs en→is time is→en time
Baseline: ParaCrawl v9 clean 2,967,519 20.2 23h3m 30.6 11h14m
Baseline: ParIce 21.10 1,864,679 19.1 22h54m 25.7 15h06m
Shallow filter 5 - Similar pairs 4,666,464 19.1 18h9m 30.4 29h56m
Shallow filter 6 - Similar segments 2,081,354 20.0 13h3m 31.9 15h57m
ParIce shallow filters 1,776,049 19.7 23h29m 25.5 14h31m
IS-perplexity (GPT-2) 1,218,256 21.1 5h50m 33.0 14h11m 1,444,956 18.5 22h33m 24.7 10h18m
SVM 1,991,924 19.6 13h41 32.4 15h56m 1,646,183 19.8 17h38m 26.0 13h04m
Logistic Regression 1,940,385 20.1 11h48 32.1 12h01m 1,560,346 19.2 16h51m 26.1 13h30m
Random Forest 1,981,405 19.5 6h37m 31.8 15h32m 1,667,847 18.6 20h07m 25.2 12h22m
Bicleaner 1.5 (0.50) 1,973,885 19.5 11h25m 32.2 15h33m 1,546,216 19.5 21h52m 26.2 12h5m
Bicleaner 1.5 (0.67) 1,705,042 19.3 8h29m 31.4 8h53m 1,242,258 19.5 12h06m 25.6 9h01m
Bicleaner retrained (0.50) 1,898,209 18.9 8h17m 31.9 15h41m 1,499,610 19.7 7h13m 25.6 12h22m
Bicleaner retrained (0.67) 1,615,913 19.5 7h36m 30.5 12h59m 1,244,412 19.8 10h16m 25.5 6h13m
Bicleaner lemmatized (0.50) 1,850,884 19.6 10h29m 31.6 17h19m 1,463,780 19.8 15h12m 25.9 11h56m
Bicleaner lemmatized (0.67) 1,512,437 19.3 6h27m 30.9 8h32m 1,171,814 19.8 7h29m 25.6 8h56m
Bicleaner AI (0.50) 1,235,771 20.5 8h26m 31.7 7h15m 1,262,313 19.1 7h07m 26.1 7h44m
Bicleaner AI (0.67) 1,096,288 21.0 4h50m 30.8 3h45m 1,152,319 18.9 7h11m 25.1 7h28m

Table 4: BLEU scores and training time for different filtering approaches. Scores in bold are the highest
for the dataset and translation direction. Scores in italics are lower, but not significantly lower than the
highest ones (p > 0.05).

to converge faster, even though the model quality
is the same or better. We know from our manual
evaluation that most of these training sets contain
some erroneous pairs, and in order to try to reduce
the number of these, we select the dataset result-
ing in the highest BLEU score out of the datasets
compiled by a Bicleaner model and the best re-
sulting dataset compiled by a classifier. We do
an ablation study to investigate whether combin-
ing these filters, and the filter looking at perplex-
ity in Icelandic sentences, leads to a better train-
ing set. For each dataset and translation direction,
we combine the highest scoring Bicleaner model
with combinations of the highest scoring statis-

tical classifier and the GPT-2 classifier. Table 5
shows the results for different combinations. For
the English→Icelandic translation direction, we
obtain higher scores for both corpora using a com-
bination, but for Icelandic→English the BLEU
scores never exceed the best standalone filters. We
speculate this may be due to noise being more
common in the Icelandic texts instigating a need
for more filtering when Icelandic is the target lan-
guage, making the combined filters a better choice
in that case, but further investigation is needed.

For our final models, we concatenate the
highest-scoring datasets from ParaCrawl and
ParIce. These models obtain the highest BLEU

ParaCrawl en→is filters
Dataset no. pairs BLEU time
Bicleaner AI (0.67) + LogReg 1,071,802 20.4 3h51m
Bicleaner AI (0.67) + GPT-2 776,984 21.5 4h17m
Bicleaner AI (0.67) + LogReg + GPT-2 756,503 20.7 3h40m

ParaCrawl is→en filters
Dataset no. pairs BLEU time
Bicleaner 1.5 (0.50) + SVM 1,930,998 32.3 20h24m
Bicleaner 1.5 (0.50) + GPT-2 1,147,961 31.9 9h02m
Bicleaner 1.5 (0.50) + SVM + GPT-2 1,119,400 32.1 7h32m

ParIce en→is filters
Dataset no. pairs BLEU time
Bicleaner Lemmatized (0.50) + SVM 1,405,446 20.2 17h59m
Bicleaner Lemmatized (0.50) + GPT-2 1,205,070 19.6 14h04m
Bicleaner Lemmatized (0.50) + SVM + GPT-2 1,161,337 18.9 13h24m

ParIce is→en filters
Dataset no. pairs BLEU time
Bicleaner 1.5 (0.50) + LogReg 1,430,015 26.1 13h22m
Bicleaner 1.5 (0.50) + GPT-2 1,269,808 25.7 9h30m
Bicleaner 1.5 (0.50) + LogReg + GPT-2 1,179,158 25.7 10h46m

Best datasets from both corpora combined
Dataset no. pairs BLEU time
is→en: ParaCrawl – GPT-2 + ParIce Bicleaner 1.5 (0.50) 2,764,472 33.2 15h55m
en→is: ParaCrawl – Bicleaner AI (0.67) + GPT-2

+ ParIce – Bicleaner Lemmatized (0.50) + SVM 2,182,430 22.6 18h57m

Table 5: BLEU scores and training time for combinations of different filtering approaches. While
datasets compiled with combined filters were used to train MT systems delivering the highest BLEU
scores for the English→Icelandic translation direction, for Icelandic→English the highest scoring sys-
tems were trained on data compiled with only one filter. Scores in bold are the highest scores for the
dataset and translation direction they represent. Scores in italics are lower, but not significantly lower
(p > 0.05). Scores in bold and italics are the highest scores obtained for the translation direction.
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scores, 33.2 for Icelandic→English and 22.6 for
English→Icelandic. We compare these scores to
the results of systems submitted to the WMT 2021
news translation task for the same language pair
and directions. Koszowski et al. (2021) submit-
ted a system trained on ParIce and ParaCrawl as
well as WikiMatrix and wikititles. The model,
based on TransformerBIG (Vaswani et al., 2017),
using back-translation and forward-translation for
data augmentation, achieved 22.7 and 33.3 BLEU
for en→is and is→en, respectively, only slightly
higher, and probably not significantly higher,
than our best scores. Símonarson et al. (2021)
trained MT models using mBART-25, employing
16 V100 GPUs. They employed back-translations
in their training and achieved 22.7 and 32.9 BLEU
for en→is and is→en, respectively, after training
for 4 days, and after another 4 days and adding
more back-translations, they reached 24.3 and
33.5 for en→is and is→en, respectively. These
are slightly higher than our best scores. How-
ever, we only filter, while they use data augmen-
tation, larger models and more computing power
for much longer periods of time.

4 Conclusions and Future Work

In regards to our research questions, our results in-
dicate that different filtering approaches suit dif-
ferent datasets and translation directions, even
though we are working within the same language
pair. Manual inspection of filtering results and
scoring mechanisms seem to be helpful for making
informed decisions on how best to filter a dataset.
For best results, filtering approaches should be
chosen for each translation direction. A limitation
of our work is that it does not show which data
are detrimental and which are beneficial. In future
work, we want to investigate if the differences be-
tween datasets used for training can give us an idea
of which sentence pairs are most important to filter
out. We intend to do this by investigating the pairs
discarded by our filters, to compare the data that
leads to rising BLEU scores and that which lowers
them. This could lead to insights that help con-
structing filters that work on a more fine-grained
level when that is needed.

Our manual evaluation shows that the scores,
generated by the automatic scoring systems we
employ, have different interpretations depending
on the dataset. If scores are used for filtering
parallel data, the optimal score should lead to a

dataset that produces the best MT model. Feng
et al. (2022) suggest a threshold of 0.6 for LaBSE
when mining parallel text from CommonCrawl,
stating that the threshold was selected by manu-
ally inspecting sampled data, but do not specify
the language pair used when inspecting the data.
In order for the scoring mechanism to be most ef-
fective, the user should inspect the results for their
dataset before setting a threshold. While all our
scoring mechanisms seem to be useful, none of the
methods are very good at identifying mutual trans-
lations in particular, labelled CC in our taxonomy.

We trained two Bicleaner models for our exper-
iments and our lemmatized model gave the best re-
sults for filtering ParIce for the en→is translation
direction. The Bicleaner models could perhaps be
improved. Bicleaner uses n-gram models and we
only used a part of our parallel corpora to train
these. If we would use larger corpora the n-gram
models would likely give us more accurate scores.
The bilingual probability dictionary we used only
contained lemmas. By producing all wordforms
for the lemmas and trying to estimate the preva-
lence of each wordform using a monolingual cor-
pus, we could perhaps provide an unlemmatized
model with more accurate information leading to
better results. Furthermore, we only use 10k sen-
tences to train our GPT-2 perplexity model for Ice-
landic. A larger dataset may increase its accuracy.

Two systems participating in the WMT 2021
news translation task, evaluated on the same data,
obtain scores only slightly higher than ours, but
while we only train a TransformerBASE model,
they train larger models using more resources and
much longer training time. In our experiments,
models that have been filtered more tend to con-
verge faster. We can deduce from this that train-
ing data that is better filtered, not only improves
MT output quality, but is also in line with a call
to greener and more sustainable models of AI, see
e.g. Yusuf et al. (2021) and Jooste et al. (2022).
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Abstract
We present Gamli, an ASR corpus for
Icelandic oral histories, the first of its
kind for this language, derived from the
Ísmús ethnographic collection. Corpora
for oral histories differ in various ways
from corpora for general ASR, they con-
tain spontaneous speech, multiple speak-
ers per channel, noisy environments, the
effects of historic recording equipment,
and typically a large proportion of elderly
speakers. Gamli contains 146 hours of
aligned speech and transcripts, split into
a training set and a test set. We describe
our approach for creating the transcripts,
through both OCR of previous transcripts
and post-editing of ASR output. We also
describe our approach for aligning, seg-
menting, and filtering the corpus and fi-
nally training a Kaldi ASR system, which
achieves 22.4% word error rate (WER) on
the Gamli test set, a substantial improve-
ment from 58.4% word error rate from
a baseline general ASR system for Ice-
landic.

1 Introduction

Icelandic open-licensed speech corpora have in re-
cent years grown in volume and numbers, there
are now Talrómur (Sigurgeirsson et al., 2021),
Málrómur (Steingrímsson et al., 2017), Samró-
mur (Mollberg et al., 2020) and the Althingi’s
Parliamentary Speeches corpus (Helgadóttir et al.,
2017; Nikulásdóttir et al., 2018) to name a few.
However both historical speech and older speak-
ers are underrepresented in these corpora. For
instance, regarding older speakers, in Samrómur,
the largest open-licensed ASR corpus for Icelandic
(2233 hours in the latest release, Hedström et al.
2022), only 4.8% of speakers are over 60 years
old.

Gamli, the oral history speech corpus presented
in this paper differs from that in many ways.
Firstly, it contains, predominantly, spontaneous
speech in the form of interviews, secondly, it has a
very high ratio of older speakers (94.8% of speak-
ers are over 60 years old), thirdly, background
noise is common as well as noise artefacts from
historical recording equipment and lastly, historic
dialects (word choice and accent) are much more
prevalent than in existing corpora.

The corpus contains 146 hours of aligned
speech and transcripts split into a training set and
a test set. This data, based on valuable historical
20th century recordings stored at the Department
of Ethnology and Folklore at The Árni Magnús-
son Institute for Icelandic Studies, is therefore an
important addition to the existing Icelandic speech
corpora.1

The custom ASR system presented in this pa-
per along with the corpus will in due course be
used to automatically transcribe all of the ethno-
graphic audio recordings stored at the institute.
The transcripts will then be made available on the
online portal Ísmús2 and paired with the respective
recording.

2 Related Work

For many years, ASR systems have been trained
on unaligned transcriptions (Panayotov et al.,
2015) and even approximate transcriptions of
spontaneous speech (Jang and Hauptmann, 1999).
In the case of Icelandic ASR for spontaneous
speech, there has been an ongoing project (Helga-
dóttir et al., 2017), (Helgadóttir et al., 2017) to
align and filter Icelandic parliamentary transcripts
for ASR in order to reduce the manual work in-
volved in transcribing parliamentary proceedings.

1The corpus is available under an open license at http:
//hdl.handle.net/20.500.12537/310

2www.ismus.is
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Creating the corpora involves text normalization,
time-alignment, and filtering utterances.

While ASR for oral histories is new for Ice-
landic, it is already being used in other lan-
guages. For example, the first large project was the
MALACH project (Psutka et al., 2002) in 2002,
where ASR transcriptions were used for index-
ing oral history archives and making them more
searchable. However, some authors still consider
oral history speech recognition an open problem
(Picheny et al., 2019; Gref et al., 2020) and a re-
cent study (Gref et al., 2022) found that human
word error rate was 8.7% on a German oral his-
tory corpus (taking into account case-sensitivity
and annotation of hesitations). Whereas Lipp-
mann (1997) found a human word error rate of
less than 4% on the Switchboard corpus of sponta-
neous telephony speech and less than 0.4% on the
Wall Street Journal corpus of clear read speech.
This suggests that the minimum possible word er-
ror rate for ASR might be much higher on oral his-
tories than it is for cleaner speech corpora.

One other factor that makes oral history ASR an
interesting challenge is the particularly high ratio
of older speakers. It has been noted by Vipperla
et al. (2008) that for general ASR models, WER
correlates strongly with age, even throughout a
single speakers lifetime. This could be caused by
multiple changes in aging voices, such as slower
speaking rate, changes in F0 (decrease for males
and increase for females), increase in jitter and
shimmer (all from Vipperla et al. (2008)), some of
which could be mitigated by increasing the num-
ber of older speakers in the training set. How-
ever, other changes might not be so easily solved,
such as a reduction of tongue and jaw strength and
an increase in breathiness (all from Vipperla et al.
(2008)) which could reduce articulatory precision.

There are three main use-cases for oral history
speech recognition. First, to index oral archives
for spoken document retrieval. Second, to pro-
vide transcripts to aid listeners. Third, as a hy-
pothesis transcript for post-editing. For each of
these use-cases, it’s important to determine the
minimum acceptable ASR performance. For the
first use-case, indexing, Chelba et al. (2008) found
that using ASR output significantly improves spo-
ken document retrieval performance compared to
only using the accompanying text meta data, even
when WER is as high as 50%. More recently, Fan-
Jiang et al. (2020) used a BERT-based retrieval

model with query reformulation and managed to
get impressive results for document retrieval of
Mandarin news when using erroneous recognition
transcripts (35%). The accuracy was 0.594 with
the erroneous transcripts and 0.597 with reference
transcripts. This suggests that for indexing, ac-
ceptable WER may be even higher than 35%. For
the second use-case, to provide transcriptions as
an aid to listeners, Munteanu et al. (2006) found
that transcripts with a 25% WER improved lis-
teners’ understanding more than listening to audio
without a transcript, however they found that un-
derstanding was reduced when the transcripts had
45% WER, suggesting that a maximum acceptable
WER is somewhere between 25% and 45%. For
the third use-case, post-editing, Gaur et al. (2016)
found that for recordings of Ted Talks, ASR tran-
scriptions with less than 30% WER sped up the
transcription process but if the WER was higher
than 30% it slowed transcribers down.

3 Origin of the corpus

The ethnography collection of the Department of
Ethnology and Folklore at The Árni Magnússon
Institute for Icelandic Studies contains more than
2,300 hours of audio recordings of oral heritage
and traditions, with a little less than 2,500 inter-
viewees. The oldest material are recordings made
on wax cylinders in the early 20th century and the
collection is continually expanding with new ma-
terial being added every year.

The bulk of the collection, however, consists of
recordings from the 1960’s and 1970’s, mainly the
work of three collectors. Their focus was to gather
ethnographic material from all of Iceland, first and
foremost from older generations — the majority of
the informants were born before or around the turn
of the 20th century,

This resulted in an extensive collection of leg-
ends and fairy tales, accounts of beliefs and cus-
toms, poems, hymns, nursery rhymes, Icelandic
ballads (rímur), occasional verses and more, with
the material being variously spoken, sung or
chanted. Apart from recited verse and that which
is sung or chanted the speech is spontaneous. Ac-
companying the recordings is detailed metadata on
the speaker, time and location of recording, as well
as various other parameters such as genre (for dif-
ferent kinds of verse or prose material, e.g. po-
ems or nursery rhymes, fairy tales or legends etc.),
mode of performance (sung, chanted, spoken), key
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words, content (short summary, description), tale-
types and motifs (in folktales and legends).

3.1 Speaker distribution in the collection

In their work the collectors mainly relied on a
snowball method of sorts, asking speakers to point
them to other possible informants, as well as con-
tacting teachers or clergy to enquire about interest-
ing subjects in their region. Speaker profession is
often listed in the metadata and most of the speak-
ers were workers, farmers, fishermen, housewives
etc., with little formal education.

Gender was probably not a decisive factor at the
outset and the total ratio is 57.6% male speakers
and 42.4% female, i.e. based on the number of
speakers. However, if audio length for each gender
is included the difference increases quite a bit, i.e.
1504 hours (65%) for men vs. 821 hours (35%)
for women.

As mentioned, the data in the collection also
stands out in that that the age of the speakers is
higher than in other existing Icelandic corpora.
The oldest speaker in the collection was 105 years
old at the time of recording in 1954 and the oldest
speaker in the collection, with regards to date of
birth, was born in 1827, and recorded in 1904 (not
included in the Gamli corpus). In fact, 72.4% of
the speakers are older than 63 and 31.4% are 71-
80 years old. In Gamli this ratio is substantially
higher, as detailed in Section 4.

3.2 Regional features in pronunciation

The speakers in the collection are from all over
Iceland and therefore reflect the various regional
differences in pronunciation much better than re-
cently recorded speech corpora such as Samró-
mur, due to the fact that these regional features
either have already more or less disappeared or are
gradually disappearing. Amongst these features is
for example the “hard” pronunciation of /p, t, k/
(still a distinct feature) and voiced pronunciation
of /l, m, n/ before /p, t, k/ in North-Iceland, rn-,
rl-pronunciation in South-East-Iceland, monoph-
thongs before /ng, nk/ in the North-West etc.

While these features are not tagged in any way
in the Gamli corpus, the ASR system trained on
the corpus seems to work well on these features,
with possibly the exception of labial or velar stops
before [ð], such as [hapDI] instead of [havDI] for
hafði or [lakDI] instead of [laGDI] for lagði. We
have, however, not inspected this systematically,

so it needs further looking into to state the preci-
sion with any certainty.

3.3 Recording procedure
Most of the recordings were made at the speak-
ers’ homes, in many cases in elderly homes, and
carried out by the interviewer. It was not uncom-
mon that other people, e.g. children, spouses etc.
were present during the recording sessions, but
they were in most cases not meant to play a part
in the recording. Because of this, and for various
other reasons, some background noise and distur-
bances occur in the recordings, e.g. children play-
ing, traffic sounds, phones ringing etc., but these
are generally not prominent.

Much of the recordings were recorded using
high quality reel-to-reel tape recording devices, al-
though some were done by amateurs who weren’t
as well equipped, whereas a part of the record-
ings are from the recording studios of The Ice-
landic National Broadcasting Service (Þorsteins-
dóttir, 2013).

The digitalization of these recordings began in
the late 1990’s and continued into the early 2000’s
with the recordings being converted into WAV for-
mat as well as compressed MP3s for online use.

4 Corpus content

Gamli contains 146 hours of transcribed audio
broken down into

1. ∼ 111 hours from optical character recogni-
tion (OCR) of previous transcriptions in var-
ious formats

2. ∼ 35 hours of new transcriptions (post-edited
from ASR output)

The 111 hours include 9 hours defined as a test set,
which was manually reviewed and corrected and
annotated with speaker ID and time alignments in
the annotation tool ELAN. The test set contains
recordings with 10 speakers, 5 women and 5 men,
plus the interviewers (4 men) and serves for eval-
uating the system’s performance.

A validation set has not been defined for the cor-
pus as the acoustic model training in Kaldi (Povey
et al., 2011) used a random sample of the training
corpus for validation.

4.1 Speaker distribution in the corpus
The corpus contains 210 unique speakers, 90
women and 120 men (plus the interviewers: 14
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Data split Hours Male speakers Female speakers Total speakers
Training 137 115 85 200
Test 9 5 5 10

Table 1: Data splits in Gamli

men and 1 woman). At the outset we aimed to
have the gender ratio as equal as possible in the
acoustic training data, but with three men surpass-
ing 20 hours of speech each (with one topping at
29 hours) and accounting for more than one third
of the entire data, that picture became quite dis-
torted. As a result the gender bias in the corpus is
even greater than in the collection itself, which is
unfortunate, but simply reflects the data that was
at hand, i.e. 73.5% vs. 26.5%, cf. Section 4.2.

The age ranges from 38 to 99, but most of the
speakers are 60+ (94.8%), as shown in Figure 1,
and the average age of the speakers is 77 years.
This ratio is unprecedented in all existing corpora
for Icelandic speech (cf. 4.8% in Samrómur as re-
ferred to in Section 1) and makes Gamli an impor-
tant addition to that collection.

Figure 1: Age distribution of unique speakers in
the training set

Figure 2: Age distribution of unique speakers in
the test set

4.2 Corpus compilation

As mentioned, the largest part of the corpus, about
111 hours, stems from OCR of transcriptions at
the Department of Ethnology and Folklore at The
Árni Magnússon Institute for Icelandic Studies.
These transcripts that were generated over several
decades are not all in the same format (e.g. type-
written, dot printed, printed Word documents) and
therefore needed first to be processed, i.e. scanned
and OCRed (the results of which varied depending
on the format). These transcripts were then cata-
logued and paired with the respective recordings.

Once this ready data had been processed the
first ASR output was produced and manually cor-
rected. During that process it became evident that
some of the recordings were ill suited at this stage
as they often contained poetry, nursery rhymes
and in some cases singing, where the ASR system
could not be expected to do well as the focus was
on spontaneous speech, where it performed much
better (cf. Section 6).

As a result, we made use of the detailed meta-
data search parameters in the Ísmús portal in order
to filter the best in-domain data for further train-
ing. We mainly relied on the so-called form pa-
rameter (genre) to try to exclude everything but
spontaneous speech. This gave much better re-
sults and resulted in the 35 hours of post-edited
data mentioned in Section 4.

4.3 Normalizing, aligning, segmenting and
filtering the transcripts for ASR training

The transcripts in the training set did not have time
alignments and some had OCR spelling errors.
Therefore, we had to process the transcripts be-
fore using them to train the acoustic model. First,
the text was normalized using the Regina normal-
izer developed in Sigurðardóttir (2021). Second,
the text was aligned to the audio with Kaldi’s seg-
ment long utterances function 3. For this, a biased
language model (based on the text) is combined
with an existing acoustic model to force-align the
audio, as detailed in section 2.2 of Manohar et al.
(2017). It outputs aligned segments of less than
15 seconds each. Third, these segments are fil-
tered with Kaldi’s clean and segment data function
4 which again combines a biased language model

3https://github.com/kaldi-asr/kaldi/
blob/master/egs/wsj/s5/steps/cleanup/
segment_long_utterances_nnet3.sh

4https://github.com/kaldi-asr/kaldi/
blob/master/egs/wsj/s5/steps/cleanup/
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(based on the text) with an existing acoustic model
and removes segments that were unintelligible to
the decoder.

After filtering, 180 hours of interviews was re-
duced to 137 hours (24% reduction). However,
much of this reduction can be attributed to silences
in the audio, so to estimate the total amount of
speech reduced, we note that the word count was
reduced from 1,147,181 to 1,039422 (9.4% reduc-
tion).

Finally, after training an acoustic model on this
in-domain data, the alignment, segmentation, and
filtering was performed again. That final data con-
stitutes the Gamli training set. The final model
was then trained on that data.

5 Models (and out-of-domain data)

We trained a hybrid ASR system in Kaldi. That
is, the language model and acoustic model were
trained separately as opposed to an end-to-end sys-
tem. For the acoustic and language models in
the custom ASR system, we expanded the training
sets with various out-of-domain data, which will
be described in the following sections.

5.1 Acoustic Model

An acoustic model learns to map audio to a se-
quence of phonemes. The acoustic model is
a TDNN (time-delayed neural network) chain
model trained in Kaldi. It was trained on the in-
domain data described above, but also on various
out-of-domain data, which included the following
datasets:

1. Althingi’s Parliamentary Speeches.5 A cor-
pus of 514.5 hours of recorded speech from
the Icelandic parliament (Helgadóttir et al.,
2017)

2. 114.6 hours of speech from the first Samró-
mur release,6 leaving out children.

3. 173.1 hours of unverified Samrómur data,7

containing only speech with 50+ year old
men and 60+ year old women.

clean_and_segment_data_nnet3.sh
5Available at: http://hdl.handle.net/20.

500.12537/277
6Available at: http://hdl.handle.net/20.

500.12537/189
7Available at: http://hdl.handle.net/20.

500.12537/265

4. 228.2 hours of the RÚV TV unknown speak-
ers dataset.8

iVectors and MFCCs (Mel-frequency cepstral co-
efficients) are the inputs to the acoustic model.
These are commonly used in Kaldi ’chain’ mod-
els. The iVectors in particular are said to make
the neural network speaker adaptive since the vec-
tors themselves carry speaker identity information
(Saon et al., 2013).

Data augmentation was also used to triple the
entire training set. We added artificial noise and
reverberation. For noisy data sets, e.g. call-center
data sets, this is said to give better results than
speed perturbations (Ko et al., 2017) and as was
described earlier, background noise and distur-
bances are not uncommon in the data.

5.2 Language Model

A language model is necessary for outputting co-
herent texts, it learns a probability distribution for
word sequences from a training corpus. The lan-
guage modelling consists of a 3-gram language
model for decoding and an RNN language model
for rescoring. It was trained on the Gamli training
set described in 4.2, as well as out-of-domain data.
The out-of-domain data stems from the following
sources:

1. The Icelandic Gigaword Corpus (IGC) (Ste-
ingrímsson et al., 2018). We use the sen-
tences from the 2022 version of the IGC.9

2. Ethnographic data from the National Mu-
seum of Iceland in Sarpur.10

3. Audio file descriptions from Ísmús 11 for
their content.

4. Place name data from the Icelandic Place
Name Collection.12

5.3 Vocabulary and Pronunciation
Dictionary

The pronunciation dictionary maps words to se-
quences of phonemes. For the vocabulary we
used:

8Available at: http://hdl.handle.net/20.
500.12537/191

9http://hdl.handle.net/20.500.12537/
254

10https://sarpur.is/
11https://ismus.is/
12nafnid.is
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1. All the word forms from The Database of
Icelandic Morphology (Bjarnadóttir et al.,
2019).

2. OOV words from audio file descriptions in Ís-
mús.

3. Vocabulary from the training set (only the
data that was manually transcribed and not
the OCR data); manually checked and added
where appropriate.

4. OOV words from Sarpur; (manually checked
and added where appropriate).

To get the phonemic transcriptions of each word a
G2P model based on the Icelandic Pronunciation
Dictionary for Language Technology13 was used.

6 Evaluation

To assess the final ASR system’s performance
on the test set, we compare it to two baselines.
The first is the out-of-domain system, which was
trained in the same way as the final system but
only on the out-of-domain data detailed in sec-
tions 5.1 and 5.2, not on the Gamli training set.
The second baseline is the Samrómur "base" sys-
tem 14. This is a kaldi-trained system from a well-
known dataset of read Icelandic speech, the acous-
tic mode is a TDNN chain model the language
model is an n-gram model. While the ASR base-
line systems achieved 36.7% and 58.4% respec-
tively on the Gamli test set, the final ASR system
performed better, achieving 22.4% WER on the
same set, as shown in Table 2. This table compares
the three overall systems, each including their own
acoustic model and language model. However, it
should be noted that the same lexicon and vocabu-
lary were used for the final system and the out-of-
domain system.

To investigate the differences in the systems, we
also compare the performance when taking demo-
graphic information into account in Figure 3. As
stated earlier, the test set contains 10 speakers and
a total of 9 hours of audio.

To separate the effect that the Gamli training set
had on acoustic model adaptation and language
model adaptation, in Table 3, we compare WER
when combining the out-of-domain models with

13Available at: http://hdl.handle.net/20.
500.12537/99

14https://github.com/cadia-lvl/
samromur-asr/tree/master/s5_base

Figure 3: WER for the 10 unique speakers in the
Gamli test set based on demographic information.
Comparing the final system we trained, the out-
of-domain system we trained, and the Kaldi-based
Samrómur "base" system

WER
OOV-rate

total words
OOV-rate

unique words
Baseline
(Samrómur)

58.4% 1.1% 6.8%

Out-of-domain 36.7% 0.5% 3.1%
Final 22.4% 0.5% 3.1%

Table 2: ASR performance on the Gamli oral his-
tory test set

the final models, using the same lexicon and vo-
cabulary.

Out-of-domain LM Final LM
Out-of-domain AM 36.7% 34.1%
Final AM 24.0% 22.4%

Table 3: ASR performance (WER) on the Gamli
oral history test set when combining a specific
acoustic model with a specific language model.
Note that the final models were trained on the
Gamli training set, while the out-of-domain mod-
els were not

It seems that acoustic model adaptation had a
larger impact than language model adaptation for
WER on the Gamli test set.

This is an interesting finding, seeing as lan-
guage model adaptation is generally more com-
monly performed, at least in Kaldi, where it takes
less computing power than acoustic model adapta-
tion. Though, the results from Table 3 could sim-
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ply be due to particularly good out-of-domain text
data, they could also suggest that the acoustic el-
ements of oral history are particularly different to
other ASR datasets available for Icelandic, and if
this is the case, the Gamli training set could be a
useful addition to the currently available Icelandic
data in order to make acoustic models more ro-
bust to elderly speech, historic speech, and historic
recording equipment.

7 Conclusion and Future Work

In this paper we have presented Gamli, a corpus
suitable for training speech recognition systems,
we have aligned and segmented Icelandic oral his-
tories from manual transcriptions (both OCR from
typewritten transcripts and post-edited from ASR
output), and filtered out unintelligible segments.

We have described the compilation of the cor-
pus, which has been published under an open li-
cense, the origins of the data and evaluation of
an ASR system trained on the corpus. We have
shown that using the corpus along with other rele-
vant datasets can substantially lower WER for his-
torical speech data, from 58.4% from a baseline
system (Samrómur "base" system) to 22.4%. We
also draw the conclusion that it could be combined
with other ASR training sets which lack in histor-
ical recordings and speech from older speakers in
order to improve robustness to such audio.

Our final ASR system will be used to automati-
cally transcribe the entire ethnographic audio data
stored in Ísmús, i.e. 2,300 hours of audio. We
expect the outcome of that process to be in line
with the results presented in this paper, with verse,
nursery rhymes, singing etc. still remaining a chal-
lenge for the customised model, but accuracy for
spontaneous speech to be more reliant on audio
quality and clarity of speech. Where the quality of
these two factors is high, we expect the system to
perform well.

Even though the WER may differ substantially
for some files, the general outcome will nonethe-
less be a somewhat readable version of the Ísmús
ethnographic collection. As outlined in 1, that out-
put can subsequently be used in a number of ways:
first, indexing the Ísmús ethnographic collection
for search queries (useful for longer audio files
where the description can not do the entire con-
tent justice). Second, presenting transcripts along-
side the audio as a listening aid and to increase
accessibility. Third, as a hypothesis transcript for

post-editing of more transcripts.
The Gamli corpus itself should provide an inter-

esting challenge to linguists and ASR researchers
interested in spontaneous speech, older speakers,
noisy audio, historical recordings and historical
dialects.
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Abstract

While there has been a surge of large lan-
guage models for Norwegian in recent
years, we lack any tool to evaluate their un-
derstanding of grammaticality. We present
two new Norwegian datasets for this task.
NoCoLAclass is a supervised binary classifi-
cation task where the goal is to discriminate
between acceptable and non-acceptable
sentences. On the other hand, NoCoLAzero

is a purely diagnostic task for evaluating
the grammatical judgement of a language
model in a completely zero-shot manner,
i.e. without any further training. In this
paper, we describe both datasets in detail,
show how to use them for different flavors
of language models, and conduct a com-
parative study of the existing Norwegian
language models.

1 Introduction

Large pre-trained language models have recently
led to a revolution in natural language processing
(NLP) as they substantially increased the perfor-
mance of most NLP tools (Peters et al., 2018; De-
vlin et al., 2019). Large language models were
originally developed for English, but a surge of
Norwegian-based models has recently followed
(Kutuzov et al., 2021; Kummervold et al., 2021;
Hofmann et al., 2022). The remaining issue is that
the Norwegian linguistic resources do not contain a
large range of tasks to evaluate and compare these
models on, as opposed to the English benchmark
suites like GLUE (Wang et al., 2018), SuperGLUE
(Wang et al., 2019) or GLGE (Liu et al., 2021), to
name a few.

We present two new datasets for evaluating the
understanding large language models have of Nor-
wegian grammar, jointly called the Norwegian cor-
pus of linguistic acceptability (NoCoLA). We hope

# Incorrect (inflection):
Samfunnet ville bli mer fornøyet.

# Correct:
Samfunnet ville bli mer fornøyd.

# Incorrect (word choice):
Jeg er ikke nordmann, med jeg trives i Norge.

# Correct:
Jeg er ikke nordmann, men jeg trives i Norge.

Listing 1: Two illustrative examples of incorrect /
correct sentence pairs from NoCoLAzero. The En-
glish translations: “Society would be happier” and

“I’m not Norwegian, but I enjoy living in Norway.”

that the datasets can contribute to the development
of a language model benchmark suite for Norwe-
gian. Our work is limited to the most widely used
of the written standards for Norwegian, namely
Bokmål. This paper proposes two different views
on the same set of sentences, each with a slightly
different purpose:

• NoCoLAclass is a collection of sentences split
into two classes: grammatically acceptable and
non-acceptable. Thus, it is a binary classifica-
tion task, where a language model is expected to
be first fine-tuned on the training data split. This
task is more practically-oriented and evaluates
the fine-tuning abilities of a language model.
The downside is that we cannot tell if the per-
formance comes from its innate abilities or if it
was obtained from the supervised fine-tuning.

• NoCoLAzero is a collection of pairs of sentences,
where only one of them is grammatically accept-
able. Here, we do not fine-tune on this task at
all, the language model gives a probability to
each of the two sentences, and we measure how
often the correct one gets a higher probability.
While not as practical as the first task, the zero-
shot evaluation provides a better estimate of the
innate grammatical understanding.

We provide a comprehensive evaluation of the ex-
isting Norwegian language models and release the
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data and code for an easy evaluation of new Nor-
wegian models.1

2 Related work

The closest equivalents of our NoCoLAclass dataset
are the English Corpus of Linguistic Acceptability
(CoLA; Warstadt et al., 2019) and the Swedish
Dataset for Linguistic Acceptability Judgments
(DaLAJ; Volodina et al., 2021). On the other hand,
NoCoLAzero roughly follows the The Benchmark
of Linguistic Minimal Pairs for English and the
English (BLiMP; Warstadt et al., 2020).

Data sources. There are two primary strategies
for obtaining non-acceptable sentences for a cor-
pus of linguistic acceptability. The non-acceptable
sentences are either collected from the linguistics
literature by experts as in the English, Russian and
Italian corpora (Warstadt et al., 2019; Mikhailov
et al., 2022; Trotta et al., 2021) – or these sen-
tences are collected from natural texts, usually
based on the language of language learners, such
as in the Swedish acceptability corpus (Volodina
et al., 2021). The second, natural, approach is also
used for the creation of our Norwegian corpus.

CoLA. This dataset consists of 10 600 accept-
able and non-acceptable sentences collected manu-
ally from the linguistics literature, with the goal of
covering specific linguistic phenomena – and the
morphological, syntactic and semantic violation of
rules connected to those phenomena. By collecting
the data in this manner, one ensures that the dataset
represents language phenomena that are central to
human linguistic competence according to linguists.
CoLA has become a standard task for evaluating
English language models after it was included in
the GLUE benchmark for natural language under-
standing (Wang et al., 2018). Similar datasets for
Russian (RuCoLa; Mikhailov et al., 2022) and Ital-
ian (ItaCoLA; Trotta et al., 2021) follow the same
methodology as the English CoLA.

DaLAJ. This dataset has the same purpose for
benchmarking Swedish language models as CoLA
has for English. In contrast to the English CoLA,
DaLAJ uses the error-annotated learner corpus
SweLL (Volodina et al., 2019) as their source of
non-acceptable sentences. DaLAJ contains 4 798
sentence pairs, where the non-acceptable versions
are annotated with one of four error-tags. All of

1https://github.com/ltgoslo/nocola

the error-types in DaLAJ vol.1 focus on semantic
aspects of the sentences, and morphological and
syntactic error types are left for future work. The
original sentences are edited so that each sentence
only has one error focus.

BLiMP. The BLiMP dataset consists of 67 000
minimal pairs, all of them generated artificially.
Some examples of phenomena covered in the
dataset are determiner-noun agreement, verb ar-
gument structure and irregular verb-forms. Each
pair differs only on one single parameter, namely
the element that leads to the non-acceptability.

Comparison with NoCoLA. Our datasets fill the
same purpose for evaluation of language models
in Norwegian as CoLA and BLiMP do for En-
glish. However, the source of the sentences is
different, as we follow the methodology used for
DaLAJ. Our data consists of naturally produced
sentences, instead of controlled and artificially gen-
erated ones. Where CoLA collects sentences that
are handpicked by linguists to represent specific
linguistic phenomena, our sentences contain er-
rors that mirror the natural distribution of errors in
texts by second language learners. Thus, NoCoLA
gives an indication of how well a given language
model distinguishes between acceptable and non-
acceptable Norwegian text, but not of how well it
understands the full range of possible grammati-
cal phenomena of the language. NoCoLA is also
substantially larger than CoLA, with almost 15
times more examples. The NoCoLA error types
are not comparable to BLiMP, where the error-
types describe the underlying grammatical prob-
lem. Instead, the NoCoLA error-types describe the
changes that need to be made to correct the errors.
In contrast to DaLAJ we keep original sentences
belonging to all error type categories, including
morphological, syntactic, and semantic errors.

3 Datasets description

3.1 ASK corpus

Both NoCoLAclass and NoCoLAzero require a
source for both acceptable and non-acceptable sen-
tences. The latter is hard to come by in most nat-
uralistic text by adult native speakers. Our source
for both NoCoLA datasets is the ASK Corpus –
A Language Learner Corpus of Norwegian as a
Second Language (Tenfjord et al., 2006). It con-
sists of submissions by second language learners
of Norwegian Bokmål around the year 2000, each
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with one or more essays. The essays are written
as solutions to two separate Norwegian language
exams, which are estimated in Berggren (2019) to
be approximately CEFR-levels B1 and B2.

There are 1 935 submissions, with 46 000 origi-
nal sentences in total. Each essay has been manu-
ally corrected by native speakers, hereby called cor-
rectors. The errors in the corpus are annotated with
a set of error-codes, which indicate the change that
needs to be done to correct the original passage. For
instance, “F” indicates wrong morpho-syntactic
category, while “PUNCM” means that punctuation
is missing, and needs to be added. We have merged
some of the error-codes so that we have a medium-
grained way of understanding the performance of
the models on the different types of errors found
in NoCoLAzero. A short explanation of these error-
codes can be found in the appendix.

3.2 Conversion from ASK to NoCoLA

Privacy considerations The original ASK cor-
pus is annotated with rich metadata about the learn-
ers. For this dataset we have decided to surpass
all this metadata, including the CEFR-level of the
test. ASK has also gone through a anonymiza-
tion process, where possibly sensitive words have
been replaced by placeholders. Still, some of the
topics of the essays deal with so specific topics
about the lives of the learners, that we decided to
sentence-scramble the essays to achieve maximum
anonymity.

Sentence merging. For the NoCoLA datasets we
want sentences as the unit for evaluation. There-
fore we need to split the continuous text of ASK
into sentences. However, since some of the correc-
tions suggested by the correctors affect the way the
text is split into sentences, and we need alignment
between the acceptable and non-acceptable in the
pairs for NoCoLAzero, we decided to always keep
the longest available version in cases where there is
disagreement between both versions. The principle
applies to both datasets. Thus, the unit referred to
as ”sentence” in this paper can consist of multiple
sentences.

Error extraction. For each of these sentences,
we first extract a corrected (acceptable) version.
In order to test only minimal errors and to label
each non-acceptable sentence with an error-type,
we generate one non-acceptable sentence for each
error found in the originals. Therefore we extract

Dataset Train Dev Test

NoCoLAclass 116 195 14 289 14 383
NoCoLAzero — — 99 115

Table 1: Number of sentences and sentence pairs,
respectively, for both NoCoLA datasets.

almost 100 000 non-acceptable sentences, as many
of the original sentences have multiple errors.

Post-processing. We did a few additional adjust-
ments to the dataset. All sentences are heuristically
detokenized and removed if they contain an uneven
count of quotation marks. If no error type is men-
tioned for a given correction, we also remove that
sentence. The sensitive words that have been re-
placed by placeholders like “@sted” (place) and
“@navn” (name) are replaced with a substitute rep-
resentation of that category, i.e. “Oslo” instead
of “@sted”, to normalize all sentences. This is
to avoid feeding too many unknown tokens to the
language models. In rare occasions, these replace-
ments might cause some sentences to become erro-
neous, since the possible genitive and plural conju-
gations in the original texts are not annotated with
separate placeholder-tokens.

Conversion results. The final dataset contains
144 867 sentences, 31.5% of which are acceptable.
NoCoLAclass has been shuffled and then randomly
split to ensure unbiased development and test sen-
tences. The split has been done in an approximate
80:10:10 ratio, resulting in the sentence-level statis-
tics from Table 1.

4 Baseline models

4.1 Evaluation of NoCoLAclass

In order to evaluate language models on No-
CoLAclass, we use the standard fine-tuning ap-
proach from Devlin et al. (2019). Accordingly,
every sentence is tokenized, prepended by a spe-
cial [CLS] token, appended by a [SEP] token
and input to a pre-trained language model. Sub-
sequently, the contextualized representation of the
special [CLS] token is fed into a binary MLP
classifier. The pre-trained weights of the language
model are further trained together with the classi-
fier weights.
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Overall

BERTbase (Devlin et al., 2019) 50.70 53.55 63.43 60.44 51.69 79.33 51.85 82.54 54.31 54.11 59.48

mBERTbase (Devlin et al., 2019) 79.92 69.05 90.74 76.91 78.84 83.97 74.88 87.88 78.72 80.44 79.53

XLM-Rbase (Conneau et al., 2020) 91.43 85.28 92.60 87.43 87.56 83.93 84.33 90.60 89.63 91.96 88.02

ScandiBERT (Hofmann et al., 2022) 93.43 89.79 90.84 90.14 90.05 87.10 90.08 90.55 85.82 90.68 90.27

NB-BERTbase (Kummervold et al., 2021) 93.76 89.19 97.14 86.54 92.48 73.98 90.94 92.73 91.15 94.70 89.04

NorBERT1 (Kutuzov et al., 2021) 93.46 88.46 94.54 88.66 89.41 88.46 92.01 94.26 90.83 93.05 90.83

NorBERT2 (Kutuzov et al., 2021) 91.66 88.20 96.88 89.22 90.91 75.82 92.67 93.13 74.18 92.69 88.51

NorBERT3, base (Samuel et al., 2023) 94.63 90.98 87.06 91.04 90.23 87.25 89.82 92.73 86.95 89.21 90.44

XLM-Rlarge (Conneau et al., 2020) 92.54 88.17 90.06 88.57 89.28 80.84 84.52 91.35 89.70 93.24 88.27

NB-BERTlarge (Kummervold et al., 2021) 95.20 92.41 95.16 91.47 91.92 85.33 93.36 17.01 89.56 92.87 90.51

NorBERT3, large (Samuel et al., 2023) 94.89 91.98 83.71 91.47 90.84 86.39 87.87 92.48 84.19 88.30 90.01

Table 2: The accuracy values of zero-shot evaluation on NoCoLAzero. Fine-grained results over different
error types are reported (Appendix A), as well as the overall average over all sentence pairs in the datasets.

4.2 Evaluation of NoCoLAzero

One disadvantage of NoCoLAclass is that the re-
sults are skewed by the second-stage supervised
training and it can be problematic to disentangle
the properties of the LM from the classifier (Be-
linkov, 2022). In contrast, pure LM-based evalu-
ation of NoCoLAzero attempts to measure the lin-
guistic knowledge of a language model in a zero-
shot manner – without any additional training. The
dataset consists of 99 115 sentence pairs; each pair
differs minimally on the surface level, but only
one of the sentences is acceptable. We can use
the intrinsic ability of language models to assign
a probability to every sentence and test how often
a language model assigns a higher probability to
the correct sentence, as in (Warstadt et al., 2020).
As the two classes are perfectly balanced, simple
accuracy is a sufficient metric for this setup.

CLM evaluation. The causal language models
are trained to estimate p(st|s<t) for sentence s
and token st where s<t = (si|i < t); then the sen-
tence log-probability is simply given by log p(s) =∑N

t=1 log p(st|s<t).

MLM evaluation. The issue with masked lan-
guage models is that they are not designed to cal-
culate the joint probability; they are trained to esti-
mate p(st|s\t) – the likelihood of a token st given
its bidirectional context s\t = (si|i ̸= t). We can
however still use MLMs to infer a score for each

Model Lang. Size Accuracy MCC

BERTbase en 110M 69.56±0.37 23.99±0.41

mBERTbase multi 178M 75.28±0.66 46.39±0.67

XLM-Rbase multi 278M 79.29±0.20 55.14±0.36

ScandiBERT multi 124M 80.25±0.33 57.12±0.37

NB-BERTbase no 178M 80.69±0.44 58.10±0.48

NorBERT 1 no 111M 71.53±0.80 35.85±1.70

NorBERT 2 no 125M 79.99±0.27 56.09±0.30

NorBERT3, base no 123M 81.50±0.16 59.21±0.28

XLM-Rlarge multi 560M 81.03±0.27 58.56±0.30

NB-BERTlarge no 355M 81.43±0.32 59.68±0.14

NorBERT3, large no 353M 82.48±0.21 60.96±0.45

Table 3: Accuracy and the Matthews correlation
coefficient (Matthews, 1975), the main metric of
NoCoLAclass. We report the mean and standard
deviation across five runs on the test split.

sentence where a higher score corresponds to a
more likely sentence. Wang and Cho (2019) de-
fined pseudo-log-likelihood score of a sentence s
with model θ as

PLL(s) =
1

N

N∑

t=1

log p(st|s\t; θ).

Salazar et al. (2020) tested PLL and found that it
produces accurate predictions on BLiMP. We adopt
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their approach and evaluate our models with PLL.

5 Results

5.1 Results on NoCoLAclass

The results from benchmarking the publicly avail-
able Norwegian language models on the classifica-
tion task can be seen in Table 3. The classification
accuracy is around 80% for for these models. One
exception is the slightly older NorBERT 1, which
performs substantially worse, even if being trained
on clean Norwegian data: Wikipedia and news-
paper articles (Kutuzov et al., 2021). We use the
English BERTbase as a naive baseline, which gives
us a lower bound on the performance of any decent
Norwegian language models. The three largest
models give a small increase in performance com-
pared to the base-sized versions of the same models.
The NorBERT3 models (Samuel et al., 2023) con-
sistently outperform other models on this task.

5.2 Results on NoCoLAzero

On the raw zero-shot diagnostic task (Table 2), all
models trained on Norwegian or Scandinavian lan-
guages perform well with results around 90% accu-
racy. The best performance comes, perhaps surpris-
ingly, from NorBERT 1 – possibly because it was
pre-trained on a relatively small and clean corpus.
Remarkably, increased number of parameters does
not seem to improve performance on this task.

We have also included accuracy scores for the
individual error-types, as these fine-grained scores
can be used as a helpful cue for NLP researchers
who develop new language models. Comparably
low scores can signal a problem with their train-
ing corpus or with their tokenizer. For example,
the two NB-BERT models are relatively weak on
punctuation-related errors. The large version is
trained on uncased data, which explains this mod-
els inability to understand the case-related errors.
ScandiBERT performs comparably to the Norwe-
gian ones on most parameters except for spelling.

6 Conclusion

In this paper we have proposed NoCoLA, the
first dataset for linguistic acceptance in Norwegian
Bokmål. We showed how to use it for measuring
the linguistic knowledge of language models on
both a classification task and a zero-shot probabil-
ity comparison task. We have described how the
datasets were created and what their motivation is,
compared them to related work in English NLP

and showed how to use them for fine-grained error
analysis of language models.

Lastly, we evaluated existing Norwegian masked
language models on both proposed tasks. These
results suggest that models trained specifically for
Norwegian or Scandinavian languages perform bet-
ter at discriminating between acceptable an non-
acceptable sentences. The classification results also
show that linguistic acceptability is a relatively hard
task, as only one of the models achieved more than
60% on the main MCC metric. The results on our
diagnostic dataset highlight some shortcoming of
the existing models. We will release all evaluation
sources in the camera-ready version.
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Megyesi, Ildikó Pilán, Julia Prentice [Grosse], Dan
Rosén, Lisa Rudebeck, Carl-Johan Schenström,
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A NoCoLAzero error types2

• Inflection: wrong form of word. Merged from
ASK-codes “F”: wrong morpho-syntactic form
and “INFL”: suffix from correct category, but
wrong form for this particular word. “Jeg vet
ikke hvorfor jeg har valgt dette oppgaven.” “I
do not know why I have chosen this task.”

• Word choice: wrong choice of word. Merged
from ASK-codes “W”: wrong word and “FL”:
word from another language. “Jeg er et eksem-
pel for det.” “I am an example of that”

• Spelling: wrong spelling of word, correspond-
ing to ASK-code “ORT”. “De er en rik fammilie.”

“They are a rich family.”

• Missing: word should be added. Corresponding
to ASK-code “M”. “Norge kan bidra veldig mye
på Europeiske planet.” “Norway can contribute
a lot at the European level.”

• Superfluous: word should be removed. Corre-
sponding to ASK-code “R”. “Da mistet jeg den
beste vennen min i hele livet mitt.” “Then I lost
the best friend in my whole life.”

• Punctuation: add or remove punctuation. Cor-
responding to ASK-codes “PUNC”, “PUNCM”
and “PUNCR”. “Hva skal jeg gjøre etterpå.”

“What should we do afterwards?”

• Word order: wrong order of words or phrases.
Corresponding to ASK-code “O”. “Hvis du har
tillatelse, du kan fiske også.” “If you have a
licence, you can fish as well.”

• Capitalization: add/remove capitalization. Cor-
responding to ASK-code “CAP”. “nå liker jeg
meg godt i Oslo.” “Now I enjoy myself in Oslo”

• Compounding: deviation regarding compound-
ing. Corresponding to ASK-codes “PART” and
“SPL”. “Etter på skal jeg studere for å bli syke-
pleier.” “Afterwards I want to study to become
a nurse.”

• Derivation: deviation regarding derivation. Cor-
responding to ASK-code “DER”. “Derfor er
jeg helt enig med forbudelse mot krenkende ut-
talelser.” “Therefore I completely agree with the
ban on offensive statements.”

• Other: any other error.

2The codebook given to the correctors of ASK contains a
multitude of additional tags which are not used by the correc-
tors. For example there is OINV for “subject/verb inversion i
contexts where there should not be one”.
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Abstract

We present NorBench: a streamlined suite
of NLP tasks and probes for evaluating Nor-
wegian language models (LMs) on stan-
dardized data splits and evaluation metrics.
We also introduce a range of new Norwe-
gian language models (both encoder and
encoder-decoder based). Finally, we com-
pare and analyze their performance, along
with other existing LMs, across the differ-
ent benchmark tests of NorBench.

1 Introduction

This paper provides a suite of standardized tasks
and probes for benchmarking of Norwegian lan-
guage models (LMs). In addition to collecting a
broad range of annotated datasets, we provide pre-
cise task definitions, pre-defined data splits and
evaluation metrics, with corresponding scripts for
streamlining the entire benchmarking pipeline. The
resulting resource is dubbed NorBench. We further-
more present a range of new transformer-based lan-
guage models (LMs) for Norwegian, trained with
optimized configurations and architectures, and on
different corpora with different pre-processing. Our
contributions are as follows:

1. We introduce NorBench, a collection of Nor-
wegian datasets and evaluation scripts that
ensures simple, fair and standardized com-
parison between Norwegian LMs. The ex-
isting models from prior work are evaluated
and compared. All data and code related to
NorBench are publicly available online.1

2. An integral part of NorBench is diagnostic
set of tasks that probe the affinity of LMs
towards gender-bias and toxic language – an
unfortunate side-effect for many models pre-
trained on large amounts of text.

1https://github.com/ltgoslo/norbench

Task Train Dev Test

Morpho-syntactic token-level tasks

Tokens in UD tasks 489 217 67 619 54 739
Named entities 23 071 2 942 2 393

Sentiment analysis

SA documents 34 903 4 360 4 351
SA sentences 7 973 1 411 1 181
SA targets 5 044 877 735

Linguistic acceptability

NoCoLA sentences 116 195 14 289 14 383

Question answering

NorQuAD questions 3 808 472 472

Machine translation

Bokmål–Nynorsk sentences 10 000 10 000 10 000

Table 1: Number of labeled entities in the training,
development, and test splits in the datasets used for
the NorBench tasks.

3. We develop a new generation of Norwegian
LMs – NorBERT3 and NorT5 – that achieve
state-of-the-art performance across most Nor-
Bench tasks. We provide multiple sizes of
these models and show that even small ver-
sions maintain competitive performance.

4. We empirically test the impact of different
available Norwegian training corpora on the
downstream performance. Our results suggest
that pre-training on a simple concatenation of
all available resources is not always beneficial.

The rest of the paper is structured as follows. Sec-
tion 2 provides an overview of the tasks included
in NorBench. In Section 3, the details of our eval-
uation workflow are outlined. The architecture
and the training collections of our novel LMs are
described in Section 4, while in Section 5, we sum-
marize and analyze the benchmarking results. Sec-
tion 6 briefly describes prior work, while we point
out directions for future work in Section 7, before
concluding in Section 8.
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2 NorBench task descriptions

We here briefly describe each task and associated
dataset. The number of training examples for the
different datasets and their train, development, and
test splits are provided in Table 1. For the full
details about each task, we refer the reader to the
NorBench GitHub repository. Before we describe
the various tasks, we first briefly comment on the
two official varieties of written Norwegian.

Bokmål and Nynorsk Norwegian has two offi-
cial written standards: Bokmål (BM), used by 85–
90% of the Norwegian population, and Nynorsk
(NN). While they are closely related, there can be
relatively large lexical differences. The contextu-
alised LMs presented in this paper are therefore
trained jointly on both varieties, but with the minor-
ity variant Nynorsk represented by comparatively
less data than Bokmål (reflecting the natural usage).
Several previous studies have indicated that joint
modeling of Bokmål and Nynorsk works well for
many NLP tasks, like tagging and parsing (Velldal
et al., 2017) and NER (Jørgensen et al., 2020). In
cases where the labeled data for our benchmark
tasks are available as separate versions for Bokmål
and Nynorsk, we fine-tune models jointly on the
combined BM/NN data. One practical advantage
of training joint and ‘variety agnostic’ models, is
that only a single model needs to be maintained,
and we bypass the need for a separate ‘language
identification’ step.

2.1 Morpho-syntactic token-level tasks

UD tasks We use the Norwegian Universal De-
pendencies Treebank (Øvrelid and Hohle, 2016;
Velldal et al., 2017) from UD 2.11,2 in turn con-
verted from NDT (Solberg et al., 2014). In order
to evaluate the general performance on Norwegian,
we concatenate the Bokmål (BM) and Nynorsk
(NN) datasets for both fine-tuning and evaluation.
The models are challenged to predict universal part-
of-speech tags (UPOS), universal features (UFeats),
lemmas and dependency trees (Nivre et al., 2016).

UPOS tags cover the basic POS categories (17
tags) and UFeats differentiate more fine-grained
lexical and grammatical properties of words, e.g.
number, gender, and tense (172 tags in total). Both
tagging tasks use the standard accuracy metric.

Lemmatization evaluates how well a language
model understands Norwegian morphology and in

2http://hdl.handle.net/11234/1-4923

order to transform an inflected word into its lemma-
tized form. An integral part of lemmatization – in
our variety-agnostic setting – is implicit language
identification, because Bokmål and Nynorsk have
different lemmatization standards. Correct predic-
tion requires exact match with the gold lemma; we
report the aggregated token-wise accuracy.

Dependency parsing involves identifying the re-
lationships between words in a sentence, result-
ing in a dependency tree that represents the gram-
matical structure of the sentence. By evaluating
the quality of dependency parsing outputs by a
language model, one can determine its ability to
recognize and categorize the grammatical roles of
words based on their syntactic function. We report
the labeled attachment score (LAS), the standard
evaluation metric for dependency parsing.3

Named entity recognition We use the NorNE4

dataset which annotates the UD/NDT (for both
Bokmål and Nynorsk) with named entities
(Jørgensen et al., 2020). We predict 8 entity
types: Person (PER), Organization (ORG), Loca-
tion (LOC), Geo-political entity, with a locative
sense (GPE-LOC), Geo-political entity, with an
organization sense (GPE-ORG), Product (PROD),
Event (EVT), and Nominals derived from names
(DRV). The evaluation metric used is ‘strict’ micro
F1, requiring both the correct entity type and exact
match of boundary surface string. It is computed
using the code for the SemEval’13 Task 9.5

2.2 Sentiment analysis

Document-level ternary polarity classification
The Norwegian Review Corpus (NoReC; 2nd re-
lease) (Velldal et al., 2018) comprises 43 425 pro-
fessional reviews from a range of Norwegian news
sources, and covering a range of different domains
(e.g., books, movies, games, music, various con-
sumer goods, etc.). The average length of a docu-
ment is 389 words. While the reviews originally
come with numerical ratings on a scale of 1–6,
we here conflate these to three classes; negative
(ratings 1–3), fair (4), and positive (5–6). This
mapping is done to avoid problems with too few
examples for the ratings in the extreme ends of the
numerical scale. The dataset comes with prede-

3https://universaldependencies.org/
conll18/evaluation.html

4https://github.com/ltgoslo/norne
5https://github.com/davidsbatista/

NER-Evaluation
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fined data splits (chronologically sorted), and we
evaluate using macro F1.

Sentence-level ternary sentiment classification
We include the dataset NoReCsentence

6 for training
and evaluating on the task of sentence-level polarity
classification with respect to three classes (positive,
negative, or neutral). As described by Kutuzov et al.
(2021), this data is derived from NoReCfine (Øvre-
lid et al., 2020), a subset of NoReC, by aggregating
the fine-grained annotations to the sentence-level,
removing sentences with mixed sentiment. The
evaluation metric is macro F1.

Targeted sentiment analysis We use the
NoReCtsa

7 dataset for the task of targeted senti-
ment analysis (TSA). As described in Rønningstad
et al. (2022), the data is derived from NoReCfine
by only including target expressions and the associ-
ated positive/negative polarity. The task is to jointly
predict the target spans and their polarity, and we
use the same evaluation strategy as for NER.

2.3 Linguistic acceptance
NoCoLA Norwegian corpus of linguistic accep-
tance (NoCoLA; Jentoft and Samuel, 2023) is used
to evaluate language models on their understanding
of Norwegian grammaticality. NoCoLA is derived
from the ASK Corpus – a language learner corpus
of Norwegian as a second language (Tenfjord et al.,
2006), which contains texts written exclusively in
Norwegian Bokmål, not covering the Nynorsk vari-
ety. We report the Matthews correlation coefficient
(MCC; Matthews, 1975) on NoCoLAclass, the of-
ficial binary sentence classification variant of the
dataset.

2.4 Question answering
NorQuAD is a Norwegian extractive question
answering dataset which consists of 4 752 manually
created question-answer pairs based on Wikipedia
and news articles (Ivanova et al., 2023).8 We here
report token-level F1; human performance on the
test portion of the dataset has been measured at
91.1% F1 (Ivanova et al., 2023).

2.5 Machine translation
Bokmål–Nynorsk translation. The fact that a
monolingual Norwegian language model is actu-

6https://github.com/ltgoslo/norec_
sentence

7https://github.com/ltgoslo/norec_tsa
8https://github.com/ltgoslo/NorQuAD

ally trained on two language varieties – Bokmål
and Nynorsk – allows us to evaluate generative
models on machine translation. We collect the
available Bokmål–Nynorsk bitexts,9 deduplicate
the sentences on both sides and split them into
training, development, and test portions, each with
10 000 parallel sentences. We evaluate the transla-
tion from Bokmål to Nynorsk using SacreBLEU
(Lin and Och, 2004; Post, 2018).10

2.6 Diagnostics of harmful predictions
Unlike the previous items, this is not a ‘task’, but
rather a description of important model properties.
We follow previous works on Norwegian to probe
our language models for gender bias in occupa-
tions, as well as assessing the harmfulness of their
sentence completions (Touileb et al., 2023, 2022;
Touileb and Nozza, 2022).

3 NorBench baseline methodology

Below we describe various choices pertaining to
fine-tuning the LMs for the various tasks. Note
that, all of the approaches described here should be
considered baselines, in the sense that the goal is
not to produce state-of-the-art results, but rather to
implement simple evaluation approaches allowing
for a fair comparison of different LMs across the
various tasks.

3.1 A joint model for UD tasks
Since the UD tasks are annotated within the same
dataset, we evaluate them jointly with a single
multi-task model. We follow the multi-task setup
from UDify (Kondratyuk and Straka, 2019): first,
we take a separate weighted convex combination of
hidden layers for every subtask. Then, we average-
pool these contextualized subword representations
to get a vector embedding for each token. Finally,
these vectors are input to classification heads for
UPOS and UFeats tagging, to a classification head
for predicting lemma transformation rules, and to
biaffine attention heads for dependency parsing
(Dozat and Manning, 2017).

9Provided by the National Library of Nor-
way: https://www.nb.no/sprakbanken/
ressurskatalog/oai-nb-no-sbr-78/, https:
//www.nb.no/sprakbanken/ressurskatalog/
oai-nb-no-sbr-47/

10The SacreBLEU metric involves several parame-
ters that change the outcomes (Post, 2018), we use
BLEU with no smoothing, 13a tokenization and no
lowercasing – the default values in torchmetrics
0.11.4: https://torchmetrics.readthedocs.
io/en/stable/text/sacre_bleu_score.
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3.2 Text classification

For document- and sentence-level sentiment anal-
ysis, together with classification of linguistic ac-
ceptability, we utilize the same text classification
approach, based on the widely-used fine-tuning
scheme from Devlin et al. (2019). There, every
tokenized text sequence is prefixed by a special
[CLS] token, appended by a [SEP] token and
passed into a pre-trained language model, which
produces a contextualized representation for the
special [CLS] token. Finally, this representation is
passed into the downstream classifier that produces
the final prediction among the available classes.
For the encoder-decoder models, we chose three
target words as the class labels (‘negativ’, ‘nøytral’
and ‘positivt’) and fine-tuned the models to gener-
ate these target words given the input text. At the
inference time, an input text is assigned a class de-
pending on whether the corresponding target word
occurs in the generated text.

3.3 Sequence labeling for NER and TSA

NER and TSA are approached as a sequence label-
ing task where we classify text spans by tagging
tokens with beginning-inside-outside tags (BIO;
Ramshaw and Marcus, 1995).

3.4 Question answering

We follow the SQuAD fine-tuning method intro-
duced in BERT (Devlin et al., 2019). For every
question and context passage, the goal is to iden-
tify the answer within the passage. The question
and passage texts are concatenated together and the
evaluated model is trained to predict the first and
last token of the answer – the problem is cast as
2-task binary classification problem.

3.5 Machine translation

We use this task only for evaluation of generative
sequence-to-sequence models such as T5s (Raffel
et al., 2020). This task naturally fits these mod-
els – the source sentence is encoded and the target
sentence is decoded with the respective parts of
the model. We use simple greedy decoding for
generation during inference.

3.6 Probing for gender-bias and harmfulness

We take advantage of the MLM objective of the
models, and create templates consisting of gen-
dered head-words, followed by predicates.

Gender-bias To probe for gender bias in occupa-
tions, we follow and use the templates of Touileb
et al. (2023) and Touileb et al. (2022). These tem-
plates are sequences of masked gendered head-
words (e.g. the woman, the man, the sisters, the
uncles ...), followed by predicates pertaining to
verbs related to performing an occupation (e.g. is,
was, worked as, ...), followed by a set of occu-
pations extracted from the Norwegian Statistics
bureau (Touileb et al., 2022). Using the proba-
bilities of the masked gendered head-words, we
compute the two bias scores: normative and de-
scriptive as defined by Touileb et al. (2023). The
normative score compares the gender-based aggre-
gated probability distributions of templates with a
normative distribution of genders in occupations.
The idea here is that genders should be equally
represented in each occupation with a gender dis-
tribution falling between 45% and 55% for each
occupation. The descriptive bias score compares
the probability distribution of genders across occu-
pations as represented in language models, to the
real world distribution of these genders based on
the Norwegian Statistics bureau data.

Harmfulness We also follow Touileb and Nozza
(2022) to assess the harmfulness of sentence-
completions of each language model. We use
their templates, constructed similarly to the previ-
ous templates where the head-words are gendered-
nouns followed by predicates as defined by Nozza
et al. (2021), and where the last token is masked.
The probing is therefore aiming at completing sen-
tences, by looking at top one, five, ten, and twenty
most likely words for each template. Once the com-
pletions returned by the models, we compute the
HONEST score (Nozza et al., 2021). This score is
a word-level completion score that maps generated
completions to their respective language-specific
HurtLex (Bassignana et al., 2018) lexicon of offen-
sive words. The scores represent the total number
of completions existing in the lexicon compared to
the total amount of returned completions.

4 New Norwegian language models

A number of large Norwegian language models
have appeared in recent years: to name only
the masked LMs, Kutuzov et al. (2021) trained
NorBERT1, followed by NorBERT2, and Kummer-
vold et al. (2021) introduced NB-BERT models,
coming in different sizes. In this paper, we present
a set of novel masked and text-to-text LMs for
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Norwegian trained according to the LTG-BERT
training recipe by Samuel et al. (2023). We dub
these models NorBERT3 and NorT5 and evaluate
their performance across different model sizes and
training corpora.

4.1 Training corpora
Text sources Our LM training dataset included
the following text collections:

• Norwegian Wikipedia dumps (BM/NN) from
October 2022; about 180 million words;

• NBDigital, public domain texts released by the
National Library (NB) of Norway in 2015; 660
million words;11

• Norwegian News Corpus (NAK): a collection
of Norwegian news texts (both Bokmål and
Nynorsk) published between 1998 and 2019;
1.7 billion words;12

• Norwegian Colossal Corpus (NCC): the pub-
lic part of the large and heterogenous corpus
released by NB in 202213 (Kummervold et al.,
2021); about 6.9 billion words;

• Norwegian part of web-crawled mC4 corpus
(Xue et al., 2021); about 15 billion words.

The ‘standard’ models were trained on the con-
catenation of these corpora, yielding a training
collection of about 25 billion word tokens. In
Section 5.2, we investigate the effects of ‘over-
sampling’ higher-quality sources and training sep-
arate models from scratch on NAK, NCC, mC4,
Wikipedia, and NBDigital.

Deduplication Before training, all the corpora
were de-duplicated on the paragraph-level, using
SimHash14 and removing exact duplicates. The
same was done across corpora, reducing their size
up to 10%, depending on the corpus.

Filtering Since the largest portion of our train-
ing corpus is sourced from web-crawled texts, it is
crucial to filter out any unnatural language. Even
though our main web-text source is the multilingual
Colossal Clean Crawled Corpus (mC4), it still con-
tains noisy texts (Dodge et al., 2021), which was

11https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-34/

12https://www.nb.no/sprakbanken/
ressurskatalog/oai-nb-no-sbr-4/

13https://huggingface.co/datasets/
NbAiLab/NCC

14https://github.com/ChenghaoMou/
text-dedup

Hyperparameter x-small small base large

Number of parameters 15M 40M 123M 353M
Number of layers 12 12 12 24
Hidden dimension 192 384 768 1 024
Attention heads 3 6 12 16

Table 2: The main hyperparameters of our four con-
figurations of NorBERT3 language models. Full
list of hyperparameters is given in Table 9.

also apparent when we manually investigated some
of the Norwegian samples. We follow the filtering
heuristics implemented for the MassiveText corpus
(Rae et al., 2021) and adapt them for Norwegian.

4.2 Architecture

We employ the masked language modeling ap-
proach for pre-training NorBERT3 language mod-
els and follow the optimized training method from
Samuel et al. (2023). This approach differs from
the standard BERT (Devlin et al., 2019) training as
follows:

1. Liu et al. (2019) found out that BERT is under-
trained and the next-sentence prediction task is
unnecessary – we thus pre-train for 8× more
steps, use sequence length of 512 throughout
the whole training, and utilize only the masked
language modeling task (MLM) without next-
sentence prediction.

2. SpanBERT (Joshi et al., 2020) and T5 (Raf-
fel et al., 2020) demonstrated the advantages
of masking random spans instead of individual
subwords as in Devlin et al. (2019). Thus, for
our MLM objective, the data loader iteratively
samples random spans until 15% of the input
text is masked. The length of each span is sam-
pled from Geo(p), where p = 1/3.

3. Samuel et al. (2023) compared various configu-
rations of transformer architectures and of the
training hyperparameters. We employ the best
performing setting for our pre-training. Crucial
upgrades involve using the NormFormer layer
normalization (Shleifer and Ott, 2022), disentan-
gled attention with relative positions (He et al.,
2021) and increased amount of weight decay.
Please refer to Samuel et al. (2023) for more
pre-training details.

Parameter count We train four LMs of different
sizes (Table 2), accommodating users with vary-
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ing degrees of computational resources, and to es-
tablish a baseline performance across LMs with
different number of parameters.

Vocabulary and tokenizer We utilize Word-
Piece subword tokenizer (Wu et al., 2016) and set
its vocabulary size to 50 000. Following GPT-2
(Radford et al., 2019), we represent the text as a
sequence of UTF-8 bytes instead of Unicode char-
acters, which substantially reduces the number of
out-of-vocabulary tokens. We train the tokenizer on
the full corpus utilizing the open implementation
from the tokenizers library.15

NorT5 Some NLP tasks, for example machine
translation, require a generative language model.
Thus we extend the encoder-only architecture of
NorBERT3 to full encoder-decoder transformer and
pre-train the resulting model, dubbed NorT5, on
text-to-text masked language modeling (T5; Raffel
et al., 2020). We use the same text corpus, tok-
enizer and training settings as in NorBERT3 when
applicable. For the T5-specific training choices, we
follow T5 version 1.1 – i.e. pre-training only on
self-supervised masked LM and no parameter shar-
ing between the embedding and classifier layer.16

4.3 Pre-training details

In order to reduce training time, pre-training is par-
allelized over multiple GPUs with the global batch
size of 8 192. The number of GPUs used depends
on the size of pre-trained language models, ranging
between 16 and 512 AMD Instinct MI250X GPUs,
each with 128GB memory. The amount of training
steps is 250 000, increasing the training budget of
the original BERT models 8 times. NorBERT3, base
was pre-trained in 280 hours using this setting.

5 Benchmarking results

In addition to our NorBERT3 models, we also
benchmark these existing models:

• BERT (Devlin et al., 2019): to get a baseline
performance, we include the scores of an En-
glish-only language model. Its scores suggest
how much information can be inferred from the
supervised datasets without any understanding
of Norwegian.

15https://github.com/huggingface/
tokenizers

16https://github.com/google-research/
text-to-text-transfer-transformer/blob/
main/released_checkpoints.md#t511

• mBERT (Devlin et al., 2019): multilingual
BERT pre-trained on 104 languages, including
Norwegian. The training was done exclusively
on Wikipedia dumps with oversampled texts
from lower resource languages.

• XLM-R (Conneau et al., 2020): more advanced
multilingual LM that outperformed mBERT on
most tasks. XLM-R models were trained on
CommonCrawl data for 100 languages.

• NB-BERT (Kummervold et al., 2021): NB-
BERTbase model utilized a warm start from pre-
trained mBERT. It was later followed by NB-
BERTlarge trained from scratch on Norwegian
data. Both models are trained on the full – i.e.,
partially non-public – NCC corpus.

• NorBERT1 and NorBERT2 (Kutuzov et al.,
2021): both models follow the pre-training ap-
proach of the original BERT model (Devlin
et al., 2019). NorBERT1 is pre-trained on NAK
and dumps from both Norwegian Wikipedias,
and NorBERT2 utilizes the Norwegian part of
mC4 and the public part of NCC.

• ScandiBERT: Scandinavian BERT trained on
a combination of Danish, Faroese, Icelandic,
Norwegian, and Swedish texts. However, more
than 60% of the training corpus consists of texts
from the Norwegian NCC.17

Our NorT5 models are compared with the multilin-
gual T5 models (mT5; Xue et al., 2021) and with
a set of so-called North-T5 models – mT5 models
further fine-tuned solely on Norwegian (published
online in 2022).18

5.1 Comparison of models
Table 3 and Table 4 show results across all the
current NorBench tasks for all language models
described above (sorted by their size in the num-
ber of parameters). Note that we deliberately do
not report any average score across all tasks, since
we believe that such aggregated scores do not con-
tribute to real understanding of strong and weak
sides of different models: one should pay attention
to the performance in particular tasks of interest.

Encoder-only scores Not surprisingly, one can
see that it is the largest monolingual models
that tend to perform best across the board, and

17The training procedure is briefly described here; https:
//huggingface.co/vesteinn/ScandiBERT.

18https://huggingface.co/north/t5_base_
NCC
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Model Size UPOS UFeats Lemma LAS NER Doc. SA Sent. SA TSA NoCoLA NorQuAD

NorBERT3, x-small 15M 98.8±0.1 97.0±0.1 97.6±0.1 92.2±0.1 86.3±0.4 69.6±2.4 66.2±1.2 43.2±0.5 47.1±0.5 65.6±3.9

NorBERT3, small 40M 98.9±0.0 97.9±0.0 98.3±0.1 93.7±0.0 89.0±0.3 74.4±0.5 71.9±1.3 48.9±0.9 55.9±0.2 80.5±1.2

BERTbase, cased 111M 97.9±0.0 96.4±0.1 97.9±0.0 89.8±0.2 73.4±0.7 57.3±1.4 53.0±1.1 23.2±2.2 23.9±0.4 44.9±2.2

NorBERT1 111M 98.8±0.0 97.8±0.0 98.5±0.0 93.3±0.1 86.9±0.9 70.1±0.4 70.7±0.9 45.4±1.1 35.9±1.7 72.5±1.6

NorBERT3, base 123M 99.0±0.0 98.3±0.1 98.8±0.0 94.2±0.1 89.4±0.9 76.2±0.8 74.4±0.3 50.2±0.7 59.2±0.3 86.2±0.3

NorBERT2 125M 98.7±0.0 97.6±0.0 98.2±0.0 93.4±0.1 85.0±0.9 73.5±1.1 72.5±1.5 45.4±1.1 56.1±0.3 76.6±0.7

ScandiBERT 124M 98.9±0.0 98.1±0.0 98.7±0.0 94.1±0.1 89.4±0.5 73.9±0.4 71.6±1.3 48.8±1.0 57.1±0.4 79.0±0.7

NB-BERTbase 178M 98.9±0.0 98.3±0.0 98.9±0.0 94.1±0.1 89.6±0.9 74.3±0.6 73.7±0.8 49.2±1.3 58.1±0.5 79.1±1.2

mBERT 178M 98.4±0.0 97.3±0.1 98.3±0.0 92.2±0.1 83.5±0.6 67.9±1.2 62.7±1.2 39.6±1.3 46.4±0.7 76.5±0.9

XLM-Rbase 278M 98.8±0.0 97.7±0.0 98.7±0.0 93.7±0.1 87.6±0.6 73.1±0.7 72.2±0.3 49.4±0.5 58.6±0.3 78.9±0.6

NorBERT3, large 353M 99.1±0.0 98.5±0.0 99.1±0.0 94.6±0.1 91.4±0.5 79.2±0.7 78.4±0.6 54.1±0.6 61.0±0.4 88.7±0.8

NB-BERTlarge 355M 98.7±0.0 98.2±0.1 98.3±0.1 94.6±0.1 89.8±0.6 79.2±0.9 77.5±0.7 54.6±0.7 59.7±0.1 87.0±0.5

XLM-Rlarge 560M 98.9±0.0 98.0±0.0 98.8±0.1 94.3±0.1 87.5±1.0 76.8±0.6 75.4±1.3 52.3±0.6 58.6±0.3 84.8±0.5

Table 3: NorBench scores for the existing language models and our novel NorBERT3 family of models.
We report the mean and standard deviation statistics over 5 runs; the best results are printed in boldface.
The ‘Size’ column reports the number of parameters in the model; the models are sorted by this value and
divided into four size categories. The best results (within one standard deviation) in each category are
typeset in bold.

Model Size Doc. SA Sent. SA NoCoLA NB-NN

NorT5x-small 32M 70.1±1.1 55.2±13.6 51.4±0.4 82.1±0.2

NorT5small 88M 73.7±1.4 73.2±0.7 54.4±0.3 85.1±0.1

mT5small 300M 24.8±3.0 22.4±0.0 25.4±5.4 33.2±0.3

North-T5small 300M 20.9±0.1 22.4±0.0 33.8±7.9 36.0±0.1

T5base 223M 47.2±3.5 41.3±3.2 17.6±0.8 8.9±0.0

NorT5base 228M 77.4±0.4 73.4±0.8 58.9±0.3 86.6±0.1

mT5base 582M 21.0±0.1 24.8±4.9 25.3±10.1 38.6±0.1

North-T5base 582M 21.2±0.3 22.5±0.2 41.1±9.6 39.8±0.2

NorT5large 808M 77.7±0.5 76.9±2.0 59.4±0.5 86.8±0.1

mT5large 1 230M 59.9±20.1 29.1±6.6 50.4±4.0 40.0±0.1

North-T5large 1 230M 72.9±1.2 22.4±0.0 46.8±18.7 41.1±0.1

Table 4: NorBench scores for encoder-decoder
models, evaluated in a generative text-to-text set-
ting. The best results (within one standard devia-
tion) in each category are typeset in bold.

NorBERT3, large (with 353M parameters) specifi-
cally obtains the highest scores for most of the
tasks except targeted sentiment analysis. At the
same time, we see that the smaller models are
still very competitive – perhaps most notably
NorBERT3, small (with 40M parameters) – and there
is certainly an aspect of diminishing returns with
increasing the number of parameters.

Encoder-decoder scores Table 4 shows the re-
sults of T5 models evaluated on four genera-
tive tasks. We can see that the performance
monotonously improves with scale but the differ-
ences between models of different sizes are not
drastic. Unfortunately, we found the mT5-based
models to be highly unstable and unable to reach de-

cent performance. Our NorT5-large model turned
out to be the best across all the tasks.

Gender-bias evaluation Table 5 shows the nor-
mative and descriptive occupational bias scores
for each model. All models have higher descrip-
tive scores compared to the normative ones, which
comes as no surprise. Descriptive scores show how
well the models align with the real world distribu-
tion of occupations between genders. While no
model achieves a perfect score, the top three best
models are the NorBERT3, base trained on respec-
tively Wikipedia, NAK, and NCC. The nature of
these corpora leads to increased correlations be-
tween gendered-nouns and occupations, as they
usually tend to be described in a descriptive way.
NorT5x-small achieves the worst descriptive bias
score of all models, but still scoring better than
the best model on the normative score. Looking
more specifically at gender-dominated and gender-
neutral occupations, it is clear that all models are
much better at identifying female-dominated oc-
cupations. All models achieve very low scores on
gender-neutral occupations, suggesting a tendency
to correlate occupations with one gender, rather
then equally representing them. These results can
be seen in Table 8 in the Appendix.

On the other hand, when we expect genders to
be equally represented, no model achieves as high
scores in the normative scores, as in the descrip-
tive ones. The best Norwegian model (second best
overall) is the smallest model NorBERT3, x-small,
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Model Normative Descriptive

NorBERT3, x-small 19.78 37.36

NorBERT3, small 8.54 34.92

NorBERT1 16.23 39.31
NorBERT2 3.17 34.67
NB-BERTbase 18.55 36.50
ScandiBERT 14.04 43.95
mBERT 24.66 41.88
XLM-Rbase 16.60 36.99
NorBERT3, base 13.55 39.43

XLM-Rlarge 19.16 46.64
NB-BERTlarge 11.35 40.90
NorBERT3, large 13.67 42.73

NorBERT3, base, oversampled 9.64 36.99
NorBERT3, base, NAK only 14.04 49.81
NorBERT3, base, NCC only 12.57 48.84
NorBERT3, base, mC4 only 11.72 39.31
NorBERT3, base, NB only 12.33 38.21
NorBERT3, base, Wiki only 15.99 50.42

NorT5x-small 8.91 33.69
NorT5small 0.12 34.06
NorT5base 5.25 43.83
NorT5large 2.56 34.18

Table 5: Normative and descriptive occupational
bias scores (Touileb et al., 2023). Best scores are
typeset in bold, and worst scores are underlined.

which might suggest that from a normative per-
spective, the smaller the model, the more balanced
representation of genders, at least when it comes
to occupations. The best scoring model is the mul-
tilingual mBERT model. On a closer analysis, it
is apparent that mBERT is very good at correlat-
ing occupations with the male gender (similarly to
the descriptive score in Table 8 in the Appendix),
which seems to skew the metric. This might exhibit
a weakness in the metric, where models skewed
towards one gender can get higher overall scores
even if they fail to represent the other gender.

Harmfulness scores In addition to the norma-
tive and descriptive occupational bias scores, we
also compute the harmfulness of the sentence-
completions generated by these models. Table 6
shows the HONEST scores (Nozza et al., 2021)
of each model. Here we evaluate the top-k com-
pletions, where we look at the first, five, ten,
and twenty most likely completions. Overall,
NorBERT3 and NorT5 models achieve very low
harmfulness scores compared to the other Norwe-
gian language models. All NorT5 models do not
return harmful words as the most likely comple-
tions, and are overall generating few problematic

Model k = 1 k = 5 k = 10 k = 20

NorBERT3, x-small 0.0062 0.0062 0.0040 0.0037

NorBERT3, small 0.0015 0.0018 0.0027 0.0049

NorBERT1 0.0310 0.0378 0.0306 0.0258
NorBERT2 0.0356 0.0229 0.0189 0.0159
NB-BERTbase 0.0124 0.0083 0.0080 0.0069
ScandiBERT 0.0 0.0010 0.0043 0.0045
mBERT 0.0 0.0028 0.0057 0.0068
XLM-Rbase 0.0450 0.0169 0.0117 0.0128
NorBERT3, base 0.0 0.0027 0.0026 0.0055

XLM-Rlarge 0.0342 0.0158 0.0131 0.0116
NB-BERTlarge 0.0294 0.0285 0.0279 0.0244
NorBERT3, large 0.0 0.0006 0.0013 0.0033

NorBERT3, base, oversampled 0.0046 0.0071 0.0085 0.0092
NorBERT3, base, NAK only 0.0093 0.0080 0.0093 0.0125
NorBERT3, base, NCC only 0.0 0.0006 0.0010 0.0028
NorBERT3, base, mC4 only 0.0 0.0003 0.0009 0.0038
NorBERT3, base, NB only 0.0015 0.0031 0.0012 0.0026
NorBERT3, base, Wiki only 0.0 0.0012 0.0071 0.0082

NorT5x-small 0.0 0.0010 0.0018 0.0026
NorT5small 0.0 0.0003 0.0018 0.0037
NorT5base 0.0 0.0010 0.0077 0.0090
NorT5large 0.0 0.0 0.0014 0.0037

Table 6: The harmfulness score of models looking
at top one, five, ten, and twenty most likely comple-
tions using HONEST (Nozza et al., 2021). The best
scores are in bold, while the worst are underlined.

completions. However, since the HONEST score
relies on lexicons, some completions not included
in these might still be harmful. XLM-Rbase is the
worst model in top one completions, while the
NorBERT1 is the worst model across all remaining
top k completions.

5.2 Comparison of Norwegian corpora

The downstream performance of a language model
is a result of a combination of training choices and
choices of the training corpus. In order to study
the second aspect, we fix the training configuration
and pre-train multiple NorBERT3, base models on
different Norwegian corpora.

We compare a simple concatenation of all avail-
able resources (‘combined’) against a variant with
oversampling the quality data. The reasoning be-
hind this was that the mC4 corpus is the most
noisy of all the above, since it is created by web
crawling. We hypothesized that artificially increas-
ing the amount of data from the cleaner corpora
(Wikipedia, NBDigital, NCC and NAK) will im-
prove the resulting model’s performance. We im-
plemented this by creating an ‘oversampled’ train
collection where all the sentences from the clean
corpora were repeated twice, so that the total size of
the ‘clean’ part approximately matched the size of
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Corpus UPOS UFeats Lemma LAS NER Doc. SA Sent. SA TSA NoCoLA NorQuAD

Combined 99.0±0.0 98.3±0.1 98.8±0.0 94.2±0.1 89.4±0.7 76.2±0.8 74.4±0.3 52.2±0.7 59.2±0.3 86.2±0.3

Oversampled 98.9±0.0 98.2±0.0 98.7±0.0 94.1±0.1 90.5±0.3 75.0±0.4 75.2±0.5 50.4±0.4 57.6±0.1 83.4±0.7

NAK 98.9±0.0 98.0±0.0 98.5±0.0 94.1±0.1 90.4±0.6 76.9±0.1 77.5±0.9 51.3±0.7 58.3±0.3 82.5±0.4

NCC 99.0±0.0 98.2±0.0 98.7±0.0 94.3±0.1 89.5±0.6 74.8±0.3 74.8±1.4 50.0±0.5 58.3±0.4 83.0±1.2

mC4 99.0±0.0 98.1±0.0 98.7±0.0 94.2±0.1 90.2±0.5 76.3±0.6 76.8±0.7 50.8±0.9 58.5±0.3 83.2±0.5

Wiki 98.9±0.0 97.6±0.0 98.3±0.0 93.6±0.1 87.9±0.3 71.9±1.0 68.9±1.2 44.9±0.4 54.1±0.3 78.2±0.5

NBDigital 98.9±0.0 98.0±0.0 98.7±0.0 93.9±0.1 87.1±0.7 72.7±0.4 70.1±0.5 45.2±0.9 56.1±0.1 79.3±0.6

Table 7: The downstream performance of NorBERT3, base models pre-trained on different corpora. We
report the mean and standard deviation statistics over 5 runs; the best results (within one standard deviation)
are shown in boldface.

the mC4 corpus. In addition, to study the respective
usefulness of particular Norwegian text collections,
we trained separate models from scratch on NAK,
NCC, mC4, Wikipedia, and NBDigital.

Corpora comparison results Table 7 shows the
results. We believe there are two noteworthy – and
perhaps surprising – take-aways:

1. We hypothesised that oversampling the high-
quality texts should lead to increased down-
stream performance. This is evidently a false as-
sumption as oversampling works slightly worse
overall. Large language models are known to
be sensitive to duplicate data (Lee et al., 2022),
which might explain such a behavior.

2. A straightforward concatenation of all available
resources does not necessarily lead to better per-
formance – but it is a reasonable approach for a
general model as it works the best on average.
On the other hand, pre-training only on NAK
leads to substantially improved performance
on sentiment analysis, perhaps due to a closer
match in terms of text type.

6 Related work

Evaluating pre-trained language models for partic-
ular languages and cross-lingualy is a venerable
research sub-field within NLP. Well-known bench-
mark sets for English include GLUE (Wang et al.,
2018), SuperGLUE (Wang et al., 2019), and GLGE
(Liu et al., 2021), among others. However, up to
now benchmarking LMs for Norwegian was lim-
ited to separate test sets with non-standardised eval-
uation workflows. ScandEval (Nielsen, 2023) aims
to create a standard natural language understanding
benchmark across Scandinavian languages (Danish,
Swedish, and Norwegian). However, it does not
focus on evaluating specifically Norwegian tasks

and half of its Norwegian benchmarks (linguis-
tic acceptability and question answering) are not
human-annotated. We address this issue with Nor-
Bench.

7 Future work

We consider NorBench to be a dynamic resource
that we plan to continually extend in future work,
to support additional tasks and additional architec-
tures. While we anticipate including new annotated
benchmark data as they may become available in
the future, there are also existing datasets that we
plan to include in the shorter term, like corefer-
ence resolution based on the NARC dataset (Mæh-
lum et al., 2022) and negation resolution based on
NoReCneg (Mæhlum et al., 2021). Finally, we also
plan on adding tasks that more specifically target
generative models, including sequence-generation
tasks like summarization, but also prompt-based
formulations of the existing NorBench tasks for
few-shot evaluation.

8 Summary

In this paper we have presented NorBench, a set
of standardized benchmark tasks for systematically
evaluating and comparing Norwegian language
models. The aim of this effort is to provide NLP
practitioners with a comprehensive and streamlined
service, including a leaderboard, human-annotated
datasets, evaluation workflow, and open code im-
plementing this workflow.

This paper also describes and evaluates a set of
novel NorBERT3 masked LMs trained on several
different Norwegian text collections in different
model sizes. They are shown to outperform Nor-
wegian LMs from prior work on the majority of
NorBench tasks.
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Electronic Press, Sweden.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training

627

http://ceur-ws.org/Vol-2253/paper49.pdf
http://ceur-ws.org/Vol-2253/paper49.pdf
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://openreview.net/pdf?id=Hk95PK9le
https://openreview.net/pdf?id=Hk95PK9le
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=aCqWo9XxFp
https://openreview.net/forum?id=UcWZrerHDCe
https://openreview.net/forum?id=UcWZrerHDCe
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://aclanthology.org/2021.nodalida-main.3
https://aclanthology.org/2021.nodalida-main.3
https://aclanthology.org/2021.nodalida-main.3
https://aclanthology.org/2021.nodalida-main.4
https://aclanthology.org/2021.nodalida-main.4
https://doi.org/10.18653/v1/2022.acl-long.577


data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8424–8445, Dublin, Ireland. Association for
Computational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality using
longest common subsequence and skip-bigram statis-
tics. In Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics (ACL-
04), pages 605–612, Barcelona, Spain.

Dayiheng Liu, Yu Yan, Yeyun Gong, Weizhen Qi, Hang
Zhang, Jian Jiao, Weizhu Chen, Jie Fu, Linjun Shou,
Ming Gong, Pengcheng Wang, Jiusheng Chen, Daxin
Jiang, Jiancheng Lv, Ruofei Zhang, Winnie Wu,
Ming Zhou, and Nan Duan. 2021. GLGE: A new
general language generation evaluation benchmark.
In Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 408–420, Online.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Petter Mæhlum, Jeremy Barnes, Robin Kurtz, Lilja
Øvrelid, and Erik Velldal. 2021. Negation in Nor-
wegian: an annotated dataset. In Proceedings of the
23rd Nordic Conference on Computational Linguis-
tics.

Petter Mæhlum, Dag Haug, Tollef Jørgensen, Andre
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A Sentiment analysis classification – details

As mentioned above, initially reviews were rated on a scale from 1 to 6 but later we have narrowed down
the classes to 3 (classes 1, 2, and 3 mapped to the ‘negative’ class, class 4 to the ‘fair’ class, and classes 5
and 6 to the ‘positive’ class).

Document-level sentiment analysis is complicated by 2 factors. First, 40% of all the dataset texts were
longer than 512 (white-space separated) tokens with the maximum text length reaching 3 943 tokens.
Second, the average text length as well as the number of samples in NoReC increased from negative to
positive classes. Therefore we had a challenging task, with the ‘negative’ class having shorter texts and a
smaller sample size, compared to the ‘fair’ class with larger texts and more samples, as well as ‘positive’
class with the most of everything. Several feature engineering strategies were attempted for baseline
document-level sentiment analysis, but the most straightforward approach proved the most effective: to
simply truncate all texts to the first 512 sub-words. Such a truncation is used for all sequence classification
tasks.

B Descriptive bias scores

Model N F M

NorBERT3, x-small 2.19 31.01 4.15
NorBERT3, small 0.48 33.69 0.73
NorBERT3, base 1.22 33.21 5.00
NorBERT3, large 1.70 33.33 7.69

mBERT 3.41 6.47 31.99
ScandiBERT 0.97 16.23 26.73
XLM-Rbase 1.70 23.32 11.96
XLM-Rlarge 2.07 18.07 26.49

NorBERT3, base, oversampled 0.36 33.45 3.17
NorBERT3, base, NAK only 2.56 28.81 18.43
NorBERT3, base, NCC only 2.19 30.76 15.87
NorBERT3, base, mC4 only 0.61 33.33 5.37
NorBERT3, base, NB only 0.73 30.03 7.44
NorBERT3, base, Wiki only 2.56 25.88 21.97

NorT5x-small 0.48 32.71 0.48
NorT5small 0.0 34.06 0.0
NorT5base 0.36 16.97 26.49
NorT5large 0.12 34.06 0.0

Table 8: Descriptive bias scores of gender-dominated and gender-neutral occupations. Where N stands for
neutral, F for female, and M for male. Best score are typeset in bold, and worst scores are underlined.

630



C Hyperparameters

Hyperparameter NorBERT3, x-small / small / base / large

Number of layers 12 / 12 / 12 / 24
Hidden size 192 / 384 / 768 / 1 024
FF intermediate size 512 / 1 024 / 2 048 / 2 730
Vocabulary size 50 000
Attention heads 3 / 6 / 12 / 16
Dropout 0.1
Attention dropout 0.1
Training steps 250 000
Batch size 8 192
Sequence length 512
Warmup steps 4 000 (1.6% steps)
Initial learning rate 0.01
Final learning rate 0.001
Learning rate decay cosine
Weight decay 0.1
Layer norm ϵ 1e-7
Optimizer LAMB
LAMB ϵ 1e-6
LAMB β1 0.9
LAMB β2 0.98
Gradient clipping 2.0

Table 9: Pre-training hyperparameters. The models differ only in their hidden size and number of layers,
the learning rate schedule and other training settings are kept identical.
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Hyperparameter Value

Dropout 0.1
Attention dropout 0.1
Label smoothing 0.1
Epochs 10
Max length 512
Batch size 32
Warmup steps 250
Initial learning rate 0.001
Final learning rate 0.0001
Learning rate decay cosine
Weight decay 0.1
Optimizer AdamW
Gradient clipping 10.0

Table 10: Hyperparameters for fine-tuning language models on UD tasks.

Hyperparameter Value

Dropout 0.1
Attention dropout 0.1
Epochs 10
Max length 512
Batch size 32
Learning rate 5e-5
Learning rate decay constant
Weight decay 0.01
Optimizer AdamW

Table 11: Hyperparameters for fine-tuning language models on NER and TSA.

Hyperparameter Value

Dropout 0.1
Attention dropout 0.1
Epochs 10
Max length 512
Batch size 16
Initial learning rate 1e-5
Learning rate decay constant
Weight decay 0.01
Optimizer AdamW

Table 12: Hyperparameters for fine-tuning language models on document-level and sentence-level
sentiment analysis.
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Hyperparameter Value

Dropout 0.1
Attention dropout 0.1
Epochs 10
Max length 512
Batch size 32
Warmup portion 6%
Initial learning rate 1e-5
Final learning rate 1e-6
Learning rate decay cosine
Weight decay 0.01
Optimizer AdamW

Table 13: Hyperparameters for fine-tuning language models on NoCoLA.

Hyperparameter Value

Dropout 0.0
Attention dropout 0.0
Epochs 10
Max length 512
Batch size 32
Warmup portion 6%
Initial learning rate 2e-5
Final learning rate 2e-6
Learning rate decay cosine
Weight decay 0.1
Optimizer AdamW

Table 14: Hyperparameters for fine-tuning language models on Bokmål–Nynorsk machine translation.

Hyperparameter Value

Dropout 0.1
Attention dropout 0.1
Epochs 3
Batch size 16
Warmup steps 100
Max length 384
Document stride 128
Initial learning rate 1e-4
Final learning rate 0.0
Learning rate decay linear
Weight decay 0.01
Optimizer AdamW

Table 15: Hyperparameters for fine-tuning language models on NorQuAD
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Abstract

In recent years, instruction-finetuned mod-
els have received increased attention due to
their remarkable zero-shot and generaliza-
tion capabilities. However, the widespread
implementation of these models has been
limited to the English language, largely
due to the costs and challenges associated
with creating instruction datasets. To over-
come this, automatic instruction genera-
tion has been proposed as a resourceful
alternative. We see this as an opportunity
for the adoption of instruction finetuning
for other languages. In this paper we ex-
plore the viability of instruction finetun-
ing for Swedish. We translate a dataset
of generated instructions from English to
Swedish, using it to finetune both Swedish
and non-Swedish models. Results indicate
that the use of translated instructions sig-
nificantly improves the models’ zero-shot
performance, even on unseen data, while
staying competitive with strong baselines
ten times in size. We see this paper is a first
step and a proof of concept that instruc-
tion finetuning for Swedish is within reach,
through resourceful means, and that there
exist several directions for further improve-
ments.

1 Introduction

The use of pretrained language models in natural
language processing (NLP) is widespread, with
finetuning or zero-shot approaches employed for
various tasks. However, not all pretrained mod-
els exhibit strong zero-shot performance or are
cost-effective to finetune for every new task. To
overcome these limitations, instruction finetuning—
finetuning on natural language processing tasks

*Equal contribution.

that are described as instructions—has been demon-
strated to enhance generalization to unseen NLP
problems and tasks (Wei et al., 2022; Chung et al.,
2022). Instruction finetuning, although beneficial,
can be costly since it requires human annotation
or feedback. To overcome this issue, automatic
instruction generation has been demonstrated as a
cost-effective alternative (Honovich et al., 2022;
Wang et al., 2022a). While the benefits of auto-
matic finetuning are substantial for English, which
has abundant data resources, they are even more
pronounced for languages with limited resources,
such as Swedish.

In this paper, we explore how automatic meth-
ods for instruction finetuning can be extended to
Swedish. The work is partly based on Unnatu-
ral Instructions (Honovich et al., 2022), a method
of bootstrapping the instruction creation process.
We use the generated instruction as a teacher to a
Swedish student, where a translator module acts as
an intermediary. The dataset is translated from En-
glish to Swedish and then used to finetune various
Swedish and non-Swedish models to investigate
the effectiveness of the proposed technique. The
translations and models are evaluated using both
human and automatic methods.

We find that the translated instructions gener-
ates a significant increase in zero-shot performance,
even to unseen data. This paper is a first step, and
a proof of concept, that instruction finetuning for
Swedish is possible and that there exist several di-
rections for further improvements.

2 Related Work

Language models have demonstrated the capability
to solve tasks through following instructions in a
zero-shot setting. However, their performance can
be enhanced by finetuning on a diverse set of task-
specific instruction data. This allows the model to
adapt and generalize to new, unseen tasks, reducing
the need for task-specific finetuning and enabling
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an off-the-shelf solution (Weller et al., 2020; Efrat
and Levy, 2020; Mishra et al., 2022; Sanh et al.,
2022; Chakrabarty et al., 2022; Gupta et al., 2022;
Wang et al., 2022b). Manually procuring data for
task specific finetuning can be costly. To mitigate
this issue, researchers have explored automatically
generating data (Schick and Schütze, 2021). Stud-
ies have shown that this alternative is highly effec-
tive, with performance that is only slightly behind
that of large language models, which has been fine-
tuned on manual data (Honovich et al., 2022; Wang
et al., 2022a).

3 Automatic Instruction Finetuning for
Swedish

We use two different instruction specific datasets
and translate them to Swedish: The first one to fine-
tune two models, and the second one as a held-out
evaluation set. We evaluate the performance of the
two models before and after instruction finetuning
together with a strong GPT3 baseline to explore the
usability of the automatically procured and trans-
lated instruction data.

The code, model checkpoints, and datasets used
in the paper are made available1.

3.1 Datasets

UNNATURAL INSTRUCTIONS In our study, we
use the core dataset of UNNATURAL INSTRUC-
TIONS (Honovich et al., 2022) as a base for training
and testing the models. The dataset was generated
by starting with 15 manually written samples as
seed, and then incrementally adding more sam-
ples with OpenAI’s text-DaVinci-002, using
three seed examples to generate a fourth one at a
time. Each sample contains the following parts:
(1) the instruction, which is the definition of the
task, e.g., “Find an answer to the mathematical
problem.”; (2) the input text which is a specific
example in the instruction space, e.g., “A wheel
has a circumference of 15 feet. What is its diame-
ter in inches?”; (3) constraints, which specifies the
restrictions of the expected answer, e.g., “The out-
put should be a number, rounded off to 2 decimal
places.”; and (4) the output, which is the correct
generation considering all the previous instructions
and constraints.

The core set of the UNNATURAL INSTRUC-
TIONS dataset comprises 68,478 samples, which

1https://github.com/oskarholmstrom/
sweinstruct

we split into two sets: 100 samples for testing and
the remainder for training. The top 10 tasks in the
dataset belong to a broad set of categories, and are
as follows: question answering, sentiment analysis,
arithmetic, geometry, event ordering, fact verifica-
tion, fill-in-the-blank, general math puzzles, identi-
fying overlapping strings, and array manipulations
and puzzles.

NATURAL INSTRUCTIONS For evaluation of
our models, we utilize a subset of the NATURAL

INSTRUCTIONS dataset generated by human an-
notators (Mishra et al., 2022). The test set of this
dataset comprises 12 tasks, and we randomly select
80 samples from each task to assess the models’
performance using ROUGE-L, and a subset of ran-
domly selected 5 sample per task for human evalua-
tion. The tasks are question and answer generation
with regards to different aspects of an incident. For
example, “Jack played basketball after school, af-
ter which he was very tired. Question: How long
did Jack play basketball?”. The task descriptions
and the expected generated answers are also longer
on average, resulting in a more difficult test set
compared to UNNATURAL INSTRUCTIONS. See
Appendix A for an overview of the tasks.

Automatic Translation For the automatic trans-
lation of the data into Swedish, we use off-the-shelf
machine translation models. The UNNATURAL IN-
STRUCTIONS dataset is translated with DeepL2 and
the NATURAL INSTRUCTIONS dataset is translated
with GPT3-DaVinci-003. To assess the quality
of the translations, we conduct a human evaluation,
which rates the translations from one to three based
on two criteria: (1) grammaticality and naturalness,
and (2) accuracy compared to the source text. 120
random samples were selected from the UNNATU-
RAL INSTRUCTIONS dataset and 10 examples per
task were selected from the NATURAL INSTRUC-
TIONS dataset. The evaluator rates the translations
on a scale of 1 to 3, with 1 indicating significant
errors, 2 indicating minor errors, and 3 indicating
correct and natural translations. The results show
an average rating of 2.75 for grammaticality and
naturalness, and 2.41 for accuracy for the UNNAT-
URAL INSTRUCTIONS dataset, and 2.83 and 2.55
for the NATURAL INSTRUCTIONS dataset.

Perplexity Dataset In order to evaluate the qual-
ity of the models outlined in Section 3.2, we assess
their perplexity. To guarantee that the generated

2https://www.deepl.com
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Model Perplexity

GPT-SW3 1.92
GPT-SW3-UI 2.66

OPT 2.79
OPT-UI 5.45

GPT3-Curie 2.41
GPT3-Curie-I 2.99
GPT3-DaVinci 1.91
GPT3-DaVinci-I 1.94

Table 1: Perplexity of all the models on the SVT
dataset.

texts are of high quality, and to eliminate the possi-
bility of evaluating the models on data that was part
of their pretraining, we use a custom dataset com-
prised of current news articles from the Swedish
national public television broadcaster, SVT3. Our
dataset is made up of 357 articles covering a range
of subjects, with an average length of 256 tokens
per article. These articles were published between
July 1st, 2022, and January 19th, 2023.

3.2 Models

GPT-SW3 (Ekgren et al., 2022) is a GPT2-like
(Radford et al.) model pretrained on the Nordic
Pile, where 26% of the data is Swedish (?). The
model is available in different sizes, but as a proof
of concept, we finetune and evaluate the model
with 1.3B parameters.

OPT (Zhang et al., 2022) is a BartDecoder-like
(Lewis et al., 2020) language model pretrained pre-
dominantly on English data. However, even models
that are intended to be trained on English are ex-
posed to other languages during pretraining due to
language contamination (Blevins and Zettlemoyer,
2022). We choose to finetune OPT to gain a per-
spective on how the predominant language in the
base model affects its instruction handling abilities.
To allow for fair comparisons, we use the 1.3B pa-
rameter model. The model is openly available and
is trained on publicly available data.

GPT3 (Brown et al., 2020) is a proprietary,
closed-source large language model. We
use both the pre-trained and instruction tuned
GPT3-DaVinci-003, which has 175B param-
eters, and GPT3-Curie-001, which has 6.7B
parameters. We abbreviate the instruction finetuned
versions with “-I”.

3https://www.svt.se

Model UI ROUGE-L NI ROUGE-L

GPT-SW3 0.084 0.009
GPT-SW3-UI 0.542 0.124

OPT 0.071 0.006
OPT-UI 0.449 0.101

GPT3-Curie 0.060 0.030
GPT3-Curie-I 0.308 0.108
GPT3-DaVinci 0.083 0.026
GPT3-DaVinci-I 0.537 0.151

Table 2: ROUGE-L scores on UNNATURAL IN-
STRUCTIONS (UI) and NATURAL INSTRUCTIONS

(NI) test sets for all the models. The best results
are in bold.

3.3 Finetuning and Experimental Setup

Having the training and test data described in Sec-
tion 3.1, we instruction finetune the GPT-SW3 and
the OPT models described in Section 3.2. We call
the new models GPT-SW3-UI and OPT-UI, as
they are finetuned on the UNNATURAL INSTRUC-
TIONS (UI) dataset. The models are finetuned us-
ing a next token prediction objective for the output,
given the description, input, and the constraints of
the task. We do not calculate any loss on the three
first parts of the sample and the output is attention-
masked so that the models cannot gain information
from the output. We finetune the models for 3
epochs, following (Honovich et al., 2022). As for
the other hyperparameters of the model, we chose
2e-5 for learning rate, 0.1 for weight decay, and
0.1 for warm-up ratio with an AdamW optimizer
(Loshchilov and Hutter, 2019). For generation dur-
ing inference, we use beam search with beam size
4 and 0.75 for temperature.

4 Results

Perplexity We first start with a perplexity anal-
ysis to measure the language modelling quality
of the models on unseen Swedish data using the
dataset described in Section 3.1. When evaluating
perplexity using token length normalization, tok-
enizers that generate sentences with more tokens
are favored. However, this approach can be prob-
lematic in cross-lingual settings, where tokenizing
unknown words may increase the number of tokens
generated. To overcome this issue, we use char-
acter length normalization as it provides a fairer
measurement of perplexity across languages (Liang
et al., 2022; Yong et al., 2022). From the results in
Table 1, we see that perplexity increases after in-
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Model Natural Related Correct

GPT-SW3-UI 2.39 2.38 1.84

OPT-UI 2.25 1.59 1.33

GPT3-Curie-I 2.45 2.38 1.76
GPT3-DaVinci-I 2.56 2.68 2.28

Table 3: Average score of generations from human
evaluation of the models on the Natural Instructions
dataset.

struction finetuning. It is especially pronounced for
the smaller models, while the change is minimal
for GPT3-DaVinci. OPT, not originally trained
on Swedish, is capable of modelling Swedish but
also seems to suffer the most from instruction fine-
tuning.

ROUGE-L Following Wang et al. (2022a),
Mishra et al. (2022), and Honovich et al. (2022),
we use ROUGE-L to automatically measure the
performance of the models. The results show that
the non-instruction-finetuned models perform the
worst for both datasets. With instruction finetuning,
we observe an increase in the ROUGE-L scores,
even a major increase for non-Swedish models. It
is important to note that the GPT3 models have
not undergone instruction finetuning on our data.
The results highlight the challenge of NATURAL

INSTRUCTION tasks compared to UNNATURAL IN-
STRUCTIONS, partly due to task complexity and
partially due to the length of the answers. For a
breakdown of the results on all the tasks, refer to
Table 4.

Human Evaluation We perform a human eval-
uation study to accompany the ROUGE-L score
analysis of model generations quality. The evalua-
tion was done on 5 randomly selected generations.
Three annotators independently scored (1 = not
true, 2 = somewhat true, 3 = true) the generations
on three different criteria: (1) whether it is natural
and grammatically correct; (2) whether it relates
to the provided context; (3) if it is a correct an-
swer for the given task. The instruction finetuned
DaVinci model with 175B parameters produces
more natural and correct outputs than the other
models, while GPT-SW3 and the instruction fine-
tuned Curie model perform close to each other
on all three criteria. The results are shown in Table
3.

5 Discussion

The results from the perplexity analysis show an
increase for all models after instruction finetuning,
even though the models become more capable at a
broad set of tasks. It has been shown that perplexity
does not correlate strongly with downstream task or
prompting performance (Liang et al., 2022; Yong
et al., 2022). However, when using automatically
translated data, we need to be aware that noise
in the translation process can affect the models’
capabilities. The increase in perplexity could partly
be explained by unwanted noise. A hypothesis
for why we see a larger increase in perplexity for
the OPT model than the GPT-SW3 model is that
stronger foundations in the target language makes
the model more robust to translation errors.

The significant increase of ROUGE-L scores for
all models, especially on the difficult NATURAL

INSTRUCTIONS tasks, show that the models can
become strong zero-shot generalizers with rela-
tively little finetuning. Unsurprisingly, the stronger
performance of GPT-SW3 than OPT shows that a
strong foundation in the target language is helpful.

There are some issues with making direct com-
parisons with the baseline GPT3 models: we do
not know what data it has seen during training,
the models have not been trained specifically for
Swedish, and they have followed a more struc-
tured instruction-finetuning process. What can be
said is that translated automatic instruction seems
to be highly useful. GPT-SW3 outperforms the
larger Curie model on both datasets and even the
DaVinci model, two orders of magnitude larger,
on the unnatural instructions test set. However, our
human evaluation shows that there are still signifi-
cant improvements that need to be made to reach
parity with the largest model.

6 Conclusion and Future Work

Using automatically created instructions that have
been translated to Swedish provides a significant
increase in zero-shot performance when instruc-
tion finetuning a GPT-SW3 and OPT model. The
GPT-SW3 model shows competitive performance
against the hundred times larger instruction-tuned
GPT3-DaVinci model. While the results are
promising, this is still a work in progress. Human
evaluations show that there is significant progress
to be made, especially in giving correct answers
to instructions. A possible path for performance
gain is to study the effects of translation quality
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on models’ performance. We also leave for future
work how the automatically translated instruction
finetuning interacts with increased model scale.

In conclusion, we find that instruction finetuning
for Swedish is not only within our reach, but it can
be achieved with a completely automatic process
that yields significant improvements on a broad set
of tasks in a zero-shot setting.
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Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

GPT-SW3 0.035 0.006 0.002 0.013 0.008 0.007 0.000 0.001 0.004 0.021 0.008 0.002
GPT-SW3-UI 0.033 0.204 0.085 0.106 0.067 0.156 0.286 0.080 0.125 0.083 0.080 0.187

OPT 0.060 0.002 0.004 0.0 0.003 0.001 0.001 0.003 0.000 0.000 0.001 0.000
OPT-UI 0.038 0.125 0.052 0.038 0.033 0.044 0.352 0.093 0.187 0.054 0.075 0.120

GPT-Curie 0.027 0.039 0.009 0.030 0.028 0.036 0.034 0.043 0.007 0.040 0.036 0.037
GPT-Curie-I 0.080 0.095 0.067 0.069 0.086 0.106 0.116 0.226 0.217 0.109 0.073 0.059
GPT-DaVinci 0.027 0.038 0.012 0.017 0.028 0.044 0.012 0.020 0.010 0.038 0.032 0.037
GPT-DaVinci-I 0.119 0.071 0.084 0.238 0.131 0.091 0.147 0.419 0.264 0.121 0.093 0.037

Table 4: A breakdown of ROUGE-L scores on the NATURAL INSTRUCTIONS (NI) test subsets for all
the models.

A NATURAL INSTRUCTIONS Tasks

The following are a summary of the task descrip-
tions in the NATURAL INSTRUCTIONS test set.
Please refer to Mishra et al. (2022) for more in-
formation.

1. Task 1: Writing questions that require tracking
entity references.

2. Task 2: Writing answers to questions involving
multiple references to the same entity.

3. Task 3: Writing questions that ask about event
duration, based on given sentences.

4. Task 4: Writing answers to questions that in-
volve event duration, based on given sentences.

5. Task 5: Writing implausible answers to ques-
tions that involve event duration, based on given
sentences.

6. Task 6: Writing questions that involve “tran-
sient vs. stationary” events4.

7. Task 7: Writing answers to a questions that
involve events that are stationary or transient.

8. Task 8: Writing implausible answers to a
questions that involve “transient v. stationary”
events.

9. Task 9: Writing questions that involve the or-
dering of events.

10. Task 10: Writing answers to questions about the
events that may happen before or after certain
events.

11. Task 11: Writing events that is not likely to
happen after certain events or is not likely to
have happened before it.

12. Task 12: Writing questions about when events
happened.

A breakdown of how the models perform on
each of these tasks are presented in Table 4.

4If an event will change over time, it is called transient and
if not, it is called stationary.

B NATURAL INSTRUCTIONS Samples

The following are examples of inputs and outputs
generated from the instruction finetuned GPT-SW3
model.

B.1 Positive examples
Uppmaning: Ställ en fråga om "händelse-
ordning" baserat på den givna meningen.
Definition: I denna uppgift, baserat på
en given mening, ber vi dig att skriva
en fråga som involverar ordning av hän-
delser, dvs. förståelsen av hur händelser
vanligtvis ordnas. Till exempel "tjäna
pengar" brukar vanligtvis förekomma
före "spendera pengar"

Saker att undvika: Skapa inte frågor som
har explicita nämningar av svar i text.
Istället måste det antydas från det som
ges. Med andra ord vill vi att du använ-
der "instinkt" eller "sunt förnuft".

Betoning & Försiktighet: De skrivna frå-
gorna kräver inte att de har ett enda kor-
rekt svar.

Input: Mening: När våra bilar bränner
bensin i sina motorer, omvandlas det till
rörelse och värme.

Output: Hur omvandlas bensin till
rörelse och värme?

Uppmaning: Ställ en fråga om "abso-
lut tidspunkt" för händelser baserat på
den givna meningen. Definition: I denna
uppgift, baserat på den givna indata, ber
vi dig att skriva en fråga som involverar
"absolut tidspunkt" för händelser, vilket
definieras som förståelse för när hän-
delser vanligtvis händer. Till exempel
"att gå till skolan" händer vanligtvis un-
der dagen (inte klockan 2 på natten).
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Saker att undvika: Skapa inte frågor som
har explicita nämningar av svar i text.
Istället måste det antydas från det som
ges. Med andra ord vill vi att du använ-
der "instinkt" eller "sunt förnuft".

Betoning & Försiktighet: De skrivna frå-
gorna kräver inte ett enda korrekt svar.

Input: Mening: Lennon anklagar sin far
för att lämna honom igen, och sedan läm-
nar han, efter att ha berättat för sin far
att han inte kommer att leva med honom
längre.

Output: När lämnade Lennon sin far?

B.2 Negative examples
Uppmaning: Ge ett negativt/felaktigt
svar på frågan om "händelseordning".
Definition: I denna uppgift ber vi dig
att skriva ett osannolikt svar på en fråga
som involverar ordning av händelser,
dvs. förståelsen av hur händelser van-
ligtvis ordnas. Till exempel "tjäna pen-
gar" brukar vanligtvis förekomma före
"spendera pengar"

Saker att undvika: -

Betoning & Försiktighet: Även om det
finns flera felaktiga svar, behöver vi bara
ett felaktigt svar. Försök att hålla ditt
"svar" så enkelt som möjligt. Kortfat-
tat och enkelt "svar" föredras framför de
komplexa och långa.

Mening: Vid nuvarande användning-
shastigheter kommer kol att räcka i cirka
300 år. Fråga: Vad gjorde människor
efter att ha insett att kol inte kommer att
räcka för evigt?

Output: Människor insåg att kol inte
kommer att räcka för evigt.

Uppmaning: Ställ en fråga om "hän-
delsens varaktighet" baserat på den
givna meningen. Definition: I denna
uppgift ber vi dig att skriva en fråga
som involverar "händelsens varaktighet",
baserat på en given mening. Här
definieras händelsens varaktighet som
förståelsen av hur långa händelser van-
ligtvis varar. Till exempel tar "borsta
tänderna" vanligtvis några minuter.

Saker att undvika: Skapa inte frågor som
har explicita nämningar av svar i text.
Istället måste det antydas från det som
ges. Med andra ord vill vi att du använ-
der "instinkt" eller "sunt förnuft".

Betoning & Försiktighet: De skrivna frå-
gorna kräver inte att de har ett enda kor-
rekt svar.

Mening: Trots sin snabba klättring
uppför juridiska stegen har Bailey alltid
hittat tid att hjälpa till i de orsaker som
han känner starkt för.

Output: Varaktighet?

C UNNATURAL INSTRUCTIONS Samples

The following are examples of inputs and outputs
generated from the instruction finetuned GPT-SW3
model.

C.1 Positive examples

Input: Du ska beräkna medelvärdet av
tre givna tal med hjälp av följande oper-
atorer: addition, subtraktion, multiplika-
tion och division. Svaret ska vara korrekt
med en decimal. 15, 12, 18.

Begräningsning: Ingen.

Output: Genomsnittet av de tre givna
talen är 15

Input: I den här uppgiften ombeds du att
komplettera en kort berättelse genom att
fylla i luckorna med ett ord. Den givna
meningen är en antydan om vilken typ
av ord som ska användas för att fylla i
tomrummet. Jag kände mig ___ efter
min långa dag på jobbet.

Begräningsning: Output måste vara ett
adjektiv.

Output: Trött

Input: I den här uppgiften måste du
vända en given sträng. Hello World!

Begräningsning: Ingen.

Model output: !dlrow olleH
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C.2 Negative examples

Input: Skriv en funktion som ger en re-
splan med minsta möjliga kostnad, med
en lista över flygbiljettpriser och en an-
nan lista med motsvarande antal mellan-
landningar för varje flygning. Anta att
det bara finns ett anslutningsflyg från en
stad till en annan. Priser = [200, 400,
350], mellanlandningar = [0, 2, 1].

Begräningsning: Ingen.

Output: Den minsta möjliga kostnaden
är 20.

Output: Om du antar att du använder
en övervakad inlärningsalgoritm måste
din klassificerare tränas på märkta bilder
av människors ansikten. För att kunna
göra detta behöver du ett dataset med
märkta bilder av människors ansikten.
Det finns många sådana dataset tillgäng-
liga på nätet, t.ex. datasetet Labeled
Faces in the Wild.

Model output: En möjlig klassificerare
skulle kunna vara en funktion som tar
in människors ansikten tillsammans med
etiketterna "man" och "kvinna" och re-
turnerar en funktion som tar in män-
niskors ansikten tillsammans med etiket-
terna "man" och returnerar en funktion
som tar in människors ansikten tillsam-
mans med etiketterna "man" och re-
turnerar en funktion som tar in män-
niskors ansikten tillsammans med etiket-
terna "man" och returnerar en funktion
som tar in människors ansikten tillsam-
mans med etiketterna "man" och re-
turnerar en funktion som tar in män-
niskors ansikten tillsammans med etiket-
terna "man" och returnerar en funktion
som tar in människors ansikten tillsam-
mans med etiketterna "man" och

Input: Du får en lista med strängar.
Uppgiften är att återge antalet unika
strängar i listan som har en längd som
är större än 1 och där alla tecken i strän-
gen är små bokstäver. [’hello’, ’world’,
’my’, ’name’, ’is’].

Begräningsning: Det ska vara ett heltal
som representerar antalet unika strängar.

Output: [No model answer]

C.3 Noisy translation examples
Input: Du får en lista med ord. Din
uppgift är att gruppera de givna orden i
två grupper: de som rimmar och de som
inte rimmar. katt, hatt, sat, fladdermus,
mat.

Begräningsning: Inga.

Output: katt, fladdermus, mat.

Input: Du måste hitta den tjockaste per-
sonen i följande lista över personer. Tim,
1,80 meter lång, väger 140 pund. Sarah,
1,5 meter lång, väger 160 pund. Mike, 5
fot och 2 tum lång, väger 180 pund.

Begräningsning: Utfallet ska vara en
mening som beskriver vem som är tyngst
och hur mycket han eller hon väger.

Output: Sarah väger 160 pund.

C.4 Example of noise in gold data
Input: Du får en uppsättning heltal. Din
uppgift är att bestämma medianvärdet i
den givna mängden. Medianen är det
mittersta värdet när värdena i en mängd
listas i antingen stigande eller fallande
ordning. Om det finns ett jämnt antal vär-
den bestäms medianen genom att man tar
medelvärdet av de två centrala värdena.
3, 7, 1, 9.

Begräningsning: Ingen

Gold output: Medianvärdet är 7.

Model output: Medianen är 5.
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Abstract
Long term language technology infrastruc­
tures are critical for continued mainte­
nance of language technology based soft­
ware that is used to support the use of lan­
guages in the digital world. In the Nordic
area we have languages ranging fromwell­
resourced national majority languages like
Norwegian, Swedish and Finnish as well
as minoritised, unresourced and indige­
nous languages like the Sámi languages.
We present an infrastructure that has been
built in over 20 years time that supports
building language technology and tools for
most of the Nordic languages as well as
many of the languages all over the world,
with focus on Sámi and other indigenous,
minoritised and unresourced languages.
We show that one common infrastructure
can be used to build tools from keyboards
and spell­checkers to machine translators,
grammar checkers and text­to­speech as
well as automatic speech recognition.

1 Introduction

Language technology infrastructures are needed
for long­term maintenance of linguistic data and
NLP applications derived from it. Specifically
in a Nordic context, we have a selection of lan­
guages with very different requirements, and all
differ from those that are commonly assumed in
other NLP contexts, e.g. English and handful of
most resourced languages in the world. The lan­
guages in the Nordic area range from decently
resourced Indo­European languages (Norwegian
bokmål, Swedish, Danish and Icelandic) to mod­
erately resourced Uralic languages (Finnish, Es­
tonian) to all low and unresourced, minoritised
languages (Sámi languages, all other Uralic lan­
guages, Faroese, Greenlandic). We have an infras­
tructure that supports all of these languages, with a

focus on the smaller and less resourced languages
and specifically on the Sámi languages. The in­
frastructure we provide has been in use for over a
decade and in this article we describe strategies and
workflows that we have found successful. It cur­
rently supports over 100 languages, many outside
of the Nordic region.
The technical infrastructure builds on the con­

cept that we aim to separate the technological
work: programming and engineering, from the
linguistic work: lexicography, grammar building,
corpus annotation etc. In this way, we enable lin­
guists and native informants to work on the lan­
guage data and the engineers build and maintain
the technological solutions in a meaningful way
where both the technological solutions and the lin­
guistic data are kept up to date and functional.
This workflow is important since both linguis­
tic and technological sides present ongoing chal­
lenges to be kept up to date. Regarding the lin­
guistic content, the language norms change and
grow, new words and expressions enter the lexicon
regularly and other words and expressions become
outdated. In technology, operating systems and
environments, programming languages and APIs
change all the time, making the NLP tools built a
few years ago not usable a few years later. The
research question we solve with our infrastructure
is, how both parts can be kept up to date while not
burdening the people working with the parts with
details irrelevant for their work.
In other words, the infrastructure contains lin­

guistic data, and technological implementations to
build end user NLP­based tools and software from
it. The tools that we build nowadays include writ­
ing tools, such as spelling and grammar check­
ers and correctors, speech synthesis and recogni­
tion, machine translation, intelligent dictionaries
and various linguistic analysis tools. The techno­
logical infrastructure is composed of tools like ver­
sion control systems, build systems and automa­
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tion of building and distribution of the NLP tools.
The underlying technologies here have changed a
lot in the past 20 years, and will undoubtedly keep
evolving. In this article we take a look on some
concepts that have both stayed stable or evolved to
be part of the core tools for us. In the NLP scene,
the world has changed a lot in past years as well,
with the traditional knowledge­based methodol­
ogy being gradually replaced by data­driven ap­
proaches; in the GiellaLT infrastructure we are still
following the expert­driven knowledge­based ap­
proach as it continues to be the most appropriate
for unresourced languages, but we do not cover
this dichotomy in detail; for more details of this
we refer to (Wiechetek et al., 2022) that discusses
the issue extensively.
In the past 20 years we have built language re­

sources for several Sámi languages starting from
virtually nothing; Even though we had a num­
ber of non­digital resources available, these were
far from exhaustive. This means that our work
also included normative discussions, requests and
suggestions to the language normative organs, er­
ror classifications, and grammatical descriptions
of phenomena not included in grammar books. In
several cases, these phenomena needed traditional
linguistic research. Based on this experience we
suggest workflows and usage patterns along the
technical solutions of the infrastructure that are
effective for long term maintenance of linguistic
software in support of continued digital existence
of human languages.
The contributions of this article are: We present

a stable Nordic language technology infrastructure
that has supported Nordic language technology de­
velopment for 20 years, we describe the best cur­
rent practices we have learned in the years and
based on the current state of things we sketch the
potential future developments.

2 Background

The infrastructure presented in this article has been
developed and maintained for at least 20 years
now. The infrastrucutre has been discussed pre­
viously in Nodalida some 10 years ago Mosha­
gen et al. (2013). In this work we aim to show
updates and prove that the system has well stood
the test of time in supporting Nordic languages.
On one hand everything has changed between the
years; computers and mobile platforms, operating
systems, programming environments, on the other

hand, many solutions have stayed usable: rule­
based finite state morphologies, dictionaries and
linguistic data.
The foundation for the work presented in this

article is the multilingual infrastructure GiellaLT,
which includes over 100 languages, including
most nordic ones: the Sámi languages, Faroese,
Finnish, Norwegian, Swedish, other Uralic lan­
guages and many more. Everything produced
in the GiellaLT infrastructure is under free and
open licences and freely available. The cor­
pora are available with free licensing where pos­
sible. The infrastructure is split code­wise in three
GitHub organisations: GiellaLT containing the
language data for each language, Divvun contain­
ing language independent code for the infrastruc­
ture and various applications, and Giellatekno for
corpus infrastructure. End user tools served by the
Divvun group are at divvun.no & divvun.org, and
tools served by the Giellatekno group at giellate­
kno.uit.no, both atUiT Norway’s Arctic University.
We build systems that include lexical data as

well as rules governing morphophonology, syn­
tax and semantics as well as a number of applica­
tion specific information, e.g. grammatical rules
for grammar checking, phonetic rules for Text­To­
Speech (TTS) and so forth.
The language­independent work is currently

done within the infrastructure, the language­
independent features and updates that are relevant
to all languages are semi­automatically merged as
they are developed. To ensure that language inde­
pendent and common features and updates do not
destroy existing language data or use case, we en­
force a rigorous continuous integration based test­
ing regime. The current system for testing is a
combination of our long­term investment in testing
within the infrastructure locally for developers—
combined with modern automatic testing currently
supplied by GitHub actions.
The automated testing and integration is one of

the key features for upkeep and maintenance of the
linguistic data: the linguists work with the dictio­
naries and rules on a daily basis and receive im­
mediate feedback from the system of the effects of
the new word entries or rules. The testing system
verifies that if the new words and rules did not af­
fect negatively the user experience of e.g. spelling
checker, it can be immediately deployed to the end
users of the mobile keyboards and spell­checkers
on office platforms.
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Another part of the GiellaLT philosophy is that
of reusable and multi­purposeful resources, cf.
Antonsen et al. (2010). This is true for all of our
work, from corpus collection to cross­lingual co­
operation.

2.1 Tools
One of the main aims of the infrastructure is to
provide tools to different end user groups: lan­
guage communities, learners, language users and
researchers. In 2012, spell­checking and correc­
tion was presented as one of the key technologies
that language technology infrastructures can pro­
vide as a support tool for linguistic communities.
This continues to be a core tool but even it has
changed significantly: in 2012, the main use of
spelling checkers was most commonly seen as a
writer’s tool within office suites. While this still
is the case, the users will much more likely face
spelling correctors as part of e.g. mobile key­
boards, in form of automatic corrections. The
GiellaLT infrastructure today offer keyboards for
many of the languages in the infra for most mo­
bile and computer operating systems. For writer’s
tools, we also provide more advanced grammatical
error correction for some of the languages. This is
a tool that in practice concerns sentence level data
while correcting errors, whereas spelling checker
typically processes at word level mainly. Intel­
ligent dictionaries and corpus resources are pro­
vided to users primarily via web apps and related
mobile apps. The intelligent dictionaries are an im­
portant tool for language learners and users, they
enable users to understand texts by looking up the
underlying lemma of inflected forms. For research
uses as well as for language learners and users to
some extent, we also have annotated corpora that
can be used for example through aKorp corpuswe­
bapp. (Borin et al., 2012) Spoken language tech­
nology is one of the newer applications in our in­
frastructure. This encompasses text­to­speech as
well as automatic speech recognition.
An overview of the tools available for the lan­

guages listed later in the article is given in table 1.

2.2 Methods
The foundation for all linguistic processing in
the GiellaLT infrastructure is the morphologi­
cal analyser, built using formalisms from Xe­
rox: lexc, xfst and optionally twolc. From
these source files, the infrastructure creates ¸fi­
nite state transducers (FST’s) using one of three

Language KBD SP GC MT Dict
Eastern Mari B B — — B
Erzya V B — — B
Faroese — V B B —
Finnish — B — B —
Greenlandic — V — — V
Inari Sámi V V B B V
Ingrian B B — — —
Komi­Zyrian B B — — B
Kven B B — — V
Livvi B B — — V
Lule Sámi V V B B V
Moksha V B — — V
North Sámi V V V V V
Norw. bokmål — — — — V
Norw. Nynorsk B B — — —
Pite Sámi — B — — V
Skolt Sámi V B — — V
South Sámi V V B B V
Udmurt B B — — V
Voru B B — — V
Western Mari B B — — V

Table 1: Tools available for some of the languages
in the GiellaLT infrastructure. KBD = Keyboards,
SP = spellers, CG = Grammar checker, MT = ma­
chine translation, Dict = electronic dictionaries. V
= released, B = prerelease.

supported FST compilers: Xerox tools (Beesley
and Karttunen, 2003), HFST (Lindén et al., 2013),
or Foma (Hulden, 2009). All higher­order lin­
guistic processing is done using the VISLCG3
(visl.sdu.dk) implementation (Didriksen, 2010) of
Constraint Grammar (Karlsson, 1990). Tokeni­
sation is based on an FST model initially pre­
sented by Karttunen (2011) in the Xerox tool
pmatch. The resulting FST is applied using
hfst-tokenise. In our tokenisation, sentence
boundary detection is treated as a special case of
ambiguous tokenisation, and solved in the same
way, approaching near­perfect sentence boundary
identification, cf. Wiechetek et al. (2019b).
Spell­checkers are based on weighted finite­

state technology as described by (Pirinen and
Lindén, 2014). There is also support for neural
network based models of spell­checking (Kaalep
et al., 2022), this is however in its current stage
still not up to par with the traditional weighted
finite­state models given the current error corpus
sizes. Since 2019 the GiellaLT infrastructure sup­
ports building grammar checkers (Wiechetek et al.,
2019a) and these are available for some of the Sámi
languages already. Another high­level tool avail­
able within the GiellaLT infrastructure is machine
translation. It works in cooperation with the Aper­
tium infrastructure (Khanna et al., 2021).
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Speech technology is based on a combination
of the knowledge­based methods and data­driven
methods. For this reason we have started devel­
oping workflows and best practices for gather­
ing good spoken data for minoritised and less re­
sourced language scenarios we work with.
The engineering solutions we use to tie together

the linguistic work and the technological work
follow the contemporary approaches to continu­
ous integration and deployment, which at the mo­
ment is implemented onGitHub systems including
GitHub Actions as well as on some custom­built
continuous integration systems based on Tasclus­
ter. The continuous integration tools are used both
in the traditional way as in software engineering,
to ensure that the new additions to code and data
did not fundamentally break the system (e.g. with
syntax errors) as well as ensuring the quality of the
systems after the change. The quality assurance
aspect is based on automated testing of evaluation
factors that are both relevant for the products as
well as interesting for research and development,
e.g. for spell­checkers we test and track the devel­
opment of precision and recall of the system over
time.

3 Linguistic data

There are two types of linguistic datawe gather and
develop in the infrastructure, one is the dictionar­
ies, grammars and descriptions for each language
and the other is corpus data. Even if our system is
not corpus­driven in the waymost other contempo­
rary systems are, once we develop the knowledge­
based systems we are working for, the real­world
data from language users becomes a very impor­
tant resource for testing and evaluating the sys­
tems we have built. The corpus data we collect
is also enriched by language experts by annotat­
ing spelling and grammar errors with corrections
included, or by doing other linguistic annotations
and corrections to automated annotations. For this
reason and also because we work with many lan­
guages that have very little data available the cor­
pora we collect are carefully selected and curated.
The linguistic data can be roughly evaluated

without annotated large manually annotated gold
corpora by calculating the number of words in the
dictionaries and a naïve coverage. Words counted
are lemma entries, thus words covered by pro­
ductive morphology will not be included in the

figure.1 The naíve coverage will give an intu­
ition for the extents of the derivational morphology
has with regards to real world word­form usage.
Here naïve coverage is calculated as a proportion
of tokens that get any analyses of the whole cor­
pus, in this case we use the tokenisation provided
by the corpus analysis tools, which is based on
left­to­right longest match tokenisation that falls
back on space­separated tokens with special cases
for punctuation, i.e. mostly natural tokenisation
for the western languages with latin and cyrillic
scripts. 2 The figures are given in table 2.

Language ISO Words Coverage
Eastern Mari mhr 55 k 87 %
Erzya myv 102 k —
Faroese fao 72 k 94 %
Finnish fin 412 k 95 %
Greenlandic kal 12 k 59 %
Inari Sámi† smn 77 k 91 %
Ingrian izh 2 k —
Komi­Zyrian kpv 195 k 99 %
Kven fkv 16 k 75 %
Livvi olo 58 k —
Lule Sámi† smj 76 k 93 %
Moksha mdf 41 k —
North Sámi† sme 164 k 91 %
Norw. Bokmål nob 54 k 95 %
Pite Sámi† sje 5 k 100 %
Skolt Sámi† sms 66 k 82 %
South Sámi† sma 86 k 84 %
Udmurt udm 47 k —
Voru vro 20 k 90 %
Western Mari mrj 26 k —

Table 2: Dictionary sizes and coverage for a num­
ber of languages in the GiellaLT infrastructure;
ISO codes are ISO 639­3.
† The figures for some of the Sámi language word
counts include 33.5 k proper names in a shared file.

It is noteworthy that the naïve coverages we
count are based on the corpora we have collected
and this corpora has been seen by people working
on the dictionaries, in other words it is technically
not a clean test setup. For many of the languages
we work with this is necessitated by the facts that
the corpus we have is all texts that are available for
the language at all. Not making full use of it would
hinder the development of the language model in a
way that would be more valuable for the language

1Natural language productive morphology in complex
morphologies we work with is usually cyclical, so theoretic
word count for derived and compounded forms of all lan­
guages is infinite.

2c.f. https://github.com/giellalt/
giella-core/blob/master/scripts/coverage-etc.
bash
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communities than to hide parts of the corpus from
the lexicographers for testing purposes. For this
reason the figures should be considered as a rough
guideline, as naïve coverage would be anyways.
For our intents and purposes, we can see from the
naïve coverage if the dictionaries need attention
e.g., for spell­checkers to be usable enough as to
not show too many red underlines in regular ev­
eryday texts.
We collect texts for the Nordic languages as

well as several other languages that we use and
develop. The largest corpora we have harvested
are for the Sámi languages: North, Lule, South,
Inari and Skolt Sámi. The Sámi corpus is owned
by the Norwegian Sámi parliament, and all corpora
are administered and made accessible to the public
by the Divvun and Giellatekno groups. The cor­
pora for some of the Uralic languages in Russia
are large, and for Meadow Mari even larger than
for North Sámi. Some of the corpora for larger,
non­minority languages (e.g. Finnish, Norwegian)
are moderately sized, since they are already cov­
ered by other projects such as OPUS (Tiedemann,
2012), and we only need to create specific corpora
for our applications, such as grammar error cor­
pora by L2 speakers in order to develop a grammar
checker.
The corpora are split in two based on restrictions

set by the copyright owners. Researchers and any­
one else can freely download the free part. The
whole corpus, also the restricted part, is accessi­
ble via a public search interface3. We have writ­
ten a tool named CorpusTools to administer, con­
vert and analyse the corpus texts. Original texts
and their metadata are saved in GitHub reposito­
ries, then converted to a common XML format, to
ease further use of the texts. The sizes of corpora
are summarised in table 3, the token count is based
on simple space­separated tokens with no extra to­
kenisation.4 The languages shown in the table are
the Nordic and related languages, for a full listing
refer to our website5. The corpus texts have some
metadata and markups relevant for our use cases,
such as grammar checking and correction.
Recently, we have also began collecting speech

corpora for speech technology related projects.
3gtweb.uit.no/korp (Sámi), gtweb.uit.no/f_korp (Baltic

Finnic and Faroese), gtweb.uit.no/u_korp (other Uralic lan­
guages). Cf. also More info about the corpora.

4The corpora are being constantly harvested, the status as
of 2023­02­03 is shown, the current status will be available in
our GitHub repositories in the near future.

5https://giellalt.github.io/

For example, for an ongoing Lule Sámi TTS
project we reused a part of a Lule Sámi gold corpus
from 2013, and collected additional texts we knew
to be well written and already proofread, before
proofreading these texts once more to avoid con­
fusion when reading the text aloud during the TTS
recordings. The Lule Sámi TTS text corpus con­
sists of various text styles (news, educational, par­
liament etc.) with altogether over 74,000 words.
Currently, we have recorded two Lule Sámi voice
talents using this text corpus, and after processing
the recordings, a speech corpus with altogether 20
hours will be ready to use for speech technology
purposes.

Language ISO Tokens Speech
Eastern Mari mhr 57 M —
Erzya myv 14 M —
Faroese fao 11 M —
Finnish fin 2 M —
Greenlandic kal 0.5 M —
Inari Sámi smn 3 M —
Ingrian izh — —
Komi­Zyrian kpv 1 M —
Kven fkv 0.5 M —
Livvi olo 0.3 M —
Lule Sámi smj 2 M 20 h
Moksha mdf 13 M —
North Sámi sme 39 M 38 h
Norw. bokmål nob 14 M —
Norw. Nynorsk nno 0.7 M —
Pite Sámi sje — —
Skolt Sámi sms 0.25 M —
South Sámi sma 2 M —
Udmurt udm — —
Voru vro 0.67 M —
Western Mari mrj 6 M —

Table 3: Corpus sizes for some of the languages
in our infrastructure. Tokens are space­separated
tokens.

As spoken language technology is based on
data and machine learning, the procedures and
pipelines described above could be applied to any
(minority) language with a low­resource setting, in
the task of developing speech technology applica­
tions. Most of the applications discussed here can
be piloted with or further developed with relatively
small data sets (even with < 5 hrs of paired data),
compared to the amounts of data used for respec­
tive tools for majority languages (see, e .g., Ito and
Johnson (2017)6). This is largely possible thanks
to the available open source materials and tech­
nologies, especially those relying on, e.g., transfer

6The LJ Speech dataset consists of 13,100 short audio
clips of a single English speaker with a total length of ap­
proximately 24 hours.
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learning, i. e. fine­tuning of models (Fang et al.,
2019).

4 Conclusion

In this article we have presented recent develop­
ments and status of the GiellaLT Nordic multilin­
gual infrastructure built during the last 20 years.
In the last years, we have added more support to
speech technologies, and keyboards for various
platforms such as mobile devices and modern op­
erating systems.
The GiellaLT infrastructure contains building

blocks and support for most of the language tech­
nology needs of indigenous and minority lan­
guages, from the very basic input technologies like
keyboards to high­level advanced tools like world­
class grammar checking and machine translation.
It does this by using rule­based technologies that
makes it possible for any language community to
get the language technology tools they want and
need. All that is needed is a linguist.
We discussed the ways for long­term mainte­

nance of linguistic data and software tools for NLP
of Nordic and minority languages. We showed
some best current practices and workflows on how
to maintain the lexicons and keep end user tools
unbroken and still up­to­date.
In conclusion, building corpora is based on big

efforts, requires expertise and is time­costly. We
have illuminated the work behind three important
steps within building corpora ­ firstly, collecting
and digitalising, secondly upgrading, i.e. adding
annotation for special purposes, and proofreading,
and thirdly converting from one medium/language
to another as in recording speech, translating, or
other.
With our multilingual infrastructure and our lan­

guage resources we show that while there is a
need for corpus data for certain tasks, high quality
tools needed by a language community can be built
time­efficiently without big data in a rule­based
manner.
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Abstract

This paper describes the adaptation of
the database system developed for the
Database of Icelandic Morphology (DIM)
to the Faroese language and the creation of
the Faroese Morphological Database using
that system from lexicographical data col-
lected for a Faroese spellchecker project.

1 Introduction

The Faroese Morphological Database (FMD)1 is
the result of a joint project of the Árni Magnússon
Institute for Icelandic Studies and the University
of the Faroe Islands. The project, entitled the In-
sular Nordic Morphological Database Project, re-
ceived funding from The Nordplus Nordic Lan-
guages Programme in 2021.

The FMD consists of entries for Faroese words
(lexemes) with complete paradigms, including
variants. Various kinds of metadata are included.
It is based on a previously existing project in
Iceland, the Database of Icelandic Morphology
(Bjarnadóttir et al., 2019),2 and makes use of
language data collected for a previous Faroese-
language project, the spellchecker Rættstavarin.3

Data from DIM is used in countless language tech-
nology projects in Iceland, including smart search
engines, spellchecking and hyphenation tools, tag-
gers and parsers, speech recognition tools, online
word games, and DIM is also a popular online re-
source for the general public. It is hoped that the

1https://bendingar.fo
2https://bin.arnastofnun.is/DMII/
3Rættstavarin is available as part of the Divvun

language tool package at https://divvun.org/,
and the source code is available on GitHub:
https://github.com/giellalt/lang-fao;
a description of the project (in Faroese) may be
found here: https://www.setur.fo/fo/
setrid/almennar-taenastur-og-grunnar/
raettstavarin/

new Faroese sister project will grow to be as suc-
cessful in spurring the development of language
technology in the Faroe Islands and aiding the gen-
eral public, researchers and language students in
the use and study of the Faroese language.

1.1 Goals

The aim was to publish the FMD with the available
lexical data from Rættstavarin as well as the list of
given names published by the Faroese Language
Council.4 The basic features of the DIM system
were used to generate all inflected forms, display-
ing searchable inflectional paradigms on the web
and providing data for download, including all the
inflected forms with POS tags, lemmas and basic
metadata.

Secondary goals included adding more meta-
data such as tags for specific morphological, syn-
tactic and pronunciation features, dialects, etc.
Recent additions to the DIM system were also
tested, in anticipation of their future use for
Faroese.5

Ultimately, the FMD should include all extant
forms of all words in the Faroese language, and
they should include as much useful metadata as
possible. Of course “all words” is a utopian ideal
as languages are constantly evolving and more vo-
cabulary is both created and discovered, but it is
feasible in the relatively near future to have basi-
cally added all vocabulary from available digital
texts and to have a pipeline for semi-automatically
adding newly discovered vocabulary on a regu-
lar basis. In this initial project period we fo-
cused on readily available data from lexicographi-
cal sources.

4http://malrad.fo/page.php?Id=38&l=fo
5See the description of the classification system in Bjarna-

dóttir et al. (2019).
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2 Linguistic similarity

Faroese and Icelandic are closely related, both be-
ing North Germanic languages of the West Scan-
dinavian branch and share many features such as
three grammatical genders, masculine, feminine
and neuter, and the four-case system of nomina-
tive, accusative, dative and genitive. Although the
genitive is used much less in Faroese than Ice-
landic, it certainly exists and is morphologically
similar. Nouns have inherent gender, while adjec-
tives and determiners inflect for gender. Verbs in-
flect for mood, tense, person and number (Thráins-
son et al., 2012). A full list of inflectional cate-
gories will be provided on the FMD website, in
the same manner as on the DIM website.

Due to these similarities it was evident from the
start that all the tools and methods that have been
developed for DIM could be applied to Faroese
with only minimal changes; even the web inter-
face can be presented in much the same way, with
Faroese linguistic terms simply replacing the Ice-
landic terms for e.g. singular, nominative, com-
parative, etc. At this initial stage of the project,
the focus was on the main features of the system,
though detailed tagging was employed for some
particularly important or interesting morphologi-
cal and pronunciation features.

The database system for the FMD is run on a
copy of the DIM system. More or less the com-
plete software system from DIM has been set up
for the FMD. The system includes the database
backend, import tools, and website, with both
online lookup and export functions for language
technology projects. A detailed description of the
system may be found on the DIM website.6

3 Building the database

The premise of the project was to make use of
existing data, and by far the largest set of lex-
icographical data available was the data from
Rættstavarin. It, in turn, is largely derived from
data from the electronic version of the Faroese
dictionary (Poulsen, 1998; web version 2007, cur-
rently available at sprotin.fo). Another piece
of low-hanging fruit was the official Faroese Lan-
guage Council list of given names.

6See an overview of the DIM system here: https://
bin.arnastofnun.is/DMII/aboutDMII/ and in-
formation about the structure of the available data for lan-
guage technology here: https://bin.arnastofnun.
is/DMII/LTdata/

3.1 System comparison

The spellchecker data has words categorised by
inflectional category according to a classification
scheme which was created for the electronic ver-
sion of the Faroese dictionary and slightly mod-
ified and expanded for the spellchecker. The
spellchecker software has a template-based system
that generates inflected forms from source files
containing a lemma, a single template parameter
and the name of the appropriate inflection pattern
using a template for each pattern.

The FMD (and DIM), somewhat similarly, uses
a template-based system to generate inflected
forms, though the conventions for parameters
are different (more than one parameter may be
used to represent stem variations) and a relational
database system is used rather than text files. The
inflected forms are then stored in a table linked
to the main table containing word entries. Addi-
tionally, a set of switches enables or disables the
generation of specific sections of the inflectional
paradigm such as singular or plural, definite and
indefinite forms for nouns, the different moods,
voices and participles of a verb, etc. The first step
for each inflection pattern, then, was to create a
template for it. Then the list of words with that
pattern from the spellchecker data could, in theory,
be transformed with a simple script to the correct
import format, as long as the inflectional patterns
were compatible.

3.2 Adapted classification and error
correction

Indeed, the FMD has largely followed the
spellchecker’s inflection classification scheme, but
it has been necessary to add new patterns to ac-
count for the subtler variations in word inflections
in Faroese. For example, a number of words had
been assigned a pattern which correctly accounts
for their most usual or regular inflected forms,
but fails to account for certain variant forms, per-
haps remnants of an older inflection, perhaps novel
variants, sometimes dialectal forms, archaic forms
or forms used in fixed expressions. Unless as-
signed a different inflection template, these words
would therefore be missing some of their inflected
forms. In other cases the templates would have
produced erroneous inflected forms.

Some accidental errors were inherited from the
Faroese dictionary, while some had been intro-
duced by the spellchecker project, and many of
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them were simply the result of choosing the wrong
pattern, e.g. forgetting that a neuter noun whose
stem ends in -s needs a pattern that doesn’t add an
extra -s in the genitive singular form, or incorrectly
typing the pattern name, e.g. writing kv6 (femi-
nine pattern 6) instead of k6 (masculine pattern
6). These could often be corrected by assigning
the words another existing pattern, but for many
words new templates were needed. In some cases
a word needs a pattern of its own due to its irregu-
larity of inflection. There were also other errors in
the spellchecker data such as typos and spelling er-
rors and incorrectly entered template parameters.

It quickly became apparent that the number of
errors in the source material was too great to leave
unchecked. It would also be easier to identify and
correct them early on while still working with the
data in text files, rather than risking overwriting
subsequent edits to database entries, particularly
comment fields and other metadata, by updating
them en masse later on.

The database system also requires that words
be designated as base words or compounds, and
a binary split point is required for compounds;
e.g., the compound noun havnarkona is written
havnar_kona in the lemma field to indicate
that it is composed of havnar- and kona. Com-
pounding had been indicated to some extent in the
spellchecker data, but haphazardly and also with
some errors.

These factors led to the conclusion that all
words needed to be reviewed manually, though
often somewhat cursorily due to time limita-
tions, chiefly focusing on splitting compounds and
checking for obvious errors. Along the way, tag-
ging of morphological, usage and pronunciation
characteristics was begun, and it was considered
desirable that certain of them should always be
tagged if possible, in particular: restriction of a
word to a region or dialect; archaic, obsolete or
rare usage; irregular correspondence of spelling
and pronunciation; and unusual word formation
patterns. This became a secondary goal of word
review and, while it made it somewhat more time-
consuming, it reduces the need to run through the
data a second time later on, which would be even
more time-consuming, and therefore serves our
long-term goals well. The delay caused by man-
ual review meant that there was no time to gather
vocabulary from more sources in this round of the
project, but the data has been greatly enriched and

its quality improved, so it has been well worth it.

3.3 Importation

Data is imported into the FMD via text files with
each line containing a single word entry, and
may include many required and optional database
fields, including the headword, the name of the in-
flection template, switches to limit the paradigm,
and various metadata fields. These were generated
semi-automatically from the spellchecker word
lists and other sources using regular-expression
scripting and then manually reviewed. Templates
have been created manually or sometimes semi-
automatically from other templates.

3.3.1 Nouns
The inflection of nouns was generally fairly easy
to handle as they don’t have as many inflected
forms as adjectives or verbs and most of their pat-
terns were already well defined. Even so, many
new patterns for nouns needed to be created. For
example, weak masculine nouns had only 5 ba-
sic patterns in the spellchecker data, with 3 more
mixed patterns (combinations of two basic pat-
terns) and one pattern with an irregular variant, a
total of 9. In comparison, the FMD currently has
17 different templates for weak masculine nouns.
This disparity is largely due to compounds with
internal inflection; e.g., lítlibeiggi ‘little brother’
(accusative lítlabeiggja) has a more complex in-
flection than pápabeiggi ‘father’s brother’ (ac-
cusative pápabeiggja). As the FMD template sys-
tem has each inflected form generated from one
stem and an inflectional ending, these words usu-
ally require more “stems” than other words, to ac-
count for the changes in the first half of the com-
pound due to its separate inflection. The Faroese
dictionary had not classed these words separately
from compounds with an immutable first half and
the spellchecker made no provision for them, al-
though the spellchecker project had already iden-
tified them as problematic. However, such com-
pounds are known in Icelandic and had been dealt
with successfully in DIM. The FMD has followed
the DIM practice of creating a separate version of
each template for internally inflected compounds
where required.

3.3.2 Verbs and adjectives
Verbs and adjectives have many more inflected
forms than nouns, both in Faroese and Icelandic,
and sparse information on the inflection of these
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word classes in the available sources was a prob-
lem in both projects.

Verb paradigms in the Faroese dictionary are
limited, omitting first and second person singu-
lar conjugations, as well as the imperative and
conjunctive (optative) moods and the present par-
ticiple and the mediopassive voice. Adjective
paradigms also lacked comparative and superla-
tive forms. These were added in the spellchecker
project along with expansion of verb conjugation,
but the spellchecker data still contains only active
voice conjugations for most verbs, and the com-
parative and superlative forms of irregular adjec-
tives were not obvious.

In the FMD, the verb templates now support full
personal conjugation in active and mediopassive
voice and a full declension of the past participle,
and full paradigms are also displayed for all ad-
jectives. Variant forms contained in the Faroese
dictionary but not found in the inflection tables
or the spellchecker paradigms have been added to
the FMD. Additional variant forms from textual
sources, such as online media and the card index
of word citations (Seðlasavnið)7 at the University
of the Faroe Islands, have also been added.

Two software modifications were required
to support Faroese verbs and adjectives, both
of which are useful for Icelandic as well.
The mediopassive imperative singular (without
pronominal clitic) had not previously been sup-
ported, but proved to be a necessary addition for
both languages. The indefinite inflection of the
comparative occurs in most Faroese adjectives and
was consequently added to the system. This cate-
gory also exists in Icelandic but is extremely rare.

The greater number of inflected forms of verbs,
the need for expanding their paradigms and the
greater number of irregular verbs than irregular
nouns made the creation of verb templates more
time-consuming, but on the other hand, there are
over nine time as many nouns as verbs, which
meant that less time was needed for review of indi-
vidual verbs and that, overall, the nouns took more
time.

3.3.3 Other parts of speech
Inflection patterns for pronouns, determiners, arti-
cles and numerals have been created based on data
gathered from the relevant dictionary entries, the
spellchecker data, and from the Faroese grammar

7https://sedlasavn.setur.fo/

by Thráinsson et al. (2012). These word classes
never had inflection tables in the dictionary, only
inline mentions of inflected forms and usage ex-
amples. Their inflection is somewhat similar to
adjectives, but simpler in that they lack compara-
tive and superlative forms. In some cases their in-
flection is very irregular, as is also seen in the same
word classes in Icelandic. These words therefore
required careful review, but since there are not
very many of them they were fairly easy to deal
with.

Adverbs, though much simpler in inflection,
only inflecting for comparison, are somewhat
problematic because their comparative and su-
perlative forms are often poorly documented.
Many of them had not been included in the
spellchecker data because they aren’t formatted as
headwords in the dictionary, being merely men-
tioned in entries for related adjectives and often
abbreviated, e.g. the adverb broytiliga ‘variably’,
mentioned as -liga in the entry for the adjective
broytiligur ‘variable, changeable’. Most of these
have not yet made their way into the FMD either.
Some adverbs are uninflected, but since adverbial
(non-)inflection is not necessarily explicit in the
available data, all adverbs must be carefully re-
viewed before adding them to the FMD database.
Some of the most common adverbs have been
added, but comprehensive coverage of adverbs has
not been achieved yet.

Uninflected word classes are also included in
the spellchecker data. These words present no
problems and most of them have been added to
the FMD.

4 Present state and future additions

Currently, the FMD contains over 73,000 entries.
These include about 68,000 words added from
the spellchecker word lists and about 3,000 more
taken directly from the dictionary, either via dic-
tionary data collected for the spellchecker project
or manual lookup on the web, and 1,688 given
names from the Faroese Language Council’s name
list. Several hundred words have been added from
other sources such as web texts and other pub-
lished texts, Wiktionary8, and Thráinsson et al.
(2012). The number of individual inflected forms
in the FMD is about 2.7 million and the number of
distinct word forms, i.e. unique strings or types, is

8https://en.wiktionary.org/wiki/
Category:Faroese_language
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about 945,000.
The FMD currently does not cover proper

names well and lacks e.g. most place names, com-
pany names and surnames. Many of these may be
sourced from government lists, phone directories,
etc.

Corpus data can provide further general vocab-
ulary. The Faroese Text Collection9 (FTC) has
been used as a rough gauge of the completeness
of the FMD. Although the FTC only has 1.1 mil-
lion tokens, at this early stage in the development
of the Faroese morphological database it yields
some interesting material. The FTC contains just
over 71,000 unique word forms, excluding num-
bers, punctuation and symbols, and currently, 59%
of these are already included in the FMD, having
been sourced elsewhere. The FTC can continue
to provide a means of evaluating the progress of
the FMD, i.e. what proportion of unique tokens in
the corpus are already in the database and whether
the most frequent word forms in the corpus are
included, as well as provide some additional vo-
cabulary. However, a much larger text corpus
(25.1 million tokens) is now available as part of
the Faroese BLARK 1.0, published in July 2022
by the Ravnur Project.10 An even larger Faroese
corpus, tagged and lemmatized, is in the planning
stage, and that will presumably provide much new
data as well.

We expect that there will be a number of erro-
neous and nonstandard forms in the corpus data.
These will be handled in a similar manner to the
data in DIM with a system of error analysis simi-
lar to the one described on the DIM website.11

5 Conclusion

DIM has proven to be both a useful tool for Ice-
landic language technology projects and a very
popular resource for the general public. The hope
is that the FMD will have a similar impact, both
in language technology and as a general resource
for Faroese. In order for that to happen, the FMD
needs to continue to expand and its scope needs
to be enlarged. DIM contains both descriptive and
prescriptive data, with extensive grading and er-
ror analysis. These aspects are, as yet, not a part
of the FMD, but hopefully the creation of a larger

9https://spraakbanken.gu.se/en/
resources/fts

10https://maltokni.fo/en/resources
11https://bin.arnastofnun.is/DMII/

LTdata/comp-format/nonstand-form/

Faroese corpus will lead to the expansion of the
FMD to include such data.
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Abstract

Electronic health records contain impor-
tant information regarding the patients’
medical history but much of this infor-
mation is stored in unstructured narra-
tive text. This paper presents the first
Danish clinical named entity recognition
and relation extraction dataset for extrac-
tion of six types of clinical events, six
types of attributes, and three types of
relations. The dataset contains 11,607
paragraphs from Danish electronic health
records containing 54,631 clinical events,
41,954 attributes, and 14,604 relations.
We detail the methodology of develop-
ing the annotation scheme, and train a
transformer-based architecture on the de-
veloped dataset with macro F1 perfor-
mance of 60.05%, 44.85%, and 70.64%
for clinical events, attributes, and rela-
tions, respectively.

1 Introduction

Electronic health records (EHR) contain important
information regarding the patients’ medical his-
tory including diagnoses, medications, treatment
plans, allergies, and test results. However, much
of this information is stored in unstructured nar-
rative text. While this information could be used
to guide diagnostic decision making and treatment
plans, the unstructured format makes it infeasible
to fully exploit in clinical practice and research.

Natural language processing (NLP) algorithms
could be used to transform the unstructured nar-
rative text of the EHR into structured information

*Equal contribution

and give medical doctors (MD) a fast overview of
even a medical history spanning multiple years.
NLP models’ ability to process and extract infor-
mation from written text keeps improving with
benchmark-breaking models being published on
a regular basis. For example, transformer-based
models such as GPT-3 (Brown et al., 2020), BERT
(Devlin et al., 2019), and ELECTRA (Clark et al.,
2020) have recently shown promising results for
many NLP tasks, e.g. named entity recognition
and relation extraction (NER). In NER, models
are trained to tag words with predefined entities
and find the relations between them. In clinical
NER, entities such as diseases, treatments, drugs,
and tests have been extracted automatically from
EHRs. However, many of the developed datasets
are only in English and for specific clinical spe-
cialities or note types (Uzuner et al., 2007, 2010;
Bethard et al., 2016).

This paper describes the methodology for de-
veloping the first Danish clinical NER dataset.
The dataset consists of text paragraphs from Dan-
ish EHRs spanning multiple departments and note
types.

First, the paper describes the clinical dataset,
the strategy for choosing entities tailored to extract
important information from EHRs, and the anno-
tation scheme. Next, we train a transformer-based
architecture on the developed NER dataset.

2 Related works

The annotation schemes and extracted clinical en-
tities and relations vary. Agrawal et al. (2022) ex-
tracted medications, their status (active, discontin-
ued, neither), and attributes. The i2b2 2009 chal-
lenge (Uzuner et al., 2010) and n2c2 2018 Track
2 (Henry et al., 2020) only extracted medications
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and their attributes. Examples of attributes are
name, dosage, mode of administration, frequency,
duration, reason, strength, form, and adverse drug
effects.

SemEval-2016 Task 12 (Bethard et al., 2016)
extracted time entities; event entities and their
contextual modality, degree, polarity, and type;
and temporal relations between time and event en-
tities (before, overlap, before—overlap, after).

SemEval-2015 Task 14 (Elhadad et al., 2015)
and CLEF eHealth 2013 Task 1 (Pradhan et al.,
2015) extracted disorder mentions and mapped
them to their UMLS/SNOMED concept unique
identifier. The former also classified attributes
such as the disorder’s subject, course, body loca-
tion, and severity, and whether it was negated, un-
certain, conditional, or generic.

The i2b2 2010 challenge (Uzuner et al., 2011)
extracted entities (medical problems, treatments,
tests), assertions (present, absent, possible, con-
ditional, hypothetical future, and associated with
someone other than the patient), and relations be-
tween medical problem entities and each of medi-
cal problem, treatment, and test entities.

The i2b2 2012 challenge (Sun et al., 2013b) ex-
tracted clinically relevant events. Their type was
classified as concept (problem, test, treatment),
clinical department, evidentials indicating source
of information, or occurrences (events that hap-
pen to the patient). Polarity was classified as pos-
itive or negated, and modality as happens, pro-
posed, conditional, or possible. Temporal expres-
sions were extracted with their type (date, time,
duration, frequency), value, and modifier indicat-
ing whether the temporal expression was exact or
not. Temporal relations indicating the type of con-
nections between events and temporal expressions
were also extracted.

3 Methods

This section describes the data, annotation
scheme, and model used for Danish clinical NER.

3.1 Data

We extracted 11,607 paragraphs with a length be-
tween 11 and 75 words from EHRs from Odense
University Hospital in Denmark. Paragraphs were
sampled randomly from different EHR note types
across every department of the hospital to ensure
the data distribution would resemble that of EHRs:
46% were from clinical contacts, 13% primary

Clinical event Description

Disease

A disorder of structure or function, especially one that has a
known cause and a distinctive group of symptoms, signs, or
anatomical changes. Examples include cancer, influenza,
and narcolepsy.

Symptom

A symptom is a physical or mental feature which is regarded as
indicating a condition of disease, particularly such a feature that
is apparent to the patient. We include abnormal findings, which
the MD makes when examining the patient objectively, as these
are sometimes coinciding with symptoms—e.g. bruises.
Examples include headache, stomach ache, and pain.

Diagnostic
Any tool or method concerned with the diagnosis of illnesses or
other problems. Includes measurements and tests. Examples
include CT scans, blood samples, and temperatures.

Treatment A treatment is any medical care given to a patient for an illness
or injury. Examples include medication, plaster, and rehabilitation.

Anatomy Any part of human anatomy. Includes body fluids and
excrements. Examples include arms, organs, and blood.

Result

All results of diagnostics that do not carry any meaning without
being coupled to the diagnostic. Examples include numbers that
indicate length, temperature, or volumes. Diseases or symptoms
found by diagnostics are annotated as such, e.g. a tumour found
by a CT scan.

Table 1: Description of clinical events. Descrip-
tions were inspired by the Oxford English Dictio-
nary.

journals, 10% care data, 3% epicrises, 3% ambu-
latory care contacts, 2% surgical notes, 2% emer-
gency room journals, and 20% were from 55 dif-
ferent minor EHR note types. Paragraphs were
lowercased and anonymised by two of the authors.

3.2 Annotation

3.2.1 Annotation scheme
Two MDs with expert clinical domain knowledge
developed the annotation scheme through an itera-
tive process of making annotation rules and testing
them.

Annotation rules were made to extract clinically
relevant information from the medical history. Fo-
cus was for the rules to be as complete as possi-
ble to capture all important information about the
medical history while still being simple to use for
the annotators.

We extracted three types of information: clini-
cal events, the attributes of the clinical events, and
relations between the clinical events.

Clinical events were: diseases; symptoms, in-
cluding abnormal findings; diagnostics; treat-
ments; anatomies including body fluids and ex-
crements; and results. Symptoms and abnormal
findings were joined in one as they sometimes co-
incided. Normal findings were not included as
there were so many that they would cloud the vi-
sualisation of the history. Table 1 shows all clini-
cal events and their descriptions as defined by the
medical experts.

Clinical events were further described by their
attributes. Attributes were: prior; current; fu-
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Attributes Description

Prior Entities that occurred in prior admissions or in the distant past.
Includes treatments that are being stopped at that point in time.

Current Entities that occur in the present. Includes prescribed medicine.

Future Entities that occur or might occur in the future—e.g. the risk of
skin cancer, or ordering diagnostics for a later day.

Doubt Any entity that is not confirmed. Includes any treatments that
might need to be started in the future.

Negation Entities such as diseases or symptoms that are mentioned as
not being present.

Non-patient Entities that are not related to the patient in question. One
example is the disease history of the patient’s relatives.

Table 2: Description of attributes.

ture; doubt; negation; and non-patient. All clinical
events could take one of the six attributes except
anatomies and results. Anatomies did not take any
attributes while results could only take a prior or
current attribute. Table 2 shows all attributes and
their descriptions.

Clinical events could connect to each other in
limited ways through one-way relations. Dis-
eases, diagnostics, and symptoms could connect to
anatomies through a “has location” relation. Dis-
eases, symptoms, and anatomies could connect to
treatments through a “is treated with” relation. Di-
agnostics could connect to results through a “has
result” relation.

Figure 1 shows an overview of the clinical
events, attributes, and relations. Appendix A
shows the full annotation guidelines with further
details and explanations to the annotators.

3.2.2 Annotation process
Six annotators were recruited for the task. Five
were Master of Science in Medicine students and
one was a MD.

Figure 2 shows the process of annotator train-
ing. It included reading the annotation guide and
an iterative process of annotating a learning set of
55 paragraphs (not included in dataset) followed
by error analysis until a final test was made on
a set of 98 gold paragraphs annotated by an ex-
pert MD. Paragraphs were annotated using the
CLAMP software (Soysal et al., 2017). We report
the micro F1 of each annotator on the gold set.

Figure 3 shows an example of an annotated
paragraph.

3.3 Entity and relation extraction model
This section describes the architecture of the
Princeton University Relation Extraction system
(PURE) (Zhong and Chen, 2021) which we used
and adapted for Danish clinical NER. It further
describes the dataset used and the training of the
models.

3.3.1 Model architecture
PURE—the 2021 state-of-the-art on entity and re-
lation extraction—is a NER deep learning model
based on a transformer structure. The model has a
separate entity and relation extraction part.

For entity extraction, the model takes as input
all possible text spans up to a maximum length. A
transformer extracts contextual word embeddings
for the start and end token of each span. They
are concatenated with a learned span width em-
bedding and classified by a feedforward network.

When extracting relations, for each candidate
pair of entities, the text is passed through a trans-
former with inserted entity start and end marker to-
kens for the subject and object entity, also indicat-
ing the type. The concatenation of the start marker
token for the candidate subject and object entity is
classified by a feedforward neural network.

We used PURE’s entity extraction approach for
clinical events and the relation extraction approach
for relations between clinical events.

We used our own approach adapted from the
PURE relation extraction approach for attributes.
We inserted clinical event start and end marker
tokens, passed all tokens through a transformer,
concatenated the start and end marker tokens, and
classified the attribute using a feedforward net-
work. The marker tokens were used for classi-
fication instead of the word(s) forming the clini-
cal event to guide the model to look more at the
context rather than the specific word—the context
being the important factor in attribute classifica-
tion. Additionally, enriching the input with the
type of the clinical event could guide the model if
attributes were described differently for different
clinical events.

Figure 4 shows the three types of extraction
tasks.

3.3.2 Datasets
Table 3 shows the number of clinical events, at-
tributes, and relations by type in the train, val-
idation, and test set. The dataset had a total
of 11,607 paragraphs, each containing a varying
number of clinical events, attributes, and relations.
On average, each paragraph contained 4.7 clini-
cal events, 3.6 attributes, and 1.3 relations. We
split the paragraphs in train, validation, and test
sets for an approximate 80%–10%–10% ratio be-
tween each type of clinical event, attribute, and
relation. The sets were unbalanced on type of
entity or relation—e.g. for the attributes training
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has result
Treatment

Symptom

Result Diagnos�c

Disease

Anatomy

has loca�on

is treated with

DoubtPrior

Non-pa�ent

Nega�onCurrent

Future

(B) A�ributes(A) Clinical events and rela�ons

Figure 1: (A) Clinical events and relations between them. Symptoms include abnormal findings.
Anatomies include body fluids and excrements. Diagnostics include measurements and tests. Blue:
“is treated with”. Orange: “has location”. Grey: “has result”. (B) Attributes. Anatomy (dashed lines)
takes no attributes. Other clinical events must take one attribute. Results only take prior or current
attributes.

Train (% of row total) Validation (% of row total) Test (%of row total) Total (% of column total)
Paragraphs 9,687 (83%) 960 (8%) 960 (8%) 11,607 (100%)

Clinical events
Diseases 2,033 (78%) 295 (11%) 272 (10%) 2,600 (5%)
Symptoms 11,937 (80%) 1,455 (10%) 1,571 (10%) 14,963 (27%)
Diagnostics 8,921 (80%) 1,095 (10%) 1,194 (11%) 11,210 (21%)
Treatments 6,918 (79%) 911 (10%) 882 (10%) 8,711 (16%)
Anatomies 10,172 (80%) 1,227 (10%) 1,278 (10%) 12,677 (23%)
Results 3,522 (79%) 473 (11%) 475 (11%) 4,470 (8%)
TOTAL 43,503 (80%) 5,456 (10%) 5,672 (10%) 54,631 (100%)

Attributes
Prior 2,028 (80%) 237 (9%) 283 (11%) 2,548 (6%)
Current 23,217 (79%) 3,021 (10%) 3,109 (11%) 29,347 (70%)
Future 1,237 (79%) 161 (10%) 160 (10%) 1,558 (4%)
Doubt 2,479 (82%) 263 (9%) 289 (10%) 3,031 (7%)
Negation 3,890 (80%) 496 (10%) 500 (10%) 4,886 (12%)
Non-patient 480 (82%) 51 (9%) 53 (9%) 584 (1%)
TOTAL 33,331 (79%) 4,229 (10%) 4,394 (10%) 41,954 (100%)

Relations
is treated with 1,485 (80%) 175 (9%) 197 (11%) 1,857 (13%)
has location 6,501 (80%) 779 (10%) 823 (10%) 8,103 (55%)
has result 3,652 (79%) 499 (11%) 493 (11%) 4,644 (32%)
TOTAL 11,638 (80%) 1,453 (10%) 1,513 (10%) 14,604 (100%)

Table 3: Composition of the train, validation and test sets by type of clinical event, attribute, and relation.
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Figure 2: Annotator training process. Figure in-
spired by Sun et al. (2013a).

has loca�on

Anatomy

slight redness in the le� breast

Symptom

Current %

Figure 3: Example of annotated paragraph. % sig-
nifies that no attribute could be assigned to the
clinical event per the annotation scheme.

has loca�on

slight redness in the le� breast[O:An] [/O:An][S:Sy] [/S:Sy]

Anatomy

slight redness in the le� breast

Symptom

slight redness in the le� breast[Sy] [/Sy]

Current

(A)

(B)

(C)

Figure 4: (A) Classification of clinical events from
start and end tokens of span. Span width embed-
ding not depicted. (B) Classification of attribute
using clinical event marker tokens. (C) Classifi-
cation of relation using subject/object and clinical
event marker tokens. Figure inspired by Zhong
and Chen (2021).

Evaluation
metric Loss Micro Macro

R% P% F1% R% P% F1%

Micro F1 Unweighted 79.14 79.14 79.14 38.34 40.51 38.56
Weighted 61.81 61.81 61.81 45.35 33.20 34.23

Macro F1 Unweighted 77.30 77.30 77.30 41.88 41.90 41.48
Weighted 60.13 60.13 60.13 51.37 41.87 43.85

Table 4: Validation set micro and macro recall,
precision, and F1 score on the attribute extrac-
tion task when selecting the best iteration of the
model based on micro and macro F1 score with
unweighted and weighted loss. 2 hidden layers of
size 75 was used for the test. R: Recall. P: Preci-
sion.

set, there were 23,217 current and only 480 non-
patient attributes. All datasets were in the json for-
mat used by PURE (see Zhong and Chen (2021)).

3.3.3 Training
When training the clinical event extraction model,
we used a Danish Clinical ELECTRA pretrained
on the narrative text from 299,718 EHRs from
Odense University Hospital as the transformer
base (Pedersen et al., 2022). The model had
∼13M parameters and consisted of 12 transformer
layers with 4 attention heads. We used a dropout
of 0.1 after the last ELECTRA hidden layer out-
put. We tested classification heads with two hid-
den layers of varying size, each followed by a
dropout of 0.2 and a ReLU activation function.
We used a maximum span of 8 and a train batch
size of 32. We trained for 100 epochs using the
AdamW optimizer with learning rate 1e-5 for the
transformer layers and 1e-4 for the classification
head, and a warm-up proportion of 0.1.

When training each of the models for extract-
ing attributes and relations, we used the same
transformer base with a normalisation layer and a
dropout of 0.1 after the concatenation of tokens.
We tested classification heads with two hidden
layers of varying size, each followed by a dropout
of 0.2 and a ReLU activation function. We fur-
ther tested a classification head only consisting of
a single classification layer. We used a train batch
size of 32 and a maximum sequence length of 128.
We trained for 20 epochs using the AdamW opti-
mizer with learning rate 2e-5 and a warm-up pro-
portion of 0.1.

We modified the training method of PURE to
guide the models towards equal performance on
all classes by using a weighted loss function to
counteract the unbalanced dataset and chosing the
best model for each of the clinical event, attribute,
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and relation extraction tasks as the model itera-
tion with the best macro F1 on the validation set,
rather than the micro F1 standard of PURE. Ta-
ble 4 shows a test of the performance on the at-
tribute extraction task when selecting the best iter-
ation of the model based on micro and macro F1
score with unweighted and weighted loss. Using
the macro F1 score with weighted loss gave the
best performance across all classes. Appendix B
shows the confusion matrices for each combina-
tion.

Class weights were calculated for the training
of each model using the default formula in Scikit-
learn (Pedregosa et al., 2011):

wx =
nsamples

nclasses · nx
(1)

where x is the class, nsamples is the number of to-
tal samples, and nclasses is the number of classes.
The negative class, i.e. samples not to be given
any label by the model, was given a weight of 1.

The negative class was excluded when calculat-
ing the F1. We only trained the attribute and re-
lation models to make classifications that were al-
lowed for the connected clinical events according
to the annotation scheme. Appendix C shows the
results of the hyperparameter search. We report
the micro and macro recall, precision, and F1 for
the best models on the test set.

4 Results

This section presents the agreement of the annota-
tors on the gold set and the results of the Danish
clinical NER models.

4.1 Annotation

Table 5 shows the annotators’ micro F1 per-
formance on the gold set. For clinical events,
it ranged 83.71%–91.24% (average 85.62%) for
overlapping matches, and 74.12%–85.15% (aver-
age 77.67%) for exact matches. For attributes, it
ranged 79.21%–86.19% (average 81.71%) and for
relations 71.28%–90.06% (average 77.79%).

4.2 Entity and relation extraction model

The models that had the best validation perfor-
mance in the hyperparameter search were:

• A clinical event extraction model with two
hidden layers of size 450 in the classification
head.

Annotator A B C D E F
Overlap match, micro F1%

Clinical event 91.24 84.22 84.41 85.71 84.43 83.71
Attribute 86.19 83.06 79.21 81.29 79.75 80.75
Relation 90.06 76.97 75.60 77.01 71.28 75.84

Exact match, micro F1%
Clinical event 85.15 76.08 76.29 78.69 74.12 75.71

Table 5: The anonymised annotators’ performance
on the gold set. Exact match: a match is defined
as the exact tokens annotated in the gold set with
the same label. Overlap match: a match is defined
as minimum one token overlapping with the gold
set annotation of the same label. Only an overlap
match F1 is calculated for attributes and relations
as evaluating an exact match would propagate the
potential error in the span of the clinical event to
which the attribute or relation is connected.

Micro Macro
R% P% F1% R% P% F1%

Overlap match
Clinical events 66.29 77.31 71.38 64.88 72.60 68.20

Exact match
Clinical events 60.97 65.64 63.22 59.84 61.30 60.05
Attributes 66.04 66.04 66.04 51.60 42.64 44.85
Relations 75.88 72.66 74.23 74.74 67.85 70.64

Table 6: Performance of the best clinical event,
attribute, and relation extraction models on the test
set. Attributes and relations are only reported with
an exact match as the models do not consider the
span of the clinical event from which the attribute
or relation is classified. R: Recall. P: Precision.

• An attribute extraction model with a single
classification layer.

• A relation extraction model with two hidden
layers of size 150 in the classification head.

Table 6 shows the performance of the best mod-
els on the test set. Clinical events were ex-
tracted with exact micro F1 63.22% and macro
F1 60.05%, attributes with micro F1 66.04% and
macro F1 44.85%, and relations with micro F1
74.23% and macro F1 70.64%. The negative class
was excluded when calculating the recall, preci-
sion, and F1 scores.

Figure 5 shows the confusion matrices of per-
formance on clinical events, attributes, and rela-
tions. The confusion matrices include the clinical
events and relations that were not extracted and
falsely extracted by the model (’O’).

The model for clinical event extraction per-
formed best on anatomies (69%) and worst on re-
sults (53%). 1,568 spans were falsely extracted
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(A) Clinical events (B) Attributes (C) Relations

Figure 5: Confusion matrices of performance on (A) clinical events, (B) attributes, and (C) relations. ’O’
counts the clinical events and relations that were not extracted and falsely extracted by the model.

as a clinical event with symptoms being the most
frequent (21%). The model for attribute extrac-
tion performed best on negations (84%) and worst
on non-patient (23%). The model for relation ex-
traction performed best on “has result” (93%) and
worst on “is treated with” (62%). 432 false rela-
tions were extracted of which “has location” was
the most frequent misclassification (45%).

5 Discussion and limitations

This paper presented a methodology for develop-
ing a dataset for Danish clinical NER. It presented
an annotation scheme for annotation of all clinical
events, their attributes, and relations that are rele-
vant for the medical history. The dataset included
text paragraphs from Danish EHRs spanning mul-
tiple departments and note types.

We trained and adapted PURE NER deep learn-
ing models to extract clinical events (overlap
match macro F1 68.20%; exact match macro F1
60.05%), attributes of clinical events (macro F1
44.85%), and relations between clinical events
(macro F1 70.64%). The results are promis-
ing for Danish clinical NER but need improve-
ment. A discussion of possible improvements to
the methodology, limitations, and future work is
provided below.

The clinical event extraction model had simi-
lar performance on all classes with accuracies be-
tween 53% (results) and 69% (anatomies). There
was little contamination between classes as most
errors were caused by failure to extract or false ex-
traction of a clinical event. There was some con-
tamination between symptoms and diseases with
12% of diseases being classified as symptoms and

5% of symptoms being classified as diseases. This
supports claims by annotators that diseases and
symptoms in some cases are difficult to differen-
tiate and that extra attention must be given to dif-
ferentiate these in the annotation guidelines.

The attribute extraction model had large dif-
ferences in performance with accuracies between
23% (non-patient) and 84% (negation). There
were more misclassifications of the non-patient
attribute as doubt (40%) than correct classifica-
tions. The future and doubt attributes had signif-
icant contamination between them with 25% and
11% misclassifications as the other class, respec-
tively. The many misclassifications between non-
patient and doubt attributes, and especially future
and doubt attributes, could indicate that the model
would improve if the non-patient, doubt, and fu-
ture attributes were merged to a single class of un-
certain attributes. This would most likely not harm
the usefulness of the model to MDs significantly.

The fact that more prior attributes were mis-
classified as current (41%) than correct classifica-
tions (36%) likewise indicates that these two at-
tributes could be merged into a single class of clin-
ical events that occurred. This would, however,
decrease the usefulness of the model as it is im-
portant for MDs reviewing the medical history to
know if a clinical event is prior or current.

The relation model extracted 93% of the “has
result” relations, and 62% and 69% of the “is
treated with” and “has location” relations, respec-
tively. The differences are likely caused by the fact
that the “has result” relation only connects diag-
nostics to results while the two other relations have
three different one-way relationships.
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In this paper, we only explored one type of
NER model and tested a limited set of architec-
tures and hyperparameters. Future work could in-
clude testing other architectures and enriching the
model input with more information, e.g. the out-
put of a text parser, which could help differenti-
ate attributes dealing with the time-aspect. The
six annotators had an average micro F1 (overlap
match) of 85.62%, 81.71%, and 77.79% for clin-
ical events, attributes, and relations, respectively.
Merging certain attributes and more emphasis on
differences between symptoms and diseases could
increase these scores.

The Danish clinical NER dataset is not made
publicly available due to it containing sensitive
information. We advise interested researchers to
contact us for sharing possibilities.

6 Conclusions

This paper presented methodology and annotation
scheme for developing the first Danish clinical
NER dataset. The corpus consists of 11,607 para-
graphs annotated for six entity types, six attributes,
and three relations. The corpus was used to fine-
tune language models which showed promising re-
sults for classifying the entities, attributes, and re-
lations of the dataset.
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Appendices

A Annotation guidelines

A.1 Clinical events

A.1.1 Disease
Contains all diseases including diseases that could
be considered a result of a Diagnostic.

A.1.2 Symptom
Includes all symptoms and abnormal findings.
Findings that are not abnormal should not be anno-
tated. However, a negation of an abnormal finding
should be annotated because the abnormal finding
is mentioned even though it is not present. For ex-
ample, “fracture” should be annotated in the sen-
tence “there is no sign of fracture.”

If there is a negation of a non-abnormal finding,
it should be annotated in the entity. For example,
“cannot hear” is annotated in the sentence “patient
cannot hear anything.”

In the sentence “no symptoms,” the word
“symptoms” should not be annotated as a symp-
tom, as it does not contain any information.

In case a symptom or abnormal finding is found
by a Diagnostic, there may be a coincidence with
the Result entity. Here, it is annotated as Symptom
if the entity can provide sufficient meaning alone.
For example, “cyst” or “tumour.”

If the Symptom cannot stand alone and one
needs to know which Diagnostic was carried out
in order to understand the result, the entity should
instead be annotated as Result and have a “has re-
sult” relationship from the Diagnostic entity. For
example, this applies to “Temp: 24 C” and “Stix:
3+”. “Temp” and “Stix” are annotated as Diagnos-
tic with “is treated with” relationship to Result “24
C” and “3+.”

A.1.3 Result

Includes all results of Diagnostic, e.g. values and
blood test results.

A Result cannot stand on its own. A rela-
tion from the Diagnostic is needed for it to make
sense. These can be entities like “stable”, “posi-
tive”, “negative”, “24 C” or “3+”.

Typically, this entity will appear in sentence
structures with a colon: “Diagnostic: Result”.
Note that the two entities are mentioned very close
to each other in the text—in this case only with a
colon in between. An example could be “Temp:
24 C” or “Stix: 3+”. “Temp” and “Stix” are anno-
tated as Diagnostics with a “has result” relation to
Result “24 C” and “3+”.

Entities that can instead be annotated as Symp-
tom will typically be mentioned further away or
completely lack a Diagnostic as a Symptom can
stand alone and make sense.

See also the description for Symptom.

A.1.4 Diagnostic

Includes all diagnostics, measurements, and tests.
This can include CT scans, blood tests, MR scans,
and recordings of a newborn’s length, tempera-
ture, etc.

Note that “blood sample results” and “radiology
description” are not a Diagnostic and should not
be annotated.

If KAD is mentioned along with a volume, e.g.
“KAD emptied of 200 mL,” it is marked as Diag-
nostic - Result. If there is no volume specified,
KAD is annotated as Treatment.

A.1.5 Treatment

Includes all forms of treatment including medica-
tion.

To annotate entities as concisely as possible, for
example in the sentence “good effect of 2.5 mg
morphine IV,” only “morphine” should be anno-
tated as Treatment.
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In the sentence “treated for xxx,” the word
“treatment” should not be annotated as Treatment
as it does not contain any information.

If KAD is mentioned without a volume indica-
tion, it should be annotated as Treatment. If KAD
is mentioned with a volume, for example “KAD
emptied for 200 mL,” it should be annotated as
“Diagnostic - Result.”

A.1.6 Anatomy
Includes all mentions of anatomies and things
from the body (blood, feces, urine, sweat, etc.).

Typically used to indicate the location of a Dis-
ease or Symptom, a Diagnostic, or a Treatment.
Examples: “brain”, “left foot” or “duodenum”.

When Anatomy is described by an adjacent
word, for example “left”, this should be included
in the entity.

Remember to annotate the Anatomy entities
that should not be linked to other entities.

A.2 Attributes

A.2.1 Current
The entity is either present, carried out, or cur-
rent. If medication is prescribed to the patient, this
should also be marked as “Treatment - Current”,
as it can be assumed that the treatment will start
and it may be the last time it is mentioned in the
journal. On the other hand, “Scheduling a CT for
Tuesday.” should be marked as “Future” as it will
be described in a future medical note, for example
with the result.

A.2.2 Negation
The entity is not present. For example, if it is men-
tioned that the patient does not have a fracture, the
fracture should be marked as Symptom - Negation.
Note that the word “not” should not be part of the
marked entity. However, if there is a negation of
a normal finding, it should be annotated as such.
For example, “cannot hear” in the sentence “pa-
tient cannot hear anything” is annotated as Symp-
tom - Present.

A.2.3 Prior
If the entity refers to a previous case, i.e., a pre-
vious hospitalisation or if it happened a long time
ago. For example, it should be annotated as a prior
Treatment when a cast or drain is removed, as the
treatment is finished. However, if a CT scan from
the previous day is mentioned, it should be anno-
tated as Current.

A.2.4 Future
Everything that takes place in the future. For ex-
ample, cancer is annotated as Disease - Future if it
is mentioned that “there is a risk of cancer if you
use tanning beds too often.”

It is marked as Diagnostic - Future if an MRI
scan is planned for the next day. However, if it
is written “the treatment with xxx starts” or “rp.
xxx” it should be marked as Treatment - Current
as it is assumed that the treatment will certainly
happen.

Also includes references to possible future
treatments.

A.2.5 Doubt
If the patient might have a disease that has not yet
been confirmed.

If a Treatment should be given provided that
certain things change.

The difference between Doubt and Future is that
Future is more certain - it is going to happen -
while Doubt is more uncertain or conditional.

A.2.6 Non-patient
If an entity does not have a direct connection to
the patient. This can occur when a general let-
ter is sent out regarding cancer screening. Cancer
should then be annotated as Disease - Non-patient.
If it is mentioned that the patient’s mother had a
certain disease, it should also be annotated in this
way.

A.3 Relations

When entities are annotated, the relationships
between entities can be annotated. This is done
by pulling the “From entity” over to the “To
entity”. The direction of the relationship is
important. Therefore, pay attention to the name of
the relationship and read it out loud if necessary,
“Entity - Relation - Entity” and listen to see
if it makes sense or if the arrow needs to be
reversed. CLAMP will show which relationships
can be annotated for the pair being drawn between.

has location
From entities: Disease, Symptom, Diagnostic.
To entities: Anatomy.

has result
From entities: Diagnostic.
To entities: Result.
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is treated with
From entities: Disease, Symptom, Anatomy.
To entities: Treatment.

The “is treated with” relation links the en-
tities Disease, Symptom, and Anatomy to a
Treatment. In some cases, sentences describing
a required treatment could be linked to both an
Anatomy and Treatment entity. In this case,
the Treatment should be linked to the Symptom
instead of the Anatomy. You should only link the
Anatomy to the Treatment using the “is treated
with” relation if the Treatment cannot be linked to
anything else. Example: “Left knee skin scraping
is treated with plaster.” Annotation: skin scraping
- “Treated with” - plaster.

A.4 General notes

It is important not to annotate periods, commas,
etc. unless they are part of an abbreviation. For ex-
ample, in “Patient has cancer,” only “cancer” and
not “cancer.” should be marked. If you double-
click a word, CLAMP will only mark the word
and not any punctuation next to the word. This
can make it a bit troublesome to include periods in
abbreviations.

Entities should be annotated as concisely as
possible without losing meaning. This means
that in the sentence “there are signs of cancer,”
only “cancer” and not “signs of cancer” should be
marked as an entity. If an entity has some describ-
ing words next to it, the following rule can be used
to decide how much should be annotated. In the
sentence “pain in the front of the arm,” only “arm”
is marked as Anatomy since “front” and “arm”
are connected through the word “of.” In the sen-
tence “pain in the left arm,” “left arm” is marked as
Anatomy since there are no words between “left”
and “arm”. In sentences describing a prescription
of medication, only the name is marked as Treat-
ment, and not, for example, the quantity indication
or the number of days.

Entities may not overlap with each other.

B Selection of loss and evaluation metric

Figure 6 shows the confusion matrices for the at-
tribute extraction task when selecting the best iter-
ation of the model based on micro and macro F1
score with unweighted and weighted loss.

Using the micro F1 to select the best iteration
of the model resulted in some classes being prac-

Classification head Validation
hidden layers Exact F1 %

Clinical event

2x 75 58.49
2x 150 59.82
2x 300 60.68
2x 450 61.34
2x 600 60.91

Attribute

None 48.01
2x 50 43.20
2x 75 43.85
2x 150 44.10
2x 300 44.32

Relation

None 66.15
2x 75 68.39
2x 150 68.85
2x 300 67.39

Table 7: Results of the hyperparameter search.

tically excluded during classification. Using the
macro F1 to select the best model iteration and
training with a weighted loss gave the most equal
performance on all classes.

C Hyperparameter search

Table 7 shows the results of the hyperparameter
search.
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(A) Micro F1 (B) Macro F1

(C) Micro F1 weighted (D) Macro F1 weighted

Figure 6: Confusion matrices showing the attribute extraction validation performance of the models
chosen based on (A) micro F1, (B) macro F1, (C) micro F1 trained with weighted loss, and (D) macro
F1 trained with weighted loss.
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Abstract 

With widespread commercial applications 
in various domains, sentiment analysis has 
become a success story for Natural 
Language Processing (NLP). Still, 
although sentiment analysis has rapidly 
progressed during the last years, mainly 
due to the application of modern AI 
technologies, many approaches apply 
knowledge-based strategies, such as 
lexicon-based, to the task. This is 
particularly true for analyzing short social 
media content, e.g., tweets. Moreover, 
lexicon-based sentiment analysis 
approaches are usually preferred over 
learning-based methods when training data 
is unavailable or insufficient. Therefore, 
our main goal is to scale-up and apply a 
lexicon-based approach which can be used 
as a baseline to Swedish sentiment 
analysis. All scaled-up resources are made 
available, while the performance of this 
enhanced tool is evaluated on two short 
datasets, achieving adequate results. 

1 Introduction 

Sentiment analysis is the computational study of 
people's opinions, sentiments, emotions, and 
attitudes towards entities such as products and 
services, and their attributes. Sentiment analysis 
allows tracking of the public’s mood about a 
particular entity to create actionable knowledge 
(Ligthart et al., 2021) and has found numerous 
applications, ranging from digital humanities (Kim 
& Klinger, 2022) to gaining insight into customers' 
feedback about commercial products and services 
(Rashid & Huang, 2021). Sentiment analysis can 
occur at the document, sentence, or word level, 

 
1https://spraakbanken.gu.se/en/resou
rces/absabank-imm. 

while the sentiment types usually assigned are Very 
positive, Positive, Neutral, Negative or Very 
negative. E.g., the sentiment for the sentence Att 
känna stödet från publiken och folket är väldigt 
smickrande ‘To feel the support of the audience 
and the people is very flattering’ will be usually 
assigned a positive sentiment while the sentence 
Föräldrar i chock efter bluffen i basketlaget 
‘Parents in shock after the hoax in the basketball 
team’ will be assigned a negative one. 

In this paper we discuss an enhancement of a 
popular off-the-shelf (unsupervised) dictionary-
based approach to Sentiment analysis using 
VADER (Valence Aware Dictionary and sEntiment 
Reasoner). VADER is a lexicon and rule-based 
sentiment analysis tool that is specifically attuned 
to sentiments expressed in social media (Hutto & 
Gilbert, 2014). VADER is fully open-sourced, 
available e.g., from the NLTK package (Bird et al., 
2009), which can be applied directly to unlabeled 
text data. Furthermore, VADER can efficiently 
handle large vocabularies, including the use of 
degree modifiers and emoticons. These qualities 
make VADER a good fit for use on social media 
input for rapid sentiment text analysis. As such, the 
need for previous training as in machine or deep 
learning models, is eliminated. 

Our main aim of this work is to make VADER a 
useful baseline for Swedish sentiment analysis, by 
rapidly scaling-up and improving the coverage of 
the already translated to Swedish resources 
(lexicons and processing tools). We further 
evaluate the coverage by applying and comparing 
the original VADER translation with the enhanced 
version on two small datasets, one with Swedish 
tweets and one sample from the ABSAbank-Imm1, 
an annotated Swedish corpus for aspect-based se- 
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ntiment analysis (Rouces et al., 2020). 

2 VADER 

The Valence Aware Dictionary for sEntiment 
Reasoning (VADER 2 ) is a parsimonious rule-
based model for sentiment analysis of specifically 
social media text (Hutto & Gilbert, 2014). Since its 
release VADER has been extensively used in 
various applications and domains; from the 
analysis stock news headlines (Nemes & Kiss 
(2021); to the assessment of sentiments expressed 
in customers’ e-mails (Borg and Boldt, 2020); and 
further to the analysis of tweets on COVID-19 
vaccine hesitancy (Verma et al., 2022). 

2.1 VADER translations 

VADER lexical components have been translated 
into several languages, such as German, French, 
and Italian 3 . The Swedish translation of the 
VADER sentiment lexicon, along with the VADER 
application’s negators and booster words, were 
translated from English to Swedish, using the 
Google Cloud Translation API by Gustafsson 
(2019). However, one third of the original English 
sentiment lexicon remained untranslated during 
this process, which in a sense decrease the quality 
of the analysis. According to Gustafsson (2019) the 
original English VADER lexicon contained 7517 
words, slang words, abbreviations, and emoticons. 
Out of these, 2435 could not be translated to 
Swedish because no translation could be found; for 
instance, many words in the English lexicon had 
inflections that did not exist in the Swedish 
counterpart; polysemy created problems, as well as 
English idiomaticity, e.g., slang words remained 
untranslated. This version of the Swedish VADER 
sentiment resources can be found in Github4. 

2.2 Enhancements of the translated Swedish 
VADER: single words, lexicalized idioms, 
and other multiword expressions 

The original Swedish translation of VADER was 
the starting point for developing and enhanced 
version of VADER (svVADER 5 ). In general, 
VADER is based on a few key points when 
determining the sentiment of a text: 

 
2github.com/cjhutto/vaderSentiment. 
3 See here German (Tyman et al., 2019) 
(github.com/KarstenAMF/GerVADER); French 
(github.com/vr0nsky/vadersentiment_f
r) and here details for Italian (Martinis et al., 2022). 

 degree modifiers or booster words, that is 
dampeners and intensifiers, i.e., words or 
characters that affects the magnitude of 
the polarity by either increasing or 
decreasing the intensity of the sentiment; 

 negations, words which reverse the 
semantic orientation in a text and thus also 
its polarity score; 

 capitalization, which increases the 
intensity of polarity, and the sentiment 
becomes intensified, and, 

 certain types of punctuation, specifically 
exclamation marks which increase the 
intensity of polarity without affecting the 
semantic feeling. 

We started refining and adapting the VADER 
script, in which booster words and negation items 
are hard coded. We both added new booster lexical 
items (e.g., knappast; minimalt; svagt; and 
måttligt) and deleted several dubious words (e.g., 
effing; flippin; frackin; fuggin and hella); similarly, 
some missing Swedish negation words (e.g., icke; 
inget; inga and ej) were also added to this script. 

The characterization of the multiword 
expressions (MWE) and their idiomaticity play an 
important role in lexically based sentiment 
analysis. For instance, Moreno-Ortiz et al. (2013) 
discuss that MWEs, being units of meaning, their 
relative weight to the calculated overall sentiment 
rating of texts needs to be accounted for as such, 
rather than the number of component lexical units. 
Therefore, we added a list of 100 sentiment laden 
idioms, that is multiword expressions the meaning 
of which cannot be deduced from the literal 
meaning of constituent words (e.g., the Swedish 
idioms blåst på konfekten ‘to be cheated on’ and 
the Swedish idiom tomtar på loftet which is used 
to refer to someone who is stupid or crazy). The 
lexicalized idioms originate from the available list 
of the NEO lexicon DB 6  that contains a large 
number (over 4,000) of lexicalized idioms; the 
selection was made by matching all items on 
Tweeter and Flashback corpora, extracting the 
matches, and browsing manually the matched 
idioms annotating relevant items as positive or 
negative. Moreover, we manually annotated and 

4github.com/AlexGustafsson/vaderSent
iment-swedish. 
5github.com/XdimitrisX/svVADER. 
6spraakbanken.gu.se/en/resources/neo
-idiom.  
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added over 200 phrasal verbs, (e.g., spränga ihjäl 
sig ‘to blow yourself up’; skälla ut ‘to scold’; rusta 
ner ‘to gear down’ and rusta upp ‘to gear up’). 
Statistically significant collocations were also 
added, these were extracted from the analysis of 
the two larger collections where the two datasets 
originate from (cf. Section 3). Also, common 
medical terminology7 (i.e., roughly 500 symptoms 
and frequent disease names) where added with 
negative polarity to svVADER’s main lexicon. 
Finally, we created an emoj 8  list (3,500) with 
Swedish expansion (meaning) downloaded and 
refined from various Internet sites, i.e., 😂 ansikte 
med glädjetårar ‘face with tears of joy’. 

Table 1 shows the current lexical content of the 
original and enhanced versions of svVADER. 

 
Name Size License 

Original translation 5,501 MIT License 

Enhanced single words 58,070  

CC BY 4.0* 
Enhanced MWE 2,300  

Table 1: The size of the Swedish lexicons (single 
words: includes inflected forms; MWE: Multi-Word 
Expressions; ‘*’: license of the enhanced lexicons). 

3 Application scenario: Swedish tweets 
about mRNA vaccines and Flashback 
posts on immigration 

As an application scenario for the evaluation of 
svVADER we selected two small datasets. The 
first one consists of Swedish tweets posted in 2022 
that discuss vaccine skepticism, and particularly, 
anxiety about possible side effects and concerns 
related to novel vaccine technologies, such as the 
messenger RNA (mRNA) which has be used as a 
reason for not receiving (the COVID-19) vaccine 
(Leong et al., 2022). The extracted Swedish tweets 
were collected with the keywords m-?RNA.* (‘?’ 
the preceding character is optional.; ‘.*’: ≥ 0 
characters) or the hashtag #mRNA and lang:sv 
(Swedish content). From the extracted tweets (ca 
1,800), a random selection of 200 tweets was 
selected for the svVADER evaluation. The second 
dataset originates from the ABSAbank-Imm 
(where ABSA stands for "Aspect-Based Sentiment 
Analysis" and Imm for "Immigration", a subset of 
the Swedish ABSAbank) annotated dataset 

 
7Motivated by the fact that there is a growing interest to 
analyzed social media with health-related content. 
8https://emojipedia.org/sv/. 

(Rouces et al., 2020) where we randomly extracted 
315 posts. ABSA models predict the sentiment of 
specific aspects present in the text, that is 
sentiment expressions that contain no polarity 
markers but still convey clear human-aware 
sentiment polarity in context (Russo et al., 2015). 
In ABSAbank-Imm, texts and paragraphs are 
manually labelled according to the sentiment (on 
1-5 scale) that the author expresses towards 
immigration in Sweden (a task also known as 
stance analysis). The 315 posts come from the 
Flashback Forum9, a popular Swedish discussion 
platform. For simplicity, the extracted posts 
consisted of posts with 1-2 sentences; posts that 
consisted of 3 or more sentences were excluded. 
Moreover, the selected posts were labelled as 
positive if their manually assigned score in ABSA 
was 5.0 (very positive) or 4.0 (positive) and 
negative if their manually assigned score was 1.0 
(very negative) or 2.0 (negative). Posts that lied in 
the middle scale with ratio 3.0 were labelled as 
neutral. Thus, for practical reasons, we collapsed 
the scores 5.0 and 4.0 to positive sentiment and 1.0 
and 2.0 to negative. 

3.1 Experimental results and evaluation 

The ABSAbank-Imm dataset was already 
manually labelled, while the Tweeter dataset was 
manually labelled by one of the authors and a 
Master student, the inter-annotator agreement 10 
was high (Fleiss’ κ ≈ 0.839). 

VADER’s sentiment score is returned in both as 
a compound score or as positive, negative, and 
neutral. The compound score is computed by 
summing the valence scores of each word in the 
text, adjusted according to the rules, and then 
normalized to be between –1 (very negative) and 
+1 (very positive). Specifically, VADER's 
compound sentiment score determines the 
underlying sentiment of a text (i.e., tweet or post) 
according to the following schema: 

 positive, compound score ≥ 0.05 
 negative, compound score ≤ – 0.05 
 a neutral, the compound score is between 

> – 0.05 and < 0.05 
We use the original Swedish VADER translation 
to automatically classify each tweet and each 
Flashback post according to its semantic 

9https://www.flashback.org/. 
10For the interrater reliability and agreement, we applied the 
R package irr 0.84.1. 
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orientation and we then proceed to classify the 
same data with the enhanced resources. Table 2 
summarizes the results of the evaluation, which 
clearly shows, as expected, that the enhanced 
approach improved the compound score results 
based on the original VADER translation. 
 

Modell CS: Tweets F1 ABSA 
VADER 36,7% 37,2% 
svVADERsingle words 50,8% 48,2% 
svVADERall 51% 48,1% 

Table 2: Evaluation results for the original Swedish 
translation of VADER and the enhanced flavors of 
svVADER. (CS: Compound Score; svVADERsingle 

words: original plus new non-MWE words). 

For the evaluation of (sv)VADER’s performance, 
we apply a slightly adopted version of the 
SemEval-2017 Task 4 (Rosenthal et al., 2017), 
evaluation script11 . As with other approaches to 
sentiment analysis there are several pros and cons 
to the task. The approach is relatively easy to 
implement and understand, and, given the 
magnitude of customer experience for products 
and services available online it becomes doable to 
capture relevant datasets. However, since the 
model is primarily designed for use with social 
media content in mind, the analysis may easily 
overlook important words or usage. Social media 
input is usually loaded with typos, misspellings, 
slang, and grammatical mistakes, including the 
misinterpretation of ironic or sarcastic statements. 
Moreover, (sv)VADER ignores the context of the 
words it analyzes, particularly when word order 
and discontinuous structures involve cases where 
the insertion of e.g., one or more lexical items, 
appears between a lexicalized multiword entry and 
at a longer distance than the very near context. 

4 Conclusions and future work 

VADER offers a simple process for sentiment 
classification with a design focus on social media 
texts, where no training data is required, and can 
be used as a baseline method to evaluate and 
compare other methods. In this paper we outlined 
the scaling-up process for a dictionary approach to 

 
11https://github.com/cardiffnlp/xlm-
t/blob/main/src/evaluation_script.py 
12A starting point could be the Swedish BERT models for 
sentiment analysis: Recorded Future & AI Sweden 
https://huggingface.co/RecordedFutur

Swedish sentiment analysis using the VADER, a 
less resource-consuming lexicon and rule-based 
sentiment analysis tool that consumes fewer 
resources as compared to learning models as 
there is no need for vast amounts of training 
data. As such, VADER can serve as a good starting 
point to sentiment analysis before diving into more 
advanced machine learning (e.g., transfer learning; 
Prottasha et al., 2022); semiautomatic lexicon 
based (Chanlekha et al., 2018; Barriere & Balahur, 
2020) or deep learning models12 which stand out in 
terms of usage the last years, and compare their 
results (Dang et al., 2020). For higher level of 
accuracy, it may be worth evaluating alternatives 
(Farah & Kakisim, 2023) or even better a 
combination of alternative models using the 
VADER’s sentiment scores as input feature to 
ensemble learning (Kazmaier & vanVuuren, 
2022). 

The performance of svVADER was further 
evaluated on two, rather small, but characteristic 
Swedish social media datasets. One that contains 
200 tweets and one with 200 single-sentenced 
posts from Flashback and the achieved results 
were adequate. E.g., compared to GerVADER: F1-
score=39,42% on German human labelled Tweets 
and VADER-IT, Gynaecology reviews, with F1-
score=50.47%. We have also shown several ways 
to augment and expand the resources, and there is 
a strong indication in which MWEs can slightly 
contribute to the improvement of the results 
(semantic orientation) of the texts. Perhaps 
evaluation on much larger and varied datasets 
could achieve better performance. 

Limitations 

There are many challenges with this approach. The 
representativity of the tweets or the social media 
sample, and their size is low and polarized, further 
experimentation is necessary on larger, manually 
curated datasets to verify the efficacy of the tool 
and resources on different domains and text 
genres. Apart from the text selection process, this 
paper didn’t provide a comparison with learning 
methods, a task we left for future research. 

e/Swedish-Sentiment-Fear. The two models are 
based on the KB/bert-base-swedish-cased model 
(https://huggingface.co/KB/bert-base-
swedish-cased) and have been fine-tuned to solve a 
multi-label sentiment analysis task. 
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Abstract

In semantic typology, colexification refers
to words with multiple meanings, ei-
ther related (polysemy) or unrelated (ho-
mophony). Studies of cross-linguistic
colexification have yielded insights into,
e.g., psychology, historical linguistics
and cognitive science (Xu et al., 2020;
Brochhagen and Boleda, 2022; Schap-
per and Koptjevskaja-Tamm, 2022; Karjus
et al., 2021; François, 2022). While NLP
research up until now has mainly focused
on integrating syntactic typology (Naseem
et al., 2012; Täckström et al., 2013; Zhang
and Barzilay, 2015; Daiber et al., 2016;
de Lhoneux et al., 2018; Ponti et al., 2019;
Chaudhary et al., 2019; Üstün et al., 2020;
Oncevay et al., 2020; Yu et al., 2021;
Ansell et al., 2021; Zhao et al., 2021; On-
cevay et al., 2022), we here investigate the
potential of incorporating semantic typol-
ogy, of which colexification is an example.
We propose a framework for construct-
ing a large-scale synset graph and learning
language representations with node em-
bedding algorithms. We demonstrate that
cross-lingual colexification patterns pro-
vide a distinct signal for modelling lan-
guage similarity and predicting typologi-
cal features. Our representations achieve
a 9.97% performance gain in predicting
lexico-semantic typological features and
expectantly contain a weaker syntactic sig-
nal. This study is the first attempt to learn
language representations and model lan-
guage similarities using semantic typology
at a large scale, setting a new direction
for multilingual NLP, especially for low-
resource languages.1

1GitHub: https://shorturl.at/bioUZ.

1 Introduction

Semantic typology studies cross-lingual seman-
tic categorization (Evans et al., 2010). The term
“colexification”, which encompasses both poly-
semy and homophony, was introduced to the field
of semantic typology by François (2008). This
study focuses on cross-lingual colexification pat-
terns, where the same lexical form is used in
distinct languages to express multiple concepts.
For instance, bla in Monpa Changprong and afu
in Rikou both express the concepts DUST and
ASH (Rzymski et al., 2020).

Colexification was first used in linguistic ty-
pology to create semantic maps. Haspelmath
(2003) created a semantic map with 12 languages,
and François (2008) pointed out that the num-
ber of different senses increases with the number
and variety of languages used. In recent years,
big data, and improved data creation and cura-
tion techniques have led to the development of
datasets like Concepticon (Forkel et al., 2020),
and BabelNet (Navigli and Ponzetto, 2012), which
make large-scale cross-lingual semantic compar-
isons possible. The Cross-Linguistic Colexifi-
cations (CLICS) database was created based on
the Concepticon collection and is being continu-
ously maintained. The current version2 CLICS3

includes 4,228 colexification patterns across 3,156
languages. In this paper, we create a synset graph
based on multilingual WordNet (Miller, 1995)
data from BabelNet 5.0, compare it with the con-
cept graph extracted from CLICS3, and explore
the impact of data scope on language representa-
tion learning.

We hypothesize that language representations
learned using semantic typology encapsulate a dis-
tinct language signal, and the data size of colexifi-
cations has an impact on the learned language rep-
resentations and the modelled language similari-

2https://clics.clld.org/
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ties. Importantly, we expect that this type of sig-
nal can be used to improve semantically oriented
downstream tasks in NLP. To test this hypothesis,
we propose a framework Colex2Lang (cf. Sec-
tion 3) to learn language representations leverag-
ing semantic typology, conduct typological feature
prediction, and model language similarities. Our
experiments on typological feature prediction fo-
cus on the domain of semantic features, so as to
investigate the extent to which a semantic signal is
encapsulated by our language representations.

Specifically, we make the following contribu-
tions: (i) We generate and evaluate 24 sets of lan-
guage embeddings based on large-scale colexifi-
cation databases, using four advanced node em-
beddings algorithms, i.e., Node2Vec (Grover and
Leskovec, 2016), ProNE (Zhang et al., 2019),
GGVec 3, and GloVe 4 (Pennington et al., 2014);
(ii) we conduct thorough experiments on typolog-
ical feature prediction to compare colexification-
informed and more general language embeddings
(Malaviya et al., 2017; Östling and Tiedemann,
2017), which provides a strong benchmark for fur-
ther research; (iii) we demonstrate the usability of
modelling language similarities based on colexifi-
cation patterns, and argue for the potential of util-
ising semantic typology in NLP applications.

2 Related Work

Colexification Cross-linguistic colexifications
were first formalized by François (2008) for
the creation of semantic maps. Semantic maps
represent the relation between recurring meaning
expressions in a language graphically (Haspel-
math, 2003). The basic idea underpinning this
method is that language-specific patterns of
colexifications indicate semantic closeness or
relatedness between the meanings that are colex-
ified (Hartmann et al., 2014). When investigated
cross-lingually, colexification patterns can provide
insights in various fields, such as recognizing cog-
nitive principles (Berlin and Kay, 1991; Schapper
et al., 2016; Jackson et al., 2019; Gibson et al.,
2019; Xu et al., 2020; Brochhagen and Boleda,
2022), diachronic semantic shifts in individual
languages (Witkowski and Brown, 1985; Urban,
2011; Karjus et al., 2021; François, 2022), and the
evolution of language contact (Heine and Kuteva,

3https://github.com/VHRanger/
nodevectors

4https://shorturl.at/myzKR

2003; Koptjevskaja-Tamm and Liljegren, 2017;
Schapper and Koptjevskaja-Tamm, 2022).

Jackson et al. (2019) investigated cross-lingual
colexifications in the domain of emotions and
found that languages have different associations
between emotional concepts. For example, Per-
sian speakers associate the concept of GRIEF with
REGRET closely whereas Dargwa speakers asso-
ciate it with ANXIETY. The cultural variation and
universal structure shown in the emotion seman-
tics provide interesting insights into NLP. Di Na-
tale et al. (2021) used colexification patterns to
test whether the words linked by colexification
patterns capture similar affective meanings, and
subsequently expanded affective norms lexica to
cover exhaustive word lists when additional data
are available. Inspired by Jackson et al. (2019),
Sun et al. (2021) proposed emotion semantic dis-
tance, measuring how similarly emotions are lexi-
calized across languages, to improve cross-lingual
transfer learning performance on sentiment analy-
sis. Bao et al. (2021) show that there exists no uni-
versal colexification pattern by analyzing colexifi-
cations from BabelNet, Open Multilingual Word-
Net (Bond and Foster, 2013), and CLICS3.

Closely related to our work, Harvill et al. (2022)
constructed a synset graph from BabelNet to im-
prove performance on the task of lexical semantic
similarity. Instead of modelling only word sim-
ilarity using colexification patterns, we strive to
model language similarity in this study and show
that the language embeddings learned on colexi-
fication patterns capture a unique semantic signal
compared to language embeddings encapsulating
syntactical signals. Moreover, we experiment with
different node embedding algorithms and compare
three colexification datasets. The framework pro-
vides a strong benchmark for further investigating
how semantic typological aspects of language em-
beddings can be leveraged in broader applications,
especially for low-resource multilingual NLP.

Node Embeddings Node embeddings can be
broadly classified into three different categories
namely (i) matrix factorization-based models, (ii)
random walk-based models, and (iii) deep neural
network-based models, as discussed in (Cui et al.,
2018).

In matrix factorization-based models, an adja-
cency matrix is used to denote the topology of a
network. Matrix factorization techniques, such as
Singular Value Decomposition (SVD) and Non-
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negative Matrix Factorization (NMF), can be ap-
plied to address this problem. GraRep (Cao et al.,
2015) considers k-hop neighbourhoods utilizing
SVD of the adjacency matrix. This model of-
ten only captures small-order proximity and has
a significant computational complexity for large
graphs. The asymmetric transitivity is preserved
by the HOPE (Ou et al., 2016) model as it converts
the problem to a generalised SVD problem reduc-
ing the complexity. ProNE (Zhang et al., 2019)
introduces a sparse matrix factorization to achieve
initial node representations efficiently.

Random walks are used to maintain local neigh-
bourhoods of nodes and their attributes (New-
man, 2005), by increasing the likelihood of a
node’s neighbourhood given its embedding us-
ing the Skip-gram model (Mikolov et al., 2013).
The objective behind these models is to opti-
mize via stochastic gradient descent on a single-
layer neural network, resulting in decreased com-
puting complexity.

DeepWalk (Perozzi et al., 2014) randomly
chooses a node and proceeds to walk to each
neighbouring node until it reaches its maximum
length (or some random length). LINE (Tang
et al., 2015) aims to embed nearby vertices that
either have linkages between them (optimizing
for first-order proximity) or have a shared 1-
hop neighbourhood (optimizing for second-order
proximity). Node2vec (Grover and Leskovec,
2016) proposes a second-order random walk ap-
proach to sample the neighbourhood nodes with
biasing parameters of Breadth First Search (BFS)
and Depth First Search (DFS). A meta-strategy for
graph embedding under recurrent construction of
nodes and edges into condensed graphs with the
same global structure is proposed by HARP (Chen
et al., 2018). These graphs serve as source ini-
tializations for the detailed graphs that are em-
bedded, producing appropriate node and edge em-
beddings as a consequence. Metapath2vec (Dong
et al., 2017) is an extension of DeepWalk that for-
malizes meta-path-based random walks to build a
node’s neighbourhood, then uses a heterogeneous
skip-gram model.

GGVec algorithm directly minimizes distances
between the related nodes and is designed for
large networks. It uses negative sampling fol-
lowed by minimization loss to learn the node em-
beddings based on the minimal dot product of
edge weights. Another node embedding model

follows the word embedding model GloVe (Pen-
nington et al., 2014) which is based on word co-
occurrences and is beneficial for sparse matrices.
The graph is represented by an adjacency matrix
and the co-occurrence matrix is calculated using
the frequency of node co-occurrences in the graph
instead of word co-occurrences.

Typological Feature Prediction Linguistic ty-
pologists analyse languages in terms of their struc-
tural properties (Croft, 2002). As document-
ing and categorising such cross-lingual variation
across the languages in the world is one of the
core activities in typology, one of the outcomes
of research in linguistic typology is large typo-
logical databases (e.g. the World Atlas of Lan-
guage Structures (WALS, Dryer and Haspelmath
(2013)). While such variation can be found across
the spectrum of languages, the earliest work in
the field largely focused on morphosyntactic prop-
erties (e.g. Greenberg (1957)), concretely look-
ing at minimally meaning-bearing elements (mor-
phemes), combinations thereof, and patterns of
their use. For instance, well-documented fea-
tures include word ordering (e.g. English is SVO,
Japanese is SOV) and affixation (German uses
case suffixes, Berber uses case prefixes).

Prediction of such features has gained interest in
recent years (Malaviya et al., 2017; Bjerva et al.,
2019a, 2020; Bjerva and Augenstein, 2021), and
it has been shown that embeddings trained solely
from tasks such as machine translation (Malaviya
et al., 2017) or language modelling (Östling and
Tiedemann, 2017) can encapsulate such features.
Further analysis has shown that the nature of the
underlying data used to generate language em-
beddings can have a significant impact on what
features are encapsulated (Bjerva and Augenstein,
2018a,b; Bjerva et al., 2019b), and even that
such representations contain typological general-
isations (Östling and Kurfalı, 2023). Previous
work is limited in that it almost exclusively re-
lates to morphosyntactic typological features. In
this work, we aim to present initial evidence that a
lexico-semantic signal can be better learned from
a lexico-semantic data source.

3 Colex2Lang

To better understand and leverage semantic ty-
pological features in NLP, we propose a frame-
work – Colex2Lang (Fig.1) – to model lan-
guage representations based on a synset graph,
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Figure 1: Framework for Colex2Lang. The numbers in the Venn diagrams denote the number of lan-
guages.

created from large-scale databases, and evaluate
and analyse the language representations. The
framework Colex2Lang is composed of the fol-
lowing steps:

Building the Synset/Concept Graph
We use WordNet synsets, extracted from Babel-

Net 5.0, to create a synset graph. The construc-
tion of a synset graph is formalized in Harvill et al.
(2022) (see details in Appendix A). In BabelNet,
every synset is either a concept or a named entity
or has no type. The dataset with only concepts and
with all types of synsets from WordNet are cre-
ated, denoted as “WordNet Concept” and “Word-
Net” respectively. In analogy, CLICS3 provides a
graph of concepts, from which we extracted the
colexification patterns for all the languages hav-
ing an ISO 639-2 code 5, denoted as CLICS. In
this study, we use “concept” and “synset” inter-
changeably. The statistics of the curated datasets
are shown in Table 1.

Creating Synset and Language Embeddings
To capture the semantic associations among
synsets, given the synset/concept graph Gs, we
train synset embeddings using four node embed-
ding algorithms and compare them: Node2Vec,
ProNE, GGVec and GloVe. Given the learned

5https://shorturl.at/hBCF0

synset embeddings, we obtain the colexification
embeddings Wc by concatenating or summing the
synset embeddings Ws; thereafter, the language
embeddings Wl are created by summing, averag-
ing or max-pooling the consisting colexification
embeddings Wc. For example, if the synset em-
beddings are trained with ProNE, and are con-
catenated to compose colexification embeddings,
which in turn are max-pooled to obtain language
embeddings, we denote the language embeddings
as Wprone concat+max.

Evaluation To obtain insights into the learned
language embeddings based on the colexification
patterns, such as which aspect of language these
language embeddings capture and to what extent
they can assist in improving NLP tasks, we con-
duct typological feature prediction and analyse the
results in depth. Furthermore, the language em-
beddings are used to model language similarities,
to demonstrate the potential of applications in con-
tributing to cross-lingual transfer learning.

4 Experiments

Datasets To better understand the impact of
data scope on the NLP task performance, we cu-
rate three different datasets, i.e., WordNet, Word-
Net Concept, and CLICS, as described in Sec-
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Dataset #(C,X,L) Colexifications (C) Lexicalizations (X) Synsets / Concepts #Language (L) (Pair)
WordNet 6,199,897 2,525,591 974,346 105,827 519 (134421)

WordNet Concept 6,075,413 2,486,485 920,031 99,817 519 (134421)
CLICS 68,560 4,228 53,259 1,647 1609 (332783)

Table 1: Statistics of Colexification Datasets

∩WALS #Language Lexicon Complex Sentences Nominal Categories Simple Clauses 10 Feature Areas
#F #V #D #F #V #D #F #L #D #F #V #D #F #V #D

CLICS 737 13 4 93 7 4 86 29 5 145 26 4 142 188 9 288
WordNet (Concept) 330 13 2 58 7 4 56 29 5 92 26 4 89 185 8 166
Malaviya et al. (2017) 624 13 4 92 7 4 63 29 5 112 26 4 117 190 9 238
Östling and Tiedemann
(2017)

597 13 4 85 7 4 60 29 5 103 26 4 109 190 9 219

Table 2: Statistics of Typology Feature Prediction Datasets. Under each feature area and in all ten feature
areas, #F represents the total number of features, #V represents the average number of feature values, #D
represents the average number of data samples.

tion 3. As shown in Table 1, there are far more
(unique) colexification patterns in fewer languages
in WordNet-based datasets compared to CLICS,
i.e., 6 Mio colexifications with more than 2 Mio
unique colexification patterns constructed from
105K synsets in 330 languages, and 68K colex-
ifications with 4K unique colexification patterns
from 1,647 concepts across 1609 languages, re-
spectively. The synset embeddings are trained
separately on the three datasets with four differ-
ent node embeddings algorithms, and the language
embeddings are composed accordingly, as de-
scribed in Section 3. Eventually, for each dataset,
there are 24 sets of colexification-informed lan-
guage embeddings 6.

We hypothesize that (i) the colexification-
informed language embeddings capture a unique
language aspect and (ii) the language embeddings
learned on large-scale WordNet datasets present
stronger semantic typological signals than the
ones trained on CLICS. To test this, we rely on
WALS v2020.3 7, the most used and comprehen-
sive database for typology feature prediction, con-
sisting of 2,662 languages. For our experiment, we
extract language data from WALS by ISO 639-2
codes, resulting in a dataset of a total of 2,371 lan-
guages, 192 typological features across ten feature
areas, i.e., phonology, morphology, lexicon, com-
plex sentences, nominal categories, nominal syn-
tax, simple clauses, verbal categories, word order,
and other. To test hypothesis (i), the language em-
beddings from Malaviya et al. (2017) and Östling

6The learned language embeddings are made publicly ac-
cessible in our GitHub repository https://shorturl.
at/zFISY.

7 https://doi.org/10.5281/zenodo.
7385533

and Tiedemann (2017) are used, which are tested
for superior performance in typological feature
prediction in syntax, phonology and genealogi-
cal features, respectively. Specifically, to test hy-
pothesis (ii), we analyse the CLICS and WordNet-
based language embeddings’ performance on the
typology feature prediction and their ability to rep-
resent the language similarity compared to typo-
logical features (cf. Section 5).

Subsequently, four datasets are created for ty-
pology feature prediction by the common set of
languages, i.e., CLICS ∩ WALS, WordNet (Con-
cept) ∩ WALS, Malaviya et al. (2017) ∩ WALS,
and Östling and Tiedemann (2017) ∩WALS. The
statistics of the intersecting languages with WALS
and selecting typological feature areas are shown
in Table 2.

Experimental Setup We conduct the typology
feature prediction experiments using a simple
classifier consisting of a one-layer feedforward
neural network with a dropout of 50%, and a soft-
max layer. For each feature, a multi-class classifier
is trained maximally for 100 epochs. The cross-
entropy loss is used to evaluate at the end of each
epoch. To ensure a fair comparison, for all three
datasets, as shown in Table 2, a common set of
test data across the data sets is created, consisting
of 74 languages. Then for each dataset, the rest of
the data is split into train and dev sets. The num-
ber of data samples is very limited for each feature,
as indicated in Table 2. Ten-fold cross-validation
on the train-dev splits is therefore implemented to
promote the performance.

To assess whether learned language embed-
dings capture extra semantic information, we im-
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plement a baseline classifier with a majority vote,
and a model with the same one-layer feedforward
neural network structure but with an embedding
layer initialized with random distribution.

5 Analyses and Results

Comparing Language Embeddings As indi-
cated in Table 2, each feature area has an uneven
distribution of features, feature labels and data
samples. Hence, the macro F1 score is used to
record test results for each feature, and for each
feature area, the results of all the included fea-
tures are averaged. For colexification-informed
language embeddings, we present the results of the
models with the median and best averaged macro
F1-scores for each selecting feature area and the
averaged results of all the feature areas.

As shown in Table 3, the baseline and the
model with randomly initialized embeddings
perform on par across the datasets, whereas
all the colexification-informed language embed-
dings beat the baseline for each feature area
and also on average across feature areas, and
present the most performance gain in the lexi-
con area, i.e., 9.91 and 9.97 with WordNet Con-
cept (best) (Wglove concat+avg) and CLICS (best)
(Wprone concat+max), respectively. In contrast,
the language embeddings from Malaviya et al.
(2017) perform the worst for the lexicon features,
while having the most performance gain in syn-
tactic feature areas. While the language embed-
dings from Östling and Tiedemann (2017) per-
form better in lexicon feature areas compared
to Malaviya et al. (2017), both best performing
colexification-informed language embeddings still
have two percent more performance gains. These
results not only corroborate our hypothesis that
the colexification-informed language embeddings
capture a unique aspect, especially in semantic ty-
pological features, but also indicate that in general,
leveraging semantic typology information could
boost the performance of downstream tasks.

Capturing Lexicon Typological Features To
better understand how the colexification-informed
language embeddings better capture semantic ty-
pological information, we analyze the perfor-
mance of lexicon feature prediction with several
representative examples, as visualized in Figure 2.

The left side of Figure 2 presents the perfor-
mance of CLICS (best) model and the correspond-
ing Random model in predicting each feature (e.g.,

Number of Basic Colour Categories), the colour
of the circle represents the feature values (e.g., 6-
6.5 and 11), and the size of the circles indicates
its proportion of the data samples for the regard-
ing values in the train data (e.g., there are more
data samples for the feature value “11” than “6-
6.5”). Overall, CLICS outperforms Random in al-
most each feature value across lexicon features.
In comparison, CLICS excels at the uneven dis-
tribution of train data samples. For instance, for
features “Number of Non-Derived Basic Colour
Categories” and “Number of Basic Colour Cate-
gories”, the feature values “4.5” and “11” have
fewer samples compared to their counterparts,
while Random cannot detect them, CLICS ob-
tained 50% and 80% performance.

Similar results are shown for the Wordnet-based
models and their corresponding Random model,
as shown on the right side of Figure 2. For the fea-
ture “Number of Basic Colour Categories”, both
WordNet and WordNet Concept models achieve
the perfect score compared to the Random coun-
terpart, which is not able to identify the minority
class at all. Whereas, WordNet Concept outper-
forms WordNet for the feature “Number of Non-
Derived Basic Colour Categories”, WordNet Con-
cept has a 100% macro F1-score with WordNet
and Random failing to identify the minority class.

These results demonstrate that the models
trained with colexification-informed language em-
beddings have learned to better capture the seman-
tic typology information compared to randomly
initialized embeddings. The language embeddings
could be further fine-tuned and applied to assist
other NLP applications.

Language Similarities Having attested that
the colexification-informed language embeddings
capture the semantic typological aspects of lan-
guages, we investigate how well the language sim-
ilarities represented by the semantic typology fea-
tures and the language embeddings correlate.

To represent languages by lexicon features, we
generate a vector for each language by encoding
a 13-dimensional vector with the feature values
padded with -1, if the feature value is absent. The
cosine similarities among the vectors are calcu-
lated. Similarly, the cosine similarities are cal-
culated for the language embeddings. The Pear-
son correlation coefficient and p-value 8 for test-
ing non-correlation are calculated between the lan-

8https://shorturl.at/rDO89
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Model Lexicon Complex Sentences Nominal Categories Simple Clauses Average (All Features)
CLICS ∩WALS
Baseline 39.85 21.89 21.94 26.73 29.82
Random 37.88 (-1.97) 23.16 (+1.27) 21.06 (-0.88) 27.14 (+0.41) 29.97 (+0.15)
CLICS (Median) 41.88 (+2.03) 27.73 (+5.84) 26.11 (+4.17) 29.71 (+2.98) 30.45 (+0.63)
CLICS (Best) 49.76 (+9.91) 29.32 (+7.43) 27.33 (+5.39) 27.91 (+1.18) 34.96 (+5.14)
WordNet ∩WALS
Baseline 37.87 19.26 24.12 37.67 33.06
Random 38.54 (+0.67) 19.26 22.42 (-1.70) 34.99 (-2.68) 32.95 (-0.11)
WordNet (Median) 36.59 (-1.28) 23.89 (+4.63) 28.05 (+3.93) 37.12 (-0.56) 34.17 (+1.11)
WordNet Concept (Median) 39.09 (+1.23) 25.43 (+6.17) 27.73 (+3.61) 37.63 (-0.04) 34.94 (+1.88)
WordNet (Best) 47.07 (+9.20) 26.17 (+6.91) 32.56 (+8.44) 40.23 (+2.56) 37.11 (+4.05)
WordNet Concept (Best) 47.84 (+9.97) 26.52 (+7.26) 34.53 (+10.11) 38.96 (+1.29) 39.91 (+6.85)
Malaviya et al. (2017) ∩WALS
Baseline 34.83 18.94 21.98 32.76 31.00
Random 34.83 19.68 (+0.74) 21.21 (-0.77) 33.69 (+0.93) 30.94 (-0.06)
MTCELL 34.43 (-0.4) 0.2549 (+6.55) 34.74 (+12.76) 42.79 (10.03) 35.14 (+4.15)
MTVEC 21.85 (-12.98) 23.55 (+4.61) 25.03 (+3.05) 36.21 (+3.45) 34.49 (+3.49)
MTBOTH 31.29 (-3.54) 29.83 (+10.89) 31.66 (+9.68) 39.37 (+6.61) 38.21 (+7.22)
Östling and Tiedemann (2017) ∩WALS
Baseline 35.01 18.99 20.39 34.44 31.07
Random 35.01 18.99 21.62(+1.23) 34.57 (+0.13) 30.88 (-0.19)
L1 35.17 (+0.16) 26.94 (+7.95) 25.32 (+4.93) 37.78 (+3.34) 31.26 (+0.20)
L2 42.64 (+7.63) 17.14 (-1.85) 26.78 (+6.39) 36.02 (+1.58) 31.80 (+0.73)
L3 34.68 (-0.33) 22.90 (+3.91) 23.99 (+3.60) 35.59 (+1.15) 33.51 (+2.45)

Table 3: Test Results of Typological Feature Prediction. Results are in macro-f1 scores, numbers in
brackets are the performance gains compared to the corresponding baseline, bold numbers indicate the
highest performance gain compared to the corresponding baseline model, and the underlined results
indicate the model with the highest performance gain per feature.

Figure 2: Performance of Predicting Lexicon Typological Features. The test results are in macro F1-
scores, the colour of the circle represents the feature values, and the size of the circles indicates the size
of the data samples for the regarding values in the train data.

Language Embeddings #Language (Pair) Correlation Coefficient (P-value) #Language (Pair) Correlation Coefficient (P-value)
CLICS 343 (58653) - 0.049 (4.436e-33*) 8 (28) - 0.0876 (0.6575)

WordNet 216 (23220) 0.1469 (3.525e-112*) 8 (28) 0.7679 (1.838e-06*)
WordNet Concept 216 (23220) 0.1274 (1.339e-84*) 8 (28) 0.8515 (9.210e-09*)

Table 4: Correlation between Language Similarities represented by Lexicon Typological Features and
Colexification-informed Language Embeddings. * indicates that the correlation is statically significant,
the numbers in bold indicate the highest correlation coefficients.

guage similarities represented by lexicon typology
features and language embeddings. We present
the results for the three best-performing language
embeddings with both whole language sets inter-
sected with WALS and a case study on a set of
Nordic and Baltic languages, as shown in Table 4.

When tested with large sets of language pairs,
i.e., 58,653 and 23,220 in CLICS and WordNet-

based, respectively, all three correlations are sta-
tistically significant, and WordNet-based language
embeddings present stronger positive correlations
with lexicon typological features in representing
language similarities. This verifies our hypothe-
sis that the language embeddings learned on large-
scale WordNet datasets present stronger semantic
typological signals than the one trained on CLICS.

679



Figure 3: Language similarities represented by Lexicon Typological Features and Colexification-
informed Embeddings.

Figure 4: Language similarities represented by ap-
plying PCA on WordNet language embeddings.

The information density of the language embed-
dings increases with the number of incorporated
synsets and colexification patterns.

A set of Nordic and Baltic languages are se-
lected to compare further the represented language
similarities. Both WordNet-based language em-
beddings present strong positive correlations, i.e.,
0.7679 and 0.8515, respectively, and the correla-
tions are statistically significant, as shown on the
right side of Table 4. To further analyse the re-
sults, the heatmap is used to visualize the language
similarities represented by lexicon features and
WordNet-based language embeddings, as shown
in Figure 3. The most distinctive difference is that
Finnish is highly similar in terms of lexicon fea-
tures compared to other languages but relatively
dissimilar in terms of WordNet-based language
embeddings. In this context, the WordNet-based
embeddings arguably present a more realistic im-
age of language similarities semantically.

We differentiated the WordNet Concept from

WordNet dataset, assuming that a dataset with
only concepts would avoid data noises and ren-
der language embeddings able to better capture the
semantic associations between languages. How-
ever, the analysed results do not corroborate the
assumption. On the contrary, the language embed-
dings learned on all the WordNet synsets present a
stronger correlation (+0.02) with lexicon typolog-
ical features.

To further investigate language similarities, we
apply PCA to the WordNet-based language em-
beddings (Figure 4). We can observe that, e.g.,
Scandinavian languages are clustered together, as
expected. Another observation is that Finnish is
relatively close to this cluster, owing to a relatively
high amount of overlapping colexification patterns
from language contact with Swedish, as compared
to Estonian which is placed closer to one of its
contact languages, Lithuanian.

6 Conclusion and Future Work

In this study, we have proposed a frame-
work Colex2Lang to leverage colexifications
to learn language representations and explored
the potential of using semantic typology in NLP.
A large-scale synset graph is constructed using
WordNet source from Babelnet, and three datasets
of colexification are processed including CLICS.
Subsequently, within each dataset, 24 language
embeddings variants are learned, and further eval-
uated and analysed by typology feature predic-
tion and modelling language similarity. We have
demonstrated, at a large scale, that colexification-
informed language embeddings capture a distinc-
tive aspect of languages in terms of semantic ty-
pology, and the data scope of the curated synsets
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affects the performance of applying language em-
beddings. Furthermore, the analysis of represent-
ing language similarities by using learned lan-
guage embeddings illustrates a realistic approach.

A large body of research has demonstrated the
use of syntactic, genealogical and geographical in-
formation from linguistic typology to learn lan-
guage representations, model language similari-
ties, and further improve transfer learning perfor-
mance in downstream tasks in NLP. Our work is
the first attempt to learn language representations
and model language similarity by leveraging se-
mantic typology. The framework provides a strong
benchmark for further research in this direction.

For future work, the benefits of applying
colexification-informed language embeddings will
be extensively explored. Multilingual semantic
parsing is a clear candidate, where a cross-lingual
signal based on colexifications may prove useful.
The language similarities represented by colexi-
fications could further inspire multilingual trans-
fer learning, as in leveraging high-resource lan-
guages with dedicated lexical data to improve
performance in semantically similar low-resource
languages.
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A Construction of Colexification Graph

We adopt the algorithm presented in Harvill et al.
(2022) to construct a large-scale synset graph from
WordNet synsets for our study (cf. Section 3). The
difference in our approach lies in the addition of
Gs at line 3 and line 9, as shown in Algorithm 1.
Gs affords the constructions of colexification em-
beddings and language embeddings after obtain-
ing synset embeddings trained on G with node em-
beddings algorithms (cf. Section 3).

Algorithm 1 Construction of Colexification
Graph: Given a set of languages L and corre-
sponding vocabularies V, create graph edges be-
tween all colexified synset pairs (nodes), consist-
ing of the set of tuples of lemmas and their lan-
guage.

1: function CONSTRUCTGRAPH(L,V )
2: CSP ← {} ▷ Colexified Synset Pairs
3: Gs ← graph
4: for l ∈ L do
5: for x ∈ Vl do
6: if |Sx| ≥ 2 then
7: for {s1, s2} ∈

(
Sx

2

)
do

8: CSP ← CSP ∪ {si, sj}
9: Gs(s1, s2)← {x, l}

10: end for
11: end if
12: end for
13: end for
14: G← graph
15: for s1, s2 ∈ CSP do
16: G(s1, s2)← 1
17: end for
18: return G
19: return Gs

20: end function
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Abstract

Due to the popularity of social media
platforms and the sheer amount of user-
generated content online, the automatic
detection of toxic language has become
crucial in the creation of a friendly and
safe digital space. Previous work has
been mostly focusing on English leaving
many lower-resource languages behind. In
this paper, we present novel resources for
toxicity detection in Finnish by introduc-
ing two new datasets, a machine trans-
lated toxicity dataset for Finnish based on
the widely used English Jigsaw dataset
and a smaller test set of Suomi24 discus-
sion forum comments originally written in
Finnish and manually annotated following
the definitions of the labels that were used
to annotate the Jigsaw dataset. We show
that machine translating the training data
to Finnish provides better toxicity detec-
tion results than using the original English
training data and zero-shot cross-lingual
transfer with XLM-R, even with our newly
annotated dataset from Suomi24.

1 Introduction

Social media is filled with moderated and unmod-
erated content with foul language such as threats,
insults and swears. Due to the popularity of the
platforms and the sheer amount of comments,
posts and other user-generated content they in-
clude, moderation by human-raters is getting im-
possible. This makes automatic toxicity detec-
tion a requirement in the monitoring of social me-
dia platforms and other online settings in order to
guarantee a safe and friendly digital space.

In recent years, many studies have tackled the
detection of toxic language as well as other simi-
lar and relevant tasks, such as the detection of hate

speech and offensive language (Davidson et al.,
2017; MacAvaney et al., 2019). However, most
datasets and thus most of the studies focus on En-
glish, leaving other languages with very scarce re-
sources (Davidson et al., 2017; Androcec, 2020).
At the same time, the development of the re-
sources, in particular the creation of manually
annotated training data, is very time-consuming.
Cross-lingual transfer learning has offered a solu-
tion to this challenge by allowing the use of data in
one language to predict examples in another one.
This method has showed promising results in tasks
such as register labeling (Rönnqvist et al., 2021;
Repo et al., 2021) and offensive language detec-
tion (Pelicon et al., 2021). Additionally, recent ad-
vances in machine translation open up the ques-
tion of how to use machine translation to do the
language transfer and create novel resources for a
language.

In this paper, we address the lack of resources
for toxicity detection in languages other than En-
glish by benefitting from the recent advances in
machine translation. Specifically, we present the
first publicly available dataset for toxicity detec-
tion in Finnish that we develop by machine trans-
lating the English Jigsaw Toxicity Dataset that is
claimed to be the biggest and most widely used
toxicity dataset (Androcec, 2020). We show that
machine translating the dataset to Finnish provides
better results for toxicity detection than cross-
lingual transfer learning, where a cross-lingual
XLM-R model (Conneau et al., 2020) is fine-
tuned using the original English Jigsaw training
set and tested on the Finnish machine translated
test set. Furthermore, to test how much machine
translation modifies the content of the dataset and
thus causes performance loss, we backtranslate
the dataset from Finnish to English, demonstrat-
ing only a minimal decrease in performance. Fi-
nally, in order to examine how much toxic content
the trained model identifies from another source
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than the Wikipedia edit comments included in Jig-
saw, we create another test set for toxicity detec-
tion in Finnish by manually annotating comments
from the Finnish discussion forum Suomi24 and
building a dataset of 2,260 comments. The anno-
tations follow the label description guidelines that
were used to annotate the original English dataset.
We show that while the model does identify toxic
content also from the discussion forum comments,
the change of text source does present some chal-
lenges.

As machine translation systems, we test two
systems to see whether there are major differences
to our results: the DeepL machine translation ser-
vice1 and Opus-MT (Tiedemann and Thottingal,
2020), see Section 3.2. The DeepL machine trans-
lated dataset, the native Finnish dataset and the
resulting fine-tuned FinBERT large model are all
openly available at the TurkuNLP Huggingface
page2.

2 Related Work

Toxicity, in terms of speech, text or behaviour, is
an umbrella term that encompasses many kinds of
language use, such as hate speech, abusive lan-
guage, offensive language and harmful language.
In this paper, we follow the definition adopted in
the Jigsaw dataset and define toxicity as ”rude, dis-
respectful, or unreasonable language that is likely
to make someone leave a discussion” (Jigsaw).

Toxicity detection (van Aken et al., 2018;
Pavlopoulos et al., 2020; Burtenshaw and Keste-
mont, 2021) is related to many other similar
classification tasks such as hate speech detection
(Davidson et al., 2017; MacAvaney et al., 2019)
and offensive language classification (Davidson
et al., 2017; Jahan and Oussalah, 2020). In all
these tasks, the goal is to identify harmful text in,
e.g., social media, where comments can be flagged
for review or automatically deleted.

Toxicity datasets and datasets for other re-
lated tasks are mostly monolingual with English
being the most popular—most studies have used
the same Jigsaw dataset that we use (Androcec,
2020). For instance, Carta. et al. (2019) reported
ROC AUC-scores of nearly 90% on this dataset.
Additionally, datasets are available, e.g., for Span-
ish (Androcec, 2020), and a multilingual dataset
has been developed as a part of the Kaggle com-

1https://www.deepl.com/translator
2https://huggingface.co/TurkuNLP

petition on multilingual toxicity detection3.
The available datasets represent various do-

mains and text lengths, ranging from short Twitter
posts (Davidson et al., 2017) to Wikipedia editor
comments featured by the Jigsaw dataset we are
using, see Section 3.1. Similarly, the annotation
strategies vary from multi-label annotation where
one instance can have several independently as-
signed labels to multi-class where one instance can
be assigned just one label (Davidson et al., 2017)
and to even a binary setting where each instance
is either clean or toxic (D’Sa et al., 2020). Due
to these differences, combining several datasets to
increase the number of examples in training data
is difficult.

Similarly, the subjectivity entailed in toxicity
creates a challenge for its automatic detection—as
people interpret things differently, a single correct
interpretation of a message as toxic or not may not
exist (see discussion in Ross et al. (2016)). In ad-
dition to model performance, the subjectivity can
be noted in low inter-annotator agreements. For
instance, Waseem (2016) reported a kappa of .57,
which can be interpreted as weak.

Cross-lingual zero-shot transfer learning
where the model is trained on one language and
tested on another relies on multilingual language
models that have been trained on massive amounts
of multilingual data (Conneau et al., 2020; De-
vlin et al., 2018). These have been used for the
zero-shot cross-lingual transfer of hate speech de-
tection and offensive/abusive language detection.
For instance, Pelicon et al. (2021) report that a
multilingual BERT-based classifier achieves re-
sults that are comparable to monolingual classi-
fiers in offensive language detection and also Ero-
nen et al. (2022) demonstrate that zero-shot cross-
lingual transfer can achieve competitive results
for abusive language detection. However, Nozza
(2021) note also challenges—the zero-shot trans-
fer of hate speech detection can be complicated
by non-hateful, language-specific taboo interjec-
tions that are interpreted by the model as signals of
hate speech, and Leite et al. (2020) also found that
zero-shot transfer did not produce accurate results
for toxicity detection in Brazilian Portuguese.

Machine translation can be considered a mode
of transfer learning that has become viable with
the advances of natural language processing. In

3https://www.kaggle.com/c/jigsaw-
multilingual-toxic-comment-classification
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particular, the method has been used in toxic lan-
guage detection to get more data by data aug-
mentation (Rastogi et al., 2020) and by trans-
lating data to English to be able to use ready-
made models (Kobellarz and Silva, 2022). Ko-
bellarz and Silva (2022) found that comments that
were analyzed as toxic in Portuguese were not as
toxic when translated to English—however, the
same behaviour may not apply to other language
pairs. To our knowledge, no experiments compar-
ing cross-lingual transfer by a multilingual model
and by machine translation have been made previ-
ously.

3 Data and Translation

3.1 Jigsaw Toxicity Dataset

The data used in this paper is the Jigsaw dataset
developed by Google and released as a Kaggle
competition4. The dataset is based on comments
from Wikipedia’s talk page edits and consists of
223,549 comments. The dataset collection was
done by crowd-sourcing. No specific information
about the annotation process is given.

The annotation scheme is composed of six
classes: toxicity, severe toxicity, identity attack,
insult, obscene and threat. Toxicity is a gen-
eral label encompassing all toxicity and is defined
as ”rude, disrespectful, or unreasonable language
that is likely to make someone leave a discussion”,
and severe toxicity as ”a very hateful, aggressive,
disrespectful comment or otherwise very likely to
make a user leave a discussion or give up on shar-
ing their perspective”. For other definitions, please
see the annotation guidelines for Perspective API
(Perspective, a,b).

The annotation is set up as multi-label, where
each comment annotated as toxic has one or more
labels assigned to it. The label distribution of
the dataset is presented in Table 1. In total, only
11% of the comments are annotated with at least
one of the toxic labels, the rest being left with-
out labels and considered as neutral or non-toxic.
This means that the label distribution is highly
unbalanced, which, however, comes from the na-
ture of the data as most comments are neutral in
discussions. More information about label co-
occurrence is given in Figure 1, showing that in
particular obscene and insult as well as toxicity,
insult and obscene co-occur.

4https://www.kaggle.com/competitions/jigsaw-toxic-
comment-classification-challenge/

Train Test
Toxicity 15,924 6,090
Severe toxicity 1,595 367
Threat 478 211
Obscene 8,449 3,691
Insult 7,877 3,427
Identity attack 1,405 712
No label 143,346 57,735

Table 1: Label distribution in the Jigsaw Toxic-
ity Dataset. As each comment may have up to six
labels, the total number of labels exceeds the num-
ber of comments in the dataset.

The dataset is split into train and test sets
with stratified sampling (159,571 and 63,978 com-
ments) following the original Kaggle release.
Furthermore, for our training purposes with the
Finnish data, a development set is split from the
train set by doing stratified splitting and taking
20% of the train set comments.

Figure 1: Correlation matrix of the labels of the
original train dataset calculated with Pearson stan-
dard correlation coefficient. Small values close
to zero indicate no correlation between the labels,
while higher values closer to 1 suggest correlation
and that the labels tend to appear together.

3.2 Jigsaw Toxicity Data in Finnish
We machine translated the original English Jig-
saw dataset to Finnish using two translation tools:
the DeepL machine translation service5 and Opus-
MT (Tiedemann and Thottingal, 2020). For
DeepL, the dataset was converted to the required
.docx-format for the translation and then back
to .jsonl after the translation. The English-

5https://www.deepl.com/translator
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Finnish translation cost less than 100 dollars.
None of the comments were lost during this
process—a possibility that needs to be considered
when transforming data from a format to another.

For Opus-MT, the texts needed to be sentence
split, because the tool can only translate one sen-
tence at a time. This was done using the Udpipe
REST api6. The model used for translation was
Helsinki-NLP/opus-mt-tc-big-en-fi7.
Some of the comments from the test set did not
survive the translation, as they were not in
English. These were edited to only include the
notion ”EMPTY”.

Finally, to examine the loss of performance
caused by the machine translation, we also back-
translated the dataset translated with DeepL from
Finnish back to English. This was done using the
same method as the English-Finnish translations.

The DeepL machine translated dataset is avail-
able at the TurkuNLP Huggingface8.

3.3 Native Finnish Toxicity Dataset

To examine how much toxic content the fine-tuned
model can identify in comments featuring another
text variety than the Wikipedia editor comments
included in Jigsaw, we developed a new manually
annotated test set sampled from Suomi24—the
largest online discussion forum in Finland com-
piled into a giga-size corpus. As the label distri-
bution is very skewed in the Jigsaw dataset with
a large majority of comments not annotated for
toxicity (see Section 3.1), the sampling was done
in a specific manner to ensure a representative set
of comments featuring varying degrees of toxicity
and the six toxicity classes.

Specifically, we first classified 945,867 com-
ments taken from Suomi24 using a model that
was at the time our best performing model which
was a fine-tuned base model of FinBERT (Virta-
nen et al., 2019). Then, for each of the six toxicity
labels, we binned the comments to ten bins based
on the classifier score for that label (0.0-0.1, 0.1-
0.2, . . . 0.9-1.0). The distribution of comments
in these bins is presented in Appendix A, showing
that the classifier is very certain about most of its
decisions. In particular, the 0.0-0.1 bins are ex-

6https://lindat.mff.cuni.cz/services/udpipe/api-
reference.php

7https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-
en-fi

8https://huggingface.co/datasets/TurkuNLP/jigsaw
toxicity pred fi

tremely large, while another set of peaks can be
seen on the right end with high scores.

After the binning, we selected randomly 50
comments from each bin for annotation. This gave
500 comments of broadly varying degrees of pre-
dicted toxicity for each of the six toxicity labels.
Each of the six batches of 500 comments were an-
notated for one toxicity label only. Thus, the anno-
tations are multi-class instead of the original Jig-
saw multi-label, although 23 individual comments
were selected in two different batches due to the
sampling for each label being independent. This
also means that a comment can have some other
type of toxicity that was not annotated for that spe-
cific comment.

Label No label
Toxicity 158 193
Severe toxicity 25 328
Threat 40 391
Obscene 170 239
Insult 145 219
Identity attack 131 221
Total 669 1591

Table 2: Label distribution in the native Finnish
annotations.

The annotation was done independently by
three native Finnish speakers with borderline cases
jointly resolved and documented. This process re-
sulted in guidelines which include general direc-
tions for the labels meaning the guidelines can be
used for any language as a starting point for an-
notation. For the initial process of annotating a
label, we annotated 100-200 comments and used
the definitions of the labels found in the Perspec-
tive API (Perspective, a,b) as a starting point, after
which we had a discussion where we added our
own specifications to the guidelines. Then the last
300-400 comments were annotated according to
those guidelines.

The inter-annotator agreement for the initial an-
notation and the annotations done after the discus-
sion can be found in Table 3. As can be seen, the
unanimous agreement is very low in almost ev-
ery label category, which is common for toxicity
datasets as mentioned in Section 2. Threat is the
only label with a higher agreement of around 80%
whereas most of the other labels range between
47 and 66%. Unfortunately, our mean agreement
did not get better after the discussion which once
again shows the difficulty of the task.

The final dataset was formed using only the
comments that were initially unanimously labeled
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Initial After discussion
Toxicity 58% 54%
Severe toxicity 63% 66%
Threat 82% 80.3%
Obscene 69% 62%
Insult 47.5% 49.6%
Identity attack 54.5% 66.6%
Mean 62.3% 63%

Table 3: Unanimous inter-annotator agreement
(IAA) for the native Finnish toxicity dataset

or for which the label was resolved in a subse-
quent discussion. While the initial annotations
showed significant divergence, this filtering proto-
col should assure the internal consistency and va-
lidity of the dataset. Altogether, the final dataset
consists of 2,260 comments natively written in
Finnish, further described in Table 2. The guide-
lines created during the annotation process are
published together with the dataset on Hugging-
face9.

4 Fine-tuning

We use both monolingual and multilingual state-
of-the-art models in the detection experiments.
Specifically, the monolingual models are the
large and cased versions of the original BERT
for English (Devlin et al., 2018) and Fin-
BERT for Finnish (Virtanen et al., 2019). For
the crosslingual experiments, we use XLM-
RoBERTA (XLM-R) Large (Conneau et al., 2020)
because it has been shown to provide better results
than the multilingual BERT for many tasks (Repo
et al., 2021; Rönnqvist et al., 2021).

All the experiments are done in a multi-label
setting. However, when evaluating classifier per-
formance on the native Finnish test set where the
comments are only annotated for one toxicity label
at a time, we ignore other labels than the one an-
notated in the batch. Furthermore, we made a cus-
tom loss function to the model, giving the labels
weights in order to tackle the imbalanced label dis-
tribution in the data. The weights were calculated
based on the labels’ frequency in the training data.
The resulting weights make the labels with fewer
examples in the training data more important to
the model and labels with the most examples re-
ceive a lower importance. E.g., threat received a

9https://huggingface.co/datasets/TurkuNLP/Suomi24-
toxicity-annotated

weight of 47.6901 due to it appearing in the data
only 478 times and toxicity the weight 1.4905 due
to appearing 15924 times in the data.

No pre-processing for the texts was done to get
the best results since previous studies had found
that with deep learning pre-processing can make
the results worse (Saeed et al., 2018).

For training, we used sequence length of 512
by truncating at the end and did hyperparameter
optimization with grid search using learning rate
(LR) of (1e-5..5e-5), batch size of (4, 8, 12), and
epochs (10) with early stopping and evaluation ev-
ery 2500 steps. All the hyperparameters were op-
timized on the development set. For the cross-
lingual experiments with XLM-R, we optimized
on the English development set and tested on the
translated Finnish test set. The best hyperparame-
ters can be found in Appendix B. Furthermore, we
used threshold optimization to find the best thresh-
old that maximizes the results for the F1-score.

As metrics in the evaluation, we use micro
precision and recall, micro-F1, macro-F1 and
ROC AUC. Precision shows how many of the pos-
itive predictions are correct, and recall how many
of all the positive cases in the data were found.
F1-score is the balanced and harmonic mean of
precision and recall. Micro-F1 specifically calcu-
lates metrics globally and macro-F1 for each label
separately, finding their unweighted mean. Thus,
macro-F1 does not take label imbalance into ac-
count.

ROC AUC score is the Area Under the Receiver
Operating Characteristic Curve. This metric was
used for the scoring of the Kaggle competition
held for the original dataset, although only done on
the probabilities and 90% of the data as opposed to
us using the thresholded label and the full test set.

The codebase for fine-tuning can be found on
Github10 and the fine-tuned model can also be
found on Huggingface11.

5 Results

5.1 Translation and Transfer

The results of the toxicity detection experiments
using the original English and the translated
datasets are presented in Table 4. As a base-
line, we can consider the results of the English
BERT model, 0.69 F1-score (micro-avg.) and 0.89

10https://github.com/TurkuNLP/toxicity-classifier
11https://huggingface.co/TurkuNLP/bert-large-finnish-

cased-toxicity
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Model Train Test Precision Recall F1-micro FI-macro ROC AUC
BERT En En 0.59 0.81 0.69 0.61 0.89
FinBERT Fi-DeepL Fi-DeepL 0.58 0.76 0.66 0.57 0.87
FinBERT Fi-Opus-MT Fi-Opus-MT 0.57 0.77 0.65 0.57 0.88
XLM-R Fi-DeepL Fi-DeepL 0.56 0.76 0.65 0.57 0.87
XLM-R En Fi-DeepL 0.60 0.54 0.57 0.47 0.76
XLM-R Fi-DeepL+En Fi-DeepL 0.56 0.78 0.65 0.57 0.88
BERT Backtr-En En 0.59 0.77 0.67 0.60 0.87

Table 4: Results with different language pairs and models.

Figure 2: Class-specific F1-scores.

ROC AUC, trained and tested on the original En-
glish data. This is very similar to the results re-
ported by Carta. et al. (2019) using the same Jig-
saw dataset and BERT (see Section 2).

FinBERT trained and tested on the machine
translated data performs numerically slightly
worse than BERT on the English data: 0.66 F1-
score with DeepL and 0.65 with OPUS-MT. The
loss of performance is, however, very small. With
this result, we decide to run the further experi-
ments with the data translated with DeepL.

The multilingual XLM-R performs numeri-
cally very similarly to FinBERT with the Finnish
DeepL-translated data: 0.65 F1-score. However,
its performance is clearly lower when trained on
English and only tested on Finnish: 0.57 F1-score.
Thus, our results support those by Leite et al.
(2020), who noted that zero-shot transfer from En-
glish to another language can be challenging.

Our results thus suggest that circumventing
the language barrier provides much better results
with machine translation than with a cross-lingual
model. The quality of the machine translations is
further supported by the results on the backtrans-
lated English dataset. By showing only a 2% loss
in the F1-score, this experiment supports the qual-

ity of the translations.
Even combining the original English data and

its DeepL-translations in the training set does not
provide better results than training and testing on
the DeepL-translated Finnish data alone, and the
model trained and tested in English outperforms
both of these settings. This can suggest that trans-
fer, done either with a model or machine transla-
tion, can have some effect on the results.

Given the subjectivity associated with toxicity
detection, and the IAA scores discussed in Sec-
tion 2 and our own IAA scores in Section 3.3,
the detection results are very close to what can
be expected for this task. Additionally, for practi-
cal purposes, it is noteworthy that the recall is ap-
proximately 20% higher than the precision for all
the experiments except for the cross-lingual one.
When used for cleaning data or moderating a plat-
form, false positives can be less dangerous than
false negatives. This further consolidates the prac-
tical usability of the method.

5.2 Label-Specific Scores

Nozza (2021) showed that language-specific dif-
ferences in, e.g., taboo expressions can challenge
cross-lingual toxicity detection. These differences
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Figure 3: Most frequent classes (rows) and their misclassifications (columns), as percentages of the total
number of instances in the data. For the sake of simplicity, co-occurring labels have been fixed as multi-
class.

may lead to lower results in particular for some
subtypes of toxicity. To ensure that the cross-
lingual results we presented in Section 5.1 are
not affected by these or similar issues, we inspect
label-specific performance metrics. We focus on
two models: the best-performing Finnish model
trained using FinBERT and the DeepL-translated
data, as well as the English model trained using
BERT and the original English data.

Figure 2 presents the label-specific metrics ob-
tained using the two models. First, we can see that
while the global scores obtained by the English
model are slightly higher, the difference remains
similar across the labels. Thus, the language trans-
fer does not seem to affect them unevenly.

However, the F1-scores do vary between the
different labels. In particular, severe toxicity and
threat receive lower detection scores than the other
labels. Threat is a very infrequent label, which
may also explain its lower detection rate. How-
ever, the size of severe toxicity is similar to identity
attack, which nevertheless received better perfor-
mance. This suggests that the label as such is more
vague and less well-defined linguistically.

5.3 Error Analysis of the Translated Dataset

Figure 3 presents to which labels the most frequent
labels and label combinations were predicted to
using the best-performing FinBERT model trained
on the DeepL-translated data, and Table 5 presents
examples of misclassified comments12.

The most frequent misclassification for many
labels and their combinations is no label. In part,
this is because of the frequency of comments with-
out any label in the training. On the other hand,
this can also reflect the gray zone between differ-
ent kinds of toxic comments and the ones anno-
tated without a label, prone to subjective interpre-
tation. This can be seen in Example 2 in Table 5,
annotated as insult and predicted without a label.
Whether hyödytön ’useless’ actually is an insult or
not can be prone to subjective interpretations. Fur-
thermore, the Perspective API annotation guide-
lines in fact note that insult should be targeted to-
wards a person (Perspective, a,b).

Similarly, severe toxicity as a label is eas-

12The examples may be considered offensive. They do not
reflect the views of the authors and exclusively serve to ex-
plain the linguistic characteristics of the comments.
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ID Text True label(s) Predicted label(s)
FI-1 Senkin pikku paskiainen == Senkin pikku paskiainen insult, obscene insult, obscene, toxicity
EN-1 You little son of a bitch == You little son of a bitch severe toxicity, toxicity
FI-2 Wikipedia on täysin hyödytön insult no label
EN-2 Wikipedia is completely useless
FI-3 Painu helvettiin, pedo. Nyljen sinut elävältä, kastelen sinut insult, obscene insult, obscene

bensiinillä ja poltan sinut kuoliaaksi, kusipää. Syön vitun threat, toxicity severe toxicity, threat
sydämesi, senkin pikku mulkku. toxicity

EN-3 Fuck off paedo. I am going to fucking skin you alive,
douse you in petrol then fucking burn you to death, fucktard.
I am going to eat your fucking heart you little prick.

Table 5: Examples of misclassified and correctly predicted labels in the DeepL-translated data.

ily not predicted. For instance, insult-obscene-
severe toxicity-toxicity is frequently misclassified
as insult-obscene-toxicity. Example 1 illustrates
this as well—severe toxicity is present in the an-
notations but not predicted. In this case, the error
may be caused by the translation, as the Finnish
translation is not as toxic as the original English
comment and can even be used to communicate
affection. As we mentioned in Section 5.2, severe
toxicity also received relatively low class-specific
scores. Figure 3 shows that it is frequently mis-
classified as simple toxicity. For instance, the label
combinations identity attack-insult-severe toxicity
and insult-obscene-severe toxicity are frequently
confused with the same labels co-occurring with
toxicity. Examples 1 and 3 illustrate this as well,
as severe toxicity is erroneously not predicted for
Example 1 and is predicted for Example 3, where
it should not have been predicted and the correct
label would have been just plain toxicity with the
other labels.

Prec Rec F1
FinBERT-DeepL 0.57 0.59 0.58
FinBERT-DeepL Weighted 0.61 0.74 0.67
XLMR-En 0.50 0.40 0.45
XLMR-En Weighted 0.50 0.40 0.45

Table 6: Micro evaluation results for the native
Finnish dataset using threshold 0.5.

5.4 Native Finnish Dataset
We tested the two best-performing models (Fin-
BERT trained on Fi-Deepl and XLM-R trained on
the original English data) on the native Finnish
Suomi24 annotations in order to examine the
model performances on texts featuring different
language use than the Wiki edit comments in-
cluded in Jigsaw. The results are presented in Ta-
ble 6, showing that while the models do find toxic
content from the Suomi24 discussions, the per-
formances decrease in comparison with the orig-

inal Jigsaw data (see Section 5.1). Neverthe-
less, similar to our findings with the Jigsaw data,
cross-lingual transfer using a multilingual model
provides lower results than a monolingual model
trained on translations. Further, similar to the Jig-
saw dataset, severe toxicity and threat received low
class-specific scores due to the low amount of ex-
amples for those classes in the training data. The
metrics for the labels can be found in Appendix C.

A reason for the lower metrics on the Suomi24
discussions can be found in the way the data were
sampled (see Section 3.3). By taking even sam-
ples from all the prediction score bins even though
the large majority of the comments were included
in the bins with 0-0.1 or 0.9-1 scores, our sam-
pling method emphasized borderline cases (see
Appendix A), and the vast majority of the com-
ments the classifier was certain about were dis-
regarded. The metrics do not take into account
this imbalance by default and thus, they can be
interpreted rather as macro-average known to dis-
play low results for skewed data. Therefore, we
counted also the weighted metrics using the counts
of the bins as weights for the true positive, true
negative, false positive and false negative counts.
The results achieved using FinBERT-DeepL and
this weighing are very similar to those achieved
with FinBERT-DeepL on Jigsaw (see Section 5.1).

Table 7 shows examples from the native Finnish
dataset. Example 4 presents a comment annotated
as no label, derived from the bin 0.8-0.9 for iden-
tity attack predicted by a previous model as a very
certain identity attack and then later labeled by the
new large model as toxicity, most likely because
the model simply associates ’gay’ with toxicity.
This illustrates the oversensitivity of the model
and bias. A case can be made for the text being
intended as an insult but without context that is
impossible to say. Example 5 shows a comment
binned in very certain identity attack, annotated
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ID Text Bin True Pred.
label(s) label(s)

FI-4 Oletko mahdollisesti homoseksuaali? identity attack no label toxicity
EN-4 Are you possibly gay? 0.8-0.9
FI-5 jos nämä muslimit saavat räjäytellä pommejaan identity attack identity attack identity attack, toxicity

missä haluavat ympäri maailmaa niin miksemme
me saa julkaista vitsikkäitä kuvia.

EN-5 if these Muslims can explode their bombs anywhere 0.9-1
they want so why can’t we publish funny pictures?

FI-5 Tästä tulee iso hitti! toxicity no label no label
EN-5 This is going to be a big hit! 0.0-0.1

Table 7: Examples of misclassified and correctly predicted labels in the native Finnish data.

with the same label and then predicted as identity
attack-toxicity. Here the model succeeds in find-
ing the correct label. Finally, Example 6 presents a
comment annotated and predicted as no label from
the 0-0.1 bin for toxicity—the kind of comment of
which the classifier is certain about and our anno-
tation agrees.

6 Conclusion

In this paper, we have presented novel resources
for Finnish toxicity detection, and we have shown
that machine translation is a viable option for
circumventing the language barrier for this task.
FinBERT and the DeepL-translated data outper-
formed XLM-R trained on English and tested on
Finnish clearly, and the quality of the translation
was further confirmed with the backtranslation ex-
periment, showing only a minimal loss in the orig-
inal English performance. Thus, our results sup-
port previous findings by Isbister et al. (2021) and
Kobellarz and Silva (2022). Additionally, our re-
sults were also confirmed by the results from the
native Finnish test set where translation received
better results than transfer and our weighted num-
bers were comparable with the results from using
the original translated test set.

The use of machine translation is a cost-
effective alternative for building resources when
there is no annotated data available in the target
language. However, translation can also cause
subtle changes in the meaning, which can result in
misclassifications and wrong interpretations. Our
analysis showed that the toxicity entailed in the
original comment can change during the transla-
tion to a much less toxic meaning. Therefore, it is
crucial that the effect of the translation is evaluated
separately for each language and task.

Furthermore, we acknowledge that our model
might feature some bias, as illustrated in Section
3.3. Jigsaw has also reported this—the models

may learn to incorrectly associate toxicity with,
e.g., identities that frequently co-occur with toxic
content. This has led to the creation of a new
dataset called ”Jigsaw Unintended Bias in Toxi-
city Classification” 13.

In the future, we should further inspect the pos-
sible biases the models developed in this study
may feature, as well as the model generalizabil-
ity. Furthermore, multilingual toxicity detection
involving code-switching would offer an interest-
ing avenue for the future. Finally, considering the
promising results achieved in this study, the use of
machine translation for other tasks and language
pairs should certainly be analyzed further.
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Appendices

A The distribution of predicted scores for the Suomi24 data before sampling

Figure 4: Distribution of prediction scores by label for the Suomi24 data from which our native Finnish
dataset examples were sampled for annotation.

B Best hyperparamaters for the trained models

Model Train Test LR Batch size
BERT En En 1e-5 12
FinBERT Fi-DeepL Fi-DeepL 2e-5 12
FinBERT Fi-Opus-MT Fi-Opus-MT 1e-5 12
XLM-R Fi-DeepL Fi-DeepL 1e-5 12
XLM-R En Fi-DeepL 1e-5 12
XLM-R Fi-DeepL+En Fi-DeepL 1e-5 12
BERT Backtr-En En 2e-5 12

Table 8: Best hyperparameters for each model. Constant parameters were epochs 10 and early stopping
5. Threshold for the labels varied due to threshold optimization during training and evaluation.
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C Label specific precision, recall and F1 for the native Finnish dataset

Label Precision Recall F1
Identity attack 0.73 0.32 0.45
Insult 0.59 0.47 0.52
Obscene 0.64 0.82 0.72
Severe toxicity 0.12 0.29 0.17
Threat 0.32 0.29 0.30
Toxicity 0.60 0.79 0.69

Table 9: Micro evaluation results for the labels of the native Finnish dataset using FinBERT-DeepL and
a threshold of 0.5.
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Abstract

We describe the evaluation and devel-
opment of a rule-based treebank con-
version tool, UDConverter, which con-
verts treebanks from the constituency-
based PPCHE annotation scheme to the
dependency-based Universal Dependencies
(UD) scheme. The tool has already been
used in the production of three UD tree-
banks, although no formal evaluation of
the tool has been carried out as of yet. By
manually correcting new output files from
the converter and comparing them to the
raw output, we measured the labeled attach-
ment score (LAS) and unlabeled attach-
ment score (UAS) of the converted texts.
We obtain an LAS of 82.87 and a UAS of
87.91. In comparison to other tools, UD-
Converter currently provides the best re-
sults in automatic UD treebank creation for
Icelandic.

1 Introduction

The Universal Dependencies (UD) project is a mul-
tilingual project, consisting of dependency tree-
banks in 138 languages (Zeman et al., 2022; Nivre
et al., 2020). UDConverter is a tool which con-
verts a phrase structure treebank to a UD treebank
(Arnardóttir et al., 2020), and has been used for
creating three UD corpora. Originally configured
for Icelandic, the converter can be extended to con-
vert treebanks in languages other than Icelandic, as
has been done for a Faroese treebank (Arnardóttir
et al., 2020), but it has not been thoroughly evalu-
ated until now. Without such evaluation, the benefit
of using the converter is uncertain. Therefore, we
manually corrected a portion of a treebank cre-
ated with the converted UD treebank and evaluate
the conversion by comparing the converted sen-
tences’ output to the manually corrected ones. The

evaluation is used to guide further development of
UDConverter, resulting in an improved conversion
pipeline.

The paper is structured as follows. Section 2
discusses relevant resources, including UD corpora
and methods of creating them. Section 3 describes
the evaluation setup used while Section 4 discusses
the results, including initial results before the con-
verter was improved. We compare the converter’s
accuracy scores to the accuracy of three UD parsers
in Section 5 and finally, we conclude in Section 6.

2 Background

UDConverter is a Python module for converting
bracket-parsed treebanks in the format of the Penn
Parsed Corpora of Historical English (PPCHE) to
the Universal Dependencies framework (Arnardót-
tir et al., 2020). It was created in order to convert
the Icelandic Parsed Historical Corpus (IcePaHC)
(Rögnvaldsson et al., 2012) to the UD CoNLL-U
format and has been used for creating three UD
corpora, UD_Icelandic-IcePaHC, UD_Icelandic-
Modern and UD_Faroese-FarPaHC, all included
in version 2.11 of Universal Dependencies (Ze-
man et al., 2022). The converter takes an original
IcePaHC-format tree and converts it to a UD tree,
displayed in the CoNLL-U format. As discussed
in Arnardóttir et al. (2020), the converter can be
extended to convert treebanks in other languages
than Icelandic, as long as the input treebanks are
in a format similar to the IcePaHC one. The con-
verter’s output generally adheres to UD annotation
guidelines but no formal evaluation of the converter
has been carried out until now.

The UD corpora which were created by using
UDConverter were all converted from pre-existing
constituency treebanks. These treebanks were man-
ually annotated according to the PPCHE annota-
tion scheme (Kroch and Taylor, 2000; Kroch et al.,
2004), which uses labeled bracketing in the same
way as the Penn Treebank (Taylor et al., 2003).
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This IcePaHC annotation scheme was used as a
basis for the rule sets of UDConverter.

UD_Icelandic-Modern was converted from 21st-
century additions to IcePaHC, consisting of modern
Icelandic texts (Rúnarsson and Sigurðsson, 2020).
It contains genres not previously found in the orig-
inal IcePaHC (Wallenberg et al., 2011), extracted
from the Icelandic Gigaword Corpus (Steingríms-
son et al., 2018).

Two UD parsers have recently been released
for Icelandic (Jasonarson et al., 2022a,b), both of
which utilize information from a pre-trained BERT-
like model, in this case an ELECTRA model that
was pre-trained on Icelandic texts (Daðason and
Loftsson, 2022). One of the models was trained
with DiaParser (Attardi et al., 2021), an extended
version of the Biaffine parser (Dozat and Manning,
2017), which uses contextualized embeddings, as
well as attentions, from a transformer model as
its input features. The other one was trained with
COMBO (Klimaszewski and Wróblewska, 2021),
which accepts pre-trained embeddings from a trans-
former, as well as character and lemma embed-
dings, in addition to part-of-speech tags, as its in-
put features. Both parsers were trained on two
Icelandic UD corpora, UD_Icelandic-IcePaHC and
UD_Icelandic-Modern.

3 Evaluation

In order to evaluate UDConverter, we set up a
testing experiment where output CoNLL-U files
from the converter were manually evaluated and
corrected per strict annotation guidelines. These
were then compared to the original raw output files.
As these files contain identical texts, this enabled
a one-to-one comparison, with the manually cor-
rected files serving as a gold standard.

In our evaluation, we focused on measuring the
accuracy of the conversion when it comes to heads
and dependency relations. For this project, we
chose to source sentences for manual correction
from the UD_Icelandic-Modern corpus, discussed
in Section 2, which then became the test set. In
total, 651 sentences of the corpus, 15,140 tokens
in total, were manually corrected, out of 80,395 to-
kens overall. Two annotators with a background in
linguistics worked on the manual correction. Sen-
tences were corrected to adhere to annotation rules
used in the Icelandic Parallel Universal Dependen-
cies (PUD) corpus (Jónsdóttir and Ingason, 2020),
which is the only Icelandic UD corpus which was

created manually. The corpus was used as a guide-
line when UDConverter was developed. The anno-
tators worked on separate sentences, and therefore
information on inter-annotator agreement is not
available. It would be beneficial to have informa-
tion on the agreement, but the annotators discussed
any uncertainties and came to joint conclusions.

We used a labeled attachment score (LAS) to
evaluate the converter, evaluating CoNLL-U output
based on how many tokens have been assigned both
the correct syntactic head and the correct depen-
dency relation (Kübler et al., 2009). This simple
accuracy score corresponds to a labeled F1 score of
syntactic relations. Similar to this score is the un-
labeled attachment score (UAS), which evaluates
the number of correct heads but does not take the
dependency relations into account.

4 Results

Our results show that the converter achieves an
LAS of 82.87 and a UAS of 87.91. Our results
indicate that the overall error rate of the conversion
is not affected by sentence length, with the rela-
tionship between sentence length and total errors
per sentence being more or less linear. If sentence
length is a rough indicator of syntactic complexity,
this means that the converter handles complex syn-
tactic structures just as well as simpler ones. This is
expected, as the converter works off of a fixed rule
set for a given language, which looks at the already
annotated phrase structure of the input sentences.

4.1 Initial results
The first evaluation of the converter showed worse
results, with an LAS of 72.82 and a UAS of 80.79.
After analyzing the difference in the converter’s
output and the manually corrected texts, a few sys-
tematic errors were identified, which accounted for
a large proportion of errors. Three of these items
related to an incorrect head of a dependent with a
particular dependency relation, and two related to
an incorrect dependency relation.

Head-related errors
The three head-related errors have the dependency
relations punct, cop and cc. Punct is used to denote
punctuation and was dependent on an incorrect
head in 75.63% of cases. An important error re-
lating to punct was in the case of end-of-sentence
punctuation, which should be dependent on the root
of the sentence. 66.28% of punct dependency rela-
tions dependent on an incorrect head were end-of-
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sentence punctuation, i.e. punctuation marks which
should have been dependent on the sentence’s root,
but were for some reason not.

The second head-related error was the cop de-
pendency relation, with a 21.86% error rate. This
relation is used for copulas, which in Icelandic is
the verb vera ‘be’. Copular constructions are struc-
turally different from other verbal constructions,
so this construction had to be handled specifically,
marking the predicate as the root of a sentence and
the copular verb as its dependent. Determining
which word or phrase is the predicate is not always
unequivocal, so a copular verb is in some cases
dependent on the incorrect word.

The third and final head-related error was the cc
dependency relation, which was dependent on an
incorrect head in 18.52% of cases. This relation
is used for a coordinating conjunction and is part
of a conjunction phrase in IcePaHC. In a simple
example, a conjunction phrase is made up of three
words, e.g. two nouns with a coordinating conjunc-
tion between them, linking them together. Initially,
the converter marks the first noun as the head of the
phrase and the conjunction and the second noun as
its dependents. According to the UD annotation
guidelines, the conjunction should be dependent
on the second noun, so this is corrected in the con-
version algorithm as part of a series of checks after
the initial conversion is done, making the second
noun the head of the conjunction. In more complex
cases, this correction can go wrong, resulting in the
conjunction (cc) being dependent on an incorrect
head.

Incorrect dependency relations
The two most frequent incorrect dependency rela-
tions were acl and obl. The acl relation stands for
finite and non-finite clauses that modify a nominal.
It had an error rate of 72.01% and was, in most
cases, supposed to be replaced by the xcomp rela-
tion, which denotes an open clausal complement
of a verb or an adjective. This error was caused
by a fault in the rules of UDConverter, wherein
the acl relation was incorrectly used for heads of
certain subcategories of infinitival clauses, e.g. di-
rect speech, degree infinitives and subjectival in-
finitives. These clauses are labeled IP-INF in the
IcePaHC annotation scheme, and this relation was
incorrectly mapped to acl instead of xcomp. These
errors were therefore simple to correct.

The second incorrect dependency relation, obl,
had an error rate of 26.44%. The obl relation is

used for a nominal which functions as an oblique
argument or adjunct. A proportion of these errors
are due to the fact that the obl:arg relation is used
in the manually corrected sentences, but not in the
converter. obl:arg is a subcategory of the obl rela-
tion, and is used to distinguish oblique arguments
from adjuncts, which have the obl relation. This
relation was used to have our manually corrected
sentences better conform to the Icelandic PUD cor-
pus, which uses this relation.

These five items were analyzed, e.g. how often
a relation which should have been xcomp was in-
correctly acl, and a projection was created on the
converter’s possible LAS if these errors were fixed
altogether. This projected LAS is 85.34, which is
considerably higher than the original 72.82.

4.2 Final results

After having analyzed the improvements discussed
in Section 4.1, most were updated in UDConverter.
The only improvement not added was including
obl:arg as a possible dependency relation. The
difference between obl and obl:arg is semantic,
and it is not accounted for in IcePaHC sentences. It
therefore proved complicated to add the relation to
the converter, and external information would have
to be obtained in order for obl:arg to be used.

The four other types of errors discussed above
were improved, resulting in error rates shown in
Table 1. Rules regarding heads of end-of-sentence
punctuation were improved, and the resulting error
rate is 29.03%. Rules on head selection of copu-
lar verbs were improved by examining individual
errors, which resulted in a 7.99% error rate. Head
selection of the cc dependency relation was also im-
proved, again by examining individual occurrences
and adding to the converter’s rules. This resulted in
a 3.70% error rate. The final improvement made to
UDConverter was to the acl dependency relation.
As discussed in Section 4.1, this error was simple
to correct, and rules in the converter were updated
to account for this, resulting in a 31.25% error rate.

As discussed, these improvements resulted in
the current LAS of 82.87 and UAS of 87.91. These
accuracy scores are not consistent with the pro-
jected LAS of 85.34, which assumes that all error
instances are handled and that the obl:arg depen-
dency relation is added to the converter. Never-
theless, the error rates drop considerably, the LAS
increasing by 10.05 points and the UAS by 7.12
points. These accuracy scores were obtained by
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Deprel to fix Prev. error rate Final error rate
punct 75.63% 29.03%
cop 21.86% 7.99%
cc 18.52% 3.70%
acl 72.01% 31.25%
obl:arg 27.73% 27.73%

Table 1: Dependency relations associated with er-
rors in the converter along with the converter’s pos-
sible LAS after being improved, with respective
score gain.

measuring on the same test set as the one that was
used for initial evaluation. This method presents
some limitations and can cause a bias in the results.
The improvements to the converter might be over-
fitted on the test set, resulting in higher accuracy
scores. To counteract this, a development set must
be created, manually correcting more sentences
and using them to obtain updated accuracy scores.

5 Comparison

Various automatic methods are available to create
a UD corpus for Icelandic. To determine the most
beneficial method of creating Icelandic UD cor-
pora, we compare UDConverter’s accuracy scores
to three UD parsers: a UDPipe 1 (Straka and
Straková, 2017) model specifically trained to be
compared to UDConverter, and the two parsers dis-
cussed in Section 2; the Diaparser-based one and
the COMBO-based one.

Our UDPipe model was trained on the converted
UD_Icelandic-IcePaHC and was used to parse the
same sentences as the manually corrected parlia-
ment speeches, which were then compared to our
manual corrections. While the model tags correctly
92.87% of the time using the Universal Dependen-
cies tagset (UPOS) and 86.78% of the time with
the IcePaHC tagset (XPOS), the LAS is only 55.29
and UAS 63.03, which is substantially lower than
the output of our converter. Using the same test set,
we measured the accuracy of the Diaparser-based
parser and the COMBO-based parser. Diaparser
delivers a 71.46 LAS and a 78.29 UAS, and the
COMBO-based one delivers a 71.04 LAS and a
77.71 UAS. These accuracy scores, in comparison
to the scores for UDConverter, are shown in Table
2.

All three parsers, which are the only available
Icelandic UD parsers, are trained using output
from the converter, which presents some limita-

Method LAS UAS
UDPipe 55.29 63.03
Diaparser 71.46 78.29
Combo-parser 71.04 77.71
UDConverter 82.87 87.91

Table 2: Accuracy scores of the parsers as com-
pared to UDConverter.

tions when comparing them to the converter. The
parsers learn from the training data, and can never
produce results which are as accurate as the data
itself. Comparing the parsers’ output to the con-
verter’s output is therefore not an equal compari-
son, but it does give an idea about their accuracy.
Furthermore, accuracy scores for UDConverter are
possibly higher than if they were obtained from de-
velopment data, as discussed above. Current scores
show that using UDConverter to create UD cor-
pora will deliver the most accurate results, as the
highest accuracy score for the three parsers is 11.41
points less than the converter’s accuracy. However,
each method has its advantages and drawbacks, as
a converter requires a treebank which is annotated
in the appropriate format, while parsers can create
a corpus from plain text.

6 Conclusion

We have described the evaluation of a rule-based
conversion tool, UDConverter, which converts tree-
banks in the phrase-structured PPCHE format to
the dependency-based UD format. Converted texts
were manually corrected and used as testing data.
We focused on the accuracy of dependency heads
and dependency relations to achieve labeled and un-
labeled accuracy scores (LAS, UAS), which serve
as F1 scores in our evaluation.

Our results show that UDConverter achieves an
LAS of 82.87 and a UAS of 87.91. We compared
these accuracy results to accuracy scores of three
different Icelandic UD parsers, our UDPipe model
along with Diaparser and Combo-parser, which
showed that using UDConverter most accurately
delivers an Icelandic UD corpus.
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fano Lusito, Andry Luthfi, Mikko Luukko, Olga Lya-
shevskaya, Teresa Lynn, Vivien Macketanz, Menel
Mahamdi, Jean Maillard, Ilya Makarchuk, Aibek
Makazhanov, Michael Mandl, Christopher Manning,
Ruli Manurung, Büşra Marşan, Cătălina Mărăn-
duc, David Mareček, Katrin Marheinecke, Stella
Markantonatou, Héctor Martínez Alonso, Lorena
Martín Rodríguez, André Martins, Jan Mašek, Hi-
roshi Matsuda, Yuji Matsumoto, Alessandro Mazzei,
Ryan McDonald, Sarah McGuinness, Gustavo Men-
donça, Tatiana Merzhevich, Niko Miekka, Karina
Mischenkova, Margarita Misirpashayeva, Anna Mis-
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Abstract

We evaluate the impact of recent improve-
ments in Automatic Speech Recognition
(ASR) on transcribing Estonian children’s
speech. Our research focuses on fine-
tuning large ASR models with a 10-hour
Estonian children’s speech dataset to cre-
ate accurate transcriptions. Our results
show that large pre-trained models hold
great potential when fine-tuned first with
a more substantial Estonian adult speech
corpus and then further trained with chil-
dren’s speech.

1 Introduction

Automatic Speech Recognition (ASR) contin-
ues to face challenges in accurately transcribing
children’s speech. Research efforts are under-
way to adapt adult ASR models to better han-
dle the unique pronunciation variations and lim-
ited vocabulary that are characteristic of children’s
speech (Thienpondt and Demuynck, 2022; Dutta
et al., 2022). These adaptations are necessary due
to the limitations of current ASR systems, which
often lack adequate representation of children’s
speech and struggle to generalize to new exam-
ples.

Recent advancements in ASR technology, in-
cluding the use of large transformer-based models
and unsupervised pre-training techniques, have re-
sulted in improved performance for adult speech
recognition, with the ability to train on a diverse
range of data without human annotations (Baevski
et al., 2020; Radford et al., 2022; Hsu et al.,
2021). These models demonstrate greater robust-
ness and generalization compared to previous sys-
tems. However, the effectiveness of these ad-
vanced ASR models for children’s speech, espe-
cially in low-resource languages like Estonian, re-
mains untested.

In this paper, we are investigating two multi-
lingual speech models - Facebook’s Wav2Vec2-
XLS-R (Babu et al., 2021) and OpenAI’s Whis-
per (Radford et al., 2022) - as potential starting
points for building an ASR system transcribing
Estonian children’s speech. Our objective is to
determine the potential of these models in creat-
ing low-effort ASR systems for children speaking
a low-resource language like Estonian, for which
there are no ASR systems for children’s speech.

To accomplish this, we fine-tune the XLS-R
and Whisper models from scratch using children’s
speech data. We also fine-tune pre-existing mod-
els for the Estonian language with additional chil-
dren’s speech recordings. Furthermore, we com-
pare the quality of the ASR system by evaluating
a pre-made Estonian ASR system provided by Mi-
crosoft Azure and exploring its fine-tuning capa-
bilities.

Our research indicates that XLS-R models and
Whisper models can serve as effective starting
points for building an ASR system using only 10
hours of children’s speech. However, for optimal
performance, these models should first be fine-
tuned with Estonian adult speech. We achieve
the best word error rate of around 15 using an
XLS-R model that was fine-tuned with Estonian
ASR datasets and further trained with children’s
speech. Furthermore, our results show that the
Azure speech-to-text model performs similarly to
the Estonian XLS-R and Whisper models but not
as well as the fine-tuned public models. Two mod-
els that achieved the lowest WER scores are avail-
able in HuggingFace12.

In the next sections, we describe which data we
used for evaluation and training, which models we
used and how we fine-tuned these and last but not

1https://huggingface.co/tartuNLP/
xls-r-300m-et-children

2https://huggingface.co/tartuNLP/
whisper-large-v2-et-children

705



least we present and analyse the results.

2 Dataset and evaluation

The Children ASR dataset used in this work con-
sists of speech recordings from 53 children aged
6 to 13. The data was collected by the Children’s
Clinic of Tartu University Hospital and contains
a mix of both boys and girls speaking about var-
ious topics such as answering questions, describ-
ing pictures, talking about their family and friends,
and more. The dataset is divided into three subsets
- test, dev, and train - with no overlap in speakers
or texts.

The test set contains all age and gender groups
and has a total recording duration of 278 minutes
(approximately 4.6 hours). The development set
is missing some speakers and has a total recording
duration of 182 minutes (approximately 3 hours).
The training set is also missing some speakers and
has a total recording duration of 613 minutes (ap-
proximately 10 hours). A breakdown of the total
recording duration for the test set by age and gen-
der of the speakers is shown in Table 1.

Age Girls (min) Boys (min) Total (min)
6 17 21 38
7 14 16 30
8 17 14 31
9 22 18 40

10 15 17 32
11 20 17 37
12 16 22 38
13 19 13 32

Total 140 138 278

Table 1: Total recording duration in minutes for
the Estonian children ASR test set, broken down
by age and gender of the speakers.

The children in the dataset speak about a wide
range of topics, covering everything from answer-
ing questions and describing pictures to discussing
their family and friends. They also include record-
ings of children reading fairytales, reciting poems,
and saying specific sentences. The utterances in
the dataset vary in their level of spontaneity - some
are unscripted expressions of thoughts, while oth-
ers feature children reading.

We evaluate the performance of our speech
recognition models using the standard measure
of word error rate (WER). This involves convert-
ing all text to lowercase and removing punctua-

tion but not standardizing different spelling varia-
tions. Our reference transcriptions reflect the pro-
nunciation of children, including any errors they
may make. However, the line between correct and
incorrect pronunciation is often blurry and some
children’s speech can be difficult to comprehend.
We do not consider the ambiguity in human tran-
scriptions and simply compare the models’ output
to our reference transcription, which could lead to
increased WERs.

3 Models and training

We are using both public large speech models and
private black box speech service. In the case of
public models, we also searched for models al-
ready fine-tuned with Estonian speech data. We
fine-tune the selection of these models with the
children’s speech dataset mentioned in the last sec-
tion.

For public models, we use two multilingual
ones: Facebook’s XLS-R and OpenAI’s Whisper
(Radford et al., 2022). XLS-R model is trained
with speech modelling objective, not ASR but it
can be fine-tuned to ASR with Connectionist Tem-
poral Classification (CTC) (Graves et al., 2006) al-
gorithm. The Whisper on the other hand is a multi-
purpose model that contains both transformer en-
coder and decoder blocks and has been trained on
several speech-processing tasks, like multilingual
speech recognition, speech translation and voice
activity detection (Radford et al., 2022).

The available XLS-R models have 300 million,
1 billion and 2 billion parameters, we are using
the two smaller ones in this work. The Whis-
per model comes in six different sizes; we are us-
ing medium and large-v2 since the Estonian error
rates for other ones are relatively high. There is
one Estonian-specific fine-tuned model available
for the 300 million parameter version, trained with
over 700 hours of Estonian speech data (Alumäe
and Olev, 2022). There are several Estonian Whis-
per models available in HuggingFace but these are
trained with fewer data examples. We are using
the best available medium and large-v2 ones.34.
Following the submission of this paper, a new
Estonian Whisper model was released5, which is

3https://huggingface.co/agnesluhtaru/
whisper-medium-et-ERR2020

4https://huggingface.co/agnesluhtaru/
whisper-large-et-ERR2020-v2

5https://huggingface.co/TalTechNLP/
whisper-medium-et
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trained using a larger dataset. In the scope of this
work, we evaluate the model but do not fine-tune
it using children’s speech.

We use standard fine-tuning procedures. For
training XLS-R-based ASR models from scratch,
we use the learning rate of 3e-4, a 400-step
warmup and train the models for 60 epochs with
children’s speech dataset, which is less than 4000
steps. When further fine-tuning the Estonian XLS-
R model with children’s speech, we use the learn-
ing rate of 2e-5 and 200 warmup steps. We fine-
tune all the Whisper models with warmup 10%
of the steps and learning rate 1e-05. When fine-
tuning the out-of-the-box Whisper models, we
train these for 5000 steps or atound 40 epochs and
when fine-tuned models already trained with Es-
tonian adult speech, we train the large model for
2000 steps or over 16 epochs and medium model
for 1000 steps or eight epochs.

For the private model, we use Microsoft Azure
Speech service’s speech-to-text6, which requires
an Azure subscription and a Speech resource. The
transcription services can be accessed by making
REST requests.

Microsoft Azure offers the option to fine-tune
the model with custom datasets. This process in-
volves uploading data to train the models, fol-
lowed by deploying the trained models. Since
audio-based fine-tuning is not available for Esto-
nian, we use text-based tuning for our work with
the texts from the children’s speech dataset.

4 Results

In this section, we describe the results of all the
models based on Facebook’s XLS-R, OpenAI’S
Whisper and Microsoft Azure speech-to-text.

4.1 XLS-R

Table 2 shows the word error rate (WER) scores of
fine-tuned Estonian XLS-R models using only 10
hours of Estonian children’s speech data, the fine-
tuned Estonian model (Alumäe and Olev, 2022)
and Estonian model further trained with children’s
speech. We can see that the limited amount of
data for fine-tuning XLS-R from scratch results
in a high WER of over 30 for both models with
300 million and one billion parameters. Training
an ASR model using only 10 hours of speech data

6https://learn.microsoft.com/en-us/
azure/cognitive-services/speech-service/
speech-to-text

Figure 1: Performance comparison of Estonian
XLS-R ASR and children’s speech fine-tuned
models across age groups.

can be challenging, especially when the speech is
for a low-resource language and children.

Model Dev Test
xls-r-300M-children 34.58 36.3

xls-r-1B-children 31.06 30.89
xls-r-300M-et 19.15 20.62

xls-r-300M-et-children 14.30 15.31

Table 2: Comparison of WER scores for Face-
book’s Wav2Vec2 XLS-R (Babu et al., 2021)
based models fine-tuned with only Estonian
children’s speech, only Estonian adult speech
(Alumäe and Olev, 2022) and first fine-tuned
to Estonian and further trained with children’s
speech.

The results show that the pre-trained Estonian
ASR model has a WER of around 20, while further
fine-tuning the model with children’s speech data
leads to even better results, with a WER of less
than 15. Based on the lower WER score for fine-
tuned one billion parameter model, we can suggest
that a larger model fine-tuned with Estonian data
first and then further trained on children’s speech
could lead to even better results.

The results indicate that fine-tuning the Esto-
nian ASR model using children’s speech data im-
proves performance across all age groups (refer
to Figure 1). Younger speakers tend to have a
higher word error rate (WER) than older speakers,
although this relationship is not always straight-
forward. There are some exceptions, such as the
recognition performance for 13-year-olds being
worse than that of younger age groups. This high-
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lights that speaker variability plays a role in the
WER results. Nevertheless, the fine-tuning of the
ASR model using children’s speech data reduces
the differences in recognition performance across
age groups, resulting in improved overall perfor-
mance.

4.2 Whisper

The performance of the out-of-the-box Whisper
models on the children’s dataset (see Table 3) is
comparable to the scores reported by Radford et al.
(2022) on the Estonian Common Voice 9 Ardila
et al. (2020). All models have a WER of at least
35. So, although we can use Whisper without fine-
tuning, it does not transcribe Estonian speech well
and therefore does not give great transcriptions for
Estonian children’s speech as well.

When fine-tuning the model using only 10 hours
of children’s speech, we can already achieve bet-
ter results. The large-v2 model yields a WER
of around 20, which is significantly better than
some models fine-tuned with Estonian speech
alone. The medium model, developed by Tal-
TechNLP and trained with over 800 hours of Esto-
nian speech7, outperforms the XLS-R model that
was trained solely on Estonian adult speech.

Model Dev Test
Whisper-medium 43.21 46.11
Whisper-large-v2 35.06 36.01

Whisper-medium-children 24.29 25.08
Whisper-large-v2-children 20.58 20.38

TalTech Whisper-medium-et 15.64 17.26
Whisper-medium-et 26.83 28.78
Whisper-large-v2-et 28.13 29.2

Whisper-medium-et-children 17.49 18.66
Whisper-large-v2-et-children 15.73 16.02

Table 3: Comparison of WER scores for OpenAI
Whisper (Radford et al., 2022) models and Whis-
per models fine-tuned with only Estonian chil-
dren’s speech, only Estonian adult speech and first
fine-tuned to Estonian and further trained with
children’s speech.

Despite using the Estonian Whisper mod-
els fine-tuned with fewer audio text pairs
than the XLS-R model, when trained fur-
ther with children’s speech, the large model
achieved similar WER as the double fine-tuned

7https://huggingface.co/TalTechNLP/
whisper-medium-et

smaller XLS-R model. The difference between
TalTechNLP’s whisper-medium-et and whisper-
large-v2-et-children is small, suggesting that fine-
tuning the former with children’s data could po-
tentially result in even better performance.

4.3 Azure
The results from our evaluation of the children’s
speech dataset show that the out-of-the-box Azure
speech-to-text model performs similarly or bet-
ter than the fine-tuned Estonian XLS-R model
(Alumäe and Olev, 2022) but worse than Estonian
Whisper medium trained by TalTechNLP. As indi-
cated in Table 4, the Microsoft Azure speech-to-
text scores are around 20 or below.

Model Dev Test
Microsoft Azure 20.18 18.93
Azure text-tuned 21.21 20.31

Table 4: WER scores for Microsoft Azure speech-
to text and its custom text-tuned version.

However, the experiment also shows that text-
tuning is not the best approach for this particular
dataset. The dataset mostly contains simpler vo-
cabulary and not much terminology, most likely
leading to quick overfitting with text-tuning. Cur-
rently, text-tuning is the only option available for
the Estonian language, but it might not be the best
use case for children’s speech datasets.

5 Discussion

Our experiments show that children’s speech
recognition continues to be a tricky problem but
big speech models are looking promising. It is
possible to build an ASR system for Estonian chil-
dren’s speech without any bells and whistles using
only 10 hours of data and get output that is de-
cent and might be good enough for use in chatbots.
However, when it comes to six-year-olds, whose
speech is difficult to understand even for the hu-
man ear, the system is still struggling.

We evaluate different models and it appears that
both OpenAI’s Whisper and Facebook’s XLS-R
are viable options for developing a speech recog-
nition model for Estonian children’s speech. The
current best word error rate is around 15 with
XLS-R. However, it remains unclear if this pre-
trained model is optimal for children’s speech or if
a lower error rate could be achieved with Whisper
after fine-tuning with a similar amount of Estonian
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adult speech. Additionally, we do not obtain com-
parable results with the Azure service, as it does
not permit fine-tuning with audio data.

Our findings suggest that the results could be
improved by using a larger XLS-R model as the
base or by fine-tuning Whisper models with more
data. Additionally, we do not use a separate lan-
guage model, which is possible with both Whisper
and XLS-R models and could potentially enhance
the performance of these models.

6 Conclusion

We test the performance of two speech recogni-
tion models, XLS-R and Whisper, on transcrib-
ing Estonian children’s speech. We fine-tune the
models with children’s speech data and compared
them to an off-the-shelf system from Microsoft
Azure. Both models fine-tuned with children’s
speech, outperform Microsoft Azure, which does
not allow fine-tuning with audio for Estonian, and
are promising for children’s ASR system.
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Abstract

Translated test datasets are a popular and
cheaper alternative to native test datasets.
However, one of the properties of trans-
lated data is the existence of cultural
knowledge unfamiliar to the target lan-
guage speakers. This can make translated
test datasets differ significantly from na-
tive target datasets. As a result, we might
inaccurately estimate the performance of
the models in the target language. In this
paper, we use both native and translated
Estonian QA datasets to study this topic
more closely. We discover that relying on
the translated test dataset results in over-
estimation of the model’s performance on
native Estonian data.

1 Introduction

Translating test datasets to the target language has
become a popular alternative to creating datasets
from scratch in the target language (Yang et al.,
2019, Ponti et al., 2020, Conneau et al., 2018).
The main reason for this is that translating data,
either manually or automatically, and reannotat-
ing it is easier than hiring data annotators to an-
notate the data. In addition, to ensure the qual-
ity of the newly created dataset, the authors of-
ten go through an exhaustive process of verify-
ing the data quality, making creating new datasets
even more expensive. On the other hand, exist-
ing datasets are already established in the NLP
community. Another benefit of translated datasets
is that they make evaluating cross-lingual transfer
learning easier, as the identical datasets make the
results directly comparable across languages.

However, in case only a translated test dataset
exists for a specific task in a specific language, it
is also likely true that there is probably no task-

specific native training data available in that lan-
guage. If there was native training data available,
then a small subset of it could have been used
to create a test dataset. Creating only a training
dataset with no target test dataset available would
also provide no benefit to the creators.

The existence of (translated) test dataset in
some specific language, together with the non-
existence of training data in the same language,
has created an interesting situation where trans-
lated datasets have been mostly employed to ad-
vance cross-lingual transfer learning or related
methods (e.g. TRANSLATE-TEST).1 However, this
contradicts the idea of these methods, which is to
generalize to languages where training data for the
task is unavailable. With translated test datasets,
the training data is usually available2; it is just in
another (source) language. In fact, it is most likely
used to train the model, which will be evaluated
with the translated test dataset. Because of this,
there is a danger that evaluation results become
artificially inflated and overestimate the model’s
performance on native data.

This paper aims to study the concerns of using
translated test datasets more closely. We use En-
glish as a source language and Estonian as a tar-
get language and evaluate models trained on the
source language with native and translated target
datasets to see how the results on translated dataset
compare to the results on the native dataset. We
opt for TRANSLATE-TEST setup because it can be
generalized more easily to different tasks as only a
model trained in English is needed. In addition, it
is competitive or even better at solving Estonian
language understanding tasks than cross-lingual
transfer methods (see Table 1).

1Some translated datasets, e.g XQuAD (Artetxe et al.,
2020b) are specifically created to advance cross-lingual trans-
fer research. Although the purpose of translating the dataset
may differ, the outcome has the same issues that are ad-
dressed in this paper.

2Only test or validation split is usually translated.
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Dataset Task Metric TRTE TRTR CL Native SOTA
EstQA (Käver, 2021) extractive QA F1 73.0 79.9 73.4 49.20 82.4
News Stories (Härm
and Alumäe, 2022)

abstractive
summarization

ROUGE-1 17.22 17.0 - 16.22 TRTE

XCOPA ET
(Ponti et al., 2020)

commonsense
reasoning

accuracy 81.0 57.4† 79.0‡ - TRTE/81.0‡

Table 1: Comparison of different methods on solving Estonian language understanding tasks. TRTE:
TRANSLATE-TEST; TRTR: TRANSLATE-TRAIN; CL: cross-lingual transfer learning; Native: only na-
tive data was used for training; SOTA: reported state-of-the-art in literature (arbitrary method). Results
are reported by the authors of the datasets if not specified otherwise: † Ruder et al. (2021); ‡ Muennighoff
et al. (2022).

2 Related Work

TRANSLATE-TEST and TRANSLATE-TRAIN are
commonly used machine translation baselines for
cross-lingual transfer learning studies. (Conneau
et al., 2018, Ponti et al., 2020, Lin et al., 2022,
Hu et al., 2020, Liu et al., 2019). Somewhat sur-
prisingly, TRANSLATE-TEST has shown to be a
superior method for many languages in a cross-
lingual setting where target language training data
is not available (Ponti et al., 2020, Lin et al., 2022).
Meanwhile, TRANSLATE-TRAIN has also been
shown to outperform cross-lingual transfer learn-
ing methods and can compete with TRANSLATE-
TEST (Ruder et al., 2021).

The success of machine translation-based meth-
ods has motivated researchers to improve these
methods even more. Yu et al. (2022) shows that
TRANSLATE-TRAIN can be improved by learning
a mapping from originals to translationese that is
applied during test time to the originals of the tar-
get language. Dutta Chowdhury et al. (2022) em-
ploys a bias-removal technique to remove transla-
tionese signals from the classifier. Oh et al. (2022)
proposes TRANSLATE-ALL - a method that uses
both techniques simultaneously. Their model is
trained both on data in the source language and
source data translated to the target language. Dur-
ing inference, the two predictions, one on the tar-
get dataset and another on the target dataset trans-
lated to the source language, are ensembled. Is-
bister et al. (2021) shows that even if a training
dataset is available in the target language, it might
still be beneficial to translate both training and
test datasets to English to employ pre-trained En-
glish language models instead of native language
models. Artetxe et al. (2020a) draws attention to
the fact that even human-translated datasets can

contain artifacts that can hurt the performance of
the model when compared to the native English
datasets. He shows that the performance drop is
indeed caused by the fact that training is done on
the original data while testing is done on translated
data.

3 Methodology

Our goal is to compare evaluation results obtained
with native and translated Estonian question-
answering datasets in a TRANSLATE-TEST setting
where the data is machine translated to English
and fed to a model also trained on English. We
hypothesize that translated test dataset will over-
estimate results on the native test dataset.

3.1 Models

XLM-RoBERTa (Conneau et al., 2020) A
multilingual encoder trained on 100 languages (in-
cluding Estonian) with masked language model-
ing objective. We fine-tune the base model XLM-
ROBERTA-BASE.3

3.2 Datasets

SQuAD (Rajpurkar et al., 2016) An English
extractive question-answering dataset consisting
of more than 100 000 crowdsourced question-
answer-paragraph triplets. The paragraphs are
from English Wikipedia.

XQuAD (Artetxe et al., 2020b) A cross-
lingual extractive question-answering benchmark
that consists of 1190 triplets from SQuAD’s vali-
dation set translated to 10 languages (not including
Estonian) by professional translators. Each ques-
tion has exactly one correct answer.

3https://huggingface.co/xlm-roberta-base
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EstQA (Käver, 2021) An Estonian extractive
question-answering dataset consisting of 776 train
triplets and 603 test triplets where each question
in the test dataset has possibly more than one cor-
rect answer. The paragraphs are from Estonian
Wikipedia. It was specifically created to be an Es-
tonian equivalent for English SQuAD.

3.3 XQuADet

We also need a translated Estonian question-
answering dataset to see whether our hypothesis
is true. This dataset should ideally be created us-
ing the same methodology as was used for the na-
tive dataset EstQA to avoid a situation where the
difference in results could be attributed to differ-
ent methodologies. Since EstQA was created by
following the methodology used for SQuAD and
XQuAD is a subset of it, we decided to translate
the English subset of XQuAD to Estonian. The
translation was done with Google Cloud API. The
annotation spans were first automatically aligned
with SimAlign (Jalili Sabet et al., 2020). After
that, the alignments were verified manually, and
corrections were made if necessary. We denote
this dataset as XQuADet. Similarly to XQuAD,
it consists of 1190 triplets.

3.4 Training and Inference

We train our QA model by fine-tuning XLM-
ROBERTA-BASE SQuAD dataset. Ideally, we
would have used existing QA models as this is
one of the main benefits of the TRANSLATE-TEST

approach. However, since XQuAD is a subset of
the validation set of SQUAD, then this would have
given an unfair advantage to XQuAD in our exper-
iments.

During inference, the input (in Estonian) is ma-
chine translated to English using Google Cloud
API and fed to a model trained on SQUAD. The
predicted span (in English) is then automatically
aligned with the input in Estonian using SimAlign
to project the prediction back to Estonian.

3.5 Evaluation

Following Rajpurkar et al. (2016) we evaluate our
models with exact match (EM) and f1 score (F1).
Exact match is a metric that measures the percent-
age of predictions that match any of the gold labels
exactly while F1 measures the average overlap be-
tween the predicted and gold answer. We use the

Train data Test data EM F1

SQuAD
XQuADet 58.74 72.26

EstQA 57.04 70.35

Table 2: TRANSLATE-TEST results on Estonian
QA datasets.

Train data Test data EM F1

EstQA
EstQAen 26.37 41.99
XQuAD 24.21 43.64

Table 3: TRANSLATE-TEST results on English QA
datasets.

official scoring script of SQuAD.4

4 Results

Table 2 summarizes the main results of our ex-
periments. The results support our hypothesis
that using translated test datasets together with
TRANSLATE-TEST can lead to overestimating the
performance on the native target data. Note that
in order to obtain the predictions for XQuADet
the data was machine translated twice (first to Es-
tonian and then during the inference back to En-
glish) but is still more easily solvable, despite the
potentially stacking translation errors that can di-
minish the meaning of the texts.

4.1 Symmetry Test
We conducted an additional experiment to see
whether our hypothesis is also true in the oppo-
site direction, i.e., the model is trained on Estonian
data and English test data is translated to Estonian
during the inference. For that purpose, EstQA was
translated to English using the same pipeline as for
XQuADet. However, the results shown in Table 3
do not provide clear evidence that our hypothesis
is also true in the opposite direction. Additionally,
it can be seen that the results on both datasets are
very low, which is expected since the EstQA train-
ing dataset contains only 776 training samples.

4.2 Quality of Automatic Annotations
The pipeline of solving QA task with
TRANSLATE-TEST consists of multiple com-
ponents, all of which work with some error
rate. We can not assess the quality of machine-
translated datasets because we do not have gold
translations. However, both XQuADet and

4More precisely, we use evaluate library that wraps
the original scripts: https://github.com/huggingface/evaluate.
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Dataset EM F1
EstQAen 64.30 83.67

XQuADet 83.61 91.40

Table 4: Annotation quality of automatic annota-
tions.

EstQAen contain human-verified annotations
which we can compare against automatically
obtained annotations. Table 4 shows the quality
of automatic alignments on translated test datasets
as measured with EM and F1 against manually
corrected annotations. As the table shows, auto-
matic alignments were much better for translated
XQuAD, especially when comparing EM scores
with nearly 20% difference.

The aligner algorithm in all our experiments
was IterMax from the SimAlign package with
a distortion of 0.5, as suggested by the au-
thors. We used embeddings from BERT-BASE-
MULTILINGUAL-CASED5 (Devlin et al., 2019) as
this yielded the best results in our experiments
when compared to other contextual embeddings
(see Appendix A for more details).

5 Discussion

5.1 Machine vs Human Translated Datasets

One may argue that in order to show that translated
datasets are inferior to native datasets, human-
translated data should be used instead of machine-
translated data because usually translated datasets
are created with the help of professional transla-
tors. However, we believe that it is not neces-
sary. Firstly, it has been shown that regardless of
the method, translated data contains translationese
which makes it different from native data (Volan-
sky et al., 2013, Bizzoni et al., 2020). Secondly,
the cultural knowledge incorporated into the trans-
lated datasets will make them differ from native
data despite the translation method. Finally, our
goal was to investigate whether the model’s per-
formance would be overestimated with translated
test datasets. Intuitively, this is more difficult to
show with machine-translated data because of po-
tential translation errors. Therefore, if the hy-
pothesis is true with machine-translated data, it is
fair to assume that it will also be true for human-
translated data.

5https://huggingface.co/bert-base-multilingual-cased

5.2 Cause of Mismatch

The problem we are addressing in this paper is
caused by the fact that data from the same dis-
tribution is often used to train and evaluate mod-
els in a TRANSLATE-TEST setting where cultural
differences of languages should naturally be taken
into account. However, one may say that this ar-
gumentation leads to the same conclusions about
monolingual research because it also uses differ-
ent splits of the same dataset for training and test-
ing. Although domain shift is a problem in mono-
lingual research, it differs from the scenario ad-
dressed in this paper. Domain mismatch happens
because the model learns to detect unwanted bi-
ases in the training dataset that are irrelevant to
solving the task in general (McCoy et al., 2019, Jia
and Liang, 2017). The mismatch in our scenario
happens because different cultural knowledge is
naturally intertwined into each of the languages by
the speakers, which the model trained only on one
language can not know about.

5.3 Asymmetry

Our experiments showed that overestimating hap-
pens when native Estonian data is translated to En-
glish but not when native English data is trans-
lated to Estonian during test-time data augmenta-
tion, i.e., not always are translated datasets eas-
ier to solve for the model. However, the results
might also be affected by the properties of the un-
derlying language model or train dataset size. For
a more fair comparison of translation directions,
the train datasets should be around the same size.
Currently, the difference in sizes is more than 100
times.

5.4 Limitations

The main limitation of the paper is its relatively
small scale which can be overcome by including
more languages, more datasets, or a cross-lingual
transfer scenario. Alternatively, one can translate
test datasets from languages other than English to
Estonian (or any other target language) and com-
pare the performance in TRANSLATE-TEST (et→
en) setup.

6 Conclusion

We compared the performance of an English ex-
tractive QA model on native and translated Esto-
nian test datasets in TRANSLATE-TEST setting to
see how results on the translated dataset compare
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to the results on the native dataset. Our experi-
ments showed that results on the translated dataset
overestimate the results on the native dataset.
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A Performance of SimAlign with
different embeddings

Since the authors of SimAlign did not evaluate
their choice of embedding on Estonian, we did our
own evaluation with three different embeddings.
Figure 1 and Figure 2 show how the choice of em-
bedding affects the quality of alignments.

Figure 1: F1 of automatically aligned answers
with different embeddings.

Figure 2: EM of automatically aligned answers
with different embeddings.

The scores are obtained by comparing predic-
tions projected back to the target language with
gold annotations. As the authors of SimAlign,
we found that embeddings from mBERT produce
the best alignments. Note that the scores obtained
with mBERT are not the same as shown in Table

2. This is because the algorithm that projected
predicted spans back to the target language was
slightly changed before obtaining the final results.

B Hyperparameters

For both English and Estonian QA models, XLM-
R was fine-tuned with learning rate 2e−5 (lin-
ear decay) and batch size 16 for 20 epochs with
early stopping after ten consecutive evaluation
steps with no improvement in validation loss. The
model was evaluated after every 100 steps. Weight
decay was 0.01, warmup ratio 0.
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Abstract

Properly citing sources is a crucial com-
ponent of any good-quality academic pa-
per. The goal of this study was to de-
termine what kind of accuracy we could
reach in predicting whether or not a sen-
tence should contain an inline citation us-
ing a simple binary classification model.
To that end, we fine-tuned SciBERT on
both an imbalanced and a balanced dataset
containing sentences with and without in-
line citations. We achieved an overall ac-
curacy of over 0.92, suggesting that lan-
guage patterns alone could be used to pre-
dict where inline citations should appear.

1 Introduction

Providing accurate, relevant citations is an essen-
tial part of academic writing. Not only do citations
allow authors to better contextualize the results of
the paper, but they also lend credibility and au-
thority to the claims made in the article. Failing to
give credit to existing research when credit is due,
on the other hand, is taken to show a lack of aca-
demic integrity, and is strongly frowned upon by
the academic community. Appropriately adding
citations, however, is not trivial: even humans
sometimes struggle to determine where inline ci-
tations should go, and what should or should not
be cited. This is particularly true in the case of ju-
nior academics and students (Vardi, 2012) (Carson
et al., 1992) (Pennycook, 1996). In the context of
automatic text evaluation, determining where cita-
tions should go is even less straightforward. One
way in which one could automatically determine
whether a given paragraph requires (additional) in-
line citations is through automatic plagiarism de-
tection systems. However, processing a document
to determine whether some sections of it have been
plagiarized can require a considerable amount of

time, particularly if the document exceeds a cer-
tain length. Building a plagiarism checker is also
complicated, as the process requires scanning the
full web for documents, and possibly obtaining ac-
cess to research articles that might lay behind a
paywall. Finally, results might not always be ac-
curate (Kohl Kerstin, 2012), as the checker might
fail in finding similarities between concepts sim-
ply because sentences that are identical in meaning
have been expressed through a different formula-
tion. Because of these downsides, we were inter-
ested in exploring how much mileage we could get
out of a simple binary classification experiment
trying to predict whether or not a given sentence
should include an inline citation. In particular,
we reasoned that it should be possible to predict
at least to some extent whether a sentence should
contain an inline citation simply by looking at the
presence vs. absence of specific lexical cues. For
example, verbs such as “claimed”, nouns such as
“authors” and phrases such as “as seen in” tend
to appear together or in the vicinity of inline ci-
tations. The same holds true of some capitalized
nouns (e.g. “Attention”, “Minimalism”).

1.1 Related Work

References play an essential role in academia and
as such have been the focus of several NLP stud-
ies (Iqbal et al., 2021). Some of the properties that
researchers have traditionally focused on are ex-
tracting the polarity of inline citations (is the refer-
enced article negatively or positively mentioned?)
(Abu-Jbara et al., 2013), and determining the pur-
pose of inline citations (Viswanathan et al., 2021).
Our paper builds on a body of research that has at-
tempted to predict the “citation worthiness” (Co-
han et al., 2019) of sentences, i.e. whether or
not a given sentence should contain an inline ci-
tation. Several approaches have been suggested
to determine the citation worthiness of text, see in
particular (Beel et al., 2016), (Färber and Jatowt,
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2020) and (Ma et al., 2020) for an overview. We
have also seen an increased tendency towards us-
ing references as a way to build knowledge graphs
(Viswanathan et al., 2021) and speed up the search
for relevant research articles. There is also a ten-
dency towards using references to aid automated
text summarization (Yasunaga et al., 2019).

1.2 Motivation

Developing shallow automated techniques that can
detect whether or not a sentence should contain an
inline citation has several practical applications.
A shallow inline-citation predictor can be used to
(i) help academics identify forgotten inline cita-
tions, i.e. citations that the author meant to add at
the review stage but ultimately forgot to include,
(ii) guide junior researchers in the paper-writing
process, flagging concepts or ideas that might re-
quire attribution, (iii) improving the coverage of
automatic essay analyzers, and (iv) in the con-
text of natural language generation, decreasing the
chances of committing plagiarism by flagging pas-
sages that might require a citation.

2 Preparing the Data

To determine what types of inline citation styles
are used in different research disciplines, we ran-
domly selected two articles for each of the follow-
ing 18 research fields: Medicine, Biology, Chem-
istry, Engineering, Computer Science, Physics,
Math, Psychology, Economics, Political Science,
Business, Geology, Sociology, Geography, Envi-
ronmental Science, Art, History, Philosophy. Af-
ter analyzing these 36 articles, we concluded that
most of the articles adopted the IEEE, APA or the
Chicago reference styles.

We first created an initial dataset consist-
ing of 2000 research articles; these were ran-
domly selected from the ArXiv and PubMed
datasets (Cohan et al., 2018) that are freely avail-
able on the Huggingface Datasets library (Lhoest
et al., 2021) (https://huggingface.co/
datasets/scientific_papers).

These 2000 articles were subsequently pro-
cessed to discard articles with a citation pattern
other than the IEEE, APA or Chicago reference
styles. The pre-processing task of detecting in-
line citations was handled through a simple Python
script. Using regular expressions, different kinds
of citation styles were mapped to corresponding
regex capture patterns. We started by writing

regexes that would match the three citation styles
that we identified as the most frequently used:
IEEE, APA and Chicago. Later on, we also de-
cided to include the alpha BibTeX style, as that
appears to be quite frequently used in ArXiV pa-
pers. The Python script did the following: first,
every given citation pattern was extracted from the
article’s plain text. Then, the style with the high-
est capture count was set as the article’s default
style. This means that even when the extraction
process found inline citations that matched a style
that was not the article’s primary citation style, the
script was still able to identify the primary style.
Finally, the inline citations matching the primary
style were substituted with an -ADD-CITATION-
token; this step is important as it allowed us to
generalize across different referencing styles. If
for some reason no citation style was detected, the
token replacement failed, and the article was dis-
carded from further analysis.

We then created a second dataset by taking all
the articles with IEEE, APA or Chicago as ref-
erence styles and by (i) breaking down the orig-
inal text into sentences, and assigning each sen-
tence to a separate entry, (ii) assigning different
labels to entries containing inline citations and en-
tries not containing inline citations, and (iii) re-
moving the -ADD-CITATION- token throughout
the dataset. This second dataset features 411’992
sentences (entries), of which 54’735 contain an in-
line citation (see Table 1). The dataset is accessi-
ble at https://github.com/elenaSage/
InlineCitationSet and is free to use. This
second dataset is the dataset we used for the clas-
sification experiments that we describe below.

No Citation Contains Citation Total
357257 54735 411992

Table 1: Composition of Inline Citation Dataset

3 Classification model

In our research, we intend to train a classifica-
tion model that can determine whether a sentence
should contain a citation (positive class) or not
(negative class) depending on the text input. In the
first column of the Table 2, an example of the input
text is displayed. The model we aim to train for
this input text should predict that a citation must
be present; this is a positive class prediction. If the
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Figure 1: ROC curve on testing imbalanced
dataset

model predicts a negative class, it would mean that
the text should not contain any citation.

In recent years, BERT-based language models
(Devlin et al., 2019) have achieved state-of-the-
art performance in numerous NLP classification
tasks. Due to their pre-training on massive corpora
and fine-tuning for a specific downstream purpose,
these models can acquire accurate language repre-
sentations.

Our Inline Citation dataset includes scientific
data containing science-specific terminology. Be-
cause of that, we decided to encode texts for the
classification task using the BERT architecture
that has been pre-trained on scientific texts, i.e.
the SciBERT model (Beltagy et al., 2019). Ex-
actly like BERT, SciBERT contains 30K word-
piece tokens, but unlike BERT its vocabulary is
pertinent to the scientific area. In the scientific
domain, SciBERT outperforms BERT in a vari-
ety of tasks (Beltagy et al., 2019) and achieves
SOTA performance in multi-class text classifica-
tion on the SciCite dataset (Cohan et al., 2019).
It has been demonstrated that fine-tuned uncased
SciBERT with SciVocab followed by a linear layer
produces the best results for scientific data (Belt-
agy et al., 2019) or for citation context classifica-
tion (Maheshwari et al., 2021). Therefore we use
this model in each experiment.

4 Fine-tuning SciBERT

Research papers generally contain more sentences
without inline citations than sentences with cita-
tions, which leads to having more examples for
the ”no citation” class. Performing classifica-
tion tasks using imbalanced datasets poses multi-

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUC = 0.96

Figure 2: ROC curve on testing balanced dataset

ple challenges, the most prominent being the bias
towards the most represented class (He and Gar-
cia, 2009). There are multiple studies that try
to counteract this phenomenon by bringing more
balance in the distribution of classes within the
same dataset (see for example (Mohammed et al.,
2020) or (Krawczyk, 2016)). Two well-known
techniques in direction of balancing are undersam-
pling and oversampling. Undersampling however
also presents drawbacks, the most important one
being the loss of information that might be cap-
tured by the most represented class. With this in
mind, we decided to run classification experiments
on both the full (imbalanced) dataset and a more
balanced subset of the dataset which we obtained
by undersampling the data. We divided both the
balanced and the imbalanced dataset into a train-
ing subset (60%), a validation subset (20%) and a
test subset (20%), resulting in a ”60:20:20” split.
The split was then modified so that the propor-
tion of positive (sentences containing a citation) to
negative (sentences not containing a citation) texts
in each subset would not be altered following the
split (see Table 3).

Next, we fine-tuned all SciBERT parameters
end-to-end utilizing the training and validation
subsets. For fine-tuning, we adhered primarily to
the similar design and optimization decisions uti-
lized in articles (Beltagy et al., 2019; Devlin et al.,
2019). We used the ReLu activation function in
linear one-layer feed-forward classifier which in-
puts the last hidden state of the [CLS] token. In
other words, this last hidden state of the [CLS] to-
ken is utilized as the sequence’s features to feed
the classifier.

We experimented with numerous hyper-
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Table 2: An illustration of text input and prediction output
Input sentence Class
In particular, our colored pebbles generalize and strengthen the
previous results of Lee and Streinu and give a new proof of the
Tutte-Nash-Williams characteri- zation of arboricity.

Positive

The tidal friction theories explain that the present rate of tidal
dissipation is anomalously high because the tidal force is close to
a resonance in the response function of ocean.

Positive

A k-map-graph is a graph that admits a decomposition into k
edge-disjoint map-graphs.

Negative

Dataset type Class Training subset Validation subset Testing subset
Balanced Contains citation 32831 10957 10947

No citation 36085 12015 12025
Imbalanced Contains citation 32739 11049 10947

No citation 214455 71350 71452

Table 3: Dataset split

parameters for fine-tuning with both datasets. We
fine-tuned for 2 to 5 epochs using batch size 16,
32 or 50 and learning rate of 5e-5, 5e-6, 1e-5 or
2e-5, with a dropout of 0.1 or without dropout. We
optimized cross-entropy loss with the assistance
of the AdamW optimizer (Kingma and Ba, 2014).
The best results were obtained when the models
were fine-tuned for 2 epochs with a batch size of
50 samples and a learning rate of 5e-5 without
dropout, followed by a linear warmup and linear
decay (Devlin et al., 2019); this was the case for
both the balanced and the imbalanced dataset.
We used softmax to determine probabilities for
predictions, with a threshold of 0.7 proving
optimal, meaning that sentences with a calculated
probability greater than 0.7 are predicted to be
positive, i.e. they are predicted to contain an
inline citation.

5 Discussion

In our work, we always consider positive labels
as a class of those input texts that contain an in-
line citation. This means that we always under-
stand True-Positives (TP) as correctly predicted
texts that contain an inline citation (see graph 1
and graph 2). This is also analogous to the Pre-
cision and Recall calculations and the derived F-
score in graphs 3 and 4, and the metrics in Table
4 below. The focus is mainly on this class of in-
line citations as positive, since it is definitely a mi-
nority with respect to quantity, which makes the

problem more challenging.
We report the results of our two experiments

in Table 4. We see that balancing the dataset by
undersampling helped to significantly reduce the
bias towards the most represented class, increas-
ing the recall of the least represented class (=sen-
tences containing an inline citation) from 0.63 to
0.84.

Since we used both balanced and imbalanced
datasets, useful performance indicators include the
Area under the Curve AUC for the precision-recall
curve PR or the Receiver Operating Characteris-
tic curve ROC (Bradley, 1997; Hanley and Mc-
Neil, 1982). Figure 1 and figure 2 reveal that
the ROC curves are nearly comparable in both
datasets, with the imbalanced dataset having a
slightly lower AUC value of 0.94 against that of
0.96 for the balanced dataset. For imbalanced
data, however, a PR plot is advised (Sun et al.,
2009; Gu et al., 2009); our PR plots are depicted in
figure 3 and 4. The imbalanced dataset’s PR curve
follows a different path than the balanced dataset’s
PR curve, which is also reflected in its consider-
ably lower AUC value (=0.84) compared to that of
the balanced dataset (=0.96).

6 Conclusion

The goal of this paper was to determine how ef-
fective binary classification models can be at pre-
dicting whether or not sentences appearing in aca-
demic articles should contain an inline citation.
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Citation prediction

Approach Precision Recall F1 score Accuracy
Balanced SciBERT validation 0.93 0.84 0.89 0.90
Balanced SciBERT testing 0.93 0.84 0.88 0.89
Imbalanced SciBERT validation 0.92 0.63 0.75 0.94
Imbalanced SciBERT testing 0.92 0.64 0.75 0.94

Table 4: Prediction results
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Figure 3: PR curve on testing imbalanced dataset
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Figure 4: PR curve on testing balanced dataset

To that end, we used regular expressions to iden-
tify inline citations in published research papers,
and then created a dataset composed of 411k sen-
tences, where approximately 54k contained inline
citations. We then ran a fine-tuned SciBERT clas-
sifier on both a balanced and imbalanced dataset,
achieving an overall accuracy of over 0.92. This
result shows that language patterns alone could be
used to predict the presence of inline citations in
academic text with a reasonable degree of accu-
racy. We presented the problem as a binary clas-

sification task on the sentence level, i.e. we only
considered the target sentence and did not consider
the context in which the sentence appeared, for
example by also looking at the sentences appear-
ing before and after the target sentence. Taking
into account the previous and the following sen-
tence could be worthwhile in that some inline ci-
tations scope over multiple contiguous sentences
rather than just refer to a single sentence (i.e. the
concept of “citing area” first mentioned in (Nanba
and Okumura, 1999)). The sentences contained
in the Inline Citation Dataset however are all se-
quential: they come in the same sequence as they
were found in the original paper. This means that
information on the context in which a given tar-
get sentence appears is already available in our
dataset. This paves the path for further experi-
ments that take contextual sentential information
into account, such as using transformers to predict
in which position inline citations should appear.
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Abstract
This paper presents the first high-quality
neural text-to-speech (TTS) system for
Võro, a minority language spoken in
Southern Estonia. By leveraging existing
Estonian TTS models and datasets, we an-
alyze whether common low-resource NLP
techniques, such as cross-lingual transfer
learning from related languages or multi-
task learning, can benefit our low-resource
use case. Our results show that we can
achieve high-quality Võro TTS without
transfer learning and that using more di-
verse training data can even decrease syn-
thesis quality. While these techniques may
still be useful in some cases, our work
highlights the need for caution when ap-
plied in specific low-resource scenarios,
and it can provide valuable insights for fu-
ture low-resource research and efforts in
preserving minority languages.

1 Introduction

The advancements in neural text-to-speech (TTS)
technology have greatly improved the quality of
speech synthesis for many languages. However,
despite the potential benefits of TTS for facilitat-
ing accessibility and language preservation, devel-
oping TTS systems for low-resource languages re-
mains challenging due to the limited availability of
training data for these languages.

Võro, a Finno-Ugric minority language spoken
in Southern Estonia, serves as a great example of
a low-resource language that could benefit from
TTS technology. While linguistic resources for
Võro are limited, the language is closely related to
Estonian – a high-resource Finno-Ugric language
with significantly more datasets, tools, and pre-
trained models.

The goal of this paper is to present the first high-
quality neural TTS system for Võro and evaluate

various low-resource NLP techniques for improv-
ing synthesis quality for the language. By lever-
aging existing Estonian TTS models and datasets,
we investigate the impact of transfer learning from
related languages and multi-speaker and multilin-
gual approaches on the TTS quality of Võro.

The main contributions of this paper are:

1. We develop the first high-quality neural text-
to-speech system for Võro and make it pub-
licly available1.

2. We show that having only 1.5 hours of Võro
speech data per speaker is sufficient to de-
velop TTS systems for low-resource lan-
guages without using cross-lingual transfer
learning or additional monolingual data.

3. We highlight the potential negative effects of
diversifying low-resource TTS datasets with
data from closely related languages.

2 Background

As neural text-to-speech models require vast
amounts of data, existing research has proposed
several approaches to mitigate the issue of in-
sufficient training data. For example, several
works have shown that cross-lingual pretraining
improves the quality of low-resource TTS systems
(Chen et al., 2019; Xu et al., 2020).

In a survey on multilingual strategies for low-
resource TTS, Do et al. (2021) evaluated the use-
fulness of using multilingual datasets for improv-
ing low-resource language performance. They ob-
served that for sequence-to-sequence models, in-
cluding additional data from other languages is al-
most always beneficial and often overweighs the
negative effect of having a lower ratio of target
data in the entire training dataset. The authors
also noted that there is no clear evidence that

1https://neurokone.ee
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using supporting languages from the same lan-
guage family is more beneficial but claimed that
using a shared input representation space (such as
phonemes) may be more important.

At the same time, using closely related lan-
guages to boost low-resource performance has
been successfully used for many text-based NLP
tasks, including for developing Finno-Ugric ma-
chine translation systems that also include the
Võro language (Tars et al., 2021). Unfortunately,
the usage of neural methods for Võro has so far
been limited to this example. There is also no ex-
isting research on Võru TTS. While the Estonian
Language Institute and the Võro Institute have col-
laborated to create an HMM-based TTS system
for Võro2, this work has not been described in re-
search.

3 Methodology

In this section, we present our methodology and
experiment setup. Our approach evaluates the ben-
efits of low-resource TTS approaches when train-
ing non-autoregressive Transformer-based models
(Ren et al., 2019; Łańcucki, 2021). We focus on
three common strategies – cross-lingual transfer
learning from a pre-trained Estonian TTS model,
combining data from multiple Võro speakers, and
including Estonian data to create a multilingual
system. Additionally, we explore data augmenta-
tion to handle the orthographic variation of Võro.

3.1 Datasets

Our experiments used speech data from two Võro
speakers – an adult male and a child (female).
Both datasets were attained from the Estonian
Language Institute and contained an identical set
of 1132 sentences, out of which 100 were set aside
for evaluation purposes.

The Estonian dataset consisted of 6 male and 4
female speakers from the Speech Corpus of Esto-
nian News Sentences (Fishel et al., 2020) and the
Estonian Language Institute’s audiobook corpora
(Piits, 2022a,b). A subset of 1000 sentences per
speaker was selected from the Estonian corpora to
balance the training dataset.

The audio files were resampled at 22050 Hz
and converted into mel-spectrograms using a Hann
window with a frame size of 1024 and a hop
length of 256. The mel-spectrogram frames were

2https://www.eki.ee/˜indrek/voru/
index.php

aligned to the graphemes using the Estonian align-
ment model by Alumäe et al. (2018). Training a
separate alignment model for Võro was also con-
sidered, but initial testing showed that the Esto-
nian model was successfully able to produce high-
quality alignments. The alignment was also used
to trim excessive pauses in the audio.

All datasets were lowercased, and punctuation
was normalized to a limited set of characters to
reduce the vocabulary size. In total, the training
dataset contained 3 hours of Võro and 14 hours of
Estonian speech.

3.2 Data Augmentation
While the Võro dataset follows a standardized
version of Võro orthography, many speakers and
well-known news outlets do not conform to this
standard. For example, the glottal stop (q) may be
omitted or used only when it affects the meaning
of the word, and some speakers may also use an
apostrophe instead the letter q. Similarly, an apos-
trophe or an acute accent that marks palatalization
is often used only when it affects the meaning.

In order to create a system that could success-
fully synthesize speech from all common written
formats of Võro, we considered this to be an im-
portant challenge. As there are no existing NLP
tools for Võro that would allow us to analyze
these features automatically, we decided to use
data augmentation to generate orthographic alter-
natives where glottal stops or palatalization fea-
tures were removed for the system to cope with
different orthographies.

Additionally, while our dataset contained the
letter y, all cases of it were replaced with õ as they
are no longer differentiated according to the ortho-
graphic standardization changes from 2005.

3.3 Model Configuration
All models were trained using an open-source
implementation3 of a non-autoregressive
Transformer-based (Vaswani et al., 2017) model.
The architecture is similar to FastPitch (Łańcucki,
2021) with explicit duration and pitch prediction
components. An existing multispeaker model
for Estonian (Rätsep et al., 2022) was used for
our cross-lingual transfer learning experiments.
In multispeaker systems, the speaker identity
was marked with a prepended global style token
(Wang et al., 2018).

3https://github.com/TartuNLP/
TransformerTTS
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We trained models with three different data con-
figurations – single-speaker Võro models for each
speaker, multi-speaker Võro models with both
speakers, and multi-speaker multilingual models
with both Estonian and Võro data. For each
data configuration, we also trained another model,
which was initialized using the weights of the ex-
isting Estonian model. All models were trained
for at least 400k steps and using identical hyper-
parameters.

4 Results

To assess the quality of the models, we con-
ducted a mean opinion score (MOS) (Chu and
Peng, 2001) evaluation4 among volunteers from
the Võro community. The evaluators were re-
quired to know the Võro language but did not have
to be native speakers. Of the 41 volunteers, 6 con-
sidered themselves native speakers, and 9 had a
self-reported Võru level of C1 or higher. Many
participants with lower levels of Võru knowledge
also mentioned that their passive language skills
were higher as they mostly used Võro when com-
municating with older family members who were
native speakers.

The evaluation used a subset of 50 random sen-
tences per speaker (100 total per method) from
the held-out dataset, and the samples were gen-
erated using pretrained HiFiGAN (Kong et al.,
2020) models. The appropriate model for each
speaker was selected by evaluating samples gener-
ated with multiple vocoder models. For the lower-
pitched male speaker, we used a model trained on
the VCTK dataset (Yamagishi et al., 2019), and
for the child speaker, we used a model trained on
the LJ Speech (Ito and Johnson, 2017) corpus and
finetuned on Tacotron 2 (Shen et al., 2018) out-
put. We also included ground truth samples from
the held-out dataset and ground truth samples con-
verter to mel-spectrograms and reconstructed by
the same vocoder models.

The evaluation results can be seen in Table 1.
Expectedly, ground truth samples in their original
and reconstructed forms scored the highest among
the participants. From the TTS models, the high-
est scores were given to single-speaker models.
These were followed by the multi-speaker Võro
models, but the performance drop from the single-
speaker models should not be considered signif-

4https://tartunlp.github.io/
TransformerTTS/nodalida2023/

Method MOS

Ground truth 4.03± 0.12
Ground truth + vocoder 3.83± 0.13

Single-speaker 3.55± 0.15
Single-speaker (transfer) 3.62± 0.15
Multi-speaker 3.43± 0.15
Multi-speaker (transfer) 3.50± 0.13
Multilingual 3.10± 0.15
Multilingual (transfer) 3.29± 0.15

Table 1: Mean opinion scores with 95% confi-
dence intervals on the held-out dataset.

icant. The multilingual models showed consis-
tently worse performance compared to the mono-
lingual models. Additionally, we observe minor
benefits from using cross-lingual transfer learning.

In addition to scoring samples, participants
were encouraged to comment on their overall im-
pressions of speech quality and the evaluation pro-
cess. Many expressed a positive surprise about
synthesis quality and mentioned the presence of
TTS artifacts, such as crackling, as their main
evaluation criteria. Some participants also noted
that while almost all samples were intelligible,
they did not always sound like a native Võro
speaker, especially when producing the glottal
stop sound. Unfortunately, as the participants did
not know which models produced which samples,
further analysis would be needed to assess whether
all models are equally prone to this issue and
whether it can also be observed in ground truth
examples.

5 Discussion and Future Work

Unexpectedly, our MOS evaluation results are in
conflict with existing low-resource TTS litera-
ture that reports benefits from diversifying training
data with samples from other speakers or related
languages and from using cross-lingual transfer
learning. This brings into question both the useful-
ness of these techniques as well as our approach.

Firstly, it could be argued that the observations
about the low negative performance impact of data
imbalance by Do et al. (2021) may not apply to
non-autoregressive Transformer-based systems, as
the study focused on other methods, such as re-
current or convolutional neural networks. There-
fore, the performance drop in multilingual models
could still be caused by an imbalance between the
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two languages in the dataset. Alternatively, as our
model size was dictated by the existing pretrained
Estonian models, it may lack sufficient capacity to
work in a multilingual setting.

Additionally, it is possible that we should no
longer consider Võro a low-resource language in
this task. Based on initial testing with Estonian
datasets, we found that the required amount of
speech data for Transformer-based models to pro-
duce coherent speech is between 1-2 hours, and
improvements from using more data are signifi-
cantly less noticeable. Similar observations about
reduced data requirements for Transformer-based
models have also been recently reported by Pine
et al. (2022). In our case, we had 1.5 hours of
speech per speaker, and it may have been sufficient
for us not to benefit from additional data from
other speakers. Alternatively, as the two Võro
datasets contained identical sentences, they may
not differ sufficiently to benefit from each other.
However, a more detailed evaluation methodology
could be considered to measure the effects on spe-
cific features of synthetic speech, such as prosodic
variability or pronunciation mistakes.

As our work focused on creating a high-quality
system for Võro without applying artificial con-
straints, such as using smaller subsets of the high-
resource datasets, these points were not explicitly
explored in our work. However, in the future,
low-resource TTS strategies should be further re-
viewed specifically for Transformer-based archi-
tectures and for different levels of resource con-
straint. Until then, these strategies should be used
with caution and evaluated for each specific low-
resource scenario.

6 Conclusion

This article presented the first high-quality neu-
ral text-to-speech system for the Võro language.
We explored the usage of Estonian TTS models
and datasets to boost the performance of our low-
resource use case.

Our results suggest that we can achieve high-
quality Võro TTS without transfer learning or us-
ing data from multiple speakers or closely related
languages. While these techniques may still be
helpful in some cases, we highlight the need for
further research and evaluation when applied in
specific low-resource scenarios.
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Adrian Łańcucki. 2021. FastPitch: Parallel text-to-
speech with pitch prediction. In 2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6588–6592.

Liisi Piits. 2022a. Estonian female voice
audiobook corpus for speech synthe-
sis. https://doi.org/10.15155/
3-00-0000-0000-0000-090D4L.

Liisi Piits. 2022b. Estonian male voice
audiobook corpus for speech synthe-
sis. https://doi.org/10.15155/
3-00-0000-0000-0000-08BF4L.

Aidan Pine, Dan Wells, Nathan Brinklow, Patrick Lit-
tell, and Korin Richmond. 2022. Requirements and
motivations of low-resource speech synthesis for
language revitalization. In Proceedings of the 60th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Dublin,
Ireland. Association for Computational Linguistics.

Liisa Rätsep, Rasmus Lellep, and Mark Fishel.
2022. Estonian text-to-speech synthesis with non-
autoregressive transformers. Baltic Journal of Mod-
ern Computing, 10.

726



Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2019. FastSpeech:
Fast, robust and controllable text to speech. In Ad-
vances in Neural Information Processing Systems.
Curran Associates, Inc.

Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, R. J. Skerry-
Ryan, Rif A. Saurous, Yannis Agiomyrgiannakis,
and Yonghui Wu. 2018. Natural TTS synthesis by
conditioning WaveNet on mel spectrogram predic-
tions. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 4779–4783.

Maali Tars, Andre Tättar, and Mark Fišel. 2021. Ex-
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line). Linköping University Electronic Press, Swe-
den.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc.

Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ-Skerry
Ryan, Eric Battenberg, Joel Shor, Ying Xiao, Ye Jia,
Fei Ren, and Rif A. Saurous. 2018. Style tokens:
Unsupervised style modeling, control and transfer in
end-to-end speech synthesis. In Proceedings of the
35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning
Research, pages 5180–5189. PMLR.

Jin Xu, Xu Tan, Yi Ren, Tao Qin, Jian Li, Sheng Zhao,
and Tie-Yan Liu. 2020. Lrspeech: Extremely low-
resource speech synthesis and recognition. In Pro-
ceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Min-
ing, KDD ’20, page 2802–2812, New York, NY,
USA. Association for Computing Machinery.

Junichi Yamagishi, Cristophe Veaux, and Kirsten Mac-
Donald. 2019. CSTR VCTK corpus: English multi-
speaker corpus for CSTR voice cloning toolkit (ver-
sion 0.92). https://datashare.ed.ac.uk/
handle/10283/3443.

727



Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages 728–737
May 22-24, 2023 c©2023 Association for Computational Linguistics

Transfer to a Low-Resource Language via Close Relatives:
The Case Study on Faroese

Vésteinn Snæbjarnarson1,2 Annika Simonsen3 Goran Glavaš4 Ivan Vulić5
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Abstract

Multilingual language models have pushed
state-of-the-art in cross-lingual NLP trans-
fer. The majority of zero-shot cross-lingual
transfer, however, use one and the same
massively multilingual transformer (e.g.,
mBERT or XLM-R) to transfer to all target
languages, irrespective of their typological,
etymological, and phylogenetic relations
to other languages. In particular, readily
available data and models of resource-rich
sibling languages are often ignored. In this
work, we empirically show, in a case study
for Faroese – a low-resource language from
a high-resource language family – that by
leveraging the phylogenetic information
and departing from the ‘one-size-fits-all’
paradigm, one can improve cross-lingual
transfer to low-resource languages. In par-
ticular, we leverage abundant resources of
other Scandinavian languages (i.e., Danish,
Norwegian, Swedish, and Icelandic) for the
benefit of Faroese. Our evaluation results
show that we can substantially improve
the transfer performance to Faroese by ex-
ploiting data and models of closely-related
high-resource languages. Further, we re-
lease a new web corpus of Faroese and
Faroese datasets for named entity recogni-
tion (NER), semantic text similarity (STS),
and new language models trained on all
Scandinavian languages.

1 Introduction

Massively multilingual Transformer-based lan-
guage models (MMTs) such as mBERT (Devlin
et al., 2019), XLM-RoBERTa (Conneau et al.,
2020a) and mT5 (Xue et al., 2021) have been
the driving force of modern multilingual NLP, al-
lowing for rapid bootstrapping of language tech-

nology for a wide range of low(er)-resource lan-
guages by means of (zero-shot or few-shot) cross-
lingual transfer from high(er)-resource languages
(Lauscher et al., 2020; Hu et al., 2020; Xu and Mur-
ray, 2022; Schmidt et al., 2022). Cross-lingual
transfer with MMTs is not without drawbacks.
MMTs’ representation spaces are heavily skewed
in favor of high-resource languages, for which they
have been exposed to much more data in pretrain-
ing (Joshi et al., 2020; Wu and Dredze, 2020); com-
bined with the ‘curse of multilinguality’ – i.e., lim-
ited per-language representation quality stemming
from a limited capacity of the model (Conneau
et al., 2020a; Pfeiffer et al., 2022) – this leads to
lower representational quality for languages under-
represented in MMTs’ pretraining. Cross-lingual
transfer with MMTs thus fails exactly in settings
in which it is needed the most: for low-resource
languages with small digital footprint (Zhao et al.,
2021). Despite these proven practical limitations,
the vast majority of work on cross-lingual transfer
still relies on MMTs due to their appealing concep-
tual generality: in theory, they support transfer be-
tween any two languages seen in their pretraining.
Such strict reliance on MMTs effectively ignores
the linguistic phylogenetics and fails to directly
leverage resources of resource-rich languages that
are closely related to a target language of interest.

In this work, we attempt to mitigate the above
limitations for a particular group of languages, de-
parting from the ‘one-size-fits-all’ paradigm based
on MMTs. We focus on a frequent and realis-
tic setup in which the target language is a low-
resource language but from a high-resource lan-
guage family, i.e., with closely related resource-
rich languages. A recent comprehensive evaluation
of the languages used in Europe1 scores languages

1The Digital Language Equality in Europe by 2030:
Strategic Agenda and Roadmap published by the Eu-
ropean Language Equality Programme (ELE), https://
european-language-equality.eu/agenda/.
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based on the available resources. Languages such
as German and Spanish score at around 0.5 of
the English scores, and more than half of the lan-
guages are scored below 0.02 of the English score.
Many, including almost all regional and minority
languages such as Faroese, Scottish Gaelic, Oc-
citan, Luxembourgish, Romani languages, Sicil-
ian and Meänkieli have the score of (almost) 0.
However, what differentiates these languages from
low-resource languages from Africa (e.g., Niger-
Congo family) or indigenous languages of Latin
America (e.g., Tupian family) is the fact that they
typically have closely related high-resource lan-
guages as ‘language siblings’. In this case, we
believe, language models (LMs) of closely related
high-resource languages promise more effective
transfer compared to using MMTs, plagued by the
‘curse of multilinguality’, as the vehicle of transfer.

In this proof-of-concept case study, we focus on
Faroese as the target language and demonstrate the
benefits of linguistically informed transfer. We take
advantage of available data and resources from the
closely related but much more ‘NLP-developed’
other Scandinavian languages.2 We show that us-
ing “Scandinavian” LMs brings substantial gains in
downstream transfer to Faroese compared to using
XLM-R as a widely used off-the-shelf MMT. The
gains are particularly pronounced for the task of
semantic text similarity (STS), the only high-level
semantic task in our evaluation. We further show
that adding a limited-size target-language corpus
to LM’s pretraining corpora brings further gains
in downstream transfer. As another contribution
of this work, we collect and release: (1) a corpus
of web-scraped monolingual Faroese, (2) multiple
LMs suitable for Faroese, including those trained
on all five Scandinavian languages, and (3) two
new task-specific datasets for Faroese labeled by
native speakers: for NER and STS.

2 Background and Related Work

Cross-Lingual Transfer Learning with MMTs
and Beyond. A common approach to cross-lingual
transfer learning involves pretrained MMTs (De-
vlin et al., 2019; Conneau et al., 2020a; Xue et al.,

2The Scandinavian languages are a family of Indo-
European languages that form the North Germanic branch
of the Germanic languages. The largest languages of the fam-
ily are: (1) Danish (population 5.8M), Norwegian (5.4M) and
Swedish (10.4M) – the Mainland Scandinavian languages,
and (2) Icelandic (373K) and Faroese (54K) – the Insular
Scandinavian languages.

2021). These models can be further pretrained for
specific languages or directly adapted for down-
stream tasks. A major downside of the MMTs has
been dubbed the curse of multilinguality (Conneau
et al., 2020a), where the model becomes saturated
and performance can not be improved further for
one language without a sacrifice elsewhere, some-
thing which continued pretraining for a given lan-
guage alleviates (Pfeiffer et al., 2020). Adapter
training, such as in (Pfeiffer et al., 2020; Üstün
et al., 2022), where small adapter modules are
added to pretrained models, has also enabled cost-
efficient adaptation of these models. The adapters
can then be used to fine-tune for specific languages
and tasks without incurring catastrophic forgetting.

Other methods involve translation-based trans-
fer (Hu et al., 2020; Ponti et al., 2021), and trans-
fer from monolingual language models (Artetxe
et al., 2020; Gogoulou et al., 2022; Minixhofer
et al., 2022). Bilingual lexical induction (BLI) is
the method of mapping properties, in particular em-
beddings, from one language to another via some
means such as supervised embedding alignment,
unsupervised distribution matching or using an or-
thogonality constraint (Lample et al., 2018; Sø-
gaard et al., 2018; Patra et al., 2019), and has also
been used to build language tools in low-resource
languages (Wang et al., 2022).

Attempts to alleviate the abovementioned issues
have been made, such as vocabulary extension
methods (Pfeiffer et al., 2021), which add miss-
ing tokens and their configurations to the embed-
ding matrix. Phylogeny-inspired methods have also
been used where adapters have been trained for
multiple languages and stacked to align with the
language family of the language of interest (Faisal
and Anastasopoulos, 2022). Some analysis on the
effects of using pretrained MMTs has been done:
Fujinuma et al. (2022) conclude that using pre-
trained MMTs that share script and overlap in the
family with the target language is beneficial. How-
ever, when adapting the model for a new language,
they claim that using as many languages as possible
(up to 100) generally yields the best performance.

Inspired by this line of research, in this work,
we focus on improving MMT-based cross-lingual
transfer for a particular group of languages, those
that have sibling languages with more abundant
data and resources.

NLP Resources in Scandinavian Languages. A
fair amount of language resources have been devel-
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oped for the Scandinavian languages, particularly if
aggregated across all languages of the family. It is
also worth mentioning that Danish, Icelandic, Nor-
wegian and Swedish are represented in raw mul-
tilingual corpora such as CC100 (Conneau et al.,
2020b) or mC4 (Xue et al., 2021) as well as in paral-
lel datasets such as (Schwenk et al., 2021; Agić and
Vulić, 2019). Large multilingual language models
have been trained on these datasets (Devlin et al.,
2019; Liu et al., 2020; Xue et al., 2021) but have
been shown to have limited capacity for languages
with smaller relative representation in pretraining
corpora. Faroese is not included (at least not cor-
rectly labelled) in these crawled corpora.This may
be in part due to the limited amount of Faroese that
can be found online, and in part due to its close
relatedness to the other languages of the Scandina-
vian family (Haas and Derczynski, 2021). A brief
overview of prior work in cross-lingual transfer to
Faroese is given in Appendix D.

In this work, we use the following open language
resources for the Scandinavian languages.

Danish: The Danish Gigaword Corpus (Strømberg-
Derczynski et al., 2021) is a billion-word corpus
containing a wide variety of text.We also use a
NER resource, the DaNE corpus (Hvingelby et al.,
2020).

Icelandic: With Icelandic as the most closely re-
lated language to Faroese, we experiment with an
Icelandic language model, IceBERT (Snæbjarnar-
son et al., 2022). For the NER experiment, we
make use of the MIM-GOLD-NER corpus (Ingólfs-
dóttir et al., 2020).

Norwegian: The Norwegian Colossal Corpus
(NCC) (Kummervold et al., 2022) contains 49GB
of clean Norwegian data from a variety of sources,
making it the largest such public collection in the
Nordics. We also make use of the NorNE (Jør-
gensen et al., 2020) NER corpus (both for Bokmål
and Nynorsk).

Swedish: The Swedish Gigaword Corpus (Eide
et al., 2016) contains text from between 1950 and
2015. The latest NER corpus for Swedish is Swe-
NERC (Ahrenberg et al., 2020), where the authors
include more modern texts than in earlier corpora.

Faroese: A POS corpus, the Sosiualurin corpus is
an annotated Newspaper corpus with 102k words
(Hansen et al., 2004). The Faroese Wikipedia
has also been used to create a tree bank (Tyers
et al., 2018), which has a Universal Dependencies

(UD) mapping. We use this corpus along with the
FarPaHc (Ingason et al., 2012), which also has a
UD mapping.

3 New Faroese Datasets

3.1 Faroese Common Crawl Corpus (FC3)
Faroese monolingual data is scarce, mainly because
of the limited size of the Faroese-speaking popula-
tion. Despite this, we manage to extract a decent
amount of varied Faroese text from the Common
Crawl corpus (FC3). To this effect, we adopted
the approach of Snæbjarnarson et al. (2022) for
Icelandic, i.e., we targeted the websites with the
Faroese top-level domain (.fo). After clean-up and
deduplication, the obtained Faroese corpus consists
of 98k paragraphs containing in total 9M word-
level tokens. Albeit relatively small compared to
corpora from other Scandinavian languages, this
Faroese corpus still drives significant downstream
performance gains (see §5).

3.2 Named Entity Recognition (FoNE)
We annotate the Sosialurin corpus (6,286 lines,
102k words) with named entities following the
CoNLL schema using an Icelandic NER-tagger
trained using the ScandiBERT model, see §4. The
annotation was then manually reviewed. Out of the
118,533 tokens (including punctuation), 9,001 are
annotated using the Date (546), Location (1,774),
Miscellaneous (332), Money (514), Organization
(2,585), Percent (115), Person (2,947) and Time
(188) tags. We refer to this new dataset as FoNE.

3.3 Semantic Similarity (Fo-STS)
The STS Benchmark (Cer et al., 2017) measures
semantic text similarity (STS) between pairs of sen-
tences. For each pair of sentences, the annotators
assigned the score (on a Likert 1-5 scale) that in-
dicates the extent to which the two sentences are
semantically aligned. We manually translated from
English to Faroese 729 sentence pairs from the test
portion of the STS Benchmark; the translation was
carried out by a native speaker of Faroese fluent in
English, who was instructed to preserve in the trans-
lation the extent of semantic alignment between the
original English sentences.

4 Model Training

We train the following new language models: (i)
ScandiBERT is trained on concatenated corpora of
all Scandinavian languages, (ii) ScandiBERT-no-fo
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is trained on concatenated corpora of all Scandi-
navian languages except Faroese (i.e., without any
Faroese data, that is, no FC3, Bible or Sosialurin),
and (iii) DanskBERT which is trained only on the
Danish data; we train DanskBERT for the purposes
of comparison with IceBERT, in the setup in which
we carry out downstream transfer to Faroese by
means of a monolingual model of a closely re-
lated language (with Danish being more distant
to Faroese than Icelandic). We additionally eval-
uate transfer with models that have been further
pretrained on the FC3 corpus (indicated with the
-fc suffix). We provide an overview of all training
datasets and hyperparameter configurations used in
our experiments in Appendix A.

5 Experiments

5.1 Downstream Performance for Faroese

Experimental Setup. In addition to the models
presented in §4, we make use of the monolin-
gual Icelandic model IceBERT and the massively
multilingual XLM-on-RoBERTa (XLM-R).3 We
evaluate the performance of this set of pretrained
models in several downstream tasks in Faroese:
Part-of-Speech tagging (POS), Dependency Pars-
ing (DP) (UD datasets introduced in §2), Named
Entity Recognition (NER), and Semantic Text Sim-
ilarity (i.e., the new NER and STS datasets intro-
duced in §3). For all downstream tasks the task-
specific training and evaluation data span mono-
lingual Faroese data points only: we carry out the
experimentation via ten-fold cross-validation on
the respective Faroese datasets.4 For each model
and downstream task, we carry out ten runs with
different random seeds (each run trains the model
for 5 epochs with batches of 16 instances) and re-
port the average performance across runs. The
exception is the STS training in which the models
were fine-tuned for 3 epochs (with training batches
of size 8).5

Results and Discussion. Table 1 summarizes the
3We use the base-sized XLM-R: https://huggingface.

co/xlm-roberta-base.
4Note that our study aims to establish how different pre-

training strategies – and in particular languages included in
pretraining – affect the models’ downstream Faroese perfor-
mance, rather than to investigate the downstream cross-lingual
transfer. One could, naturally, additionally incorporate task-
specific data in other Scandinavian languages (and also in
English and other languages) in downstream training (i.e.,
perform cross-lingual transfer for the downstream task).

5Due to the limited size of the Faroese dataset, longer
training with larger batch size consistently led to overfitting.

results across the four downstream tasks. The best-
performing model for POS, as evaluated on the
Sosialurin POS corpus, is ScandiBERT-fc3, out-
performing ScandiBERT by more than 1 point in
terms of F1. However, the ScandiBERT-no-fo-fc3
model, without any Faroese data at pretraining, ob-
tains fully on-par performance with the variant that
does include Faroese data.

The best-performing model for NER, and STS
is the ScandiBERT-no-fo-fc3 model. Somewhat
surprisingly, we get the best performance for the
model that does not include any Faroese data in
the initial pretraining, that is, it does not adjust
the tokenizer/vocabulary to Faroese. Put simply,
we observe slight gains over the ScandiBERT-fc3
model. We hypothesize that this might be due to
the fact that including Faroese in the vocabulary
results in a lower subword overlap with the other
Scandinavian languages, which in consequence,
slightly reduces the potential for transfer. While
there is only a difference of 95 tokens between the
two vocabularies, the difference yields 6% of the
words in FC3 being tokenized differently.

Finally, the results also demonstrate the impor-
tance of focusing on a smaller set of related lan-
guages rather than relying on a broader set of lan-
guages from the MMTs. Unlike the results from
Fujinuma et al. (2022), our results suggest that for
languages with higher-resource ‘siblings’ such as
Faroese, a higher-performing LM is a less general
ScandiBERT model rather than an MMT such as
XLM-R or mBERT. Different variants of ScandiB-
ERT outperform XLM-R without any Faroese data
across the board in all evaluation tasks. Another
interesting finding is that additionally fine-tuning
on Faroese data (the -fc3 variants) has a much
stronger positive impact on XLM-R as the underly-
ing model than on ScandiBERT. Put simply, the im-
portance of in-target language data decreases with
the availability of more focused pretained LMs cov-
ering only languages related to the target language.

5.2 Additional Experiments

Transfer with Wechsel. To put our work in further
context, beyond comparison to MMTs, we consider
an alternative transfer learning approach, the Wech-
sel method (Minixhofer et al., 2022), a recent well-
performing method for transferring monolingual
Transformers to a new language. Further details
and results are presented in Appendix B: they all
show far worse performance than those presented
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POS NER UD FP UD oft STS
Model F1 Acc. F1 Acc. F1 Acc. F1 Acc. Acc.

IceBERT 85.5 ± 0.19 85.2 ± 0.16 87.9 ± 0.54 96.4 ± 0.09 93.6 ± 0.06 94.6 ± 0.03 92.7 ± 0.32 94.2 ± 0.25 70.6 ± 1.9
IceBERT-fc3 90.9 ± 0.06 90.4 ± 0.06 90.9 ± 0.41 98.9 ± 0.03 96.6 ± 0.06 97.1 ± 0.06 95.3 ± 0.38 96.1 ± 0.32 72.9 ± 1.8
DanskBERT 73.4 ± 0.19 74.3 ± 0.16 85.6 ± 0.44 98.4 ± 0.06 86.2 ± 0.16 87.7 ± 0.09 84.8 ± 0.57 88.7 ± 0.44 73.2 ± 1.3
DanskBERT-fc3 87.1 ± 0.13 86.4 ± 0.13 89.7 ± 0.54 98.8 ± 0.06 96.0 ± 0.06 96.6 ± 0.03 94.2 ± 0.28 95.7 ± 0.19 75.3 ± 1.1
XLM-R 84.6 ± 0.28 85.0 ± 0.28 87.8 ± 0.47 96.3 ± 0.06 93.5 ± 0.06 94.3 ± 0.03 91.5 ± 0.44 93.6 ± 0.35 69.5 ± 2.1
XLM-R-fc3 91.2 ± 0.09 91.2 ± 0.09 90.9 ± 0.41 98.9 ± 0.06 97.3 ± 0.06 97.7 ± 0.03 95.7 ± 0.22 96.8 ± 0.19 69.2 ± 2.1
ScandiBERT-no-fo 88.4 ± 0.09 88.1 ± 0.09 89.9 ± 0.25 96.7 ± 0.16 95.9 ± 0.06 96.4 ± 0.06 93.8 ± 0.35 95.0 ± 0.32 75.3 ± 1.5
ScandiBERT-no-fo-fc3 91.5 ± 0.09 91.2 ± 0.09 91.4 ± 0.35 98.8 ± 0.06 97.4 ± 0.03 97.8 ± 0.03 96.3 ± 0.22 96.8 ± 0.19 76.5 ± 1.3
ScandiBERT 90.3 ± 0.09 90.0 ± 0.13 90.2 ± 0.28 99.0 ± 0.06 96.5 ± 0.06 97.1 ± 0.03 95.2 ± 0.32 96.2 ± 0.25 46.3 ± 6.3
ScandiBERT-fc3 91.6 ± 0.06 91.3 ± 0.09 91.0 ± 0.35 99.0 ± 0.03 97.3 ± 0.06 97.7 ± 0.06 95.9 ± 0.25 96.7 ± 0.22 63.8 ± 6.2

Table 1: Results for all downstream tasks in Faroese using the different base language models, with and
without continued Faroese pre-training. The -fc3 postfix indicates models that were further pretrained on
FC3. Standard error intervals are also reported.

in Table 1. We hypothesize this is due to how
closely related the languages we consider are, as
opposed to the distant languages considered in the
original Wechsel work.

Task-Specific Transfer. To explore the potential
for task-specific transfer between closely related
languages, we consider if labelled Scandinavian
datasets can be combined to benefit Faroese. In
particular, we look at NER as there is an easy way
to map between labels of the different languages.
See Appendix C for more details. The best result is
achieved when training directly from the IceBERT
model, which has been trained on the large MIM-
GOLD-NER dataset, showing that given enough
resources and a close enough language model, such
a direct approach can be the most effective.

Further Discussion. Some of the results in Table 1
are as expected. Starting from the closest language
relative, the Icelandic model, IceBERT, results in
better performance for all downstream tasks than
starting with the Danish model DanskBERT. The
ScandiBERT model performs better than the mas-
sively multilingual XLM-R on all tasks, bar the
more semantic FO-STS task.

What is more interesting is that the ScandiBERT-
no-fo model that is not trained on Faroese outper-
forms the model that has Faroese included, when
fine-tuned further on the FC3 dataset. In particular,
for the higher level Fo-STS task. We hypothesize
that this forces the Faroese adaptation to use the
word segmentations from the related languages for
a higher transfer benefit, as the tokenizing vocabu-
lary was trained without Faroese. This is something
we hope to investigate more in future work.

6 Conclusion and Future Work

We have shown that leveraging phylogenetic in-
formation and departing from the ‘one-size-fits-all’

paradigm can improve cross-lingual transfer to low-
resource languages. Our evaluation results show
that we can substantially improve the transfer per-
formance to Faroese by exploiting data and models
of closely-related high-resource languages instead
of relying on MMTs. In future work, we hope to
extend the investigations and methodology beyond
Faroese, to other low-resource languages for which
higher-resource language relatives exist.

In order to boost and guide future research on
Scandinavian languages in general and Faroese
in particular, we make the models ScandiBERT6,
ScandiBERT-no-fo7, DanskBERT8 and FoBERT
(ScandiBERT-no-fo-fc3)9 available. As well as the
new datasets FC310, FoNE11, and Fo-STS12.
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DanskBERT. All models use the same vocabulary
size of 50k. The ScandiBERT vocabulary is trained
using all the languages, the ScandiBERT-no-fo vo-
cabulary is trained without the Faroese data, and
the DanskBERT vocabulary is only trained on the
Danish text. Vocabularies are trained using the Sen-
tencePiece software (Kudo and Richardson, 2018),
and character coverage is set to 99.995 %.

Pre-training of the new language models is
done using fairseq (Ott et al., 2019) using the
RoBERTa-base (Liu et al., 2019) configuration,
fine-tuning is done using the transformers (Wolf
et al., 2020) library. ScandiBERT and ScandiBERT-
no-fo were trained for 72 epochs, using a batch
size of 8.8k sequences on 24 NVIDIA V100 cards
for approximately 14 days each. Initial testing
showed that the larger batch size showed better
performance than going for around 2k sequences,
possibly due to the mixture of differing languages.
DanskBERT, on the other hand, similar to IceBERT
and RoBERTa showed better performance at the
smaller batch size. DanskBERT was trained to con-
vergence for 500k steps using 16 V100 cards for
approximately 14 days.

All -fc models are further trained for 50 epochs,
with an effective batch size of 100k tokens for 12k
updates, over the FC3 dataset for Faroese adapta-
tion.

An overview of the data used to train the lan-
guage models is shown in Table 2. For details on
the Icelandic data, we refer to (Snæbjarnarson et al.,
2022). For the other datasets, we refer to §2.

B Wechsel results

We compare our method to another transfer
learning approach presented by Minixhofer
et al. (2022). The FC3 dataset is used to train
fastText embeddings for Faroese, and the Icelandic
datasets are used to train fastText embeddings for
Icelandic. These embeddings are then used to
convert the multilingual models to Faroese using

Language Datasets Size

Icelandic IGC / IC3 / Skemman / Hirslan 16 GB
Danish Danish Gigaword Corpus (incl.

Twitter)
4,7 GB

Norwegian NCC corpus 42 GB
Swedish Swedish Gigaword Corpus 3,4 GB
Faroese FC3 + Sosialurinn + Bible 69 MB

Table 2: Datasets used to train ScandiBERT,
ScandiBERT-no-fo and DanskBERT

the Wechsel approach. We confirm the quality of
the Icelandic embeddings by running an Icelandic
semantic evaluation suite adapted from https:
//github.com/stofnun-arna-magnussonar/
ordgreypingar_embeddings, showing our
embeddings are comparable or of higher quality
than those released by Meta (Grave et al., 2018).

The experiments in Table 3 all show sub-par per-
formance compared to the results in non-Wechsel
results in Table 1. The Wechsel work considers
transfer from English-dominant models, GPT2 and
RoBERTa to French, German, Chinese, Swahili,
Sundanese, Scottish Gaelic, Uyghur and Malagasy.
None of which are closely related to English. One
reason for the discrepancy in the results could
be that the shuffling of the embedding matrix to
convert it is more catastrophic when considering
close languages. Another reason could be that both
Faroese and Icelandic are morphologically rich and
that all variants of the words were not properly
mapped during the conversion of the embedding
matrix.

C Mapping NER datasets

The datasets used to create a Scandinavian NER-
corpus are DaNE (Danish), FoNE (Faroese), MIM-
GOLD-NER (Icelandic), NorNE (Norwegian), and
SWE-Nerc (Swedish), presented in §2. The results
in Table 4 show that the best result is obtained when
training directly from the IceBERT model. The
ScandiBERT model has a higher variance when
pre-fine-tuned on the combined NER corpora. This
approach could also be made directly for the UD
corpus, POS (in particular, using the Icelandic POS
data), and other corpora as they become available
for training or evaluation in Faroese. This demon-
strates how resources from a related language can
substantially benefit a low-resource language.

To combine the NER datasets, we map the tags
to the CoNLL schema used by the Icelandic MIM-
GOLD-NER and the Faroese FoNE datasets. The
Danish DaNE dataset uses a subset of the tags used
for Icelandic and Faroese, so the mapping is purely
nominal. The mapping for Norwegian (NorNE)
and Swedish (SweNERC) datasets is shown in Ta-
ble 5.

D Prior Work on Transfer learning for
Faroese

We know of three works that consider transfer learn-
ing for Faroese from the Scandinavian languages.
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POS NER UD FP UD oft STS
Model F1 Acc. F1 Acc. F1 Acc. F1 Acc. Acc.

W
ec

hs
el

IceBERT 74.4 ± 0.16 75.7 ± 0.16 67.7 ± 1.2 98.7 ± 0.06 83.6 ± 0.35 84.6 ± 0.38 66.6 ± 9.01 75.7 ± 5.88 27.3 ± 3.9
IceBERT-fc3 89.0 ± 0.06 89.4 ± 0.09 88.5 ± 0.47 96.4 ± 0.09 96.3 ± 0.03 96.5 ± 0.03 95.6 ± 0.28 96.2 ± 0.25 67.7 ± 2.8
XLM-R 68.9 ± 0.16 73.5 ± 0.13 59.7 ± 0.92 99.0 ± 0.06 81.0 ± 0.19 84.5 ± 0.13 71.8 ± 0.73 79.7 ± 0.44 11.4 ± 4.6
XLM-R-fc3 86.8 ± 0.09 88.7 ± 0.09 88.8 ± 0.41 98.4 ± 0.06 96.3 ± 0.03 96.7 ± 0.03 95.6 ± 0.25 96.5 ± 0.19 65.7 ± 2.8
ScandiBERT-no-fo 71.3 ± 0.16 72.5 ± 0.16 65.1 ± 0.54 98.8 ± 0.03 82.0 ± 0.19 83.4 ± 0.19 75.0 ± 0.66 81.0 ± 0.57 29.4 ± 4.8
ScandiBERT-n.f.-fc3 89.2 ± 0.06 89.6 ± 0.06 89.2 ± 0.54 99.0 ± 0.03 96.8 ± 0.06 97.1 ± 0.06 96.1 ± 0.28 96.8 ± 0.22 74.7 ± 1.0
ScandiBERT 72.6 ± 0.28 73.8 ± 0.28 65.7 ± 0.54 98.8 ± 0.03 83.0 ± 0.38 84.0 ± 0.28 76.8 ± 0.51 82.5 ± 0.35 8.7 ± 5.3
ScandiBERT-fc3 89.3 ± 0.09 89.7 ± 0.09 88.8 ± 0.54 98.7 ± 0.06 96.8 ± 0.03 97.1 ± 0.03 96.0 ± 0.25 96.7 ± 0.25 53.6 ± 6.0

Table 3: Results for all downstream tasks using different base language models after Wechsel adaptation,
with and without continued Faroese pre-training. The results are significantly worse than without Wechsel
adaptations.

Model Pre-ft. Ft. F1 Acc.

SB-no-fo-fc3 None Yes 91.4 ± 0.35 98.8 ± 0.06
ScandiBERT Icel. Yes 92.0 ± 0.32 98.8 ± 0.06
ScandiBERT All No 91.5 ± 0.51 98.9 ± 0.06
ScandiBERT All Yes 91.8 ± 0.51 99.0 ± 0.06
XLM-R All No 90.6 ± 0.19 99.0 ± 0.03
XLM-R All Yes 90.8 ± 0.47 99.0 ± 0.06

Table 4: NER performance when models are pre-
finetuned on all Scandinavian datasets and then
fine-tuned on FoNER.

Language Original Mapped

Norwegian O O
Norwegian PER Person
Norwegian ORG Organization
Norwegian GPE_LOC Location
Norwegian PROD Miscellaneous
Norwegian LOC Location
Norwegian GPE_ORG Organization
Norwegian DRV O
Norwegian EVT Miscellaneous
Norwegian MISC Miscellaneous

Swedish O O
Swedish EVN Miscellaneous
Swedish GRO Organization
Swedish LOC Location
Swedish MNT Miscellaneous
Swedish PRS Person
Swedish TME Time
Swedish WRK Miscellaneous
Swedish SMP Miscellaneous

Table 5: Mapping of tags to create a unified NER
dataset for the Scandinavian languages.

In (Tyers et al., 2018), a rule-based translation sys-
tem (Apertium (Forcada and Tyers, 2016)) is used
to translate the Faroese Wikipedia into Swedish,
Norwegian Bokmål, and Norwegian Nynorsk. The
translations are then aligned, and the translations
dependency-parsed. The resulting trees are then
mapped to the original Faroese sentences and used
for POS-tagging and annotating morphological fea-
tures. The second work is a mapping between
Faroese and Icelandic POS-tags (Hafsteinsson and
Ingason, 2021); while not a direct application,
the authors suggest the mapping may be of use
for transfer learning between the languages. Fi-
nally, (Barry et al., 2019) use machine translation
and dependency parsing for cross-lingual syntactic
knowledge transfer from Danish, Norwegian, and
Swedish to Faroese.

737



Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages 738–751
May 22-24, 2023 c©2023 Association for Computational Linguistics

Evaluating Morphological Generalisation in Machine Translation
by Distribution-Based Compositionality Assessment

Anssi Moisio
Department of Information and
Communications Engineering

Aalto University, Finland
anssi.moisio@aalto.fi

Mathias Creutz
Department of Digital Humanities

University of Helsinki, Finland
mathias.creutz@helsinki.fi

Mikko Kurimo
Department of Information and
Communications Engineering

Aalto University, Finland
mikko.kurimo@aalto.fi

Abstract

Compositional generalisation refers to the
ability to understand and generate a po-
tentially infinite number of novel mean-
ings using a finite group of known prim-
itives and a set of rules to combine them.
The degree to which artificial neural net-
works can learn this ability is an open
question. Recently, some evaluation meth-
ods and benchmarks have been proposed
to test compositional generalisation, but
not many have focused on the morpho-
logical level of language. We propose
an application of the previously devel-
oped distribution-based compositionality
assessment method to assess morpholog-
ical generalisation in NLP tasks, such as
machine translation or paraphrase detec-
tion. We demonstrate the use of our
method by comparing translation systems
with different BPE vocabulary sizes. The
evaluation method we propose suggests
that small vocabularies help with morpho-
logical generalisation in NMT.1

1 Introduction

Natural languages usually adhere to the princi-
ple of compositionality, with the exception of id-
iomatic expressions. Partee et al. (1995) phrased
this principle as ”The meaning of a whole is a
function of the meanings of the parts and of the
way they are syntactically combined”. Deriving
from this principle, compositional generalisation

1Code and datasets available at https://github.
com/anmoisio/morphogen-dbca

(CG) refers to the capacity to understand and gen-
erate a potentially infinite number of novel mean-
ings using a finite group of known primitives and
a set of rules of how to combine them. In the case
of language, morphemes are combined into words
and words in turn into phrases and sentences, us-
ing the syntactical rules of the language.

Neural networks have long been argued to lack
the ability to generalise compositionally the way
humans do (Fodor and Pylyshyn, 1988; Marcus,
1998). After the rapid improvement of neural NLP
systems during the previous decade, this question
has gained renewed interest. Many new evaluation
methods have been developed to assess whether
the modern sequence-to-sequence (seq2seq) archi-
tectures such as Transformers exhibit CG, since
they certainly exhibit increasingly competent lin-
guistic behaviour. For instance, in one of the sem-
inal CG evaluation methods, called SCAN (Lake
and Baroni, 2018), a seq2seq system has seen cer-
tain natural language commands in training and
needs to combine them in novel ways in testing.

CG is a general capacity that can be seen as a
desideratum in many NLP tasks, and in machine
learning more generally. Furthermore, CG is a
multifaceted concept that can be, and should be,
decomposed into narrower, more manageable as-
pects that can be tested separately (Hupkes et al.,
2020). For example, NLP systems should be able
to generalise compositionally both on the level of
words and on the level of morphology.

Although many aspects of CG have recently
been evaluated in NLP (an extensive review is
offered by Hupkes et al. (2022)), some aspects
have remained without an evaluation method. We
identify (see Section 2) a lack of methods to
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evaluate compositional morphological generali-
sation using only natural, non-synthetic, data.
To fill this gap, we propose an application of
the distribution-based compositionality assess-
ment (DBCA) method (Keysers et al., 2020)
(henceforth Keysers) to generate adversarial data
splits to evaluate morphological generalisation in
NLP systems.

Specifically, we split natural language corpora
while controlling the distributions of lemmas and
morphological features (atoms in the terminology
of Keysers) on the one hand, and the distributions
of the combinations of atoms (compounds, not to
be confused with compound words) on the other
hand. By requiring a low divergence between the
atom distributions of the train and test sets, and a
high divergence between the compound distribu-
tions, we can evaluate how well a system is able to
generalise its morphological knowledge to unseen
word forms.

For example, if our corpus included as atoms
the lemmas ”cat” and ”dog”, and the morpho-
logical tags Number=Sing and Number=Plur,
a low divergence between the atom distributions
would mean that both the training and test sets in-
cluded all four of the atoms, and a high compound
divergence would mean that the sets include dif-
ferent combinations of them, for instance training
set {cat, dogs} and test set {cats, dog}.

Our main contributions are the following:
firstly, we describe an application of DBCA to
evaluate morphological generalisation in any NLP
task in which the train and test data consist of sen-
tences for which morphological tags are available.
Secondly, we demonstrate how by this method we
can evaluate morphological generalisation in ma-
chine translation without manual test design. And
thirdly, using our proposed method, we assess the
effect of the source language BPE (Sennrich et al.,
2016) vocabulary size in Finnish-English NMT
performance, and conclude that a smaller vocabu-
lary helps the NMT models in morphological gen-
eralisation.

2 Background

In the broader field of machine learning, CG has
been analysed in various domains besides that of
natural language, such as visual question answer-
ing (Bahdanau et al., 2018), visual reasoning (Zer-
roug et al., 2022) and mathematics (Saxton et al.,
2019), but in this work we focus on natural lan-

guage tasks. Two reviews have recently been pub-
lished about CG in NLP, of which Donatelli and
Koller (2023) focus on semantic parsing and the
aforementioned Hupkes et al. (2022) (henceforth
Hupkes) take a broader view, reviewing generali-
sation in general, not only the compositional type.

Hupkes categorised NLP generalisation experi-
ments along five dimensions, of which we discuss
two here to motivate our work. The first is the type
of generalisation along which the compositional
type is distinguished from the morphological type.
Hupkes define compositionality as ”the ability to
systematically recombine previously learned ele-
ments to map new inputs made up from these el-
ements to their correct output. In language, the
inputs are ‘forms’ (e.g. phrases, sentences, larger
pieces of discourse), and the output that they need
to be mapped to is their meaning ...”. In NMT,
the translation works as a proxy to meaning, so
that CG can be evaluated by evaluating the transla-
tion (Dankers et al., 2022) (other works that assess
CG in NMT include (Li et al., 2021; Raunak et al.,
2019)).

Hupkes contrast compositional with structural,
including morphological, generalisation where an
output space is not required but which focuses
on generation of the correct forms. These defini-
tions suggest a clear divide between the categories,
which is understandable when analysing the liter-
ature: morphological generalisation, specifically
inflection generation, has for decades been studied
in psycholinguistics (Berko, 1958; Marcus et al.,
1992) and computational linguistics (Rumelhart
and McClelland, 1986; Corkery et al., 2019; Kod-
ner et al., 2022). These studies do not address
the question of how the different inflections are
mapped to different meanings, hence they do not
address compositional generalisation. However,
inflections do bear meaning, of course, and so
compositional morphological generalisation is an
ability that humans possess, and NLP systems
ought to be tested on.

Although Hupkes do not categorise any exper-
iments as assessing compositional morphological
generalisation, there has been at least one that we
think could be so categorised: Burlot and Yvon
(2017) designed an NMT test suite in which a sin-
gle morphological feature is modified in a source
language sentence, creating a contrastive pair, and
the translations of the contrastive sentences are in-
spected for a corresponding change in the target
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language.

The other dimension of Hupkes relevant to the
motivation of our experiments is that of shift
source: the shift between train and test sets could
occur naturally (as in two natural corpora in differ-
ent domains), it can be created by generating syn-
thetic data, or an artificial partition of natural data
can be obtained. Most of the previous methods to
assess compositional generalisation in NMT (Bur-
lot and Yvon, 2017; Li et al., 2021; Dankers et al.,
2022) have synthetised data for the test sets. Gen-
erating synthetic data has its benefits: any mor-
phological form can occur in the data when it is
generated, and a single morphological feature can
be easily focused on and evaluated qualitatively as
well as quantitatively.

However, synthetic data has at least practical
disadvantages, leaving aside the more theoretical
question of how well the synthetic language ap-
proximates natural language, assuming the ulti-
mate goal is systems that process natural language.
In practice, synthetic test sets require manual de-
sign, which means it is difficult to come by a
method to generate an unlimited number of syn-
thetic sentences, or a method that could work in
arbitrary languages. Furthermore, when manu-
ally designing test suites to evaluate morpholog-
ical generalisation, as Burlot and Yvon (2017) de-
signed, the requirement for manual work restricts
the number of morphological phenomena we have
resources to test.

The other option is to create artificial data splits
of natural data. While natural data may be noisier
and it might be more difficult to focus on a spe-
cific phenomenon of the language by this method,
this method is easier to automate completely. Fur-
thermore, the method of automatically generating
data splits that we present in the next section is
also generalisable to other tasks (e.g. paraphrase
detection) and any corpus of sentences. Gener-
ating artificial data splits of natural data has pre-
viously been used to test CG in translation (Rau-
nak et al., 2019), as well as to assess the capacity
to capture long-distance dependencies in transla-
tion (Choshen and Abend, 2019), but not to as-
sess morphological generalisation, as far as we are
aware. (For a more general discussion of splitting
data into non-random testing and training sets, see
Søgaard et al. (2021).)

The method we describe in this paper is an
application of the DBCA method developed by

Keysers. Since this method is generic and task-
agnostic, it can be applied to any dataset for which
it is possible to define atom and compound distri-
butions. Although it is easier to define these dis-
tributions for synthetic data, as in the CFQ dataset
described by Keysers, it can also be applied to nat-
ural data, for example in semantic parsing (Shaw
et al., 2021). The next section describes how
DBCA can be used to assess morphological gener-
alisation in any task where the training and testing
corpora consist of natural language sentences.

3 Applying DBCA to assess
morphological generalisation in NLP

DBCA is a method to evaluate CG by splitting
a dataset into train/test sets with differing dis-
tributions, requiring some capacity to generalise
from the training distribution to the test distri-
bution. Specifically, the distributions of atoms
(known primitives) and compounds (combinations
of atoms) are controlled to get similar atom dis-
tributions but contrasting compound distributions
in the training and test sets. In our application of
DBCA to a corpus of natural language sentences,
the atom distributionFA of the corpus is the distri-
bution of the lemmas and morphological features
and the compound distribution FC is the distribu-
tion of their combinations. Table 1 presents exam-
ples of atoms and compounds in this work.

To determine the atom and compound distri-
butions, we first need to obtain the lemmas and
morphological tags of all words in the corpus,
which we accomplish for Finnish corpora using
the Turku Neural Parser Pipeline (Kanerva et al.,
2018). For the experiments presented in Section 4,
we use a corpus of 1M sentences. In practice, we
do not have resources to control the distribution of
all lemmas even in this relatively small corpus, so
we need to select some subset of the lemmas that
we include in our analysis.

Selecting the lemma subset could be done in
many ways, but the following is a way we deemed
reasonable. To limit the number of lemmas, we
first filter out lemmas that do not appear in the
list of 94110 Finnish lemmas2 or, since this list
does not include proper names, in lists3 of names

2Available at https://kaino.kotus.fi/sanat/
nykysuomi/

3List of names of places: https://kaino.kotus.
fi/eksonyymit/?a=aineisto
English given names: https://en.wiktionary.org/
wiki/Appendix:English_given_names
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Atoms Compounds

Desc. lemmas and morphological tags combinations of atoms

E.g. tunturi, Case=Gen,
Case=Ade, Number=Sing,
Number=Plur

tunturi|Case=Gen|Number=Plur (tunturien, of mountains);
tunturi|Case=Ade|Number=Sing (tunturilla, on mountain)

Table 1: Description and examples of what we call ”atoms” and ”compounds”. The compounds are the
unique word forms, determined by the lemma and the morphological tags. The word form and its English
translation are written inside the brackets.

for places, or lists of Finnish and English given
names. This way, the lemmas that are filtered
out include most of the typos and other non-
words. Then we rank the remaining lemmas by
frequency in our corpus, and sample a fixed num-
ber of lemma occurrences from constant inter-
vals in the ranked list of lemmas. Specifically,
we take 40000 lemma occurrences at intervals of
1000 lemma types in the list of lemmas. For our
corpus of 1M sentences, this method subsamples
the lemmas with frequency ranks of 1000-1033,
2000-2083, 3000-3174, and so on, so that there
are fewer frequent lemma types than rare lemma
types, but the total number of occurrences of each
bucket is around 40k. Lemmas that occur fewer
than 10 times in the corpus are excluded. After
the filtering, we have 8720 lemma types that oc-
cur about 390k times in total in our corpus of 1M
sentences. We append the list of 48 morphological
tags4 (after filtering some that indicate uninterest-
ing words such as ’Typo’ and ’Abbr’) that these
lemmas appear with to the lemma list to complete
our list of atoms.

Keysers weighted the compounds to ”avoid
double-counting compounds that are highly corre-
lated with some of their super-compounds”. The
idea is to lessen the weight of those compounds
that only or often occur as a part of one certain
super-compound. We weight the compounds
analogously, but use only two levels in our
weighting, which makes the weighting simpler
than in Keysers: we consider the combinations
of morphological tags as the lower level of com-
pounds, and these combined with lemmas as the
higher level. Thus the motivation for weighting
in our case is not to use those morphological tag
combinations that only occur with some specific
lemma. Therefore, we look for the lemma with

and Finnish: https://tinyurl.com/3mn52ms6
https://tinyurl.com/mwjvaxkk

4See https://universaldependencies.org/
docs/fi/feat/ for the list of Finnish morphological tags.

which each morphological tag combination occurs
most often, and give the tag combination a weight
that is the complement of the empirical probability
that the tag combination occurs with this lemma.
For example, we found that the rare morph tag
combination Case=Ade | Degree=Pos
| Number=Plur | PartForm=Pres |
VerbForm=Part | Voice=Pass occurs
84% of the time with the lemma saada forming
the word ”saatavilla”, so it gets a weight of 0.16.
After weighting the tag combinations, we exclude
those that have a weight of 0.33 or less.

After the described filtering steps, we have 8322
atoms, which includes the lemmas and morpho-
logical tags. The atoms occur about 1.3M times
in 273k sentences in our corpus of 1M sentences.
There are 335 morphological tag combinations,
which create about 69k unique word forms with
the lemmas; i.e. we use 69k compounds in our
analysis. These compounds occur 352k times in
the corpus.

Calculating atom and compound divergences is
done the same way as in Keysers. Namely, diver-
gence D between distributions P and Q is calcu-
lated using the Chernoff coefficient Cα(P∥Q) =∑

k p
α
k q

1−α
k ∈ [0, 1] (Chung et al., 1989), with

α = 0.5 for the atom divergence and α = 0.1 for
the compound divergence. As described by Key-
sers, α = 0.5 for the atom divergence ”reflects the
desire of making the atom distributions in train and
test as similar as possible”, and α = 0.1 for the
compound divergence ”reflects the intuition that
it is more important whether a certain compound
occurs in P (train) than whether the probabilities
in P (train) and Q (test) match exactly”. Since
the Chernoff coefficient is a similarity metric, the
atom and compound divergences of a train set V
and a test set W are:

DA(V ∥W ) = 1 − C0.5(FA(V ) ∥FA(W ))

DC(V ∥W ) = 1 − C0.1(FC(V ) ∥FC(W )).
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Procedure 1 Data division algorithm.
Input: G ▷ Corpus of sentences
Input: N ▷ Use N sentences from G
Input: a ▷ Lower bound for |V |/|W |
Input: b ▷ Upper bound for |V |/|W |
Output: V,W ▷ Train set, test set
V ← {x ∈R G} ▷ A random sentence
W ← ∅
G← G\V
for i← 1 to N do

r ← |V |/|W |
sV ← maxx∈G score(V ∪ {x},W )
iV ← argmaxx∈G score(V ∪ {x},W )
sW ← maxx∈G score(V,W ∪ {x})
iW ← argmaxx∈G score(V,W ∪ {x})
if (sV > sW ∧ r < b) ∨ r < a then

V ← V ∪ {iV }
G← G\{iV }

else
W ←W ∪ {iW }
G← G\{iW }

end if
end for

Once the divergences are defined, we can split a
corpus of natural language sentences into training
and testing sets with an arbitrary compound and
atom divergence values. For this, we use a simple
greedy algorithm, sketched in Algorithm 1. For a
maximum compound divergence split, the score is
calculated as

score(Q,P ) = DC(Q∥P )−DA(Q∥P ),

and in general, for any desired compound diver-
gence value c:

score(Q,P ) = −|c−DC(Q∥P )| − DA(Q∥P ).

In practice, we do not have resources to calculate
the maxx∈G score. Instead, at each iteration we
take a subset G′ ⊂ G, say 1000 sentences, and
calculate maxx∈G′ score.

As mentioned above, this method can be used
for any corpus that consists of natural language
sentences for which the morphological tags can be
obtained. In the next section we use this method
to assess morphological generalisation in machine
translation.

4 Experiments and results

4.1 NMT model training setup and data

We chose Finnish as the language we analyse be-
cause of its rich morphology and because there is
a good morphological tagger available for Finnish.
We use the English-Finnish parallel corpus from
the Tatoeba challenge data release (Tiedemann,
2020). We first apply some heuristics provided by
Aulamo et al. (2020) to remove noisy data, and re-
strict the maximum sentence length to 100 words,
after which we take a random sample of 1 million
sentence pairs.

We use the OpenNMT-py (Klein et al., 2017) li-
brary to train Finnish-English Transformer NMT
models using the hyperparameters provided in the
example config file5, which includes the standard
6 transformer layers with 8 heads and a hidden di-
mension of 512, as in (Vaswani et al., 2017). We
train the models until convergence or until a maxi-
mum of 33000 steps with 2000 warm-up steps and
a batch size of 4096 tokens.

For more details about the setup, see the Github
repository linked on the first page.

4.2 The effect of compound divergence on
translation performance

The basic experiment we propose is to make at
least two different train/test splits of a corpus, us-
ing DC values of 0 and 1, respectively, (keeping
DA = 0) and assess the change in translation
performance (for which we use BLEU (Papineni
et al., 2002) and chrF2++ (Popović, 2017) as met-
rics). Since with DC = 1 there are more unseen
word forms in the test set, we expect a decrease in
translation performance from DC = 0 to DC = 1
that is caused by the DC = 1 test set requiring
more morphological generalisation capacity.

We show empirically the decrease in perfor-
mance in Section 4.3, but the cause of this de-
crease is of course more difficult to verify exactly.
The atom and compound distributions are the only
things we explicitly control when splitting the cor-
pus, and we only require the compound divergence
to differ between different data splits. Therefore,
we assume the differing compound divergence to
be the cause of this effect, but to be more certain,
we conduct two simple checks to look for con-
founding factors.

5https://github.com/OpenNMT/
OpenNMT-py/blob/9d617b8b/config/
config-transformer-base-1GPU.yml

742

https://github.com/OpenNMT/OpenNMT-py/blob/9d617b8b/config/config-transformer-base-1GPU.yml
https://github.com/OpenNMT/OpenNMT-py/blob/9d617b8b/config/config-transformer-base-1GPU.yml
https://github.com/OpenNMT/OpenNMT-py/blob/9d617b8b/config/config-transformer-base-1GPU.yml


Firstly, an increase in the average sentence
length could be another factor that makes one test
set more difficult than another. Increasing the se-
quence length from training to test set is actually
a method that has been proposed to test a certain
type of compositional generalisation, sometimes
called productivity (Hupkes et al., 2020; Raunak
et al., 2019). We calculated the average sentence
lengths of the train and test sets of the 8 different
data splits that we obtained using 8 different ran-
dom seeds for the data split algorithm. What we
found is that for DC = 1 the average lengths in
test sets are actually shorter (ranging from 11.35 to
11.66 words) than those forDC = 0 (ranging from
12.27 to 13.72 words). The average training set
sentence lengths are similar for both DC values,
ranging from 8.66 to 8.79 for DC = 0 and from
8.65 to 8.73 for DC = 1. Thus we know that an
increased difference between train and test set sen-
tence lengths cannot explain the decrease in NMT
performance from DC = 0 to DC = 1 since the
difference is actually larger for DC = 0. The fact
that the average sentence length in training sets is
always significantly shorter than in test sets is an
interesting unintended artefact of the data division
algorithm that deserves further investigation in the
future, but it does not confound our analysis.

As the second sanity check, we evaluated the
NMT models on a neutral test set to see if, for
any reason, the training set would be in general
worse with DC = 1 than with DC = 0, instead
of only being worse for the specific test set that
we have created. For this we used the Tatoeba
challenge test set, which we did not use to train
or tune the hyperparameters of any models. The
results for the vocabulary size 1000 are presented
in Figure 1. We used the models trained on the
training sets from the data splits with compound
divergences 0.0, 0.5 and 1.0. The compound diver-
gences between these training sets and the Tatoeba
challenge test set do correlate with the target DC

of the data split, but they range only from about
0.4 to 0.6.

From Figure 1 we can see that the NMT mod-
els trained with different data sets, from data splits
with different DC values, do not show similar de-
crease in performance on the neutral-ish Tatoeba
challenge test set as on the test sets obtained from
the data split algorithm. We take this to mean that
the models trained on DC = 1 data splits are not
in general worse than those trained with DC = 0

Figure 1: Results on the Tatoeba challenge test
set. The x-axis labels denote the compound diver-
gences between the training sets and the test sets
analysed later in Figure 2. That is, the divergence
is not between the training sets and the Tatoeba
challenge test set.

data splits, but only worse on the high-divergence
test set.

4.3 The effect of BPE vocabulary size on
morphological generalisation in NMT

Next, we make the assumption, based on the anal-
ysis in Section 4.2, that we can measure mor-
phological generalisation by measuring the de-
crease of NMT performance between train/test
splits of DC = 0 and DC = 1. Previous stud-
ies have suggested the hypothesis that NMT mod-
els with smaller BPE vocabularies are more capa-
ble of modelling morphological phenomena than
those with larger vocabularies (for example Li-
bovickỳ and Fraser (2020)). In this section, we
compare the morphological generalisation capac-
ities of NMT models with different source-side
(Finnish) vocabulary sizes, using the method we
have proposed.

As a preliminary experiment, we tuned the BPE
vocabulary size for our setup (see Section 4.1) on
the Tatoeba challenge development set, and found
the optimal size to be around 3000 BPE tokens for
both the source and target languages. Since we
are interested in the Finnish morphology, next we
kept the target (English) vocabulary size constant
and varied only the source-side vocabulary size.

One thing to note about the vocabulary size is
that when we train an NMT system keeping the
number of tokens in each batch constant, the num-
ber of steps until convergence usually decreases
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when the vocabulary size increases, since one
epoch takes fewer steps. This reduction in com-
pute, when using a larger vocabulary, is to some
extent compensated by the increase of the input
layer size (and output layer size, if target language
vocabulary is increased too).

We chose 7 different vocabulary sizes, 3 larger
and 3 smaller than the optimal 3000, and evaluated
them with target compound divergence values of
0.0, 0.25, 0.5, 0.75 and 1.0. The sizes of the test
sets are in the order of a few tens of thousands, or a
little over a hundred thousand, sentences. The rel-
atively large test set size leads to statistical signifi-
cance even for small BLEU differences (see Table
3 for details).

From the BLEU results for DC = 0 and DC =
1 in Figure 2 we can see that the BLEU results
drop, as expected, when the test set demands
(more) capacity to generalise to unseen morpho-
logical forms. Furthermore, when comparing the
different vocabulary sizes, we can notice that as
we either increase or decrease the vocab size from
3000, the performance drops, but it drops slightly
differently w.r.t DC . This effect is most conspicu-
ous for the pair of sizes 500 and 18000. The larger
vocabulary performs slightly better when there is
less need for morphological generalisation, but the
small vocabulary performs better when it is needed
more. In general, from this figure we can see that
the vocabulary size roughly correlates with the an-
gle of the downward slope, suggesting that the
larger the vocabulary, the poorer the capacity for
morphological generalisation.

To investigate the effect of the initialisation of
the data split algorithm on the results, we split the
same corpus starting from 8 different random ini-
tialisations, and trained NMT models for each data
split. For this, we chose two pairs of vocabulary
sizes that showed most clearly contrasting per-
formance w.r.t DC : 500&18000 and 1000&6000.
The main results are presented in Table 2. For
these results, the test sets of the 8 random seeds
are concatenated together to create exceptionally
large test sets of around 400k-500k sentences. The
results for the individual data splits are presented
in Appendix A in Table 4.

From these results we can see the same contrast-
ing performance of the small and large vocabular-
ies w.r.t the different compound divergence values.
The difference is small but statistically significant.
The models with small vocabularies show better

Figure 2: Different source vocabulary sizes evalu-
ated with minimum and maximum (0 and 1) com-
pound divergence data splits. Compound diver-
gence value 1 requires more morphological gen-
eralisation. The larger the vocabulary the steeper
the slope, suggesting poorer ability to generalise.
For more details, see Table 3 in Appendix A.

performance than those with large ones when mor-
phological generalisation is needed, and vice versa
when morphological generalisation is not needed
as much.

5 Discussion and future work

In Section 3, we proposed an application of DBCA
to divide any corpus of sentences, for which mor-
phological tags are available, into training and
test sets with similar distributions of lemmas and
morphological tags but contrasting distributions of
word forms, in order to assess morphological gen-
eralisation. By this method, we can take a large
proportion of the morphological phenomena of a
selected language into consideration, in our exper-
iments 335 different morphological categories that
together with about 8k lemmas create 69k unique
Finnish word forms, and evaluate the effects of
the contrasting train/test distributions of the word
forms in machine translation. This enables a dif-
ferent, complementing type of assessment of mor-
phological generalisation than previous synthetic
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chrF2++ BLEU
Vocab DC = 0 DC = 1 DC = 0 DC = 1

500 51.20 (51.20 ± 0.05) 49.33 (49.33 ± 0.05) 27.50 (27.50 ± 0.07) 25.4 (25.40 ± 0.07)
18000 51.29 (51.29 ± 0.05) 49.04 (49.05 ± 0.05) 27.69 (27.69 ± 0.07) 25.18 (25.18 ± 0.07)

p = 0.0003 p = 0.0003 p = 0.0003 p = 0.0003

1000 51.78 (51.78 ± 0.05) 49.79 (49.79 ± 0.05) 28.17 (28.17 ± 0.07) 25.89 (25.89 ± 0.07)
6000 51.83 (51.83 ± 0.05) 49.67 (49.67 ± 0.05) 28.24 (28.24 ± 0.07) 25.80 (25.80 ± 0.07)

p = 0.0003 p = 0.0003 p = 0.0003 p = 0.0003

Table 2: Pairwise comparisons of the source vocabulary sizes 500 and 18000; 1000 and 6000. The
results are calculated for the concatenated test sets generated with 8 random seeds. Inside brackets is
the true mean estimated from bootstrap resampling and the 95% confidence interval. The results for the
individual seeds are presented in Appendix A in Table 4 and Figure 3.

benchmarks (mainly Burlot and Yvon (2017)) that
focus on a smaller number of morphological phe-
nomena. One benefit of our method is its compre-
hensiveness, focusing on the corpus-wide distribu-
tions of word forms.

Using only corpus-wide metrics such as BLEU,
as we used, does not discriminate between the
morphological errors, which we are interested in,
and other kinds of translation errors. In the ter-
minology of Burlot and Yvon (2017), this holis-
tic, document-level evaluation can be contrasted
with analytic evaluation that focuses more specif-
ically on difficulties in morphology. A trick that
could enable a more analytic assessment of the
translations of the unseen word forms would be
to align the words in the source sentences with the
words in the reference translations and the words
in the predicted translations, and evaluate only the
translations of the parts of the sentences that corre-
spond to the unseen word forms. Similar method
has been used previously for example by Bau et al.
(2019); Stanovsky et al. (2019).

Especially combined with this word-alignment
trick, we could also make our evaluation more
fine-grained (this concept also from Burlot and
Yvon (2017)), that is, our evaluation could differ-
entiate between different types of mistakes. Since
we have the morphological tags, we could sort the
words by morphological category and compare the
translation accuracies to look for any especially
difficult categories for the translation models.

To demonstrate the use of our proposed method,
we compared NMT models with different BPE vo-
cabulary sizes, since vocabulary size has been hy-
pothesised to affect the capacity to model mor-
phology in translation. Besides vocabulary size,

there are many other model design choices that
have been proposed to help either in generalisa-
tion or in capturing morphological phenomena.
Tokenisation methods that are more linguistically
motivated than BPE, such as the Morfessor meth-
ods (Creutz and Lagus, 2002; Virpioja et al., 2013)
or LMVR (Ataman et al., 2017), should help with
morphological generalisation since the tokens pro-
duced by these methods approximate the linguistic
morphemes more closely. Factored NMT systems
(Garcı́a-Martı́nez et al., 2016) can cover more
of the target side vocabulary than subword-based
NMT systems, which can also help in modelling
the morphology of the target language. We hope
our evaluation method will help assessing alterna-
tive NMT methods, such as these, from the per-
spective of morphological generalisation.

The DBCA method is general, and could be
applied to a wide variety of tasks and datasets.
Our application of DBCA is more specific, but it
still inherits some of the generality of the original
method. Our method is directly applicable to any
machine learning task in which the dataset consists
of sentences for which the morphological tags are
available. In the future, we intend to extend our as-
sessment of morphological generalisation to other
languages, as well as to other NLP tasks, such as
paraphrase detection.

6 Conclusion

We proposed a method to assess morphological
generalisation by distribution-based composition-
ality assessment. Because this method is fully au-
tomated, it enables more comprehensive assess-
ment of morphological generalisation than pre-
viously proposed synthetic benchmarks, in terms
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of the number of inflection types we can evalu-
ate. We used our method to assess NMT mod-
els with different BPE vocabulary sizes and found
that models with smaller vocabularies are better
at morphological generalisation than those with
larger vocabularies. Lastly, we discussed the var-
ied future directions that our generalisable method
offers, such as assessing morphological generali-
sation in other NLP tasks besides NMT.
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A Detailed results

Table 3 lists the results for the different source-
side (Finnish) BPE vocabulary sizes and different
compound divergence values. Table 4 includes the
pairwise comparisons of vocabulary sizes 500 and
18000 and 1000 and 6000 for all random seeds.
Figure 3 presents in a graph the pairwise compar-
isons of vocabulary sizes 500 and 18000, with all
compound divergence values.
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Vocab
size

BLEU per compound divergence
0.0 0.25 0.5 0.75 1.0

500 27.32 (27.32 ± 0.17) 26.57 (26.57 ± 0.20) 25.36 (25.35 ± 0.17) 24.77 (24.76 ± 0.18) 25.46 (25.46 ± 0.17)
1000 27.86 (27.87 ± 0.18) 27.33 (27.33 ± 0.20) 25.87 (25.87 ± 0.18) 25.56 (25.55 ± 0.18) 25.87 (25.87 ± 0.18)
2000 27.91 (27.92 ± 0.18) 27.58 (27.58 ± 0.20) 26.07 (26.07 ± 0.18) 25.53 (25.53 ± 0.18) 25.87 (25.88 ± 0.17)
3000 28.09 (28.09 ± 0.18) 27.54 (27.54 ± 0.20) 25.98 (25.97 ± 0.17) 25.69 (25.69 ± 0.18) 25.92 (25.92 ± 0.18)
6000 28.03 (28.03 ± 0.18) 27.37 (27.36 ± 0.20) 25.98 (25.98 ± 0.18) 25.44 (25.44 ± 0.19) 25.70 (25.70 ± 0.17)
9000 27.82 (27.82 ± 0.19) 27.26 (27.26 ± 0.21) 25.73 (25.73 ± 0.17) 25.36 (25.36 ± 0.19) 25.59 (25.59 ± 0.18)
18000 27.43 (27.43 ± 0.18) 26.81 (26.81 ± 0.21) 25.36 (25.35 ± 0.17) 24.74 (24.74 ± 0.19) 25.06 (25.06 ± 0.17)

chrF2++ per compound divergence

500 51.01 (51.01 ± 0.14) 50.58 (50.58 ± 0.16) 49.75 (49.75 ± 0.14) 49.24 (49.24 ± 0.16) 49.19 (49.19 ± 0.14)
1000 51.53 (51.53 ± 0.14) 51.33 (51.33 ± 0.16) 50.30 (50.30 ± 0.14) 49.98 (49.98 ± 0.15) 49.59 (49.59 ± 0.14)
2000 51.54 (51.54 ± 0.14) 51.52 (51.52 ± 0.16) 50.40 (50.40 ± 0.14) 49.91 (49.91 ± 0.15) 49.68 (49.68 ± 0.14)
3000 51.68 (51.69 ± 0.14) 51.47 (51.47 ± 0.16) 50.40 (50.40 ± 0.14) 50.04 (50.04 ± 0.15) 49.62 (49.62 ± 0.14)
6000 51.66 (51.66 ± 0.14) 51.33 (51.33 ± 0.16) 50.32 (50.32 ± 0.14) 49.79 (49.79 ± 0.16) 49.48 (49.48 ± 0.14)
9000 51.37 (51.37 ± 0.14) 51.09 (51.09 ± 0.16) 50.07 (50.07 ± 0.14) 49.78 (49.77 ± 0.16) 49.36 (49.36 ± 0.14)
18000 51.02 (51.03 ± 0.14) 50.78 (50.78 ± 0.16) 49.74 (49.74 ± 0.14) 49.23 (49.23 ± 0.15) 48.78 (48.78 ± 0.14)

Table 3: The BLEU and chrF2++ results for the different source-side (Finnish) BPE vocabulary sizes
and different compound divergence values. Inside brackets is the true mean estimated from bootstrap
resampling and the 95% confidence interval.
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chrF2++ BLEU
Seed Vocab DC = 0 DC = 1 DC = 0 DC = 1

11 500 51.01 (51.01 ± 0.14) 49.19 (49.19 ± 0.14) 27.32 (27.32 ± 0.17) 25.46 (25.46 ± 0.17)
18000 51.02 (51.03 ± 0.14) 48.78 (48.78 ± 0.14) 27.43 (27.43 ± 0.18) 25.06 (25.06 ± 0.17)

p = 0.2439 p = 0.0003 p = 0.0243 p = 0.0003

22 500 51.01 (51.01 ± 0.14) 49.08 (49.08 ± 0.15) 27.3 (27.3 ± 0.18) 25.2 (25.2 ± 0.18)
18000 50.85 (50.85 ± 0.14) 49.05 (49.05 ± 0.15) 27.17 (27.17 ± 0.18) 25.1 (25.1 ± 0.18)

p = 0.0003 p = 0.1913 p = 0.0107 p = 0.053

33 500 51.07 (51.07 ± 0.14) 49.37 (49.37 ± 0.17) 27.37 (27.37 ± 0.18) 25.09 (25.09 ± 0.2)
18000 50.97 (50.97 ± 0.14) 49.04 (49.04 ± 0.17) 27.3 (27.3 ± 0.18) 24.83 (24.83 ± 0.2)

p = 0.0047 p = 0.0003 p = 0.092 p = 0.0003

44 500 52.02 (52.02 ± 0.17) 49.7 (49.7 ± 0.18) 28.3 (28.3 ± 0.21) 25.8 (25.8 ± 0.22)
18000 52.44 (52.44 ± 0.17) 49.43 (49.43 ± 0.17) 28.72 (28.72 ± 0.21) 25.63 (25.63 ± 0.22)

p = 0.0003 p = 0.0003 p = 0.0003 p = 0.0077

55 500 52.33 (52.34 ± 0.18) 49.34 (49.34 ± 0.16) 29.04 (29.04 ± 0.23) 25.29 (25.29 ± 0.2)
18000 52.76 (52.76 ± 0.18) 49.04 (49.04 ± 0.16) 29.58 (29.58 ± 0.24) 25.08 (25.08 ± 0.2)

p = 0.0003 p = 0.0003 p = 0.0003 p = 0.001

66 500 50.98 (50.98 ± 0.14) 49.24 (49.24 ± 0.14) 27.12 (27.12 ± 0.18) 25.31 (25.31 ± 0.18)
18000 51.06 (51.06 ± 0.14) 48.87 (48.87 ± 0.14) 27.4 (27.4 ± 0.18) 25.04 (25.04 ± 0.17)

p = 0.0183 p = 0.0003 p = 0.0003 p = 0.0003

77 500 50.84 (50.83 ± 0.14) 49.46 (49.46 ± 0.14) 27.12 (27.12 ± 0.18) 25.41 (25.4 ± 0.16)
18000 50.68 (50.68 ± 0.14) 49.22 (49.22 ± 0.14) 27.06 (27.06 ± 0.18) 25.25 (25.25 ± 0.17)

p = 0.0007 p = 0.0003 p = 0.1186 p = 0.0023

88 500 50.97 (50.97 ± 0.14) 49.38 (49.38 ± 0.14) 27.22 (27.22 ± 0.18) 25.61 (25.61 ± 0.17)
18000 51.37 (51.37 ± 0.14) 49.05 (49.05 ± 0.14) 27.81 (27.81 ± 0.18) 25.43 (25.43 ± 0.18)

p = 0.0003 p = 0.0003 p = 0.0003 p = 0.0003

11 1000 51.53 (51.53 ± 0.14) 49.59 (49.59 ± 0.14) 27.86 (27.87 ± 0.18) 25.87 (25.87 ± 0.18)
6000 51.66 (51.66 ± 0.14) 49.48 (49.48 ± 0.14) 28.03 (28.03 ± 0.18) 25.7 (25.7 ± 0.17)

p = 0.0003 p = 0.0017 p = 0.0013 p = 0.001

22 1000 51.46 (51.46 ± 0.14) 49.64 (49.64 ± 0.15) 27.9 (27.9 ± 0.18) 25.69 (25.69 ± 0.18)
6000 51.47 (51.47 ± 0.14) 49.61 (49.61 ± 0.15) 27.94 (27.94 ± 0.19) 25.64 (25.64 ± 0.18)

p = 0.3059 p = 0.1786 p = 0.1519 p = 0.1383

33 1000 51.59 (51.59 ± 0.14) 49.7 (49.7 ± 0.17) 27.89 (27.88 ± 0.18) 25.45 (25.45 ± 0.2)
6000 51.63 (51.63 ± 0.14) 49.67 (49.68 ± 0.17) 28.02 (28.02 ± 0.18) 25.51 (25.51 ± 0.21)

p = 0.117 p = 0.2073 p = 0.0047 p = 0.1276

44 1000 52.67 (52.67 ± 0.16) 50.32 (50.32 ± 0.17) 29.01 (29.01 ± 0.21) 26.53 (26.53 ± 0.22)
6000 52.68 (52.68 ± 0.16) 50.06 (50.06 ± 0.18) 29.01 (29.01 ± 0.22) 26.33 (26.33 ± 0.22)

p = 0.2809 p = 0.0003 p = 0.3949 p = 0.0037

55 1000 52.8 (52.8 ± 0.18) 49.92 (49.92 ± 0.16) 29.66 (29.66 ± 0.24) 25.92 (25.92 ± 0.2)
6000 53.02 (53.03 ± 0.18) 49.72 (49.73 ± 0.16) 29.84 (29.85 ± 0.24) 25.73 (25.73 ± 0.2)

p = 0.0003 p = 0.0003 p = 0.0017 p = 0.0003

66 1000 51.39 (51.39 ± 0.14) 49.57 (49.57 ± 0.14) 27.64 (27.64 ± 0.18) 25.71 (25.71 ± 0.18)
6000 51.5 (51.49 ± 0.14) 49.37 (49.37 ± 0.14) 27.79 (27.79 ± 0.19) 25.54 (25.54 ± 0.18)

p = 0.0013 p = 0.0003 p = 0.0017 p = 0.0017

77 1000 51.51 (51.51 ± 0.15) 49.8 (49.8 ± 0.13) 27.86 (27.86 ± 0.18) 25.84 (25.84 ± 0.17)
6000 51.76 (51.76 ± 0.14) 49.74 (49.74 ± 0.14) 28.09 (28.09 ± 0.19) 25.74 (25.74 ± 0.17)

p = 0.0003 p = 0.0453 p = 0.0003 p = 0.022

88 1000 51.9 (51.9 ± 0.14) 49.95 (49.95 ± 0.14) 28.29 (28.29 ± 0.18) 26.2 (26.2 ± 0.18)
6000 51.6 (51.6 ± 0.14) 49.84 (49.84 ± 0.14) 28.01 (28.01 ± 0.18) 26.23 (26.23 ± 0.18)

p = 0.0003 p = 0.0007 p = 0.0003 p = 0.2209

Table 4: Pairwise comparisons of the source vocabulary sizes 500 and 18000; 1000 and 6000 on the
minimum and maximum compound divergence data splits. For 8 data split algorithm random seeds.
Inside brackets is the true mean estimated from bootstrap resampling and the 95% confidence interval.
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Figure 3: Comparison of vocabulary sizes 500 and 18000 with compound divergence values 0.0, 0.25,
0.5, 0.75 and 1.0. For 8 data split algorithm random seeds. The same results are partly in Table 4.
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Abstract
This paper presents the annotation pro-
cess of two Estonian named entity recog-
nition (NER) datasets, involving the cre-
ation of annotation guidelines for label-
ing eleven different types of entities. In
addition to the commonly annotated en-
tities such as person names, organiza-
tion names, and locations, the annota-
tion scheme encompasses geopolitical en-
tities, product names, titles/roles, events,
dates, times, monetary values, and per-
cents. The annotation was performed on
two datasets, one involving reannotating
an existing NER dataset primarily com-
posed of news texts and the other incorpo-
rating new texts from news and social me-
dia domains. Transformer-based models
were trained on these annotated datasets to
establish baseline predictive performance.
Our findings indicate that the best re-
sults were achieved by training a single
model on the combined dataset, suggest-
ing that the domain differences between
the datasets are relatively small.

1 Introduction

Named entity recognition (NER) is a practical
natural language processing (NLP) task that in-
volves identifying and extracting named entities
from texts, such as person names, organization
names, locations, and other types of entities. NER
is widely used in various downstream applications,
such as document anonymisation and text cate-
gorisation. Typically, modern NER systems are
trained as supervised tagging models, where an-
notated training data is utilised for training mod-
els to identify and tag text spans that correspond
to named entities.

For the Estonian language, prior endeavors to
develop NER systems have involved the creation

of an annotated dataset labelled with person, or-
ganisation, and location names (Tkachenko et al.,
2013). This dataset has been utilised for train-
ing CRF- and transformer-based NER models
(Tkachenko et al., 2013; Kittask et al., 2020; Tan-
vir et al., 2021). In addition to these efforts, a
dataset in a different domain, 19th-century parish
court records, was recently annotated with named
entities (Orasmaa et al., 2022).

This paper describes the efforts to augment fur-
ther the development of general-purpose named
NER systems for the Estonian language. The
primary focus of this study is annotating addi-
tional Estonian texts with named entities, utilising
a newly developed rich annotation scheme. Two
annotated datasets were created as part of this ef-
fort. Firstly, the existing NER dataset (Tkachenko
et al., 2013) was reannotated using the new an-
notation scheme. Secondly, approximately 130K
tokens of new texts, predominantly sourced from
news portals and social media, were annotated to
create a new dataset. These annotations serve to
expand the availability of annotated data for train-
ing and evaluating NER models in the Estonian
language.

The second part of this paper delves into
the experimental results obtained from training
predictive BERT-based models on the annotated
datasets. The primary objectives of these ex-
periments were to establish the baseline perfor-
mance of various entity types of the newly devel-
oped annotation scheme and to explore the optimal
utilisation of the two datasets, which stem from
slightly distinct domains. The findings revealed
that the baseline performance on the newly anno-
tated dataset was slightly lower than the less richly
annotated Estonian NER dataset, indicating that
the new annotations may possess some noise while
also being richer and more intricate. Moreover,
the study revealed that the domains of the two
datasets were similar enough such that a model
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trained on the combined dataset exhibited compa-
rable or even superior performance compared to
models trained on each dataset separately.

In short, our paper makes two key contributions:

1. The introduction of two novel Estonian NER
datasets that are annotated with a comprehen-
sive set of entities, enriching the available re-
sources for NER research in Estonian;

2. An evaluation of the performance of BERT-
based models on the newly annotated
datasets, providing baseline assessments for
these datasets.

2 Dataset Creation

This section describes the process of creating the
two labelled NER datasets for Estonian.1

2.1 Data Sources

The first dataset, referred to as the Main NER
dataset in our study, is a reannotation of the ex-
isting Estonian NER dataset (Tkachenko et al.,
2013). This dataset comprises approximately
220K words of news texts and exhibits a homo-
geneous domain. Notably, previous studies have
identified errors in the annotations of this dataset
(Tanvir et al., 2021), which motivated us to under-
take its reannotation.

The second dataset, referred to as the New NER
dataset in our study, is newly created. We aimed
to select approximately 130K tokens from news
and social media domains, with around 100K to-
kens from the news domain and 30K tokens from
the social media domain. To obtain the texts,
we sampled from the Estonian Web Corpus 2017
(Jakubı́ček et al., 2013), utilizing metadata such
as URL and web page title for text selection. For
news sources, we identified URLs and titles as-
sociated with major Estonian news sites such as
Postimees, EPL, ERR, and Delfi. For social me-
dia texts, we searched for keywords indicative of
well-known blogging and forum platforms such as
blogspot and foorum.

2.2 Annotation Guidelines

We devised annotation guidelines to label the data,
aiming to adopt a more comprehensive set of la-
bels beyond the commonly used person, organisa-

1The annotated datasets are available:
https://github.com/TartuNLP/EstNER
https://github.com/TartuNLP/EstNER_new

tion, and location names.2 We decided to differen-
tiate between geopolitical entities and geographi-
cal locations. Following similar works in Finnish
(Ruokolainen et al., 2020), we introduced labels
for events, products, and dates. Furthermore, we
included titles, times, monetary values, and per-
centages. The annotation guidelines included a
brief description for each entity, as used during the
annotation process, which was as follows:

• Persons (PER): This includes names referring
to all kinds of real and fictional persons.

• Organizations (ORG): This includes all kinds
of clearly and unambiguously identifiable
organizations, for example, companies and
similar commercial institutions as well as ad-
ministrative bodies.

• Locations (LOC): This includes all geograph-
ical locations not associated with a specific
political organization such as GPEs.

• Geopolitical entities (GPE): This includes all
geographic locations associated with a politi-
cal organization, such as countries, cities, and
empires.

• Titles (TITLE): This includes job titles, posi-
tions, scientific degrees, etc. Only those titles
should be annotated where a specific person
behind the title can be identified based on the
preceding text. The personal name immedi-
ately following the title is not part of the TI-
TLE. If the ORG tag precedes the title, only
the job title must be marked with the TITLE,
not the words in the ORG.

• Products (PROD): This includes all identifi-
able products, objects, works, etc., by name.

• Events (EVENT): This includes events with
a specific name.

• Dates (DATE): This includes time expres-
sions, both in day/month/year type, e.g., ”Oc-
tober 3rd“, ”in 2020“, ”2019“, ”in Septem-
ber“, as well as general expressions (”yester-
day“, ”last month“, ”next year“) if the expres-
sion has a clear referent. The criterion is that
based on the expression, it must be possible
to determine a specific point in time, i.e., a

2The annotation guidelines in Estonian are available upon
request.
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specific year, month, or day. Thus, vague ex-
pressions such as ”a few years from now“, ”a
few months ago“ are not suitable, but more
specific expressions such as ”five years later“,
”three months ago“, or ”the day before yes-
terday“ are suitable.

• Times (TIME): This includes time expres-
sions that refer to an entity smaller than a
day: times and parts of a day with a referent
(analogous to DATE entities). General ex-
pressions without a referent are not marked.
Durations are also not marked.

• Monetary values (MONEY): This includes
expressions that refer to specific currencies
and amounts in those currencies.

• Percentages (PERCENT): This includes en-
tities expressing percentages. A percentage
can be expressed both with a percentage mark
(%) or verbally.

2.3 Nested Entities

Similar to Ruokolainen et al. (2020), we incorpo-
rated nested entities into our annotation schema.
For instance, an example of a nested entity would
be ”New York City Government“, where the ORG
entity ORG encompasses the nested GPE entity
”New York“. We set a limit of up to three levels of
nesting. However, we restricted the annotation of
nested entities of the same type, except for ORG.
For instance, if ”The Republic of Ireland“ was an-
notated as GPE, further annotation of ”Ireland“ as
a nested GPE was not permitted. Nevertheless, in
cases such as ”The UN Department of Economic
and Social Affairs“ labelled as ORG, the word to-
ken ”The UN“ would be allowed to be annotated
as a nested ORG.

2.4 Annotation Process

The process of annotation was carried out sep-
arately for both datasets. For the Main NER
dataset, three annotators, who were graduate stu-
dents in general or computational linguistics, were
recruited. All annotators were native speakers of
Estonian. Each annotator independently labelled
the dataset based on the provided guidelines. Two
annotators completed annotations for the entire
dataset, while one annotator completed most of
the annotations, with a few documents remaining.
The annotation of the Main NER dataset was con-

ducted using Label Studio, a freely available open-
source platform for data annotation.

A total of twelve annotators were involved in
annotating the New NER dataset. Two annota-
tors completed the entire annotation process. One
of them was an undergraduate linguistic student,
while the other was a graduate student in computer
science with an undergraduate degree in linguis-
tics. The remaining ten annotators participated in
a graduate-level NLP course, and each annotated
approximately 12K word tokens as part of their
coursework. All annotators were native speak-
ers of Estonian. All annotators worked indepen-
dently, without access to each other’s work, ad-
hering to the provided annotation guidelines. As
a result, each text in the New NER dataset re-
ceived three independent annotations. The annota-
tion of the New NER dataset was performed using
DataTurks, an annotation platform currently non-
existent.

2.5 Label Harmonisation
Harmonising the annotations in the New NER
dataset involved both automatic and manual ap-
proaches. Initially, automatic harmonisation was
applied based on the following principle. If anno-
tators A and B had agreed on a particular anno-
tation, but annotator C had not provided any an-
notation, the final label was set to the annotation
agreed upon by A and B. Subsequently, the entire
corpus was manually reviewed by two individuals,
one of whom was the original annotator A, and
the other was the author of this paper. Through
discussion and deliberation, the labels were dis-
ambiguated. In most cases, the final label cho-
sen was the one that at least two annotators had
selected. However, in some instances, the label
was changed entirely, or a completely new span of
words was annotated as an entity based on mutual
agreement.

The disambiguation of annotations in the Main
NER dataset was carried out automatically. As per
the automatic procedure, a word span was labelled
as an entity if it had been marked as such by at
least two annotators and they had used the same
tag for that entity.

2.6 Inter-Annotator Agreement
In order to evaluate the reliability of the annota-
tions, inter-annotator agreements were computed
for the Main NER dataset, as shown in Table 1.
Fleiss’ kappa, an extension of Cohen’s kappa to
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1st level 2nd level 3rd level

0.65 0.23 -0.16

PER 0.95 0.27 0.66
ORG 0.76 0.33 0.19
LOC 0.65 0.35 0.18
GPE 0.84 0.47 -0.08
TITLE 0.63 0.21 0.00
PROD 0.48 0.02 –
EVENT 0.43 0.53 –
DATE 0.72 0.06 –
TIME 0.53 0.00 –
MONEY 0.78 0.00 –
PERCENT 0.90 – –

Table 1: Inter-annotator agreement of the Main
NER dataset, measured with the Fleiss κ.

accommodate more than two annotators, was com-
puted following the procedure outlined by Ruoko-
lainen et al. (2020). Each entity occurrence in the
text was treated as an instance of the positive class,
and the exact match of annotations between anno-
tators was checked for each entity. If annotators
had marked the same entity with the same label, it
was recorded as an instance of the positive class;
otherwise, it was recorded as an instance of the
negative class.

The inter-annotator agreement for the 1st level
entities was found to be in the range of substan-
tial agreement. However, in contrast, the annota-
tions for the second and third levels showed lower
agreement, as indicated by Fleiss’ kappa’s low or
even negative values. Specifically, person names,
geopolitical entities, and percentages achieved al-
most perfect agreement (κ > 0.8) at the first level.
Most other entity types showed substantial agree-
ment (κ > 0.6). The lowest agreement scores
were observed for products and events, which still
obtained moderate agreement (κ > 0.4).

2.7 Final Datasets

Following the label harmonisation process, the re-
sulting datasets were divided into the train, vali-
dation, and test splits. These datasets and the pre-
pared splits will be made available for future com-
parisons of developed models. Table 2 presents
the final datasets’ statistics.

The Main NER dataset was previously anno-
tated with only three entity types: PER, ORG,
and LOC, as reported by Tkachenko et al. (2013).

Among these, PER and ORG labels remain the
most frequently occurring ones in the dataset.
However, there have been changes in the annota-
tion guidelines, resulting in most LOC annotations
being replaced with GPE. Additionally, the Main
NER dataset contains a relatively large number of
titles, dates, and products. On the other hand, the
occurrence of event entities is comparatively low
in this dataset.

Similar trends in entity prevalence can be ob-
served in the New NER dataset. PER, ORG, and
GPE entities remain the most frequent, followed
by a relatively large number of titles, dates, and
products. Notably, the New NER dataset contains
a higher occurrence of EVENT entities compared
to the Main NER dataset. However, TIME, PER-
CENT, and MONEY entities are less frequent in
the New NER dataset.

3 Experiments

We had two primary goals when conducting the
experiments. The first goal was to establish the
baseline performance on both the Main NER and
New NER datasets. While several previous studies
have reported results on the old annotations of the
Main NER dataset, the new annotations we used in
our study are more comprehensive and were col-
lected independently without reference to the old
annotations. Therefore, the baseline performance
of the Main NER dataset with the new annotations
may differ. Similarly, as the New NER dataset
contains new material, it is crucial to evaluate its
baseline performance as well.

The second goal of our study was to inves-
tigate potential domain differences between the
two datasets. Specifically, the average document
length in the New NER dataset was more than
three times higher than that of the Main NER
dataset. Also, the New NER dataset contains
at least 30K tokens from the social media do-
main. Moreover, the news part of the New NER
dataset documents was not limited to formal news
texts but also included less formal opinion pieces.
Hence, our objective was to determine the opti-
mal approach for utilising these datasets, namely
whether training separate models for each dataset
would be more effective or if combining the data
and training a single model would yield better re-
sults.

We opted to utilise only the first-level annota-
tions for training our models. This decision was
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Main NER dataset New NER dataset
Train Val Test Total Train Val Test Total

Documents 525 18 39 582 78 16 15 109
Sentences 9965 2415 1907 14287 7001 882 890 8773
Tokens 155983 32890 28370 217243 111858 13130 14686 139674

1st lvl entities 14944 2808 2522 20274 8078 541 1002 9594
2nd lvl entities 987 223 122 1332 571 44 59 674
3rd lvl entities 40 14 4 58 27 0 1 28

PER 3563 642 722 4927 2601 109 299 3009
ORG 3215 504 541 4260 1177 85 150 1412
LOC 328 118 61 507 449 31 35 515
GPE 3377 714 479 4570 1253 129 231 1613
TITLE 1302 171 209 1682 702 19 59 772
PROD 874 161 66 1101 624 60 117 801
EVENT 56 13 17 86 230 15 26 271
DATE 1346 308 186 1840 746 64 77 887
TIME 456 39 30 525 103 6 6 115
PERCENT 137 62 58 257 75 11 1 87
MONEY 291 76 153 520 118 12 1 131

Table 2: Statistics of the two new Estonian NER datasets.

based on the finding that much fewer entities were
labelled at the second and third levels, as evi-
denced by the statistics presented in Table 2. Fur-
thermore, the inter-annotator agreements for the
second and third-level entities were found to be
lacking, as illustrated in Table 1. Hence, we fo-
cused solely on the first-level annotations to en-
sure a more reliable and consistent training pro-
cess.

4 Model

We employed a transformer-based token classifi-
cation model for our experiments, adopting the
commonly-used BIO format for entity labelling.
In this format, the B-tag indicates the start of an
entity, the I-tag denotes the continuation of an
entity, and the O-tag is assigned to word tokens
that do not belong to any named entity. The To-
kenClassification implementation from the Hug-
gingface transformers library (Wolf et al.,
2020) was utilised for this purpose. As our base
model, we used the EstBERT model with a se-
quence length of 1283 (Tanvir et al., 2021), which
was fine-tuned on the NER datasets.

In our experiments, we kept the batch size fixed

3https://huggingface.co/tartuNLP/
EstBERT

at 16 and utilised the Adam optimiser with betas
set to 0.9 and 0.98 and an epsilon value of 1e-
6. The models were trained for a maximum of
150 epochs, with early stopping implemented if
the overall F1-score on the validation set did not
improve for 20 consecutive epochs by more than
0.0001 F1-score points. We used the seqeval
package (Nakayama, 2018) for evaluations during
training and final testing. The learning rate was
optimised on the validation set using a grid of val-
ues 5e-6, 1e-5, 3e-5, 5e-5, 1e-4. Each model was
trained ten times with different random seeds to
account for randomness, and the mean values with
standard deviations are reported.

5 Results

We first trained and evaluated models separately
on both datasets to assess their overall modeling
performance. Then, we trained a joint model us-
ing data from both datasets and compared its per-
formance on the evaluation sets of both datasets.
This allowed us to evaluate the effectiveness of us-
ing a combined dataset compared to training on
each dataset separately.
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Reannoated Main NER New NER
# Precision Recall F1-score # Precision Recall F1-score

PER 642 .827 (.012) .871 (.009) .848 (.005) 109 .809 (.044) .816 (.023) .811 (.019)
ORG 504 .654 (.016) .666 (.014) .660 (.013) 85 .580 (.027) .585 (.052) .581 (.024)
LOC 118 .643 (.036) .478 (.028) .547 (.016) 31 .600 (.065) .560 (.060) .576 (.044)
GPE 714 .821 (.012) .831 (.021) .826 (.008) 129 .900 (.017) .879 (.030) .889 (.014)
TITLE 171 .676 (.023) .814 (.014) .739 (.011) 19 .750 (.062) .718 (.064) .731 (.048)
PROD 161 .572 (.033) .628 (.026) .598 (.024) 60 .509 (.043) .474 (.052) .488 (.029)
EVENT 13 .069 (.029) .077 (.034) .072 (.031) 16 .518 (.104) .558 (.104) .525 (.070)
DATE 308 .682 (.020) .720 (.017) .700 (.007) 64 .816 (.027) .824 (.024) .820 (.021)
TIME 39 .553 (.066) .555 (.045) .553 (.053) 6 .812 (.041) .788 (.108) .797 (.074)
PERCENT 62 .985 (.016) .867 (.032) .922 (.019) 11 .895 (.126) 1 (–) .940 (.074)
MONEY 76 .636 (.040) .568 (.030) .600 (.030) 12 .659 (.085) .742 (.126) .693 (.083)

Overall 2571 .737 (.010) .757 (.009) .747 (.004) 497 .736 (.014) .734 (.017) .735 (.006)

Table 3: Predictive performance of models trained on both two datasets, evaluated on the respective
validation set.

5.1 Separate Models

The results of the experiments with separate mod-
els, evaluated on the respective validation sets, are
reported in Table 3. The overall performance, as
indicated in the bottom row of the table, is similar
for both datasets, suggesting that the annotation
and modeling difficulty is comparable in the two
datasets.

The entities that were most accurately pre-
dicted in both datasets are PER, GPE, and PER-
CENT. Conversely, the lowest accuracy was ob-
served when predicting LOC, EVENT, and TIME
for the reannotated Main NER dataset, and LOC,
EVENT, and PROD for the New NER dataset.
Predicting EVENT names is particularly challeng-
ing in the Main NER dataset, likely due to the lim-
ited number of instances (only 56) in the respec-
tive training set.

Precision Recall F1-score

PER .948 .958 .953
ORG .784 .826 .805
LOC .899 .914 .907

Overall .891 .912 .901

Table 4: Results of the old annotations of the Main
NER test set. Adapted from Table 11 (Tanvir et al.,
2021).

A comparison of the results between the Rean-
notated Main dataset and the previous annotations

of the Main NER dataset (refer to Table 4, sourced
from Tanvir et al. (2021), Table 11) reveals that
the performance on all three entities (PER, ORG,
LOC) used in the old annotations has declined. It
should be noted that the modeling results are not
directly comparable, as Table 3 presents validation
set results while Table 4 presents test set results.
However, the differences in performance suggest
that the new annotation might be more complex
for the models to learn.

5.2 Joint Model

The joint model is trained using the combined
train sets of the Main NER and New NER datasets.
Table 5 presents the F1-scores of the joint model
on the merged validation set and on the validation
sets of both datasets individually. Notably, the
overall F1-scores of the joint model are slightly
higher than the F1-scores of the separate models
(0.766 vs. 0.747 for the Main dataset and 0.752
vs. 0.735 for the New dataset), as evident from the
bottom row of Table 3.

Figure 1 presents a detailed entity-level com-
parison of the joint and separate models on their
respective validation sets. Specifically, Figure 1a
illustrates the comparison on the validation set of
the Main NER dataset. The results reveal that the
joint model performs similarly or better than the
separate models across most entities, except for
the TIME entity, which already had low perfor-
mance in the Main dataset and further decreases
with the joint model from 0.553 to 0.433. Con-
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(a) Evaluation on the Main NER validation set.

(b) Evaluation on the New NER validation set.

Figure 1: An entity-level comparison of the joint model against models trained on each dataset separately.
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Main+New Main New Main+New Main+New Test
Val F1 Val F1 Val F1 Test F1 Prec Rec F1

PER .868 (.007) .872 (.008) .854 (.012) .879 (.007) .840 .927 .882
ORG .690 (.010) .702 (.009) .669 (.021) .700 (.016) .698 .693 .696
LOC .549 (.019) .541 (.021) .599 (.043) .526 (.025) .478 .563 .517
GPE .849 (.005) .843 (.005) .884 (.009) .826 (.004) .827 .830 .828
TITLE .733 (.013) .737 (.011) .709 (.034) .777 (.017) .788 .758 .773
PROD .598 (.018) .634 (.028) .481 (.042) .568 (.020) .576 .579 .578
EVENT .370 (.053) .310 (.043) .504 (.053) .264 (.034) .306 .256 .278
DATE .708 (.013) .699 (.016) .792 (.024) .740 (.010) .727 .768 .747
TIME .451 (.065) .433 (.075) .627 (.057) .463 (.043) .548 .472 .507
PERCENT .969 (.019) .969 (.013) .960 (.049) .958 (.013) .967 .983 .975
MONEY .622 (.032) .625 (.042) .719 (.105) .699 (.014) .789 .614 .690

Overall .761 (.004) .766 (.002) .752 (.010) .773 ( .006) .766 .783 .774

Table 5: Evaluations of the joint model trained on the combined train sets of both datasets. Left block:
F1-scores on the different portions of the validation sets. Middle block: F1-scores on the combined test
set. Right block: test scores of the best-performing joint model.

versely, the prediction accuracy of the EVENT en-
tity, while remaining relatively low, notably im-
proves from 0.072 to 0.310 with the joint model.

Upon comparing the results of the joint and sep-
arate models on the New NER dataset (refer to
Figure 1b), we observe that the joint model per-
forms similarly or better on certain entity types,
including PER, ORG, GPE, LOC, PROD, PER-
CENT, and MONEY while exhibiting slightly
lower performance on the remaining entities. No-
tably, the TIME entity experiences the most signif-
icant drop in performance, declining from 0.797 to
0.627 with the joint model.

In summary, our findings support using a joint
model instead of two separate models. While there
may be a slight drop in prediction performance
for certain entities, particularly in the New NER
dataset, the overall F1-score on the validation sets
of both datasets is higher with the joint model
compared to the separate models. As a result, we
proceed with the joint model for the final evalua-
tions on the test set.

5.3 Test Results

The test results of the joint model on the com-
bined test set can be found in the fourth column
of Table 5. The overall F1-score is slightly higher
on the test set than on the validation set. Specifi-
cally, for certain entities such as PER, ORG, TI-
TLE, DATE, TIME, and MONEY, the test F1-
score is higher than the validation F1-score, while

it is slightly lower for others. Notably, the EVENT
entity experiences the most significant drop in per-
formance, with the test F1-score declining from
0.370 to 0.264.

All the results mentioned above were presented
as averages across ten different runs. Additionally,
we selected a joint model with the highest overall
validation F1-score to make it publicly available.
The test scores of this chosen model are provided
in the right-most block of Table 5. The overall F1-
score of this best model is in line with the mean
F1-score, indicating that it was not the model with
the highest F1-score on the test set. However, due
to the small standard deviations observed, the re-
sults of all models are within a close range; the
highest F1-score achieved on the test set is 0.785.4

6 Discussion

This study marks the first endeavor to annotate
a more comprehensive set of entities beyond the
commonly annotated person, organization, and lo-
cation names in the Estonian language. The inter-
annotator agreement results indicate that the an-
notators consistently labelled certain entities, such
as PER, GPE, and PERCENT, while the relia-
bility was lower for other entities. In particular,
the EVENT entity had the lowest inter-annotator
agreement. An in-depth analysis of inconsisten-
cies in annotation, both in EVENT and other en-

4The best joint model is available: https://
huggingface.co/tartuNLP/EstBERT_NER_v2
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tities, could be conducted as a follow-up work to
identify the sources of confusion and enhance the
annotation guidelines.

In line with previous efforts in other languages,
such as Finnish, we opted to annotate nested en-
tities by permitting up to three levels of nesting.
However, upon analysing the data statistics, it was
revealed that only a few entities were annotated on
the third level. Additionally, even though many
entities were labelled on the second level, their
reliability, as evidenced by inter-annotator agree-
ments, was not deemed sufficiently high. Hence,
utilising these labels for training predictive models
may not yield productive results.

In this study, we obtained three sets of anno-
tations for both datasets, enabling us to assess the
variability in the annotations. However, it is essen-
tial to acknowledge that the choice of annotators
may have introduced limitations to the annotation
process. For the Main NER dataset, all annotators
were linguistic students, which provided expertise
and interest in the annotation task, as intended.
However, this uniformity in the background may
have resulted in limitations in the recall of entity
annotations, as noted in previous research (Der-
czynski et al., 2016). On the other hand, the anno-
tators for the New NER dataset were more diverse,
including computer science students. Neverthe-
less, since the task was part of their coursework,
their motivation and interest in the annotation task
might not have been as high.

Our experimental results with the BERT-based
model indicate that although there may be a do-
main shift between the two datasets at the entity
level for certain entities, training a single joint
model on both datasets seems justified. It is impor-
tant to note that our models based on EstBERT are
only baselines, and as demonstrated in previous
studies (Kittask et al., 2020; Tanvir et al., 2021),
utilising other base models such as Estonian Wik-
iBERT (Pyysalo et al., 2021) or XLM-RoBERTa
could potentially yield higher performance results.

7 Conclusions

We provided a detailed overview of the annota-
tion process for two Estonian NER datasets, an-
notated with a comprehensive annotation scheme
encompassing eleven distinct entity types. Addi-
tionally, the datasets included nested annotations
of up to three levels, although the reliability of the
nested annotations was found to be less consistent

compared to the first-level entities. In order to es-
tablish baseline predictive accuracy, we conducted
experiments with two modeling scenarios on these
newly annotated datasets. This involved training
two separate models, one for each dataset and a
joint model on the combined dataset. Our find-
ings revealed that the joint model outperformed
the separate models, except for a few entity types,
indicating that the domain differences between the
datasets are relatively minimal. As such, we rec-
ommend utilising these two datasets jointly as a
single, more diverse dataset for NER training pur-
poses.
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Miloš Jakubı́ček, Adam Kilgarriff, Vojtěch Kovář,
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Abstract

This paper focuses on neural machine
translation (NMT) for low-resource
Finno-Ugric languages. Our contributions
are three-fold: (1) we extend existing
and collect new parallel and monolingual
corpora for 20 Finno-Ugric languages, (2)
we expand the 200-language translation
benchmark FLORES-200 with manual
translations into nine new languages, and
(3) we present experiments using the
collected data to create NMT systems for
the included languages and investigate
the impact of back-translation data on
the NMT performance for low-resource
languages. Experimental results show that
carefully selected back-translation direc-
tions in a multilingual setting yield the
best results in terms of translation scores,
for both high-resource and low-resource
output languages.

1 Introduction

Neural networks have caused rapid growth in out-
put quality for many natural language processing
tasks, including neural machine translation (NMT,
Vaswani et al., 2017). However, the output qual-
ity crucially depends on the availability of large
amounts of parallel and monolingual data for the
covered languages.

Recently synthetic data and cross-lingual trans-
fer have not only shown potential for low-resource
language NMT but also have been taken to the ex-
treme through open massively multilingual trans-
lation models (Fan et al., 2021; NLLB Team et al.,
2022). In addition to translation models, a mas-
sive translation benchmark FLORES-200 (NLLB
Team et al., 2022) has been created, consisting of
multi-parallel translations of the same sentences
into 200 languages.

Here we focus on NMT for low-resource lan-
guages from a family of languages spoken in
Europe, but not part of the Indo-European fam-
ily: Finno-Ugric languages. Three members of
that family (Estonian, Finnish and Hungarian) are
commonly included in massively multilingual ef-
forts and can be considered medium-resource lan-
guages. At the same time, several lower-resource
Finno-Ugric languages are not included in the ex-
isting massively multilingual models (M2M-100,
NLLB). In terms of the number of speakers, they
range from 20 near-native speakers of Livonian to
several hundred thousand speakers of Mordvinic
languages.

Our contributions are three-fold. First, we
present a collection of parallel and monolingual
corpora that can be used for training NMT sys-
tems for 20 low-resource Finno-Ugric languages.
The resources are collected from sources that are
already digital (primarily online sources); the lan-
guages and the data are described in Section 3.

Secondly, we expand a part of the 200-language
translation benchmark FLORES-200 with man-
ual translations into the low-resource Finno-Ugric
languages. This includes the first 250 sentences of
FLORES-200 and the following languages: Komi,
Udmurt, Hill and Meadow Mari, Erzya, Livonian,
Mansi, Moksha and Livvi Karelian. This new
benchmark is described in Section 4.

Finally, we use the collected parallel and mono-
lingual data in experiments to create NMT systems
for the covered languages. The main question we
address is which subsets of translation directions
yield the best results for the included low-resource
languages. We achieve an average chrF++ score of
26.8 when translating from high-resource to low-
resource languages included in our expansion of
FLORES-200. The complete experiments and re-
sults are presented in Sections 5 and 6.
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2 Related Work

Low-resource NMT Machine translation is
dominated by neural methods in current research.
Neural machine translation also requires large
amounts of training segments for high-quality
translation across different domains. That is a
challenge when it comes to low-resource lan-
guages.

In Gu et al. (2018) and Sennrich and Zhang
(2019), the authors investigate the best NMT
model setups, with Sennrich and Zhang (2019)
showing a comparison to phrase-based systems
that are not that common these days. Gu et al.
(2018) and Kocmi and Bojar (2018) indicate that
training universal models (sharing parameters be-
tween multiple languages) and transfer learning
are two aspects that get significant gains for low-
resource language pairs in translation quality.

More recently, low-resource machine transla-
tion has risen to the attention of more and more
research groups with multiple comprehensive sur-
veys emerging (Haddow et al., 2022; Wang et al.,
2021), showing that there has already been a lot of
work done that can now be systematically aggre-
gated and utilized in further research.

Low-resource NMT for Finno-Ugric languages
Some of the Finno-Ugric languages have been
considered in the context of NMT before. Tars
et al. (2021, 2022a,b) and Rikters et al. (2022)
present experiments with several Sami languages,
Võro and Livonian. They used similar techniques
like multilinguality, pre-trained models, transfer
learning, and back-translation to better the trans-
lation quality. Our work aims to bridge the gap
between the other low-resource Finno-Ugric lan-
guages and those that already have good support,
offered by the previously published papers.

In 2022, Livonian-English was part of the trans-
lation shared task at WMT, the International Con-
ference of Machine Translation (Kocmi et al.,
2022). A Livonian-English test set was created;
in our work, we add Livonian to FLORES-200,
which covers several language pairs more than the
WMT’22 test set.

Back-translation in low-resource setting
Back-translation is a widely used method for
enhancing translation quality while making use
of monolingual data (Sennrich et al., 2016). This
is also one of the aspects that allows for good
quality NMT systems in the low-resource setting

because low-resource languages lack parallel data
while monolingual data is often much easier to
find.

There has been research into exploring the
specifics of back-translation like models used for
synthetic data creation, beam search vs greedy
search, the domain of monolingual data as well as
amounts of synthetic data (Edunov et al., 2018),
the last of them is the closest we also desire to
investigate in our low-resource Finno-Ugric set-
ting. Other research goes into detail about how di-
verse the synthetic data should be (Burchell et al.,
2022) and how effective iterative back-translation
is (Hoang et al., 2018).

Pre-trained models For multilingual NMT, it
has become insufficient to train models from
scratch, instead using pre-trained models has be-
come a prevalent method for all NLP tasks. In ma-
chine translation, the massively multilingual mod-
els of M2M-100 and NLLB are a good starting
point to use for fine-tuning and transfer learning
(Fan et al., 2021; NLLB Team et al., 2022).

3 Languages and Data

The Finno-Ugric language group has two major
branches: Finno-Permic and Ugric. Although both
branches share common linguistic roots, they are
quite distant.

The Finno-Permic branch includes two high-
resource languages, Estonian and Finnish, and
several low-resource languages, such as Komi,
Komi Permyak, Udmurt, Hill and Meadow Mari,
Erzya and Moksha, Proper and Livvi Karelian, Lu-
dian, Võro, Veps, Livonian, Sami languages. The
Ugric branch comprises three languages: high-
resource Hungarian and two low-resource Mansi
and Khanty.

In this work, we develop an NMT system
between 20 low-resource Finno-Ugric (FU) lan-
guages shown in Figure 1 and seven high-resource
languages (English, Estonian, Finnish, Hungarian,
Latvian, Norwegian (Bokmål), and Russian). The
selection of the high-resource languages is not ac-
cidental: Estonian, Finnish, and Hungarian be-
long to the FU language family, while Latvian
has markedly influenced Livonian, Norwegian has
deeply affected the Sami languages and Russian
has had a profound impact on the Permic, Mord-
vinic, Mari, Karelian, Veps, and Ob-Ugric lan-
guages.
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Finno-Ugric

Ugric

Hungarian
(hu)

Mansi
(mns)

Khanty
(kca)

Finno-
Permic

Permic

Komi
(kpv)

Komi-
Permyak

(koi)

Udmurt
(udm)

Finno-
Volgaic

Mari

Meadow
Mari
(mhr)

Hill Mari
(mrj)

Finno-Samic

Sami

North Sami
(sme)

South Sami
(sma)

Inari Sami
(smn)

Lule Sami
(smj)

Skolt Sami
(sms)

Finno-
Mordvin

Mordvin

Erzya
(myv)

Moksha
(mdf)

Balto-Finnic

Finnish
(fi)

Ludian
(lud)

Proper
Karelian

(krl)

Võro
(vro)

Estonian
(et)

Veps
(vep)

Livvi
Karelian

(olo)

Livonian
(liv)

Figure 1: Languages from the Finno-Ugric language family, for which we have created MT systems.
Green colour represents branches, orange — languages. The Finno-Permic languages are visualized
according to the Janhunen classification (Janhunen, 2009).

3.1 Monolingual corpora
We collected monolingual corpora mainly by
crawling texts off the web and combining with
pre-existing corpora. Three main categories of
texts can be distinguished: news, Wikipedia, and
biblical. Texts that do not fall into these cate-
gories have been grouped together under the cate-
gory “Other”. Table 1 provides more information
of the amount of data collected.

Wikipedia texts were collected from the
Wortshatz corpora collection (Goldhahn et al.,
2012) and the Tatoeba Translation Challenge cor-
pora (Tiedemann, 2020).

The biblical subcorpus consists of texts taken
from the Finugorbib1 and the open corpus of Veps
and Karelian languages “VepKar” (Boyko et al.,
2022)2.

In order to create a subcorpus of news, we used
the following online news media:

• Komi (kpv): http://komikerka.ru/,
https://komiinform.ru/news/e/161,
https://www.nbrkomi.ru/kraevedenie/vyltoryas

• Udmurt (udm): https://udmddn.ru/ivorjos/,
https://oshmes.info/

1http://www.finugorbib.com/alt/alt al.html
2http://dictorpus.krc.karelia.ru/en

• Erzya (myv): https://vk.com/club78443596

• Moksha (mdf): https://mokshapr.ru/

• Livvi Karelian (olo):
https://www.omamedia.ru/ka/

• Veps (vep): https://www.omamedia.ru/ve/

• Mansi (mns): https://khanty-yasang.ru/

• Khanty (kca): https://khanty-yasang.ru

The subcorpus “Other” is a collection of texts
from the Mozilla dataset of voices “Common
Voice”3 and the open corpus of Veps and Karelian
languages “VepKar”.

Monolingual data for most of the high-resource
languages (English, Estonian, Finnish, Hungarian,
Latvian, Russian) was sampled from the WMT
news dataset4. The Norwegian monolingual data
was sampled from the “Norsk aviskorpus”5. Par-
allel data between high-resource languages was
sampled from OPUS (Tiedemann, 2012).

We share the part of the monolingual corpora6.
3https://commonvoice.mozilla.org/en/datasets
4https://data.statmt.org/news-crawl/
5https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-

no-sbr-4/
6https://huggingface.co/datasets/tartuNLP/smugri-data
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mono

wiki bible news others total

kpv 18.4 4.5 38.3 61.2
koi 11.5 1.2 12.7
udm 43.5 3.7 36 83.2

mrj 49.5 14.6 64.1
mhr 141 109 251

myv 73.8 1.3 7.7 82.8
mdf 8 3.9 3.9 0.3 16.1

krl 1.8 18.4 20.2
lud 5.3 5.3
olo 21 19.4 40.4
vep 71.3 0.9 7.8 35.3 115.3
vro 162 162
liv 40 40

sma 55 55
sme 34 34
smj 128 128
smn 123 123
sms 76.7 76.7

mns 0.8 10.3 11.1
kca 0.8 13.3 14.1

Table 1: The collected monolingual corpus of the
low-resource languages. The figures in the table
are in thousands of sentences.

3.2 Parallel Corpora with Russian

As the majority of speakers of the low-resource
FU languages live in Russia, most of the paral-
lel translations we have collected are in Russian
(see Table 2). A substantial portion of the parallel
corpus consists of biblical texts from the Finugor-
bib and “VepKar”. The rest of the parallel corpus
comprises various texts, mostly collected from the
“VepKar” and Finnougoria webpage7.

3.3 Data for Võro, Livonian, and Sami
Languages

The data (parallel and monolingual) for the Võro,
Livonian, and Sami languages that we included
in our experiments were taken from the previous
editions of NMT developments with low-resource
FU languages (Tars et al., 2021, 2022b; Rikters
et al., 2022). Võro data is mostly from a META-

7https://finnougoria.ru/

parallel (Ru)

bible others total

kpv 11 2 13
koi 8 0.3 8.3
udm 30 30

mrj 8 8
mhr 9 9

myv 11.5 0.9 12.4
mdf 11.5 1 12.5

krl 10.5 7.7 18.2
lud 10.5 10.5
olo 11.9 4 15.9
vep 16.4 11.1 27.5

mns 0.7 0.7
kca 2 2

Table 2: The collected parallel corpus with Rus-
sian. The figures in the table are in thousands of
sentences.

SHARE8 source consisting of newspapers, fiction,
and a handful of other domains. Livonian data
comes from OPUS (Tiedemann, 2012) Liv4ever
dataset. Sami language data was collected in pre-
vious works from the resources of The Arctic Uni-
versity of Norway9.

4 Benchmark dataset

In order to create a multilingual benchmark
for Finno-Ugric languages10, we took the first
250 rows of the FLORES dataset (NLLB Team
et al., 2022) and had them translated into nine
Finno-Ugric languages: Komi, Udmurt, Hill and
Meadow Mari, Erzya, Moksha, Livonian, Mansi,
and Livvi Karelian by a team of bilingual speak-
ers, both natives and fluent speakers, of Estonian
or Russian and low-resource FU languages. Most
translators have an academic degree in linguistics
or have extensive translation experience.

While translating, translators have encountered
the following problems:

1) Some sentences of the FLORES dataset con-
tain very specific vocabulary, such as “barbs” or
“barbules”, which can be hard to translate because

8https://doi.org/10.15155/1-00-0000-0000-0000-001A0L
9https://giellalt.uit.no/tm/TranslationMemory.html

10https://huggingface.co/datasets/tartuNLP/smugri-flores-
testset
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the translators are unfamiliar with this scientific
domain.

2) Some words, such as “inning” or “shuttle”,
are not commonly used or have never been used in
some FU languages. As a result, translators have
had to create new words based on their sense of
the language.

3) The FLORES dataset contains a few lengthy
sentences, whereas, in some FU languages, it is
preferable to use shorter sentences. So the long
sentences have been divided into shorter sentences

While working on creating new benchmark
datasets, we found a broken row in the original
English dataset: “Singer Sanju Sharma started the
evening, followed by Jai Shankar Choudhary. es-
ented the chhappan bhog bhajan as well. Singer,
Raju Khandelwal was accompanying him.” As
we can see, the second sentence makes no sense.
To fix it, (i) we have omitted this sentence in
the English, Latvian, Norwegian (Bokmål), and
Russian datasets; (ii) we have added the transla-
tion of the last sentence, which was missing, to
the Estonian dataset (“Õhtut alustas laulja Sanju
Sharma, kellele järgnes Jai Shankar Choudhary.
Laulja Raju Khandelwal oli teda saatmas”); (iii)
we have edited the first sentence in the Finnish
dataset by removing part of it (“Illan aloitti laulaja
Sanju Sharma, ja häntä seurasi Jai Shankar Choud-
hary , joka esitti myös chhappan bhogien bhajanin.
Häntä säesti laulaja Raju Khandelwal.”); (iv) we
have replaced the second sentence in the Hun-
garian dataset (“Sanju Sharma énekes indı́totta az
estét, õt követte Jai Shankar Choudhary. pedig a
chhappan bhog bhajant adta elő Raju Khandelwal
kı́séretében. Raju Khandelwal énekes kı́sérte.”).

5 Experiments

One of the goals of our paper was to find out which
language pairs are needed to reach a certain level
of quality for low-resource NMT models in the
Finno-Ugric setting. More specifically, the ques-
tion is whether it is necessary for low-resource
multilingual systems to back-translate in all direc-
tions (which is costly) or subsets of translation di-
rections can suffice? By finding optimal amounts
of synthetic data we can optimize the overall sys-
tem creation process by making it less costly and
less time-consuming while being able to increase
the number of iterations performed.

5.1 Experiment setup
The baseline in this work is a pre-trained multi-
lingual neural machine translation model (M2M-
100, 1.2 billion parameters) that has been fine-
tuned on parallel data of previously unseen lan-
guage pairs in addition to sampled high-resource
language pairs to reduce catastrophic forgetting
(20k samples per high-resource language pair).

For the back-translation experiments, we de-
signed four sets of back-translation data:

1. Synthetic data between all languages (702
language pairs) (all-all).

2. 10% of synthetic data of every language pair
in the first set (all-all-10).

3. Synthetic data from each low-resource lan-
guage to each high-resource language and
vice versa (for example Udmurt-English, Es-
tonian, Finnish, Latvian, Norwegian, Hun-
garian, Russian) (L-H).

4. Synthetic data from each low-resource lan-
guage to its related high-resource languages
and languages it had original parallel data
with and vice versa (for example Udmurt-
Estonian, Finnish, Russian) (L-rH).

All of the sets had an upper limit of 100k syn-
thetic segments per language pair.

The third and fourth sets were chosen a bit more
strategically, incorporating linguistic knowledge
about the low-resource languages. The third set
was created to see whether high-resource mono-
lingual data helps the low-resource languages
more efficiently when we do not have other data
distracting the model. The fourth set included
synthetic data for each low-resource language to
its related high-resource languages plus language
pairs that it already had parallel data with.

5.2 Technical specifications
We trained all the described NMT systems on the
LUMI11 supercomputer. All models were fine-
tuned with the Fairseq framework (Ott et al., 2019)
implementation of M2M-100 (Fan et al., 2021) for
350k updates with a batch size of 3840 tokens (the
number was chosen to match earlier versions of
models trained with the Huggingface implemen-
tation of M2M-100). All models were fine-tuned
on 4 AMD Mi250X GPU-s. We used custom

11https://www.lumi-supercomputer.eu/about-lumi/
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scripts12 to expand the embedding matrix and the
vocabulary of M2M-100.

6 Results

Quantitative analysis To get an overview of the
quality of the models and compare different syn-
thetic data settings, we compare chrF++ (Popović,
2015, 2017) results for all of the experiments, cal-
culated using sacreBLEU (Post, 2018)13. As we
are evaluating morphologically rich languages, re-
porting chrF++ as the main automatic metric gives
the most truthful results, whereas BLEU (Papineni
et al., 2002) is too punishing on this type of lan-
guages.

In Table 3, we display comparisons of all five
models (baseline and four models with different
synthetic datasets) with different clusterings of
language pairs.

In the subtable 3a, we notice that adding
synthetic data from every language pair dam-
ages the translation quality translating into low-
resource languages. Comparing all-all and
all-all-10 models, where all-all-10
contains 90% less synthetic data, higher quality
is obtained by the all-all-10 over all of the
language pairs as well as translating into low-
resource languages. This means that better results
are achieved with less synthetic data and less train-
ing time/resources used.

The cause of this situation is the fact that al-
though we limited monolingual data to 100k for
each language pair, some smaller language pairs
had a lot less than 100k monolingual sentences.
Taking only 10% of the synthetic data leveled the
distribution of high- and low-resource synthetic
data and allowed high-resource to low-resource
pairs to get more attention during training.

The best scenario for translating into low-
resource languages seems to be to use synthetic
data from low-resource language into related high-
resource languages (L-rH). This is shown by the
subtables 3a and 3c. For translating from low-
resource languages to high-resource languages,
however, the most efficient is to add synthetic
data from each low-resource language to all the
high-resource languages involved in the initial
fine-tuning (L-H), instead of using the larger
all-all model.

12https://github.com/TartuNLP/m2m-100-finetune
13sacreBLEU signature:

nrefs:1|case:mixed|eff:yes|
nc:6|nw:2|space:no|version:2.0.0

Comparing the baseline to all the other mod-
els, we see significant improvements which can
be explained by the fact that the parallel data for
low-resource languages originated mainly from
the bible, but monolingual data originated from
different domains, even more for the high-resource
languages.

One anomaly clear from subtable 3c, is the
Mansi language performing badly across all of the
models with the highest score being 10+ points
below the scores for other languages. After fur-
ther inspection, the fault seemed to be the non-
normalized symbols in the dataset which were not
included in the dictionary before training and were
causing unknown symbols in the translations.

We do not report results for low-resource lan-
guages that lack the FLORES benchmark, be-
cause the held-out test set is too biased towards
the bible domain and there is no other compre-
hensive benchmark for the rest of the low-resource
languages.

In addition to the mentioned experiments, we
tried filtering the back-translation data with some
of the same filters used to filter the original paral-
lel data. However, the results of the experiments
with filtered back-translation data were the same
or even a little worse than with the non-filtered
back-translation data. Thus, we do not report these
results and leave the thorough back-translation fil-
tering analysis for future work.

Comparison to previous results To compare
some of the language pairs to previous results on
already existing test sets (Tars et al., 2022b,a), we
offer a detailed overview of high- to low-resource
translation directions for Võro, Livonian, and all
the included Sami languages in Table 4. The im-
provement with our model varies between the lan-
guage pairs, but the majority of the compared di-
rections achieve a noticeable gain in BLEU, some
even very significant 10 and 20 BLEU point in-
creases which might indicate some test data leak-
age into the training set. The improvements
for English-Livonian are noteworthy because al-
though our model gains only about 0.5 BLEU
points, it was trained with fewer back-translation
iterations and did not need extra finetuning to the
specific language pair. For other translation di-
rections, it can be hypothesized that the improved
scores are a result of adding synthetic data because
the methods we are comparing to omitted using
back-translation.
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low-low low-high high-low low-high(rel) high(rel)-low all pairs

baseline 18.7 24.0 20.7 24.8 22.1 23.7
all-all 20.2 36.5 19.1 36.8 20.0 28.5
all-all-10 25.9 34.3 24.1 34.9 25.5 30.3
L-H 26.6 36.6 25.8 37.0 27.2 32.3
L-rH 27.2 35.5 26.8 36.1 28.2 32.0

(a) low - low-resource languages, high - high-resource languages, rel - related languages to respective low-resource language.
“-” indicates two-way translation directions between the languages.

to-RU to-EN to-ET to-FI to-HU to-LV to-NO
baseline 19.6 25.6 26.6 25.1 22.0 24.3 24.8
all-all 42.3 39.8 28.2 36.8 35.2 37.6 35.4
all-all-10 39.2 37.5 27.8 34.7 32.4 35.2 33.6
L-H 42.9 40.4 27.8 37.2 35.5 38.0 34.6
L-rH 41.8 39.4 26.7 36.4 33.8 35.9 34.6

(b) to-* indicates translation directions from low-resource languages to the respective high-resource language.

to-KPV to-LIV to-MDF to-MHR to-MNS to-MRJ to-MYV to-OLO to-UDM
baseline 15.9 28.4 22.1 21.3 12.2 19.9 22.9 22.7 21.0
all-all 15.9 26.0 18.2 24.4 12.4 15.2 16.7 21.2 21.5
all-all-10 22.3 28.6 25.2 28.3 13.7 22.1 23.1 25.3 28.1
L-H 24.6 29.5 27.0 30.8 14.3 23.8 24.4 27.1 31.2
L-rH 26.4 29.7 28.5 30.6 16.1 26.2 25.2 26.7 31.6

(c) to-* indicates translation directions from high-resource languages to the respective low-resource language.

Table 3: Average chrF++ results for all experiments across different language pair clusters on FLORES
benchmarks. Bold - highest score per grouping. all-all - contains BT data from every language
pair. all-all-10 - contains 10% of BT data used in all-all. L-H - contains BT data from each
low-resource language to each high-resource language and vice versa. L-rH - contains BT data from
each language to its related high-resource language + high-resource languages it had parallel data with
and vice versa.

en-liv et-liv et-vro fi-sma fi-sme fi-smn fi-sms no-sma no-sme no-smj
L-rH 15.74 24.17 30.63 46.58 38.27 67.34 44.13 60.79 35.21 51.95
previous best 15.19 14.51 34.11 26.63 42.89 53.3 33.72 46.79 35.38 40.01

Table 4: BLEU scores for high-resource to selected low-resource languages to compare with previous
results in these language pairs. The previous best results are from Tars et al. (2022b,a). The test set is
same as used in the previously mentioned publications. Bold - best result between our best high-low
model and the previous best result.

Qualitative analysis Here, we go over the
key findings of the qualitative analysis we con-
ducted. We focus and showcase our results on the
Komi to Russian translation direction and com-
pare our baseline model and the model trained
on back-translated data. The baseline model
performed poorly with unnatural and “biblical-
looking” translations which is a style introduced

by the parallel training data used for the baseline.
The baseline model output sounds like Church
Slavic, which is a Slavic liturgical language used
by the Eastern Orthodox Church, examples of
this are both in Figures 2 and 3. The baseline
model also introduces biblical artifacts into the
translation, which is showcased by an example
shown in Figure 2, where “Daesh” is changed
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Figure 2: Example of translations from Komi to Russian. The Baseline translation is partially correct.
We highlight the word ”Jerusalem” in red as it is an artifact (hallucination originating from the Bible)
created by the model. The BT translation is generally correct, with a small error in the word Daesh,
which is highlighted in green. BT refers to the back-translation model, specifically the L-rH model.

Figure 3: Example of translations from Komi to Russian. The translation by the Baseline model
is generally incorrect, and it is written in the biblical style. The words that stand out as biblical are
highlighted in red. The BT translation is completely correct. BT refers to the back-translation model,
specifically the L-rH model.

into Jerusalem. We found multiple occurrences
of Jerusalem in the baseline translations but none
of such occurrences in the translations made by
the model with the additional back-translated data.
Our proposed model, which added a lot of syn-
thetic data into training data, produces much bet-
ter translations — we hypothesize that this is due
to better distribution of data sources, the transla-
tions look more general and have an informative
style. We also did not notice any named-entity hal-
lucinations. Our findings highlight the importance
of data source (domain) and quality in the low-
resource scenario, where imbalanced data sources
can lead to non-optimal translations.

7 Conclusion

We presented a FLORES-based benchmark
dataset for nine low-resource Finno-Ugric lan-
guages: Erzya, Komi, Livvi Karelian, Livonian,
Hill and Meadow Mari, Mansi, Moksha, and
Udmurt. In this study, we trained and evaluated
multiple models for these languages and generated
a large amount of synthetic parallel data through
back-translation. The results showed that the
models achieved promising performance on the
benchmark dataset and demonstrated the potential
of these methods for low-resource machine trans-
lation. Our experiments also showed that it could
be useful to choose back-translation settings more
strategically, selecting certain language pairs, to
achieve better results while using fewer resources

for back-translation and training.

Limitations

The machine translation systems described in this
paper have several limitations that are important to
consider.

• Most of the parallel training data comes from
the Bible - this limits the generalizability of
the system, for example when trying to trans-
late non-religious texts from Wikipedia.

• Train-Test mismatch, specifically for the par-
allel training data, impacts the overall trust-
worthiness of the quantitative results.

• Limited test data coming from a single source
- We managed to translate only a quarter of
the multilingual FLORES dataset. Also, we
only have the FLORES dataset which origi-
nates from [English] Wikipedia.

• Finno-Ugric languages written in the Cyrillic
alphabet might benefit from transliteration,
which we did not try in this study. Translit-
eration converts text written in one script into
another script. It remains an open question
if transliteration into the Latin script would
improve the translation quality.

These limitations highlight the need for further re-
search in machine translation for Finno-Ugric lan-
guages. Future studies should address these limi-
tations.
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Abstract

This paper explores knowledge distillation
for multi-domain neural machine transla-
tion (NMT). We focus on the Estonian-
English translation direction and experi-
ment with distilling the knowledge of mul-
tiple domain-specific teacher models into
a single student model that is tiny and ef-
ficient. Our experiments use a large par-
allel dataset of 18 million sentence pairs,
consisting of 10 corpora, divided into 6
domain groups based on source similarity,
and incorporate forward-translated mono-
lingual data. Results show that tiny stu-
dent models can cope with multiple do-
mains even in case of large corpora, with
different approaches benefiting frequent
and low-resource domains.

1 Introduction

The quality of neural machine translation (NMT,
Vaswani et al., 2017) systems heavily depends on
training data and the text domains covered in it.
Large-scale NMT Transformer models are usu-
ally trained on multiple corpora representing dif-
ferent domains (Kocmi et al., 2022), which in turn
requires training models with higher representa-
tion capacity and an exceedingly large number of
parameters, sometimes in the tens of billions for
the largest models (Fan et al., 2020; NLLB Team
et al., 2022).

However, using such models for inference in
a production setting becomes more costly and
cumbersome with increasing size. In parallel to
the challenge of using more representational and
learning power, a constraint from the practical side
is to have models be as small and fast as possible
for efficient deployment in production.

An additional challenge arises from the variabil-
ity of natural language and different text domains

and styles. While methods for training an NMT
model to perform well on a particular type of text
are relatively straightforward, the requirement of
having a single NMT model translate multiple va-
rieties of input text without a significant loss of
quality on any of them due to interference between
the domains in the training data remains more dif-
ficult.

In this paper, we aim to bridge the gap be-
tween previous research and systems applicable in
production by experimenting with multi-domain
knowledge distillation for NMT on the example
of Estonian-English translation. We show that
even for tiny NMT student-models and large-scale
training data, it is efficient to train a single stu-
dent model on data distilled by multiple fine-tuned
domain-specific teacher models.

Our contributions are:

• we experiment with distilling the knowledge
of multiple domain-specific teacher models
within a single student model, focusing on
very small student models;

• we use a sizeable parallel dataset of 18M sen-
tence pairs, consisting of 10 corpora, which
we divide into 6 groups based on similarity
of their sources;

• we release our student models, test set trans-
lations, and generation code1.

2 Related Work

Knowledge Distillation for Machine Transla-
tion Knowledge distillation (Bucila et al., 2006;
Hinton et al., 2015) is the technique of com-
pressing the knowledge learned by a large model
with high capacity and a large number of param-
eters or by an ensemble of models into a single
smaller model. Knowledge distillation allows for

1https://github.com/TartuNLP/
multidomain-students
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increased speed and efficiency at inference time,
while aiming to not sacrifice the quality of model
performance to a significant extent.

Knowledge distillation methods were extended
to the task of machine translation by Kim and
Rush (2016). One of the methods they proposed
is interpolated sequence-level knowledge distilla-
tion, consisting of several steps:

• a large teacher model is trained on a corpus
of parallel texts;

• the teacher model is used to translate the
source side of the parallel corpus into the tar-
get language;

• a smaller student model is trained using
the original data as source and the teacher-
generated (distilled) data as target.

In this way, the student model is trained with the
goal of imitating the teacher model’s probability
distribution over the translations, thus constrain-
ing the task from the full space of natural language
translations to the much smaller space of transla-
tions generated by the teacher, and making it more
easily achievable for the small student model.

We follow the sequence-level knowledge dis-
tillation procedure proposed by Kim and Rush
(2016) in our knowledge distillation experiments.

Recent advances in efficient MT have extended
the limits of small and fast NMT models (Junczys-
Dowmunt et al., 2018; Kim et al., 2019a; Heafield
et al., 2021, 2022), using knowledge distillation,
increasingly lightweight architectures and CPU
optimization for faster inference, while suffering
increasingly small quality decrease compared to
full-scale models. However, these experiments
are typically focused on single-domain or general-
domain translation; we build on the findings of
MT efficiency research and use them in a multi-
domain scenario.

Knowledge Distillation for Multi-Domain Ma-
chine Translation While training a neural ma-
chine translation model to perform reasonably
well on one specific type of text is relatively
straightforward, generalizing to multiple domains
within a single model is more challenging. Typ-
ically, full-scale NMT models are trained on vast
amounts of parallel data representing various text
domains (Akhbardeh et al., 2021; Kocmi et al.,
2022). Numerous methods which aim to improve

multi-domain MT performance have been pro-
posed (Kobus et al., 2017; Tars and Fishel, 2018;
Britz et al., 2017; Zeng et al., 2018).

The task of achieving good performance on
multiple text domains, together with the need for
fast and efficient translation, have lead to combin-
ing the methods of multi-domain neural machine
translation and knowledge distillation.

Wang et al. (2019) focus on the task of multi-
domain translation, using knowledge distillation
for additional domain supervision: the probabil-
ities (soft targets) produced by domain-specific
models are used when training the unified multi-
domain model.

Gordon and Duh (2020) adapt student models
to one text domain at a time. They suggest dis-
tilling general-domain data to improve the perfor-
mance of the general-domain student model, fine-
tuning the best obtained model to in-domain data,
and fine-tuning the teacher model to a specific do-
main and distilling this in-domain model. In our
experiments, we follow Gordon and Duh in fine-
tuning teacher models to domain-specific corpora
and distilling them.

Our work shares the most similarities with Cur-
rey et al. (2020). Similarly to them, we fine-tune
a general teacher to obtain several domain-specific
teachers, which we then distill into a single student
model. However, our work is closer to a real-world
production scenario: we use a significantly larger
training corpus which combines more individual
parallel corpora from different sources, as well
as much smaller student models, whereas Currey
et al. train teacher models with 12 encoder and 12
decoder layers (roughly 100M model parameters),
and their student models follow the Transformer-
base configuration (6 encoder and 6 decoder lay-
ers, around 60M parameters).

Concurrently to Currey et al. (2020), Mghab-
bar and Ratnamogan (2020) also explore distill-
ing several domain-specific teachers into a sin-
gle student model, but use word-level instead of
sentence-level knowledge distillation, and do not
focus on decreasing the size of student models.

3 Methods

In our experiments, we aim to create neural ma-
chine translation models which 1) perform well on
several data domains, and 2) are small and effi-
cient.

To distill NMT models, we follow the sequence-
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level knowledge distillation framework initially
proposed by Kim and Rush (2016), where a
smaller student model is trained using the syn-
thetic target-side data produced by a larger teacher
model, and experiment with distilling multiple
domain-specific teacher models into a single stu-
dent model.

We follow Currey et al. (2020) in employing a
straightforward strategy:

1. train a general-domain teacher model,

2. fine-tune the teacher model to partitions of
the data to obtain multiple domain-specific
teacher models,

3. use the domain-specific teachers to forward-
translate the data,

4. distill the domain-specific teachers into a sin-
gle student model.

However, our student models are much smaller
than the student models used by Currey et al.
(2020), and we use significantly more data, bring-
ing our setup closer to a full-scale real-world sce-
nario.

3.1 Data

The experiments are performed on the Estonian-
English language pair. We use 10 parallel corpora:
Europarl (Koehn, 2005), JRC-Acquis (Steinberger
et al., 2006), OpenSubtitles (Lison and Tiede-
mann, 2016), ParaCrawl (Esplà et al., 2019),
EMEA, DGT, infopankki, GNOME, KDE4, and
Ubuntu (Tiedemann, 2012). We divide the cor-
pora into 6 groups as shown in Table 1. Eu-
roparl forms its own group of parliament proceed-
ings texts (EU), EMEA a group of medical texts
(MED), and OpenSubtitles a group of film and
TV subtitles (SUBS). We merge the DGT and
JRC-Acquis corpora into a group representing le-
gal texts (LEGAL), ParaCrawl and infopankki rep-
resent texts crawled from the web (WEB), and,
finally, GNOME, KDE4, and Ubuntu form the
group of software localization texts (IT).

Table 1 also shows the number of sentence pairs
in each group and corpus after cleaning; the total
size of the parallel training corpus is ∼18M sen-
tence pairs. The resulting corpus is highly un-
balanced, with sizes of the groups varying from
∼100K examples for IT to ∼7.5M for WEB,
which is realistic in a production scenario. From

each corpus, we separate a development set of
1000 sentence pairs and a test set of 500 sentence
pairs. In addition to the held-out development sets,
we also include the development split of WMT18
ET-EN set in the validation set. The test part of
WMT18 ET-EN is used as an external test set.

3.2 Models

To train our models, we use the Marian framework
(Junczys-Dowmunt et al., 2018). First, we train a
teacher model from scratch using the 18M train-
ing data described above (this model is denoted
as T-18M in Table 2). The teacher is a Trans-
former model, with shared SentencePiece (Kudo
and Richardson, 2018) vocabulary of size 32,000
units, 6 encoder and 6 decoder layers, embedding
dimension 512, feed-forward dimension 2048, 8
attention heads. The training is stopped when ei-
ther BLEU (Papineni et al., 2002) or the mean
word cross-entropy score on the validation set has
not improved for 10 checkpoints, and the best
checkpoint is chosen based on validation BLEU.

We then fine-tune the obtained teacher to each
of the six data groups (the resulting domain-
specific teachers are denoted, for example, T-EU
or T-SUBS in Table 2). Fine-tuning is stopped
when the validation metrics have not improved
for 15 checkpoints. Next, we follow the interpo-
lated sequence-level knowledge-distillation proce-
dure (Kim and Rush, 2016): we forward-translate
the parallel training data with the original general-
domain teacher or with the corresponding fine-
tuned teachers, generating 8-best lists for each
source example. The best translation for each sen-
tence is chosen based on its similarity to the orig-
inal target sentence according to sentence-level
BLEU.

In addition to the parallel data described above,
we forward-translate 1M Estonian sentence pairs
from the News Crawl corpus (articles from 2019
and 2020) and add those to the data the student
models are trained on. (In this case, we can-
not choose the translations which are closest to
the original target, as no original target exists.)
We also try fine-tuning the teacher model to these
news data, where the target side was generated by
the teacher itself.

Finally, we train several student models using
the original source data and synthetic forward-
translations obtained using the teacher models.
For efficiency purposes, we follow Kim et al.

774



group/corpus corpus size group size domain

EU
Europarl 593,637 593,637 parliament proceedings

LEGAL
DGT 2,241,448

2,637,222 legislation
JRC-Acquis 395,774

MED
EMEA 211,722 211,722 pharmaceutical documents

SUBS
OpenSubtitles 6,868,517 6,868,517 film & television subtitles

WEB
ParaCrawl 7,601,013

7,614,325 Web-crawled texts
infopankki 13,312

IT
GNOME 3,036

105,906 software localizationsKDE4 99,808
Ubuntu 3,062

Total 18,031,329

Table 1: Sizes of corpora and corpus groups (number of sentence pairs) used for training the ET-EN
teacher and student models, after cleaning

(2019b) and replace the self-attention mechanism
in the Transformer encoders, which have 6 lay-
ers, with GRU-based cells, and use Simpler Sim-
ple Recurrent Units in the transformer decoders,
which consist of 2 layers. The training is stopped
if the metrics have not improved for 20 check-
points. The resulting student models have disk
size of 65 megabytes. S0 is the model trained us-
ing data produced by the initial teacher. S-FT uses
the data forward-translated by the corresponding
fine-tuned teacher for each of the corpora. S-FT-
bal uses the same data, but after balancing the cor-
pora: the total size of the training data is kept
approximately the same as before, but each data
group is downsampled or upsampled so that the
sizes of all groups are approximately equal. The
last model, S-ORIG, is trained for comparison on
original (not forward-translated) parallel data.

We provide our S0, S-FT, and S-FT-bal stu-
dent models, test set translations generated by
them, and code used to generate and evaluate
those translations at https://github.com/
TartuNLP/multidomain-students.

4 Results

Table 2 shows the BLEU scores (Papineni et al.,
2002) our teacher and student models achieve on

the held-out and WMT18 test sets2. We can ob-
serve that fine-tuning on a data group noticeably
improves the performance of the teacher model
on held-out test sets within that data group. Not
unexpectedly, the effect is more pronounced for
smaller corpora, which are less represented in the
whole corpus on which the original mixed-domain
teacher is trained. We assume that the second im-
portant factor is the extent to which the corpus is
narrowly specialized. For example, on the test set
extracted from the very small and highly specific
Ubuntu corpus, the performance of the fine-tuned
teacher model is higher than that of the general
teacher by a huge margin of 17.9 BLEU points,
while the same performance gap is 3.1 points for
OpenSubtitles and 1.9 points for Europarl.

It seems that fine-tuning the teacher on forward-
translated monolingual data yields no positive ef-
fect. BLEU score on the WMT18 test set remains
the same as for the general teacher, while scores on
the held-out test set drop. This is not unexpected,
as, while the teacher stops encountering data from
other domains during fine-tuning, it also only en-
counters the data from the news domain that it
forward-translated itself, and most likely cannot
learn to exhibit any new behaviour on these data.

2sacreBLEU signature: nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version:2.3.1
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group EU IT LEGAL MED SUBS WEB NEWS

corpus

E
ur
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l
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O
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E
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E
4
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T
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nS
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Pa
ra
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ki

W
M

T
18

avg

T-18M 40.9 33.8 29.7 37.8 44.2 57.5 46.8 31.9 50.5 30.9 30.4 39.491

T-EU 42.8 11.0 11.7 13.8 27.6 36.9 17.6 18.4 23.9 20.3 22.6
T-IT 9.2 61.2 40.6 55.7 6.9 6.5 10.4 10.5 14.3 9.2 9.0
T-LEGAL 29.4 17.1 12.7 18.3 49.7 64.6 24.3 8.1 23.8 16.9 16.5
T-MED 9.6 9.4 7.3 8.4 12.7 15.4 66.3 4.4 10.7 7.3 7.2 48.727
T-SUBS 22.2 14.6 10.4 15.3 10.8 10.4 12.3 35.0 21.7 16.6 24.7
T-WEB 38.2 29.5 23.5 33.0 36.4 50.2 39.4 24.9 52.3 37.4 30.8
T-NEWS 37.7 24.3 20.9 27.1 28.8 38.4 29.5 28.7 35.4 27.0 30.4

S0 38.4 29.3 25.2 31.4 40.4 54.3 42.6 29.7 47 28.8 28.3 35.945
S-FT 38.3 29 25 31.6 41.3* 54.5 41.3 29.7 48.6* 30.6* 28.5 36.218
S-FT-bal 38.2 45.6* 23.7 45.3* 38.8† 50.9† 49.3* 27.3† 41.6† 25† 26.2† 37.445

S-ORIG 35.2 28.1 24.1 29.9 38.3 51.2 40.6 29.1 44.5 29.6 24.2 34.073

Table 2: BLEU scores of teacher and student models trained on 18M ET-EN sentence pairs as measured
on different test sets. The columns represent the groups and corpora to which the test sets belong, and
the rows indicate models. T-18M denotes the initial mixed-domain teacher model. T-EU, T-IT, etc.
are teacher models fine-tuned on the corresponding groups of datasets. S0 is a distilled student model
trained on texts forward-translated by T-18M. S-FT is a student model trained on data produced by the
fine-tuned, domain-specific teacher models. S-FT-bal is trained on the same data as S-FT, but each
data group is upsampled or downsampled so that all groups are of equal size, while the total number of
training examples stays the same. S-ORIG is a model of the same configuration as the student models,
but trained on original (not forward-translated) texts for comparison as a sanity check. The ”avg” column
shows each model’s BLEU, averaged over all test sets (for fine-tuned teachers, we report a single average
over the scores of each teacher’s translations of test sets belonging to the corresponding group). Bold
numbers indicate the highest BLEU scores for each test set among the teacher and among the student
models. Individual test set results that show statistically significant improvements (p ≤ 0.05) of S-FT
and S-FT-bal in comparison to S0 are marked with *, while results that are significantly lower than S0
are marked with †.
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While the behaviour of fine-tuned teachers is
rather straightforward, the performance of student
models is more varied. Comparing S0 and S-
FT, we observe relatively similar performance: the
difference on various test sets ranges from none
(OpenSubtitles) to 1.8 (infopankki) BLEU points.
The BLEU score averaged over all test sets is bet-
ter for S-FT, but not by a very large margin. On
the external WMT18 test set, S-FT performs best,
although it only outperforms S0 by 0.2 BLEU
points. On 6 test sets out of 11, S-FT is better
than S0, although only on 3 of those the differ-
ence is statistically significant (Koehn, 2004), and
on one more test set (OpenSubtitles) their result is
the same.

The extremely small GNOME and Ubuntu cor-
pora obviously benefit from balancing the data,
and the scores on their test sets improve signifi-
cantly compared to the unbalanced S-FT. Perfor-
mance on the EMEA corpus, which comprises the
second smallest data group, also noticeably ben-
efits from upsampling. At the same time, if we
compare the results obtained by S-FT and S-FT-
bal on other corpora, we notice drops of 0.1-7.0
BLEU points.

The best average BLEU score is achieved by
S-FT-bal, the student trained on data which is
forward-translated by the fine-tuned teacher mod-
els and balanced.

5 Qualitative Analysis

Table 3 shows several example sentences from test
sets belonging to each of the data groups, as well
as their reference translations, translations gener-
ated by S0, S-FT, and S-FT-bal student models,
and sentence-level chrF scores (Popović, 2015). In
this section, we provide a brief description of vary-
ing model behavior on these examples.

In example 1, which comes from the Ubuntu
corpus, only the model trained on balanced data
manages to translate ”ruutu soldat” as ”jack of dia-
monds”, while both S0 and S-FT translate ”ruutu”
literally (”squares”), and S0 translates ”soldat” in-
correctly (”solder” instead of the direct translation
”soldier”, which is likely due to subword interac-
tion).

In example 2, the S-FT-bal model shows signs
of overfitting: the content part of the sentence is
identical to the reference, and the number ”63” is
generated at the start of the text, where the refer-
ence sentence has ”53”. However, there is no num-

ber in the source sentence. Sentences produced by
the S0 and S-FT models are, in fact, more exact
translations of the Estonian source sentence (”you
have the feeling”/”you feel” vs. ”you think” and
”the effect of Vivanza”/”Vivanza’s effect” vs. ”Vi-
vanza”).

In the infopankki example (3), all models man-
age to convey the original meaning of the source
sentence, but S-FT-bal does so in a more infor-
mal style and with simpler grammar that the ref-
erence and the translations by S0 and S-FT (e.g.
”work and business office” vs. ”Employment and
Economic Development Office”, and ”helps” vs.
”Help is available”/”You can get help”).

In the example from the OpenSubtitles corpus
(4), all models use ”his” instead of ”her” (the Es-
tonian pronoun ”ta” does not have grammatical
gender, so the correct English pronoun can only
be inferred from wider context). The S-FT model
uses the more informal contraction ”it’s”, which is
appropriate for the domain. The S-FT-bal model
fails to translate a part of the compound word
”kõnepost” and generates ”voice” instead of the
correct ”voicemail”.

In example 5 (Europarl), the S-FT-bal model is
the only one not to use contractions (”We have”
vs. ”We’ve”), which do not typically occur in the
formal style of parliament proceedings. However,
all three model hypotheses are faithful.

The DGT example (6) sees the S-FT model
translate very similarly to the reference, while
both S0 and S-FT-bal overgenerate repetitively
(”and ovens and ovens” and ”Non-electric non-
electric non-electric”).

Finally, in the WMT18 example, all models fail
to use the specific correct word ”minesweeper”,
and instead translate the compound word ”miini-
jahtija” more literally as ”mine hunter”. Other-
wise, the S-FT hypothesis is the only one to con-
vey the full meaning of the source correctly.

6 Discussion

We observe that the fine-tuned teacher mod-
els predictably suffer from forgetting the general
teacher’s knowledge on domains other than the
one the particular teacher is fine-tuned to. The ex-
tent of this forgetting varies, e.g. the teacher fine-
tuned to Web-crawled text performs 2.7 BLEU
points worse than the mixed-domain teacher on
the Europarl test set, while the teacher fine-tuned
to medical documents is 27.5 points worse on the
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corpus model sentence chrF

U
bu

nt
u

SRC ruutu soldat
REF jack of diamonds

1 S0 squares solder 4.8
S-FT squares of the jack 18.4
S-FT-bal the jack of diamonds 95.0

2

E
M

E
A

SRC Kui teil on tunne, et Vivanza toime on liiga tugev või liiga nõrk, pidage nõu oma arstiga.
REF 53 Tell the doctor if you think Vivanza is too strong or too weak.
S0 If you have the feeling that the effect of Vivanza is too strong or too weak, talk to your

doctor.
58.2

S-FT If you feel that Vivanza’s effect is too strong or too weak, talk to your doctor. 54.7
S-FT-bal 63 Tell the doctor if you think Vivanza is too strong or too weak. 98.0

3

in
fo

pa
nk

ki

SRC Töö otsimisel saab abi Töö- ja ettevõtlusbüroost.
REF The Employment and Economic Development Office provides help with your job hunt-

ing.
S0 Help is available in the Employment and Economic Development Office. 60.6
S-FT You can get help in finding a job at the Employment and Economic Development Office. 62.2
S-FT-bal The work and business office helps to seek the job. 16.1

O
pe

nS
ub

tit
le

s SRC See on ta kõnepost.
REF It’s her voicemail.

4 S0 This is his voice mail. 52.6
S-FT It’s his voice mail. 67.1
S-FT-bal This is his voice. 21.6

E
ur

op
ar

l SRC Oleme palju ära teinud, kuid töö ei ole veel läbi.
REF We have come a very long way, but the work is not yet complete.

5 S0 We’ve done a lot, but the work is not over. 39.0
S-FT We’ve done a lot, but the job’s not over. 22.7
S-FT-bal We have done a lot, but the work is not over. 44.4

D
G

T

SRC Mitte-elektriliste töötus- ja laboriahjude ja -põletuskambrite osad
REF Parts for non-electric industrial or laboratory furnaces and ovens

6 S0 Parts of non-electrical furnaces and ovens and ovens 51.3
S-FT Parts of non-electric industrial or laboratory furnaces and ovens 90.9
S-FT-bal Non-electric non-electric non-electric furnaces and oven parts 46.8

W
M

T
18

SRC Sel poolaastal kuulub rahvusvahelise üksuse koosseisu ka Eesti mereväe miinijahtija
Sakala.

REF This half-year, the Estonian minesweeper Sakala is also part of the international unit.
7 S0 This half-year is also part of the international unit Sakala, a mine hunter of the Estonian

Navy.
34.3

S-FT This half-year the international unit also includes the Estonian naval mine hunter Sakala. 73.7
S-FT-bal In this half, the Estonian Navy mine hunter also includes the Estonian Navy mine hunter. 63.7

Table 3: Examples of source-reference pairs from different test sets and corresponding translations
produced by S0 (student model trained on texts forward-translated by a single mixed-domain teacher
model), S-FT (student model trained on data translated by multiple fine-tuned teacher models), and S-
FT-bal (trained on balanced data produced by multiple fine-tuned teachers) models. The last column
shows sentence-level chrF score for each of the translations (sacreBLEU signature: chrF2|nrefs:
1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1).
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OpenSubtitles test set than the original teacher,
its score dropping to 4.4 BLEU, which suggests
that these translations are not too far from random.
The different levels of forgetting could potentially
serve as a clue to domain similarity and guide the
choice of manual data groupings.

There is a sizeable gap between the average per-
formance of teachers fine-tuned to each data group
and the best student model average. While the
difference in capacity becomes even more drastic
when we compare not one, but several large fine-
tuned models to a single small student model, this
gap remains large, and suggests the possibility of
pushing the limits of student models’ performance
further.

Distilling the data clearly benefits the training of
small models, the S-ORIG model lagging behind
other student models. The best average BLEU is
achieved by the student model trained on data dis-
tilled by multiple fine-tuned teachers and balanced
between groups. However, in a real-world sce-
nario trade-offs may still need to be made between
the performance on specific domains, with aver-
age BLEU score not being representative enough
for fine-grained evaluation.

7 Future Work

In our experiments, we used 10 corpora and, for
fine-tuning, split them manually into 6 data groups
based on the assumed similarity of their sources
and topics. However, as demonstrated by Currey
et al. (2020), the known domain labels may be
suboptimal, and assigning the domains automat-
ically can improve the multi-domain MT perfor-
mance. Generating automatic domain labels us-
ing the general-domain model’s internal data rep-
resentations has been shown to further improve in-
domain translation quality (Del et al., 2021). In
future work, we would like to explore these meth-
ods for automatic domain discovery in conjunction
with multi-domain knowledge distillation.

Aiming to bring our experiments closer to a pro-
duction scenario, we tried incorporating forward-
translated monolingual data into our multi-domain
distillation setup. However, large-scale systems
typically use back-translation and round-trip trans-
lation to increase the amount of training data. It
currently remains unclear how to best incorporate
monolingual data into the multi-domain knowl-
edge distillation framework effectively, given the
suboptimal results we achieved when fine-tuning

a mixed-domain teacher model to a forward-
translated news corpus. We hypothesize that the
teacher model cannot learn to exhibit any new be-
haviours when it is fine-tuned on data generated
by itself. Thus, adding monolingual domains to
distilled multi-domain systems is a potential topic
for future exploration.

Another important direction for future work is
extending our research to other language pairs
and translation directions. While we perform
our experiments on the Estonian→English lan-
guage pair, which, to the best of our knowledge,
has not been experimented with in a similar set-
ting before, using other languages, especially low-
resource ones, might lead to different results and
insights.

8 Conclusion

In this work, we explored distilling multi-
ple domain-specific neural machine translation
teacher models into a single student model. While
following procedures proposed in previous work,
we incorporated research findings on model effi-
ciency and focused on obtaining very lightweight
student models. We used a training corpus of 18M
Estonian-English sentence pairs, comprised of 10
unbalanced domains. We separated the domains
into groups based on their perceived similarity, ex-
plored the effects of balancing, and incorporated
monolingual forward-translated data into training
of multi-domain students.

Our experiments show that the knowledge of
several fine-tuned teachers models can be distilled
into a very small student model, with balanced
representation of domains further improving the
average result. The massive total capacity of sev-
eral fine-tuned teacher models has a huge average
gain over the untuned teacher (almost 10 BLEU
points) and the student models with their limited
capacity achieve a much more modest increase in
translation quality. Still, the increase in translation
quality compared to the baseline student is stable
and noticeable (+1.5 BLEU points).
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Onur Çelebi, Maha Elbayad, Kenneth Heafield,
Kevin Heffernan, Elahe Kalbassi, Janice Lam,
Daniel Licht, Jean Maillard, Anna Sun, Skyler
Wang, Guillaume Wenzek, Al Youngblood, Bapi
Akula, Loic Barrault, Gabriel Mejia-Gonzalez,
Prangthip Hansanti, John Hoffman, Semarley Jar-
rett, Kaushik Ram Sadagopan, Dirk Rowe, Shan-
non Spruit, Chau Tran, Pierre Andrews, Necip Fazil
Ayan, Shruti Bhosale, Sergey Edunov, Angela
Fan, Cynthia Gao, Vedanuj Goswami, Francisco
Guzmán, Philipp Koehn, Alexandre Mourachko,
Christophe Ropers, Safiyyah Saleem, Holger
Schwenk, and Jeff Wang. 2022. No language left be-
hind: Scaling human-centered machine translation.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.
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Abstract

Second and foreign language (L2) learn-
ers tend to make specific spelling errors
compared to native speakers. Language-
independent spell-checking algorithms
that rely on n-gram models can offer a
simple solution for improving learner
error detection and correction due to
context-sensitivity. As the open-source
speller previously available for Estonian
is rule-based, our aim was to evaluate
the performance of bi- and trigram-
based statistical spelling correctors on
an error-tagged set of A2–C1-level texts
written by L2 learners of Estonian. The
newly trained spell-checking models were
compared to existing correction tools
(open-source and commercial). Then, the
best-performing Jamspell corrector was
trained on various datasets to analyse their
effect on the correction results.

1 Introduction

It has been proposed that tailor-made spelling er-
ror correction systems are best suited for language
learning purposes because the spell-checking tools
developed for proficient users often prove unable
to correct specific mistakes, like real-word errors,
i.e., errors that result in a valid homonym; diacritic
errors; or pronunciation-induced errors possibly
with a large edit distance (e.g., Lawley 2016).
Whereas it is costly to develop rule-based error
correction systems with learner-oriented explana-
tions, or neural spell-checking systems that re-
quire vast quantities of training data comprising
authentic or synthetic errors, statistical spelling
correction algorithms which use n-gram language
models to analyse context could form a simple
starting point for improving error detection and
correction of L2 learner writings. In this language-

independent approach, only a corpus of (presum-
ably) correct language use samples is needed to
train the system.

Currently, the only open-source spell-checker
developed for Estonian language is Vabamorf1.
It is a lexicon- and rule-based library created by
Filosoft Ltd. at the beginning of the 1990-s along-
side a commercial speller distributed in Microsoft
Word (Kaalep et al., 2022). The spellers make use
of a lexicon and a list of typing misspellings to as-
sess candidate corrections but they do not appear
to rely on context in their suggestions.

For evaluating statistical spelling error detec-
tion and correction on Estonian learner language,
we first used Peter Norvig’s approach that gen-
erates all possible spelling corrections by differ-
ent edits, such as character deletions, insertions,
replacements, and transpositions (Norvig, 2007).
The procedure is repeated to get correction candi-
dates with two edits. The probability of candidates
is estimated based on a unigram language model
derived from a language corpus. We used a bigram
language model in addition to a unigram model to
add context-sensitivity.

Second, we applied the compound aware ver-
sion of Symmetric Delete Spelling Correction
(Symspell)2. The algorithm searches for candidate
corrections with an edit distance of 1 or 2 based
on deletions only, increasing the speed of spelling
correction. A corpus-based bigram dictionary can
be used, however, bigrams are only considered in
ranking suggestions if no suggestions with an edit
distance of 1 are found for a single token. Real-
word spelling errors are currently not corrected by
Symspell (Garbe, 2017).

Third, we tested Jamspell3 that additionally
uses a trigram language model for selecting the
highest-scored correction candidate. Jamspell is

1https://github.com/Filosoft/vabamorf
2https://github.com/wolfgarbe/SymSpell
3https://github.com/bakwc/JamSpell
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based on a modified Symspell algorithm, opti-
mized for speed and memory usage, so that the
spell-checking library can process up to 5,000
words per second.

We compared the algorithms with three exist-
ing spell-checking tools: Vabamorf, and the com-
mercial spellers offered by MS Word (Microsoft
365) and the Google Docs application. The latter
uses neural machine translation (Kumar and Tong,
2019).

2 Test Data and Evaluation

The correction output was evaluated on a set of
84 error-annotated proficiency examination writ-
ings from the Estonian Interlanguage Corpus4. Di-
vided between four proficiency levels (A2, B1, B2,
and C1), the texts contain 1,054 sentences, 9,186
words (excluding anonymized identifiers), and
309 spelling errors in total. We distinguished sim-
ple spelling errors and mixed errors, i.e., spelling
mistakes co-occurring with another error such as
word choice, inflectional form, or capitalization
error. The error distribution is given in table 1.
While the proficiency level increases, the relative
frequency of words containing a spelling error de-
creases, from 5.5% at A2 and 3.8% at B1 to 2.6%
at B2 and 2.3% at C1.

Proficiency
level Words

Simple
spelling
errors

Mixed
errors

A2 1,852 73 28
B1 2,186 71 12
B2 2,074 51 3
C1 3,074 68 3
Total 9,186 263 46

Table 1: Spelling correction test data.

The texts have been morphologically anno-
tated in the CoNLL-U format5, using the Stanza
toolkit6, and manually error-tagged, indicating the
error type, scope, and correction in the field for
miscellaneous token attributes. While the custom
tagset denotes various orthographic and grammat-
ical errors, we only rated the detection and cor-
rection of words annotated to have a spelling er-
ror (although, we did not count a system edit as

4https://evkk.tlu.ee/about/us/
5https://universaldependencies.org/

format.html/
6https://stanfordnlp.github.io/stanza/

unnecessary if the word had any error tag). Each
text has been reviewed by two annotators, consult-
ing a third Estonian language expert in case of dis-
agreement. The annotation format allows for sev-
eral corrections per token but is limited to one er-
ror annotation per sentence. This, however, has no
significant effect on the analysis of spelling errors,
which occur regardless of the sentence structure.

Error detection is the first step of error correc-
tion. Nevertheless, to achieve high performance in
error detection, the proposed edits do not have to
match the gold standard annotation, as opposed to
measuring error correction performance. We eval-
uated both spelling error detection and correction
based on three metrics:

• recall – the percent of spelling errors de-
tected/corrected;

• precision – the percent of relevant/correct
changes made;

• F0.5 score – a combined measure of preci-
sion and recall that gives precision twice as
much weight as recall.

The F0.5 score was preferred to the harmonic
mean (F1 score) due to the assumption that an er-
ror correction system’s reliability is rather reduced
by false and needless corrections than unproposed
corrections (see Ng et al. 2014).

We verticalized the system output and automat-
ically compared it to the test set to detect changes
and correction matches. Since L2 learners may not
select the correct option from a list of suggestions
(e.g., Heift and Rimrott 2008) and such selection
cannot be implemented in an automated workflow,
e.g., using spell-checking as a pre-processing step
of grammatical error correction, we prioritized the
speller’s accuracy of defining the best correction.
Thus, we focused on the highest-ranked sugges-
tion. The cases of mixed errors were reviewed
manually to find partial corrections fixing only
the spelling of an otherwise erroneous word (e.g.,
*parnu∼*pärnu instead of Pärnu, which is an Es-
tonian town name and should be capitalized). Both
full and partial word corrections were considered
in calculating the evaluation metrics.

3 Comparison of Spell-Checking Tools

The training material for building new statisti-
cal spell-checking models came from the Estonian
National Corpus (ENC) 2019, which includes web
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corpora downloaded from Estonian websites as
well as the Estonian Reference Corpus, Wikipedia
corpora and the corpus of Estonian Open Access
Journals (DOAJ) (Koppel and Kallas, 2020). Jam-
spell and Norvig’s spelling corrector were trained
on a random sample of 6 million sentences and
over 82 million words retrieved from the Refer-
ence Corpus that represents the “standard” vari-
eties of Estonian – mostly newspaper texts but
also fiction, science and legislation texts from
1990–2008. The sample constitutes nearly half of
the Reference Corpus; increasing the volume of
the training set did not improve the correction re-
sults. Symspell, on the other hand, reached the
best results with a uni- and bigram frequency dic-
tionary based on the full ENC 2019 containing
over 1.5 billion words. Even then, it performed
poorly compared to other tools, especially in terms
of recall.

The comparison of spelling error detection and
correction by the different applications is summa-
rized in tables 2 and 3. Table 4 shows the distribu-
tion of system edits which can be relevant, result-
ing in identified errors, or unnecessary, leading to
broken words. Relevant edits that do not match
the expert correction are considered false correc-
tions.7

Jamspell and Norvig’s speller outperformed
Vabamorf and Word’s speller in error correction,
and Google’s spell-checker in error detection. All
in all, Google corrected the highest proportion of
spelling errors, followed by Jamspell, which still
had a significantly better correction recall than the
rest of the tools and came close to Google in terms
of correction precision and F0.5 score. Despite
a larger number of accurate corrections, Google
made more than twice as many unnecessary edits.

Spell-
checker F0.5 Precision Recall

Jamspell 83.9 89.6 67.0
Norvig 78.9 84.3 62.8
Symspell 69.1 86.2 38.5
Google 76.7 78.8 69.6
MS Word 83.4 87.8 69.6
Vabamorf 84.3 89.2 69.3

Table 2: Spelling error detection metrics (%).

7The correction outputs as well as the test material
can be found at https://github.com/tlu-dt-nlp/
spell-testing/.

Spell-
checker F0.5 Precision Recall

Jamspell 64.1 68.4 51.1
Norvig 54.1 57.8 43.0
Symspell 31.4 39.1 17.5
Google 67.5 69.2 61.2
MS Word 51.2 53.9 42.7
Vabamorf 42.6 45.0 35.0

Table 3: Spelling error correction metrics (%).

In error detection, Jamspell yielded results sim-
ilar to Vabamorf and MS Word. Norvig’s spell-
checker and Symspell also scored better than
Google in detection precision. While Symspell
broke the smallest number of words at the cost of
very low recall, the lowest percent of unnecessary
edits was achieved by Jamspell and Vabamorf –
10.4% and 10.8% respectively. At the same time,
21.2% of words edited by Google did not need to
be corrected.

If matching candidate suggestions were consid-
ered, the spell-checking tools would reach a higher
correction precision, except for Google’s speller
that proposed only a single correction. Vabamorf’s
precision (72.5%) would increase the most, Jam-
spell’s precision (72.3%) the least. It means that
Jamspell is more likely to suggest an accurate cor-
rection with the highest confidence.

Compared to their open-source counterpart
Vabamorf, both Jamspell and Norvig’s speller
benefit from relying on the context of erroneous
words. For example, Vabamorf corrected the verbs
*tõdida∼tõdeda ‘admit-INF’ and *ludeda∼lugeda
‘read-INF’ to tüdida ‘get.bored-INF’ and kudeda
‘spawn-INF’. Interestingly, the rule-based spell-
checker tended to replace other parts-of-speech
with nouns, e.g., the adverb *lahtii∼lahti ‘open’
was changed to Lahti, a location in Finland,
and the adverb *nanuke∼natuke ‘a bit’ to januke
‘thirst-DIM’. Real-word spelling errors inducing
homonymy were best handled by Jamspell that
was able to make corrections such as *vaga∼väga
‘very’ (vaga could be an adjective meaning ‘pi-
ous, godly’); *töökohtu∼töökohti ‘job-PART.PL’
(töökohtu could mean ‘labour.court-GEN.PL’); and
*kuued∼kuud ‘month-PART.SG’ (kuued could be
a numeral meaning ‘six-NOM.PL’ or a noun mean-
ing ‘coat-NOM.PL’).

Like Google’s spell-checker, Jamspell and
Norvig’s speller occasionally attempted to cor-
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Spell
checker

Errors
detected

Full
corrections

Partial
corrections

Broken
words

Jamspell 207 129 29 24
Norvig 194 108 25 36
Symspell 119 45 9 19
Google 215 163 26 58
MS Word 215 108 24 30
Vabamorf 214 88 20 26

Table 4: Changes made by spell-checkers.

rect word choice and inflectional form, although
merely a couple of mixed errors were fully cor-
rected (e.g., *seles∼sellel laupäeval ‘this Satur-
day’ where the misspelled inessive pronoun was
replaced with the correctly spelled adessive form
agreeing with the noun). Otherwise, we only took
such edits into account if they were unnecessary
and resulted in a broken word. It can, however,
be noted that Jamspell was more probable to make
accurate lexical and grammatical corrections than
Norvig’s corrector, given a small edit distance,
e.g.,*ennem ‘rather’∼enne ‘before’, *kümne ‘ten-
GEN.SG’∼kümme ‘ten.NOM.SG’. Similarly to
Vabamorf and MS Word, Norvig’s speller replaced
some proper nouns with common nouns, e.g., Ke-
meris ‘Kemer-IN.SG’ referring to a Turkish lo-
cation was corrected to Keeris ‘vortex.NOM.SG’.
Such behaviour was the most characteristic to
Vabamorf which also proposed changes to rather
common first names, e.g., Nadja∼Andja ‘giver’.
Furthermore, some unnecessary edits made by
Google, Word and Symspell were caused by split-
ting compound words.

On the other hand, it should be noted that
the statistical spell-checkers do not correct cap-
italization because all words are transformed to
lowercase when processing the text and then
printed in the original casing. In general, all
the tested spelling correction tools struggled with
proposing the right correction instead of a can-
didate with a smaller edit distance (e.g., *musi-
ika∼muusika ‘music’ was corrected as mustika
‘blueberry.GEN.SG’; *sõidata∼sõita ‘ride-INF’ as
sõimata ‘curse-INF’).

In conclusion, two of the tested statistical spell-
checkers achieved a better precision and recall
in correcting Estonian L2 learners’ spelling er-
rors compared to the existing open-source speller
Vabamorf . Jamspell’s performance was similar to

MS Word in error detection and comparable with
Google in error correction, the main difference be-
ing that Google corrected more spelling errors at
the cost of making more unnecessary edits. There-
fore, Jamspell should be favoured if the priority is
to minimize needless corrections.

4 Jamspell Correction Models

We experimented with different training data to
see if we can improve Jamspell’s efficiency in
learner spelling error detection and correction.
The training sets are listed in table 5.

Training
corpus Sentences Words

Web 2019 40,880,346 512,567,596
Reference +
Wikipedia +
DOAJ

16,935,524 230,066,343

Reference 13,173,122 180,944,778
Web 2019
sample

6,000,000 75,237,791

Reference
sample

6,000,000 82,401,187

Reference +
Web 1:1

6,000,000 78,855,570

Reference +
Web 10:1

6,600,000 89,921,477

Reference +
Wikipedia +
DOAJ sample

4,172,777 55,743,160

Table 5: Data for training Jamspell models.

On the one hand, we combined the Estonian
Reference Corpus with the DOAJ and Wikipedia
corpora of ENC 2019. These subcorpora contain,
to a large extent, language-edited texts. As the
Reference Corpus constitutes the majority of this
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training set, we also extracted a more balanced
sample, which includes an equal amount of ran-
domly chosen sentences from the Reference Cor-
pus and Wikipedia corpora as well as the whole
DOAJ corpus (442,663 sentences). On the other
hand, we trained Jamspell on the Estonian Web
corpus 2019 that comprises a more diverse selec-
tion of texts, from informal blog posts and forum
discussions to periodicals and educational materi-
als. We used the full corpus and a sample similar
in size with the Reference Corpus sample. Thirdly,
we merged the Reference Corpus and Web 2019
material in an equal ratio and in a ratio of 10:1,
giving emphasis to the more “standardized” texts
and using the web texts to add variation to the
dataset.

The results of spelling error detection and cor-
rection obtained on the previously used test set are
presented in tables 6 and 7. The system edit dis-
tribution is provided in table 8. In case of simi-
lar training datasets (full corpus and sample), the
lower-performing correction model has been omit-
ted. Models trained on samples of the Reference
Corpus and its combination with other edited sub-
corpora achieved better or similar results com-
pared to the models trained on full text sets. Con-
trary to that, the model trained on the whole Es-
tonian Web 2019 performed better than the model
based on the web sample in all aspects.

The comparison of the Jamspell models reflects
the well-known trade-off between precision and
recall. The highest error detection and correction
precision were achieved by the model trained on
Estonian Web 2019. It was the least likely to make
unnecessary corrections but also to detect words
with a spelling error, thus having the lowest recall.
At the same time, the initial model trained on a
Reference Corpus sample scored highest in error
detection and correction recall, being able to iden-
tify and correct the largest amount of spelling er-
rors. The latter model featured the best F0.5 score
in error detection, whereas the Web 2019 model
had a slightly better F0.5 score in error correction.

In terms of spelling error detection, the 10:1
Reference + Web sample offered a compromise,
yielding a higher precision than the Reference
Corpus model and a higher recall than the Esto-
nian Web model. This resulted in the second best
F0.5 score. On the other hand, there was little vari-
ation in the error correction F0.5 score. The per-
formance obtained with the 10:1 Reference + Web

Training
corpus F0.5 Precision Recall

Reference
sample

83.9 89.6 67.0

Reference +
Web 10:1

82.7 91.2 60.2

Web 2019 81.9 94.3 53.7
Reference +
Wikipedia +
DOAJ sample

80.4 87.7 60.2

Reference +
Web 1:1

79.9 89.6 55.7

Table 6: Spelling error detection metrics of
Jamspell models (%), ranked by F0.5 score.

Training corpus F0.5 Precision Recall
Web 2019 64.7 74.4 42.4
Reference
sample

64.1 68.4 51.1

Reference +
Wikipedia +
DOAJ sample

63.5 69.3 47.6

Reference +
Web 10:1

63.1 69.6 46.0

Reference +
Web 1:1

63.1 70.8 44.0

Table 7: Spelling error correction metrics of
Jamspell models (%), ranked by F0.5 score.

sample was almost identical to the model trained
on the Reference + Wikipedia + DOAJ sample.
The 1:1 Reference + Web sample model scored
slightly higher in correction precision and lower
in correction recall.

Concerning the relation between the training
corpus type and size, and the performance of
the spell-checking model, we may infer that a
smaller, “standard language” dataset rather facil-
itates higher recall. Increasing the dataset intro-
duces more noise, thus the errors are outlined less
clearly. A much larger and more diverse language
model leads to higher precision; decreasing the
dataset reduces lexical variation and entails more
unnecessary edits. For comparison, the Web 2019
trigram model consists of 279.1 million trigrams,
whereas the model trained on the Reference Cor-
pus sample has 52.8 million trigrams.

The choice of the most suitable model depends
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Training corpus Errors
detected

Full
corrections

Partial
corrections

Broken
words

Reference sample 207 129 29 24
Reference + Wikipedia + DOAJ sample 186 122 25 26
Reference + Web 10:1 186 116 26 18
Reference + Web 1:1 172 113 23 20
Web 2019 166 115 16 10

Table 8: Jamspell models ranked by spelling errors detected and corrected.

on the purpose – whether we want to maximize the
amount of errors detected and corrected, minimize
the amount of needless corrections, or find a mid-
dle ground. For this, combining a larger propor-
tion of standard texts with a smaller proportion of
web material seems the best suited. In summary,
the results are promising compared to the preci-
sion and recall of learner spelling error correction
accomplished in other languages (e.g., Bexte et al.
2022; Kantor et al. 2019).

Three best-performing Jamspell models have
been made available for use as a part of the new
Estonian spelling and grammatical error correc-
tion toolkit currently in development8.

5 Conclusion and Perspectives

This study has demonstrated the benefit of statis-
tical context-sensitive spelling correction for pro-
cessing L2 learner writings. Jamspell that uses tri-
gram contexts of words for spell-checking could
correct real-word errors and other learner-specific
spelling errors more efficiently than other tested
open-source spellers. In spelling error correction,
it also outperformed MS Word speller, achiev-
ing precision and recall comparable to Google’s
corrector. In spelling error detection, its perfor-
mance was similar to MS Word’s and better than
Google’s. The evaluation of different Jamspell
correction models revealed that using a web cor-
pus as training material increases error detection
and correction precision, while using a reference
corpus increases recall.

We consider the current correction models a de-
cent baseline for further development. Their per-
formance could be improved, e.g., by employing
learner spelling error frequency data or named-
entity recognition to avoid false name edits and

8The repository of the collaborative project
with the University of Tartu can be accessed at
https://koodivaramu.eesti.ee/tartunlp/
corrector/-/tree/main/.

enable correction of name capitalization.
We acknowledge that the results might have

been different if we had implemented Norvig’s
spell-checking algorithm on a trigram language
model. The tested spell-checking tools and mod-
els should also be evaluated on a larger error-
annotated set of writings by L2 learners as well
as native speakers. Such a gold-standard dataset
of approximately 8,000 sentences is in develop-
ment for Estonian. Expectedly, context-sensitive
spelling correction also benefits proficient lan-
guage users, although the difference in perfor-
mance may not be as outstanding.
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