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Abstract

Studying language models (LMs) in terms of
well-understood formalisms allows us to pre-
cisely characterize their abilities and limita-
tions. Previous work has investigated the rep-
resentational capacity of recurrent neural net-
work (RNN) LMs in terms of their capacity to
recognize unweighted formal languages. How-
ever, LMs do not describe unweighted formal
languages—rather, they define probability dis-
tributions over strings. In this work, we study
what classes of such probability distributions
RNN LMs can represent, which allows us to
make more direct statements about their ca-
pabilities. We show that simple RNNs are
equivalent to a subclass of probabilistic finite-
state automata, and can thus model a strict sub-
set of probability distributions expressible by
finite-state models. Furthermore, we study the
space complexity of representing finite-state
LMs with RNNs. We show that, to represent
an arbitrary deterministic finite-state LM with
N states over an alphabet Σ, an RNN requires
Ω pN |Σ|q neurons. These results present a first
step towards characterizing the classes of distri-
butions RNN LMs can represent and thus help
us understand their capabilities and limitations.

https://github.com/rycolab/
weighted-minsky

1 Introduction

We start with a few definitions. An alphabet Σ is
a finite, non-empty set. A formal language is a
subset of Σ’s Kleene closure Σ˚, and a language
model (LM) p is a probability distribution over Σ˚.
LMs have demonstrated utility in a variety of NLP
tasks and have recently been proposed as a general
model of computation for a wide variety of prob-
lems requiring (algorithmic) reasoning (Brown
et al., 2020; Chen et al., 2021; Hoffmann et al.,
2022; Chowdhery et al., 2022; Wei et al., 2022a,b;
Kojima et al., 2023; Kim et al., 2023, inter alia).
Our paper asks a simple question: How can we
characterize the representational capacity of an
LM based on a recurrent neural network (RNN)?
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Figure 1: A graphical summary of the results. This
paper establishes the equivalence between the bolded
deterministic probabilistic FSAs and Heaviside Elman
RNNs, which both define deterministic probabilistic
finite-state languages.1

In other words: What classes of probability
distributions over strings can RNNs represent?

Answering this question is essential whenever
we require formal guarantees of the correctness
of the outputs generated by an LM. For example,
one might ask a language model to solve a math-
ematical problem based on a textual description
(Shridhar et al., 2023) or ask it to find an optimal
solution to an everyday optimization problem (Lin
et al., 2021, Fig. 1). If such problems fall outside
the representational capacity of the LM, we have
no grounds to believe that the result provided
by the model is correct in the general case. The
question also follows a long line of work on the
linguistic capabilities of LMs, as LMs must be able
to implement mechanisms of recognizing specific
syntactic structures to generate grammatical
sequences (Linzen et al., 2016; Hewitt and
Manning, 2019; Jawahar et al., 2019; Liu et al.,

1Dpk,mq refers to the Dyck language of k parenthesis
types and nesting of up to depth m.
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2019; Icard, 2020; Manning et al., 2020; Rogers
et al., 2021; Belinkov, 2022, inter alia).

A natural way of quantifying the representa-
tional capacity of computational models is with
the class of formal languages they can recognize
(Deletang et al., 2023). Previous work has
connected modern LM architectures such as RNNs
(Elman, 1990; Hochreiter and Schmidhuber, 1997;
Cho et al., 2014) and transformers (Vaswani et al.,
2017) to formal models of computation such as
finite-state automata, counter automata, and Turing
machines (e.g., McCulloch and Pitts, 1943; Kleene,
1956; Siegelmann and Sontag, 1992; Hao et al.,
2018; Korsky and Berwick, 2019; Merrill, 2019;
Merrill et al., 2020; Hewitt et al., 2020; Merrill
et al., 2022; Merrill and Tsilivis, 2022, inter alia).
Through this, diverse formal properties of modern
LM architectures have been shown, allowing
us to draw conclusions on which phenomena of
human language they can model and what types
of algorithmic reasoning they can carry out.2

However, most existing work has focused on the
representational capacity of LMs in terms of classi-
cal, unweighted, formal languages, which arguably
ignores an integral part of an LM: The probabilities
assigned to strings. In contrast, in this work, we
propose to study LMs by directly characterizing the
class of probability distributions they can represent.

Concretely, we study the relationship between
RNN LMs with the Heaviside activation function
H pxq

def
“ 1 tx ą 0u and finite-state LMs, the class

of probability distributions that can be represented
by weighted finite-state automata (WFSAs). Finite-
state LMs form one of the simplest classes of prob-
ability distributions over strings (Icard, 2020) and
include some well-known instances such as n-gram
LMs. We first prove the equivalence in the represen-
tational capacity of deterministic WFSAs and RNN
LMs with the Heaviside activation function, where
determinism here refers to the determinism in tran-
sitioning between states conditioned on the input
symbol. To show the equivalence, we generalize
the well-known construction of an RNN encoding
an unweighted FSA due to Minsky (1954) to the
weighted case, which enables us to talk about string
probabilities. We then consider the space com-
plexity of simulating WFSAs using RNNs. Min-
sky’s construction encodes an FSA with N states in
space O p|Σ|Nq, i.e., with an RNN with O p|Σ|Nq

hidden units, where Σ is the alphabet over which

2See §7 for a thorough discussion of relevant work.

the WFSA is defined. Indyk (1995) showed that
a general unweighted FSA with N states can be
simulated by an RNN with a hidden state of size
O

`

|Σ|
?
N

˘

. We show that this compression does
not generalize to the weighted case: Simulating a
weighted FSA with an RNN requires Ω pNq space
due to the independence of the individual condi-
tional probability distributions defined by the states
of the WFSA. Lastly, we also study the asymptotic
space complexity with respect to the size of the
alphabet, |Σ|. We again find that it generally scales
linearly with |Σ|. However, we also identify classes
of WFSAs, including n-gram LMs, where the
space complexity scales logarithmically with |Σ|.
These results are schematically presented in Fig. 1.

2 Finite-state Language Models

Most modern LMs define p pyq as a product of
conditional probability distributions p:

p pyq
def
“ p pEOS | yq

|y|
ź

t“1

p pyt | yătq , (1)

where EOS R Σ is a special end of sequence
symbol. The EOS symbol enables us to define
the probability of a string purely based on the
conditional distributions.3 Such models are called
locally normalized. We denote Σ

def
“ Σ Y tEOSu.

Throughout this paper, we will assume p defines
a valid probability distribution over Σ˚, i.e., that
p is tight (Du et al., 2023, §4).

Definition 2.1 (Weakly Equivalent). Two LMs
p and q over Σ˚ are weakly equivalent if
p pyq “ q pyq for all y P Σ˚.4

Finite-state automata are a tidy and well-
understood formalism for describing languages.

Definition 2.2. A finite-state automaton (FSA) is
a 5-tuple pΣ, Q, I, F, δq where Σ is an alphabet, Q
a finite set of states, I, F Ď Q the set of initial and
final states, and δ Ď Q ˆ Σ ˆ Q set of transitions.

We assume that states are identified by integers
in Z|Q|

def
“ t0, . . . , |Q| ´ 1u.5 We also adopt a more

3Sampling EOS ends the generation of a string, which
makes EOS analogous to the final weights in a WFSA. We
make the connection more concrete at the end of this section.

4We distinguish two notions of equivalence: weak and
strong equivalence. The latter, informally, corresponds to the
notion that there is a one-to-one correspondence between the
sequences of actions performed by p and q to generate any
string y P Σ˚. Naturally, strong equivalence implies weak
equivalence.

5For a cleaner presentation, we also assume that vectors
and matrices are zero-indexed.



suggestive notation for transitions by denoting
pq, y, q1q P δ as q y

ÝÑ q1. We call transitions of the
form q

y
ÝÑ q1 y-transitions and define the children

of the state q as the set
!

q1 | Dy P Σ: q
y
ÝÑ q1 P δ

)

.
FSAs are often augmented with weights.

Definition 2.3. A real-weighted finite-state au-
tomaton (WFSA) A is a 5-tuple pΣ, Q, δ, λ, ρq

where Σ is an alphabet, Q a finite set of states,
δ Ď QˆΣˆRˆQ a finite set of weighted transi-
tions and λ, ρ : Q Ñ R the initial and final weight-
ing functions.

We denote pq, y, w, q1q P δ with q
y{w
ÝÝÑ q1 and

define τpq
y{w
ÝÝÑ q1q

def
“ w, where τpq

y{˝
ÝÝÑ q1q

def
“ 0

if there are no y-transitions from q to q1.6 The
underlying FSA of a WFSA is the FSA obtained
by removing the transition weights and setting I “

tq P Q | λ pqq ‰ 0u and F “ tq P Q | ρ pqq ‰ 0u.

Definition 2.4. An FSA A “ pΣ, Q, I, F, δq is de-
terministic if |I| “ 1 and for every pq, yq P Q ˆ Σ,
there is at most one q1 P Q such that q

y
ÝÑ q1 P δ.

A WFSA is deterministic if its underlying FSA is
deterministic.

In contrast to unweighted FSAs, not all non-
deterministic WFSAs admit a weakly equivalent
deterministic one, i.e., they are non-determinizable.

Definition 2.5. A path π is a se-
quence of consecutive transitions

q1
y1{w1
ÝÝÝÑ q2, ¨ ¨ ¨ , qN

yN {wN
ÝÝÝÝÑ qN`1. The path’s

length |π| is the number of transitions on it and its
scan s pπq is the concatenation of the symbols on
its transitions. We denote with ΠpAq the set of all
paths in A and with ΠpA,yq the set of all paths
that scan y P Σ˚.

The weights of the transitions along a path are
multiplicatively combined to form the weight of
the path. The weights of all the paths scanning the
same string are combined additively to form the
weights of that string.

Definition 2.6. The path weight of π P ΠpAq is
w pπq “ λ pq1q

”

śN
n“1wn

ı

ρ pqN`1q. The string-

sum of y P Σ˚ is A pyq
def
“

ř

πPΠpA,yq w pπq.

A class of WFSAs important for defining LMs
is probabilistic WFSAs.

Definition 2.7. A WFSA A “ pΣ, Q, δ, λ, ρq is
probabilistic (a PFSA) if all transition, initial, and

6Throughout the text, we use ˝ as a placeholder a free
quantity, in this case, to any weight w P R. In case there are
multiple ˝’s in an expression, they are not tied in any way.
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Figure 2: A weighted finite-state automaton defining a
probability distribution over ta, bu

˚.

final weights are non-negative,
ř

qPQ λ pqq “ 1,
and, for all q P Q,

ř

q
y{w

ÝÝÑq1Pδ
w ` ρ pqq “ 1.

The initial weights, and, for any q P Q, the
weights of its outgoing transitions and its final
weight, form a probability distribution. The final
weights in a PFSA play an analogous role to
the EOS symbol—they represent the probability
of ending a path in q: ρ pqq corresponds to the
probability of ending a string y, p pEOS | yq,
where q is a state arrived at by A after reading y.
We will use the acronym DPFSA for the important
special case of a deterministic PFSA.

Definition 2.8. A language model p is finite-state
(an FSLM) if it can be represented by a PFSA, i.e.,
if there exists a PFSA A such that, for every y P Σ˚,
p pyq “ A pyq.

See Fig. 2 for an example of a PFSA defining
an FSLM over Σ “ ta, bu. Its support consists of
the strings abnabm and bbm for n,m P Ně0.

In general, there can be infinitely many PFSAs
that express a given FSLM. However, in the deter-
ministic case, there is a unique minimal canonical
DPFSA.

Definition 2.9. Let p be an FSLM. A PFSA A is a
minimal DPFSA for p if it defines the same prob-
ability distribution as p and there is no weakly
equivalent DPFSA with fewer states.

3 Recurrent Neural Language Models

RNN LMs are LMs whose conditional distri-
butions are given by a recurrent neural network.
We will focus on Elman RNNs (Elman, 1990) as
they are the easiest to analyze and special cases
of more common networks, e.g., those based on
long short-term memory (LSTM; Hochreiter and
Schmidhuber, 1997) and gated recurrent units
(GRUs; Cho et al., 2014).



Definition 3.1. An Elman RNN (ERNN) R “

pΣ, σ,D,U,V,b,h0q is an RNN with the follow-
ing hidden state recurrence:

ht
def
“ σ pUht´1 ` Vrpytq ` bq , (2)

where h0 is set to some vector in RD. r : Σ Ñ RR

is the symbol representation function and σ is an
element-wise nonlinearity. b P RD, U P RDˆD,
and V P RDˆR. We refer to the dimensionality of
the hidden state, D, as the size of the RNN.

An RNN R can be used to specify an LM by
using the hidden states to define the conditional
distributions for yt given yăt.

Definition 3.2. Let E P R|Σ|ˆD and let R be an
RNN. An RNN LM pR,Eq is an LM whose condi-
tional distributions are defined by projecting Eht

onto the probability simplex ∆|Σ|´1 using some
f : R|Σ| Ñ ∆|Σ|´1:

ppyt | yătq
def
“ f pEht´1qyt . (3)

We term E the output matrix.

The most common choice for f is the softmax
defined for x P RD and d P ZD as

softmaxpxqd
def
“

exp pxdq
řD

d1“1 exp pxd1q
. (4)

An important limitation of the softmax is that
it results in a distribution with full support
for all x P RD. However, one can achieve 0
probabilities by including extended real numbers
R def

“ R Y t´8,8u: Any element with xd “ ´8

will result in softmaxpxqd “ 0.
Recently, a number of alternatives to the

softmax have been proposed. This paper uses the
sparsemax function (Martins and Astudillo, 2016),
which can output sparse distributions:

sparsemaxpxq
def
“ argmin

pP∆D´1

||p ´ x||22. (5)

Importantly, sparsemaxpxq “ x for x P ∆D´1.

On determinism. Unlike PFSAs, Elman RNNs
(and most other popular RNN architectures, such
as the LSTM and GRU) implement inherently
deterministic transitions between internal states.
As we show shortly, certain types of Elman
RNNs are at most as expressive as deterministic
PFSAs, meaning that they can not represent
non-determinizable PFSAs.

1

x

σ pxq

Figure 3: The sigmoid and Heaviside functions.

Common choices for the nonlinear function σ in
Eq. (2) are the sigmoid function σpxq “ 1

1`expp´xq

and the ReLU σpxq “ maxp0, xq. However, the
resulting nonlinear interactions of the parameters
and the inputs make the analysis of RNN LMs
challenging. One fruitful manner to make the
analysis tractable is making a simplifying assump-
tion about σ. We focus on a particularly useful
simplification, namely the use of the Heaviside
activation function.7

Definition 3.3. The Heaviside function is defined
as Hpxq

def
“ 1 tx ą 0u.

See Fig. 3 for the graph of the Heaviside
function and its continuous approximation, the
sigmoid. For cleaner notation, we define the set
B def

“ t0, 1u. Using the Heaviside function, we can
define the Heaviside ERNN, the main object of
study in the rest of the paper.

Definition 3.4. A Heaviside Elman RNN (HRNN)
is an ERNN R “ pΣ, σ,D,U,V,b,h0q where
σ “ H .

4 Equivalence of HRNNs and FSLMs

The hidden states of an HRNN live in BD, and can
thus take 2D different values. This invites an in-
terpretation of h as the state of an underlying FSA
that transitions between states based on the HRNN
recurrence, specifying its local conditional distribu-
tions with the output matrix E. Similarly, one can
also imagine designing a HRNN that simulates the
transitions of a given FSA by appropriately spec-
ifying the parameters of the HRNN. We explore
this connection formally in this section and present
the main technical result of the paper. The central
result that characterizes the representational capac-
ity HRNN can be informally summarized by the
following theorem.

7While less common now due to its non-differentiability,
the Heaviside function was the original activation function
used in early work on artificial neural networks due to its close
analogy to the firing of brain neurons (McCulloch and Pitts,
1943; Minsky, 1954; Kleene, 1956).



Theorem 4.1 (Informal). HRNN LMs are equiva-
lent to DPFSAs.

We split this result into the question of (i) how
DPFSAs can simulate HRNN LMs and (ii) how
HRNN LMs can simulate DPFSAs.

4.1 DPFSAs Can Simulate HRNNs
Lemma 4.1. For any HRNN LM, there exists a
weakly equivalent DPFSA.

The proof closely follows the intuitive con-
nection between the 2D possible configurations
of the RNN hidden state and the states of the
strongly equivalent DPFSA. The outgoing transi-
tion weights of a state q are simply the conditional
probabilities of the transition symbols conditioned
on the RNN hidden state represented by q.8 This
implies that HRNNs are at most as expressive as
DPFSAs, and as a consequence, strictly less expres-
sive as non-deterministic PFSAs. We discuss the
implications of this in §6.

4.2 HRNNs Can Simulate DPFSAs
This section discusses the other direction of The-
orem 4.1, showing that a general DPFSA can be
simulated by an HRNN LM using a variant of the
classic theorem originally due to Minsky (1954).
We give the theorem a probabilistic twist, making
it relevant to language modeling.

Lemma 4.2. Let A “ pΣ, Q, δ, λ, ρq be a DPFSA.
Then, there exists a weakly equivalent HRNN LM
whose RNN is of size |Σ||Q|.

We describe the full construction of an HRNN
LM simulating a given DPFSA in the next subsec-
tion. The full construction is described to showcase
the mechanism with which the HRNN can simulate
the transitions of a given FSA and give intuition on
why this might, in general, require a large number
of parameters in the HRNN. Many principles and
constraints of the simulation are also reused in the
discussion of the lower bounds on the size of the
HRNN required to simulate the DPFSA.

4.2.1 Weighted Minsky’s Construction
For a DPFSA A “ pΣ, Q, δ, λ, ρq, we con-
struct an HRNN LM pR,Eq with R “

pΣ, σ,D,U,V,b,h0q defining the same distribu-
tion over Σ˚. The idea is to simulate the transition
function δ with the Elman recurrence by appropri-
ately setting U, V, and b. The transition weights
defining the stringsums are represented in E.

8The full proof is presented in Appendix A.

Let n : Q ˆ Σ Ñ Z|Q||Σ|, m : Σ Ñ Z|Σ|,
and m : Σ Ñ Z

|Σ|
bijections. We use n, m,

and m to define the one-hot encodings J¨K of
state–symbol pairs and of the symbols, i.e.,
we assume that Jq, yKd “ 1 td “ n pq, yqu and
JyKd “ 1 td “ m pyqu for q P Q and y P Σ.

HRNN’s hidden states. The hidden state ht of R
will represent the one-hot encoding of the current
state qt of A at time t together with the symbol yt
upon reading which A entered qt. Formally,

ht “ Jpqt, ytqK P B|Q||Σ|. (6)

There is a small caveat: How do we set the incom-
ing symbol of A’s initial state qι? As we show later,
the symbol yt in ht “ Jpqt, ytqK does not affect the
subsequent transitions—it is only needed to deter-
mine the target of the current transition. Therefore,
we can set h0 “ Jpqι, yqK for any y P Σ.

Encoding the transition function. The idea of
defining U, V, and b is for the Elman recurrence
to perform, upon reading yt`1, element-wise
conjunction between the representations of the chil-
dren of qt and the representation of the states A can
transition into after reading in yt`1 from any state.9

The former is encoded in the recurrence matrix U,
which has access to the current hidden state encod-
ing qt while the latter is encoded in the input matrix
V, which has access to the one-hot representation
of yt`1. Conjoining the entries in those two repre-
sentations will, due to the determinism of A, result
in a single non-zero entry: One representing the
state which can be reached from qt (1st component)
using the symbol yt`1 (2nd component); see Fig. 4.

More formally, the recurrence matrix U lives in
B|Σ||Q|ˆ|Σ||Q|. Each column U : ,npq,yq represents
the children of the state q in the sense that the col-
umn contains 1’s at the indices corresponding to
the state–symbol pairs pq1, y1q such that A transi-
tions from q to q1 after reading in the symbol y1.
That is, for q, q1 P Q and y, y1 P Σ, we define

Unpq1,y1q,npq,yq
def
“ 1

"

qt
y1{˝
ÝÝÑ q1 P δ

*

. (7)

Since y is free, each column is repeated |Σ|-times:
Once for every y P Σ—this is why, after entering
the next state, the symbol used to enter it, in the
case of the initial state, any incoming symbol can
be chosen to set h0.

9See Fact A.1 in Appendix A.1 for a discussion of how an
HRNN can implement the logical AND operation.
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Figure 4: A high-level illustration of how the transition function of the FSA is simulated in Minsky’s construction on
a fragment of an FSA starting at q (encoded in h) and reading the symbol a. The top path disjoins the representations
of the children of q, whereas the bottom path disjoins the representations of states reachable by an a-transition. The
Heaviside activation conjoins these two representations into h1 (rightmost fragment). Projecting Eh1 results in the
vector defining the same probability distribution as the outcoming arcs of q (red box).

The input matrix V lives in B|Σ||Q|ˆ|Σ| and en-
codes the information about which states can be
reached by which symbols (from any state). The
non-zero entries in the column corresponding to
y1 P Σ correspond to the state–symbol pairs pq1, y1q

such that q1 is reachable with y1 from some state:

Vnpq1,y1q,mpy1q
def
“ 1

"

˝
y1{˝
ÝÝÑ q1 P δ

*

. (8)

Lastly, we define the bias as b
def
“ ´1 P R|Q||Σ|,

which allows the Heaviside function to perform
the needed conjunction. The correctness of this
process is proved in Appendix A (Lemma A.1).

Encoding the transition probabilities. We
now turn to the second part of the construction:
Encoding the string acceptance weights given by A
into the probability distribution defined by R. We
present two ways of doing that: Using the standard
softmax formulation, where we make use of the
extended real numbers, and with the sparsemax.

The conditional probabilities assigned by R are
controlled by the |Σ| ˆ |Q||Σ|-dimensional output
matrix E. Since ht is a one-hot encoding of the
state–symbol pair qt, yt, the matrix–vector product
Eht simply looks up the values in the n pqt, ytq

th

column. After being projected to ∆|Σ|´1, the en-
try in the projected vector corresponding to some
yt`1 P Σ should match the probability of yt`1

given that A is in the state qt, i.e., the weight on

the transition qt
yt`1{˝
ÝÝÝÝÑ ˝ if yt`1 P Σ and ρ pqtq if

yt`1 “ EOS. This is easy to achieve by simply en-
coding the weights of the outgoing transitions into
the n pqt, ytq

th column, depending on the projec-
tion function used. This is especially simple in the
case of the sparsemax formulation. By definition,
in a PFSA, the weights of the outgoing transitions
and the final weight of a state qt form a probability
distribution over Σ for every qt P Q. Projecting
those values to the probability simplex, therefore,
leaves them intact. We can therefore define

Empy1qnpq,yq
def
“

#

τpq
y1{w
ÝÝÝÑ ˝q | if y1 P Σ

ρ pqq | otherwise
.

(9)
Projecting the resulting vector Eht, therefore, re-
sults in a vector whose entries represent the transi-
tion probabilities of the symbols in Σ.

In the more standard softmax formulation, we
proceed similarly but log the non-zero transition
weights. Defining log 0

def
“ ´8, we set

Empy1qnpq,yq
def
“

#

log τpq
y1{w
ÝÝÝÑ ˝q | if y1 P Σ

log ρ pqq | otherwise
.

(10)
It is easy to see that the entries of the vector
softmaxpEhtq form the same probability distri-
bution as the original outgoing transitions out of
q. Over the course of an entire input string, these
weights are multiplied as the RNN transitions be-



tween different hidden states corresponding to the
transitions in the original DPFSA A. The proof can
be found in Appendix A (Lemma A.2). This estab-
lishes the complete equivalence between HRNN
LMs and FSLMs.10

5 Lower Bound on the Space Complexity
of Simulating PFSAs with RNNs

Lemma 4.2 shows that HRNN LMs are at least as
expressive as DPFSAs. More precisely, it shows
that any DPFSA A “ pΣ, Q, δ, λ, ρq can be simu-
lated by an HRNN LM of size O p|Q||Σ|q. In this
section, we address the following question: How
large does an HRNN LM have to be such that it can
correctly simulate a DPFSA? We study the asymp-
totic bounds with respect to the size of the set of
states, |Q|, as well as the number of symbols, |Σ|.

5.1 Asymptotic Bounds in |Q|

Intuitively, the 2D configurations of a D-
dimensional HRNN hidden state could represent
2D states of a (DP)FSA. One could therefore hope
to achieve exponential compression of a DPFSA
by representing it as an HRNN LM.11 Interestingly,
this is not possible in general: Extending work by
Dewdney (1977), Indyk (1995) shows that there
exist unweighted FSAs which require an HRNN
of size Ω

´

|Σ|
a

|Q|

¯

to be simulated. At the same
time, he also shows that any FSA can be simulated
by an HRNN of size O

´

|Σ|
a

|Q|

¯

.12

We now ask whether the same lower bound
can also be achieved when simulating DPFSAs.
We find that the answer is negative: There exist
DPFSAs which require an HRNN LM of size
Ω p|Σ||Q|q to faithfully represent their probability
distribution. Since the transition function of the
underlying FSA can be simulated more efficiently,
the bottleneck comes from the requirement of weak
equivalence. Indeed, as the proof of the following
theorem shows (Theorem 5.1 in Appendix A), the
issue intuitively arises in the fact that, unlike in
an HRNN LM, the local probability distributions
of the different states in a PFSA are completely

10The full discussion of the result is postponed to §6.
11Indeed, any DPFSA defined from an RNN as described

in the proof of Lemma 4.1 can naturally be exponentially
compressed by representing it with an HRNN. However, not
all DPFSAs are of this form.

12The constructions by Dewdney (1977) and Indyk (1995),
which represent any unweighted FSA with a HRNN of size
O

´

|Σ||Q|
3
4

¯

and O
´

|Σ|
a

|Q|

¯

, respectively, are reviewed
by Svete and Cotterell (2023).

arbitrary, whereas they are defined by shared
parameters (the matrix E) in an HRNN LM.

Theorem 5.1. There exists a class of FSLMs
tpQ | Q “ t1, . . . , Nu, N P Nu with minimal
DPFSAs tAQu such that for every weakly equiv-
alent HRNN LM to pQ and function f pnq P ω pnq

it holds that D ą f p|Q|q.

Note that the linear lower bound holds in the
case that the transition matrix of the DPFSA,
which corresponds to the output matrix E in the
RNN LM, is full-rank. If the transition matrix is
low-rank, its possible decomposition into smaller
matrices could possibly be carried over to the
output matrix of the RNN, reducing the size of the
hidden state to the rank of the matrix.

5.2 Asymptotic Bounds in |Σ|

Since each of the input symbols can be encoded in
log |Σ| bits, one could expect that the linear factor
in the size of the alphabet from the constructions
above could be reduced to O plog |Σ|q. However,
we again find that such reduction is in general not
possible—the set of FSAs presented in Appendix B
is an example of a family that requires an HRNN
whose size scales linearly with |Σ| to be simulated
correctly, which implies the following theorem.

Theorem 5.2. There exists a class of FSLMs
tpΣ | Σ “ ty1, . . . , yNu, N P Nu such that for
every weakly equivalent HRNN LM to pΣ and
function f pnq P ω pnq it holds that D ą f p|Σ|q.

Based on the challenges encountered in the ex-
ample from Appendix B, we devise a simple suffi-
cient condition for a logarithmic compression with
respect to |Σ| to be possible: Namely, that for any
pair of states q, q1 P Q, there is at most a single
transition leading from q to q1. Importantly, this
condition is met by classical n-gram LMs and by
the languages studied by Hewitt et al. (2020). This
intuitive characterization can be formalized by a
property we call log |Σ|-separability.

Definition 5.1. An FSA A “ pΣ, Q, I, F, δq is
log |Σ|-separable if it is deterministic and, for any
pair q, q1 P Q, there is at most one symbol y P Σ
such that q

y
ÝÑ q1 P δ.

The conditional of log |Σ|-separability is a
relatively restrictive condition. To amend that, we
introduce a simple procedure which, at the expense
of enlarging the state space by a factor of |Σ|,
transforms a general deterministic (unweighted)
FSA into a log |Σ|-separable one. Since this
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Figure 5: A non-determinizable PFSA. It assigns the
string abnc the probability A pabncq “ 0.5 ¨0.9n ¨0.1`

0.5 ¨ 0.1n ¨ 0.9, which can not be expressed as a single
term for arbitrary n P Ně0.

procedure does not apply to weighted automata,
it is presented in Appendix C.

6 Discussion

In §4 and §5 we provided the technical results
behind the relationship between HRNN LMs and
DPFSAs. To put those results in context, we now
discuss some of their implications.

6.1 Equivalence of HRNN LMs and DPFSAs
The equivalence between HRNN LMs and
DPFSAs based on Lemmas 4.1 and 4.2 allows us
to establish several constraints on the probability
distributions expressible by HRNN LMs. For
example, this result shows that HRNNs are at
most as expressive as deterministic PFSAs and,
therefore, strictly less expressive than general,
non-deterministic, PFSAs due to the well-known
result that not all non-deterministic PFSAs have
a deterministic equivalent (Mohri, 1997).13 An
example of a simple non-determinizable PFSA, i.e.,
a PFSA whose distribution cannot be expressed
by an HRNN LM, is shown in Fig. 5.14

Moreover, connecting HRNN LMs to DPFSAs
allows us to draw on results from (weighted) for-
mal language theory to manipulate and investigate
HRNN LMs. For example, we can apply general re-
sults on the tightness of language models based on
DPFSAs to HRNN LMs (Du et al., 2023, §5.1).15

13General PFSAs are, in turn, equivalent to probabilistic
regular grammars and discrete HMMs (Icard, 2020).

14Even if a non-deterministic PFSA can be determinized,
the number of states of the determinized machine can be expo-
nential in the size of the non-deterministic one (Buchsbaum
et al., 2000). In this sense, non-deterministic PFSAs can be
seen as exponentially compressed representations of FSLMs.
The compactness of this non-deterministic representation must
be “undone” using determinization before it can be encoded
by an HRNN.

15Informally, the question of tightness concerns the question

Even if the HRNN LM is not tight a priori, the
fact that the normalizing constant can be computed
means that it can always be re-normalized to form a
probability distribution over Σ˚. Furthermore, we
can draw on the various results on the minimiza-
tion of DPFSAs to reduce the size of the HRNN
implementing the LM.

While Lemma 4.1 focuses on HRNN LMs and
shows that they are finite-state, a similar argument
could be made for any RNN whose activation func-
tions map onto a finite set. This is the case with any
RNN running on a computer with finite-precision
arithmetic—in that sense, all deployed RNN LMs
are finite-state, albeit with a very large state space.
In other words, one can view RNNs as very com-
pact representations of large DPFSAs whose transi-
tion functions are represented by the RNN’s update
function. Furthermore, since the topology and the
weights of the implicit DPFSA are determined by
the RNN’s update function, the DPFSA can be
learned very flexibly yet efficiently based on the
training data. This is enabled by the sharing of
parameters across the entire graph of the DPFSA
instead of explicitly parametrizing every possible
transition in the DPFSA or by hard-coding the al-
lowed transitions as in n-gram LMs.

A note on the use of the Heaviside function.
Minsky’s construction uses the Heaviside acti-
vation function to implement conjunction. Note
that, conveniently, we could also use the more
popular ReLU function: A closer look at Minsky’s
construction shows that the only action performed
by the Heaviside function is clipping negative
values to 0 while non-negative values are left
intact.16 Since ReLU behaves the same way on the
relevant set of values, it could simply be swapped
in for the Heaviside unit. This simply shows that
the convenient binary structure of the Heaviside
function does not enhance the representational
capacity of the model in any way; as one would
expect, ReLU-activated Elman RNN LMs are at
least as expressive as Heaviside-activated ones.17

of whether the LM forms a valid probability distribution over
Σ˚, which is not necessarily the case for locally normalized
LMs such as RNN LMs.

16More precisely, the only values that appear during the
processing of a string are ´1, 0, and 1, and the ´1 is mapped
to 0 using the Heaviside function.

17Note that the same would be more difficult to say for
sigmoid- or tanh-activated Elman RNNs.



6.2 Space Complexity of Simulating DPFSAs
with HRNN LMs

Theorems 5.1 and 5.2 establish lower bounds on
how efficiently HRNN LMs can represent FSLMs,
which are, to the best of our knowledge, the first
results characterizing such space complexity. They
reveal how the flexible local distributions of indi-
vidual states in a PFSA require a large number of
parameters in the simulating RNN to be matched.
This implies that the simple Minsky’s construction
is in fact asymptotically optimal in the case of
PFSAs, even though the transition function of the
underlying FSA can be simulated more efficiently.

Nonetheless, the fact that RNNs can represent
some FSLMs compactly is interesting. The lan-
guages studied by Hewitt et al. (2020) and Bhat-
tamishra et al. (2020) can be very compactly repre-
sented by an HRNN LM and have clear linguistic
motivations. Investigating whether other linguis-
tically motivated phenomena in human language
can be efficiently represented by HRNN LMs is an
interesting area of future work, as it would yield
insights into not only the full representational ca-
pacity of these models but also reveal additional
inductive biases they use and that can be exploited
for more efficient learning and modeling.

7 Related Work

To the best of our knowledge, the only existing
connection between RNNs and weighted automata
was made by Peng et al. (2018), where the authors
connect the recurrences analogous to Eq. (2) of dif-
ferent RNN variants to the process of computing
the probability of a string under a general PFSA.
With this, they are able to show that the hidden
states of an RNN can be used to store the prob-
ability of the input string, which can be used to
upper-bound the representational capacity of spe-
cific RNN variants. Importantly, the interpretation
of the hidden state is different to ours: Rather than
tracking the current state of the PFSA, Peng et al.
(2018)’s construction stores the distribution over
all possible states. While this suggests a way of
simulating PFSAs, the translation of the probabili-
ties captured in the hidden state to the probability
under an RNN LM is not straightforward.

Weiss et al. (2018), Merrill (2019) and Merrill
et al. (2020) consider the representational capacity
of saturated RNNs, whose parameters take their
limiting values ˘8 to make the updates to the
hidden states discrete. In this sense, their formal

model is similar to ours. However, rather than
considering the probabilistic representational ca-
pacity, they consider the flexibility of the update
mechanisms of the variants in the sense of their
long-term dependencies and the number of values
the hidden states can take as a function of the string
length. Connecting the assumptions of saturated ac-
tivations with the results of Peng et al. (2018), they
establish a hierarchy of different RNN architectures
based on whether their update step is finite-state
and whether the hidden state can be used to store
arbitrary amounts of information. Analogous to
our results, they show that Elman RNNs are finite-
state while some other variants such as LSTMs are
provably more expressive.

In a different line of work, Weiss et al. (2019)
study the ability to learn a concise DPFSA from
a given RNN LM. This can be seen as a relaxed
setting of the proof of Lemma 4.1, where multi-
ple hidden states are merged into a single state
of the learned DPFSA to keep the representation
compact. The work also discusses the advantages
of considering deterministic models due to their
interpretability and computational efficiency, moti-
vating the connection between LMs and DPFSAs.

Discussion of some additional (less) related
work can be found in Appendix D.

8 Conclusion

We prove that Heaviside Elman RNNs define the
same set of probability distributions over strings as
the well-understood class of deterministic proba-
bilistic finite-state automata. To do so, we extend
Minsky’s classical construction of an HRNN simu-
lating an FSA to the probabilistic case. We show
that Minsky’s construction is in some sense also
optimal: Any HRNN representing the same distri-
bution as some DPFSA over strings from an alpha-
bet Σ will, in general, require hidden states of size
at least Ω p|Σ||Q|q, which is the space complexity
of Minsky’s construction.

Limitations

This paper aims to provide a first step at understand-
ing modern LMs with weighted formal language
theory and thus paints an incomplete picture of
the entire landscape. While the formalization we
choose here has been widely adopted in previous
work (Minsky, 1954; Dewdney, 1977; Indyk,
1995), the assumptions about the models we make,
e.g., binary activations and the simple recurrent



steps, are overly restrictive to represent the models
used in practice; see also §6 for a discussion on
the applicability to more complex models. It is
likely that different formalizations of the RNN LM,
e.g., those with asymptotic weights (Weiss et al.,
2018; Merrill et al., 2020; Merrill, 2019) would
yield different theoretical results. Furthermore, any
inclusion of infinite precision would bring RNN
LMs much higher up on the Chomsky hierarchy
(Siegelmann and Sontag, 1992). Studying more
complex RNN models, such as LSTMs, could also
yield different results, as LSTMs are known to be
in some ways more expressive than simple RNNs
(Weiss et al., 2018; Merrill et al., 2020).

Another important aspect of our analysis is
the use of explicit constructions to show the
representational capacity of various models. While
such constructions show theoretical equivalence,
it is unlikely that trained RNN LMs would learn
the proposed mechanisms in practice, as they tend
to rely on dense representations of the context
(Devlin et al., 2019). This makes it more difficult
to use the results to analyze trained models. Rather,
our results aim to provide theoretical upper bounds
of what could be learned.

Lastly, we touch upon the applicability of
finite-state languages to the analysis of human
language. Human language is famously thought
to not be finite-state (Chomsky, 1957), and
while large portions of it might be modellable by
finite-state machines, such formalisms lack the
structure and interpretability of some mechanisms
higher on the Chomsky hierarchy. For example,
the very simple examples of (bounded) nesting
expressible with context-free grammars are
relatively awkward to express with finite-state
formalisms such as finite-state automata—while
they are expressible with such formalisms, the
implementations lack the conciseness (and thus
inductive biases) of the more concise formalisms.
On the other hand, some prior work suggests that
finding finite-state mechanisms could nonetheless
be useful for understanding the inner workings of
LMs and human language (Hewitt et al., 2020).
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A Proofs

A.1 Performing the Logical AND with an HRNN

Minsky’s construction requires the RNN to perform the logical AND operation between specific entries of
binary vectors x P BD. The following fact shows how this can easily be performed by an HRNN with
appropriately set parameters.

Fact A.1. Consider m indices i1, . . . , im P ZD and vectors x,v P BD such that vi “ 1 ti P ti1, . . . , imuu,
i.e., with entries 1 at indices i1, . . . , im. Then, H

`

vJx ´ pm ´ 1q
˘

“ 1 if and only if xik “ 1 for all
k “ 1, . . . ,m. In other words,

H
`

vJx ´ pm ´ 1q
˘

“ xi1 ^ ¨ ¨ ¨ ^ xim . (11)

As a special case, m “ 2 in Fact A.1 corresponds to the AND operation of two elements, which is used in
Minsky’s construction. There, the vector v corresponds to the weights of a single neuron while ´ pm ´ 1q

(´1 in case m “ 2) corresponds to its bias.
We now present the proofs of the lemmas establishing the equivalence of DPFSAs and HRNN LMs.

Lemma 4.1. For any HRNN LM, there exists a weakly equivalent DPFSA.

Proof. Let R “ pΣ, σ,D,U,V,b,h0q be a HRNN defining the locally normalized language model p.
We construct a weakly equivalent DPFSA A “ pΣ, Q, δ, λ, ρq. Construct a bijection s : BD Ñ Z2D . Now,

for every state q def
“ sphq P Q

def
“ Z2D , construct a transition q

y{w
ÝÝÑ q1 where q1 “ spσ pUh ` VJyK ` bqq

with the weight w “ p py | hq “ f pEhqy. We define the initial function as λ psphqq “ 1 th “ h0u and

final function ρ with ρ pqq
def
“ p pEOS | spqqq. It is easy to see that A defined this way is deterministic.

We now prove that the weights assigned to strings by A and R are the same. Define q0
def
“ sph0q and let

y P Σ˚ with |y| “ T . Then, let

π “

ˆ

q0
y1{w1
ÝÝÝÑ q1, . . . , qT´1

yT {wT
ÝÝÝÝÑ qT

˙

. (12)

be the path with the scan y and starting in q0 (such a path exists since we the defined automaton is
complete—all possible transitions are defined for all states). Then, it holds that

A pyq “λ pq0q ¨

«

T
ź

t“1

wt

ff

¨ ρ pqT q

“1 ¨

T
ź

t“1

p
`

yt | s´1pqtq
˘

¨ p
`

EOS | s´1pqT q
˘

“p pyq

which is exactly the weight assigned to y by R. Note that all paths not starting in sph0q have weight 0
due to the definition of the initial function. ■

Lemma A.1. Let A “ pΣ, Q, δ, λ, ρq be a deterministic PFSA, y “ y1 . . . yT P Σ˚, and qt the state
arrived at by A upon reading the prefix yďt. Let R be the HRNN specified by the Minsky construction for
A, n the permutation defining the one-hot representations of state-symbol pairs by R, and ht R’s hidden
state after reading yďt. Then, it holds that h0 “ Jpqι, yqK where qι is the initial state of A and y P Σ and
hT “ JpqT , yT qK.

Proof. Define sph “ Jpq, yqKq
def
“ q. We can then restate the lemma as sphT q “ qT for all y P Σ˚,

|y| “ T . Let π be the y-labeled path in A. We prove the lemma by induction on the string length T .

Base case: T “ 0. Holds by the construction of h0.



Inductive step: T ą 0. Let y P Σ˚ with |y| “ T and assume that sphT´1q “ qT´1. We prove that
the specifications of U, V, and b ensure that sphT q “ qT . By definition of the recurrence matrix U
(cf. Eq. (7)), the vector UhT´1 will contain a 1 at the entries n pq1, y1q for q1 P Q and y1 P Σ such

that qT
y1{˝
ÝÝÑ q1 P δ. This can equivalently be written as UhT´1 “

Ž

qT
y1{˝

ÝÝÑq1Pδ
Jpq1, y1qK, where the

disjunction is applied element-wise.
On the other hand, by definition of the input matrix V (cf. Eq. (8)), the vector VJyT K will contain

a 1 at the entries n pq1, yT q for q1 P Q such that ˝
yT {˝
ÝÝÝÑ q1 P δ. This can also be written as VJyT K “

Ž

˝
yT {˝

ÝÝÝÑq1Pδ
Jpq1, yT qK.

By Fact A.1, H pUhT´1 ` VJyT K ` bqnpq1,y1q “ H pUhT´1 ` VJyT K ´ 1qnpq1,y1q “ 1 holds if and
only if pUhT´1qnpq1,y1q “ 1 and pVJyT Kqnpq1,y1q “ 1. This happens if

qT
y1{˝
ÝÝÑ q1 P δ and ˝

yT {˝
ÝÝÝÑ q1 P δ ðñ qT

yT {˝
ÝÝÝÑ q1, (13)

i.e., if and only if A transitions from qT to qT upon reading yT (it transitions only to qT due to determin-
ism).

Since the string y was arbitrary, this finishes the proof. ■

Lemma A.2. Let A “ pΣ, Q, δ, λ, ρq be a deterministic PFSA, y “ y1 . . . yT P Σ˚, and qt the state
arrived at by A upon reading the prefix yďt. Let R be the HRNN specified by the Minsky construction for
A, E the output matrix specified by the generalized Minsky construction, n the permutation defining the
one-hot representations of state-symbol pairs by R, and ht R’s hidden state after reading yďt. Then, it
holds that p pyq “ A pyq.

Proof. Let y P Σ˚, |y| “ T and let π be the y-labeled path in A. Again, let p pyq
def
“

ś|y|

t“1 p pyt | yătq.
We prove p pyq “

śT
t“1wt by induction on T .

Base case: T “ 0. In this case, y “ ε, i.e., the empty string, and A pεq “ 1. R computes p pεq “
ś0

t“1 p pyt | yătq “ 1.

Inductive step: T ą 0. Assume that the p py1 . . . yT´1q “
śT´1

t“1 wt. By Lemma A.1, we know that
sphT´1q “ qT and sphT q “ qT . By the definition of E for the specific f , it holds that f pEhT´1qmpyq “

τpsphT´1q
y{wT
ÝÝÝÑ sphT qq “ wT . This means that p pyďT q “

śT
t“1wt, which is what we wanted to

prove.
Clearly, p pyq “ p pyq p pEOS | yq. By the definition of E (cf. Eq. (9)), pEhT qmpEOSq “ ρ psphT qq,

meaning that p pyq “ p pyq p pEOS | yq “
śT

t“1wtρ psphT qq “ A pyq. Since y P Σ˚ was arbitrary, this
finishes the proof.

■

A note on strong equivalence. The purpose of Lemma A.2 and Lemma 4.1 was to show the existence
of a weakly equivalent (cf. Definition 2.1) HRNN LM given a DPFSA defining a finite-state LM and vice
versa. We keep the discussion in the main part of the paper restricted to weak equivalence for brevity.
However, note that the proofs of the lemmas in fact establish the existence of a strongly equivalent DPFSA
and HRNN LM, respectively. This can easily be seen from the one-to-one correspondence between path
scanning a given string in the DPFSA and the sequence of hidden states generating the same string in
the HRNN LM. In this sense, the connection between DPFSAs and HRNN LMs is even tighter than just
defining the same probability distribution; however, we are mainly interested in the implications of the
simpler weak equivalence.

Theorem 5.1. There exists a class of FSLMs tpQ | Q “ t1, . . . , Nu, N P Nu with minimal DPFSAs
tAQu such that for every weakly equivalent HRNN LM to pQ and function f pnq P ω pnq it holds that
D ą f p|Q|q.
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Figure 6: The FSA AN .

Proof. Without loss of generality, we work with R-valued hidden states. Let A be a minimal deterministic
PFSA and R “ pΣ, σ,D,U,V,b,h0q a HRNN with p pyq “ A pyq for every y P Σ˚. Let yăT P Σ˚

and yďT
def
“ yăT y for some y P Σ. Define p pyq

def
“

ś|y|

t“1 p pyt | yătq. It is easy to see that p pyăT yT q “

p pyăT q p pyt | yăT q. The probabilities in the conditional distribution p p¨ | yăT q are determined by the
values in EhT´1. By definition of the deterministic PFSA, there are |Q| such conditional distributions.
Moreover, these distributions (represented by vectors P ∆|Σ|´1) can generally be linearly independent.18

This means that for any q, the probability distribution of the outgoing transitions can not be expressed as
a linear combination of the probability distributions of other states. To express the probability vectors
for all states, the columns of the output matrix E, therefore, have to span R|Q|, implying that E must
have at least |Q| columns. This means that the total space complexity (and thus the size of the HRNN
representing the same distribution as A) is Ω p|Q|q. ■

B Lower Space Bounds in |Σ| for Simulating Deterministic PFSAs with HRNNs

In this section, we provide a family of DPFSAs which require a HRNN LM whose size must scale linearly
with the size of the alphabet. We also provide a sketch of the proof of why a compression in |Σ| is not
possible. Let AN “ pΣN , t0, 1u, t0u, t1u, δN q be an FSA over the alphabet ΣN “ ty1, . . . , yNu such
that δN “

!

0
y1
ÝÑ 1

)

Y

!

0
yn
ÝÑ 2 | n “ 2, . . . N

)

(see Fig. 6).
Clearly, to be able to correctly represent all local distributions of the DPFSA, the HRNN LM must

contain a representation of each possible state of the DPFSA in a unique hidden state. On the other
hand, the only way that the HRNN can take into account the information about the current state qt of
the simulated FSA A is through the hidden state ht. The hidden state, in turn, only interacts with the
recurrence matrix U, which does not have access to the current input symbol yt`1. The only interaction
between the current state and the input symbol is thus through the addition in Uht ` VJyt`1K. This
means that, no matter how the information about qt is encoded in ht, to be able to take into account all
possible transitions stemming in qt (before taking into account yt`1), Uht must activate all possible next
states, i.e., all children of qt. On the other hand, since VJyt`1K does not have precise information about qt,
it must activate all states which can be entered with an yt`1-transition, just like in Minsky’s construction.

In Minsky’s construction, the recognition of the correct next state was done by keeping a separate
entry (one-dimensional sub-vector) for each possible pair qt`1, yt`1. However, when working with
compressed representations of states (e.g., in logarithmic space), a single common sub-vector of size
ă |Σ| (e.g., log |Σ|) has to be used for all possible symbols y P Σ. Nonetheless, the interaction between
Uht and VJyt`1K must then ensure that only the correct state qt`1 is activated. For example, in Minsky’s
construction, this was done by simply taking the conjunction between the entries corresponding to q, y
in Uht and the entries corresponding to q1, y1 in VJy1K, which were all represented in individual entries
of the vectors. On the other hand, in the case of the log encoding, this could intuitively be done by
trying to match the log |Σ| ones in the representation pp pyq | 1 ´ p pyqq, where p pyq represent the binary
encoding of y. If the log |Σ| ones match (which is checked simply as it would result in a large enough
sum in the corresponding entry of the matrix-vector product), the correct transition could be chosen (to
perform the conjunction from Fact A.1 correctly, the bias would simply be set to log |Σ| ´ 1). However,

18For this to be the case, it has to hold that |Σ| ě |Q|.



an issue arises as soon as multiple dense representations of symbols in VJyK have to be activated against
the same sub-vector in Uht—the only way this can be achieved is if the sub-vector in Uht contains the
disjunction of the representations of all the symbols which should be activated with it. If this sets too
many entries in Uht to one, this can result in “false positives”. This is explained in more detail for the
DPFSAs in Fig. 6 next.

Let rn represent any dense encoding of yn in the alphabet of AN (e.g., in the logarithmic case, that
would be pp pnq | 1 ´ p pnqq). Going from the intuition outlined above, any HRNN simulating AN , the
vector Uh0 must, among other things, contain a sub-vector corresponding to the states 1 and 2. The sub-
vector corresponding to the state 2 must activate (through the interaction in the Heaviside function) against
any yn for n “ 2, . . . , N in AN . This means it has to match all representations rn for all n “ 2, . . . , N .
The only way this can be done is if the pattern for recognizing state 2 being entered with any yn for
n “ 2, . . . , N is of the form r “

ŽN
n“2 rn. However, for sufficiently large N , r “

ŽN
n“2 rn will be a

vector of all ones—including all entries active in r1. This means that any encoding of a symbol will be
activated against it—among others, y1. Upon reading y1 in state 1, the network will therefore not be able
to deterministically activate only the sub-vector corresponding to the correct state 1. This means that the
linear-size encoding of the symbols is, in general, optimal for representing DPFSAs with HRNN LMs.

C Transforming a General Deterministic FSA into a log |Σ|-separable FSA

log |Σ|-separability is a relatively restrictive condition. To amend that, we introduce a simple procedure
which, at the expense of enlarging the state space by a factor of Σ, transforms a general deterministic FSA
into a log |Σ|-separable one. We call this log |Σ|-separation. Intuitively, it augments the state space by
introducing a new state pq, yq for every outgoing transition q

y
ÝÑ q1 of every state q P Q, such that pq, yq

simulates the only state the original state q would transition to upon reading y. Due to the determinism of
the original FSA, this results in a log |Σ|-separable FSA with at most |Q||Σ| states.

While the increase of the state space might seem like a step backward, recall that using Indyk’s
construction, we can construct an HRNN simulating an FSA whose size scales with the square root of the
number of states. And, since the resulting FSA is log |Σ|-separable, we can reduce the space complexity
with respect to Σ to log |Σ|. This is summarized in the following theorem, which characterizes how
compactly general deterministic FSAs can be encoded by HRNNs. To our knowledge, this is the tightest
bound on simulating general unweighted deterministic FSAs with HRNNs.
Theorem C.1. Let A “ pΣ, Q, I, F, δq be a minimal FSA recognizing the language L. Then, there exists
an HRNN R “ pΣ, σ,D,U,V,b,h0q accepting L with D “ O

´

log |Σ|
a

|Σ||Q|

¯

.

The full log |Σ|-separation procedure is presented in Algorithm 1. It follows the intuition of creating a
separate “target” for each transition q

y
ÝÑ q1 for every state q P Q. To keep the resulting FSA deterministic,

a new, artificial, initial state with no incoming transitions is added and is connected with the augmented
with the children of the original initial state.

The following simple lemmata show the formal correctness of the procedure and show that it results in
a log |Σ|-separable FSA, which we need for compression in the size of the alphabet.

Lemma C.1. For any y P Σ, pq, yq
y1

ÝÑ pq1, y1q P δ1 if and only if q
y1

ÝÑ q1 P δ.

Proof. Ensured by the loop on Line 3. ■

Lemma C.2. log |Σ|-separation results in an equivalent FSA.

Proof. We have to show that, for any y P Σ˚, y leads to a final state in A if and only if y leads to a final
state in A1. For the string of length 0, this is clear by Lines 13 and 14. For strings of length ě 1, it follows
from Lemma C.1 that y leads to a state q in A if and only if Dy P Σ such that y leads to pq, yq in A1.
From Lines 11 and 12, pq, yq P F 1 if and only if q P F , finishing the proof. ■

Lemma C.3. log |Σ|-separation results in a log |Σ|-separable FSA.

Proof. Since the state pq1, y1q is the only state in Q1 transitioned to from pq, yq after reading y1 (for any
y P Σ), it is easy to see that A1 is indeed log |Σ|-separable. ■



Algorithm 1
1. def SEPARATE(A “ pΣ, Q, I, F, δq):
2. A1 Ð pΣ, Q1 “ Q ˆ Σ Y tqι

1u, δ1 “ ∅, I 1 “ tqι
1u, F 1 “ ∅q

3. Ź Connect the children of the original initial state qι with the new, aritificial, initial state.

4. for y P Σ :

5. for qι
y1

ÝÑ q1 P δ :
6. add qι

1 y
ÝÑ pq1, y1q to δ1

7. for q P Q, y P Σ :

8. for q
y1

ÝÑ q1 P δ :

9. add pq, yq
y1

ÝÑ pq1, y1q to δ1

10. Ź Add all state-symbol pairs with a state from the original set of final states to the new set of final states.

11. for qφ P F, y P Σ :
12. add pqφ, yq to F 1

13. if qι P I : ŹCorner case: If the original initial state qι is an initial state, make the artificial initial state qι
1 final.

14. add qι
1 to F 1

15. return A1

D Additional Related Work

Our work characterizes the representational capacity of HRNN LMs in terms of DPFSAs. On the
other end of representational capacity, Chen et al. (2018); Nowak et al. (2023) consider the connection
between Elman RNNs with arbitrary precision—a stark contrast to our model—and (probabilistic)
Turing machines first established by Siegelmann and Sontag (1992). They outline some implications
the relationship has on the representational capacity of RNNs and the solvability of tasks such as finding
the most probable string or deciding whether an RNN is tight. These tasks are shown to be undecidable.
This is in contrast to the equivalence shown here which, among other things, means that the decidability
of the tasks on PFSAs can be carried over to RNN LMs.

On a different note, Bhattamishra et al. (2020) and Deletang et al. (2023) provide an empirical survey
of the unweighted representational capacity of different LM architectures. The former focuses on RNN
variants and their ability to recognize context-free languages. The authors find that RNNs indeed struggle
to learn the mechanisms required to recognize context-free languages, but find that hierarchical languages
of finite depth, such as Dpk,mq, can be learned reliably. This further motivates the connection between
RNN LMs and finite-state models, as well as the specific construction by Hewitt et al. (2020). While
the results from Deletang et al. (2023) can be connected to the theoretical insights provided by existing
work, it is also clear that the probabilistic nature, as well as non-architectural aspects of LMs (such as the
training regime), make establishing a clear hierarchy of models difficult.19

19The hierarchy of probabilistic formal languages is not as clear as the original Chomsky hierarchy, which might be one of the
reasons behind the inconsistent results (Icard, 2020).


