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Message from the General Chair

Welcome to the 17th Conference of the European Chapter of the Association for Computational Lingui-
stics (EACL). This is the flagship European conference dedicated to European and international resear-
chers, covering a broad spectrum of research areas of Computational Linguistics and Natural Language
Processing.

Organizing a scientific conference of the prestige and size of EACL is always a great honor associated
with several challenges. Our team had to tackle unusual complexities: this conference was one of the
first scheduled to be in person after the long period of online conferences forced by COVID pandemic.
The bidding process for a location, which typically takes place several years before the actual start of the
conference, is mainly driven by the aim of expanding and involving the science community of all Euro-
pean countries: EACL selected Kyiv, Ukraine, as the physical location. As you all know, in February
2022, an unpredictable and dramatic event happened, the war between Russian and Ukraine, which made
the organization in Kyiv impossible.

Considering the importance of physical interaction among researchers, especially after the restrictions
imposed by the COVID pandemic, we worked hard with the EACL and ACL boards to find an alter-
native location, able to delight our attendees. Our team achieved this seemingly impossible goal of
organizing a conference in a new location a few months before its start: we selected Dubrovnik, Croatia,
while preserving the original aim of strengthening the connection with the Ukrainian community. In this
respect, the Ukraine local committee will feature a dedicated panel session, “Low-resource languages in
NLP products”, and a workshop to highlight work on Ukrainian language technologies. Following the
latest conference, EACL 2023 will be “hybrid,” serving both virtual and in-person participants. As our
official local chairs are not from the physical location, we needed a local team from Croatia for helping
with the logistics. As a result, the main unexpected novelty of EACL 2023 is to have two local organizing
committees from two different European countries.

In the remainder of this preface, I would like to thank EACL contributors chronologically with respect
to my work timeline for EACL: Roberto Basili and Shuly Wintner, the new and former Presidents of
ACL, along with the EACL board — thanks for having trusted me to manage the organization of the
conference in rather complicated times. I started to be confident that we would have done a good job after
Isabelle Augenstein and Andreas Vlachos accepted the role of PC Chairs. They have performed amazing
work, creating an outstanding program, and also helping me in recruiting our fantastic organization
team. A special thank is due to Preslav Nakov (EACL officer) for his support: thanks to his action, the
proactiveness of David Yarowsky, and the fairless effort of Jennifer Rachford (our new secretary of the
ACL business office), we successfully implemented the apparently unrealistic idea of switching from the
already planned online conference to a hybrid setting with a physical location in Dubrovnik. Regarding
the online side of our hybrid conference, we partnered with Underline (Sol Rosenberg, Damira Mrsic and
Luka Simic), who also gave us support for managing the entire conference. While finalizing the location,
we started to activate the different sections of the conference, for which my acknowledgements are again
in chronological order:

* Ukraine Local Committee, Viktoria Kolomiets, Mariana Romanyshyn, Oleksii Molchanovskyi,
Oles Dobosevych, was instrumental in preserving our initial goal of connecting the Ukraine re-
search community, organizing a panel and a workshop.

* The website chairs, Pepa Atanasova and Julius Cheng, started immediately to design our website,
even when almost no information was available.

* The workshop chairs, Zeerak Talat and Antonio Toral, selected our conferences and led the selec-
tion of workshops for the joint ACL call.



* The tutorial chairs, Sameer Pradhan and Fabio Massimo Zanzotto, together with the ACL chairs,
took care of the tutorial selection for the ACL related conferences.

* The demonstration chairs, Danilo Croce and Luca Soldaini, created a parallel conference program
to select exciting demos.

* The Publicity Chairs, Laura Biester, Leshem Choshen and Joel Tetrault, have been our interface
with the science community through social media platforms.

* The Publication Chairs, Carolina Scarton and Ryan Cotterell, produced high-quality proceedings,
thanks to their competence and experience.

* The diversity and inclusion chairs, Sara Tonelli, Elena Cabrio, Verena Rieser, Spandana Gella,
took care of DI and performed an amazing job, also working on hundreds applications.

* The Local Organising Committee of Croatia, Marko Tadi¢, KreSimir §oj at, and DasSa Farkas, gave
essential help for the logistics, Visa, and student volunteers.

* Student Research Workshop Chairs, Matthias Lindemann, Alban Petit, and Elisa Bassignana, along
with their faculty advisors Valerio Basile and Natalie Schluter, helped in setting the bases for
forming great NLP researchers of the future.

* Qur entire program committee, Senior Area Chairs, Area Chairs, reviewers, and best paper com-
mittee, was essential for obtaining our high-quality scientific program.

* The ACL’s sponsorship director Chris Callison-Burch took care of our sponsorships.
* The student volunteers, as usual, are essential for a successful conference execution.

* Priscilla Rasmussen, our former ACL business office secretary, continued to provide us with useful
advice.

Finally, I would like to thank our sponsors for helping us to fund scholarships and DI initiatives.
Alessandro Moschitti

Amazon Alexa Al, Los Angeles, USA
EACL 2023 General Chair
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ACL Statement on the Ukraine situation

March 11, 2022

The Association for Computational Linguistics (ACL) condemns in the strongest possible terms the ac-
tions of the Russian Federation government in invading the sovereign state of Ukraine and engaging in
war against the Ukrainian people. We stand together with Ukrainian NLP colleagues, the Ukrainian peo-
ple, Russian NLP colleagues and Russian people who condemn the actions of the Russian Federation
government, and all those around the world who have been impacted by the invasion.

As a small token of our solidarity with the Ukrainian people, the ACL has decided to temporarily sever
its ties with Russia-based organizations, while at the same time allowing Russian scientists to remain part
of the ACL community. In practice, this means that the ACL will refrain from accepting any sponsorship
or allowing any exhibits from Russian-headquartered entities at ACL-run events. Russian scholars are
still welcome to participate in ACL events and publish at ACL venues.

The ACL is committed to peace and condemns any form of violence and harassment. We are also com-
mitted to peaceful co-operation, mutual understanding, and tolerance across borders. NLP scholars from

both Ukraine and Russia are welcome to get in touch with the ACL with any concerns.

Tim Baldwin, on behalf of the ACL Executive
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Message from the Program Chairs

Welcome to the 17th Conference of the European Chapter of the Association for Computational Lingui-
stics (EACL). After the last edition in 2021 having been held fully online due to the COVID pandemic,
EACL 2023 is being held in “hybrid” mode this year, serving both virtual and in-person participants in
Dubrovnik, Croatia. While the original plan was to hold the conference in Kyiv (which was the plan
originally for EACL 2021), the ongoing war made the organisation in Ukraine impossible. In order to
ensure that the original aim of strengthening the connections with the Ukrainian community is still ser-
ved, our program features a dedicated session and a workshop to highlight work on Ukrainian language
technologies.

Submission and Acceptance

EACL 2023 accepted direct submissions, as well as submissions via ARR. For direct submissions, ab-
stracts were needed to be registered one week prior to the submission date.

In total, EACL 2023 received 1550 submissions, the largest number to date, with the 2021 edition having
received 1400 submissions. Out of those, 1045 were long and 505 were short paper submissions. 81 were
ARR papers that were committed to EACL. 249 submissions were withdrawn throughout the reviewing
process, including before the full paper submission deadline. 55 papers were desk rejected for various
reasons (missing the limitations section, anonymity policy, multiple submission policy, plagiarism or
formatting violations).

By the time we as the programme chairs made acceptance decisions, 1166 submissions were still active in
the system. We kept the acceptance rate in line with previous *ACL conferences, resulting in 281 papers
accepted to the main conference (24.1%), and 201 papers accepted to the Findings of EACL (17.2%),
with the remaining 58.7% being rejected. One paper accepted to the main conference and four papers
accepted to Findings were subsequently withdrawn. Out of the final set of accepted main conference
papers, we invited 178 to be presented orally, and all 281 papers accepted to the main conference to be
presented during in-person sessions, as well as a plenary virtual poster session. The EACL 2023 program
also features six papers from the Transactions of the Association for Computational Linguistics (TACL)
journal, and one from the Computational Linguistics (CL) journal.

Limitations Section

Following EMNLP 2022, we required that each submitted paper must include an explicitly named Li-
mitations section, discussing the limitations of the work. This was to counterbalance the practice of
over-hyping the take-away messages of papers, and to encourage more rigorous and honest scientific
practice. This discussion did not count towards the page limit, and we asked reviewers to not use the
mentioned limitations as reasons to reject the paper, unless there was a really good reason to.

Areas

To ensure a smooth process, the submissions to EACL 2023 were divided into 21 areas. The areas
mostly followed these of previous EACL, and more broadly *ACL conferences, reflecting the typical
divisions in the field. We also had a special area for papers for which both SACs had a conflict of
interest. Those papers were reviewed by the reviewers and ACs in their original areas, but the paper
recommendations were made by a dedicated SAC, who was a senior member of the NLP community.
The most popular areas with over 100 submissions were “Generation and Summarization”, “Language
Resources and Evaluation”, and ‘“Machine Learning in NLP”.
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Best Paper Awards

From the papers submitted to EACL 2023, we selected 25 papers accepted to the main conference as
candidates for a Best Paper award, based on nominations by the reviewers. These papers were assessed
by the Best Paper Award Committee, who also determined the types of paper awards, following the ACL
Conference Awards Policy. The selected best papers and runner-ups will be announced in a dedicated
plenary session for Best Paper Awards on 4 May 2023.

Programme Committee Structure and Reviewing

Similar to prior NLP conferences, we adopted the hierarchical program committee structure, where for
each area we invited 1-2 Senior Area Chairs (SACs), who worked with a team of Area Chairs (ACs), and
a larger team of reviewers. We relied on statistics from prior years to estimate how many SACs, ACs and
reviewers would be needed and ended up with 43 SACs, 118 ACs and 1634 reviewers. For identifying
ACs and reviewers, we used the reviewer lists from prior *ACL conferences, and also encouraged all
EACL 2023 authors to serve as reviewers, using a mandatory form requesting further information on
their ability to serve as ACs, reviewers or emergency reviewers, which authors had to fill in on Softconf
when registering their abstracts. We passed this information on to SACs, who were responsible for
recruiting ACs and reviewers.

Rather than making assignments using a matching algorithm, we asked ACs and reviewers to bid on
registered abstracts within their areas, to achieve a better fit. We went with this solution as the number
of papers per area was relatively small, and we wanted to avoid poor reviewing assignments as much
as possible. We then made an initial paper assignment, in which we ensured that each paper would be
reviewed by at least one reviewer who bidded “yes” for the submission, and by no reviewers who bidded
“no” for the submission.

Afterwards, we asked the SACs to fine-tune the allocations, and ensure each paper had one AC and three
reviewers assigned to it.

To ensure the review quality, we provided detailed guidelines about what reviewers should and shouldn’t
do in a review, based on the EMNLP 2022 guidelines. We also asked reviewers to flag papers for potential
ethical concerns.

For pre-reviewed ARR papers, we asked SACs to not rely mainly on the reviewer scores, but to make their
recommendations based on the text of the reviews, meta-reviews and the papers themselves. For making
acceptance decisions, we mostly followed SAC recommendations, though also taking into account the
overall quality of papers submitted to the conference. Where recommendations seemed overly harsh
or lenient given the reviewers’ scores, reviews, author responses, or discussions amongst reviewers, we
engaged in a dialogue with the respective SACs to make the final decision about the papers in question.

Ethics Committee

We also formed an Ethics Committee (EC) dedicated to ethical issues. The ethics committee considered
21 papers that were flagged by the technical reviewing committee for ethical concerns. Out of these, 10
were conditionally accepted, meaning the ethics issues had to be addressed in the camera-ready version,
to be verified by the EC prior to final acceptance, and the other 11 were accepted as is. The authors of
all conditionally accepted papers submitted the camera-ready version and a short response that explained
how they had made the changes requested by the EC. The EC double-checked these revised submissions
and responses, and confirmed that the ethical concerns had been addressed. As a result, all conditionally
accepted papers were accepted to the main conference or Findings.
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ACL Rolling Review

ACL Rolling Review (ARR) is an initiative of the Association for Computational Linguistics, where the
reviewing and acceptance of papers to publication venues are done in a two-step process: (1) centralized
rolling review and (2) the ability to commit the reviewed papers to be considered for publication by a pu-
blication venue. For EACL 2023, we decided to follow EMNLP 2022’s example and run a process which
is separate from ARR, but also allows for ARR submissions. Specifically, authors could either submit
papers to EACL 2023 directly, or commit ARR reviewed papers by a certain date. We coordinated with
the ARR team to extract the submission, review and meta-review from the OpenReview system, accor-
ding to a submission link that the author provided when committing their ARR submission to EACL.
The ARR commitment deadline was set one month after the direct submission deadline since the ARR
submissions already have their reviews and meta-recommendation. These ARR papers were then ranked
by the SACs together with the direct submissions in the track, and based on the reviews and meta-reviews
from ARR. Overall, EACL had 81 papers committed from ARR, of these 24 were accepted to the main
conference and 20 were accepted to Findings of EACL.

Presentation Mode

We made the decision on which papers would be invited for oral poster presentations based on several
factors: the relative rank of the paper according to SAC recommendation, whether the paper had been
recommended for a best paper award by at least one reviewer, and for TACL and CL papers, the authors’
preference of presentation mode.

Keynotes and Panel

Another highlight of our program are the plenary sessions, for which we scheduled three talks, as well a
panel:

* a keynote talk by Joyce Chai (University of Michigan) on “Language Use in Embodied AlI!

* a keynote talk by Edward Greffenstette (Cohere Al and University College London) on “Going
beyond the benefits of scale by reasoning about data”

* a keynote talk by Kevin Munger (Penn State University) on Chatbots for Good and Evil"

* a panel on “low-resource languages in NLP products” led by Mariana Romanyshyn with Viktoria
Kolomiets (Grammarly), Mariana Romanyshyn (Grammarly), Oleksii Molchanovskyi (Ukrainian
Catholic University) and Oles Dobosevych (Ukrainian Catholic University)

Thank Yous

EACL 2023 is the result of a collaborative effort and a supportive community, and we want to acknow-
ledge the efforts of so many people with whom we worked directly and made significant efforts in putting
together the programme for EACL 2023!

* Our General Chair, Alessandro Moschitti, who led the whole organising team, and helped with
many of the decision processes;

* Qur 43 Senior Area Chairs, who were instrumental in every aspect of the review process, from
recruiting Area Chairs, correcting reviewer assignments, to making paper acceptances;

* Our 118 Area Chairs, who had the role of interacting with the reviewers, leading paper review
discussions, and writing meta-reviews;



* The 1634 reviewers, who provided valuable feedback to the authors; The emergency reviewers,
who provided their support at the last minute to ensure a timely reviewing process;

* Our Best Paper Selection Committee, who selected the best papers and the outstanding papers: Jo-
nathan Kummerfeld (chair), Joakim Nivre, Bonnie Webber, Thamar Solorio and Hanna Hajishirzi;

* Our Ethics Committee, chaired by Zeerak Talat, for their hard work to ensure that all the accepted
papers addressed the ethical issues appropriately, under a very tight schedule;

* Our amazing Publication Chairs, Carolina Scarton and Ryan Cotterell for compiling the procee-
dings in good time for the conference;

* QOur Publicity Chairs, Laura Biester, Leshem Choshen and Joel Tetrault, for their work on managing
the communications on social media platforms;

* Our website chairs, Pepa Atanasova and Julius Cheng for putting together the website for the
conference and keeping it up to date;

* Damira Mrsic from Underline, for her support in developing the virtual conference platform;

* Jennifer Rachford, who has worked tirelessly online and on-site to ensure that EACL 2023 is a
success.

We’re looking forward to a great EACL 2023
Isabelle Augenstein (University of Copenhagen, Denmark)

Andreas Vlachos (University of Cambridge, UK)
EACL 2023 Programme Committee Co-Chairs
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Keynote Talk: Going beyond the benefits of scale by
reasoning about data

Edward Grefenstette
Cohere

Tuesday, May 2, 2023 — Time: 09:30 — 10:30 — Room: Elafiti 1,2,3 & 4

Abstract:

Transformer-based Large Language Models (LLMs) have taken NLP—and the world—by storm. This
inflection point in our field marks a shift from focussing on domain-specific neural architecture design
and the development of novel optimization techniques and objectives to a renewed focus on the scaling of
model size and of the amount of data ingested during training. This paradigm shift yields surprising and
delightful applications of LLMs, such as open-ended conversation, code understanding and synthesis,
some degree of tool-use, and some zero-shot instruction-following capabilities. In this talk, I outline and
lightly speculate on the mechanisms and properties which enable these diverse applications, and posit
that the training regimen which enables these capabilities points to a further shift, namely one where we
go from focussing on scale, to focussing on reasoning about what data to train on. I will briefly discuss
recent advances in open-ended learning in Reinforcement Learning, and how some of the concepts at
play in that work may inspire or directly apply to the development of novel ways of reasoning about data
in supervised learning, in particular in areas pertaining to LLMs.

Bio:

Ed Grefenstette is the Head of Machine Learning at Cohere, a provider of cutting-edge NLP models
that’s solving all kinds of language problems; including text summarization, composition, classification
and more. In addition, Ed is an Honorary Professor at UCL. Ed’s previous industry experience compri-
ses Facebook AI Research (FAIR), DeepMind, and Dark Blue Labs, where he was the CTO (acquired
by Google in 2014). Prior to this, Ed worked at the University of Oxford’s Department of Computer
Science, and was a Fulford Junior Research Fellow at Somerville College, whilst also lecturing students
at Hertford College taking Oxford’s new computer science and philosophy course. Ed’s research interests
span several topics, including natural language and generation, machine reasoning, open ended learning,
and meta-learning.
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Keynote Talk: Chatbots for Good and Evil

Kevin Munger
Penn State University

Wednesday, May 3, 2023 — Time: 15:45 — 16:45 — Room: Elafiti 1,2,3 & 4

Abstract:

The capacities of LLM-powered chatbots have been progressing on the order of months and have recen-
tly passed into mainstream public awareness and adoption. These tools have been used for a variety of
scientific and policy interventions, but these advances call for a significant re-thinking of their place in
society. Psychological research suggests that intentionalityis a key factor in persuasion and social norm
enforcement, and the proliferation of LLMs represents a significant shock to the intentionalitycontained
in text and particularly in immediate, personalized chat. I argue that we are in a period of informational
disequilibrium,where different actors have different levels of awareness of this technological shock. This
period may thus represent a golden age for actors aiming to use these technologies at scale, for any num-
ber of normative ends; this includes social scientists and computational linguists. More broadly, I argue
that the ethicalframeworks for evaluating research practices using LLM-powered chatbots are insufficient
to the scale of the current challenge. This is a potentially revolutionary technology that requires thinking
in moral and political terms: given the power imbalances involved, it is of paramount importance that
chatbots for good do not inadvertently become chatbots for evil.

Bio:

Kevin Munger is the Jeffrey L. Hyde and Sharon D. Hyde and Political Science Board of Visitors Early
Career Professor of Political Science and Assistant Professor of Political Science and Social Data Analy-
tics at Penn State University.Kevin’s research focuses on the implications of the internet and social media
for the communication of political information. His speciality is the investigation of the economics of on-
line media; current research models Clickbait Mediaand uses digital experiments to test the implications
of these models on consumers of political information.
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Keynote Talk: Language Use in Embodied Al

Joyce Chai
University of Michigan

Thursday, May 4, 2023 — Time: 14:15 — 15:15 — Room: Elafiti 1,2,3 & 4

Abstract:

With the emergence of a new generation of embodied Al agents, it becomes increasingly important to
enable language communication between humans and agents. Language plays many important roles in
embodied Al In this talk, I will share some of the experiences in my lab that study the pragmatics of
language, for example, in mediating perceptual differences, learning from language instructions, and
planning for joint tasks. I will talk about how the embodied context shapes language use and influences
computational models for language grounding to perception and action. I will show the importance of
collaborative effort and theory of mind in language communication and how they affect common ground
for situated tasks. I will discuss key challenges as well as new perspectives on these problems brought
by recent advances in LLM and generative Al

Bio:

Joyce Chai is a Professor in the Department of Electrical Engineering and Computer Science at the
University of Michigan. Before joining UM in 2019, she was a Professor of Computer Science and Engi-
neering at Michigan State University. She holds a Ph.D. in Computer Science from Duke University. Her
research interests span from natural language processing and embodied Al to human-Al collaboration.
She is fascinated by how experience with the world and how social pragmatics shape language learning
and language use; and is excited about developing language technology that is sensorimotor grounded,
pragmatically rich, and cognitively motivated. Her current work explores the intersection between lan-
guage, perception, and action to enable situated communication with embodied agents. She served on
the executive board of NAACL and as Program Co-Chair for multiple conferences — most recently ACL
2020. She is a recipient of the National Science Foundation Career Award and has received several paper
awards with her students (e.g., the Best Long Paper Award at ACL 2010 and an Outstanding Paper Award
at EMNLP 2021). She is a Fellow of ACL.

XXV



Panel: Low-resource languages in NLP products
?

Wednesday, May 3, 2023 — Time: 16:30 — 18:00 — Room: Elafiti 1,2,3 & 4

The panel discussion will bring together experts from industry and academia to share their experience
building solutions for low-resource languages. We anticipate a lively discussion about the advantages and
limitations of multilingual solutions and language-specific models, the challenges of evaluating models
for low-resource languages, and the level of language awareness needed in the development process. In
addition, the panelists will explore ways to increase the acceptance rate of papers that target low-resource
languages at * ACL conferences. We hope that the panel discussion will increase the visibility of research
for low-resource languages and emphasize its relevance.

Moderator: Mariana Romanyshyn, Grammarly

Mariana Romanyshyn is an Area Tech Lead for Computational Linguistics at Grammarly, Ukraine. She
has professional experience in syntactic parsing, sentiment analysis, named entity recognition, fact ex-
traction, and text anonymization. For the last eight years, Mariana has been working on error correction
and text improvement algorithms at Grammarly. Mariana is an active speaker at Al conferences, co-
organizer of the yearly Grammarly CompLing Summer School, co-organizer of the UNLP workshop,
struggling reformer of Ukrainian university syllabuses, and active contributor of the Lang-uk group, fo-
cused on advancements in Ukrainian NLP.

Panelists:

Antonios Anastasopoulos, George Mason University

Antonios Anastasopoulos is an Assistant Professor in Computer Science at George Mason University. He
received his PhD in Computer Science from the University of Notre Dame and then did a postdoc at Lan-
guage Technologies Institute at Carnegie Mellon University. He also holds a BSc-MSc in Electrical and
Computer Engineering from the National Technical University of Athens, Greece. His research is on na-
tural language processing with a focus on multilinguality, low-resource settings, cross-lingual learning,
and endangered languages, with the ultimate goal of building language technologies for under-served
communities around the world. He is currently funded by the NSF, the NEH, the US DoD, Google,
Amazon, and Meta.

Mona Diab, Meta

Mona Diab is the Lead Responsible Al Research Scientist with Meta. She is also a full Professor of
Computer Science at the George Washington University (on leave) where she directs the CARE4Lang
NLP Lab. Before joining Meta, she led the Lex Conversational Al project within Amazon AWS Al. Her
current focus is on Responsible Al and how to operationalize it for NLP technologies. Her interests span
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building robust technologies for low-resource scenarios with a special interest in Arabic technologies,
(mis) information propagation, computational socio-pragmatics, computational psycholinguistics, NLG
evaluation metrics, language modeling, and resource creation.

Julia Makogon, Semantrum

Julia Makogon is a Lead ML/NLP Engineer at Semantrum, a Ukrainian Al company that specializes in
media analytics and reputation management. She studied Applied Mathematics at DSTU, Kamyanske,
Ukraine, before pursuing a career in NLP. Julia developed multiple NLP applications for media monito-
ring, sentiment analysis, and legal document analysis for Ukrainian and other European languages. Her
expertise lies in building industry solutions with limited resources. Julia serves at the Program Com-
mittee of the Ukrainian NLP workshop and is passionate about advancing solutions for the Ukrainian
language.

Ivan Vuli¢, University of Cambridge

Ivan Vuli€ is a Principal Research Associate and a Royal Society University Research Fellow in the
Language Technology Lab, University of Cambridge. He is also a Senior Scientist at PolyAl. He is a
member of the Steering Committee of the Centre for Human Inspired Artificial Intelligence (CHIA) at
Cambridge. Ivan holds a PhD in Computer Science from KU Leuven awarded summa cum laude. In
2021 he was awarded the annual Karen Sparck Jones Award from the British Computing Society for his
research contributions to NLP and Information Retrieval. His core expertise is in representation learning,
cross-lingual learning, conversational Al, human language understanding, distributional, lexical, multi-
modal, and knowledge-enhanced semantics in monolingual and multilingual contexts, transfer learning
for enabling cross-lingual NLP applications such as conversational Al in low-resource languages, and
machine learning for (cross-lingual and multilingual) NLP. He has published numerous papers at top-tier
NLP and Information Retrieval conferences and journals, and his research work also resulted in several
best paper awards. He serves as an area chair and regularly reviews for all major NLP and Machine
Learning conferences and journals. Ivan has given numerous invited talks at academia and industry and
co-organised a number of NLP conferences and workshops.
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Abstract

While contextualized word embeddings have
been a de-facto standard, learning contextual-
ized phrase embeddings is less explored and be-
ing hindered by the lack of a human-annotated
benchmark that tests machine understanding of
phrase semantics given a context sentence or
paragraph (instead of phrases alone). To fill
this gap, we propose PiC—a dataset of ~28K
of noun phrases accompanied by their contex-
tual Wikipedia pages and a suite of three tasks
for training and evaluating phrase embeddings.
Training on PiC improves ranking-models’ ac-
curacy and remarkably pushes span-selection
(SS) models (i.e., predicting the start and end in-
dex of the target phrase) near human-accuracy,
which is 95% Exact Match (EM) on seman-
tic search given a query phrase and a passage.
Interestingly, we find evidence that such im-
pressive performance is because the SS mod-
els learn to better capture the common mean-
ing of a phrase regardless of its actual context.
SotA models perform poorly in distinguishing
two senses of the same phrase in two contexts
(~60% EM) and in estimating the similarity be-
tween two different phrases in the same context
(~70% EM).

1 Introduction

Understanding phrases in context is a key to learn-
ing new vocabularies (Nagy et al., 1985; Fischer,
1994), disambiguation (Pilehvar and Camacho-
Collados, 2019), and many downstream tasks, in-
cluding semantic search (Finkelstein et al., 2001).
Yet, the contextualized phrase embeddings (Yu and
Ettinger, 2020) in existing systems mostly capture
the common meaning of a phrase, i.e. without
strong dependence on its context (Yu and Ettinger,
2020). While there are word-sense disambiguation
datasets (Edmonds and Cotton, 2001; Pilehvar and
Camacho-Collados, 2019), no such benchmarks
exist for phrases. Existing phrase-similarity bench-
marks (Pavlick et al., 2015; Turney, 2012; Asaadi
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et al., 2019; Zhang et al., 2019; Yang et al., 2019)
compare phrases alone (without context) and some
of them (Pavlick et al., 2015; Zhang et al., 2019)
contain a large, undesired amount (~15% to 99%)
of phrase pairs that have lexical overlap (Table 1).

Others generated the context for a phrase by
querying GPT-2 (Wang et al., 2021) or by retriev-
ing from Wikipedia (Yu and Ettinger, 2020). Yet,
there was no human verification of the realism of
generated text (Wang et al., 2021) and no human an-
notation of how a phrase’s meaning changes w.r.t.
the context (Yu and Ettinger, 2020). All above
drawbacks are limiting the evaluation of phrase
understanding.

To advance the development of contextualized
phrase embeddings, we propose Phrase-in-Context
(PiC), a suite of three tasks: (1) Phrase Similarity
(PS), i.e. compare the semantic similarity of two
phrases in the same context sentence (Fig. 1b); (2)
Phrase Retrieval (PR), which is divided into PR-
pass and PR-page (Fig. 1c—d), i.e. from a passage
or a Wikipedia page, retrieve a phrase semantically-
similar to a given query phrase; and (3) Phrase-
Sense Disambiguation (PSD), i.e. find the target
phrase p semantically similar to the query phrase
from a 2-paragraph document where p appears
twice, each time in a different context paragraph
that provides a unique meaning to p (Fig. 1le). Our
~28K-example dataset is rigorously (a) annotated
and verified by two groups of annotators: linguis-
tics experts on Upwork.com and non-experts on
Amazon Mechanical Turk (MTurk); and then (b)
tested by models, linguists, and graduate students.
Our contributions are:

1. We build PiC!, the first, human-annotated
benchmark for evaluating and training con-
textualized phrase embeddings (Sec. 4). Com-
pared to existing phrase similarity datasets, PS
is the first to require models to rely on context.

"Dataset, code, and demos are available on https://
phrase-in-context.github.io.
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2. After training on PR-pass, i.e. finding a phrase
from a passage, SS models perform at a near-
human accuracy (92-94% vs. 95% EM). They
also score high (84-89% EM) on PR-page,
i.e. semantic phrase search in a Wikipedia
page (Sec. 5.4), suggesting our training set
and learned embeddings are useful for real-
world semantic search.

3. Interestingly, on PR-pass, harnessing these SS
models’ phrase embeddings in a ranking ap-
proach (i.e. comparing the similarity between
the query and all candidate phrases) yields
poor accuracy of < 59% EM (Sec. H), setting
a challenge for future research into learning
contextualized phrase embeddings.

4. After training on PR-pass, state-of-the-art
(SotA) models perform relatively well on
PR-pass and even PR-page but not on PSD
(Sec. 5.5). On PS, SotA models perform
poorly (below 70% accuracy) in binary clas-
sification of phrase similarity given a context
sentence (Sec. 5.1).

2 Related Work

Each of our tasks (PS—phrase similarity; PR—
phrase retrieval; and PSD—disambiguation) is re-
lated to a separate research area discussed below.
Phrase similarity First, most existing phrase
similarity datasets—e.g. PPDB-annotated (Wiet-
ing et al., 2015), PPDB-filtered (Wang et al., 2021),
BiRD (Asaadi et al., 2019), and PAWS-short (Wang
et al., 2021; Zhang et al., 2019)—contain a large
percent of instances with lexical overlap between
two paired phrases while our PS contains the least
percent (5.34%; Table 1). Second, PS compares
each pair of phrases in a context sentence while ex-
isting datasets only compare phrases alone (no con-
text). Third, the phrases in PS are, on average, 2-
token long, comparable to that of other datasets (Ta-
ble 1). Fourth, unlike other datasets, PS contains ex-
clusively noun-phrases, the most common phrase
type according to Yahoo's search-query statistics
(Yahoo, 2022a) (79.54%; Appendix D) and Adobe
(internal Acrobat Pro data not shown).

Question answering (QA) Our phrase-retrieval
tasks—PR and PSD—follow the format of QA
datasets except that our queries are phrases instead
of questions and hence shorter (Table 2). Like
SQuAD 1.1 (Rajpurkar et al., 2016) and HotpotQA

Table 1: Our Phrase Similarity (PS) dataset has a lower
percent of lexical-overlap instances and is the only
human-annotated dataset that provides phrases, each
in a context sentence.

PS WiC PPDB- PPDB- BiRD Turney PAWS-

(ours) annotated filtered short
# of All instances 10,004 7,466 3,000 15,532 3,345 2,180 1,214
# of Unique phrases 7,488 2,345 6,000 12,023 2,840 9,776 1,214

Lexical overlap (%) 5.34 100 70.10 97.93 14.98 0 99.42

Mean length (in tokens)

- phrase; 2.06 1 3.67 2 2 2 952
« phraseg 2.46 1 3.73 2 149 1 942
- context sentence  22.53 8.40 0 0 0 0 0

(Yang et al., 2018), our documents and queries are
extracted from Wikipedia articles. While our PR
dataset is ~3.5x smaller than those two datasets,
the paragraph document length in PR-pass and
PSD is ~2x longer than those of SQuAD 1.1 and
HotpotQA (Table 2). For our task, intuitively, the
longer the document, the harder the task since there
would be more candidates a model must compare
with the query.

Table 2: Our PR-pass, PR-page and PSD datasets are
smaller in size compared to common QA datasets and
contain shorter queries that are noun phrases instead
of questions. However, our tasks require searching in
much longer documents.

PR-pass PR-page PSD SQuAD 1.1 HotpotQA

All instances 28,147 28,098 4,858 98,169 105,257
Unique queries/questions 27,055 27,016 4,812 97,888 105,249
Unique answers 13,458 13,423 2,314 72,469 57,259
Mean length of
query (tokens) 2.42 242 245 11.42 20.03
answer (tokens) 2.17 217  2.07 3.46 2.35
sentence (tokens) 23.22 24.08 23.00 27.62 26.77
document (sentences) 10.26  119.32 20.37 5.10 4.14
document (tokens) 238.34 2,872.73 468.48 140.92 110.72

Sense disambiguation While word-sense disam-
biguation (WSD) is a long-standing problem in
NLP, recently, SotA models have reached super-
human accuracy (80% F) on the common English
WSD (Bevilacqua et al., 2021). Interestingly, these
high-scoring models still struggle with rare senses
that may be outside of the predefined sense in-
ventories or have few training examples (Blevins
et al., 2021). Without the need for predefined
senses, WiC (Pilehvar and Camacho-Collados,
2019) poses disambiguation as a binary classifi-
cation task where the goal is to predict whether the
same target word in two different sentences carries
the same or different meanings.

Compared to WiC PS is also a binary classifi-
cation task, but with two major differences: (1) in



Samson is the emblem of Lungau, Salzburg
and parades in his honor are held annually
in ten villages of the Lungau and two
villages in the north-west Styria (Austria).

the community carries a massive figure
made of wood or aluminum said to

represent Samson. The tradition, which was
first documented in 1635, was entered into

During the parade, a young bachelor from

g

¢ Massive figure < _
7’

In November 2018, HMSI crossed the 2.5
crore sales mark in the scooter segment. It
has become the first company to reach

. this milestone and the biggest contributor
to this massive figure is the Honda
Activa. It took Honda 13 years to achieve
the one crore sales figure, but it managed
to add another crore in the span of just
three years. It then went on to achieve the

s1

S2

Positive example  (same meaning)

During the parade, a young bachelor from the
community carries a massive figure made of wood or
aluminum said to represent Samson.

During the parade, a young bachelor from the

community carries a | huge model | made of wood

or aluminum said to represent Samson.

Negative example (different meanings)

During the parade, a young bachelor from the

the UNESCO list of Intangible Cultural Q1
Heritage in Austria in 2010......cccccovevevcrneneenns

Q2 next 50 lakh in just one year .......cocevcnen

S1 | community carries a massive figure made of wood or

aluminum said to represent Samson.

rephrase

paraphrase 1 | huge model

(a) Q1 & Q2 ask annotators to rephrase “massive figure” in page 1 and page 2. Q3

asks whether this phrase’s meaning is the same in both pages.

Q3: Does massive figure in page 1 has the same meaning as massive figure in page 2? Yes

During the parade, a young bachelor from the
community carries a | giant number | made of wood
or aluminum said to represent Samson.

paraphrase 2 S2

(b) PS positive & negative examples con-
structed using page 1 context
(similarly, we repeat for page 2).

pass 1: ~11-sentence passage in page 1

~22 sentences ( pass 1+ pass 2)

pass 1

Samson is the emblem of Lungau, Salzburg and parades in his
honor are held annually in ten villages of the Lungau and two
villages in the north-west Styria (Austria). Durine the parade. a
young bachelor from the community carries a massive figure
made of wood or aluminum said to represent SAmson. The
tradition, which was first documented in 1635, was {:ntered into
the UNESCO list of Intangible Cultural Heritage in Aug:ria in 2010.

Samson is the emblem of Lungau, Salzburg
and parades in his honor are held annually
in ten villages of the Lungau and two
villages in the north-west Styria (Austria).
During the parade, a youns bachelor from
the community carries a massive figure
made of wood or aluminum said to 4

represent Samson. The tradition, whifh was [
first documented in 1635, was enterefl into
the UNESCO list of Intangible Cultural
Heritage in Austria in 2010.

1
L pass 1 s the emblem of Lungau, Salzburg and parades in his honor are held
annually in ten villages of the Lungau and two villages in the north-west
Styria (Austria). During the parade, a young bachelor from the community
carries a massive figure sde of wood or aluminum said to represent
Samson. The tradition, which wax_ first documented in 1635, was entered
into the UNESCO list of Intangible Ctural Heritage in Austria in 2010.

pass 2 Fber 2018, HMSI crossed the \.5 crore sales mark in the scooter
segment. It has become the first compaly to reach this milestone and the
biggest contributor to this massive figure is the Honda Activa. It took
Honda 13 years to achieve the one crore sfiles figure, but it managed to add
another crore in the span of just three yealls.

Query: | huge model Answer Query: Answer Query: Answer: massive figure
(c) A PR-pass example. (d) A PR-page example. (e) A PSD example.

Figure 1: Given a phrase, two associated Wikipedia pages, and expert annotations, i.e. answers to Q1, Q2, and
Q3 (a), we are able to construct two pairs of positive and negative examples for PS (b), a PR-pass example (c), a
PR-page example (d), and a PSD example only if the answer to Q3 is No (e).

WiC, the same target word appears in two differ-
ent sentences while in PS, two different phrases
appear in the same context sentence; (2) PS com-
pares phrases composed of > 2 words instead of
a single word as in WiC and WSD. While word
senses are defined in WordNet and BabelNet dic-
tionaries (Bevilacqua et al., 2021), there are no
English dictionaries of senses for multi-word noun
phrases (mNPs). Thus, it is more challenging to
acquire and learn the senses of mNPs, hence the
importance of our PiC dataset. Like WiC, PSD
tests disambiguating the meanings of the same n-
gram in two different contexts. Yet, PSD is a phrase
search task, which involves many more phrase com-
parisons per example than PS or WiC.

Before the deep learning era, phrase-sense dis-
ambiguation was already proposed (Carpuat and
Wu, 2007a,b) but only as an auxiliary task for train-
ing machine-translation models. And their phrase
senses were not annotated by humans but inferred
by performing word-alignment on a bilingual cor-
pus. Here, our PSD is the first phrase-sense disam-
biguation task annotated by experts and requires
understanding of phrase-senses in a passage.

3 PiC Dataset Construction

We first collect a set of phrases with context and
human annotations. Then, we derive the examples
and labels for three main tasks: PS, PR, and PSD
(Fig. 1). Our idea is to mine a set of triplets (p,
page, pages) from Wikipedia where the phrase
p is a polysemous mNP that carries two different
senses in two Wikipedia pages (e.g., “massive fig-
ure” means a large number in page; but a huge
physical shape in pageo; Fig. 1a). Then, we ask
experts to rephrase p into two paraphrases g; and
g2, maintaining the two original senses of p in
page; and pages, respectively. The resultant set
of 5-tuples (p, q1, g2, page1, pagez) enables the
tests for (1) comparing the semantic similarity of
two phrases given the same context sentence (PS;
Fig. 1b); (2) finding a semantically similar phrase
in a document (PR-pass & PR-page; Fig. 1¢); (3)
disambiguating the senses of the same target mNP
given two context paragraphs (PSD; Fig. le).

3.1 Data Collection

As there are no English dictionaries that contain
sense inventories for mNPs, the key challenge to



our data collection is to mine mNPs that have (1)
multiple senses; and (2) a Wikipedia context page
for each sense. To do that, we take a Wikipedia
dump and perform a 6-step procedure that essen-
tially extracts all the mNPs that occur in more
than one Wikipedia page and that contain at least
one polysemous word defined in the WiC dataset.
From the triplets of (p, page;, pages), we program-
matically narrow down to ~600K triplets where
the context sentence of the mNP in page; is the
most semantically dissimilar to the context sen-
tence in pages (according to SimCSE (Gao et al.,
2021)). We continue filtering down to the top
19,500 triplets where page; and pageo have the
most semantically dissimilar lists of Wikipedia cat-
egories. That is, 19,500 triplets are estimated to
yield ~15K annotated triplets (the target size based
on our budget) after the human annotation process
where annotators are allowed to skip the cases they
are not confident labeling. See Appendix C for
a detailed description of the data collection and
dataset biases.

3.2 Data Annotation

Via Upwork, we hire 13 linguistics experts who
are native English speakers at a rate of $30/hour to
annotate 15,021 out of 19,500 examples. For each
phrase, we provide Upworkers with a triplet (p,
passageq, passages) where each passage; consists
of 5 sentences centered at the phrase-containing
sentence in the corresponding page;. We ask them
to answer the three below questions (Fig. 1a):

Q1 Rephrase the target phrase p to a paraphrase q;
such that its meaning is constant in passage .

Q2 Similarly, rephrase p w.r.t. passages to obtain a
paraphrase q».

Q3 Answer Y/N if p has the same meaning in both
contextual passage; and passages.

Upworkers are asked to provide paraphrases that
(1) have at least two words and (2) minimize lex-
ical overlap with each other and the target p. See
the annotation guidelines (PiC, 2021a) and a sam-
ple annotation assignment (PiC, 2021b) given to
Upworkers. After receiving annotations, we use
LanguageTool (2022) to automatically find syntac-
tical errors when the paraphrases are replaced by
the original target phrase in the original passage
and ask Upworkers to fix them. We also have an-
notators fix the remaining errors that we find via
manual inspection.

3.3 Annotation Verification

To verify the annotations obtained in Sec. 3.2 (i.e.
2 x 15,021 = 30,042 paraphrases; and 15,021 Y/N
labels), first, we present the same Q1, Q2, and
Q3 questions to 1,000 qualified MTurkers and ask
whether they agree with the answers by expert an-
notators in Sec. 3.2. And then, for the cases that the
MTurkers disagree with, we seek second opinions
from 5 Upwork experts. After these two verifica-
tion rounds, we discard all the examples where Up-
work verifiers reject and arrive at the final 28,325
paraphrases and 13,413 Y/N labels (i.e. those an-
notations that either an MTurk or Upwork verifier
endorses). See more details in Appendix J.

The total fee for both MTurk and Upwork com-
bined is around USD 30,000.

4 Three Phrase Understanding Tasks

Using the human-annotated data, we construct
three tasks of PS, PR, and PSD (as summarized
in Fig. 1) for evaluating contextualized phrase-
embeddings and semantic-search models.

4.1 Phrase Similarity (PS)

PS is a binary classification task that asks whether
two mNPs are semantically similar or not given the
same context sentence. The unique challenge of PS
is that, without context, the two given phrases can
be easily interpreted as synonymous. Yet, in our
PS context sentence, the two phrases may or may
not carry distinct meanings (Fig. 1b).
Construction From the annotated data, a posi-
tive example is a triplet of (an original phrase p,
a paraphrase g1, an original page;’s sentence that
contains p). To create a negative example, from the
same triplets, we select only those where the para-
phrase g2 holds a different meaning than g; given
the page; context of q; (i.e., when the answer to Q3
is No; see Fig. 1b). For quality assurance, we also
hire three extra Upwork experts to double-check
PS annotations (see Appendix E), keeping only ex-
amples that at least 2 out of 3 experts endorse. In
total, we obtain 5,002 negative examples. Then, we
randomly select 5,002 positive examples to form a
class-balanced PS dataset.

4.2 Phrase Retrieval (PR)

PR is a task of finding in a given document d a
phrase p that is semantically similar to the given
query phrase, which is the paraphrase q; (the an-
swer by annotators to Q1) or gy (the answer to



Q2). We release two versions of PR: PR-pass and
PR-page, i.e. datasets of triplets (query q;, tar-
get phrase p, document d) where d is a random
11-sentence passage that contains p (Fig. 1c) or
an entire Wikipedia page (Fig. 1d). While PR-
pass contains 28,147 examples, PR-page contains
slightly fewer examples (28,098) as we remove
those examples whose Wikipedia pages coinciden-
tally also contain exactly the query phrase (in ad-
dition to the target phrase). Both datasets are split
into ~20K/3K/5K for train/dev/test, respectively.

4.3 Phrase Sense Disambiguation (PSD)

The task is to find the location of the target phrase
p where it has a similar meaning to that of the
given query q in a 2-paragraph document where,
by construction, p appears exactly twice but only
one location is the correct answer (Fig. le).
Construction From the verified annotations in
Sec. 3.3, there are in total 4,938 phrases that both
annotators and verifiers agree to hold different
meanings across the two context Wikipedia pages
(i.e., “No” answer to Q3 in Fig. 1a). To create a
PSD example, given a phrase p from the above
4,938, we extract two corresponding ~11-sentence
paragraphs (from its associated page; and pages as
in PR-pass) and concatenate them (separated by an
empty line) into a single document (Fig. 1e). Since
a PSD example shares a pair of phrases (query and
answer) with one PS positive example (phrase;
and phrases), we filter out that PSD example if
the corresponding PS example is removed from the
additional verification round (Appendix E). As the
result, we exclude 80 examples and obtain 4,858
examples in total for PSD.

S Experiments and Results

We test SotA models on PS, PR-pass, PR-page,
and PSD to (1) assess how the models are able
to leverage context to improve accuracy; and (2)
quantify the headroom for future research.

Phrase embeddings Besides training and testing
SotA BERT-based classifiers, we also test a rank-
ing approach that involves computing the cosine
similarity between the query’s and each candidate’s
embedding. To compute a contextualized phrase
embedding, following Yu and Ettinger 2020, we
feed the entire phrase-containing sentence (e.g. S;
in Fig. 1b) into a model, e.g. BERT, and then
take the mean pooling of the last-layer embeddings
over the words of the given phrase only. For non-

contextualized phrase embeddings, we repeat the
same process but input to the model only the phrase
(instead of the entire sentence).

Models We choose SotA models in (a) phrase
similarity: PhraseBERT (Wang et al., 2021); (b)
sentence similarity: USE-v5 (Cer et al., 2018),
SentenceBERT (Reimers and Gurevych, 2019),
and SimCSE (Gao et al., 2021)); (c) question-
answering: Longformer (Beltagy et al., 2020),
DensePhrase (Lee et al., 2021); and (d) contextu-
alized embeddings: SpanBERT (Joshi et al., 2020)
and BERT (Devlin et al., 2019).

For DensePhrase, we use their Phrase-Encoder
(as opposed to the Query-Encoder) to compute
phrase embeddings. USE-v5 is only available via
public APIs (TensorFlow, 2022) that do not support
extraction of contextualized phrase embeddings.

5.1 Phrase Similarity: Contextualized phrase
embeddings improve accuracy

Q:  Does incorporating context improve the
phrase-similarity accuracy on PS?

Experiment We split the PS dataset 70/10/20 for
train/dev/test and test two approaches: (1) using
the cosine similarity score between two pre-trained
phrase-embeddings (with and without context) to
predict phrase similarity; (2) training BERT-based
binary classifiers directly using PS training set. We
use 6 backbone BERT models that are all “base”
versions unless specified otherwise (Table 3).

Approach 1: Cosine similarity First, we test
how pre-trained phrase embeddings alone (without
finetuning or extra weights) can be leveraged to
solve PS. For each PS example of two phrases, we
compute their non-contextualized phrase embed-
dings and compute their cosine similarity score. To
evaluate the pre-trained embeddings on PS, we fol-
low Yang (2022) and tune the binary-classification
threshold 7" to maximize the training-set accuracy,
and then use the same optimal 7" to report the test-
set accuracy. We repeat the experiment for contex-
tualized phrase embeddings.

Approach 2: BERT-based classifiers To com-
plement Approach 1, we test Approach 2, i.e. build-
ing a binary classifier by adding two extra MLP
layers on top of the pre-trained embeddings used
in Approach 1. For a phrase pair, we concatenate
the two 768-D phrase embeddings from BERT ;s
into a 1,536-D vector, and then place one ReLU
layer (256 units) and a 1-output linear classification
layer with sigmoid on top. Following Wang et al.



Table 3: Accuracy (%) of state-of-the-art BERT-based
models on the PS test set. Contextualized phrase embed-
dings (“Phrase + Ctx”) yield substantially higher per-
formance on PS than non-contextualized embeddings
(“Phrase”). The random baseline is 50%.

Approach 1: Approach 2:
Model Cosine similarity BERT-based classifiers
(a) Phrase (b) Phrase + Ctx‘(c) Phrase (d) Phrase + Ctx
PhraseBERT  51.75 63.40 (+11.65) ‘33.60 66.10 (+32.50)
BERT 51.05 64.10 (+13.05) ‘37.00 68.85 (+31.85)
SpanBERT 49.30 64.00 (+14.70) ‘4().15 66.85 (+26.70)

SpanBERTY yrge 50.40 66.30 (+15.90) ‘35.95 69.25 (+33.30)

SentenceBERT 50.35 60.30 (+9.95) ‘31.50 62.55 (+31.05)
SimCSE 52.15 62.50 (+10.35) ‘34,20 66.65 (+32.45)
mean + std 50.83 + 1.04 63.43 +1.98 ‘35.40 =+ 3.01 66.71 £ 2.40

(2021), we finetune these models for a maximum
of 100 epochs (with early stopping and patience of
10 epochs) on the train set. See Appendix A for
more training details.

Results Without context, all models perform at <
50% accuracy (i.e. the random chance; Table 3a
& c). Interestingly, incorporating context informa-
tion into phrase embeddings substantially improves
mean model-accuracy on PS for both Approach 1
(from 50.83% to 63.43%; Table 3b vs. a) and Ap-
proach 2 (from 35.40% to 66.71%; Table 3d vs. c),
showing evidence that PS requires models to rely
on context. While starting from the same backbone
models, Approach 2 yields higher mean accuracy
than Approach 1 (Table 3; 66.71 vs. 63.43), which
is expected as Approach 2 models have more capac-
ity and the backbones are allowed to be finetuned
on PS. See Figs. A3—A6 for qualitative PS predic-
tions from a PhraseBERT-based classifier.

5.2 Human Baselines and Upperbound (95 %
Exact Match) on Phrase Retrieval

To interpret the progress of machine phrase-
understanding on PR, here, we establish multiple
human baselines for both non-experts and linguis-
tics experts (with and without training them).

Experiment We recruit participants and have
them perform one or two tests per person. A test
consists of 20 PR-pass examples. That is, PR-pass
documents are 11-sentence long and are feasible for
a person to read in minutes (compared to reading
an entire Wikipedia page). We test three groups:
(1) 21 graduate students at our institution (1 test
per person); (2) five Upwork experts (1 test per
person); and (3) another five Upwork experts (2
tests per person, i.e., for a total of 2 x 5 = 10 tests).

Table 4: Best SS models reach near the Upperbound
(95%) on PR-pass. Yet, ranking models based on phrase
embeddings significantly underperform SS models.

Accuracy of human groups and models EM (%)
Group 1: 20 Non-experts (w/o training) 73.60 £+ 7.90
Group 2: 05 Experts (w/o training) 82.00 £+ 12.00
Group 3: 05 Experts (w/ training) 90.50 + 3.70

Best human accuracy (4 people)—Upperbound 95.00 + 0.00
Best untrained, ranking model (BERT) 47.44

Best PR-trained, ranking model (PhraseBERT) 59.02
Best PR-trained, SS model (Longformer arge)  94.28

The students in Group 1 volunteer to help our study
unpaid while the Upworkers (Group 2 and 3) are
hired using the same procedure as in Sec. 3.2.
Results First, we find an unsurprising, large gap
between non-experts and experts (Table 4; 73.60%
vs. 82.00%). Second, we train experts in Group
3 by having each do a preliminary test and giving
them feedback before the real test. We find the
training to substantially boost expert accuracy fur-
ther (from 82.00% to 90.50%). Importantly, we
find the Human Exact Match (EM) Upperbound
to be 95%, i.e. the highest scores that 4 people
(among all groups) make. Upon manual inspec-
tion of the submissions of these best performers,
we find their incorrect answers sometimes partially
overlap with the groundtruth or are sometimes rea-
sonable. In other cases, the best performers find
acceptable answers but that do not overlap at all
with the groundtruth labels in PR. That is, we esti-
mate a 5% of noise in the annotations of PR.

5.3 Phrase Retrieval: In ranking, context only
helps BERT embeddings but not others

One way to evaluate the quality of SotA phrase
embeddings is by testing:

Q: How well do phrase embeddings perform in
the ranking approach on PR?

Ranking is a challenging and meaningful phrase-
embedding test because the embedding of the
query is compared against that of all phrase can-
didates (extracted by tokenizing the document),
which can include syntactically-incorrect phrases,
meaningless phrases or rare phrases. Such out-of-
distribution challenge appears less often in PS or
WiC, i.e. a binary classification setting.
Experiment As described in Sec. 4.2, the PR
train/dev/test splits are 20,147/3K/5K examples
and we only use the 5K-example test set to test
the models in this ranking experiment (no training).
We follow (Lee et al., 2017) for span enumeration



to construct a list of candidate phrases, we split
each PR document into multiple sentences (using
NLTK sentence splitter) and tokenize each sentence
into tokens (using NLTK tokenizer) and build an
exhaustive list of n-grams (here, n € {2, 3} only
for computational tractability). For every example,
we add the groundtruth phrase (which can be longer
than 3 words) to the list of candidates (since we are
only interested in testing phrase embeddings, not
the phrase extractor).

Results We report top-% accuracy (for k = 1, 3,
5) and top-5 Mean Reciprocal Rank (MRR @5) on
the PR-pass test set in Table 5a. First, for most
SotA embeddings, incorporating context sentence
hurts the accuracy (except for BERT embeddings).
That is, interestingly, for all BERT embeddings
(base and large), the accuracy increases substan-
tially (+17.64 and +19.04; Table 5) when the one-
sentence context is the input. In contrast, most
models that started from BERT but were later fine-
tuned lost the capability to leverage the context
information (e.g., PhraseBERT, DensePhrase, and
SpanBERT in Table 5).

Second, the best top-1 accuracy scores on PR-
pass for non-contextualized (USE-v5; 43.36%) and
contextualized (BERT; 47.44%) embeddings are
substantially lower than the non-expert baselines
(73.60%; Table 4) and Human Upperbound (95%).
Future work is required to learn more robust, phrase
embeddings for ranking. See Figs. A10-A11 for
qualitative examples.

5.4 Phrase Retrieval: Span-selection models
reach near-human accuracy

Consistent with Yu and Ettinger (2020), our rank-
ing results in Sec. 5.3 reveal that there exists a large
headroom for improving both non-contextualized
and contextualized phrase embeddings. Yet, be-
cause ranking is a naive approach and SS models
(Huggingface, 2022b; Devlin et al., 2019) are the
SotA approach on many QA tasks (Rajpurkar et al.,
2016), here we train SS models on the train set of
PR-pass and PR-page in order to test:

Q: How well do SotA semantic-search models
perform on PR-pass and PR-page?

Experiment We take the SotA embeddings tested
in Sec. 5.3 and add a linear classification layer
on top and finetune each entire classifier on the
train set of PR-pass or PR-page for 2 epochs us-
ing the default HuggingFace hyperparameters (see
Appendix B for finetuning details). Following the

standard setup of BERT architectures for QA tasks
(Devlin et al., 2019), each SS model predicts the
start and end index of the target phrase. Addition-
ally, since PR-page documents are much longer
than a typical QA paragraph (Table 2), we also test
training Longformer (Beltagy et al., 2020), which
has a max sequence-length of 4,096, sufficient for
an entire Wikipedia page. We take the models of
the smallest dev loss and report their test-set per-
formance in Table 6.

Results On PR-pass, in contrast to the poor per-
formance of ranking models (Sec. 5.3), our PR-
pass-trained SS models perform impressively at a
near-upperbound level (~93-94% EM; Table 6a)
surpassing the accuracy of trained experts (90.50%
EM). Surprisingly, on PR-page where the docu-
ments are substantially longer (around 12x) than
the documents of PR-pass, SS models’ accuracy
only drops slightly (from ~94% to ~85-89% EM;
Table 6b). Note that in a full Wikipedia page of
PR-page, there might be phrases that can be con-
sidered correct but are not labeled groundtruth ac-
cording to our annotations. This remarkable result
suggests that training on PR-pass can enable high-
performing models on real-world semantic search.

5.5 Phrase Sense Disambiguation: Best
models also perform poorly

We find that SotA PR-pass-trained SS models reach
superhuman accuracy on PR-pass, i.e. finding a
phrase of the same meaning (Sec. 5.4). Yet, PR-
pass only tests models’ understanding of a single
sense of the target phrase at a time. It is interesting
to study:

Q: Do PR-pass-trained SS models understand
contextualized phrases sufficiently to separate two
different senses of the same target phrase?
Experiment To do that, here we test the best PR-
pass-trained SS models on PSD. Note that, PSD
has the same task format as PR-pass (see Fig. 1c—e)
except that the document is twice as long and con-
tains two occurrences of the same target phrase.
We do not test the ranking models as they perform
much worse than the SS models in Sec. 5.3.
Results Although the PR-pass-trained SS models
are never trained on PSD, they interestingly fre-
quently find one occurrence of the target phrase
(mean of 94.01% EM; Table 6¢). However, they
mostly locate the target phrase in the wrong con-
text passage with high confidence scores. That
18, if we consider also the correctness of the loca-



Table 5: Ranking accuracy (%) on PR-pass using the state-of-the-art pretrained phrase embeddings. See Appendix F
for the results on PR-page. A (e.g. -3.62) denotes the differences between the Top-1 accuracy in the contextualized
(“Phrase + Context”) vs. the non-contextualized (“Phrase”) setting.

Model Phrase Phrase + Context
Top-1 Top-3 Top-5 MRR@5 Top-1(A) Top-3 Top-5 MRR@5

PhraseBERT (Wang et al., 2021) 36.62 66.96 75.90 52.20 33.00 (-3.62) 49.60 56.70 41.90

(Devlin et al., 2019) 29.80 47.90 55.40 39.50 47.44 (+17.64) 65.78 73.30 57.30
BERT 4r¢e (Devlin et al., 2019) 23.76 38.52 45.40 31.70 42.80 (+19.04) 58.90 64.90 51.30
SpanBERT (Joshi et al., 2020) 20.88 31.04 35.20 26.40 14.40 (-6.48)  30.46 39.80 23.40
SentenceBERT (Reimers and Gurevych, 2019) 22.30 50.64 60.60 36.80 25.14 (+2.84) 39.52 46.20 32.90
SimCSE (Gao et al., 2021) 28.10 53.70 64.60 41.60 32.40 (+4.30) 53.44 62.80 43.70
USE-v5 (Cer et al., 2018) 43.36 70.12 78.90 57.30 n/a n/a n/a n/a
DensePhrase (Lee et al., 2021) 32.24 51.30 60.50 42.60 31.50 (-0.74) 4630 53.80 39.70

Table 6: Test-set performance (%) of SS models on PR-pass (a), PR-page (b), and PSD (c¢). When trained on
PR-pass (a) and PR-page (b), SotA SS models perform well. However, testing the PR-pass-trained models on PSD
shows a significant drop in accuracy (c). That is, SotA SS models tend to understand a single sense of a phrase in
context well (high PR-pass, PR-page, and PSD EM scores). Yet, they are not able to differentiate two senses of the
same phrase (e.g., here, PhraseBERT accuracy drops -41.27 points between EM+loc vs. EM scores on PSD).

Model (a) PR-pass | (b) PR-page (c) PSD
EM F; | EM Fi| EM F; EM-+loc F;+loc
PhraseBERT (Wang et al., 2021) 93.42 9497|8524 87.19(92.98 94.08 51.67 (-41.31) 51.83
(Devlin et al., 2019) 93.26 94.65 | 85.64 87.77 |93.50 94.57 54.84 (-38.66) 55.07
BERT] argc (Devlin et al., 2019) 93.64 95.16 | 87.36 89.52|94.67 95.57 55.43(-39.24) 55.61
SpanBERT (Joshi et al., 2020) 93.50 95.02|87.28 87.66|92.26 93.30 52.20 (-40.06) 52.34
SentenceBERT (Reimers and Gurevych, 2019) 93.24 94.54 | 84.66 86.89 | 93.21 94.15 52.74 (-40.47) 52.85
SimCSE (Gao et al., 2021) 92.90 94.51|85.68 87.66|92.96 94.05 53.83(-39.13) 53.94
Longformer (Beltagy et al., 2020) 94.26 95.58 | 89.54 91.15|96.17 96.88 62.72 (-33.45) 62.83
Longformery a. (Beltagy et al., 2020) 94.28 95.53 | 87.58 89.32196.32 96.91 59.72 (-36.60) 59.82
mean 93.56 95.00 | 86.92 88.85|94.01 94.94 55.39 (-38.62) 55.54
=+ std 049 042] 193 1.73] 1.54 136 3.90 3.88

tion of the predicted phrase, their EM+loc? accu-
racy drops significantly to an average of 55.39%.
Also, finetuning on a 2K-example train set of PSD
only slightly improves the EM+loc to an average
of 64.24% on a 3K-example PSD test set (Ap-
pendix G). Note that we estimate the Human Up-
perbound on PSD to be 95%, i.e. the same as that
of PR-pass. See qualitative examples and predic-
tions of Longformer (i.e. the best model tested) in
Figs. A7-A9.

In sum, there is a large headroom for future re-

For a PSD example, if the predicted span does not inter-
sect at all with the groundtruth span, the EM+loc and F;+loc
scores would be 0. If they intersect, the two scores would be
equal to EM and F1, respectively.

search on PSD. SS models are not yet capable of
leveraging surrounding words to differentiate be-
tween two senses of the same phrase. Interest-
ingly, after training on PR-pass, their contextual-
ized phrase embeddings perform much worse in
the ranking experiments on PR-pass (Appendix H).

6 Discussion and Conclusion

While WiC and English WSD rely exclusively
on dictionaries (Pilehvar and Camacho-Collados,
2019) to obtain word senses and example sentences,
our data collection depends on Wikipedia, WiC, &
NLP models and our annotation depends on experts.
In sum, we present PiC, the first 3-task suite for



evaluating phrases in context. SS models can ob-
tain high accuracy on semantic search after training
on our PR-pass and PR-page datasets. Yet, their ca-
pability is limited to finding a semantically-similar
phrase given a single context that contains the tar-
get phrase (in PR-pass). The results on PS and
PSD show that SotA phrase embeddings are still
limited in encoding contextualized phrases. It is
interesting future work to improve these models for
disambiguating the senses of a phrase in context
(PS and PSD).

7 Limitations

Our dataset is currently limited to multi-word, En-
glish noun-phrases. Furthermore, it is expected
to contain around a 5% error on PR-pass (i.e. the
best human performance is 95% EM). On PR-page,
there may be more than one correct target phrase;
however, we only label one phrase as the correct
answer per document. We use only phrases that
contain at least one WiC word.
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Appendix for:
PiC: A Phrase-in-Context Dataset for
Phrase Understanding and Semantic Search

A Training models on Phrase Similarity

Hyperparameters We train each BERT-based classifier for a maximum of 100 epochs with early
stopping monitored on validation accuracy (patience of 10 epochs). We use a batch size of 200 and Adam
optimizer with learning rate o = 0.0001, 51 = 0.9, 82 =0.999, and € = 1078,

Training time On average, with early stopping, training a single model using one V100 GPU takes ~5
and ~8 mins for non-context and context settings, respectively.

B Training SS models on Phrase Retrieval

We finetune each SS model that consists of a linear layer on top of a pretrained model selected in Sec. 5
to predict the start and end indices of answers (as the common setup in BERT SS models (Devlin et al.,
2019; Arici et al., 2020)). The format of a tokenized input is “[CLS] query [SEP] document [SEP]” with
maximum sequence length of 4,096 for Longformerg,se and Longformery arpe and 512 for the remaining
models. If the document exceeds the maximum sequence length, it is split into smaller features for
prediction and thus start and end indices with the highest confidence scores are selected.

Hyperparameters We follow HuggingFace scheme to finetune the SS models for 2 epochs using Adam
optimizer with learning rate o = 0.00003, 81 = 0.9, B2 =0.999, € = 108, The batch size varies from 1 to
8 for each model: On one V100 GPU, the “base” models can handle 8 examples while the “large” BERT
models can only fit 2-4 examples into 16GB of memory. For Longformer age, we use an A100 GPU to
feed one PR-page example into the model. We take the smallest dev-loss models from the training and
report their test-set results.

Training time On average, training a single SS model for 2 epochs using one A100 GPU takes ~20
mins for base models and ~9.5 hours for Longformery yrge.

C Data collection

From a Wikipedia dump, we perform a 6-step procedure (summarized in Table A1) for mining a list
of mNPs sorted descendingly by their likelihood of containing multiple senses. The most polysemous
19,500 mNPs are then passed to experts for annotation (Sec. 3.2) and others for verification (Sec. 3.3).

Step 1: Download Wiki articles We download a Wikipedia dump file (Team, 2021b) that contains
~15.78M Wikipedia articles and filter out all empty pages to arrive at ~6.27M non-empty articles.

Step 2: Extract phrases We use NLTK sentence splitter (Bird et al., 2009) to split each Wikipedia
article into multiple sentences. And then we use SpaCy (Honnibal et al., 2020) to extract noun phrases and
proper nouns as we do not collect syntactically strict phrases. For each phrase, we remove all preceding
and succeeding stopwords (those among the 179 stopwords in NLTK v3.6.5) and non-alphanumeric
characters. We remove stopwords because they tend to create more pairs of phrases with lexical overlap,
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rendering the phrase similarity task easier. We then remove unigram phrases to arrive at ~286.78M mNPs.
For example, from “a massive figure”, we changed to “massive figure”, which would be our final phrase
after this step. For each mNP, we construct a 3-tuple (phrase, sentence, metadata), i.e. the phrase, its
container sentence, and metadata for identifying the Wikipedia webpage (hereafter, page).

Step 3: Remove phrases of a single context We further remove all phrases that (1) contain non-ASCII
characters (e.g. “phaennd nasos”, which are non-English); and (2) appear only once, i.e. keeping those
that occur in multiple sentences since we look for polysemous mNPs, which have multiple senses and
contexts. After this step, ~17.96M phrases remain.

While some phrases with non-ASCII characters are also commonly used in English (e.g., “déja vu”), we
find only 2.48% of phrases at this stage contain non-ASCII characters, and 29% of them are common in
English. In short, we are removing only 0.72% of the English phrases that contain non-ASCII characters
in Step 3.

Step 4: Find phrases of polysemous words To increase the chance of collecting polysemous mNPs,
we only keep mNPs that have at least one word in the list of 2,345 unique multiple-sense words of WiC
(Huggingface, 2022a), arriving at ~6.5M mNPs, each appearing in > 2 sentences and in > 1 Wikipedia
pages. We empirically find that Step 4 is important and substantially increases our chance of finding
polysemous mNPs (compared to skipping Step 4).

Step 5: Find phrases in distinct contexts We observe that a mNP is likely to be polysemous when
(a) its context sentences are semantically different; and (b) its context Wikipedia pages are of dissimilar
categories (e.g. “massive figure” in finance vs. history; Fig. A8).

To implement this filter, we form all possible triplets (phrase, sentence;, sentences) from the list of
context sentences of each mNP>. We compute the cosine similarity of two sentences at the CLS embedding
space of a SimCSE (Gao et al., 2021) provided on HuggingFace (Group, 2022). To find triplets where the
two sentences are semantically dissimilar, we keep only the triplets where (sentence;, sentences) has a
low cosine similarity, i.e. € [—0.3,0.2] and the length difference of the two sentences is < 4 words (as two
sentences of substantially different lengths often have a low cosine similarity regardless of their semantic
differences). As the result, there are ~600K triplets remaining after this step.

We further re-rank these ~600K descendingly by the dissimilarity of the lists of Wikipedia categories®
of the context pages that contain sentence; and sentence;. That is, we treat each Wikipedia page’s
comma-separated list of categories as an input text to SimCSE and sort the ~600K descendingly by the
cosine similarity of the resultant embeddings.

Step 6: Select data for annotation Before asking annotators to label our sorted phrases we perform
final filtering by removing proper nouns and phrases whose Wikipedia documents contain missing words.

We perform final filtering to ensure the data given to annotators is in a proper format. That is, from
~600K phrases, we filter down to ~475K phrases by applying two filters: (1) Remove all phrases that are
proper nouns (i.e. POS tagging returns PROPN) since proper nouns often refer to a single identity and
thus unambiguous; (2) Remove all phrases that have a newline character and all phrases whose context
Wikipedia page contains missing words (i.e. errors in the Wikipedia dump).

As the result, we obtain a list of ~475K phrases sorted by their estimate chance of carrying two different
senses. After manual inspection, we take the top 19,500 triplets of the format (phrase, page;, pages)—i.e.
a phrase p and its two context Wikipedia pages where p is the most likely to have two different senses
(e.g., see “massive figure” in Fig. 1a)—and hire linguistic experts to annotate them.

Our manual inspection involves taking 1,000 random triplets and manually reading them. We find
that at least ~30% of the 1,000-triplet subset contain a polysemous target phrase p and two Wikipedia
pages that give p two unique meanings. We perform this manual inspection repeatedly throughout the

3For computational tractability, we only keep at most 32 context sentences per NP where each sentence’s length in words is
€ [5,25].

*We use the provided Wikipedia API (Team, 2021a) to obtain the categories for each article as the dump file has no
category-related information.
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process of inventing and refining the data collection process in order to arrive at the final list of steps as
presented in this paper.

C.1 Biases in the data collection

While there are many filtering steps in our data collection above, most of them are data cleaning filters
that are typically needed in a regular NLP dataset construction.
We recognize that there are three key filters in our system that impose strong biases:

1. In Step 4, we use only phrases that contain one word in the WiC. That is, we find Step 4 to
substantially increase our chance of finding triplets with a polysemous target phrase. We have added
this note in the Data Collection description. It is possible to remove Step 4, but that would require a
larger human annotation effort to reach the same 15K labeled triplets.

2. In Step 5, we rely on SimCSE to find target phrases that are placed in two sentences of dissimilar
meanings.

3. In Step 5, we rely on SimCSE to find target phrases that are placed in two Wikipedia pages of distinct
topics.

D Statistics for search queries in Yahoo Search Query dataset

We analyze 4,496 user queries released in the Yahoo Search Query Log To Entities dataset (Yahoo, 2022b)
and use SpaCy tokenizer (Honnibal et al., 2020) to classify them into 4 main categories: Noun phrases,
verb phrases, URLs and others. As a result, noun phrases are the most common query type from users
with 3,576 queries (~79.54%) followed by URLs with 675 queries (~15.01%) while verb phrases and
other types are less preferred by users. Moreover, the average length of the real user queries is ~1.60
which is quite close to our PS task with ~2.27.

Table A2: Statistics of Yahoo queries across different query types.

Query type # queries Percentage (%)
Noun phrases 3,576 79.54
Verb phrases 148 3.29
URLs 675 15.01
Others 97 2.16
Total 4,496 100.00

E Verification of Phrase Similarity

To enhance the quality of the proposed PiC benchmark, we hire three additional Upwork experts to
verify the correctness of PS examples where two phrases are supposed to be non-equivalent for negative
examples (e.g. massive figure and giant number in Fig. 1b) or equivalent for positive examples (e.g.
massive figure and huge model in Fig. 1b), and keep an example if it is endorsed by at least two experts
(the rest is discarded from PS).

Two Upwork verifiers A1 and As start checking 5,104 negative examples and the third verifier As is
responsible for breaking the ties if A; and Ay disagree with each other (see Fig. A1). Both A; and As
are asked to provide corrections when they do not agree with the labels. As a result, 4,935 out of 5,104
examples are accepted by pairs of (A1, As), (A1, A3) or (A, A3), 68 examples incorrect at first but are
modified by either A; or As and endorsed by As. In total, we reject 101 negative examples because there
are not at least two experts agreeing with the annotations.

We repeat the same procedure to verify 5,104 positive examples. In sum, we retain 5,002 examples
including 4,904 examples accepted by pairs of two verifiers and 98 examples incorrect at first but are
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modified by either A; or A5 and endorsed by As3. There are 102 positive examples rejected because there
are not at least two experts agreeing with the annotations (Fig. A2).

After this verification round, we collect 5,003 negative examples and 5,002 positive examples. and
randomly exclude 1 negative example to make the dataset balance which results in 10,004 examples in
total for PS.

Yes 4,211 examples are
(4,21 1 ) accepted
No Does A3 accept?
Yes 7
(4,308) No 1 example is
1 rejected
Do both A1 & A2
accept? Yes 82 examples are
rejected
No Yes Does A3 accept? Does A3 accept A1 or 22 examples are accepted
(796) (104) B
A2's corrected

Do both A1 and A2

annotations?

reject?

Yes

628 examples are accepted

(692)
Does A3 accept?

Yes
Does A3 accept Al or  [El9)]

|

No A2's corrected
(64) annotations?

No
(18)

0 example is
rejected

46 examples are accepted

18 example are
rejected

Figure Al: A decision tree describing our verification process for PS that involves three experts. Red, green and
blue cells represent Reject, Accept decision and Questions. The numbers of examples for each branch are shown in

parentheses.

Yes 3,985 examples are
(3,985) accepted
No Does A3 accept?
Yes (427)
(4,412) No 5 example is
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Do both A1 & A2
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No Yes Does A3 accept? Does A3 accept A1 or 8 examples are accepted
(692) (94) 7
A2's corrected

Do both A1 and A2
reject?

(598)

No
(16)

annotations?
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rejected

Yes

497 examples are accepted

Does A3 accept? Yes 90 examples are accepted

Does A3 acceptAlor  [EW)]
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(101)

|

annotations?

No
(n

11 example are
rejected

Figure A2: A decision tree describing our verification process for PS that involves three experts. Red, green and
blue cells represent Reject, Accept decision and Questions. The numbers of examples for each branch are shown in
parentheses.



Table Al: Summary of our 3-stage data construction. p, s, m d, g, [ denote target phrase, sentence, metadata,

document, query, and label, respectively.

Remaining #

Data type

Description

Sec. 3.1 Data Collection
Step 1: Download Wiki articles

Step 2: Extract phrases

Step 3: Remove phrases of a single context

Step 4: Find phrases of polysemous words

Step 5: Find phrases in distinct contexts

- Sort and filter by semantic dissimilarity

- Sort by domain dissimilarity

Step 6: Select data for expert annotation

~6.27TM

articles

Remove ~9.51M empty articles.

~286.78M

(p, s, m)

Extract noun phrases and proper
nouns along with their context
sentences from Wikipedia arti-
cles.

~17.96M

(pv [817 ceey 811]7 m)

For each phrase, gather all sen-
tences where that phrase is used.

~6.5M

(p’ [817 ceey Sn]’ m)

Filter those phrases that do not
contain WiC words.

~600K

~600K

(p, 51, 82, M)

(p, 51, 52, M)

Sort by X; and apply filters to
find pairs of sentences where
their phrase potentially has dif-
ferent meanings.

X1 : cosine similarity scores of
sentences embeddings.

X5 : cosine similarity scores of
domain embeddings i.e., use cat-
egories of each article to get em-
beddings.

19,500

(p, dy, d2)

Remove proper and
phrases with missing infor-
mation and select top 19,500
examples for annotation.

nouns

Sec. 3.2 Data Annotations

30,042

15,021

(p.d, q)

(p, d1, da, 1)

Create a query i.e., paraphrase
from the given phrase in each
context document.
Create a Yes/No label for each
pair of documents.

Sec. 3.3 Verifying Annotations
Round 1: MTurk verifier

Round 2: Upwork verifiers

22,496

10,043

(p, d, q)

(p, di, do, 1)

Verify queries and Yes/No label
by MTurkers.

28,325

13,413

(p. d, q)

(ps dls dQ’ l)

Verify instances rejected in
Round 1.
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F Quantitative results on PR-page

Table A3: Ranking accuracy (%) on PR-page using the state-of-the-art pretrained phrase embeddings (a) and those
finetuned on PR-pass via SS-style training (b).

Model Phrase Phrase + Context
Top-1 Top-3 Top-5 MRR@5 | Top-1 Top-3 Top-5 MRR@5
(a) Pre-trained embeddings
BERT (Devlin et al., 2019) 20.70 3430 41.00 28.20 ‘ 35.40 (+14.70) 52.10 59.10  44.50
USE-v5 (Cer et al., 2018) 32.20 52.70 60.80 43.20 ‘ n/a n/a n/a n/a
(b) PR-pass-trained SS models’ phrase embeddings

PhraseBERT (Wang et al., 2021) 49.40 69.40 76.70 60.10 ‘ 14.70 21.60 26.10 18.70
SimCSE (Gao et al., 2021) 4420 66.60 73.50 55.70 ‘ 24.60 37.80 43.20 31.70

G Finetuning on PSD does not substantially improve accuracy

As PSD has only 4,858 examples, we use all examples for testing in Sec. 5.5 and find the best PR-trained
SS models to perform poorly. To further understand the challenge of PSD, here, we ask:
Q: How much does training on PR-pass and finetuning on PSD improve accuracy on PSD?

Experiment We take the PR-pass-trained SS models and further finetune them on a subset of PSD to
measure how training directly on PSD improves SS models. We split PSD into 1,438/500/3,000 examples
for train/dev/test sets, respectively, and finetune the PR-pass-trained SS models on this PSD train set. For
comparison with the results in Sec. 5.4, we use the same set of hyperparameters as when finetuning on
PR-pass in Sec. 5.4. Below, we report the test-set results of the lowest dev-loss models.

Results On the PSD-3K test set, all models perform poorly at a mean EM score of 55.14% (Table A4a;
mean). Interestingly, finetuning the original models using the 1,938 examples (hereafter, PSD-2K) instead
of PR-pass decreases accuracy, on average by -6.51 points. An explanation is that 1,438 PSD training
examples are too few for the finetuning to be effective. Indeed, finetuning the PR-pass-trained SS models
further on PSD-2K increases the scores for all models by +9.10 on average (Table A4c; mean). The best
model is Longformerg,s (Beltagy et al., 2020) (Table A4; 71.10 EM), which is still substantially lower
than the human upperbound of 95%.

Table A4: Performance of SS models on 3,000 PSD test examples. (a) and (b) models are finetuned only on
PR-pass and 1,938 PSD examples (PSD-2K), respectively. (c) models are finetuned on PR-pass first and then
finetuned on PSD-2K. All models are “base” unless otherwise specified. The definitions of EM+loc and F;+loc are
in Table 6’s caption.

Models finetuned on (a) PR-pass (b) PSD-2K (c) PR-pass + PSD-2K

EM-+loc Fi+loc | EM+loc Fi+loc | EM+loc Fi+loc

PhraseBERT (Wang et al., 2021) 51.00 51.15|35.43(-15.57) 36.02 |56.53 (+5.53) 56.81

BERT (Devlin et al., 2019) 54.53  54.75]44.33 (-10.20) 45.28 | 63.83 (+9.30) 64.14

BERTY g (Devlin et al., 2019) 5477 5499 |54.07 (-0.70) 54.82 |67.13 (+12.36) 67.36

SpanBERT (Joshi et al., 2020) 52.27 5237 |44.67 (-7.60) 45.35 |69.93 (+17.66) 70.14

SentenceBERT (Reimers and Gurevych, 2019) 5227 52.41|38.63(-13.64) 39.31 |58.93 (+6.66) 59.21
SimCSE (Gao et al., 2021) 5347 53.59|43.67 (-9.80) 44.38 |60.60 (+7.13) 60.80

Longformer (Beltagy et al., 2020) 6247 62.58 |61.97 (-0.50) 62.69 |71.10 (+8.63) 71.30
Longformery ,qe (Beltagy et al., 2020) 60.33  60.42 | 66.27 (+5.94) 67.10 | 65.87 (+5.54) 66.10

mean  55.14 5528 |48.63 (-6.51) 4937 | 6424 (+9.10) 64.48
+std 410  4.08|11.03 11.08 | 5.23 4.13
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H SS-style training improves non-contextualized but not contextualized phrase
embeddings

As the SS models trained on PR-pass and PR-page perform impressively (Sec. 5.4), almost 1.5 better
than the ranking models that are based on pre-trained embeddings, an interesting question is:
Q: Does SS training also improve contextualized phrase embeddings?

This is important to understand because the impressive SS-models’ performance gain may come from
the extra linear-classification layer (not necessarily from the finetuned embeddings).

Experiment We extract the phrase embeddings (both non-contextualized and contextualized) from the
PR-pass-trained SS models from Sec. 5.4 (i.e. discarding the classification layer) and test them in the
PR-pass ranking experiments (as in Sec. 5.3).

Results After finetuning on PR-pass, the non-contextualized phrase embeddings improve substantially
for most models at an average gain of +16.61 in top-1 accuracy (e.g., PhraseBERT top-1 accuracy
increases from 36.62% to 59.02%; Table ASb). This result shows that training on PR-pass improves
non-contextualized phrase embeddings. In stark contrast, the ranking scores of contextualized phrase
embeddings drop significantly, -11.95 points on average (Table A5c), compared to before finetuning on
PR-pass.

In sum, we are observing a consistent trend that the contextualized phrase embeddings of the original
pre-trained BERT (both “base” and “large”) are remarkably beneficial for retrieval (i.e. PR). However,
after finetuning, e.g. on PR-pass or using other techniques (e.g. in PhraseBERT or SentenceBERT), such
benefits of leveraging context disappear. Aligned with Yu and Ettinger (2020), we find that incorporating
context effectively into phrase embeddings is an open research challenge.

Table AS: Ranking accuracy (%) on PR-pass using the state-of-the-art pretrained phrase embeddings (a) and those
finetuned on PR-pass via SS-style training (b). See Appendix F for the results on PR-page. A (e.g. -3.62) denotes
the differences between the Top-1 accuracy in the contextualized (“Phrase + Context”) vs. the non-contextualized
(“Phrase”) setting.

Model Phrase Phrase + Context
Top-1 Top-3 Top-5 MRR@5 Top-1(A) Top-3 Top-5 MRR@5
(a) Pre-trained embeddings
PhraseBERT (Wang et al., 2021) 36.62 66.96 75.90 52.20 33.00 (-3.62) 49.60 56.70 41.90
(Devlin et al., 2019) 29.80 47.90 55.40 39.50 47.44 (+17.64) 65.78 73.30 57.30
BERTygc (Devlin et al., 2019) 23.76 38.52 45.40 31.70 42.80 (+19.04) 58.90 64.90 51.30
SpanBERT (Joshi et al., 2020) 20.88 31.04 35.20 26.40 14.40 (-6.48)  30.46 39.80 23.40
SentenceBERT (Reimers and Gurevych, 2019) 22.30 50.64 60.60 36.80 25.14 (+2.84) 39.52 46.20 32.90
SimCSE (Gao et al., 2021) 28.10 53.70 64.60 41.60 32.40 (+4.30) 53.44 62.80 43.70
USE-v5 (Cer et al., 2018) 43.36 70.12 78.90 57.30 n/a n/a n/a n/a
DensePhrase (Lee et al., 2021) 32.24 51.30 60.50 42.60 31.50 (-0.74)  46.30 53.80 39.70
(b) PR-pass-trained SS models’ phrase embeddings
PhraseBERT (Wang et al., 2021) 59.02 81.58 87.90 70.60 24.98 (-34.04) 37.78 43.90 32.00
(Devlin et al., 2019) 50.10 66.16 71.40 58.60 20.34 (-29.76) 31.40 37.10 26.50
BERTYye (Devlin et al., 2019) 32770 42.40 45.90 37.80 11.40 (-21.30) 17.00 20.50 14.60
SpanBERT (Joshi et al., 2020) 15.22 22.88 26.60 19.40 8.92 (-6.30) 13.56 16.60 11.60
SentenceBERT (Reimers and Gurevych, 2019) 53.14 74.86 80.70 64.20 20.12 (-33.02) 30.04 3490 25.60
SimCSE (Gao et al., 2021) 50.96 76.70 83.40 64.00 37.70 (-13.26) 52.38 5890 45.60
(c) Differences between after vs. before finetuning, i.e. the 6 models in (b) vs. those in (a)
mean differences +16.61 -11.95
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I

Qualitative examples for PS, PR-pass, PR-page and PSD

PS example. Groundtruth: “positive”

P

moderate speed

P2

steady pace

S1

Deforestation due to logging and land conversion has likely caused the population to decline at a moderate speed.

So

Deforestation due to logging and land conversion has likely caused the population to decline at a steady pace.

Figure A3: PhraseBERT-based classifier correctly predicts “positive” given two phrases P; and P, with and without
the presence of context S; and S,. Here, to humans, the phrases are non-polysemous and have the same meaning.

PS example. Groundtruth: “negative”

Py

greatest emphasis

Py

highest stress

S1

However, the rock art had the greatest emphasis on domesticated cattle.

Sa

However, the rock art had the highest stress on domesticated cattle.

Figure A4: PhraseBERT-based classifier correctly predicts “negative” given two phrases P; and Py with and
without the presence of context S; and S». Here, to humans, the two phrases are non-ambiguously carrying different
meanings.

PS example. Groundtruth: “positive”

Py

unique image

P2

uncommon style

S1

Bayliss has been praised for her unique image and tendency to change up songs.

So

Bayliss has been praised for her uncommon style and tendency to change up songs.

Figure AS: PS case that requires context to determine similarity. Without context, a PhraseBERT-based classifier
incorrectly thinks P; and P5 are different. Yet, it changes the prediction to “positive”, i.e. thinking two phrases have
the same meaning, when the context is taken into account.

PS example. Groundtruth: “negative”

Py

permanent post

Py

stable location

S1

His assistant, John Carver took over as caretaker manager, managing one win, but was not considered for the permanent post,
and left in September 2004.

So

His assistant, John Carver took over as caretaker manager, managing one win, but was not considered for the stable location,
and left in September 2004.

Figure A6: PS case that requires context to determine similarity. Without context, PhraseBERT-based classifier
incorrectly thinks P; and Ps carry the same meaning. Yet, it correctly changes the prediction to “negative” when
the context is taken into account.
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PSD example.

d

Bubble memory is a type of non-volatile computer memory that uses a thin film of a magnetic material to hold small
magnetized areas, known as "bubbles" or "domains", each storing one bit of data. The material is arranged to form a series of
parallel tracks that the bubbles can move along under the action of an external magnetic field. The bubbles are read by
moving them to the edge of the material where they can be read by a conventional magnetic pickup, and then rewritten on the
far edge to keep the memory cycling through the material. In operation, bubble memories are similar to delay line memory
systems. Bubble memory started out as a promising technology in the 1970s, offering memory density of an order similar to
hard drives but performance more comparable to core memory while lacking any moving parts. This led many to consider
it a contender for a "universal memory" that could be used for all storage needs. The introduction of dramatically faster
semiconductor memory chips pushed bubble into the slow end of the scale, and equally dramatic improvements in hard drive
capacity made it uncompetitive in price terms. Bubble memory was used for some time in the 1970s and 80s where its
non-moving nature was desirable for maintenance or shock-proofing reasons. The introduction of Flash RAM and similar
technologies rendered even this niche uncompetitive, and bubble disappeared entirely by the late 1980s. History. Precursors.

The Inkerman stone, of which the building is made, was mined near Sevastopol and transported by barges. No
convenient mooring facilities existed at that time, so the barges had to anchor in the harbor and the load was moved to the
shore by boats and then transported to the construction site across the steppe. During the first year of construction, the
builders concentrated on the basic structure at the expense of various facilities and decorations. At the end of 1816, the
lighthouse looked like a conic 36-metre-high stone tower with a wooden 3.3-metre-high decagonal lantern. The lighthouse
became operational in 1817 after its lighting system had been repaired. Three houses were built next to the tower to
accommodate the lighthouse personnel and for storage needs. However, cold and humid winters of the Tarkhanut Peninsula,
however, made these houses nearly unsuitable for living. In 1862, the lighting system was upgraded, and the spread of light
reached 12.4 miles. In 1873, the construction resumed along with cleaning efforts of the surrounding areas. The building was
finished and painted white. In 1876, an additional telegraph spot was built near the tower.

q

fan

storehouse purposes Groundtruth: storage needs & Prediction: storage needs (confidence: 0.99)

q2

data caching Groundtruth: storage needs & Prediction: storage needs (confidence: 0.99)

Figure A7: Given document d, our Longformery o¢e SS model trained on PR-pass correctly retrieves storage needs
in the second paragraph for the query q; “storehouse purposes” but fails to retrieve the answer when the query g»
is “data caching”. The predicted answer for g» should be storage needs (i.e. in the first passage) since this phrase

relates to caching data digitally in computers while storage needs refers to physically storing objects.

PSD example.

d

In the libretto, Delilah is portrayed as a seductive "femme fatale", but the music played during her parts invokes sympathy for
her. The 1949 biblical drama "Samson and Delilah", directed by Cecil B. DeMille and starring Victor Mature and Hedy
Lamarr in the titular roles, was widely praised by critics for its cinematography, lead performances, costumes, sets, and
innovative special effects. It became the highest-grossing film of 1950, and was nominated for five Academy Awards,
winning two. According to "Variety", the film portrays Samson as a stereotypical "handsome but dumb hulk of muscle".
Samson has been especially honored in Russian artwork because the Russians defeated the Swedes in the Battle of Poltava
on the feast day of St. Sampson, whose name is homophonous with Samson’s. The lion slain by Samson was interpreted to
represent Sweden, as a result of the lion’s placement on the Swedish coat of arms. In 1735, C. B. Rastrelli’s bronze statue of
Samson slaying the lion was placed in the center of the great cascade of the fountain at Peterhof Palace in Saint Petersburg.
Samson is the emblem of Lungau, Salzburg and parades in his honor are held annually in ten villages of the Lungau and two
villages in the north-west Styria (Austria). During the parade, a young bachelor from the community carries a massive figure
made of wood or aluminum said to represent Samson. The tradition, which was first documented in 1635, was entered into
the UNESCO list of Intangible Cultural Heritage in Austria in 2010. Samson is one of the giant figures at the "Ducasse"
festivities, which take place at Ath, Belgium.

On September 22, 2015, Honda announced that they had sold over 1 million Activas in five months in the Indian
market, from April to August. Honda launched their Sth generation of Honda Activa in 2018, and the sixth-generation Honda
Activa 6G have been launched in India with prices starting at 63,912 (ex-showroom, Delhi). Milestones. In April, 2014,
"The Economic Times" reported the Honda Activa to be the best selling two wheeler in India, outselling the Hero Splendor.
During the month of September 2013, 141,996 Honda Activa scooters were sold, nearly equal to Honda’s entire annual sales
in North America. The 110cc Activa is the company’s biggest seller, by far. It is responsible for over 2,00,000 sales units
each month. In November 2018, HMSI crossed the 2.5 crore sales mark in the scooter segment. It has become the first
company to reach this milestone and the biggest contributor to this massive figure is the Honda Activa. It took Honda 13
years to achieve the one crore sales figure, but it managed to add another crore in the span of just three years. It then went on
to achieve the next 50 lakh in just one year.

q1

huge model Groundtruth: massive figure & Prediction: massive figure (confidence: 0.99)

q2

giant number Groundtruth: massive figure & Prediction: massive figure (confidence: 0.99)

Figure A8: Given document d, Longformery .. model trained with SS approach on PR-pass correctly retrieves
massive figure in the second paragraph for the query g» “giant number” but fails to retrieve the answer when the

query g is “huge model”. The predicted answer for q; should be massive figure in the first passage since this
phrase relates to a physical shape instead of a number.
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PSD example.

d

Eva held ambitions to replace Hortensio Quijano for the 1951 election, although her poor health kept her from this.
Nonetheless many were concerned that her agenda would be pushed through. In march of 1951 the government arrested
several retired army officers due to their dissent and disapproval of Perén’s administration. This raised tensions among
the rest of the army, although action did not occur. By September tensions had risen among the military due to the
unrivalled power of the Peronist regime. On September 28, 1951, during the election, Menéndez led the military uprising in
an attempt to overthrow the government. He led a core of officers, commanding a division, and left Campo de Mayo bound
for the Casa Rosada. Resolve for the uprising, especially among the non-commissioned officers and enlisted men, was not
strong enough. They were not prepared to fight their own countrymen. The uprising was over as soon as opposition was
encountered, almost completely bloodless. Perén admired the loyalty of the troops and pardoned all those involved.

The design uses a similar standard to the JVX in terms of distortion reduction with crossbraces and 27 cells but
that’s where the similarity ends. Petra was built from the ground up with entirely new panel shaping and trim. Petra has a
highly elliptical planform and very high sweep. NZ Aerosports say she has a high roll rate, a long recovery arc and high
maximal glide ratio. She is said to deliver unrivalled power in the turn, plane out and flare. Petra has a long list of World
Records, National and International titles to back that up. She had an impressive debut at the PD Big Boy Pants event in July
2011, with Nick Batsch setting a new distance world record of 222.45m (729ft). One month later Nick took out the Pink
Open in Klatovy and the FAI World Cup also; first in distance, speed and overall. He also won the 2011 US CP nationals on
Petra. Patrick Boulongne came 2nd in the European Championships and 6th overall at the World Cup with Petra in his first
competition with her. He went on to win the 2011 French Canopy Piloting Nationals.

q1

incomparable energy ~ Groundtruth: unrivalled power & Prediction: unrivalled power (confidence: 0.99)

q2

indomitable strength ~ Groundtruth: unrivalled power & Prediction: unrivalled power (confidence: 0.99)

Figure A9: Given document d, Longformery ,oc model trained via the SS approach on PR-pass correctly retrieves
unrivalled power in the first paragraph for the query g» “indomitable strength” but fails to retrieve the answer when

the query q; is “incomparable energy”. The predicted answer for g; should be unrivalled power in the second
passage since the second passage changes “unrivalled power” meaning to a competition strength instead of military

power.
PR-pass example. Groundtruth: common thought
d | As the medical corps grew in size there was also specialization evolving. Physicians surfaced that specialized in disease,

surgery, wound dressing and even veterinary medicine. Veterinary physicians were there to tend to livestock for agricultural
purposes as well as combat purposes. The Cavalry was known for their use of horses in combat and scouting purposes.
Because of the type of injuries that would have been commonly seen, surgery was a somewhat common occurrence. Tools
such as scissors, knives and arrow extractors have been found in remains. In fact, Roman surgery was quite intuitive, in
contrast to common thought of ancient surgery. The Roman military surgeons used a cocktail of plants, which created a
sedative similar to modern anesthesia. Written documentation also showed surgeons would use oxidation from a metal such
as copper and scrape it into wounds, which provided an antibacterial effect; however, this method was most likely more toxic
than providing an actual benefit. Doctors had the knowledge to clean their surgical instruments with hot water after each use.
Wounds were dressed, and dead tissue was removed when bandages were changed.

prevalent theory

el

0.882 common thought
0.855 common thought of
0.702 fact

0.698 to common thought
0.675 common occurrence

Figure A10: A ranking model based on the phrase embeddings of the PR-pass-trained PhraseBERT SS model
correctly ranks and retrieves the most semantically relevant answer “common thought™ as the top-1 prediction in the
retrieval list R for the query “prevalent theory” in a PR-pass example (which contains a document d and a query gq).
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PR-page example. Groundtruth: continued risk

d|... Following a United Nations agreement between Indonesia and Portugal, a UN-supervised referendum held on 30
August 1999 offered a choice between autonomy within Indonesia and full independence. The people of East Timor voted
overwhelmingly for independence. An Australian-led and Indonesian-sanctioned peacekeeping force, INTERFET, was
sent into the territory to restore order following a violent ’scorched-earth’ policy carried out by pro-integration militia
and supported by elements of the Indonesian military. In response to Australia’s involvement, Indonesia abrogated the
1995 security pact, asserting that Australia’s actions in East Timor were inconsistent with *both the letter and spirit of the
agreement’. Official meetings were cancelled or delayed, including the Indonesia-Australia Ministerial Dialogue, which
would not reconvene until March 2003. INTERFET was later replaced by a UN force of international police, UNTAET,
which formed a detachment to investigate alleged atrocities. "Tampa" affair and the War on Terror. The relationship came
under strain in August 2001 during the "Tampa" affair, when Australia refused permission for the Norwegian freighter ship
MYV "Tampa" to enter Australian waters while carrying Afghan asylum seekers that it had rescued from a distressed fishing
vessel in international waters. The Indonesian Search and Rescue Agency did not immediately respond to requests from
Australia to receive the vessel. When the ship entered Australian territorial waters after being refused permission, Australia
attempted without success to persuade Indonesia to accept the asylum seekers. Norway also refused to accept the asylum
seekers and reported Australia to international maritime authorities. The incident prompted closer coordination between
Indonesian and Australian authorities, including regional conferences on people smuggling, trafficking in persons and other
transnational crime. In 2002, a terrorist attack in Kuta, Bali killed 202 people, including 88 Australians, and injured a further
240. Jemaah Islamiyah, a violent Islamist group, claimed responsibility for the attack, allegedly in retaliation for Australia’s
support for East Timorese independence and the War on Terror. A subsequent attack in 2005 resulted in the deaths of a further
20 people, including 15 Indonesians and 4 Australians. The 2003 Marriott Hotel bombing was also perceived as targeted
at Western interests in Indonesia; Al Qaeda claimed the attack was carried out by a Jemaah Islamiyah suicide bomber in
response to actions of the United States and its allies, including Australia. A 2004 attack on the Australian embassy in Jakarta
by Jemaah Islamiyah resulted in the deaths of nine Indonesians. The following year, Indonesian diplomatic and consular
premises in Australia received a number of hoax and threat messages. Since then, both the United States and Australian
governments have issued warnings against travel to Indonesia, advising their citizens of a continued risk of attacks. These
incidents prompted greater cooperation between law enforcement agencies in the two countries, building on a 1999 agreement
on drug trafficking and money laundering. The Australian Federal Police’s Jakarta Regional Cooperation Team provided
assistance to the Indonesian National Police, and has contributed to the Jakarta Centre for Law Enforcement Cooperation.
This relationship has attracted criticism, particularly following the arrest and sentencing of the Bali Nine, a group of nine
Australians arrested in Denpasar while attempting to smuggle heroin from Indonesia to Australia. The 2005 conviction of
Schapelle Corby for attempting to smuggle drugs to Bali also attracted significant attention in the Australian media. The
2004 Indian Ocean earthquake prompted a significant humanitarian response from Australia, including a $1 billion aid
package from the federal government, a further $17.45 million contribution from state and territory governments, and the
commitment of 900 Australian Defence Force personnel to relief efforts in northern Sumatra and Aceh. A telethon broadcast
on Australia’s three major commercial television networks called "" generated pledges of more than $10 million, contributing
to total private aid of $140 million. The Eighth "Australia-Indonesia Ministerial Forum" (AIMF) was held in Bali on 29 June
2006 and was attended by five Australian and eleven Indonesian ministers. A key outcome was support for the conclusion of
a security agreement, later realised as the Lombok Agreement, providing a framework for the development of the security
relationship by the end of 2006 on defence, law enforcement, counter-terrorism, intelligence, maritime security, aviation
safety, WMD non-proliferation, and bilateral nuclear cooperation for peaceful purposes. Australia-Indonesia-East Timor
Trilateral Ministerial Meetings occurred three times to September 2006. Recent relations. 2010 President Susilo Bambang
Yudhoyono visited Australia in April 2010, and became the second Indonesian leader to address federal parliament: Finally, I
look forward to a day in the near future. The day when policy makers, academicians, journalists and other opinion leaders all
over the world take a good look at the things we are doing so well together. And they will say: these two used to be worlds
apart. But they now have a fair dinkum of a partnership. ...

sustained threat

R

0.830 threat .

0.802 potential threat
0.800 threat reached
0.787 threat as
0.787 threat to

Figure Al1: A ranking model based on the non-contextualized embeddings of USE-v5 fails to retrieve the correct
answer “continued risk” for the query “sustained threat” in the PR-page example (which contains a document d
and a query q). The top-5 phrases retrieved (R) contains the word “threat” but have no identifier conveying the
“continued” or ‘sustained” sense. Here, the Wikipedia page is truncated to fit into a single manuscript page.
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J Verifying annotations

There are two common methods for evaluation of dataset quality: (1) Verify only a small, random subset
(Pilehvar and Camacho-Collados, 2019) to estimate the quality of the full dataset or (2) verifying the
entire dataset with multiple annotators and use the inter-annotator agreement (IAA) to control quality
(Bowman et al., 2015; Kwiatkowski et al., 2019). The first approach for approximation is budget-friendly
but it remains unknown whether the rest of examples are at high quality, while IAA is more desired but
annotating thousands of instances can be prohibitively slow and costly.

We propose a hybrid approach to evaluate (leveraging both linguistic experts and non-experts) and
ensure high quality for 30,042 queries and 15,021 Yes/No answers at lower cost compared to IAA via two
rounds:

1. First, we ask around 1,000 highly qualified freelancers on Amazon Mechanical Turk (MTurk verifiers)
to verify whether the guery annotated by our Upwork annotators is interchangeable i.e. has the same
meaning with the given phrase in paragraph. To verify Yes/No answers, MTurk verifiers need to
read two short paragraphs containing the same phrase like Upwork annotators to make decisions. We
do not show answers to the MTurk verifiers to avoid biases.

2. Second, we continue hiring 5 Upwork verifiers who are writing experts to double-check those
instances rejected by MTurk verifiers from the previous round and only discard an example if the
Upwork verifiers agree with MTurk verifiers.

J.1 Round 1: Verification by MTurk non-experts

We use AMT platform to recruit more than 1,000 MTurk verifiers. Also, we use Gorrila (gorilla.sc)
to develop user interface to collect answers from participants because (1) Gorilla provides easy-to-use
tools to build graphical interface, (2) it is straightforward to monitor and discard results from unqualified
participants and (3) we can easily share the experiment with MTurk verifiers via a link. Per 30 verified
answers in around ~20 minutes, the verification process costs us $5.6 (AMT fees included) and 1 token to
Gorilla to a single MTurk verifier.

Participants are given detailed instructions along with 5 practice samples to get familiar with the task
(Fig. A12). They need to pass an evaluation checkpoint including 6 questions randomly sampled from our
verified question bank in order to start working with sets of 30 questions. With this approach, all examples
in the dataset are verified once and as a result, 22,496/30,042 queries (~74.88%) and 10,043/15,021
Yes/No answers (~66.86%) accepted by MTurkers are considered high quality since they are annotated
by a writing expert and confirmed by a qualified English native speaker. The remaining 7,546 queries and
4,978 Yes/No answers rejected that are passed to another group of 5 writing experts for confirmation.

J.2 Round 2: Verification by Upwork experts

We hired another set of 5 writing experts from Upwork (Upwork verifiers) with an hourly rate of $25-
40/hour to verify 12,524 examples rejected by MTurk verifiers, i.e., at an average cost of approximately
$0.26 per example. See a sample assignment given to an Upwork expert in (PiC, 2022).

We rely on IAA to decide whether to accept or reject an example. Specifically, we use the same question
types as shown to MTurk verifiers in the previous step and see whether these Upwork verifiers agree
with the Upwork annotators to keep this example or with MTurk verifiers to reject it. We find that the
agreement between the first- and third-round annotators are 5,829 (out of 7,546) paraphrases and 3,370
(out of 4,978) Yes/No answers in total and thus the total high-quality queries and Yes/No answers we
achieve are 28,325 and 13,413, respectively.
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gorilla.sc

Instructions
In this study, you will work with 2 types of Yes/No questions:

Type 1: Same paragraphs, different phrases

P1: 2020. The cancellation of the conference in 2020 due to the COVID-19 pandemic led to an online series o
f lectures entitled Skeptical Inquirer Presents. These sessions included presentations by well known figure
s in the skeptical community and opportunities for viewers to ask questions. Conference details.

P2: 2020. The cancellation of the conference in 2020 due to the COVID-19 pandemic led to an online series o
f lectures entitled Skeptical Inquirer Presents. These sessions included presentations by Omicron variant i
n the skeptical community and opportunities for viewers to ask questions. Conference details.

Question: In both passages, are well known Figures and Omicron variant interchangeable (i.e., having the sa
me meaning)?

Type 2: Different paragraphs, same phrases

P1: In 1049, a memorial for the 442 Reginental Combat Unit was incorporated and remembered for the Japanese-Anerican
soldiers who had fallen during World War II. Every year during the Obon festival, families gather to upkeep their rel
atives tombstones and to visit the spirits. Biddy Mason, nurse and philanthropist, was one of the well known figures
to be buried at the cemetery in 1891, There is a section called the “Showmen’s Rest” in which 400 carnival workers an
d circus perforners are buried by a memorial that is decorated with a lion.

P2: 2020. The cancellation of the conference in 2020 due to the COVID-19 pandemic led to an online series of lectures
entitled Skeptical Inquirer Presents. These sessions included presentations by well known figures in the skeptical co

mmunity and opportunities for viewers to ask questions. Conference details.

Question: In both passages, does well known figures have the same meaning?

Your progress: 0/36 trials completed

P1: HotDocs transforms documents and graphical (PDF) forms into document-generation templates
and deploys of these templates to various server environments. Document modeling in HotDocs can
range from variable insertions to the formation and insertions of complex, computed variables.
Business logic consisting of IF/THEN statements and REPEAT loops can be built into the template to
control the inclusion or exclusion of language blocks. HotDocs includes a variety of other scripting
instructions and sets of pre-packaged functions using boolean logic.

P2: HotDocs transforms documents and graphical (PDF) forms into document-generation templates
and deploys of these templates to various server environments. Document modeling in HotDocs can
range from variable insertions to the formation and insertions of complex, computed variables,
Business logic consisting of IF/THEN statements and REPEAT loops can be built into the template to
control the inclusion or exclusion of linguistic sections. HotDocs includes a variety of other scripting
instructions and sets of pre-packaged functions using boolean logic.

Q: In both passages, are language blocks and linguistic sections
interchangeable (i.e., having the same meaning)?

Note: Yes/No buttons will be displayed in 20 seconds. Please read the given contents carefuly before answering question,

(b) Upon completion of training stage, MTurkers need to cor-
rectly answer the first 5 out of 6 questions to be invited to verify
annotations from Upwork experts.

(a) Detailed instructions given to MTurkers
Training

P1: This library was supposedly founded in 1945, but has started work in current
object in 1947. During 1953-1956 it has played the role of the national library since
the Kosovo National Library was closed. Academy of Sciences and Art is a necessary
institution for the education system that is placed in Pristina. This institution was
founded in 1975 as the Association of Science and Arts of Kosovo.

P2: This library was supposedly founded in 1945, but has started work in current
object in 1947. During 1953-1956 it has played the role of the national library since
the Kosovo National Library was closed. Academy of Sciences and Art is a big
supermarket for the education system that is placed in Pristina. This institution was
founded in 1975 as the Association of Science and Arts of Kosovo.

Question 3: In both passages, are necessary institution and big supermarket
interchangeable (i.e., having the same meaning)?

(c) Verification of paraphrases via type-1 question.
Training

P1: This library was supposedly founded in 1945, but has started work in current
object in 1947. During 1953-1956 it has played the role of the national library since
the Kosovo National Library was closed. Academy of Sciences and Art is a necessary
institution for the education system that is placed in Pristina. This institution was
founded in 1975 as the Association of Science and Arts of Kosovo.

P2: This library was supposedly founded in 1945, but has started work in current
object in 1947. During 1953-1956 it has played the role of the national library since
the Kosovo National Library was closed. Academy of Sciences and Art is a big
supermarket for the education system that is placed in Pristina. This institution was
founded in 1975 as the Association of Science and Arts of Kosovo.

Question 3: In both are y il and big supermarket

interchangeable (i.e., having the same meaning)?

NO. The phrase necessary institution means a required establishment of
the livery stable which does not totally refer to a big supermarket.

Yes

(e) Feedback is given when MTurkers give a wrong answer.

Training

P1: Mercury is poured over the dirt with bare hands. The method leaves much
gold undetected, and therefore some miners are using metal detectors. The
mercury pollution in the area is both an environment problem, and a health
hazard. Most of the gold gets transported to the North of Paramaribo where
the gold buyers are located.

P2: Tools such as KLEE, Cloud9, and Otter take this approach by implementing
models for file system operations, sockets, IPC, etc. Forking the entire system
state. Symbolic execution tools based on virtual machines solve the
environment problem by forking the entire VM state. For example, in S2E
each state is an independent VM snapshot that can be executed separately.

Question 1: In both passages, does environment problem have the same meaning?

(d) Verification of Yes/No labels via type-2 question.
Training

P1: Mercury is poured over the dirt with bare hands. The method leaves much
gold undetected, and therefore some miners are using metal detectors. The
mercury pollution in the area is both an environment problem, and a health
hazard. Most of the gold gets transported to the North of Paramaribo where
the gold buyers are located.

P2: Tools such as KLEE, Cloud9, and Otter take this approach by implementing
models for file system operations, sockets, IPC, etc. Forking the entire system
state. Symbolic execution tools based on virtual machines solve the
environment problem by forking the entire VM state. For example, in S2E
each state is an independent VM snapshot that can be executed separately.

Question 1: In both passages, does environment problem have the same meaning?

NO. The phrase environment problem in the first passage mentions an issue of the physical
environment in which we are living while in the second passage, it means the issue of the digital

environment of an operating system. Thus, it should have different meanings.
No @ Continue

(f) or even a right answer.

Figure A12: Gorilla layouts shown to MTurkers to verify annotations in the first round.



K Data Sheet
We follow the documentation template provided by Gebru et al. 2021 (Gebru et al., 2021).

K.1 Motivation

For what purpose was the dataset created? Understanding phrases in context plays a vital role in
solving many Natural Language Understanding (NLU) tasks such as question answering or reading
comprehension. While there are word-sense disambiguation datasets like WiC, no such benchmarks exist
for phrases. Existing phrase benchmarks compare only phrases without context and some of them contain
numerous phrase pairs that have lexical overlap. The major drawback is no human annotation of how a
phrase’s meaning changes w.r.t the context. This motivates us to construct a Phrase-in-Context benchmark
to drive the development of contextualized phrase embeddings in NLU.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? Auburn University and Adobe Research.

K.2 Composition/collection process/preprocessing/cleaning/labeling and uses

We describe the data construction process, annotation and verification methods in our paper (See Sec. 3
and Sec. 4).

K.3 Distribution

Will the dataset be distributed to third parties outside the entity (e.g., company, institution, orga-
nization) on behalf of which the dataset was created? We release three datasets PS, PR (including
PR-pass and PR-page) and PSD to the public.

How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The datasets are released
and can be viewed and downloaded on HuggingFace https://huggingface.co/PiC or on our website
https://phrase-in-context.github.io.

When will the dataset be distributed? It has been released in July 2022.

What is the dataset format and how it can be read? We use JSON - a widely used data format for
PiC dataset and follow a scheme of HuggingFace datasets to host it. Three datasets PS, PR and PSD in
the PiC dataset are loaded as folows:

# The following pip command is to install the HuggingFace library "datasets"”:
pip3 install datasets

from datasets import load_dataset

ps = load_dataset("PiC/phrase_similarity")

pr_pass = load_dataset("PiC/phrase_retrieval”, "PR-pass”)
pr_page = load_dataset("PiC/phrase_retrieval”, "PR-page")
psd = load_dataset ("PiC/phrase_sense_disambiguation”)

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)? Our dataset is distributed under the CC-BY-NC 4.0 license.
K.4 Maintenance

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Thang Pham

(thangpham@auburn.edu) and Anh Nguyen (anh.ng8@gmail. com) will be responsible for maintenance.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
Yes. If we include more tasks or find any errors, we will correct the dataset. It will be updated on our
website and also HuggingFace.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them
to do so? They can contact us via email for the contribution.
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Abstract

Dialogue summarization aims to condense a
given dialogue into a simple and focused sum-
mary text. Typically, both the roles’ viewpoints
and conversational topics change in the dia-
logue stream. Thus how to effectively han-
dle the shifting topics and select the most
salient utterance becomes one of the major chal-
lenges of this task. In this paper, we propose
a novel topic-aware Global-Local Centrality
(GLC) model to help select the salient context
from all sub-topics. The centralities are con-
structed at both the global and local levels. The
global one aims to identify vital sub-topics in
the dialogue and the local one aims to select
the most important context in each sub-topic.
Specifically, the GLC collects sub-topic based
on the utterance representations. And each ut-
terance is aligned with one sub-topic. Based
on the sub-topics, the GLC calculates global-
and local-level centralities. Finally, we com-
bine the two to guide the model to capture both
salient context and sub-topics when generating
summaries. Experimental results show that our
model outperforms strong baselines on three
public dialogue summarization datasets: CSDS,
MC, and SAMSUM. Further analysis demon-
strates that our GLC can exactly identify vital
contents from sub-topics. !

1 Introduction

Online conversations have become essential to com-
munication in our daily work and life. Due to the
information explosion, dialogue summarization has
become a vivid field of research in recent years,
which is meaningful for many applications, e.g. on-
line customer service (Liu et al., 2019; Zhu et al.,
2020) and meeting summary (Feng et al., 2021).
Dialogue summarization aims to condense cru-
cial information in a long dialogue into a short text
like traditional summarization tasks. Differently,
*Contribution during internship at ByteDance Inc.

fCorresponding Authors.
! https://github.com/xnliang98/bart-glc
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the main challenges of dialogue summarization are
the viewpoints of multiple speaker roles (Lin et al.,
2021, 2022; Qi et al., 2021; Zhang et al., 2022) and
shifting topics (Chen and Yang, 2020; Zou et al.,
2021; Liu et al., 2021) during the conversation pro-
cess. As shown in Figure 1, summaries not only
depend on the overall context but also needs the
identification and selection of salient context in
crucial sub-topics. We can see that the blue text in
summaries is about sub-topic #1 “The reason why
the product is shipped yet" and the orange text is
about sub-topic #2 “The user decided to refund",
which are aligned to the two salient sub-topics from
dialogue utterances in the first and second block.
The sub-topic #3 is useless for summaries. This
example shows the necessity to model the salient
context and sub-topics in the dialogue.

In this paper, we propose a novel topic-aware
Global-Local Centrality (GLC) model to select
salient contexts from all sub-topics. The centrality
is an effective technique to measure the importance
of sentences in a given document from unsuper-
vised extractive summarization (Zheng and Lapata,
2019; Liang et al., 2021, 2022). The GLC contains
global- and local-level centrality, which are used
to capture the salience of sub-topics and content in
each sub-topic respectively. Based on these central-
ities, we can guide the model to focus on the salient
context and sub-topics when generating summaries.
Specifically, we employ utterance-level represen-
tations to cluster utterances and obtain sub-topic
centers and assign each utterance to one sub-topic.
Then, we compute the global centrality over sub-
topic centers to measure the importance of each
sub-topic and the local centrality over utterances
of each sub-topic to measure the importance of
sub-topic content. Finally, we combine the two to
re-weight the dialogue context representations for
the decoder to generate summaries.

To evaluate the effectiveness of our proposed
GLC, we apply the GLC to three different types of
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User: FSEUEBIEFREAMZARES ? (Why hasn't the smart watch I bought been shipped yet?)

Agent: 837 , MBS |, IHENEER~ , B2 SR ? [BR1REE] ( Hello, please wait a moment. I am inquiring for you, is this product? [PRODUCT

SNAPSHOTY)

User: 2#3, [?f(?]%—fiﬂ'ﬂi , —RRREREE., (Yes. I placed an order at [Date], but no response at all. )
Agent: [F5RRIB] X MNEREEIAYZE, ((PRODUCT SNAPSHOT] This product is out of stock.)
User: AR AFAILATEIR ? B RERE— . (So why can I place an order? Don‘t tell me either)

Topic #1: The
reason why the
product is
shipped yet.

Agent: X NEWEREE, SBRIEND, KEHRESEZEITEARNE, AREEAINGRERE, EERLAND, (This is a giveaway. Is your phone number
correct? I will contacts the purchase and sales to verify the specific time. Then [NUMBER] hours to let you know. Do you think this is 0k?)

User: IFERZEHIBIEFIE , AL 7T, (Then I will apply for a refund directly, I will not buy it.)

Agent: Bl , AZ 713 2 NABEREERT | BUBITEMAERKE TR, (Ok, don't you? The check here is a refund, and the cancellation of the order cannot be

restored.)
User: I8, IBTIE, (Well, refund it.)

Topic #2: The
user decided to
refund.

Agent: fEE A ? EFEEA , RIREREN , FHREF]-EF)NT/EERA. (Are you paying by debit card? Debit card payment, return the same way,

the cycle is within [number]-[number] working days.)

User: 2f9, (Yes.)

Agent: EEFEEW, BOXEEMETLAFSZZAIND? (Please pay attention to check the refund. Is there anything else I can help you with?)

User: #7525, (I have no more question.)

Topic #3:
Useless
information

Agent: BEHEXIEA AU | SUSRETERITR , B! (Thanks for your support. I wish you have a happy life, bye!)

User FBAEISMEZNEIEFRAMTANREE | SABREEEEENRENR, (The user asks why the purchased smart watch has not been shipped, and directly asks for a refund
Summary  after learning that it is out of stock.)

BRESRIEFRRIERRE , FIESOREZLEANEESNER. BRR5EN , BREERFIETREEENE | BESEE-SIaE—ErER
Agent BERNRIE, (The customer service replies to the smart watch is a giveaway and is out of stock, and is ready to inform the user after verifying the specific time. When the user
Summary  applies for a refund, the customer service reminds the user that the order cannot be restored after canceling the order, and then informs that the debit card payment will be

automatically returned within a certain period of time.)

FFERWSERBIEFEAMARLRE. BREDREERRERE  FESOFEZLAGNEEENER. BREREESRERN. ZREEAFIHTRE
Final TARE | B SiEE R SE—ERYIEINIRIE, (The user asks why the purchased phone watch has not been shipped. After customer service inquiries, they will
Summary  answer that the gift is out of stock, and prepare to inform the user after verifying the specific time. The user requests to apply for a refund directly. The customer service reminded

the user that the cancellation of the order cannot be restored, and then informed that the debit card payment will be returned within a certain period of time.)

Figure 1: An example from the CSDS dataset. The dialogue contains 3 different sub-topics. The blue text represents
sub-topic #1 and the red text represents sub-topic #2. The sub-topic #3 is useless information.

seq2seq structure: PGN, BERTAbs, and BART, and
verify them on three public dialogue summarization
datasets: CSDS, MC, and SAMSUM. CSDS and
MC are two Chinese role-oriented summarization
datasets that not only need to generate the overall
summary of the dialogue but also need to gener-
ate role-oriented summaries for specific speakers
in the dialogue as shown in Figure 1. SAMSUM
is a widely used English dialogue summarization
dataset. To generate role-oriented summaries, in
this paper, we directly employ role prompts to
guide the model to generate proper summaries.
And the representations of role prompts can add
role information to the centrality computation. Ex-
perimental results show that our GLC can improve
the performance of all these seq2seq structures on
three datasets. And the GLC-based BART model
obtains new state-of-the-art results on the CSDS
and MC.

Our contributions can be summarized as 1) We
propose a novel topic-aware Global-Local Central-
ity (GLC) model to guide the model to identify
the salient contexts and sub-topics in the dialogue.
2) Our GLC can bring improvement to different
seq2seq models by easily plugging in and does
not add any extra parameters to the seq2seq mod-
els. 3) The GLC-based BART model achieves new
state-of-the-art results on CSDS and MC. Besides,
extension studies prove our GLC can effectively
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capture vital sub-topics.

2 Methodology

Figure 2 shows the main structure of our proposed
topic-aware global-local centrality (GLC) model.
The seq2seq framework with GLC is on the left
of Figure 2, which consists of the bi-directional
encoder, global-local centrality model, and auto-
regression decoder. The detail of GLC is on the
right of Figure 2, which consists of global centrality
and local centrality. In this section, we introduce
them step by step.

2.1 Task Formulation

Firstly, we formulate the dialogue summarization
task and role-oriented summarization task. Given a
dialogue D with N utterances {u1, ..., uy} with
M roles {ry,...,ry}. Each utterance u; contains
a speaker role r; and sentence s;. We simply con-
catenate them by *“:” and get utterance u; = r; : s;.
For role-oriented summarization tasks, the data con-
tains different summary y"7 for different speaker
roles 7;. In this paper, we employ y"*¢" and y®9¢™
to represent summaries of two different roles and
yfmal to represent the overall summary of the
whole dialogue. It is deserved to mention that our
method can also be easily applied to datasets with
more than two speaker roles by introducing differ-
ent role prompts. Normal dialogue summarization
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Figure 2: The main structure of our proposed method. The left is the framework of seq2seq with the GLC model.
The right is the detailed process of our proposed GLC model.

task aims to generate overall summaries v/ and
role-oriented summarization task aims to generate
role-specific summaries yluserlagent|final] from the
input dialogue D = {uy, ..., un } according to the
given role.

2.2 Role Prompts

For role-oriented summarization tasks, previous
works train multiple independent models for dif-
ferent role summaries, which is proven to hurt
the performance of model (Lin et al., 2022) and
needs more computation resources. In this paper,
we employ a simple but effective trick to ensure
that we only need to train a single model to ob-
tain different role-specific summaries and overall
summaries. Specifically, we use the prompts to
control the generation of different kinds of sum-
maries, which attach “[User Summary]”, “[Agent
Summary]”, and “[Final Summary]” to the start of
each dialogue as input to guide the model to gener-
ate required summaries. After that, the input con-
text is re-formalized as “[Role Prompt] Dialogue
Contexts” and then tokenized as 7' tokens/words
{x;}L, for the encoder of seq2seq model.

2.3 Bi-directional Encoder

The bi-directional encoder is used to get tokens the
semantic vector representations {h;}7_; by cap-
ture bi-directional context information from tokens
{x}L | as follows:

{ht}tT:1 = Encoder({xt}tT:l) (D
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Then, we use the average of tokens vectors in each
utterance as the semantic representations of dia-
logue utterances as follows:

E T, Tt € Uy
t

After that, we can get the token-level semantic rep-
resentations {h; }7_; and the utterance-level seman-
tic representations {hy, } Y, where h,, is the vec-
tor representation of the attached role prompt, if
role prompt is used.

P,

U; —
||

(@)

2.4 Global-Local Centrality Model

Before feeding the representations into the decoder
to generate the final summaries, we employ our
proposed global-local centrality (GLC) model to re-
weight the vector representations to identify salient
facts in sub-topics over previous utterance-level
semantic representations {hy, } Y .

Firstly, our GLC obtains several cluster center
points {c }k = 1%, which represent the center of
sub-topics in the vector space. Then each utterance
is assigned to the nearest center. As shown in Fig-
ure 2, utterances with the same color belong to the
same sub-topic. We compute the global centrality
score based on the cluster center representations
to measure the importance of sub-topics and the
local centrality score based on the utterance rep-
resentations to measure the importance of each
utterance belonging to the same sub-topic. Then,
we employ their combination to get global-local



centrality weights, which are used to re-weight
the token-level vector representations. Finally, the
re-weighted token-level vector representations are
fed into the decoder to generate the summary. Our
GLC can be directly plug-in any seq2seq structures,
which makes it flexible.

2.4.1 Obtain Cluster Centers

To obtain the clusters, we directly call the K-Means
algorithm, which is effective and widely used for
cluster tasks. And we all know setting the number
of cluster centers for the K-Means algorithm is
crucial and hard for the final results. However, we
empirically find that we can set it as the number of
utterances (N +1) and then assign each utterance to
the nearest cluster center point in the vector space.
After that, we find that many cluster centers have
no assigned utterances and can be dropped. Based
on this, we assume K < (N + 1) cluster centers
{e;} £, are kept and note the vector representations
of them as {h¢}E .

{h$}E | = KMeans({hq, }1Yo) 3)

And after the assignment of utterances, we can
get K clusters {Cy }/,, which contain utterances
with similar sub-topics. Each Cj, contains several
utterances and one cluster center point c;. Through
the previous method, we do not need to manually
set the number of cluster centers for the K-Means
algorithm.

2.4.2 Global Centrality

The global centrality score aims to measure the
importance of each sub-topic by computing degree
centrality based on the cluster center representa-
tions {h¢ < | . Each cluster center can be seen as
one node on the graph, and the edge value between
nodes k and j is (h{)T - h$. Then, the degree cen-
trality of each cluster can be computed as follows:

Cen(cy) = Z(hi)T - h§ €]

J

where Cen(cy) represents the importance of the

cluster/sub-topic £ in the dialogue. Then we nor-
Cen(cy,)

BY (een(e) 1 T

k=1

malize the score Cen(cg)

2.4.3 Local Centrality

The local centrality score aims to measure the im-
portance of utterances in each cluster by computing
the degree centrality. Each utterance can be seen as
one node on the graph, and the edge value between

nodes i and j is (hy,)” - hy,. Then, the central-
ity of each utterance in the same cluster Cy, can be
computed as follows:

Cen(u;) = Z(hui)T g ug,ug € C (5)

J
where Cen(u;) represents the importance of utter-
ances in the k-th cluster/sub-topic. Then we nor-

malize the score Cen(u;) the same as the previous
global centrality score.

2.4.4 Global-Local Centrality Weight

We can obtain the importance of each cluster
(global centrality score) and the importance of utter-
ances in each cluster (local centrality score) by the
previous two steps. The most important utterance
in the most important sub-topic should be assigned
more attention when generating the summary. So
we obtain global-local centrality weight for each
utterance in the dialogue by simply multiplying
two centrality scores as follows:

wflc = Cen(u;) - Cen(cg),u; € Cg (6)

Finally, we employ the global-local centrality
weights to re-weight the token-level vector repre-
sentations {h;};_; as follows:

iLt = wiglc “hy,xp € ug @)

Where each token uses the global-local centrality
weight w?' of its utterance u; to re-weight the
vector representation h;. The token level represen-
tations {h;}~_, are converted into {h;}7_;.

2.5 Auto-regression Decoder

The auto-regression decoder generates the final
summary based on the re-weighted context rep-
resentations {h;}1 | as follows:

P(§)) = Decoder({\-hi+ (1—=X)-h L)) (8)

where ) is a hyper-parameter to control the influ-
ence of GLC, the default value of A is 0.5. In the
training stage, the model learns the optimal param-
eters f by minimizing the negative log-likelihood.

3 Experiments

3.1 Datasets and Metrics

We evaluate our method on three public datasets:
CSDS (Lin et al., 2021)?, MC (Song et al., 2020)°,

Zhttps://github.com/xiaolinAndy/CSDS
3https://github.com/cuhksz-nlp/HET-MC



CSDS

ROUGE-1

ROUGE-2

ROUGE-L

BLEU

BERTScore

PGN 55.58/53.55/50.20 | 39.19/37.06/35.12 | 53.46/51.05/47.59 | 30.03/29.64/28.25 | 77.96/78.68/76.13
PGN-both 57.20/56.08/51.62 | 40.37/39.10/36.50 | 55.14/53.85/49.12 | 32.58/33.54/29.78 | 78.69/79.52/76.74
PGN-GLC 57.94/57.14/52.85 | 40.97/39.55/37.14 | 55.68/54.25/49.86 | 32.95/33.87.30.15 | 78.93/79.86/76.98
BERT 53.87/52.72/49.57 | 37.59/36.39/33.82 | 52.40/50.44/46.83 | 29.90/30.17/26.99 | 78.52/79.23/76.39
BERT-both 57.24/54.36/51.92 | 40.12/40.70/36.37 | 54.87/55.17/49.52 | 32.13/32.04/29.23 | 79.85/80.70/77.23
BERT-GLC | 57.59/55.14/52.34 | 41.28/41.84/36.48 | 55.74/55.86/50.16 | 32.75/32.64/29.81 | 79.89/80.71/77.28
BART 59.07/58.78/53.89 | 43.72/43.59/40.24 | 57.11/56.86/50.85 | 34.33/34.26/31.88 | 79.74/80.67/77.31
BART-both | 59.21/58.93/54.01 | 43.88/43.69/40.32 | 57.32/57.28/51.10 | 34.75/34.49/32.30 | 79.72/80.64/77.30
BART-GLC | 60.07/61.42/54.59 | 44.67/45.83/40.02 | 58.10/59.25/52.43 | 35.89/36.43/32.58 | 80.10/81.83/77.61
Table 1: Results on the CSDS dataset test set.

MC \ ROUGE-1 ROUGE-2 ‘ ROUGE-L BLEU ‘ BERTScore

PGN 85.32/94.82/82.56 | 81.25/94.32/77.91 | 84.34/94.77/81.47 | 71.50/87.66/68.10 | 92.90/97.60/91.74
PGN-both 85.98/95.10/83.37 | 81.93/94.59/78.78 | 84.94/95.06/82.20 | 72.77/87.82/69.63 | 93.23/97.71/92.15
PGN-GLC 86.57/95.31/83.97 | 82.04/94.88/79.16 | 85.37/96.48/82.84 | 73.02/88.11/70.04 | 93.47/97.95/92.36
BERT 84.07/95.10/81.53 | 79.90/94.48/76.78 | 83.04/95.06/80.30 | 68.19/87.20/64.09 | 92.68/97.86/91.71
BERT-both 84.69/95.18/82.02 | 80.76/94.62/77.54 | 83.68/95.14/80.84 | 69.33/87.40/65.40 | 93.02/97.90/91.91
BERT-GLC | 85.64/95.49/82.87 | 81.44/94.97/78.05 | 84.16/96.10/81.57 | 69.84/87.94/66.01 | 93.15/97.92/92.36
BART 88.37/95.42/86.33 | 84.75/94.99/82.33 | 87.38/95.37/85.30 | 73.68/90.29/68.93 | 93.65/97.94/92.63
BART-both 88.52/95.63/87.06 | 85.22/95.42/82.89 | 87.75/95.91/85.78 | 73.87/90.70/69.31 | 93.69/97.88/92.69
BART-GLC | 89.55/96.84/88.47 | 86.47/96.14/84.62 | 88.56/96.23/86.77 | 74.19/91.32/70.18 | 94.17/98.25/92.96

Table 2: Results on the MC dataset test set.

and SAMSUM (Gliwa et al., 2019)*. The statisti-
cal information of them is shown in the appendix.
CSDS is the first role-oriented dialogue summariza-
tion dataset, which provides separate summaries
for user and agent (customer service). MC is a Chi-
nese medical inquiry dataset containing question
summaries of patients and suggestion summaries
of doctors. We note them as the user and agent
summary. For the MC dataset, we follow the data
process and data split from RODS (Lin et al., 2022).
SAMSUM is a widely used English dialogue sum-
marization dataset to evaluate the performance of
models.

We employ lexical-level and semantic-level
metrics to evaluate the performance of all mod-
els. Specifically, we use lexical level ROUGE-
1/2/L (Lin, 2004)° and BLEU (Papineni et al.,
2002)°, which measure the similarity of references
and generated summaries by computing the n-
gram overlap of them. We use semantic level
BERTScore (Zhang* et al., 2020)’ and Mover-
Score (Zhao et al., 2019)%, which employ pre-

“https://huggingface.co/datasets/samsum
Shttps://pypi.org/project/rouge-score/
®https://github.com/mjpost/sacreBLEU
"https://github.com/Tiiiger/bert_score
8https://github.com/AIPHES/emnlp19-moverscore
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trained language models to map the text into low-
dimensional vectors in semantic space and then
measure the similarity by computing the similarity
by cosine similarity or word mover distance. We
can evaluate the performance of each model com-
prehensively through the previous metrics. And
all reported results are the average results of three
different model checkpoints. The results of Mover-
score on three datasets can be found in the ap-
pendix.

3.2 Baselines

We applied our GLC on three widely used seq2seq
models: PGN (See et al., 2017), BERTAbs (Liu
and Lapata, 2019), and BART (Lewis et al., 2020;
Shao et al., 2021). PGN model is an LSTM-based
seq2seq model without pre-training. BERTAbs
is a BERT-based model, which employs BERT as
the encoder and adds several transformer blocks as
the decoder to generate summaries. We note it as
BERT. BART is a pre-trained transformer-based
seq2seq model, which achieves the best results on
many generation tasks. We add our proposed GLC
into the previous three models and note them as
PGN-GLC, BERT-GLC, and BART-GLC. We
also compare our method with previous SOTA mod-
els: PGN-both and BERT-both from (Lin et al.,



SAMSUM | ROUGE-1 | ROUGE-2 | ROUGE-L ‘ BLEU ‘ BERTScore
PGN 40.08 15.28 36.63 37.49 80.67
PGN-GLC 41.11 16.24 37.31 38.10 81.54
BERT 50.34 24.71 46.63 46.98 88.72
BERT-GLC 51.18 25.26 47.07 47.66 89.64
BART 53.12 27.95 49.15 49.28 92.14
BART-GLC 53.74 28.83 49.62 50.36 92.77

Table 3: Results on the SAMSUM dataset test set.

2022), which proposed a role-interaction attention
mechanism for the decoder. We reproduce it in the
BART model as BART-both. For SAMSUM, we
do not compare with BART-both due to this dataset
does not contain role-oriented summaries.

3.3 Implementation Details

We use Chinese-BART-base’ and BART-large'”
to initialize our transformer-based seq2seq model
for Chinese and English datasets respectively. We
train all BART models on 4xV100 GPUs and
PGN/BERT-based models on 1xV100 GPU. For
all models, the maximum input length is 512, the
maximum generated summary length is 150, and
the beam size is 3. For BART-based models, the
learning rate is le-4 with 10% warmup steps, the
total batch size is 64, and the training epochs are
5. For PGN/BERT-based models, we follow the
settings from (Lin et al., 2022).

3.4 Results

The main results of the two role-oriented dialogue
summarization datasets are shown in Table 1-2.
Each block has three values, representing the final
summary/user summary/agent summary from left
to right. We can see that our proposed GLC can
bring significant improvement to PGN, BERTAbs,
and BART on the two datasets and BART-GLC
achieves new state-of-the-art results. It is deserved
to mention that our model does not need to mod-
ify any structure of the seq2seq structure and only
needs to train one model for different summaries.
We can see that the gain of metrics on the CSDS
is better than on the MC, due to the summary of
the MC dataset being highly similar to the input
dialogue contexts. The results of the BERT-based

*https://huggingface.co/uer/bart-base-chinese-
cluecorpussmall
https://huggingface.co/facebook/bart-large
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model sometimes is worse than the PGN-based, we
guess the reason is the prior knowledge learned in
the pre-training stage of BERT is not suitable for
the generation tasks. The improvement of lexical
level metrics is more conspicuous than semantic
level metrics due to the change of several words
that may not affect the semantics of generated sen-
tences. Overall, our proposed GLC is proved effec-
tive for the role-oriented dialogue summarization
task with results on the two datasets.

The main results of the English dialogue sum-
marization dataset are shown in Table 3. Because
the SAMSUM does not provide role-specific sum-
maries, we only report the performance of overall
final summaries. From the results, we can see that
our GLC can also bring significant improvements
to three different seq2seq structures. We can see
that the BERTScore is very high on SAUSUM, we
guess that because the gold reference of this dataset
is very short and this makes the semantic similarity
between generated summaries and gold summaries
close. The results of SAMSUM demonstrated the
effectiveness and generalization of our proposed
method.

4 Discussion

We conduct many external experiments on the
CSDS dataset to further analyze the effectiveness
of our proposed GLC. And more discussions are
shown in the appendix.

4.1 Ablation Study

To understand the impact of each component of our
proposed GLC model, we compare the full BART-
GLC with the following variants: (1) BART: three
fine-tuned BART models for different summaries
(final/user/agent); (2) BART+Prompt: singe
BART model with role prompts; (3) BART+GC:
three BART models using global centrality scores



| ROUGE-1
BART | 59.07/58.78/53.89
+Prompt | 59.42/58.96/54.03
+GC 59.64/59.55/54.24
+LC 59.37/59.47/54.11
+GC,LC | 59.84/60.91/54.43
BART-GLC | 60.07/61.42/54.59

Table 4: Ablation study on the CSDS dataset.

‘ Win Loss Tie
CSDS&MC | 564 24 412
SAMSUM | 518 32 453

Table 5: Human evaluation results.

to re-weight hidden states; (4) BART+LC: three
BART models using local centrality scores to re-
weight hidden states; (5) BART+GC,LC: three
BART models using global-local centrality scores
to re-weight hidden states. The results of these
models are shown in Table 4. From the results,
we can see that all three components can bring
improvement to the BART model, and the global-
local centrality brings the greatest improvement.
Interesting, The improvement brought by the com-
bination of global and local centrality is far greater
than the improvements they bring separately. This
proves that global and local centrality are mutually
beneficial.

4.2 Human Evaluation

We use human evaluation (Fang et al., 2022) to ver-
ify that our model outperforms the baseline. Specif-
ically, we randomly sample 100 examples from
three datasets and ask five NLP researchers to give
a comparison between our model and baseline mod-
els. The evaluation results are represented as win,
loss, and tie, respectively indicating that the qual-
ity of generated summary by BART-GLC is better,
weaker, or equal to the strong baselines. Annota-
tors were asked to judge from two aspects: fluency
(whether contains grammatical and factual errors)
and coverage (whether contains salient sub-topic
information in the dialogue). For two role-oriented
dialogue summarization datasets CSDS and MC,
our model is compared with BART-both. For SAM-
SUM, our model is compared with BART. From
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Figure 3: The ROUGE-1 score of different training step
checkpoints.

the results in Table 5, we can see that our model
is better than the baseline. Annotators tend to give
ties on SAMSUM dataset. This may be caused
by the length of summaries is short, which makes
it hard to judge whether the summary is better or
worse than the baseline model.

4.3 Convergence of Training

We also compare the training convergence speed
with BART and BART-both to prove our proposed
GLC can bring effective prior knowledge for the
seq2seq model. As shown in Figure 3, we can see
that BART-GLC achieves comparable performance
at 900 steps during training and reaches the SOTA
results at 1,200 steps. This phenomenon demon-
strates that our GLC brings prior knowledge into
the model and speeds up the model training.

4.4 Case study

We select one example from the test set to show the
ability of our proposed GLC in Figure 4. On the
upper-left of this figure are the GLC weights and
the corresponding utterances. In the bottom-left of
the figure is generated summary of our proposed
BART-GLC. On the right of the figure is the input
dialogue and each color refers to one sub-topic.
From this case, we can see that the final summary
focus on two sub-topics: “How to modify user’s
order” and “Questions about refunds”. And from
the color on the right of this figure, we can see that
our GLC can catch them accurately. Interestingly,
generic utterances are aggregated into one topic
(e.g. hello). In the upper-left of this figure is the
GLC weights and we can see that utterances, which
are related to the final summary and belong to the
vital sub-topics, are assigned high weights. This
proves the global-local centrality exactly identified



33 Agent: 3%, FUTRMEIK[EF]-
[T HER (The customer service
answer is expected to arrive at the
latest [NUM]-[NUM] working days.)

4

3 User: #hiIH#E$E 7 /5 4717 (What should
Ido if the address is wrong?)

Iy

040 A

Utterance #id

Dialogue:
0 Role Prompt: [¥}iE## 2] ([Final Summary])

2 User: NIFRE (My order just now)

3 User: Huiit #5$8 T /54 73? (What should I do if the address is wrong?)
4 User: 8£#53& 207 (Can you help me modify it?)

5 User: £ 2 Hi5IRFR? (Or apply for a refund?)

6 User: {R%F (Hello)

7 User: 2 (?)

14 Agent: &%, IEEBERT ITRRIFNEFIHELNE, IR
RWIZE, 0, BAHEICRRBIVRRAN/BIFSHAARREGESR, mkaesuRa,. %
FITEERZBEXR TR, FiEHEIEMB~ (Hello, under normal circumstances, the order is

UEETITEREERHE

submitted successfully and does not support modification. Please check whether there is a modification
button on the order details page. If so, you can click to modify the last-level address/contact/phone
number/delivery time information , if there is no modification button, it means that the order no longer

6 User: {R%F (Hello) 30 User: 79 (Ok)

BART-GLC Generated Summary:

Topic #1: How to modify user’s wrong order.

1 )bt i55 T /4. (The user asks what to do if the address is wrong.)

2 BREEEFELTITRRZMNERZHERE. (The customer service
replied that the successful submitted order does not support modification.)

3 AR ERIERR AT AFMNBART . (The user asked why the application for a
refund could not be refunded.)

4 EEE@XEWFE;ETS‘ZH{?&E’] (The customer service replies that cross-city
modification is not supported.)

Topic #2: Questions about refunds.

5 AP 2B RMIE. (The user asks if the coupon is returned the same way.)

6 ZRREIZEESIEA. (Customer service replies will be returned.)

7 B At A RHEZIM, (The user asks when the refund will arrive. )
EREETHRB I EF]-[HFIANTHER. (The customer service answer is
expected to arrive at the latest [NUM]-[NUM] working days.)

28 User: 3P FBMG, EREZIREMG? (Is the coupon non-refundable? Is it going back the same way?)
29 Agent: #<BAIE (All of them will be returned.)
30 User: 785 (Ok)

supports modification, please understand~)
15 User: 3RERTEIRSX (1 apply for a refund?)
16 User: F4H (then to place an order again?)

rry, the amount of inquiries is

*lﬁ TIEMfJﬁ’Aﬁ/\ETT(i applied for a refund, why can't I get a refund?)

22 Uscr BN HEITTE (order from another city)

23 Agent: IFER I TE S (Please provide the order number.)

24 Agent: B EAXZIFERA, 3 (Cross-city modification is not supported)
25 Agent: NGRAEBUHITE,

#REST T (I cancel the order for you, you place a new order)

32 User: {+/4 R &2 (When will the refund arrive)
33 Agent: ¥, FTREEEIKEF]-[EHFINTHR (The customer service answer is expected to
arrive at the latest [NUM]-[NUM] working days.)

Figure 4: One case from the CSDS test set. Each color refers to one sub-topic. In the upper-left of this figure are
the GLC weights and the corresponding utterances. In the bottom-left of the figure is generated summary of our
proposed BART-GLC. On the right of the figure is the input dialogue.

salient topics and utterances.

5 Related Work

Dialogue summarization has caught more and more
attention in recent years and is widely used in var-
ious domains, e.g. meeting summarization (Car-
letta et al., 2006; Feng et al., 2021), daily dialogue
summarization (Krishna et al., 2021; Chen et al.,
2021; Zhong et al., 2021), etc. Different from tra-
ditional summarization tasks, dialogue summariza-
tion needs to identify the role of speakers and cap-
ture the change of sub-topics during the dialogue.
Besides, the dialogue summarization task has less
labeled data and longer inputs. All of these make
dialogue summarization harder to solve (Chen and
Yang, 2020; Zhang et al., 2021b; Feng et al., 2021;
Lin et al., 2022).

Recent dialogue summarization models can be
categorized into three types: 1) data augmentation
methods (Feng et al., 2021; Chen and Yang, 2021;
Khalifa et al., 2021), which attempt to construct
more pseudo-data to train a better model; 2) topic-
based models (Zou et al., 2021; Liu et al., 2021; Qi
et al., 2021), which track the change of topic infor-
mation in the dialogue to generate more focused
summary; and 3) semantic structure-based models
(Liu and Chen, 2021; Fu et al., 2021; Zhang et al.,
2021a; Lei et al., 2021; Zhao et al., 2021; Zhang
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et al., 2022), which employs semantic structures to
enhance the summarization model.

However, they ignored the sub-topics informa-
tion in the dialogue utterances, which is crucial
for dialogue summarization. Recently, Zhao et al.
(2020) modified the attention mechanism to focus
on the topic words, which can force the model to
learn the topic information. Zou et al. (2021) em-
ployed Neural Topic Model to model the global
level topic information. Liu et al. (2021) tried to
model the change of sub-topics by introducing con-
trastive learning. Differently, in this paper, we
bring the centrality, that has been widely used in
unsupervised summarization (Zheng and Lapata,
2019; Liang et al., 2021, 2022), into the dialogue
summarization task and proposed a novel topic-
aware Global-Local Centrality model to capture
salient dialogue utterances and sub-topics at the
same time. Our proposed method is effective and
more flexible.

6 Conclusion

In this paper, we bring the centrality into dialogue
summarization tasks and proposed a novel topic-
aware Global-Local Centrality (GLC) model for
better capturing the sub-topic information in the di-
alogue utterances. Our GLC can be easily applied
to any seq2seq structure and bring improvement to



their performance. Experiments and further analy-
sis demonstrated that GLC can effectively identify
vital sub-topics and salient content in the dialogue.
In future work, we will try to extend our work to
datasets with longer inputs.

Limitations

Our model also has some limitations: 1) The com-
putation of sub-topic centers brings extra inference
time into the basic seq2seq models. 2) We did not
try to evaluate our model on longer dialogue sum-
marization datasets. 3) We did not build a specific
mechanism for different roles in role-oriented di-
alogue summarization task. We will try to solve
these limitations in future work.
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Figure 5: Percentage of novel words/n-grams in the

reference and generated summaries of the CSDS test
set.
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A Datasets
| CSDS | MC | SAMSUM

Train Size 9,101 29,324 14,732
Val. Size 800 3,258 818
Test Size 800 8,146 819
Input Length 321.92 | 292.21 94.52
User Sum. Length 37.28 22.37 -
Agent Sum. Length | 48.08 95.32 -
Final Sum. Length 83.21 114.54 20.34

Table 6: Statistical information of three datasets.

The statistical information of three datasets is
shown in Table 6.

B Moverscore Results

For Moverscore, we employ chinese-bert-wwm-
ext!! to get the contextual embeddings of Chinese
text input. Because Lin et al. (2021) did not provide
they use what Chinese representation model, we
use chinese-bert-wwm-ext to re-evaluate all their
results and report in Table 7.

B.1 How abstractive is our model?

An abstractive model can be innovative by using
words that are not from the input document in the
summary. We measure the abstractive by the ratio
of novel words or n-gram phrases in the summary.
A higher ratio means a more abstractive model.
We show the results in Figure 5. We can see that

https://huggingface.co/hfl/chinese-bert-wwm-ext


https://doi.org/10.18653/v1/2021.findings-emnlp.377
https://doi.org/10.18653/v1/2021.findings-emnlp.377
https://doi.org/10.18653/v1/2020.coling-main.39
https://doi.org/10.18653/v1/2020.coling-main.39
https://doi.org/10.18653/v1/2020.coling-main.39
https://doi.org/10.18653/v1/2021.findings-emnlp.209
https://doi.org/10.18653/v1/2021.findings-emnlp.209
https://doi.org/10.18653/v1/P19-1628
https://doi.org/10.18653/v1/P19-1628
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2020.findings-emnlp.19
https://doi.org/10.18653/v1/2020.findings-emnlp.19
https://doi.org/10.18653/v1/2020.findings-emnlp.19
https://ojs.aaai.org/index.php/AAAI/article/view/17723
https://ojs.aaai.org/index.php/AAAI/article/view/17723
https://ojs.aaai.org/index.php/AAAI/article/view/17723

MoverScore CSDS MC SAMSUM
PGN 59.00/58.68/58.23 | 80.90/93.84/79.69 59.87
PGN-both 59.48/59.32/58.64 | 81.67/94.04/80.52 -
PGN-GLC 59.67/59.51/58.85 | 81.97/94.45/80.84 60.04
BERT 58.23/58.10/57.79 | 81.28/93.90/80.48 61.17
BERT-both | 59.52/59.55/58.46 | 82.26/94.20/81.02 -
BERT-GLC | 59.74/59.62/58.90 | 82.64/94.49/81.44 61.59
BART 60.11/59.86/58.75 | 82.35/94.17/81.27 62.04
BART-both | 60.12/59.86/58.73 | 82.32/94.02/81.40 -
BART-GLC | 60.32/61.03/59.02 | 82.94/95.35/82.10 62.27

Table 7: MoverScore on three datasets.

our BART+GLC is more attractive than BART and
BART-both. However, all of them have a big mar-
gin compared with references. It means more re-
search is needed for generating more abstractive

summaries.
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Abstract

One of the major problems with text simpli-
fication is the lack of high-quality data. The
sources of simplification datasets are limited
to Wikipedia and Newsela, restricting further
development of this field. In this paper, we
analyzed the similarity between text summa-
rization and text simplification and exploited
summarization data to help simplify. First, we
proposed an alignment algorithm to extract sen-
tence pairs from summarization datasets. Then,
we designed four attributes to characterize the
degree of simplification and proposed a method
to filter suitable pairs. We named these pairs
Sum4Simp (S4S). Next, we conducted human
evaluations to show that S4S is high-quality and
compared it with a real simplification dataset.
Finally, we conducted experiments to illustrate
that the S4S can improve the performance of
several mainstream simplification models, es-
pecially in low-resource scenarios.

1 Introduction

Text simplification and text summarization are two
major techniques aiming at improving text readabil-
ity (Margarido et al., 2008). The main objective
of text simplification is to reduce the complexity
of the text while keeping its meaning unchanged
(Alva-Manchego et al., 2020; Al-Thanyyan and
Azmi, 2021). Text summarization is to summa-
rize the main idea of the document in less space
(El-Kassas et al., 2021).

One of the major problems of text simplifica-
tion is the lack of high-quality aligned data, which
is essential for training most simplification mod-
els. Existing text simplification datasets are de-
rived from Wikipedia (Zhang and Lapata, 2017)
and Newsela (Xu et al., 2015). Researchers have
proposed various alignment algorithms to extract
complex-simple sentence pairs from articles (Jiang
et al., 2020). However, aligning sentences from
only two corpora hinders the acquisition of more
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simplification data, which motivates us to explore
new ways to address this problem.

Text simplification usually involves the opera-
tions of keeping, deleting, reordering, etc.(Xu et al.,
2016) Text summarization does not require a sum-
mary to be a simple text. Nevertheless, when we
analyzed the datasets of text summarization metic-
ulously, we noticed that there are many instances
where several sentences in the original document
are merged into one sentence, and complex parts
are rewritten, as shown in Table 1. Then, a question
arises naturally: to what extent is text summariza-
tion correlated with text simplification? Further-
more, is it feasible to extract data from text summa-
rization to help low-resource text simplification?

Example

What’s Hollywood’s role in all of this? The
document | same as it has always been — to make

money.

What does Hollywood want? To make
summary

money, of course.

Table 1: The bolded parts indicate that the complex
sentence in the document has been rewritten.

In this study, we investigated the above problems
with a three-step procedure: (1) Extract aligned
sentence pairs from summarization datasets. (2)
Select sentence pairs in which the source sentences
have been simplified. (3) Evaluate the quality of
these sentence pairs for text simplification.

To extract aligned sentence pairs from the sum-
marization datasets, we proposed an alignment al-
gorithm based on the similarity between sentences.
Then, we designed four attributes and a method to
filter sentence pairs suitable for text simplification.
We performed human evaluations and conducted
experiments using mainstream simplification mod-
els on these pairs to show that they are of high
quality and can help simplification.

To summarize, our contributions include: (1) We
are the first to exploit summarization data to help
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text simplification, verifying a new source of sim-
plification data. (2) We proposed an alignment al-
gorithm and a method for filtering complex-simple
sentence pairs. We named them Sum4Simp (S4S5).
(3) We performed both empirical analysis and hu-
man evaluations on S4S to verify its quality, and
the experimental results with several simplification
models show the benefits of S4S for text simplifi-
cation. The S4S dataset and codes are released at
https://github.com/RLSNLP/Sum4Simp.

2 Related Work
2.1 Simplification Models

Early text simplification models are mainly based
on statistic machine learning (Wubben et al., 2012;
Kauchak, 2013; Narayan and Gardent, 2014). In
recent years, many scholars have proposed mod-
els based on deep learning technology, such as
NTS(Nisioi et al., 2017), DRESS-LS(Zhang and
Lapata, 2017), EditNTS(Dong et al., 2019), AC-
CESS(Martin et al., 2020a), which advance the
development of text simplification.

2.2 Mine Data for Simplification

The above models require a large number of aligned
texts for training. Nevertheless, text simplification
is a low-resource problem. Some works aim at
designing unsupervised models (Qiang and Wu,
2019; Surya et al., 2019; Kumar et al., 2020; Laban
etal., 2021). While other works try to mine aligned
sentence pairs from more data to help train the mod-
els. Martin et al. (2020b) proposed unsupervised
mining technology to create multi-language sim-
plification corpora automatically. Lu et al. (2021)
used the back-translation approach to construct a
large-scale pseudo sentence simplification corpus.

2.3 Relationship with Text Summarization

For a long time, studies on text simplification and
text summarization have been conducted separately.
Nevertheless, there exist circumstances where com-
plex texts not related to the main idea are removed
when summarizing a document, and multiple sen-
tences can be compressed and rewritten into a sin-
gle sentence. Such a summarization can also be
regarded as a simplification. Ma and Sun (2017)
proposed a semantic relevance-based model to im-
prove the results of simplification and summariza-
tion. Zaman et al. (2020) pointed out some similari-
ties between the two tasks and defined the new task
of generating simplified summaries. Up to now,
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none of the work has specifically analyzed the rela-
tionship between summarization and simplification.
It is still worth investigating whether the data from
summarization can help simplification.

3 Mine Sentence Pairs for Simplification
from Summarization Datasets

In this section, we will elaborate on how to extract
sentence pairs that are suitable for text simplifica-
tion from text summarization datasets. Text sum-
marization is a document-level task while text sim-
plification refers to a sentence-level task. Thus, we
proposed an algorithm to extract aligned sentence
pairs at first. Then, since not all aligned sentence
pairs are suitable for text simplification, we chose
four attributes and defined a set of rules to filter the
appropriate sentence pairs. The whole process is
shown in Figure 1.

3.1 Sentence Alignment Algorithm

Previous sentence alignment algorithms such as
CATS (§tajner et al., 2018) aim at sentence com-
pression (one complex sentence corresponds to
one simple sentence) or sentence splitting (a com-
plex sentence is split into several simple sentences).
They do not satisfy the requirement to align sen-
tence pairs from summarization datasets, where
one sentence in the summary corresponds to multi-
ple sentences in the document. Thus, we proposed
an alignment algorithm to address this problem.
Assume that there are m sentences in the doc-
ument and n sentences in the summary. For each
sentence d; in the document and each sentence s;
in the summary, we first compute the similarity be-
tween the two sentences. We use SBERT (Reimers
and Gurevych, 2019) to achieve this. SBERT is a
pre-trained model based on BERT (Devlin et al.,
2019), in which the similarity of two input sen-
tences will be calculated rapidly. Then, we de-
fine the upper threshold of similarity Sy,q, and the
lower threshold of similarity Sy,in. Smaz 1S greater
than .S,,;, and they are in the range [0,1]. Assume
that the maximum value of similarity between any
sentence in the document and s; is Dyag. If Dppas
is greater than S, .., we consider that the sentence
corresponding to D,y is very similar to s;. There-
fore, we keep s; as the target sentence and the
sentence corresponding to D, as the source sen-
tence, and they form an aligned sentence pair. If
D,z 18 smaller than S,,,;,, we consider that there
is no sentence in the document that is similar to s;.
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Figure 1: The process of mining suitable sentence pairs from summarization datasets.

Thus, we do not keep sentence pairs related to s;.

Algorithm 1 Sentence alignment algorithm

1: Initialization: F and C are empty sets

2: for d; in d;,do,...,d,, do

3 C; = SBERT(di,Sj)

4 C.append(c;)

5: end for

6: if max(C)>Sh,q. then

7 F.append(corresponding d; of max(C))

8: else if S;,q->max(C)>S,,in then

9:  F.append(corresponding d; of max(C))
10: C.remove(max(C))
11: repeat
12: ¢i = SBERT(stitch(F,corresponding d; of

max(C)),s;)

13: if Ci>Sadd then
14: F.append(corresponding d; of max(C))
15: C.remove(max(C))
16: end if
17: until ¢; < Sgqq or len(C)> Linax
18: end if

Output: (Fs;) as an aligned sentence pair

If D4z is greater than S,,;, and smaller than
Smaz, We consider this to be the case where mul-
tiple sentences in the document correspond to s;.
We temporarily save the sentences corresponding
to Dynaz, and then find the sentence with the largest
similarity among the remaining sentences of the
document. We stitch this sentence with the sen-
tence we just saved according to the order of the
sentences in the document. We repeat this opera-
tion until the similarity between the stitched sen-
tences and s; is less than a threshold. We define
this threshold as S, 44, which takes values in the
range [Syin,Smaz]- To prevent the problem of im-
balance where the length of the source sentence far
exceeds the length of the target sentence caused
by extracting too many sentences from the docu-
ment, we set L,,q. When the number of stitched
sentences reaches L,,,., we save these stitched
sentences as source sentences and s; as the target

sentence.

3.2 Four Attributes to Characterize
Simplification

Aligned sentence pairs obtained from Algorithm 1
are not always complex-simple ones, and an exam-
ple is given below:

Source sentence: Analysts say the Arab Spring has
made Dubai a safe haven for people in the Middle
East who worry about the turmoil elsewhere.
Target sentence: Analysts say the Arab Spring
has made Dubai a safe haven for those who worry
about the turmoil elsewhere.

This example is a real sentence pair mined from
the summarization data. It is an aligned sentence
pair but neither the attributive clause nor the com-
plex words such as “turmoil” are simplified. Thus,
it is not a good instance for text simplification. We
design four attributes to characterize whether the
source sentence is simplified or not, which are:
Sentence Length Intuitively, the longer the sen-
tence, the more complex the sentence is likely to
be. We calculate the length of the target sentence
minus the average length of the source sentences.
Word Complexity We believe that the lower the
average complexity of words, the simpler the sen-
tence. We use a lexicon of word complexity created
by Maddela and Xu (2018). Each word is scored by
humans. The higher the score, the more complex
the word. We calculate the value of the average
word complexity of the target sentence minus the
average word complexity of the source sentences.
Word Frequency Some words appear more fre-
quently in complex sentences, while some words
appear more frequently in simple sentences. The
more frequently a word appears in a simple sen-
tence, the more likely it is to be a simple one. We
calculate the odds ratio (Monroe et al., 2008) to
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represent the frequency of word occurrence. For
two corpus, namely ¢ and 7, their sizes are n; and
n;, respectively. For a word w, the occurrences in
corpus % and corpus j are w; and w;, respectively.
Then, the odds ratio r of word w between corpus ¢
and corpus j can be defined as:

_ wi/wj
n; / n 7
We use the simplification dataset to construct a
dictionary containing the odds ratios of the words.
For example, if we want to conduct experiments on
WikiLarge (Zhang and Lapata, 2017), we calculate
the odds ratio of the words occurring in the Wik-
iLarge training set. We calculate the value of the
average odds ratio of the target sentence minus the
average odds ratio of the source sentence.
SARI Value SARI (Xu et al., 2016) is an essential
evaluation method for text simplification. It takes
the original sentence, the simplified sentence, and
reference sentences into consideration. The SARI
value is an average of F1 scores of add and keep
operation and precision of delete operation. The
score for each operation is obtained by averaging
n-gram scores.

(D

1 1 1
SARI = gFadd + ngeep + gpdel
1
Poperation = 1 Z poperation (n)
n=1,2,3,4
1
Roperation = Z Z roperation(n) (2)
n=1,2,3,4
2 x Poperation X Roperation
Foperation =

P, operation + Roperation
operation € [add, keep, del]

We consider the source sentence of the aligned
sentence pairs as the original sentence and the tar-
get sentence as the simplified sentence. We need
to train a simplification model at first. For ex-
ample, we trained a model like ACCESS (Mar-
tin et al., 2020a) on the WikiLarge training set.
Then, we input the source sentences into the simpli-
fication model and generate simplified sentences.
These simplified sentences are used as reference
sentences. Finally, the SARI values are calculated.

3.3 Quantify Simplicity and Filter Suitable
Sentence Pairs

For each attribute, we propose a method to quantify
the simplicity of a sentence. Our method is based
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on a hypothesis: a reference simplification dataset
performs approximately normally distributed on
each attribute. Simplification datasets can contain
hundreds of thousands of instances, in line with the
concept of large samples in statistics. Therefore,
we believe this hypothesis is reasonable.

Take the sentence length attribute as an example.
We first calculate the mean ;o and standard devia-
tion o of the sentence length of the training set of
a reference dataset (e.g. WikiLarge). For a random
variable X, the probability density function f(x)
can be obtained. If the ratio of sentence length for
a sentence pair is ¢, its score ¢ on this attribute is:

‘o 1, ¢ <=p 3
T 2x (05— [2 f(x)dz),  é>p )
[ 2x (05— [ f(z)dx), P<p

= { 1, ’ ¢ >=p @

N2
fa) = e (U)o

The mathematical significance is that if ¢ <= p,
the simplification degree of the sentence pair is
greater than the average simplification degree of
the simplification dataset on this attribute. Thus,
we give a score of 1 to t. If ¢ > u, we subtract
the proportion of sentence pairs with a ratio greater
than i and lower than ¢ that is in the simplifica-
tion dataset. Then, we perform a normalization
operation to obtain ¢. For attributes sentence length
(Ien), word complexity (comp), and word frequency
(freq), a lower ¢ indicates a greater degree of sim-
plification. We use Equation (3) to calculate ¢. For
attribute SARI value (sari), a higher ¢ indicates a
greater degree of simplification. We use Equation
(4) to calculate t.

To make a final decision, the scores on each at-
tribute are weighted with o and summed to obtain
T for a sentence pair, indicating the extent of sim-
plification of the source sentence. We set a thresh-
old value T to control the extent of simplification.
When T>Tg, we consider the sentence pair suitable
for the task of text simplification.

T = Z Oéitl'

i€ Attr

(6)

Attr = [len,comp, freq, sari]

We exploit and filter sentence pairs from the
CNN/Daily Mail summarization dataset (Nallapati
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Figure 2: Distributions of the ratio of sentence length and average word complexity. We smoothed the results by
using a Gaussian kernel. Sentences from S4S are more compressed than in WikiLarge. Sentences where the words

become more complex are also less than in WikiLarge.

et al., 2016), which contains more than 300,000
documents and corresponding summaries from
news stories in CNN and Daily Mail. We name
these mined sentence pairs Sum4Simp (S45).

4 Quantitative Analysis

In this section, we want to show that Sum4Simp
(545) is high-quality. We conducted two human
evaluations and performed statistics on S4S, com-
paring it with real simplification datasets.

4.1 Human Evaluations

First, we want to evaluate the alignment quality of
the sentence pairs obtained in Section 3.1. Follow-
ing Hwang et al. (2015), we defined the quality of
alignment into four classes: Good, Good partial,
Partial, and Bad. Due to the space limit, details and
examples are demonstrated in Table 10.

We randomly selected sentence pairs from the
aligned pairs obtained by our proposed alignment
algorithm. Then, we designed a baseline that does
not use our proposed alignment algorithm. When
the similarity calculated by SBERT between a sen-
tence in the document and a sentence in the sum-
mary is greater than 0.6, we kept this sentence in
the document. As we introduced in Section 3.1,
the CATS method (Stajner et al., 2018) may not be
suitable for aligning sentence pairs from summa-
rization datasets. However, we used it as a baseline.

We used the two baseline methods described
above to obtain aligned sentence pairs from sum-
marization datasets. What’s more, we randomly se-
lected sentence pairs from a simplification dataset
named WikilLarge (Zhang and Lapata, 2017) for
comparison. The results are shown in Figure 3.

We considered Good and Good partial to be
acceptable quality. The sentence pairs obtained by
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Our method WikiLarge

,

Figure 3: Human evaluation results of data obtained
by three alignment methods and WikiLarge. We ran-
domly selected 50 sentence pairs from each source of
data. Then, we hired three workers to evaluate the 200
sentence pairs individually.

our proposed alignment algorithm have the highest
percentage in these two levels. While WikilLarge
has the most sentence pairs with a Good level, it
also has the most sentence pairs with a Bad level.
Xu et al. (2015) pointed out that data mined from
Wikipedia is not always of high quality.

Then, we want to show that the final sentence
pairs obtained in Section 3.3 are more suitable for
simplification. We randomly selected 50 sentence
pairs that are only aligned and 50 sentence pairs
from S4S. We also randomly selected 50 sentence
pairs from WikiLarge for comparison.

Following Dong et al. (2019), we used two indi-
cators as the criteria: (1) Simplicity: Is the target
sentence simpler than the source sentence? (2)
Adequacy: Are the source sentence and target sen-
tence fluent and grammatically correct? Another
indicator, Meaning, can be regarded as the eval-



uation of alignment quality, so we did not repeat
it. The results are shown in Table 2. The sentence
pairs from S4S receive the highest Simplicity score,
significantly higher than the aligned-only pairs and
WikiLarge, indicating the effectiveness of the pro-
posed filtering method.

SimplicityT  Adequacy?
WikiLarge 3.11%* 4.6%*
Aligned only 3.2%* 4.81
S48 3.49 4.94

Table 2: Human evaluation results of data obtained by
two methods and WikiLarge. We hired three workers
to evaluate individually. Student t-tests were performed
and results significantly different from S4S were marked
with **(p<0.01).

4.2 Statistics and Comparison

We used three dimensions, sentence length, aver-
age word complexity, and odds ratio of cue words,
to compare the sentence pairs from S4S with those
from WikiLarge. The ratio of sentence length is
calculated by dividing the length of the simplified
sentence by the length of the original sentence. The
ratio of average word complexity is calculated by
subtracting the average word complexity of the
original sentence from the average word complex-
ity of the simplified sentence.

We randomly selected 10,000 sentence pairs
from WikiLarge and S48, respectively. From Fig-
ure 2, in S48S, the number of sentence pairs with a
length ratio greater than one has been significantly
decreased compared to WikiLarge, indicating that
sentences are more compressed. What’s more, the
vast majority of the ratios of average word com-
plexity are less than zero, suggesting a general
simplification at the word level in S4S.

Sentence splitting, a common operation in text
simplification, can be represented by the odds ratio
of conjunctions and cue words (Siddharthan, 2003).
The definition of the odds ratio is detailed in Equa-
tion (1). When the odds ratio of conjunctions is
much less than 1, and the odds ratio of cue words
is much greater than 1, a complete degree of sim-
plification is involved. Following Xu et al. (2015)
and Sun et al. (2021), we calculated the odds ratio
of conjunctions and cue words in WikiLarge and
S4S, as shown in Table 3.
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WikiLarge S4S
cue words odds ratiot cue words odds ratiot
also 1.15 also 1.13
then 1.16 then 1.21
still 1.01 still 1.41
Wikilarge S4S
conjunctions  odds ratio] | conjunctions odds ratio]
and 0.87 and 0.95
as 0.72 as 0.80
since 1.01 since 0.96
because 2.59 because 1.05
when 1.32 when 1.09
if 1.30 if 1.38
but 1.18 but 1.11
though 0.71 though 0.62
although 0.46 although 0.40

Table 3: The odds ratio of cue words and conjunctions.
The bolded parts indicate that S4S performs better than
WikiLarge. Some words, such as “hence”, occur too
infrequently to be statistically meaningful.

5 Experimental Setup

5.1 Datasets

We used two commonly used simplification
datasets, WikiLarge (Zhang and Lapata, 2017) and
WikiSmall (Zhu et al., 2010), to demonstrate the
usefulness of the sentence pairs mined from sum-
marization data. The training set of WikilLarge
contains more than 296k sentence pairs, which
is larger than that of WikiSmall containing 88k
sentence pairs. We used Turkcorpus (Xu et al.,
2016) as the validation and the test set for Wiki-
Large. Each of the 2000 validation instances and
the 359 test instances has 8 reference sentences.
We used the original validation set and test set for
WikiSmall, with 205 validation instances and 100
test instances.

5.2 Evaluation Metrics and Models

We took SARI (Xu et al., 2016) and BERTScore
(Zhang et al., 2019) as the evaluation metric in this
paper. SARI is the most popular automatic evalua-
tion metric for text simplification. The SARI value
is obtained by averaging the Fjecp, Pejete, and
Fuqq score. We used the EASSE package (Alva-
Manchego et al., 2019) to get SARI values. A re-
cent study recommends using BERTScore,;ccision
to evaluate the quality of the system outputs prior
to using SARI to measure simplification (Alva-
Manchego et al., 2021). FKGL (Kincaid et al.,
1975) was used to measure text readability but
was proven to be inappropriate for evaluating text
simplification recently (Tanprasert and Kauchak,



Models WikiLarge S48 WikiLarge+OA WikiLarge+S4S

SARIT  Fieep  Petete  Fuadd | SARIT  Freep  Paelete  Fadd | SARIT  Freep  Pietete  Fadd | SARIY  Freep  Pietete  Fadd
Transformer | 36.95% 70.80 36.91 3.15 | 34.43** 5854 4368 1.08 | 36.75* 70.79 36.38 3.06 | 37.85 71.11 39.15 3.27
BART 37.99%% 7253 37.85 3.59 | 36.21%* 6470 42.60 1.34 | 37.71*¢ 73.02 36.81 3.31 | 3920 70.99 4231 430
ACCESS 39.67*  71.20 42.69 5.12 | 36.20*%* 65.62 41.53 1.44 | 39.46* 69.39 4396 5.03 | 40.71 71.26 44.06 6.81
Models WikiSmall S4S WikiSmall+OA WikiSmall+S4S

SARIT  Freep  Puctete Fuda | SARIT  Freep  Puctete  Fada | SARIT  Freep  Pactete  Fada | SARIT  Freep  Paetete  Faaa
Transformer | 36.35% 66.69 40.53 1.82 | 36.75 6023 4949 0.53 | 36.38* 6446 40.54 4.15 | 38.57 66.56 43.69 546
BART 35.13* 6494 3586 4.59 | 34.13* 61.06 3995 1.39 | 34.65%* 67.09 31.92 493 | 36.58 6739 37.14 522
ACCESS 35.35%  65.01 3850 2.53 | 34.63** 51.07 51.76 1.05 | 35.67* 60.95 4429 1.77 | 38.28 5845 53.64 273

Table 4: Results of three simplification models trained on four different training sets. The test sets in the upper and
lower tables are Turkcorpus and WikiSmall, respectively. “+” represents the operation to mix the two datasets and
sort them randomly. OA is a set of sentence pairs with a similar size to S4S drawn from aligned but not filtered
sentence pairs. The bolded part indicates the training set that achieves the best result for each model. Student t-tests
were performed, and SARI values that were significantly different from WikiLarge+S4S and WikiSmall+S4S were

marked with *(p<0.05) or **(p<0.01).

2021). BLEU (Papineni et al., 2002) has been
proven to be unsuitable for evaluating text sim-
plification (Sulem et al., 2018). Therefore, we did
not report FKGL values and BLEU values.

We selected three representative models - Trans-
former (Vaswani et al., 2017), BART (Lewis et al.,
2020), and ACCESS (Martin et al., 2020a) to con-
duct experiments. Transformer and BART perform
strongly for many generation tasks. ACCESS is a
simplification model proposed recently and it uses
explicit tokens related to different attributes to con-
trol the process of simplification.

5.3 Training Details

We used the Huggingface Transformers (Wolf et al.,
2020) to implement the Transformer model and the
BART model. We used the original code to imple-
ment the ACCESS model. We used four Nvidia
A40 GPUs for training. We reported the results of
the model on the test set which has the best SARI
value on the validation set.
More details can be found in Appendix A.

6 Experimental Results

6.1 Results on Existing Test Sets

We designed four types of training sets and tested
the three simplification models on existing test sets.
We first measured the outputs of each model using
BERTScore,;ccision and found that the values are
very close to 1, indicating that the outputs are of
high quality. Then, the SARI values are shown in
Table 4.

From the upper table, Sum4Simp (S4S) mixed
with the WikiLarge training set improves the perfor-
mance of all three simplification models on Turk-

45

corpus. To be more specific, in terms of the SARI
metric, ACCESS is improved by 1.04 points, BART
is improved by 1.21 points, and Transformer is im-
proved by 0.90 points. We have used the original
codes and followed the original hyper-parameter
settings, but the SARI value of the ACCESS model
trained on WikiLarge is lower than the results re-
ported by Martin et al. (2020a). We think this
is because we lowered the training data and used
the NLTK package to split the words. Meanwhile,
seen from the lower table, S4S mixed with the Wik-
iSmall training set also improves the performance
of all three models on the test set of WikiSmall.
The improvement on the WikiSmall test set is more
significant than that on the Turkcorpus test set. In
terms of the SARI metric, ACCESS is improved by
2.93 points, BART is improved by 1.45 points, and
Transformer is improved by 2.22 points. Example
outputs are given in Table 11. It may seem strange
that the SARI value of Transformer is higher than
that of BART. However, we noticed that the SARI
value of BART is approximately 3 points higher
than that of Transformer on the validation set, mak-
ing the experimental results remain convincing.

The size of the training set of WikiLarge is much
larger than that of WikiSmall. Therefore, the mod-
els were more fully trained on WikiLarge. While
the size of the training set of WikiSmall is com-
paratively smaller, S4S helps the model learn to
simplify sentences better and results in a more sig-
nificant improvement.

OA was designed to verify that the improve-
ment of the results comes from high-quality mined
sentence pairs rather than mere data expansion.
Compared with the original training set, the per-



Models S4S WikiLarge S4S+WikiLarge

SARIM  Freep Puaetete  Fadd | SARIY  Freep  Puaetcte  Fadd | SARIT Fieep  Puaetete  Fudd
Transformer | 44.75 5332 7472 6.19 | 3259 4538 51.78 0.61 | 43.61 5224 7391 4.68
BART 46.42 5720 76.62 543 | 3298 47.12 50.10 1.70 | 46.51 57.24 7391 4.68
ACCESS 40.19 4585 72.82 1.88 | 30.10 4430 4399 201 | 3845 4335 70.71 1.30

Table 5: Results on three simplification models trained on three different training sets. The valid and test sets come

from S48.

formances on WikiLarge+OA and WikiSmall+OA
were not improved and even dropped for the model
like BART. The results illustrate that the method for
filtering suitable sentence pairs for simplification
purposes is essential.

If we only used S4S as the training set, the SARI
values obtained are 2.5 points lower than the model
trained with WikiLarge and 0.5 points lower than
the model trained with WikiSmall on average. We
believe the performance gap is due to domain dif-
ferences: S4S comes from news stories written
by professional journalists, while WikiLarge and
WikiSmall come from Wikipedia. Overall, though
S4S comes from a different domain, it can still be
beneficial to the existing simplification datasets.

6.2 Results on S4S Test Set

In this subsection, we treat S4S as a standard sim-
plification dataset that contains more than 243K
sentence pairs. We divided the train/dev/test set
as 240k/2k/1k, respectively. We would like to see
the performance of simplification models on the
S48 dataset and we want to know if the WikiLarge
dataset from a different domain can improve the
performance. We designed three types of training
sets. Then, we conducted experiments with each of
them to train the three simplification models.

According to Table 5, all three simplification
models trained on the S4S dataset have significantly
higher SARI values compared to the results in Ta-
ble 4. When we mixed the training set of S4S and
WikiLarge, the SARI values dropped by 1 point
on average compared to using the S4S training set
alone. Besides, when we only used the WikiL.arge
training set, the SARI values dropped by an aver-
age of more than 10 points. We also gave example
outputs in Table 12. Above all, we believe the
quality of the S4S dataset is higher than that of
the Wikipedia-based datasets. The S4S dataset was
given in the supplementary materials.

6.3 Results on Extremely Low-resource
Scenarios

In many cases simplification data is hard to obtain
(Aprosio et al., 2019; Maruyama and Yamamoto,
2019), and we took a small amount of sentence
pairs from the training set of WikiLarge to simulate
an extremely low-resource situation. We reduced
the size of the WikiLarge training set to 50%, 20%,
10%, 5%, and 1%, respectively. We then conducted
experiments using the ACCESS model trained on
the size-reduced WikiLarge data and the mixture of
size-reduced WikiLarge and S4S. The results are
shown in Figure 4.

SARI
45

—o—VikiLarge WikiLarge+54S

4071

3977

1% 5% 10% 20% 50% 100%

Size of WikiLarge training set

Figure 4: Experimental results of extremely low-
resource experiments on Turkcorpus test set.

When the size of the training set is relatively
small (less than 20%, about 60,000 sentence pairs),
S4S can improve the results significantly. The re-
sults prove that the S48S is effective in helping text
simplification when data is difficult to obtain.

6.4 Ablation Study

In our proposed sentence filtering method, we used
four attributes to control the simplicity of the sen-
tence pairs extracted from summarization datasets.
We removed the attributes one by one and then used
the remaining three attributes as new rules to filter
simple sentence pairs. We set T to 2.75 in the
experiment. The filtered sentence pairs are mixed
with the WikiLarge training set and then used to
train the ACCESS model.
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Experiment SARIt
WikiLarge+S4S 40.71
WikiLarge 39.67
Without word complexity | 39.32(-1.39)
Without sentence length 39.63(-1.08)
Without word frequency 37.70(-3.01)
Without SARI value 38.78(-1.93)

Table 6: Ablation study on Turkcorpus test set.

The results are illustrated in Table 6. In this ex-
periment, the odds ratio attribute has the greatest
effect on the results. When this attribute is miss-
ing, the SARI value decreases by 3.01 points. The
sentence length attribute has the least effect on the
results. When this attribute is missing, the SARI
value drops by 1.08 points. The results also show
that the four attributes of our design are meaning-
ful. They all play a significant role in filtering the
simplified sentence pairs.

7 Conclusion

In this paper, we are committed to mining data
from text summarization datasets to help text sim-
plification. We proposed an alignment algorithm
and a new method to filter suitable sentence pairs.
We named these pairs Sum4Simp (S4S). We con-
ducted human evaluations on S4S and performed
experiments on mainstream simplification models
to illustrate that the S4S is high-quality and can
help text simplification. In future work, we will
apply our method to mine more simplification data
from other summarization datasets.
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Limitations

We considered the consumption of computational
resources as the major limitation of our method.
To extract aligned sentence pairs from summariza-
tion datasets, we need to calculate the similarity
between each sentence in the summary and each
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sentence in the document, which makes the time
complexity of the alignment algorithm be O(n?).
We ran the alignment algorithm with an Intel Xeon
processor. On average, there are 40 sentences in
a document and 4 sentences in a summary. There
are 312K documents in total with corresponding
summaries. The total running time is 42,153s. We
have released the aligned sentence pairs to help
future research.

Second, to calculate the SARI values in Section
3.2, we need to train a simplification model in ad-
vance, which can consume GPU resources. For
example, if we train a BART model on the Wik-
iLarge dataset and set the max epochs to 10, the
training time spent on an Nvidia A40 is about 3
hours.
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A More Details

In Algorithm 1, for Sp,az, Sadd, and Spyin, we first
observed the alignment results to obtain a rough
range [0.5,0.8]. In this range, we set the step size
to 0.1 and then chose four combinations of param-
eters: (0.8, 0.7, 0.6), (0.8, 0.7, 0.5), (0.8, 0.6, 0.5),
and (0.7, 0.6, 0.5). We used human evaluation on
50 sentence pairs for each combination to deter-
mine which combination is the best. Finally, we set
Simaz 10 0.8, Siin t0 0.6, and S, 44 to 0.7. Lmax is
set to 3 as an empirical value. If it is too large, the
model will be more concerned with deletion than
simplification; if it is too small, the information in
the original sentences will lose.

For the method of filtering suitable sentence
pairs in Section 3.3, we set «; to 0.25 because
it is difficult to prove that one of the four attributes
is more important than the other. We performed a
parameter research for T from 3.5 to 3.8 with a
step size of 0.05.

We have released the aligned sentence pairs ob-
tained in Section 3.1 for future research. So future
researchers only need to set Ty when conducting
experiments.



To obtain Table 4, we first trained models with
existing simplification datasets (e.g., train ACCESS
with WikiLarge). Then, we selected the model that
performed best on the validation set to calculate
the score ¢ for the SARI value attribute mentioned
in Section 3.2. In this way, we got S4S. We then
trained models with WikilLarge+S4S to obtain the
results in the fourth column of the Table 4. The
S4S dataset in Section 6.2 is obtained after we first
trained ACCESS with WikiLarge. We will also
release this version of S4S as a standard simplifica-
tion dataset.

Parameter Value Parameter Value
epochs 30 max source length 256
batchsize 64 max target length 256
optimizer Adam dropout 0.1
learning rate  5e-5 Amodel 768
warm up steps 2000 attention heads 12

Table 7: Parameters of the Transformer model.

Parameter Value Parameter Value
epochs 10 max source length 256
batchsize 64 max target length 256
optimizer Adam dropout 0.1
learning rate  Se-5 Aimodel 768
warm up steps 2000 attention heads 12

Table 8: Parameters of the BART model.

Parameter Value Parameter Value
max epochs 100 label smoothing 0.54
max tokens 5000 clipnorm 0.1
optimizer Adam dropout 0.2
learning rate  1.1e-4 weight decay le-4
warm up steps 1000 attention heads 8

Table 9: Parameters of the ACCESS model.

B Definition of Alignment Quality
C Example Outputs



Good The semantics of the source sentence and the target sentence completely match, possibly with small omissions.
Source Sets in children ’s bedrooms or left on as background noise could be particularly damaging.

Target Devices in bedrooms or left on as background noise is more damaging.

Source and target sentence mean basically the same thing. However, source or target sentence may contain
additional information that is not contained in the other sentence.

The tape was played at a hearing Monday to determine whether or not the confession can be used as evidence
Source at Hernandez ’s murder trial - not whether the statements are true. Judge Maxwell Wiley must decide whether
Hernandez was properly advised of his rights.

The judge must decide not whether the confession is true, but whether it can be permitted to be used as

Good partial

Target evidence at Hernandez ’s murder trial.

Partial Source and target sentence are discussing two unrelated concepts, but share short related phrases that do not
match considerably.

Source A non-profit group called Women On 20s, formed to convince President Barack Obama to put a woman’s
image on the $20 note, already has done some polling.

Target There is a group called Women On 20s.

Bad Source and target sentence are discussing two unrelated concepts.

Source Leicester City have lost just one of their last seven league meetings with Hull City.

Target 88 % of British grandmothers consider themselves to be a Glam-Ma.

Table 10: Definition of the alignment quality. Example of each level of quality is also given.

Complex(input) in computing , a protocol is a set of rules which is used by computers to communicate with each other across a network .
Simple(reference) | in computing , a protocol is the language used by computers while talking with each other .

WikiSmall in computing , a protocol is a set of rules which is used by computers to communicate with each other across a network .
S4S the process is a set of rules which is used by computers to communicate with each other across a network
WikiSmall+OA in computing , a protocol is a set of rules which is used by computers to provide with each other across a network .
WikiSmall+S4S in computing , a protocol is used by computers to communicate with each other across a network .

Table 11: An example of sentences generated by ACCESS. When the training set is WikiSmall, the complex sentence
is not simplified. When the training set is S4S or WikiSmall+OA, the generated sentences contain grammatical errors
and change the meaning of the complex sentence. The sentence generated by ACCESS trained on WikiSmall+S4S
can be regarded as a simplified sentence.

Complex(input) barcelona manager luis enrique -Irb- pictured -rrb- insisted afterwards he was right to start uruguay striker suarez
Simple(reference) | barcelona boss luis enrique says he was right to start the uruguay player

S48 barcelona boss luis enrique says he was right to start uruguay striker

WikiLarge barcelona manager luis enrique -Irb- pictured - pictured he wanted to start uruguay striker suarez .

S4S+WikiLarge barcelona manager luis enrique said he was right to start right to start uruguay suarez suarez

Table 12: An example of sentences generated by ACCESS when S48 is regarded as a standard simplification dataset.
When the training set is WikiLarge, the generated sentence contains grammatical errors and changes the meaning of
the complex sentence. When the training set is S4S+WikiLarge, the generated sentence also contains grammatical
errors and is less simple than the generated sentence when the training set is S4S only. This example illustrates that
the quality of S48 is higher than that of WikiLarge.
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Abstract

Automatic headline generation systems have
the potential to assist editors in finding in-
teresting headlines to attract visitors or read-
ers. However, the performance of headline
generation systems remains challenging due to
the unavailability of sufficient parallel data for
low-resource languages like Bengali and the
lack of ideal approaches to develop a system
for headline generation using pre-trained lan-
guage models, especially for long news arti-
cles. To address these challenges, we present
Shironaam, a large-scale dataset in Bengali
containing over 240K news article-headline
pairings with auxiliary data such as image cap-
tions, topic words, and category information.
Unlike other headline generation models, this
paper uses this auxiliary information to bet-
ter model this task. Furthermore, we utilize
the contextualized language models to design
encoder-decoder model for Bengali news head-
line generation and follow a simple yet cost-
effective coarse-to-fine approach using topic-
words to retrieve important sentences consid-
ering the fixed length requirement of the pre-
trained language models. Finally, we conduct
extensive experiments on our dataset contain-
ing news articles of 13 different categories to
demonstrate the effectiveness of incorporating
auxiliary information and evaluate our system
on a wide range of metrics. The experimen-
tal results demonstrate that our methods bring
significant improvements (i.e., 3 to 10 percent-
age points across all evaluation metrics) over
the baselines'. Also to illustrate the utility and
robustness, we report experimental results in
few-shot and non-few-shot settings.

1 Introduction

News headlines can significantly affect the number
of visitors and play a crucial part in the life-cycle of

*Equal contribution.
"Code, dataset, and model checkpoints:
github.com/dialect-ai/BenHeadGen

https://
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anews article (Murao et al., 2019). Therefore, rep-
resentative and interesting headlines are arguably
essential to any news document to grab the atten-
tion of potential readers (Mishra et al., 2021; Ao
et al., 2021). Nowadays, online and printed news
releases significantly increase the article’s visibil-
ity, support, and context by using multimedia con-
tent. As a picture is worth a thousand words, dig-
ital assets such as images and videos are the go-
to candidates for the thumbnails used in differ-
ent social media, blogs, and many other platforms.
The captions that go with the images or videos are
equally significant as the actual content. Captions
describing the images can clarify and enhance the
image, optimize news articles for search engines,
and improve the accessibility of the news for peo-
ple with vision impairments?.

Headline generation, given a news article, is a
special case of abstractive summarization (Yamada
etal.,2021), which involves sentence compression,
syntactic reorganization, sentence fusion, and lexi-
cal paraphrasing (See et al., 2017; Gehrmann et al.,
2018; Zhongetal.,2019; Nayeem et al., 2019; Nay-
eem and Chali, 2017b). Unlike text summaries,
which often feature many or single long sentences
to summarize a document’s important concepts
(Nayeem and Chali, 2017a), news headlines fre-
quently have a single short catchy statement to
grab the readers attention and entice them to read
the story. Even though Bengali is the seventh most
spoken language with approximately 337 million
speakers worldwide® (Chakraborty et al., 2021;
Chowdhury et al., 2021), generating quality head-
lines for a low-resource language such as Bengali
is more challenging due to the unavailability of
large-scale human-annotated dataset (Haque et al.,
2016; Nayeem et al., 2018; Joshi et al., 2019).

%In this paper, we limit our focus to only captions to im-
prove the news headlines. Using multimodal information for
this task is left as possible future work.

*https://w.wiki/57
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Contextualized language models such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 1907),
T5 (Raffel et al., 2020) help improving several
downstream tasks in NLP, such as summarization,
question answering, and text classification. Un-
fortunately, these models suffer from a limitation
as they can handle input sequences up to a cer-
tain limit (Sun et al., 2019). As a result, this lim-
itation burdens some NLP tasks, especially where
the input is necessarily long (Kitaev et al., 2020),
such as transcript analysis of the phone calls, doc-
ument topic prediction, news headline generation,
etc. The most natural way to address this prob-
lem is to trim the input sequences to a maximum
length. However, trimming the long input docu-
ment is tricky, especially for headline generation.
The news articles usually maintain coherence and
relevant parts may be located at the bottom of the
document, which may prevent models from gener-
alizing well to positions beyond the cutoff point®.
In this paper, we utilize topic words to retrieve im-
portant sentences as a context for the BERT model
by following a simple yet cost-effective coarse-to-
fine approach.

We present Shironaam, a large-scale abstrac-
tive Bengali news article dataset that includes over
240K professionally annotated headline-article
pairings as well as auxiliary information such as
image captions, topic words, and category infor-
mation. Each sample can be represented as a tuple
of (article, image caption, topic-words, category,
headline). To the best of our knowledge, Shiron-
aam is the first Bengali news article dataset incor-
porating auxiliary information and a benchmark
for the news headline generation task. This cor-
pus has the potential to authorize and encourage
research on such a low-resource language, bring-
ing technological advancements to a previously un-
derserved community. Rather than the one-to-one
mapping (i.e., input is an article, and output is a
headline) used in the earlier works (Takase et al.,
2016; Zhang et al., 2018; Murao et al., 2019; Col-
menares et al., 2019; Song et al., 2020; Li et al.,
2021), we treat the headline generation task as a
three-to-one mapping with the inputs being an
image caption, a list of topic words, and an arti-
cle where the output is a headline. Based on the
transformer architecture, we utilize pre-trained lan-
guage models for generating headlines and present

*While Longformer (Beltagy et al., 2020) is a viable solu-

tion for this problem, it comes up with a high computational
cost, and pre-trained models aren’t available.
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a new concept of fusing image caption parallelly
(Liu et al., 2020a) with the input article to support
the three-to-one mapping and to encode long doc-
uments. We design and compare numerous input
mechanism alternatives as part of the suggested
strategy. Extensive experiments on our proposed
dataset reveal that the suggested method is capa-
ble of generating high-quality news headlines (see
Section F in the Appendix) and brings significant
improvements over the state-of-the-art baselines
across all evaluation metrics (Table 5).

Our main contributions can be summarized as
follows:

* We provide Shironaam, a large-scale news
headline generation dataset of a low-resource
language i.e., Bengali containing over 240K
news headline-article pairings with auxiliary
information such as image captions, topic
words, and category information (Table 2).
Also, this dataset can potentially be used for
other tasks such as document categorization,
news clustering, keyword identification, etc.

We present a new concept of incorporating
auxiliary information to model input with ar-
ticles to improve the quality of headlines.
We train an encoder-decoder model for this
task almost from scratch, which utilizes pre-
trained language model (Figure 1).

We develop BenSim, an independent module
for measuring the semantic similarity among
Bengali sentences. We make use of the Ben-
Sim module and utilize topic words to encode
long articles by following a simple yet effec-
tive approach (Figure 1(c)).

To illustrate the utility and robustness, we also
evaluate the performance with few-shot set-
tings where the domains don’t have enough
training samples (Table 6).

2 The Shironaam Corpus

In this section, we present the first-of-its-kind cor-
pus (we name it Shironaam) for news headline
generation in Bengali like low-resource language.
This includes auxiliary information in addition to
the usual headline-article pairs. We explain the
curation process involving raw data crawling, pre-
processing, and cleaning.

https://en.wikipedia.org/wiki/Jaccard_
index


https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Jaccard_index

Jaccard

Category Train Valid Test Total (%)
Entertainment 16,104 365 1095 17,565 13.56
National 117,566 2,664 7,994 128,226 24.60
Nature 467 10 31 510 23.66
International 30,558 692 2,078 33,329 18.09
Sports 17,635 399 1,199 19,235 17.82
Economy 6,447 146 438 7,032 39.37
Life-Health 6,356 144 432 6,933 17.83
Miscellaneous 1,599 36 108 1,744 11.71
Opinion 3,501 79 238 3,819 38.41
Politics 15,018 340 1,021 16,380 23.02
Edu-Career 4,008 90 272 4,372 53.58
Science-Tech 1,046 23 71 1,141 22.95
Religion 269 6 18 294 71.59
Total/Avg. 220,574 4,994 15,012 240,580 28.94

Table 1: Our headline generation dataset (Shironaam)
distribution over 13 different domains. Jaccard scores®
represent the similarities of each domain in between the
image captions and headlines.

Features [ IndicNLG-BN  Shironaam (ours)
Article v v
Headline v v
Category X v
Topic words X v
Image Caption X v
#Examples 142,731 240,580

Table 2: Feature-level comparison between IndicNLG-
BN (2022) and Shironaam dataset (ours).

2.1 Raw Data Crawling

We crawl around 900,000 raw data samples from
seven famous Bengali newspapers (names in Sec-
tion C in the Appendix) concentrating on certain
criteria, such as headline, article, image caption,
category, and topic words. Since each of the news-
papers mentioned above has it’s own professional
authors and distinct writing style, we consider mul-
tiple sources to prevent the bias of a particular an-
notation style. To ensure content diversity, we also
cover various domains from all the news dailies.
The majority of the news samples are extracted
from HTML bodies of the corresponding publica-
tions, while some are rendered using JavaScript.
However, two of them (see in Appendix Section C)
do not provide the archives on their websites; there-
fore, we collect the samples through their APIs.

2.2 Dataset Preprocessing

The overall crawled corpus contains a lot of noise,
such as irrelevant details about the publisher and
the date/time of the news in multiple formats, em-
bedded advertisements, phrases from different lan-
guages (especially English), reference URLs, in-
consistent bold sections, emoticons, extrinsic sym-
bols, and various Unicode representations. Thus,
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% of novel n-gram

Dataset . - .
unigram bigram trigram 4-gram
Shironaam 26.59 66.12 82.71 86.49
IndieNLG 6 30 7892 9039 94.77
BN
Table 3: Percentage (%) of novel n-grams between

IndicNLG-BN (2022) and Shironaam dataset (ours).

we remove the date/time and the embedded items
using regular expressions. To preserve only the
Bengali texts, we construct a vocabulary of Ben-
gali unit characters and perform character level
matching in the article bodies and headlines. The
English numbers, however, are retained since they
are used frequently in regular Bengali texts.

The image captions sometimes include ex-
tra/irrelevant information (e.g., 29 [Picture], 2

8% [Collected], F2e = [File Image], FI0I-
% [Reuters], ZBIACTH [Internet], ZSIF B [Sym-
bolic Image], etc.)®, which are common in any
news article. Thus, we identify these repetitive
words using a simple frequency-based approach
over all the samples and remove them from the
image captions. Furthermore, we discard the sam-
ples whose captions are smaller than four words in
length; from our manual inspection, we observed
that these words often describe the named enti-
ties present in the image, such as name, location,
date/time, etc.

Different newspapers use different names to cat-
egorize their contents. Consequently, each domain
is represented with different category names in all
the news dailies. For extracting the categories, we
map them with their corresponding representative
domains and label each domain with it’s relevant
names. For instance, national, whole-country, city-
news, country, capital, city-roundup, south-city,
etc. are distinct categorical terms, but they can be
grouped easily under the national domain. Table 1
shows the distribution of the final domains in the
Shironaam corpus. We use sbnltk’ for tokeniz-
ing the documents into sentences. Finally, we dis-
card the samples where any of the information (i.e.,
headline, article, or image caption) is missing.

2.3 Dataset Statistics

After preprocessing the raw corpus, we have
240,580 news samples as a tuple of (headline, arti-
cle, image caption, topic words, category). To en-

®The square brackets contain the English translations.
"https://pypi.org/project/sbnltk


https://pypi.org/project/sbnltk

. . Image Topic
Dataset Article Headline Caption Words
Average number of words
Shironaam  252.01 6.53 6.80 3.21
IndicNLG
BN 199.83 10.03 - -
Average number of sentences
Shironaam  20.05 1.00 1.04 -
IndicNLG
BN 15.19 1.19 - -
Vocabulary size
Shironaam 605,750 76,732 87,644 -
IndicNLG
BN 614,374 65,553 - -

Table 4: Quantitative statistics compared to IndicNLG-
BN (2022) and our proposed dataset Shironaam.

sure a balanced distribution, we maintain the ratio
of (92% - 220,574), (2% - 4994), and (6% - 15,012)
samples from all the categories to construct the
train, validation, and test set, respectively (see Ta-
ble 1). We compare our corpus with the only avail-
able benchmark, IndicNLG (Kumar et al., 2022),
for the news headline generation task in Bengali.
Since IndicNLG covers multiple languages, we
just keep the Bengali (BN) language portion for
comparison. Table 2 provides a high-level sum-
mary of both datasets.

Our Shironaam corpus establishes a new bench-
mark in terms of the corpus size compared to
IndicNLG (Kumar et al., 2022). It is important
to note that our corpus also contains auxiliary in-
formation such as image captions, topic words,
and article categories. Moreover, this can be used
not only in headline generation tasks but also in
some other tasks such as document categoriza-
tion, news clustering, keyword identification, etc.
To measure the abstractiveness, in Table 3, we
calculate the percentage of novel n-grams in ref-
erence headlines that are not present in the arti-
cle. Table 3 shows that the novelty level increases
with the number of grams, and the average scores
are comparable to the IndicNLG (Kumar et al.,
2022). A quantitative statistics presented in Ta-
ble 4 demonstrates that our Shironaam corpus con-
tains more compressed headlines against lengthier
articles compared to the IndicNLG, both in terms
of words and sentences. This highly compressed
nature of the headlines makes the task of headline
generation in low-resource language more chal-
lenging. In addition, the vocabulary size of our ar-
ticles is comparable with IndicNLG, whereas we
get a larger number of vocabularies in our head-
lines (see Table 4).
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Therefore, the Shironaam corpus comprises a
diverse range of headline styles and provides the
largest collection of Bengali news articles. More-
over, it is the first benchmarking dataset in such
a low-resource language that includes auxiliary in-
formation in addition to the headline-article pairs.
We hope it will motivate further study and serve
as a baseline for future works on this task for this
low-resource language.

3 News Headline Generation

3.1 Task

We establish a new concept of incorporating auxil-
iary information in order to generate high-quality
headlines in Bengali, a low-resource language. In
the context of this generation task, we assume that
a) we have enough data with auxiliary information
to train a headline generation model in Bengali lan-
guage (can be referred to Shironaam corpus); b)
the auxiliary information refers to the image cap-
tions and topic words used in tagging documents;
¢) we have access to a module that filters a docu-
ment based on the contextual similarity with a list
of topic words (we refer BenSim in Section 3.3).
The task can be formalized as follows. Given arti-
cle A, image caption C, and a set of topic words 7
as input, our goal is to generate high-quality head-
line H for the corresponding news article.

3.2 Approach

To carry out the idea, we need several benchmarks
to compare with and evaluate our proposed hypoth-
esis. But, no SOTA benchmark is available for this
task in Bengali language®, except the IndicBART
(Dabre et al., 2022). So, we set multiple base-
lines (Section 4.2), both of extractive and abstrac-
tive types, that take article A as input and gener-
ate corresponding headline H as output. We fol-
low LEAD-1 and EXT-0RACLE approaches among
the extractive types, whereas from the abstractive
types, we initialize an encoder-decoder model for
Bengali language with a pre-trained encoder-only
checkpoint to skip the costly pre-training (Rothe
etal., 2020) °. To train the encoder-decoder model
(BED), we use BanglaBERT (Bhattacharjee et al.,
2022a) as the encoder checkpoint. Additionally,
we utilize other pre-trained models (i.e., BanglaT5

8We did not consider the extreme summarization models
since the style of a headline and a single-line summary is com-
pletely different.

“We refer the interested readers to Appendix (Section A)
for necessary background.
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Figure 1: Graphical illustration of our proposed headline generation models (a) BERT-based encoder-decoder (base-
line) (b) Our model incorporating image caption with the article (¢) Our model uses BenSim to extract important
sentences (a.k.a., filtered article) based on topic words and incorporates filtered article with the image caption.

(Bhattacharjee et al., 2022b), IndicBART (Dabre
et al.,, 2022)) based on transformer architecture
(Vaswani et al., 2017). After comparing all the
baselines (see Section 4.2), we select the best per-
forming one for further ablations. Experimental
results (in Table 5) reveal that BED model outper-
forms other baselines, even though the fine-tuned
BanglaT5 (Bhattacharjee et al., 2022b) scores
competitively.

3.3 BERT-based Encoder-Decoder (BED)

A BED model consists of an encoder that has been
initialized with BERT, termed as BERTenc, cou-
pled with a decoder that has also been initialized
with BERT, which we call BERTdec. The initial-
izing point for each weight’s calculation is a pub-
lic BERT checkpoint. The only variable initialized
at random is the encoder-decoder attention (Rothe
et al., 2020).

Article Only In Figure 1(a), we implement the
basic version i.e., BED (base) model, which takes
word tokens of an article as a sequence of inputs
Aj1.,, and describes a conditional distribution of tar-
get vectors H1.; of variable length 1, in our case,
generated words for headline:

(1)

The input sequence Ay, is sent to the BERTenc
component, which then converts it into a sequence
of hidden states, A;.,. The mapping can be de-
fined as:

POsERrTenc9BERT dec (Hl:l |-’41:n) .

2)

The BERTdec component will simulates the condi-
tional probability distribution of the target vector

feBERTenc s A = Avp.
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sequence H1.;, assuming that the sequence of en-
coded hidden states A1, has been provided:

DopErTdce (M1 Arn)- 3)

Bayes’ rule lets us turn this distribution into a prod-
uct of the conditional probability distribution of the
target vector h;, given the encoded hidden states
Aj., and all the previous target vectors Hg.;—1:

POpERrTdeC (lel ’Zl:n)

n
= H Poprrrdcc (hi|Ho.i—1, Zl:n)-

=1

“)

All preceding target vectors Ho.;—1 and the en-
coded hidden state sequence Aj.,, are mapped to
the logit vector V; by the BERTdec. The next step
is to run the softmax operation on the logit vec-
tor V;. This helps to define the conditional distri-
bution pg,, . pro.. (Wil Ho:i—1, A1) by making sure
that the distribution of the target vector h; depends
on the distributions of all previous target vectors
ho, sy h;_1:

Posrrae Mil Hosi1, Arn) = Softmax(V;). (5)

The first target vector hg is going to be represented
by a unique BOS vector that is referred to as the
“beginning-of-sentence”. After the conditional dis-
tribution pg,, ;e (il Ho:i—1, A1) has been set,
the output can be made in an auto-regressive way.
This makes it possible to define a mapping be-
tween an input sequence A;., and an output se-
quence H1.; at the time of inference.

Fusing Article and Image Caption In order
to explore more ways to improve the quality



of the generated headlines, we employ BED (w/
Article + Caption) model, which incorpo-
rates image caption Cy.,,, with the corresponding
article A;.,, as in Figure 1(b), where m << n, and
passes them through the BERTenc using parallel-
fusion (Liu et al., 2020a) mechanism:

ICI:T = C’1:7n S Al:n,
feBERTenc :Clomy Arip — K

(6)
(7

Here, Ki., denotes the model input sequence,
where r represents the new input sequence length,
and & is concatenation operator separated by a spe-
cial token. The sequence of hidden states K., are
then processed through the BERTdec likewise the
Shironaam(base) model and the headline is gen-
erated as output:

(®)

However, the image caption may not always serve
the full context if the news article becomes too
long for BERTenc. Moreover, the image caption
length is generally much smaller than the news arti-
cle length. Thus, the impact of using image caption
as a context is less sensitive for lengthier articles.

POpErTenc, 9BERTdeC (Hl:l|Clim7 Al:n)'

Bengali Sentence Similarity (BenSim) Since
many of the news articles’ lengths exceed the in-
put sequence limit that BERTenc can process, we
therefore, utilize the sequence length by ensur-
ing all the relevant sentences are present in the
limited input sequences. To ensure the extrac-
tion of relevant sentences, we develop BenSim
module!?, a tool for measuring semantic similar-
ity between Bengali sentences utilizing BERT em-
beddings. It takes news article A;., and corre-
sponding topic words 77.; as input for getting
most of the contextual sentences and employs pre-
trained bangla-bert-base (Sarker, 2020) model
on both of the input sequences to generate the
contextualized encoded representations. After per-
forming mean pooling operation, cosine similar-
ity (Singhal, 2001) is then applied to the encoded
sequences to get the similarity score. After mea-
suring the similarities between the topic words
and input sentences, a filtered article A’y., is re-
turned as output, which is then fused parallelly
with the image caption Cy.,,, and sent to the model
input. Finally, the BED (w/ FilteredArticle
+ Caption) model produces a headline after pro-
cessing the fused input.

Yhttps://github.com/dialect-ai/BenSim
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4 Experiments and Benchmarks

In this section, we set a new benchmark for Ben-
gali news headline generation using Shironaam
corpus and compare it with the other state-of-the-
art baselines. After a clean comparison, we per-
form two ablation experiments on the superior base
model. Then, we analyze the performance gap be-
tween the baselines and the ablations and further
evaluate the best model on news domains with a
few samples (few-shot). Finally, after proper anal-
ysis, we seek to find out the answers to the follow-
ing research questions:

* RQ#1: Can we use auxiliary information
(e.g., image caption and topic words) to im-
prove the performance of the headline gener-
ation?

* RQ#2: Which domain(s) benefit from the
auxiliary information in few-shot and non-
few-shot settings?

4.1 Implementation Details

We utilize the encoder-decoder paradigm'! of Hug-
gingFace, where pre-trained BanglaBERT (Bhat-
tacharjee et al., 2022a)!? is used to initialize both
of the weights of encoder and decoder. Be-
fore proceeding to tokenization, we perform sen-
tence normalization, introduced in Hasan et al.
(2020). For tokenization, we use the pre-trained
tokenizer'? that comes with the model. All the
hyper-parameters used for training and decoding
are presented in Section B in the Appendix.

Evaluation Metrics We compare the perfor-
mance with the following baselines across several
evaluation metrics presented in Section D in the
Appendix.

4.2 Baselines

LEAD-1 LEAD-1 is a commonly used baseline
for setting the lower bound of news headline gen-
eration task (Kumar et al., 2022; Narayan et al.,
2018). It also indicates the degree of positional bi-
asness of article body sentences in generating head-
lines. We pick the article’s first sentence as the
system headline and compare it with the original
headline to generate the LEAD-1 scores.

"Encoder-Decoder models documentation
2BanglaBERT usage (HuggingFace)


https://github.com/dialect-ai/BenSim
https://huggingface.co/docs/transformers/v4.20.1/en/model_doc/encoder-decoder
https://huggingface.co/csebuetnlp/banglabert

Models ROUGE BL]?U BERT METEOR
R-1 R22 R-L BLEU Brevity Length Score Score
Score Penalty Ratio
Baselines
LEAD-1 (Extractive) 30.50 13.86 28.00 5.65 97.71 2.48 74.63 29.90
EXT-ORACLE (Extractive) 3992 2289 37.28 9.17 97.16 2.30 77.16 39.65
IndicBART (mBART) 28.76 12.65 27.11 15.03 99.91 1.14 74.95 20.39
BanglaT5 (mT5) 4413  23.03 42.12 13.05 91.33 1.15 80.13 34.65
Our Ablations

BED Base (BERT2BERT) 4422 2418 42.28 22.06 94.47 0.94 80.53 34.16
-w/ Article + Caption 51.62  33.62 49.94 31.39 96.02 0.96 82.93 42.57

-w/ FilteredArticle + Caption  52.19 34.27 50.31 31.80 98.57 0.99 83.10 43.52

Table 5: Performance on Shironaam (test) corpus compared to the baselines (Section 4.2) and the results of our
ablation study (see Appendix Section E for validation scores) across various automatic evaluation metrics, where

bold-faced scores indicate superior performance.

EXT-ORACLE On the other hand,
EXT-ORACLE can be considered as the upper
bound of generating headlines by an extractive ap-
proach (Kumar et al., 2022; Narayan et al., 2018).
We implement this baseline on the Shironaam
(test) corpus by aligning a sentence from the
input article with the reference headline based on
the ROUGE-2 metric.

IndicBART Kumaretal. (2022) releases a multi-
lingual model, which is fine-tuned on IndicBART
(Dabre et al., 2022) checkpoint for the headline
generation task focusing on Indic languages in-
cluding Bengali. IndicBART is a sequence-to-
sequence multilingual pre-trained model (Dabre
et al., 2022) based on the mBART (Liu et al.,
2020b) architecture.

BanglaT5 We fine-tune BanglaT5 (Bhat-
tacharjee et al., 2022b), a sequence-to-sequence
transformer model based on mT5 (Xue et al.,
2021) architecture for Bengali language, on the
Shironaam (train) corpus for the headline gen-
eration task. For a fair comparison, we maintain
the same hyper-parameters.

BED (base) Model We implement the model
(article only), illustrated in Figure 1(a) on the
Shironaam (train) corpusto make the baseline.
We utilize 220,500 news samples from the train set
to train the BED model, which takes the article only
as input and generates a headline as output. The
evaluation result on the Shironaam (test) setis
shown in Table 5, which is a new benchmark for
the Bengali headline generation task. In the fol-
lowing experiments, we utilize the auxiliary infor-
mation with the same hyper-parameter settings to
generate better-quality headlines.
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4.3 Ablation Experiments

BED (w/ Article + Caption) Model As per the
demonstration in Figure 1(b), the image caption is
incorporated with the input article. This leads to
a much improved result across all evaluation met-
rics compared to article only model (a.k.a., BED
(base)) as shown in Table 5.

BED (w/ FilteredArticle + Caption) Model
Since the utilization of image caption in model in-
put gives better results, therefore we further enrich
the inputs by incorporating topic words. We use
topic words in filtering the longer articles through
BenSim rather than using them directly to the in-
put, as shown in Figure 1(c). First, we set a thresh-
old value (40 in our case) for BenSim to extract
the number of top semantically similar sentences.
BenSim maintains the relative appearance order of
the sentences in the original article to construct the
corresponding filtered article. To fix the number
of sentences in a filtered article, we consider the
maximum use of the number of tokens BED model
can afford i.e. 512. Fusing filtered article with im-
age caption achieves the best results across several
evaluation metrics as shown in Table 5 (also see
Appendix Section F for the generation quality).

4.4 Discussions

Result Analysis Table 5 shows that the LEAD-1
baseline performs inadequately on the Shironaam
(test) corpus. More specifically, the ROUGE-
2 and BLEU scores and the length ratio indi-
cate that the original headlines are more abstrac-
tive in nature, and the first sentence of an ar-
ticle does not contain sufficient information for
generating a headline. Unlike LEAD-1, compara-
tively higher ROUGE scores are obtained by using



EXT-0RACLE, but at the same time, BLEU score
gain is lower. This trade-off indicates that the ref-
erence headlines consist of the subset of words
present in the sentences selected by EXT-ORACLE.
However, because of the concise nature of news
headlines, this approach does not fit well but can
be considered a strong baseline for other mod-
els. Among the abstractive types, IndicBART per-
forms poorly on the Shironaam (test) corpus
and even is unable to beat the weak LEAD-1 base-
line, let alone EXT-0RACLE. On the other hand, the
fine-tuned BanglaT5 yields a good score for this
task. Although the generated results are slightly
lengthier than the reference ones, they can be con-
sidered a strong baseline. The BED (base) model
provides the best performance in terms of ROUGE,
BLEU, and BERT scores. So, we consider it the
strongest baseline and look for further ablations.

To this end, Table 5 shows that the best baseline
is outperformed by our proposed technique of mod-
eling input using auxiliary data. We want to em-
phasize that we use image caption and topic words
purely as auxiliary data. While collecting the data
from various news portals, we observe that it is
very common to include images to help support
and communicate the story and image captions are
a crucial part of it that only describe the referred
image. Although image captions are mostly cor-
related with the corresponding article in terms of
context, we argue that they are not headlines. First,
there is not much overlap in terms of Jaccard simi-
larity measured between image captions and head-
lines (as from Table 1 we have approximately 29%
overlap across different categories). Second, head-
lines differ from image captions in terms of styles
and content.

Image captions usually give the model some
signal on which parts of the document model
need to attend more. Hence, as a result of
combining image caption with article, BED (w/
Article + Caption) model improves the per-
formance by about 3 (BERT score) to 10 (ROUGE-
2 score) percentage points and produces more
human-like headlines. Moreover, it often begins
generating sentient headlines that are more abstract
and profound than the reference ones. The BED
(w/ FilteredArticle + Caption) model per-
forms slightly better than the previous ablation.
Since, there are fewer lengthier articles in the
Shironaam corpus, the variations in the scores of
the two ablation models are rather small. We ob-
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Figure 2: Train Loss vs. Global Steps for our ablations.

serve that when we include filtered articles led by
relevant topic words in the model’s input, it begins
to learn faster than the model without topic words
(demonstrated in Figure 2). Therefore, the differ-
ences between the scores of two ablation models
will increase with the number of lengthier articles.

So, following the question RQ#1, we may con-
clude from the preceding discussion that auxil-
iary information definitely aids in creating better
headlines. Although we achieve superior perfor-
mance compared to the state-of-the-art baselines
across several evaluation metrics, these quantita-
tive measures can not determine the generation
quality. Therefore, we present generated samples
from our model categorized into several abstrac-
tive types (see Section F in Appendix). We leave
the human evaluation of our generated samples as
one of the future works.

Domain Specific Analysis We evaluate
our proposed BED (w/ FilteredArticle +
Caption) [denoted as BED (FA+C)] model on
individual domains by comparing with a base
model and to answer RQ#2. We also observe the
performance of the presented model on the do-
mains with fewer samples (few-shot). We employ
two baselines here: BED (base) and BanglaTb
(Bhattacharjee et al., 2022b) [denoted as BNTS5].
Although, the BNT5 has demonstrated competitive
performance, Table 6 shows that BED (base)
model performs better on the maximum number
of domains. To calculate the exact performance
gap, we maintain a uniform baseline i.e., BED
(base) to compare with the proposed model. For
the few-shot observation, based on the number
of training samples, we split the domains into
two folds (see Table 6). The Few-Shot domains
contain less than 6500 train samples, whereas rest
of the domains are considered as Non-Few-Shot.



R R2 RL
Category ~ BED BED BED BED BED BED
ase) BNTS  (FA+C)  (base) BNTS  (FA+C)  (base) PNID  (FA+C)
Non-Few-Shot Domains
National 4803 4733 5584 2729 2583  37.88 3606 4537 5395
International ~ 44.44  46.04 5047 2292 2308 29.96 4202 4349 4813
Sports 30.14 3346 39.20 1157 1343 20.40 2875 3159  37.33
Entertainment ~ 33.05 3299  35.14 15.07 1432  16.64 3126 3133 33.44
Politics 4928 49.66  57.16 2880 2732 39.73 47.53 4768 5573
Few-Shot Domains
Economy 3895 4003 60.32 881 19.74 4585 3644 3762 5853
Life-Health 3587 3920  44.97 1761 1978 2721 3390 3738 43.08
Edu-Career 5057 5112 7155 3192 3082 59.54 4805 4882  70.48
Opinion 1611 1582  44.53 469 524 36.63 1582 1544 4425
Miscellancous ~ 33.64 3492  35.9 1616 1798  17.41 3048 3282 31.87
Science-Tech ~ 41.82  44.14  51.03 19.54 2261 3120 3930 4182 4849
Nature 3607 3789  46.54 1578 1665  30.07 3484 3579 4553
Religion 2729 3548  72.10 1228 19.63  62.05 2696 3442 7214

Table 6: Performance of our proposed model BED (FA+C) compared to baseline BED (base) and BNT5 (2022b)
across different domains. Shaded grey region indicates superior performance compared to baselines and bold-
faced and underlined scores indicate comparably best and worst domains, respectively.

Table 6 demonstrates that our proposed model
improves the scores by a satisfactory margin
of almost all the domains except Entertainment
and Miscellaneous. These two categories get
comparatively lower scores. The majority of head-
lines in the Entertainment domain are casual and
clickbait-style and do not maintain the identical
nature of a particular domain. We argue that the
discrepancy, in this case, decreases the scores.
The Miscellaneous domain is comprised of dif-
ferent sorts of randomness containing articles of
various domains. Therefore, it is anticipated that
this genre will get a lower score. Table 6 shows
that our proposed model maintains consistent
performance when there are few samples to train.

5 Related Works

Headline generation is an under-explored subtask
of abstractive summarization, particularly in lan-
guages with limited resources. For the English
language, an attention-based neural network has
been proposed by Rush et al. (2015) for abstrac-
tive sentence summarization. The authors propose
a model that utilizes a recurrent neural network
(RNN) and an attention mechanism to summarize
input sentences into a compact summary. Takase
et al. (2016) build an AMR encoder for headline
creation based on an encoder-decoder architecture.
Using a dual-attention seq2seq model, Zhang et al.
(2018) proposes a way for question headline de-
velopment. In limited resource settings, Tilk and
Alumie (2017) pretrain a neural encoder and de-
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coder model to enhance headline generation out-
puts. A sentence encoder, a gate network for sen-
tence selection, and a headline decoder are the
three stages of Zhou et al. (2017)’s headline gen-
eration approach. Tan et al. (2017) proposes a
coarse-to-fine strategy that extracts the most im-
portant sentences before generating the headlines
based on the context. For headline generation, Ku-
mar et al. (2022) have released the IndicNLG, a
collection of multilingual datasets. However, they
do not provide any additional attributes besides the
headline-article pairs. In summary, the majority of
the past works for generating headlines primarily
used the article content to generate headlines.

6 Conclusion and Future Work

In this paper, we contributed a large-scale dataset
(a.k.a., Shironaam) with auxiliary information
such as image captions, topic words, and category
for Bengali news headline generation. We em-
ploy contextualized language models to incorpo-
rate such auxiliary information and proposed a sim-
ple yet effective solution to encode long articles us-
ing topic words. Experimental results demonstrate
the superiority of our approach across different do-
mains and settings. We anticipate that our efforts
will motivate the community to expand the scope
of headline generation tasks beyond English, par-
ticularly for a low-resource language like Bengali.
Our future work will look into incorporating aux-
iliary information to support more languages and
build a language-agnostic model.



Limitations

Our model relies on auxiliary information such as
image captions and topic words to achieve supe-
rior performance. However, it is quite common to
include images and extra information (e.g., topic
words) to increase the article’s visibility, support,
and context. Also, our base model without aux-
iliary information demonstrates improved perfor-
mance compared to the well-established and state-
of-the-art baselines. Another limitation we ob-
served that our model did not perform as well as for
the Miscellaneous and Entertainment categories
compared to the other 11 different categories be-
cause of the clickbaity nature of these categories.
Finally, our headline generation model works only
for Bengali, a widely spoken but low-resource lan-
guage. Still, this idea of using auxiliary informa-
tion to improve headline generation performance
can easily be extendable for many languages.
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We considered some ethical aspects while scraping
the data. We requested data at a reasonable rate
without any intention of a DDoS attack. Moreover,
for each website, we read the instructions listed in
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texts in the data by explicitly crawling the sites
where such contents are minimal. Further, we re-
moved the Personal Identifying Information (PII)
such as name, phone number, email address etc
from the corpus.
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Vancouver, Canada. Association for Computational
Linguistics.

A Preliminaries

Abstractive text summarization (Rush et al., 2015;
See et al., 2017; Zhang et al., 2020) was consid-
erably more challenging before the development
of sequence-to-sequence (seq2seq) models (Cho
et al.,, 2014; Sutskever et al., 2014) and recent
advances in transformer-based models (Vaswani
et al., 2017; Devlin et al., 2019) due to a lack of
sufficient datasets. Many text-summarizing appli-
cations are still hindered by the lack of suitable
datasets, particularly for low-resource languages
(Joshi et al., 2019). After being presented in
Vaswani et al. (2017), models based on transformer
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architectures have been proven to perform better
on sequence-to-sequence tasks than decoder-only
language models e.g. Raffel et al. (2020). In its
most basic form, an encoder-decoder model com-
prises a stand-alone encoder, like BERT (Devlin
etal.,2019), and a stand-alone decoder model, like
GPT2 (Radford et al., 2019). It has been demon-
strated that the huge pre-trained encoder-decoder
models may considerably improve performance on
a range of sequence-to-sequence tasks Lewis et al.
(2020); Raftel et al. (2020). On the other hand,
pre-training encoder-decoder models are very ex-
pensive to build since the models require a lot of
computational resources.

Rothe et al. (2020) introduces the encoder-
decoder model using pre-trained encoder and/or
decoder-only checkpoints (such as BERT (Devlin
et al.,, 2019) and GPT2 (Radford et al., 2019))
to avoid the time-consuming pre-training process.
According to Rothe et al. (2020), these encoder-
decoder models can do well as large pre-trained
encoder-decoder models like T5 (Raffel et al.,
2020) and Pegasus (Zhang et al., 2020) on differ-
ent sequence-to-sequence tasks at a fraction of the
training cost.

B Hyper-parameters, Training, and
Decoding

All the BED models (Figure 1) are trained al-
most from scratch by maintaining uniform hyper-
parameters and trained for 110,250 global steps
with the learning rate 5e-5, and batch size 12. We
save the best checkpoint by ensuring the lowest
validation loss. We use AdamW (Loshchilov and
Hutter, 2019) for optimizing the loss with default
linear warmup. The maximum lengths of encoder
and decoder are limited to 512 and 32 tokens, re-
spectively. Each of the BED models is trained on a
single NVIDIA Tesla P100 GPU and trained for ap-
proximately 33 hours, which takes almost 5 hours
30 minutes per epoch. The total number of train-
able parameters is 249,044,480.

Decoding When validating and testing, we use
beam search algorithm (Sutskever et al., 2014)
with 4 beams to generate headlines. The maximum
and minimum lengths used in generating the head-
lines are 16 and 4, respectively. We use ‘early
stopping’ to stop the beam search when at least 4
sentences are finished per batch. The ‘no-repeat
n-gram size’ is set to 2, where the exponential
penalty to the length is 1. 2. Regarding vocabulary
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size, we use the fixed 32,000 vocabularies from
the encoder.

C Data Sources

Newspaper URL
Prothom Alo | www.prothomalo.com
DIi\I;zi]ITta www.dailynayadiganta.com
Ajker Patrika | www.ajkerpatrika.com
Bz}l)r;%ﬁl&i;sh www.bd-pratidin.com
Samakal www.samakal.com
Bhorer Kagoj | www.bhorerkagoj.com
72 ;Zbaulfe www.dhakatribune.com

Table 7: List of Bengali newspapers to form the Shiron-
aam corpus with their corresponding URLs. Samples
from the italic-faced newspapers were crawled through
their APIs.

D Evaluation Metrics

We evaluate the predicted headlines with some au-
tomatic metrics used for generation tasks. The gen-
eration quality is measured with the ROUGE (Lin,
2004) F1 score!>. ROUGE-1 and ROUGE-2 mea-
sure informativeness, where fluency is measured
by the longest common subsequence (ROUGE-L).
We include BLEU (Papineni et al., 2002) score
which indicates the similarity between reference
and predicted sentences by comparing the overlap
within tokens'#. Brevity penalty and length ratio
are shown to justify the BLEU score. The con-
textual similarity between the generated and refer-
ence headline is measured using F1 BERT score
(Zhang* et al., 2020)!3, where the correlation be-
tween them is reported by METEOR score (Baner-
jee and Lavie, 2005)'¢. We use the available open-
source implementations for the above metrics.

BROUGE (multilingual)
“BLEU (HuggingFace)
SBERTScore (HuggingFace)
'METEOR (HuggingFace)
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E Validation Results

Train  Valid ROUGE BLEU METEOR

Loss Loss R-1 R22 R-L Bleu Length Score
Score  Ratio

a) 1.0892 24332 4451 23.56 42.38 20.39 0.95 34.27

b) 1.5083 2.1227 49.59 30.53 47.79 27.63 0.98 40.59

¢) 12199 2.0836 49.77 3142 48.05 28.70 0.99 40.73

Table 8: All the scores are reported for BED model with ablations on Shironaam (valid) corpus. The labels
indicate the ablations of BED model: a) Base, b) Article + Caption, ¢) FilteredArticle + Caption. Only the Train
Loss is measured on the training set and kept for comparison with the Valid Loss.

F Generated Headlines

Generated headlines on Shironaam (zest) corpus across all the categories are presented in Table 9.

Category Headline Type
GH | fofq ermiface w= swice e«
Economy BT The government reduced the duty on sugar Inserted
1mport
RH | o wsmifce @& wwcet
ET | Import duty on sugar reduced
GH | >2Idl wrer ficamers e st o e
Edu-Career | ET Relez.ise of written t.est schedule for the Matched
appointment of Assistant Judge
RH | 723 &e feaiers e st s e
Release of written test schedule for the
ET . .
appointment of Assistant Judge
GH | "oy eg 49 91, (712 (& Qe [ e
) ET | “I will not marry, let’s see who marries me”
Entertainment RE | iy R Wrry T, & T R I Swapped
ET | “I will not marry, who will marry me let’s see...”
GH | &#iItes] A6e13 warer ged fcafer Qv
. ET | Tourist ship sinks in Japan and goes missing 26
International RH | &9l “r5saidt sars v for s Matched
ET | Tourist ship sinks in Japan and goes missing 26
GH | g9 9 09, *H& 008¢
Life-Health E{I Ni\; dcatl.ls 37&(({:;%1_;3115 3045 Sentient
ET | Number of infected has crossed 55 thousand
GH | BI9 9=(q Qe «II¥!
Miscellaneous ET | Four-letters in children’s name! Swapped
RH | FSICIS 1% BI9 (<!
ET | Children’s names are in four-letters!
GH | (191 &S1F 1 (W @0 el R Al
National BT Chairman candidate cried after not getting the Deleted
horse symbol
RH | CITS! 2SI% = (5T (S @FeTCT (12 (ot il
That chairman candidate cried after not getting
ET
the horse symbol
GH | (oo © T 987 sf=rem
Nature Paraphrased
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ET | Rain forecast in 3 divisions of the country
RH | A1CS e Si#al, © et 32a wrem
The temperature will increase at night, there is a
ET . .
chance of rain in 3 divisions
GH | E-FuP[RE JMCeh 512
. . ET | Want e-commerce friendly budgeting
Opinion T L Deleted
ET | Want to work on e-commerce friendly budgeting
GH fage-siieT Ygfaa Frare safcd
HANCF ;AN
Politics BT The decision to increase the price of electricity Inserted
and gas is an anti-people move : Public Forum
RH | "fR)e ¢ e Fogias Frare =3 i
“The decision to increase the price of electricity
ET : .
and gas will be anti-people”
GH | #l9@ *It7 q97© “lfeTe
Religion ET | Holy Shab—e—bar:/u is celebrated Sentient
RH | 3IMCS e qafalie Joersieral
ET | Devoted Muslims engaged in prayer
GH | T=IPICe SHICBTIRCGS 220 QDR AR
Science-Tech | ET Spl:(::\:/eb is increasing number of satellites into Inserted
RH | RIS FCEIRG ACIR STETEL
ET | OneWeb is increasing satellites into space
GH | (P @4+ H@fes eifics
ET | Messi is now in PSG jersey
Sports RH | Plavifee = @ 10 B Paraphrased
ET | When is Messi on the field for PSG?

Table 9: High quality headlines generated on Shironaam (test) corpus across all the categories. Here, “Type”
means the how the generated headlines are different from the references. We categorize the differences into 5
types: Inserted (only one/some word(s) is/are added to reference headline), Matched (generated exactly the same),
Swapped (the only difference is made by swapping one/some word(s) within the reference headline), Deleted (the
output is about similar to the reference with one/some word(s) less), Sentient (generated headline is completely
different but a potential competitor against the reference one), Paraphrased (paraphrased version of the reference
headline). The colored words (i.e. teal for Inserted, cyan for Swapped, brown for Sentient, magenta for Deleted,
and violet for Paraphrased) indicate the exact positions where the generated ones are different from the references
and no color refers to no change. The generated and reference Bengali headlines, and their corresponding English
version are denoted by GH, RH, and ET respectively.
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Abstract

Curriculum Data Augmentation (CDA) im-
proves neural models by presenting synthetic
data with increasing difficulties from easy to
hard. However, traditional CDA simply treats
the ratio of word perturbation as the difficulty
measure and goes through the curriculums only
once. This paper presents PCC: Paraphrasing
with Bottom-k Sampling and Cyclic Learning
for Curriculum Data Augmentation, a novel
CDA framework via paraphrasing, which ex-
ploits the textual paraphrase similarity as the
curriculum difficulty measure. We propose a
curriculum-aware paraphrase generation mod-
ule composed of three units: a paraphrase can-
didate generator with bottom-k sampling, a
filtering mechanism and a difficulty measure.
We also propose a cyclic learning strategy that
passes through the curriculums multiple times.
The bottom-k sampling is proposed to generate
super-hard instances for the later curriculums.
Experimental results on few-shot text classifica-
tion as well as dialogue generation indicate that
PCC surpasses competitive baselines. Human
evaluation and extensive case studies indicate
that bottom-k sampling effectively generates
super-hard instances, and PCC significantly im-
proves the baseline dialogue agent.

1 Introduction

Data augmentation techniques create artificial data
mixed with the original data for improved perfor-
mance. Traditional data augmentation techniques
in the language community include word-level per-
turbation such as synonym replacement, random
insertion, random swap, and random deletion (Wei
and Zou, 2019). Sentence-level techniques such
as Round-trip Translation (Sennrich et al., 2016b)
exploits the use of machine translation models to

*The work described in this paper is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: 14200719).
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translate the input sentence to another language be-
fore translating back to the source language which
can be essentially treated as a form of paraphrasing.

Curriculum learning presents training instances
in a meaningful order with increasing difficulties
to neural models for a boost in performance. Tradi-
tional curriculum learning (Bengio et al., 2009; Liu
et al., 2018, 2020; Platanios et al., 2019; Xu et al.,
2020a,b; Su et al., 2021) categorizes the original
training instances into different levels of difficul-
ties to be gradually presented to the model where
a core component called difficulty measure, which
is usually defined as a numerical number where a
bigger number indicates a more difficult sample.

Combining the merits of the above two men-
tioned techniques, Curriculum Data Augmentation
(CDA) creates synthetic data with increasing levels
of difficulties to be presented to our neural mod-
els. Existing CDA defines the ratio of the words
perturbation as the difficulty measure for curricu-
lums and a gradual course which increases the diffi-
culty of curriculums when the training loss plateaus
(Wei et al., 2021), which then ends when the most
challenging curriculum ends. Although existing
CDA is effective, yet there are several disadvan-
tages. First, it employs word-level perturbation.
This superficial operation keeps the augmentation
to have a similar sentence structure as the original
one. Next, it employs random insertion, random
swap, and random deletion for augmentation. Al-
though this can be durable as for text classification
(Wei et al., 2021), this is not suitable for generation
tasks, particularly when many words are perturbed,
which can even easily break the sentence grammar.
Third, it uses a gradual course that only enters each
level of difficulty once. A typical problem in neu-
ral network training called catastrophic forgetting
(Kirkpatrick et al., 2017) can potentially happen in
such a course, where the model might undesirably
gradually forget some early learned knowledge.

To mitigate the problems of word-level perturba-

Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 68—82
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tion, we propose that paraphrasing can be a source
of data augmentation, which provides diverse and
grammatically correct augmentation. However, it
is non-trivial to utilize paraphrase augmentation
in a curriculum setting. Inspired by the funda-
mental linguistic concept of mutual implication
(Boghossian, 1994; Peregrin, 2006), we treat two
sentences as a pair of paraphrases if they can in-
fer each other. For example, ‘I am glad to help
you.” and ‘Let me help you out!” can be a pair
of paraphrases, which provides a diverse change
of the sentence structure suitable for the curricu-
Ium setting. We also employ textual similarity for
our difficulty measures for the curriculum. Higher
scores indicate that two sentences are more textu-
ally similar to each other. Specifically, we treat
pairs with lower scores as more difficult instances
to be presented in later curriculums. We propose
a paraphrase candidate generator integrated with
bottom-k sampling. Traditional sampling methods
such as top-k sampling (Fan et al., 2018) and top-p
(Holtzman et al., 2020) sampling tend to generate
easier paraphrases that have relatively high simi-
larity scores. We propose bottom-k sampling to
generate super-hard paraphrases for the later harder
curriculums by pruning the most probable words. !
This leads the generation towards a more grammat-
ically and lexically diverse paraphrase sampling
space with low textual similarity.

To mitigate catastrophic forgetting, we propose
to incorporate cyclic learning to pass through the
curriculums multiple times.

In summary, our proposed framework, called
PCC: Paraphrasing with Bottom-k Sampling and
Cyclic Learning for Curriculum Data Augmenta-
tion, makes three contributions:

* We exploit the use of paraphrasing with mu-
tual implication as a data augmentation source
in curriculum learning.

To generate mutual implicative paraphrases,
we propose a curriculum-aware paraphrase
generation module composed of three units,
namely, a paraphrase candidate generator with
bottom-k sampling for generating super-hard
instances, a filtering mechanism, and a diffi-
culty measure using textual similarity.

We propose cyclic learning to enter each cur-
riculum multiple times.

"Note that we still use a combination of top-k and top-p
sampling for generating easier curriculums.
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Experimental results indicate that PCC surpasses
competitive baselines on few-shot text classifica-
tion as well as dialogue generation. Human evalu-
ation indicates that bottom-k sampling effectively
generates grammatically and lexically rich para-
phrases, and PCC significantly improves our base-
line dialogue agent. To our best knowledge, this is
the first time to apply CDA on a generation task.

Takeaway Overall, we present the effectiveness
of paraphrasing as a curriculum data augmentation
technique. The use of cyclic learning and bottom-k
sampling further boosts performance. With some
modifications, future works can treat PCC as a
data augmentation framework and adapt it to other
downstream tasks. Future works can also leverage
bottom-k sampling in generating textual outputs
that are grammatically and lexically rich.

2 Related Work
2.1 Data Augmentation

Existing textual data augmentation techniques can
be broadly categorized into two streams: word-
level and sentence-level augmentation.

For word-level augmentation, well-known op-
erations includes synonym replacement (Zhang
et al., 2015a), random insertion, random deletion
and random swap (Wei and Zou, 2019). In con-
trast to dictionary-based synonym replacement, an-
other stream of works randomly replace words with
masks and employs BERT models for predicting
the words as a source of augmentation that exploits
the contexts (Wu et al., 2019; Cai et al., 2020).

For sentence-level augmentation, Round-trip
Translation (Sennrich et al., 2016b) augments trans-
lation pairs by translating from the source language
into the target language, and back to the source lan-
guage with two machine translation models. Gao
et al. (2020) proposes to use paraphrases as a source
of augmentation in task-oriented dialogue gener-
ation. It has also been proposed to retrieve from
unpaired corpora as a source of augmentation in
the dialogue community (Zhang et al., 2020a). An-
other stream of work edits the retrieved dialogue
response for better generation (Cai et al., 2019a,b),
which can be treated as a form of indirect augmen-
tation. The closest work to ours is Gao et al. (2020),
where theirs does not employ curriculum learning.

2.2 Curriculum Learning

While traditional curriculum learning sorts
the training samples in an order of increasing



Algorithm 1: Paraphrasing with Bottom-k Sampling
and Cyclic Learning for Curriculum Data Augmen-
tation (PCC)

Input: Dataset D for the downstream task;
Output: Trained downstream task model;

1 For the entire dataset D, invoke the curriculum-aware
paraphrase generation module with D and cache the
augmentation results D for training purpose;

2 while not the end of training do

Set difficulty level [ to O at the start of a cycle;

while not the end of current cycle do

while not the end of current curriculum do

Uniformly sample the next batch of
training instance S;

Invoke the curriculum-aware
paraphrase generation module for
each training instance in S to retreive
a batch of training augmentation 7~
with difficulty level I.;

Invoke the task-specific model trainer
to train the downstream task model
with the training augmentation 7

= I )

end
Increase [ by 1 to the next level at the end of
current curriculum;

10

11 end

12 end

difficulties (Bengio et al., 2009; Weinshall et al.,
2018; Su et al., 2021), our method follows the
other stream of works that applies transformation
on the original data with dedicated difficulty level
(Korbar et al., 2018; Ganesh and Corso, 2020; Wei
et al., 2021). The closest work to ours is Wei et al.
(2021). Their work does not consider paraphrasing
and focuses on text classification only.

3 Our Proposed Framework

3.1 Background of Curriculum Data
Augmentation (CDA)

Existing CDA (Wei et al., 2021) varies the word-
level perturbation ratio to achieve different levels
of difficulties under curriculum learning with sim-
ple word perturbation strategies such as synonym
replacement, random insertion, swap, and deletion.
As illustrated in Figure 1, such simple word pertur-
bation strategies create problematic instances that
break the sentence grammar, which can hamper
the model performance. There are two common
CDA strategies. One is called two-stage curricu-
lum, which uses a fixed perturbation ratio for a
single curriculum as the second stage after train-
ing with the original data. The other one is called
gradual curriculum. It uses different ratios for a
number of (typically 5) curriculums with increas-
ing difficulties. However, such a learning strategy

70

Algorithm 2: Curriculum-aware Paraphrase Genera-

tion Module
Input: A single training instance with textual input z;

difficulty level [; B
Qutput: Cache the generated paraphrases into D or
retrieve an augmented training instance Z;

if a cached augmentation exists then

Retrieve 7 that corresponds to x with the
difficulty measure d = [;

else

s W

Invoke the paraphrase candidate generator
integrated with bottom-k sampling to generate a
bag of paraphrase candidates for x;

Invoke the mutual implication classifier for each
paraphrase candidate to obtain corresponding
binary indicator against the input sentence;

Calculate the textual similarity for each
paraphrase candidate against the input;

Filter the generated paraphrase candidates with
the mutual implication and the textual similarity
using Equation 3;

Assign a difficulty measure d to the filtered
paraphrases with Equation 4;

Cache the augmentation results into D;

10 end

ends after passing through all the curriculums only
once, and catastrophic forgetting can happen.

3.2 Our Proposed PCC

We propose curriculum data augmentation with
paraphrase augmentation known as Paraphrasing
with Bottom-k Sampling and Cyclic Learning for
Curriculum Data Augmentation (PCC). Algorithm
1 depicts an overview of the whole PCC framework.
At the start of training, we generate cached train-
ing augmentation for the entire dataset with our
proposed curriculum-aware paraphrase generation
module. Thereafter, we begin with the easiest cur-
riculum. For each training instance, we retrieve the
cached augmentation that has an equivalent diffi-
culty measure with the current difficulty level. We
then invoke the task-specific model trainer to train
the downstream task model with the retrieved train-
ing augmentation. At the end of each curriculum
difficulty level, we increase the difficulty level to
advance to the next harder curriculum. In case it
hits the end of the most difficult curriculum, we set
the difficulty level to the easiest to start a new cycle.
We propose such a cyclic learning strategy for miti-
gating potential catastrophic forgetting. In order to
retrieve paraphrasing augmentation with appropri-
ate difficulty measures, we propose a curriculum-
aware paraphrase generation module.
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ﬂ: Hello, good morning.

B: Good morning.
A: What can I do for you?

B: I would like to withdraw money.

| Existing CDA:
A: Glad am to help I you.

Our PCC Model:
Q: Let me help you out!

ﬂ: Hello, good morning.

B: Good morning.

A: What can I do for you?

B: I would like to withdraw money.

/
\

Curriculum Difficulty

Existing CDA:
A:1equal am glad to help you.

Our PCC Model:
A:Tam pleased to help you.

Training Steps

/

Figure 1: An illustrated example for our PCC model
compared to existing CDA for dialogue generation. The
original sentence is ‘I am glad to help you.’

Sample No. | Sample Text | Sim. Score

1) | Tam glad to assist you. | 0.888

2) ‘ Let’s help you. I am glad to help ‘ 0.619
you.

3) ‘ Thank you for contacting me. 1 ‘ 0.371
am glad to help you.

4) ‘ It is now my pleasure to help you. \ —0.038

5) | Let me help you out! | —0.265

6) ‘ Thank you for your question. \ —0.506

Table 1: Paraphrases with mutual implication for an
input ‘I am glad to help you.

3.2.1 Curriculum-aware Paraphrase
Generation Module

Algorithm 2 depicts the curriculum-aware para-
phrase generation module. Three components are
designed, namely, a paraphrase candidate genera-
tor integrated with a bottom-k sampling strategy,
a filtering mechanism, and a difficulty measure.
The paraphrase candidates are generated and then
passed to the filtering mechanism. Finally, the fil-
tered paraphrases are assigned a difficulty measure
which represents to which curriculum difficulty
level the augmentation belongs.

Paraphrase Candidate Generator with Bottom-
k Sampling In order to generate mutual implica-
tive paraphrases for the purpose of curriculum
data augmentation, we adopt a Seq2Seq (Sutskever
et al., 2014) generator which receives an input sen-
tence = and generates the paraphrases Z in an au-
toregressive manner (Nighojkar and Licato, 2021).
During training, the paraphrase candidate generator
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is trained by maximising the following likelihood:

T
P(|z)=][P @z, ... 7 1,2),
t=1

where T’ represents the token length of the para-
phrase and x; represents the word at the position ¢
that has been inferenced.

Traditional sampling methods such as top-k sam-
pling (Fan et al., 2018) and top-p sampling (Holtz-
man et al., 2020) sample the next token to be pre-
sented in the output from the most probable vocab-
ularies that dominate the probability distribution.
For example, at the i-th timestep during inference,
top-k sampling samples the next token &; from the
most probable k words with the distribution:

ey

where V(*) represents the most probable k& words.
However, they are not suitable for generating super-
hard instances, i.e., their output paraphrases tend to
be textually similar to the original input sentence.’
To avoid coping the words and unearth the super-
hard paraphrases to be used in later curriculums,
we propose bottom-k sampling® which excludes
a small set of dominating words for the sampling
process. Note that we still use the combination of
top-k and top-p sampling to generate easier sam-
ples for earlier curriculums. Formally, bottom-k
modifies the distribution in Equation 1 to:

P@EV““) (f, | X1,y Ti—1, ZL‘),

2

where V represents the whole vocabulary. Then,
at each time step, we sample the next token with
the rescaled distribution in Equation 2. We apply
bottom-k for the first A/ steps of the generation be-
fore fallback to top-k and top-p. Bottom-k tends to
generate paraphrases with lower textual similarity.
For example, given an input of ‘I like to remodel
homes’, existing sampling methods can generate an
output ‘Renovations in property I like to remodel
homes’. In contrast, bottom-k sampling generates
‘Is this what I want to see? Renovating homes are
the best choices I have ever had.” where the latter
one has a higher difficulty measure. Appendix F
presents an extensive analysis.

P:EiGV\V<k)(1_:i | ry, -~-7i‘i717x)5

“We found that top-k and top-p sampling tend to copy
dominating words from the input into the paraphrases. This
is also the reason why we prefer bottom-k over bottom-p, as
we would like to effectively prevent from coping dominating
words. Appendix F presents a detailed analysis.

3We give it such a name to make it catchy. It does not
sample from the bottom k words. It samples from the bottom
|V| — k words where V represents the whole vocabulary.



Paraphrase Filtering The inferential properties
or mutual implication (MI) has been argued as a
form of equivalent meaning (Boghossian, 1994;
Peregrin, 2006), i.e., each sentence should entail
each other to be ‘paraphrases’. To support cur-
riculum data augmentation, we exploit mutual im-
plicative paraphrases for grammatical and lexical
richness. Algorithm 2 (Lines 5, 6, and 7) depicts
the filtering mechanism we propose to generate MI
paraphrases. In order to determine the MI rela-
tionship between a pair of paraphrase (z, ), we
adopt a pre-trained MI classifier M(, -) to calcu-
late a binary indicator M(x,z). Here, non-MI
paraphrases have a score of 0 and MI paraphrases
have a score of 1. We also adopt a pre-trained
model G(-, ) to evaluate the textual similarity score
of the paraphrases as G(, Z). Here, paraphrases
with lower similarity scores are treated as gram-
matically and lexically less similar to the original
input sentence. We filter the paraphrase z; based
on these two scores:

M(z,z)+(1—M(z,z;))1(G(z,z;) > 5). (3)

In the formula above, 3 is a threshold for textual
similarity. Here, a paraphrase with a positive mu-
tual implication has a binary output of 1, i.e., it is
preserved regardless of its textual similarity score.
A paraphrase with a negative mutual implication
but high textual similarity also has a binary out-
put of 1, meaning it is preserved as well. In this
way, MI paraphrases can be produced. We preserve
highly similar paraphrases classified as non-MI,
which is a misclassification by the classifier.* All
paraphrases that are non-MI with low textual simi-
larity have a binary output of 0, meaning we discard
those paraphrases. After the filtering, a difficulty
measure is computed for each paraphrase.’

Difficulty Measure Recall that for a pair of para-
phrase (x, Z), we adopt a pre-trained textual simi-
larity model G (-, -) to calculate its similarity score
as G(x, z). BLEURT (Sellam et al., 2020) score, a
BERT-based pre-trained model, is employed as the
textual similarity model G(+, -). Here, paraphrases

“We postulate it as a flaw introduced by the imbalanced
training data with a larger portion of paraphrases that tends to
be textually unsimilar against the original sentence. We found
in our early experiments that removing these easier examples
obviously degrades the results for COVID-Q from 51.7 to
50.0. Furthermore, ignoring non-MI easy examples prevents
PCC from collecting enough augmentation for AMZN.

3As in Appendix A, we use an off-the-shelf paraphrase
generator and MI classifier in our experiments.
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with lower similarity scores are treated as more dif-
ficult instances with higher difficulty measures. For
further illustration, we present 6 samples generated
from our model in Table 1 with descending order
sorted on the similarity scores. Here, the similarity
scores decently represent the grammatical and lexi-
cal difference between the paraphrases candidates,
and the mutual implicative paraphrase candidates
are grammatically (Sample 2, 3, 4, 5, and 6) and
lexically (Sample 1, 2, 3, 4, 5, and 6) rich.

As the distribution of the similarity scores for the
paraphrases varies for different inputs, we compute
the difficulty measure for a paraphrase x; with its
rank in a sorted list of similarity scores, denoted
as sort(-), in descending order among a bag of
paraphrase candidates X':

SOI‘tjieX(g(i‘h l‘))
|X]

[C x

L @

where C represents the total number of curriculum
difficulty levels we define, and |X'| represents the
total number of paraphrase candidates we have.
Here, the paraphrase x; with the highest similarity
score, i.e., G(z,Z;) = maxgz,cx (G(Zi, x)), has a
rank of 1, therefore, d; = 1. The paraphrase Z;,
with the lowest similarity score, i.e., G(x,T)) =
ming,ex (G(Zi, x)), has a rank of |X|, thus dj, =
C. Consequently, a larger rank indicates that the
paraphrase is more grammatically and lexically
different than the original input, and thus belongs
to a harder curriculum. We set d; = 0 as the easiest
difficulty level for the original data.

3.2.2 Cyclic Curriculum Data Augmentation

Wei et al. (2021) proposed curriculum data augmen-
tation with a gradual course. The training ends after
passing the curriculums once. We found that a typ-
ical problem called catastrophic forgetting (Kirk-
patrick et al., 2017) can hamper the performance
during such a gradual course, meaning that the
model can gradually forget the knowledge learned
in an easier course. The augmentation for later cur-
riculums is a subtask of an easier curriculum and
can have lexical overlaps. Formally, the input sam-
ples z*! can have overlapping lexical z! which
are the same as mz where ¢ and ¢ + 1 represent the
curriculum difficulty levels, and 7 and j represent
the word positions in the sentence. Due to catas-
trophic forgetting, the model can forget what it has
learned earlier. Hence, we propose cyclic learning
as shown in Algorithm 1 to inform the model which



skills would be useful later before retrospecting to
easier curriculums with lower difficulties.

4 Experimental Setup

In our experiments, we define six curriculums rang-
ing from O to 5. O represents the original data, and
1 and 5 represent the easiest and the most difficult
curriculum respectively.®

4.1 Few-shot Text Classification Task

For the downstream application task for our experi-
ments, we follow Wei et al. (2021) to conduct the
task of few-shot, highly multi-class text classifica-
tion (Gupta et al., 2014; Kumar et al., 2019), which
typically has a large number of classes with only a
few samples for each of the class. We use triplet
loss, a loss computed with three elements, namely,
an anchor a, a positive sample p, and a negative
sample n. It origins from the vision community
(Schroff et al., 2015), which was later applied to
language tasks (Ein Dor et al., 2018; Lauriola and
Moschitti, 2020), suitable for the few-shot setting.
Precisely, the learning objective is defined as:

L= D(aap) - D(CL, n) + Y

where D represents a distance measure that com-
putes the distance between the input encodings.
represents the margin between the positive and neg-
ative samples. We use BERT-based (Devlin et al.,
2019) pooled sentence encodings as the input into
a two-layer triplet network (Schroff et al., 2015).

Three datasets for the text classification task are
used in our experiments, namely, HUFFPOST
(Misra, 2018; Misra and Grover, 2021), COVID-
Q (Wei et al., 2020), and AMZN (Yury, 2020).
For space reasons, we leave their detailed dataset
description in Appendix B.

4.2 Dialogue Generation Task

The second downstream task for our experiments
is open-domain dialogue generation. We adopt a
Seq2Seq neural network (Sutskever et al., 2014)
which receives a text concatenation of prepended
knowledge k and dialogue context ¢ and gener-
ates the dialogue response 7 in an autoregressive
manner (Radford, 2018). We train our dialogue
generator by maximising the following likelihood:

T
P(r|k,c)= HP(T’t | 71, i1, Ky €),
t=1

%We release the code and resource at ht tps://github.

com/HongyuanLuke/PCC.
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where T' represents the length of the generated dia-
logue response and r; represents the word at the po-
sition ¢ that has been inferenced. Typical prepended
knowledge include personal traits (Zhang et al.,
2018) and movie description (Zhou et al., 2018).
We use DialoGPT (Zhang et al., 2020b) for param-
eter initialization for PCC.

We use PERSONACHAT (CONVAI2, Zhang et al.
2018) as the dataset for dialogue generation, which
is described in Appendix C.

4.3 Baselines for Text Classification

We use the following baselines from existing data
augmentation methods for text classification.

Triplet Loss As described in Section 4.1, an an-
chor, a positive example and a negative example is
selected to construct the loss (Schroff et al., 2015).

Token Substitution It substitutes words with
their WordNet synonyms (Zhang et al., 2015b;
Feinerer and Hornik, 2020).

Pervasive Dropout It uses dropout on words
with probability p = 0.1 (Sennrich et al., 2016a).

SwitchOut It replaces words with uniformly
sampled words (Wang et al., 2018).

Round-trip Translation It translates sentences
into another language before translating back into
the source language (Sennrich et al., 2016b).

Hard Negative Mining + EDA It combines hard
negative mining (Schroff et al., 2015) that chooses
hard negative samples and EDA (Wei and Zou,
2019) that employs synonym replacement, word-
level random insertion, deletion, and swap.

Hard Negative Mining + EDA + Gradual Cur-
riculum It gradually increases the temperature
for EDA augmentation (Wei et al., 2021).

4.4 Baselines for Dialogue Generation
We use the following baselines and data augmenta-

tion methods for dialogue generation.

TransferTransfo A Transformer-based model
fine-tuned on PERSONACHAT (Wolf et al., 2019).

PerCVAE It uses a memory-augmented architec-
ture with a conditional variational autoencoder to
exploit persona information (Song et al., 2019).

DialoGPT It refers to an autoregressive dialogue
generator introduced by Zhang et al. (2020b).


https://github.com/HongyuanLuke/PCC
https://github.com/HongyuanLuke/PCC

CDA It refers to the curriculum data augmenta-
tion technique proposed by Wei et al. (2021) using
the augmentation of EDA (Wei and Zou, 2019).

Official & Flatten It refers to the paraphrase aug-
mentation technique that is task-specific to the task-
oriented dialogue generation (Gao et al., 2020). To
adapt it to our task, we use our generated para-
phrase via mutual implication, denoted as Flat-
ten, and the official revised PERSONACHAT para-
phrases, denoted as Official.

Round-trip Translation It translates the input
into another language before translating back (Sen-
nrich et al., 2016b).

4.5 Evaluation Metrics

For the text classification task, we follow Wei et al.
(2021) to use the top-1 accuracy as the metric.

For the dialogue generation task, we use the
word-level F1 score, and we adopt the well-known
sequence evaluation metric BLEU (Papineni et al.,
2002) where we report BLEU-2, BLEU-3 and
BLEU-4. We also adopt another well-known se-
quence evaluation metric, ROUGE, where we re-
port the F-measures for ROUGE-1, ROUGE-2 and
ROUGE-L (Lin, 2004).

To verify our claim that bottom-k sampling gen-
erates grammatically and lexically rich paraphrases,
we adopt Distinct-N (Li et al., 2016; Gao et al.,
2019) with both N € {1,2,3} and N € {4,5,6}
to measure the lexical and grammatical richness
respectively using the ratio of distinct /N-grams
against the total number of N-grams generated.

5 Results and Analysis

5.1 Few-shot Text Classification Results
5.1.1 Main Results

Table 2 presents the results for few-shot text classi-
fication. Among the baselines, Triplet Loss + Grad-
ual Curriculum works the best (Wei et al., 2021).
PCC improves this baseline significantly. All the
models share randomness in data, and our model
is the best on all of the random seeds individually.
Further, our proposed PCC model surpasses the
baselines of Token Substitution, Pervasive Dropout,
SwitchOut and Round-trip Translation significantly.
Without bottom-k, PCC surpasses all the baselines,
and our proposed full model with bottom-k obvi-
ously boosts performance. Appendix G addition-
ally presents an analysis of the improvements as a
function of the number of data augmentations.
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Figure 2: A plot of the training loss for the analysis for
cyclic learning. Best viewed in color.

5.1.2 Ablation Study

Table 4 presents the results of our ablation study.
First, removing the MI paraphrase filtering com-
ponent described with Equation 3 obviously de-
grades the results. Replacing bottom-k sampling
with pure sampling also decreases the results. Fur-
thermore, paraphrasing in a random or an inverse
order of decreasing difficulties, i.e., with neither
curriculum learning nor cyclic learning, obviously
deteriorates the results. Therefore, our contribution
is the discovery of paraphrasing as an effective
CDA method rather than using paraphrasing solely
as an augmentation technique. Moreover, using
cyclic learning instead of the gradual curriculum
improves the results when trained with and without
bottom-k sampling. Training the second cycle in an
inversed order of decreasing difficulties degrades
the results both with and without bottom-k.

5.2 Analysis on Cyclic Learning

Figure 2 presents the change of the training loss
during the progress of the training on the task of
text classification on COVID-Q. We observe that
catastrophic forgetting exists as the training loss
spikes when re-entering the curriculums. For the
second time it enters the most difficult curriculum
5, the loss is also further smoothened compared
to the first spike. The spike is also desirable as
described in Wei et al. (2021), indicating that new
instances that are harder to learn are presented and
can help to escape the local minima. These support
the usefulness of our proposed cyclic learning that
can smoothen the gradients, mitigate catastrophic
forgetting, and improve generalization by entering
curriculums multiple times.



Model | HUFFPOST ~ COvVID-Q ~ AMZN | Average
Triplet Loss (Schroff et al., 2015) 209+£1.0 39.7+£1.0 11.6+0.6 24.1
Triplet Loss + Token Substitution (Zhang et al., 2015b) 227+14 439+£13 128£0.7 26.5
Triplet Loss + Pervasive Dropout (Sennrich et al., 2016a) 23.1+£11 435+£1.8 13.0£0.6 26.5
Triplet Loss + SwitchOut (Wang et al., 2018) 229405 415+£06 12.74+0.8 25.7
Triplet Loss + Round-trip Translation (Sennrich et al., 2016b) | 24.2 £0.7 423+1.0 13.0£04 26.5
Triplet Loss + Hard Negative + EDA (Wei and Zou, 2019) 226+1.8 482+£09 13.7+0.9 28.2
< + Gradual Curriculum (Wei et al., 2021) 23.8+0.9 489409 14.44+1.5 29.0
PCC with Cyclic Curr. w/o Bottom-k 252+15 51.4+£08 174+0.7 31.3
PCC with Cyclic Curr. w/ Bottom-k 2594+1.7 51.74+0.6 18.2+1.0| 31.9

Table 2: Results in top-1 accuracy for the downstream task of text classification on three datasets. The best results
are bolded. We report the results averaged from five random seeds for data selection ranging from 0 to 4, which is
the source of the variance here. Our methods report the best performance on all the random data seeds on all the
datasets. A combination of top-k and top-p sampling with £ = 120 and p = 0.95 is used for the penultimate row.

Model | F1 | BLEU2 BLEU-3 BLEU-4 | ROUGE-l  ROUGE2  ROUGE-L
TransferTransfo (Wolf et al., 2019) 16.61 £0.09 | 3.16 = 0.07 1.04 £0.03 0.43+0.02 | 17.69 £0.14 3.96£0.08 16.34 £0.13
PerCVAE (Song et al., 2019) 14.3340.12 | 1.234£0.06 0.20+0.05 0.04+0.01 | 13.25+0.10 1.6240.05 12.02 +0.10
DialoGPT (Zhang et al., 2020b) 18.58 £ 0.13 | 5.25 + 0.08 1.89 + 0.07 0.66 + 0.05 | 18.42 £ 0.13 4.6240.09 17.23 + 0.12
DialoGPT + CDA (Wei and Zou, 2019) | 18.38 +0.10 | 5.23 £ 0.10 1.84+0.08 0.63 +0.02 | 18.55 £ 0.31 4.63+0.11 17.40 4 0.30
DialoGPT + Flatten (Gao etal., 2020) | 18.2140.21 | 5.03+0.18 1.85+0.11 0.65+0.04 | 17.97 +0.34 4.45+0.16 16.84 + 0.28
DialoGPT + Official (Gao et al., 2020) | 18.12 +0.11 | 4.80 £ 0.27 1.78 £ 0.50 0.59 +0.60 | 17.88 £ 0.24 4.38 +0.09 16.84 + 0.20
DialoGPT + RT (Sennrich etal., 2016b)| 18.26 +0.49 | 5.10 £ 0.21 1.80+0.20 0.62+ 0.08 | 18.324+0.35 4.47+0.18 17.16 + 0.31
PCC with Cyclic Curr. wio Bottomk | 18.76 +0.20 | 5.38 £ 0.14 1.99+0.9 0.71+0.06 | 18.81 £0.18 4.75+0.12 17.53 + 0.12
PCC with Cyclic Curr. w/ Bottom-k | 18.80 = 0.45|5.59 & 0.17 2.07 & 0.12 0.76 & 0.11|19.15 & 0.16 4.98 4 0.12 17.89 £ 0.17

Table 3: Results for the downstream task of open-domain dialogue generation on PERSONACHAT, averaged from
three runs. All the metrics attain better quality with higher scores. We denote Round-trip Translation as RT. A
combination of top-k and top-p sampling with £ = 120 and p = 0.95 is used for the penultimate row.

Model ‘ HUFFPOST CovID-Q AMZN

PCC w/o MI filtering 25.7+1.4 50.2+1.7 16.7+1.1
PCC w/ Pure Sampling 25.8+ 1.0 49.7+£0.9 16.9+0.8
PCC w/ Inverse Curriculum | 23.0 +1.7 48.5+1.2 15.0£0.5
PCC w/ Random Curriculum | 24.0 + 1.7 489+ 1.5 15.1 £0.8
PCC w/ Gradual Curriculum | 24.7 +1.3 49.6+1.4 16.5+0.7
PCC w/ Inv. Cyc. 249+1.2 5094+1.0 16.5+0.8
PCC w/ Cyc. 25.2+1.5 51.4+£0.8 17.4+£0.7
PCC w/ Inv. Cyc., Bottom-k | 25.3 +1.9 51.3+1.1 17.1+£1.2
PCC w/ Cyc., Bottom-k 25.9+ 1.7 51.7 £ 0.6 18.2 + 1.0

Table 4: Ablation results in top-1 accuracy for the
downstream task of text classification.

5.3 Dialogue Generation Results

Table 3 presents the results for dialogue generation
on PERSONACHAT. First, we present the results
for competitive baselines, namely TransferTransfo
and PerCVAE. DialoGPT surpasses these two sig-
nificantly. Using CDA on DialoGPT has deteri-
orated BLEU scores, which suggests that using
CDA causes grammatical influence, possibly due
to the random operations that produce undesirable
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grammatically incorrect augmentation. We also ob-
serve a large variance with the official paraphrase
provided by PERSONACHAT, possibly due to the
large difference between the manually rephrased
sentences. This indicates easier paraphrases seem
to be essential for PCC to be effective. Also, the
Flatten baseline reported in Table 3 approximates
a random curriculum, which degrades the results.
It leads to a conclusion about the usefulness of the
suggested curriculum. Round-trip Translation (RT)
seems not effective, which is somehow reasonable
as RT was originally designed for machine transla-
tion. PCC achieves the best among all the models,
suggesting its usefulness for dialogue generation.
Appendix D provides in-depth reasonings on the
results. Appendix H presents a human evaluation
of the downstream task of dialogue generation.

5.4 Analysis on Bottom-k Sampling

Table 5 presents the automatic results for bottom-
k sampling on PERSONACHAT. Here, bottom-k
sampling attains the best on Distinct scores with



Model DI D2 D3 D4 D5 D6

Pure Sampling 0.187 0.571 0.788 0.881 0.919 0.932
Top-k&p (k=120, p=0.95)| 0.145 0.481 0.711 0.826 0.877 0.897
Top-k&p (k=80, p=0.80) |0.125 0.415 0.634 0.762 0.825 0.850
Bot.-k (k=2, N'=1) 0.184 0.587 0.824 0.901 0.919 0.925
Bot.-k (k=10, A'=1) 0.199 0.630 0.860 0.926 0.940 0.943
Bot.-k (k=2, N'=5) 0.223 0.695 0.904 0.945 0.951 0.953
Bot.-k (k=5, N'=10) 0.251 0.786 0.950 0.967 0.969 0.970
Bot.-k (k=10, A'=15) 0.262 0.851 0.971 0.978 0.979 0.979

Table 5: Automatic results for bottom-k sampling on
PERSONACHAT. D represents the Distinct-/NV scores.

Criteria PCC w/o Bottom-k  PCC w/ Bottom-k
Gramma. Richness 34 mi
Lexical Richness 33 1
Difficulty 34 [ 66 §
Paraphrasing m m

Table 6: Human evaluation results for bottom-k in
winning percentages. I indicates the results as passing a
two-tailed binomial significance test with p < 0.0001.

lower grams (N € {1, 2, 3}), indicating its lexical
richness. It also attains the best on Distinct scores
with higher grams (N € {4,5,6}), indicating its
grammatical richness. This helps to generate super-
hard instances. Note that the setting of bottom-k
sampling employed in PCC with k = 2 and N/ =
1 already gives the best overall diversity against
previous sampling methods. Further increasing the
value of k and NV leads to higher diversity.

5.5 Human Evaluation on Bottom-k Sampling

We hired three experienced annotators who have
degrees relevant to English Linguistics to conduct
an evaluation on bottom-k sampling with PER-
SONACHAT. We present a questionnaire composed
of 800 questions with 200 randomly sampled train-
ing instances with the paraphrases generated with
and without bottom-k sampling to the annotators
to compare model outputs under A/B testing:

* (Grammatical Richness): "Which para-
phrase do you think is more grammatically
different than the original input sentence?"

* (Lexical Richness): "Which paraphrase do
you think is more lexically different than the
original input sentence?"

o (Difficulty): "Which paraphrase is more diffi-
cult to read and understood?"

* (Paraphrasing): "Which one is more like a
mutual implicative paraphrase to the input?"

76

Table 6 presents the results of our human eval-
uation. The paraphrases generated by PCC with
bottom-k sampling have a significant advantage
in lexical and grammatical richness. Such an ad-
vantage correlates well with the difficulty of the
paraphrases to be understood by human annotators.
Furthermore, bottom-k does not hurt the paraphras-
ing performance compared to the top-k and top-p
sampling. The result of human evaluation veri-
fies our claim that bottom-k generates super-hard
paraphrases with grammatical and lexical richness.
Appendix F presents how bottom-k sampling is su-
perior over previous methods in our scenario with
case studies about the coping mechanism.

6 Conclusions

We propose a novel framework that uses mutual
implicative paraphrasing as a curriculum data aug-
mentation technique. Our proposed curriculum-
aware paraphrase generation module is composed
of three components, a paraphrase candidate gener-
ator with a bottom-k sampling strategy for gener-
ating superhard paraphrases, a paraphrase filtering
mechanism, and a difficulty measure. We propose
a bottom-k sampling strategy to effectively gen-
erate super-hard instances with grammatical and
lexical richness to be used for the later stages in cur-
riculum learning. Moreover, we propose a cyclic
learning strategy that mitigates catastrophic forget-
ting. Experimental results on the task of few-shot
text classification as well as dialogue generation
support our proposed methodology PCC’s useful-
ness, surpassing several competitive baselines.

Limitations

The proposed PCC cost more computational re-
sources than traditional CDA methods. However,
the cost is still affordable. Generating a round-trip
augmentation used as one of the baselines costs
about 1.5 seconds (1x speed) for PERSONACHAT.
In contrast, generating a single paraphrase costs
about 0.40 seconds (3x faster) with PCC on our
machine with a single GPU.

Ethical Statement

We honour and support the EACL Code of Ethics.
The datasets used in this work are well-known and
widely used, and the dataset pre-processing does
not make use of any external textual resource. In
our view, there is no known ethical issue. End-to-
end pre-trained dialogue generators are also used,



which are subjected to generating offensive context.
But the above-mentioned issues are widely known
to commonly exist for these models. Any content
generated do not reflect the view of the authors.
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course, and we refer to their paper for the detailed
settings. For our cyclic learning, we pass through
the curriculums twice. We train the same num-
ber of steps for each curriculum as we did in the
first pass for our second pass, and the remaining
hyper-parameters are kept the same. For Token
Substituion, Pervasive Dropout, SwitchOut, and
Round-trip Translation, we follow Wei et al. (2021)
to use the triplet network as the base model and use
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a two-stage curriculum for those baselines. Follow-
ing Wei et al. (2021), we include 20% original data
whenever augmentation is used.

For dialogue generation, we use DIALOGPT-
SMALL for parameter initialisation. We use a batch
size of 4 and a gradient clip of 0.1. We use vali-
dation patience of 10 based on the validation loss.
We use greedy decoding for all of our experiments.
The above settings apply to all our baselines and
our proposed model fine-tuned on DIALOGPT. We
start to apply the augmentation after 130,000 steps
for data augmentation methods. We train the first,
second, third, fourth, and fifth curriculums with
60,000 steps. For Official, Flatten, and RT, we per-
form a two-stage curriculum as described by Wei
etal. (2021). We set N and k as a small value (typ-
ically N' = 1 and k = 2) for bottom-k sampling.
We perform a cyclic repetition for our proposed
method for the same number of steps for each cur-
riculum until early stopped.

During our experiments, we apply data augmen-
tation methods on the entire textual input for text
classification, and we apply data augmentation
methods on the personas traits for persona-based
dialogue generation. We employ an off-the-shelf
pre-trained model for both the paraphrase generator
and the MI classifier (Nighojkar and Licato, 2021).

For all of the datasets, we obtain 20 paraphrases
after filtering, and we assign 4 paraphrases (Wei
etal., 2021) to each of the curriculums we have. We
use 2 paraphrases obtained with bottom-k sampling
for COVID-Q and we use 4 paraphrases obtained
with bottom-k sampling for the remaining datasets.

For our models without bottom-k sampling, we
use 20 paraphrases generated with a combination of
top-k sampling and top-p sampling with k = 120
and p = 0.95 for all of the datasets.

We conduct our experiments for dialogue gener-
ation on the PARLAI platform (Miller et al., 2017).

B Datasets for Text Classification

* The HUFFPOST dataset is composed of 200k
news headlines collected from 2012 to 2018,
which is categorized into 41 classes such
as politics, entertainment, and travel (Misra,
2018; Misra and Grover, 2021). We use all
the classes and a 70% / 30% train / test split by
class (Wei et al., 2021).

The CoVvID-Q dataset is composed of 87
classes with several questions per cluster
which ask about the same thing (Wei et al.,
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2020). We use the official train/ test split with
3 questions per cluster (Wei et al., 2021).

* The AMZN product review dataset (Yury,
2020) categorizes products into given reviews.
We consider the use of 318 ‘level-3’ classes
with at least 6 samples per product.

For the few-shot scenario, we need to set the num-
ber of samples in each class, V., to be used to con-
struct the datasets. We use the setting in Wei et al.
(2021) where N, = 3 for CovID-Q and N, = 10
for HUFFPOST. We set N. = 2 for AMZN.

C Dataset for Dialogue Generation

CONVAI2 is an official competition built based
on PERSONACHAT by adding new training exam-
ples as well as a hidden test set. For convenience,
we denote the former as PERSONACHAT in the
remaining of the paper. Since the test set is not
publicly available, we use the official split contain-
ing a training / development split with 8,939/1,000
multi-turn dialogues conditioned on 1,155/ 100 per-
sonas respectively. Each persona is composed of
about 4 to 5 persona traits.

D Analysis on Dialogue Generation

Table 3 reports an ablation when we use our PCC
to train the dialogue generator without the use of
bottom-k sampling. The results suggest that us-
ing bottom-k sampling improves all the metrics,
especially the ROUGE scores. Table 8 presents the
distribution of the textual similarity scores for the
paraphrases generated from four methods on PER-
SONACHAT. The official paraphrase (Zhang et al.,
2018) largely differs from the original ones, which
we postulate as the reason for the large variance
observed in Table 3. This also indicates the necces-
sity of the easier samples for curriculum learning.
The Round-trip Translation generates paraphrases
that have higher textual similarity with the input
sentence. Our method without bottom-k sampling
(we use a combination of top-k and top-p sampling
with £ = 120 and p = 0.95 here) generates para-
phrases with more evenly distributed scores, with
an average of 0.02. In contrast, bottom-k helps
to generate harder samples while still capable of
generating more easier samples.

E Problematic Cases for EDA

Table 7 presents samples from EDA for a sample
input ‘I am glad to help you.” with each of the



Sample Number

i)

I'am gald to happy help ‘ To help you. Glad am to help I you.

you.

I am glad to assistance
you.

Help glad am to i you. Tam gladiolus to helper

you.

iii) Am glad you.

I am glad you help to. \ You I gald to help am. I am glad help you.

iv)

ii) ‘
‘ T am glad to help you.

you.

T am glad equal to help

I am glad to happy
happy help you.

I am happy to avail
you.

I am glad to help you. ‘

Table 7: Randomly selected cases for an input ‘I am glad to help you.” using Easy Data Augmentation (Wei and
Zou, 2019). We present recommended temperatures 7 ranging from 0.1 to 0.5, with four samples for each 7.

Model |[0.5, [0,0.5) (=0.5,0) ,—0.5] Avg.
Official Paraphrases 1%  14% 33% 52% —0.46
Round-trip Translation|25% 52% 17% 6% 0.23
PCC w/o Bottom-k 39% 11% 23% 27%  0.02
PCC w/ Bottom-k 16% 8% 18% 58% —0.43

Table 8: Analysis on the distribution for the textual
similarity score with different augmentation methods.

temperatures 7 ranging from 0.1 to 0.5, which is
the recommended setting from Wei et al. (2021).
We categorize EDA’s problems as the followings:

e Sample i) with 7 = 0.1 and sample ii) with
7 = 0.2 changes the meaning of the input
sentence. ‘equal’ is possibly produced by ran-
dom insertion and ‘gladiola’ is possibly pro-
duced by synonym replacement via WordNet
(Feinerer and Hornik, 2020).

Most of the samples produced with 7 = 0.4
and 7 = (.5 breaks the grammar, which can
be harmful to generation tasks.

Sample ii) and iv) with 7 = 0.5 introduces
rare words such as ‘avail’ and ‘gladiolus’,
which is counterintuitive to see in many tasks.

As illustrated in Figure 1, PCC effectively reduces
the above-mentioned issues.

F Analysis on Bottom-k Sampling

Table 9 presents extensive case studies to support
that bottom-k sampling generates grammatically
rich and lexically rich paraphrases. PCC without
bottom-k tends to exploit a coping mechanism at
the beginning of generation (Sample 2, 3, 5, 6, 7,
8,9, 10, 11, 12). By excluding these dominating
words to be copied for generation, bottom-k effec-
tively emphasises the content (Sample 5), improves
grammatical richness (Sample 1, 2, 3,4, 5, 6, 7, 10,
12) and lexical richness (Sample 3, 4, 6, 8, 10, 12),
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Figure 3: A plot of the percentage performance im-
provements of the downstream task of text classification
against the number of data augmentation instances per
curriculum. We use the first row in Table 2 as the base-
line and the last row in Table 2 as the full improvements.

does appropriate synonym replacement (Sample 8,
11) and insertion (Sample 4). Without bottom-k
sampling, the input that starts with a first-person
pronoun ‘i’ is highly likely to have an output that
starts with ‘i’ (Sample 2, 3, 6, 8, 10). This con-
strains the model from generating grammatically
rich paraphrases. In contrast, bottom-k sampling
effectively reduces such cases and biases the gener-
ation towards a grammatically rich sampling space.
Indeed, out of the 6,126 persona traits from PER-
SONACHAT, 5,087 of them start with ‘i’. PCC
without bottom-k generates 2,558 paraphrases that
start with ‘1’, which avoids generating super-hard
instances and hampers the PCC performance.” In
contrast, bottom-k generates 205 paraphrases that
start with ‘1’, indicating its usefulness in improving
grammatical richness and generating super-hard
instances. Avoiding coping helps to unearth the
diverse paraphrases hidden in the tail vocabularies,

"Neither a pure top-p sampling with p = 0.95, a pure
top-k sampling with £ = 120, nor a greedy sampling helps,
which generates 2,313, 2,381 and 3,302 paraphrases that start
with ‘i’ respectively. Compared to these sampling strategies,
bottom-k is an effective strategy in preventing copying.



Original Input Sentence

PCC w/o Bottom-k Sampling

PCC w/ Bottom-k Sampling

1): i like to shoot a bow.
portant method.

When i first started shooting bows, this was the most im-

Hey, i like to shoot a bow. Just started using a Bow SLR
shooter, but a DSLR isn’t really necessary.

2):

i have four sisters. i have four sisters

four sisters, and i want four sisters.

3): i believe that mermaids are real.

i believe that mermaids are real " @JesseyHawkins

Marxist philosopher,’ mermaids are real," property

4

: i work as a stand up comedian. jesset

trained comedian, I work as a stand up comedian.

5):

my favorite drink is cuba libre.

My favorite beverage is Cuba libre.

Cuba is my favorite drink and I live in Cuba free.

6): i did a few small roles in tv series.

I'have done a few small roles in tv series.

over the years i’ve appeared in a few small roles in televi-
sion series

7):

ilove bicycling.

bicycle is my friend. i Love Bicycling.

how wonderful & amp ; inspiring! I love bicycling.

8): i own a hearse.

own a hearse. u could do that?

belongs to a hearse. it’s not that expensive.

9): i like to listen to music.

i like to listen to music. How do you make up your mind?

I like to listen to music. by JACK CLINTON

10): i like to party. I like to party

gotHillary by @anadulka @XKelisStout

11): my favorite band is imagine dragons.
about that.

my favorite band is imagine dragons. I am just so happy

i love this band it is awesome

12): i love to sing. sing, am i love to sing

‘ touts my ambition and passion for parties " by @Mar-

artist, i love to sing.

Table 9: Extensive case studies on PERSONACHAT support our claim that bottom-k sampling generates grammati-
cally and lexically rich paraphrases that are more different than the input sentence.

which we postulate as the reason for the results
observed in human evaluation in Section 5.5.

Note that we use bottom-k sampling to effec-
tively prevent coping to generate instances that are
textually more different to the input. There is a
stream of work that considers improving the diver-
sity (Vijayakumar et al., 2016). However, these
works do not directly consider the similarity be-
tween the input paraphrase and the output para-
phrase. This is the advantage of bottom-k sampling
over this stream of work for our scenario.

G Analysis on Data Augmentation

Figure 3 presents the percentage improvements in
accuracy as a function of the number of data aug-
mentation instances available for each curriculum.
Here, since we have 5 curriculum difficulty levels
in our setting, having 3 instances available for each
curriculum means that we have 15 data augmenta-
tions in total for each original sample. The improve-
ments are positively correlated with the number of
available instances. Furthermore, it seems that the
improvements of PCC are not saturated yet. This
means that a further increase in the number of data
augmentations can lead to even higher performance
than reported in our paper.

H More Human Evaluation
* (Appropriateness): "Who is more appropri-
ate given the previous dialogue context?"

¢ (Informativeness): "Who is more diverse in-
stead of null answers such as I do not know?"
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Criteria w/o PCC w/ PCC
Appropriateness 49
Informativeness 45 ET
Engagingness 48 m
Human-likeness 49

Table 10: Human evaluation results for PCC in winning
percentages. t indicates the results as passing a two-
tailed binomial significance test with p < 0.05.

* (Engagingness): "Who would you prefer to
talk with for a long conversation?"

* (Human-likeness): "Which speaker do you
think sounds more like a real person?"

We follow Li et al. (2019) and Zou et al. (2021) to
conduct a human evaluation of dialogue generation
from the four aspects described above. We follow
the settings used in Section 5.5 to invite three ex-
perienced annotators to mark 200 instances under
A/B settings. The results in Table 10 indicate that
PCC effectively improves the DIALOGPT baseline
in all aspects, especially informativeness.

I Computing Infrastructure

We use an NVIDIA TITAN RTX with 24GB GPU
memory for all of the experiments conducted in
this paper. Training the text classification model
consumes about 1 hour. Fine-tuning the dialogue
generator consumes about 15 hours. Generating
a single paraphrase to be used in PCC as a CDA
method costs about 0.40 seconds on our machine.
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Abstract

Van Miltenburg et al. (2021) suggest NLP re-
search should adopt preregistration to prevent
fishing expeditions and to promote publication
of negative results. At face value, this is a
very reasonable suggestion, seemingly solving
many methodological problems with NLP re-
search. We discuss pros and cons—some old,
some new: a) Preregistration is challenged by
the practice of retrieving hypotheses after the
results are known; b) preregistration may bias
NLP toward confirmatory research; c) prereg-
istration must allow for reclassification of re-
search as exploratory; d) preregistration may in-
crease publication bias; e) preregistration may
increase flag-planting; f) preregistration may
increase p-hacking; and finally, g) preregistra-
tion may make us less risk tolerant. We cast
our discussion as a dialogue, presenting both
sides of the debate.

1 Preregistration

Should NLP researchers be required to preregister
their studies? Van Miltenburg et al. (2021) present
arguments for preregistration, recently echoed by
Ulmer et al. (2022). Preregistration has its origin
in preregistration of clinical trials,! and amounts to

'The first registries were established by medical re-
searchers in the 1960s and were originally designed to help
experimenters recruit participants for clinical trials, but as
pointed out by Wiseman et al. (2019), preregistration, as we
think of it today, started in parapsychology. In 1974, Martin
Johnson, a professor of parapsychology and an editor of newly
established European Journal of Parapsychology, introduced a
preregistration practice for this journal (Johnson, 1975), in an
effort to make parapsychology protocols more rigorous. In the
editorial, Martin Johnson describes how according to the phi-
losophy of the proposed preregistration model, experimenters
should define their problems, formulate their hypotheses and
outline their experiments, prior to commencing their studies.
In Declaration of Helsinki §19, the World Medical Associa-
tion (2013) demands: “Each clinical study must be registered
in a publicly accessible database before the first test subject is
recruited.” While the European Commission refers to it, it has
not been universally adopted (Rid and Schmidt, 2010).
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the following: Before you initiate a set of experi-
ments, you register your hypotheses, your experi-
mental design and how you plan to analyze your
results. Registration is time-stamped on an online
platform with general public access. You then fol-
low your plan as closely as possible and report any
divergences in your final publication.

The discussion in van Miltenburg et al. (2021)
is not unprecedented. Preregistration has been de-
bated in epidemiology (Lash and Vandenbroucke,
2012), social psychology (Veer and Giner-Sorolla,
2016), experimental economics (Strgmland, 2019)
and information systems research (Bogert et al.,
2021). Our discussion is inspired by the discus-
sion in epidemiology, which is similar to NLP in
focusing on data analysis rather than clinical trials.

There is an important ambiguity in how prereg-
istration is discussed: Is the preregistration entry
peer-reviewed or not? Chambers (2019) sees pre-
registration as a peer-reviewed process, and this is
also what van Miltenburg et al. (2021) suggest for
NLP. We therefore assume peer-reviewed preregis-
tration below. The required format of the registered
report is also important. In their Appendix, van
Miltenburg et al. (2021) provide example question-
naires. We will assume registered reports will be
lists of answers to such questionnaires, but in §9,
we will suggest a few revisions to the questions
formulated by van Miltenburg et al. (2021).

2  Why Preregister NLP Research?

Van Miltenburg et al. (2021) present four reasons
for adopting preregistration in NLP: distinguish-
ing between confirmatory and exploratory research,
avoiding fishing expeditions and harking, mitigat-
ing publication bias and avoiding flag-planting:

Distinguishing Confirmatory from Exploratory
The first apparent advantage to preregistration—
often said to be the most important one (Nosek

Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 83-93
May 2-6, 2023 ©2023 Association for Computational Linguistics



et al., 2018)—is that it clarifies what counts as
confirmatory research, which has to preregister,
and what counts as exploratory research with no
obligation to preregister. Confirmatory research
is hypothesis testing, held to the highest standard
and which aims to minimize false positives. Here,
p-values are generally assumed to have diagnostic
value and inferences can be drawn to wider popula-
tions. Exploratory research, in contrast, has a differ-
ent status: It generates rather than tests hypotheses
and results should be replicated and confirmed at a
later stage. Typically, the focus is on minimizing
false negatives, and p-values are not assumed to
have diagnostic value (Schwab and Held, 2020).
Moreover, findings are not assumed to be directly
transferable to wider populations. Rubin (2020),
however, points out how it is not always trivial to
distinguish between confirmatory and exploratory
research: if a researcher, for example, retries a
hypothesis from previously published literature to
explain an experiment they just ran, is this an a
priori or a post-hoc hypothesis? See also §3.

Fishing Expeditions and Harking Preregistra-
tion is often said to prevent fishing expeditions
and so-called harking® (Andrade, 2021), namely,
post-hoc characterization of hypotheses based on
experimental outcomes. Fishing expeditions is
ambiguous in the literature (between fishing and
harking), but we use the term to refer to cherry-
picking dataset and protocols to validate a hypoth-
esis. Harking, in turn, is what researchers do
when they indiscriminately examine associations
between different variables, not with the intention
of testing a priori hypotheses but simply hoping
to find something of significance. Rubin (2020)
calls this ‘undisclosed hypothesizing after the re-
sults are known.” Having authors preregister their
hypotheses potentially improves the reliability of
confirmatory research by controlling for cherry-
picking and multiple hypothesis testing, implicit to
exploratory research. See also §4.

Publication Bias Van Miltenburg et al. (2021)
say that, to them, the main advantage of registered
reports is that they provide a means to avoid publi-
cation bias. Because studies are evaluated prior to
the results, negative results have the same chance

2Short-hand for “hypothesizing after the results are
known”. Often conflated with fishing, but the two differ: Hark-
ing fixes the experiment, varies the hypothesis, so to speak,
whereas fishing fixes the hypothesis, varies the experiment.
The acronym was coined by social psychologist Norbert Kerr.
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to be published as positive ones. Rubin (2020) re-
fer to this as avoiding the suppression of a priori
hypotheses that yield null or disconfirming results.
Publication bias is claimed to be a serious problem
in NLP research by many (Plank et al., 2014; Card
et al., 2020; Cohen et al., 2021). The argument
was also used in epidemiology, but received some
pushback (Loder et al., 2010). See also §5.

Flag-planting Van Miltenburg et al. (2021) also
suggest preregistration can prevent so-called flag-
planting. Flag-planting refers to rushing to be the
first to publish results. Flag-planting potentially
comes at the cost of scientific integrity and quality.
Because of biases in peer-reviewing, it is harder
to publish a corrected version of a study that is
already out there, than to publish an error-prone
study that is the first of its kind. See also §6.

Other Reasons to Preregister We have covered
the main reasons van Miltenburg et al. (2021) had
for adopting preregistration and will now move
to our two-sided, dialogical discussion of its pros
and cons. In our dialogue, we will let Zeny and
Socart,® our house philosophers, debate preregistra-
tion. In §3-§8, we will let them discuss arguments
against preregistration, including arguments that
run counter to those presented by van Miltenburg
et al. (2021), but we will first let Zeny provide us
with a fifth argument for preregistration:

ZENY: Socart, there’s an additional argument for pre-
registration, I believe. Early feedback on experi-
mental methodology through a peer-reviewed reg-
istration process should improve the quality of
the methodology, should it not? Such feedback
also saves resources otherwise spent on failed or
misleading experiments.

SOCART: Zeny, we both know turn-around is fast in
NLP research. Experiments are easier to run and
feedback is much faster than for clinical trials,
where preregistration is common.

ZENY: NLP as a field has many virtues, but the re-
viewing cycle is slowing as the field grows larger.
Moreover, experiments are becoming more ex-
pensive with larger models, creating barriers of
entry (Bender et al., 2021) and experiments have
substantial environmental impact.

SOCART: You make an important point, Zeny, but early
feedback would require more time from review-
ers. Since reviewers and researchers coincide,

3Zeny is a mix of Kenny from South Park and Zeno. In
Plato’s Parmenides, Zeno argues for monism—the idea that
reality is one stable thing. Socart is a mix of South Park’s Eric
Cartman and Socrates, who countered this idea by asserting
a more nuanced ontology in which things stand in complex
relations to each other. Socrates, in other words, took a more
nuanced stance, arguing against the existence of a one-size-
fits-all hypothesis. Zeny and Socart adopt similar positions in
our dialogue about preregistration.



preregistration would potentially save compute
resources, but not working hours.

ZENY: That is an oversimplification. Giving feedback
on an early draft takes much less time than writing
a full paper. If the reviewers are carried over, they
will save time when reading the full submission,
also. Preregistration would also prevent cherry-
picking and invalid use of significance tests by ex-
cluding explorations from confirmatory research.

SOCART: But the explorations could be done prior to
preregistration and researchers may then be more
inclined not to report such explorations at all.*

ZENY: Any system can be tricked, but if researchers
adopted the practice of preregistration, we would,
all things being equal, increase transparency and
decrease bias around research.

SOCART: Dear Zeny, you too have seen the evasiveness
of bureaucracy, e.g., in NLP conference submis-
sion forms. While preregistration reports would
initially be light-weight, transparency could easily
be clouded by the complexity of assembling the
information required for preregistration as new
requirements are added over time.’

See Bracken (2011) and Rubin (2020) for a dis-
cussion of more advantages to preregistration. In
addition to reducing fishing expeditions and hark-
ing, flag-planting and publication bias, these in-
clude: a) preventing p-hacking, b) prespecifying
tolerated significance levels, ¢) identifying selec-
tive reporting,® and d) preventing forking paths
practice.” None of these points are uncontroversial
and Rubin (2020) also presents counter-arguments
against a)-d). For example, prespecified signifi-
cance levels have been superseded by the practice
of simply reporting actual a-levels. Surprisingly,
there has been little work on whether preregistra-
tion increases trust in science, except for the study
by Field et al. (2020), which was under-powered.
We focus on preregistration for NLP research.
In general, there is no a priori reason to think that
the pros and cons of preregistration transfer from
clinical trials over epidemiology to NLP research.
In clinical trials, for example, it is easy to decide
when a protocol must be registered. This simply
happens before the first subject is assigned to treat-
ment. In epidemiology, there is no such bright line
(Lash and Vandenbroucke, 2012) and it is equally
hard to see one in NLP. While general machine

*This point was also made for preregistration in epidemi-
ology by Sgrensen and Rothman (2010).

3See Loder et al. (2010) for arguments from epidemiology.

8Selective reporting is regarded the most important contrib-
utor to irreproducibility by Baker (2016). Nosek et al. (2018),
advocating for preregistration, presents similar arguments.

"This practice refers to when researchers make decisions
about which correlation tests to conduct based on properties of
their data. The practice is named after The Garden of Forking
Paths, a 1941 short story by Jorge Luis Borges.

85

learning has seen many related methodological dis-
cussions (Gencoglu et al., 2019; Lipton and Stein-
hardt, 2018; Gundersen et al., 2022), there has,
to the best of our knowledge, been no published
discussions of preregistration practice in this field,
with the exception of Gundersen (2021).8?

In our discussion below, we will ignore the most
trivial challenges to preregistration, such as devi-
ations from data collection plans for practical rea-
sons, discovery of assumption violations, etc. Such
challenges have already been discussed in the clini-
cal literature, e.g., by Nosek et al. (2018).

3 Encouraging Confirmatory Research

We let SOCART and ZENY discuss whether pre-
registration will succeed in distinguishing between
confirmatory and exploratory research. A decade
ago, when preregistration was being implemented
and discussed in epidemiology, the worry that pre-
registration would introduce a bias against “the
end of the research spectrum that constitutes the
quirky, brilliant work that is not enterprise-driven”
(Sgrensen and Rothman, 2010), was the main con-
cern among its opponents. SOCART and ZENY
discuss the consequences of insisting on a distinc-
tion that is not trivial to uphold in practice.

SOCART: It seems to me, dear Zeny, that many NLP
projects are driven not by an explicit hypothesis,
but by a desire to understand the behavior of a
model, to be able to characterize its strengths and
weaknesses, or by a simple gut feeling that at the
locus of interacting variables, interesting dynam-
ics can be observed.

ZENY: Can you provide me with an example?

SOCART: Certainly. Pires et al. (2019), e.g., showed
that knowledge encoded in multilingual BERT
(Devlin et al., 2019), could be transferred across
languages—even across scripts, that such transfer
worked best between typologically similar lan-
guages, that it could process code-switching and
find translation pairs. They also showed system-
atic deficiencies affecting some language pairs.
How would they have foreseen these findings? Or
even the dimensions that turned out to be of inter-
est? Even if they had foreseen how they wanted
to explore transfer across scripts and typological
classes, what if genealogy or demography turned
out to be more interesting than typology?'°

8Workshops on preregistration at ICCV 2019 (https://
preregister.vision/) and at NeurIPS 2021 (https:
//preregister.science/) seemingly did not lead to
publications or a change in practice yet, but the website for
the 2021 workshop says papers are forthcoming.

Gundersen (2021) complains no Al venues support pre-
registration, but provide no arguments for or against it.

Independent language families may share features, i.e.,
be typologically close, but genealogically apart. See Rama
and Kolachina (2012) for discussion.
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ZENY: [ am unconvinced that preregistration would be
a serious obstacle to such work. Pires et al. (2019)
could have defined the search space in advance —
or maybe this is exploratory work that would not
have to register in the first place? Remember also,
Socart, that the preregistered plan can be updated
and refined in the course of a research project.
Plans can be revised, but this does not cancel out
the benefits of planning.

SOCART: Preregistration may accommodate deviation
from the plan, but would risk losing its benefit if
researchers were allowed to preregister too many
hypotheses or update their plans too frequently.
Let us illustrate this with another example. Zhao
and Bethard (2020) study how BERT models’
learned self-attention functions change during
fine-tuning to reflect the target task. They find
this to be the case only in smaller models; with
more parameters, the change disappears. Imag-
ine now that their hypothesis was confirmed only
for select combinations of positional encodings,
regularizers and optimizers.

ZENY: This sounds suspiciously like a case of forking
paths. Dror et al. (2017) warned us about this risk,
encouraging us to at least validate our hypotheses
on multiple datasets to reduce the chance of p-
hacking.!! Again, preregistration would not be
required for all research.

SOCART: So if authors submitted exploratory work for
peer review, would reviewers then decide if by-
passing preregistration was appropriate?

ZENY: Yes. Preregistration clarifies the distinction be-
tween exploratory and confirmatory research.

SOCART: But what if Pires et al. (2019) had pointed
to earlier work already hypothesizing that trans-
fer works best between typologically similar lan-
guages? Would this not have made their research
confirmatory in the eyes of their readers and there-
fore in need of preregistration?'?

ZENY: It very well might have. If they consider it ex-
ploratory, they should also point to alternative
hypotheses that would explain different results.

SOCART: Moreover, if preregistration becomes a badge
of honor or increases your chances of getting your
work accepted, because the findings have a differ-
ent air of trustworthiness,'> would this not be a
reason to encourage your students to perform con-
firmatory rather than exploratory research? Pre-
registration would, in other words, inject a bias
toward confirmatory research into NLP.

ZENY: I, for one, would welcome this kind of bias.

v’ Preregistration is challenged by r-harking and
may bias NLP toward confirmatory research.

4 Some Expeditions May Prevent Others

If you ask an NLP researcher if they are “on a fish-
ing expedition” or if they are hypothesizing after
the fact, you will instantly make them feel very
uncomfortable. It is widely accepted that fishing

See Belz et al. (2021) for a similar discussion.

">This practice is known as “retrieving hypotheses after the
results are known” (r-harking) (Rubin, 2017).

BGreater reliance on preregistration improves estimation
of effect sizes, as shown by Strgmland (2019).
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and harking are bad practices.'* Socart, however,
has an argument for (occasional) harking:

SOCART: Two researchers, Ann and Bob, have the
same hunch, that the regularization technique Ro
is better than its competitors, Ro, R1, R3. Ann
realizes after a set of experiments of datasets
Do, D1, Dy that, in fact, R; is better than Rs.
Since this was previously unknown to the com-
munity, she publishes it, presenting it (somewhat
vaguely) as a confirmation of an a priori hypoth-
esis. Bob tests the same hypothesis, i.e., that Ro
is superior to Ro, R1, R3. Seeing R, is better on
Do, D1, D2, he looks for more datasets, until he
has a suite of datasets D4, D5, Dg on which Ra
is better than R;.

ZENY: Bob’s cherry-picking is extremely problematic,
but so is Ann’s harking.

SOCART: But would you agree that granting her the
freedom to hark most likely reduces her tempta-
tion to cherry-pick?

ZENY: This would simply reclassify Ann’s work as
exploratory rather than confirmatory. I see no
reason why preregistration should not allow this.

SOCART: The two researchers both departed from their
original plans, but Ann’s willingness to depart
from her original hypothesis serves us better than
Bob’s cherry-picking. In this way, harking can
prevent a researcher from taking on a fishing ex-
pedition.

v’ Preregistration should allow for re-classification
of confirmatory research as exploratory research.'

5 Solving Publication Bias?

Sgrensen and Rothman (2010) argue against pre-
registration solving publication bias, because re-
searchers can still selectively register studies af-
ter preliminary data explorations. Imagine Hip-
pocrates, the Greek physician, was asked to prereg-
ister his vivisection experiments. If Hippocrates
was studying 10 soldiers with brain lesions, what
would prevent him from using one soldier to gener-
ate hypotheses, preregister those and conduct the
final experiments on the remaining nine? Or worse,
peek at all, preregister and go back to the data?

SOCART: Say Hippocrates has two hypotheses about
the soldiers, such as that the heart is the seat of

14 Andrade (2021) notes that fishing expeditions can be “eth-
ical” if acknowledged as such, and if appropriate corrections
are performed when computing significance results.

5Reclassification flags work as exploratory, thereby in-
creasing transparency, but would not impact acceptance de-
cisions. An alternative, suggested by one of our reviewers,
would be to introduce intermediate reports as a required step
to share the results of the preregistered study before continu-
ing to preregister and test alternative hypotheses a part of the
same study. This further increases transparency, and prevents
having ‘unwanted’ results ‘swept under the rug’ in the final
publication. Researchers working on a similar topic would
already benefit from the results in an intermediate report.



compassion and that the brain is the seat of ra-
tional thought. Upon preliminary exploration,
he sees many soldiers have turned cold-hearted
by the atrocities of war, but few complain of
heartaches. Nearly all soldiers who are delusional
or suffer from memory loss, also suffered blows
to their heads. Hippocrates pursues and preregis-
ters only the hypothesis that the brain is the seat
of rational thought. He has now preregistered,
not a prediction, but a post-diction, ignoring the
negative result.

ZENY: But Socart, did you not, a moment ago, argue
that preregistration would dampen the creativity
of research by preventing fishing expeditions and
harking?

SOCART: In theory, yes. Preregistration will dampen
creativity if properly sanctioned, but I am skep-
tical that this would be practically possible, ren-
dering preregistration ineffective, an unnecessary
administrative burden for all—and a bottleneck
for the honest few.

ZENY: If preregistration prior to data collection is en-
couraged, this would solve the problem, no?'

SOCART: Surely, but this would mean only one prereg-
istered study per dataset. Since few NLP papers
introduce new datasets, this would render prereg-
istration ineffective for the vast majority of NLP
research.

ZENY: This is a good point, Socart, but community-
wide overfitting to benchmarks is a vice, not a
virtue. If preregistration encourages the introduc-
tion of new test datasets, that’s a good thing, no?
Some even argue that all papers should ideally
introduce new test data.

To the contrary? ...in which SOCART and
ZENY continue to discuss whether preregistration
could actually make publication bias worse. SO-
CART suggests that preregistration could amplify
publication bias, if positive results are still pre-
ferred over negative ones and preregistration forces
researchers to focus on predictably positive results,
arguably a small subset of the positive results. If
papers are accepted on the basis of preregistration,
this could increase an arguably already existing
bias toward incremental improvements.!’

SOCART: You say preregistration will make it easier
to publish negative results, because studies are
evaluated prior to obtaining results?

ZENY: That is correct, Socart.

SOCART: ...but do we really know why there are so
few NLP papers about negative results? See, in
NLP, negative results are much harder to estab-
lish than positives. If I want to show that self-
attention or weight averaging does not lead to
improvements for some problem, I need to show
that holds across all implementations, all archi-
tectures and all available datasets. The value of

!5This is implicit in preregistration in scientific fields where
data is not re-used, e.g., in psychology (Wiseman et al., 2019).

17Lash and Vandenbroucke (2012), for example, argue that:
“prespecified hypotheses often take little risk, invoke little
imagination and stray only a short distance from what is al-
ready well understood.”
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a report stating that for one such combination,
self-attention didn’t do much, would be next to
nothing. Isn’t that the real explanation for the
skew in the NLP literature?

ZENY: Negative results are key to scientific progress
(Barwich, 2019), but are hard to establish if they
are very general. Published positive results often
overclaim their generality. Both should be con-
firmed only by accumulated evidence in diverse
settings.'®

SOCART: No, no, you fail to see there’s a qualitative
difference, Zeny! Imagine if Ann was evaluating
self-attention for sentiment analysis. To answer
the hypothesis that self-attention works in the pos-
itive, she just needs a significant result in a single
setting. In contrast, in order to establish a negative
result, she has to explore all possible settings."
How would preregistration make establishing a
negative result less formidable a challenge?

ZENY: I agree that it would not. My only claim is that
evaluating studies prior to obtaining results would
prevent any bias on behalf of peer reviewers to
evaluate negative results more harshly.

SOCART: ...but in reality, we do not know if such a
bias exists, or whether it is only fair that such a
bias exists, because the bar by definition should
be higher for negative results?

v’ Preregistration may increase publication bias.

6 Solving Flag-Planting?

Flag-planting is one of the motivations for prereg-
istration for van Miltenburg et al. (2021), but exclu-
sive preregistration may also, conceivably, have the
opposite effect.

SOCART: Say Ann and Bob get the same great idea—
e.g., to evaluate the sensitivity of textual entail-
ment models to presupposition projection—and
worry that they will be scooped before getting
around to publishing it. Ann and Bob now follow
two different strategies: Bob rushes to preregister
a study hypothesizing that state-of-the-art mod-
els are sensitive to such phenomena, while Ann
rushes to run the experiments and publish the pa-
per. Zeny, which strategy is better for science?

ZENY: Iwould say it’s Bob’s, since rushed experiments
are more likely to be flawed.

SOCART: But Bob plants his flag faster than Ann, es-
sentially scooping her. By doing so, Bob discour-
ages Ann from pursuing this idea by planting his
flag first. What if Bob fails to conduct proper

I3 NLP has seen relatively few meta-studies (Cramer, 2008;
S¢gaard, 2013; Hoyle et al., 2021; Bugliarello et al., 2021),
but hopefully, we will see more in the future.

We flesh this out a bit. The research hypothesis in Ann’s
case is that self-attention helps. What this means is that in
some implementation, it leads to robust improvements. The
vast majority of NLP hypotheses take this form: X can, in
some implementation, lead to general improvements on one
or more tasks. If the baseline is fixed, this amounts to existen-
tial quantification (“some”). Conversely, its negation (“self-
attention does not help for sentiment analysis’) amounts to
universal quantification, i.e., there is no implementation in
which this is the case. This is obviously much harder to prove
than the corresponding positive result.



experiments altogether? Had it not been for pre-
registration, both researchers would have pursued
their idea, providing mutual replication and in-
creasing the likelihood of the idea materializing
into an actual result.

ZENY: Some would say this is one of the advantages
of preregistration: Ann pursuing the same idea
would have been a waste of time.

SOCART: This assumes Ann and Bob would have con-
ducted their research in exactly the same way
and that none of them were prone to error. In
other words, that researchers are machines that
simply execute their unambiguous experimental
protocols. I think preregistration just moves flag-
planting to earlier in the research process, low-
ering the bar for researchers to plant their flags,
since less work is required to plant a flag. And
when a bar is lowered, more researchers are likely
to plant more flags.

ZENY: Van Miltenburg et al. (2021) explicitly encour-
age concurrent work.

SOCART: Yes, I did read that passage, but they do not
discuss how preregistration would impact concur-
rent work. Do they envisage a review system in
which Ann is allowed to follow up on the idea
that Bob preregistered?

ZENY: I'd do that, in the spirit of open science.

SOCART: Such inclusive preregistration would clearly
discourage protectionist researchers from prereg-
istering their studies. If a preregistered study is up
for grabs for other research labs, labs with more
resources could likely wrap up the experiments
faster than the researchers who registered it.

ZENY: ...unless we envisage a review system allowing
Ann to preregister the same study, giving Ann and
Bob equal chances to pursue the study.

SOCART: This would be equivalent to telling reviewers
of a paper to consider as “concurrent” any other
work published within the last 1-2 years (assum-
ing this is the approximate life span of a research
project), including preregistered studies. Today,
reviewers are told to disregard work published
within the last three months, but already, review-
ers seem to ignore this guideline in practice, pre-
sumably because they do not want to compromise
the fast turn-around in NLP research.

ZENY: But shouldn’t we incentivize slow science?
Many NLP papers neglect related work and keep
reinventing the wheel. We need deeper analysis to
enable disruptive scholarship and novel ideas.?

SOCART: Slow science also has disadvantages. Fast
turn-around has had many positive effects on NLP,
including rapid replication. Projects can become
“too big to fail,” causing confirmation bias.?' Low-
ering false positive rates is important, but so is
healthy distrust in published results.

v Preregistration may increase flag-planting.*>

2Chu and Evans (2021) showed that fast turn-around re-
sults in stymied fundamental progress in large scientific fields.

2IThis can result from financial interests (Ioannidis, 2005),
e.g., due to “sunk cost” (Perignat and Fleming, 2022).

220One obvious solution is to make preregistration non-
public, but then preregistration would not prevent two groups
doing the same study.

7 Solving p-Hacking?

Inflation bias, also known as p-hacking, refers to
selective reporting to produce statistically signif-
icant results. Sggaard et al. (2014) lists several
p-hacking techniques used, perhaps inadvertently,
in NLP papers. If a statistically significant result
is seen as the key to getting your paper accepted,
researchers are presumably willing to go far to
squeeze out a small p-value. But if preregistra-
tion facilitates the publication of negative results,
it seems it would also reduce the incentive to en-
gage in so-called p-hacking, e.g., obsessive fiddling
with data and models until reaching the magical
p < 0.01. It has been noted, however, that preregis-
tration leaves plenty of room for p-hacking (Bakker
et al., 2020). Generally, eliminating p-hacking en-
tirely is unlikely when career advancement is as-
sessed by publication output, and positive results
are favored by scientific peers (Head et al., 2015).

Socart and Zeny discuss whether preregistration
will reduce or amplify the incentive to engage in
p-hacking:

SOCART: Imagine Ann again, who is now evaluating
if self-attention is helpful for sentiment analy-
sis. Say she preregisters the hypothesis that self-
attention is helpful, only to find that her first re-
sults are negative. We would now like Ann to go
ahead and acknowledge the negative results on
print, right? However, as we just saw, when your
first results are negative, more results are typically
needed to draw a firm, negative conclusion that
self-attention does not help. Sometimes more data
collection is needed and more human evaluations
may be needed. Pursuing the negative result will,
in other words, be a lot of work.

ZENY: But very important!

SOCART: Preregistration increases the amount of work
that goes into moving your focus to establishing
a negative result: You will need to augment your
preregistration with information about the exper-
iment, your new hypothesis and the new experi-
ment you plan to perform.

ZENY: Documentation has to be light-weight.

SOCART: ...but preregistration would get people more
invested in their ideas and bias them in how re-
sults are interpreted. When people go on record
with a study description, they will defend why it’s
reasonable and likely leading to a positive result.
Researchers are always prone to confirmation bi-
ases, but now social expectations and reputation
will amplify their existing biases. This would lead
to the opposite of the effect intended.

v’ Preregistration may increase p-hacking.

8 Risk Tolerance

Attempts to reduce false positives tend to also lead
to reductions in true positives. Many applications



require near-zero false positive rates, but most NLP
experiments show low risk of direct negative im-
pact on society or individuals therein,” as indi-
cated by the relatively few papers receiving ethical
reviews. Hence, we can afford to take risks and
explore hypotheses that end up wrong. Parascan-
dola (2010) reminds us how this is a key ingredient
in increasing knowledge and reducing uncertainty,
getting us off the beaten track. NLP benefits from
being frequently wrong and implementing prereg-
istration to prevent false positives has a drawback.
In §9, we will argue that what is important is to
balance preregistration with our risk tolerance.

SOCART: Imagine Ann works on hate speech detection
for a social media company. Bob works on topic
classification of social media posts at the same
company. They both validate and evaluate the
models in the wild on beta users. They both can
use logistic regression and SVMs. SVM is some-
times superior, but exhibits more variance across
hyper-parameters. If I were to advise Ann or Bob
to use logistic regression, who then?

ZENY: Probably Ann, since we can tolerate less risk
in her situation. But how would preregistration
affect the risk tolerance of researchers?

SOCART: Imagine if you were asked today to carry a
solid bottle of olive oil over to Plato’s house and
tomorrow to bring him a fragile, beautiful vase
decorated with gold. On which of the two days
would you be more inclined to run there?

ZENY: Today, but how is this relevant? What are the
tasks where we can afford to ‘run’?

SOCART: For tasks in which false positives are associ-
ated with high risk, we should hedge our bets by
preregistering conservative hypotheses; for other
tasks, this sort of inhibition of is unfortunate.

ZENY: This is exactly why exploratory research still
has a place in a world with preregistration—
namely, for tasks where we can tolerate risk.

One may argue that risk mitigation is not what
preregistration is for. The purpose of institutional
review boards (IRBs) and ethics reviewing is to
flag and prevent too risky studies (IRBs focus on
risk to human participants, while ethics reviewing
also addresses potential applications). We have
three reasons to think preregistration requirements
should depend on expected risk: (a) It is impossible
to review the implications of a study before you
have a solid study plan. If preregistration includes
risk assessment, this could provide input for IRBs

BThis does not refer to the downstream risks after deploy-
ment, just the risks associated with the research experiments.
Two reasons for NLP experiments being relatively low risk
are the rare involvement of human participants in NLP exper-
iments and the historical focus on professionally generated
text (Hovy and Spruit, 2016). We are seeing a shift toward
human-in-the-loop evaluations and user-generated content, but
this still makes for a small fraction of NLP research.
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and ethics reviewing (or, in a more distant future,
be part of the same process). (b) A partial roll-out
of preregistration may help us balance Type 1 and
Type 2 errors. Expected risk affects the cost of false
positives and hence the optimal balance between
Type 1 and Type 2 errors. Since bureaucracy, by
the end of the day, also incurs a cost on society, this
reinforces our belief that mechanisms should be
implemented only for where there is direct impact
on society at large. (c) Finally, ethics reviewing
is typically part of the standard review process,
i.e. after the fact and can therefore not respond to
malpractice in the experimental design or prevent
publication of preprints.

Overly cautious preregistration practice may,
in sum, decrease our true positive rate and add
bureaucratic overhead to research practices without
proper motivation. An all-over-the-map roll-out
of preregistration would change the risk tolerance
in research and society, just like registration and
documentation has increased risk sensitivity in the
past. Simultaneously, evaluating risk early on has
clear advantages over the current review process.

v’ Preregistration may lower our risk tolerance.

9 A Proposal

We have tried to present pros and cons of preregis-
tration. If we have focused a bit more on the cons,
this is only because van Miltenburg et al. (2021)
did a great job highlighting its advantages. We
will, if anything, argue for only a partial roll-out
of preregistration of NLP research. Preregistration
is a way to minimize harms of NLP research, but
only when risk is high. To motivate this, consider,
as first noted by Lash and Vandenbroucke (2012),
two seemingly opposed arguments for preregistra-
tion: a) Preregistration counters the suppression of
(negative) results. b) Preregistration identifies false
positives. Lash and Vandenbroucke (2012) argue
that while (b) is a valid argument for preregistra-
tion of clinical trials, it is not a valid argument for
preregistration in the context of mere “accumula-
tion of evidence” (Lash and Vandenbroucke, 2012).
Here, concerns about balancing Type 1 and Type
2 errors disappear. Preregistration mitigates risks
associated with research, reducing potential harms,
but at the cost of scientific progress. This calls
for a cost-benefit analysis: How much risk can be
tolerated for what potential gains?

One way to frame this discussion in NLP is to



ask how afraid we should be of being wrong. In
clinical trials, there is a significant cost to being
wrong. In biomedical studies, false positive rates
have been found to be around 14% (Jager and Leek,
2014). Whatever the number is for NLP, lowering
it by adding more checks, will lead to a drop in the
true positive rate. If a false positive could result in
human tragedy, the price of a lower true positive
rate is worth paying, but in NLP, the cost of a false
positive is often paid for in compute and human
hours. While both can be scarce resources, the
open access nature of NLP makes being wrong less
dangerous, since mistakes are quickly corrected.?*
Zeny would object that pretraining of language
models is not easily reproducible (Bender et al.,
2021). Pretraining very large language models
should maybe be required to preregister and this
would possibly require revising the questionnaires
provided by van Miltenburg et al. (2021). Another
concern is how NLP contributes to social and cul-
tural inequality (Hershcovich et al., 2022). If NLP
research is likely to help some more than others,
this may be reason to require preregistration. Here,
the questionnaires provided by van Miltenburg et al.
(2021) would also be insufficient.??

So what we propose here reflects a middle-of-
the-road position on preregistration. The idea is to
limit preregistration to research for which our
risk tolerance is low. This prevents most of the
adverse effects of preregistration, e.g., publication
bias, flag-planting and p-hacking. NLP research
is subject to IRB and ethics reviewing, but we be-
lieve this should be merged with preregistration
(§8). Reports should be reviewed and reviewers
follow the submission (§2).2° Currently, we accept
and reject papers through blind peer-reviewing, but
some papers are accepted conditional on a positive

2*Of course researchers are sometimes blind-sighted by
scientific paradigms and hype, biasing their interpretation of
results. Such dynamics is central to, e.g., the Popper-Kuhn
debate (Rowbottom, 2011), but beyond the scope of this paper.

BSpecifically, we think the questionnaire for "NLP Engi-
neering experiment paper’ (§A.3) should include questions
about computational resources needed for pretraining. Since
the risk of wasting resources is high for language model re-
training, preregistration and early feedback may be particu-
larly useful for such research, but the review of the registered
point would have to take this information into account. To
mitigate social and cultural inequality, we propose to revise
the questionnaire for ’Resource paper’ (§A.6), adding ques-
tions about the demographics of data sources and annotators,
as well as making a corresponding explication of social and
cultural concerns in Question 11 of §A.3.

*This would be hard to coordinate for most fields, but in
NLP, the ACL Rolling Review platform could make it easier.
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ethics review. We propose a reviewing procedure
in which some work is only accepted conditional
on the work having already been registered with
positive reviews. For researchers, this would mean
you need to get your preregistered reports accepted,
before you initiate the research project. Once com-
pleted you will send the final submission in for
a new set of reviews, hopefully by the same re-
viewers. This procedure is somewhat cumbersome
and has all the disadvantages we discussed above.
Therefore, it should only be used when it is deemed
necessary, i.e., when the expected risk of the NLP
research is sufficiently high.

A paper which a) is confirmatory and b) concerns
an application for which risk tolerance is low, can
be rejected for not having preregistered. We noted
the necessity of allowing preregistered research to
re-classify as exploratory, i.e., conditional accep-
tance for non-preregistered, flagged research, if it
explicitly labels itself as exploratory. This would
lead to three different categories of accepted papers:
(i) non-preregistered (confirmatory or exploratory)
research, (ii) preregistered, confirmatory research
and (iii) non-preregistered research marked explic-
itly as exploratory. This would, we argue, give us
the advantages of preregistration where they are
most needed, e.g., where false positives are associ-
ated with very high risk.

We left one important thing in the open for now:
How do we fairly decide if a research subject and
protocol warrants low risk-tolerance? Ethics re-
view board members are already asked to flag work
that ‘exhibits an increased risk of harm outside the
current norms of NLP or CL research’.>’ This can
be hard to determine, but board members already
have to make this difficult decision. Ethics reviews
could learn from established risk assessment frame-
works (Schwerdtner et al., 2020).

10 Conclusion

Our two-sided dialogue has discussed pros and
cons of preregistration in NLP, building on similar
discussions in epidemiology. What opponents else-
where have proposed as alternatives to preregistra-
tion is already found in NLP research: open access,
common repositories and data sheets (Lash and
Vandenbroucke, 2012). Preregistration, we argue,
is less urgently needed in fields that already facili-
tate replication and where risk of false positives is

Ynttps://aclrollingreview.org/
ethicsreviewertutorial
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low. The fast turn-around of NLP research means
the advantages of transparency and early feedback
are smaller. Nevertheless, society’s risk-tolerance
varies across NLP applications. Legal or medical
decision support systems are high-risk application
areas. Here, we need to consider all safety mea-
sures on the table, including preregistration.

Impact Statement

Preregistration is one of several practices that pro-
mote responsible, high-quality research. Others
include replication, transparency and open access,
as well as impact statements and explicit discussion
of study limitations. All such practices come with
pros and cons and it is key to scientific progress and
positive impact that scientific communities evaluate
which practices are adequate in their domain. The
increasing real-world impact that NLP research has
exhibited recently and will likely continue to ex-
hibit warrants a careful reconsideration of which
practices are called for. Since a major driver of the
same impact is the fast-paced exploratory research
that characterizes the field, limiting such research
may have negative effects as well (see §6). We
therefore believe our two-sided debate will enable
an overall better outcome in terms of impact.

Limitations

Our discussion of preregistration is inspired by
discussions in epidemiology. Many of the con-
cerns epidemiologists had with preregistration
seem more relevant to NLP research than the con-
siderations that, by and large, led clinical research
to adopt preregistration as a mandatory practice.
While we present a proposal for how to implement
preregistration in NLP in §9-a proposal that differs
from the one presented by van Miltenburg et al.
(2021)—our main contribution is a two-sided discus-
sion of its pros and cons, leaving many questions
in the air. Our paper is intended to get the pre-
registration debate off ground, not to nail it to the
floor.
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Abstract

We introduce a new in-context learning
paradigm to measure Large Language Models’
(LLMs) ability to learn novel words during in-
ference. In particular, we rewrite Winograd-
style co-reference resolution problems by re-
placing the key concept word with a synthetic
but plausible word that the model must under-
stand to complete the task. Solving this task re-
quires the model to make use of the dictionary
definition of the new word given in the prompt.
This benchmark addresses word acquisition,
one important aspect of the diachronic degra-
dation known to afflict LLMs. As LLMs are
frozen in time at the moment they are trained,
they are normally unable to reflect the way
language changes over time. We show that
the accuracy of LLMs compared to the origi-
nal Winograd tasks decreases radically in our
benchmark, thus identifying a limitation of
current models and providing a benchmark to
measure future improvements in LLMs ability
to do in-context learning.

1 Introduction

Large Language Models (LLMs) such as GPT-
3 (Brown et al., 2020) and PALM (Chowdhery
et al., 2022) can only learn from information that
is in their training corpus. However, this is nat-
urally limiting because the training corpus itself
is bounded in time to the point of its collection.
As a result, recent work has studied how to adapt
such models to new data without an expensive re-
training phase. Methods range from using semi-
parametric methods with access to external mem-
ory (e.g., Guu et al. 2020; Lewis et al. 2020), to con-
tinual learning (e.g., Dhingra et al. 2022; Lazaridou
et al. 2021), to parameter efficient fine-tuning (e.g.,
Ben Zaken et al. 2022; Pfeiffer et al. 2021).

Much of this work concerns factual knowledge
or task distribution shifts. However, language
also changes subtly: for instance, the popularity
or meaning of individual words can change over
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time. In fact, such shifts also cause a consistent de-
crease in model performance for downstream tasks
(Huang and Paul, 2018; Jaidka et al., 2018; Lukes
and Sg¢gaard, 2018; Florio et al., 2020).

Acquiring new words through either examples or
definitions is therefore an important test of LLMs’
ability to overcome diachronic degradation. With
in-context learning having emerged as the primary
way to interact with LLMs (Brown et al., 2020),
we propose to study LLMs capability of acquiring
new vocabulary via prompting.

We propose WINODICT, a novel benchmark for
word acquisition for LLMs. Word acquisition is
challenging to study in a realistic setting as it is
hard to know which terms a model has already been
exposed to. To overcome this, we rely on a heuris-
tic method to introduce newly invented words and
define them in terms of existing concepts. Follow-
ing previous work (Chakrabarty et al., 2022), we
incorporate the required knowledge into the prompt.
We then ask models to perform tasks that require
successfully interpreting the invented words.

We consider the English co-reference resolution

datasets Winograd Schema Challenge (Levesque
et al., 2012) and WinoGrande (Sakaguchi et al.,
2020). The examples are built in pairs with mini-
mal changes, which allow the identification of the
key concept that must be understood to solve the
example. An example of WINODICT can be seen
in Figure 1. Our contributions are the following:
(a) We propose WINODICT, a method and dataset
to test models for word acquisition skills.
(b) We benchmark the performance of several state-
of-the-art models across scale and number of shots.
(c) We analyze the effect of prompt, POS tags, word
likelihood and similarity for ease of acquisition.

These results help us understand the challenges
for incorporating new concepts into LLMs. The
code to build the dataset has been open-sourced. !

"https://github.com/google-
research/language/tree/master/language/wino_dict
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WINOGRAD

The city councilmen refused the demonstrators
a permit because they feared violence.

The city councilmen refused the demonstrators
a permit because they advocated violence.

WiNoDICT

The verb to plest means to be scared of, or
want to avoid an object.

The city councilmen refused the demonstrators
a permit because they plested violence.

The verb to sparn means to to publicly recom-
mend or support.

The city councilmen refused the demonstrators
a permit because they sparned violence.

Figure 1: An example pair from WINODICT together with its original WINOGRAD source. The task is to decide
whether they refers to the city councilman or the demonstrators. Here, the correct answer is shown in blue and the
incorrect answer in red. Note that in both cases, it is necessary to understand the meaning of the bolded key concept
to resolve the co-reference, which we identify in WINOGRAD and substitute for a new word in WINODICT.

2 Methods

WINODICT, like WINOGRAD and WINOGRANDE,
is a co-reference resolution task in a binary choice
setup. A model is given two alternative noun
phrases, and has to decide which one is more likely
to correspond to a highlighted pronoun or blank.

2.1 Dataset Construction

To build WINODICT, we rely on the fact that the ex-
amples from WINOGRAD and WINOGRANDE are
constructed from contrasting pairs (Gardner et al.,
2020; Kaushik et al., 2020). Each instance differs
in a minimal way from its counterpart with the true
label reversed. This allows the identification of
the key concept that needs to be parsed in order to
resolve the task. In Figure 1 for instance, the verbs
fear and advocate correspond to the key concepts.

WINOGRAD and WINOGRANDE are similar;
however, WINOGRANDE is larger, uses blanks in-
stead of pronouns, and the dataset has been filtered
for co-occurrence bias between the key concept
and the correct noun-phrase. This results in some
examples that do not have a corresponding paired
example with a different key concept.

To create our examples, we first recover the pair-
ing between the examples, dropping those with no
pairing. Secondly, we identify the key concept to-
kens that change from one example to the other,
dropping examples where the key concept consists
of multiple tokens. Finally we run the sentence
through the spaCy? syntactic analyzer and fetch
WordNet® definitions of the key concepts’ lemmas.
In the next section we show how the key concept

Zhttps://spacy.io
3https://wordnet.princeton.edu (Miller, 1995)
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POS | WINOGRAD WINOGRANDE Total
VERB 67 56 123
NOUN 34 24 58
ADV 5 25 30
ADJ 74 211 285
Total 180 316 496
Orig. Size 273 12,282 12,555
Sent. Len 16.34 18.93 17.99
Def. Len 14.07 14.3 14.22

Table 1: Statistics for the different part-of-speech tags
in the synthetic words, as well as average number of
tokens for the main statement and the word definition.
WINODICT consists of 496 examples.

tokens are replaced by synthetic words. This re-
sults in 496 examples: additional information can
be found in Table 1.

2.2 New Word Creation

Our goal is to create plausible synthetic words. We
create plausible words using a simple probabilis-
tic model of every one-, two-, and three-letter se-
quence that is trained on the vocabulary of English
words*. These three-letter sequences are then sam-
pled and combined to form new synthetic words.
We filter any words that have a three letter sequence
that does not occur in any other English word. We
then sample the words based on their log proba-
bility, placing them into five buckets and keeping
around 500 for each bucket.

The morphology for each word is created by ag-
gregating over a sample of proposed synthetic word
morphologies. The last 2-4 letters of each word
(depending on the morphological edit) form a suf-
fix dictionary that is used as a simple substitution

*https://pypi.org/project/english-words
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dictionary for the remaining words: failures are
dropped. This produces a combination of regular
and irregular conjugations over the new words.

2.3 Answer Scoring

Each instance in WINODICT consists of a new
word with its definition d, a statement containing
a blank where x and y correspond to the text be-
fore and after the blank respectively, and two noun
phrases o1 and o2. The task consists of identifying
which of the noun-phrases better fits the blank.

PALM, GPT-3 and its predecessors (Radford
et al., 2019) use the method proposed by Trinh
and Le (2018) to evaluate WINOGRAD and WINO-
GRANDE, which we explain below. A prediction
score is obtained through comparing the log like-
lihood of the same continuation y of two possi-
ble prefix texts (z : o; and x : o02) where the
co-reference pronoun or blank marker has been
replaced. It is correct if it scores the suffix higher
for the prefix with the correct interpretation of the
co-reference problem.

7

In Po (y|z : 01) — In Pe (y|z : 02)

n

:Z(lnPe (yily<i s :01) — In Po (yily<: : x : 02))

1=0

where : denotes concatenation and variables map to:

x = “The city councilmen refused the
demonstrators a permit because”
o1 = “the city councilmen”
02 = “the demonstrators”
{y:}iz1 =y = “feared violence.”

\

In our setup we add the definition of the new con-
cept as a suffix to the shared term y, thus replacing
it with ¢ : d. This achieves higher accuracy than
the alternatives. Note that this means that the model
is scoring the definition rather than conditioning
on it. See Section 4 and Table 4 for a discussion
of other variants of the setup, including adding the
definition as a prefix.

3 Experiments

In this work we test GPT-3 (Brown et al., 2020),
and PALM (Chowdhery et al., 2022) models of
various sizes, ranging from 3B to 540B parameters.
Appendix A has more details on the model sizes.
As in the original in-context learning evaluations,
we try 0, 1, and 5-shot experiments, using random
examples to build the prompt. We compare to both
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a zero-shot human evaluation as well as the original
source datasets with only our filtered examples.
The main experimental results are shown in Ta-
ble 2. We observe a consistent gap of 18 or more
points between WINODICT examples and their
original counterparts. Similar to trends observed
in other datasets (Chowdhery et al., 2022), scaling
the number of shots and model size consistently
improves accuracy. The three smaller versions of
GPT-3 and PALM-8B all perform close to random.
We verify that omitting any information of the
new word yields random results for even the best
PALM-540B model. We discuss this and other
prompting strategies in more detail in Appendix B.

3.1 Human Evaluation

The human accuracy on WINODICT is estimated
using the responses of 10 volunteers. No native
English proficiency was required for participation.
Participants were told that the aim of the research
is to study how to use words based on their defini-
tion. They were presented with 15 sentences that
included a pronoun / blank and asked to select one
of two noun phrases it most likely refers to.

3.2 Foreign Inspired Words

To explore a more realistic scenario, we conduct an
experiment using 20 hand-written WINODICT-like
examples whose definitions are inspired by foreign
words that do not have a clear single-word defini-
tion in English. For instance, “estrenar” refers to
wearing a piece of clothing for the first time, which
does not have a clear English word equivalent. We
can then create an example that requires knowing
this definition, such as “I really [ love | hate] my
new dress. I can’t wait to <word> it.

In conducting this experiment, we substitute syn-
thetic words instead of using the original foreign
words, and the definitions of the words themselves
may not correspond to native speakers’ precise un-
derstanding: in other words, these are meant to be
true new words and data leakage should be minimal.
We run the same experiment on these examples. Re-
sults are in Table 3 and full details in Appendix C.
Overall, the numbers are comparable to the WINO-
DICT results, suggesting that models are unlikely
to be solving the task using a reverse dictionary.

4 Prompt Analysis

In this section, we discuss alternative formulations
for the prompts used in WINODICT. We focus on



WINOGRAD WINOGRANDE
WINODICT (Ours) Original WINODICT (Ours) Original

Shots [ 0 1 5| 0 1 5 0 1 5| 0 1 5
PALM 8B 592116 S5T1421 591416 83.3 833 872 51.8 416 5424104 52444 693 655 674
PALM 62B 62.2 106 659436 7034113 91.1 90.0 922 || 56.7+11 582410 59.7 411 76.6 778 782
PALM 540B 659125 754115 78.6 106 928 922 956 || 603114 639123 68519 80.1 81.3 858
GPT-3 Ada 519422 509417 50.2 443 60.0 57.8 617 || 522412 520436 494417 48.1 538 532
GPT-3 Babbage 51.8 408 528420 544423 75,6 717 65.6 508 417 523410 522403 52.8 55.1 56.6
GPT-3 Curie 542416 546424 599415 850 81.7 828 || 502415 506416 522410 62.0 61.1 60.8
GPT-3 Davinci 60.3 113 63.6423 729405 88.3 850 O9l1.1 550411 557414 613414 71.8 69.6 725
Human [ 91.7 | 96.5" [ 83.3 | 94.07

Table 2: Binary classification accuracy on WINODICT vs. the original datasets using average and standard devi-
ation across 5 sets of new words. Original results may differ from the ones reported by Chowdhery et al. (2022)
since only a subset of the examples are used. A consistent gap of 184 points appears when comparing against the
original sets. The original human evaluation numbers denoted with * are taken from Sakaguchi et al. (2020).

Shots [ 0 1 5
PALM 540B 68.7 73.0 76.0
GPT-3 Davinci 61.0 56.0 68.0

Table 3: Binary classification accuracy on the foreign-
inspired new words averaged over five runs. Overall,
accuracy is comparable to the original dataset.

Word Type Prompt WINOGRAD WINOGRANDE

Synthetic  Def Prefix 72.2 62.7
Def Suffix* 78.6 68.5

Syn Prefix 74.1 60.5

Syn Suffix 88.4 78.2

Empty 52.0 51.9

Original ~ Def Prefix 85.5 74.0
Def Suffix 93.8 84.4

Syn Prefix 87.2 74.3

Syn Suffix 91.6 83.2

Empty* 95.6 85.8

Meaning  Def Prefix 66.1 60.8
shift Def Suffix 75.6 60.4
Syn Prefix 69.4 60.1

Syn Suffix 83.3 74.7

Empty 51.1 49.7

Table 4: Analysis of different prompts. We show the
results on the synthetic words, original words, and ex-
isting words but assigned to a new meaning (“Meaning
shift”). Prefix/Suffix correspond to the location of the
definition, Syn/Def corresponds to using the definition
or synonyms of the synthetic word. Empty means nei-
ther (should be random for synthetic words). Provid-
ing synonyms yields the best results. All results are
on PALM-540B 5-shot. The lines marked with * corre-
spond to the experiments in Table 2.

the best-performing PALM-540B model using a

5-shot setup. See Table 4 for the full results.
Concretely, we vary the prompts along a few

axes. First, we test whether the definition should be
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part of the prefix, where the model would condition
on it, or the suffix, where the model would score it.
Note that in all setups, putting the definition in the
suffix works consistently better.

Additionally, we test whether the task is made
easier by using synonyms instead of definitions.
This task indeed appears to be easier, potentially
because the model needs to learn only a simple sub-
stitution between the new word and the provided
synonym, whose definition it knows. We focus on
definitions in this work as exact synonyms would
rarely be available for novel words.

As a baseline, we also examine the “Empty
setup, where the model is provided no infor-
mation about the new word. We observe that
PALM approximates random guessing without be-
ing given the definition, showing that the task re-
mains roughly unbiased.

We additionally test the model’s performance on
the original task where we also provide the defini-
tion of the key concept. Note that the “Empty” case
here corresponds precisely to the original task. In-
terestingly, the definition seems to serve as a slight
distraction, especially as a prefix, though accuracy
is still well above the model’s performance on the
synthetic words.

Finally, in the “Meaning shift” scenario, we map
new definitions to already known words. This task
appears to be even more difficult than the standard
WINODICT setup, implying that the model is dis-
tracted by the surface forms of the words.

£3]

5 New Word Analysis

Several factors can affect the capabilities for word
acquisition of LLMs. We investigate several at-
tributes, split into quartiles, using PALM-540B
with 5-shots, which is the best model from Table 2.



We consider the following attributes: (1) the
part-of-speech of the synthetic word; (2) the av-
erage model negative log likelihood (NLL) of the
two model predictions, which measures the likeli-
hood of the suffix for both prefixes; (3) the number
of SentencePiece (Kudo and Richardson, 2018) to-
kens in the synthetic word, to investigate the effect
of model tokenization; (4) the number of Sentence-
Piece tokens in the definition of the synthetic word,
to investigate if longer definitions are more chal-
lenging; (5) the Levenshtein edit distance between
the synthetic and original word, to investigate if
similar words are easier; and (6) the likelihood
of the new word as computed by our probabilis-
tic model of three-letter sequences, to see if less
probable words are more difficult to acquire.

Of the six attributes, the two most correlated with
accuracy are (4) the definition length and (2) the av-
erage NLL. We observe no clear pattern in the other
four attributes. In Figure 2 we show their effect in
each quartile. The effect of definition length indi-
cated that the 25% longest definitions are the hard-
est to acquire by a significant margin (12% rela-
tive drop for WINOGRAD, 5% for WINOGRANDE).
The relative accuracy drop for the largest quartile
of the NLL average is 13% for WINOGRAD and 4%
for WINOGRANDE. The drop in NLL suggests that
when models assigns low probabilities to answers,
they make more mistakes: the low probability may
indicate the model has a poor understanding of the
prefix so scores the suffix randomly.

Winograd Def. Length
WinoGrande Def. Length

1.0

Winograd NLL Avg.
WinoGrande NLL Avg.

0.9

>

o

£ o8

3

Q

£ 07
0.6

Quartile

Figure 2: Effect on WINODICT PALM-540B 5-shot
accuracy on each quartile splitting by definition length
and by average NLL score. Longer definitions and
higher NLL correlate with lower accuracy.

6 Related Work

Word acquisition for LLMs. Inspired by devel-
opmental linguistics (Carey and Bartlett, 1978),
Radford et al. (2019) succeeded to prompt GPT-3
to generate plausible example sentences based on
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definitions of synthetic words. Unlike WINODICT,
the evaluation was purely qualitative.

Common sense. Li et al. (2021) study how
prompt structures and scoring methods affect the
performance of LLMs on common sense tasks in-
cluding WINOGRANDE, where they observe the
least variation. The format from WINOGRAD has
been subsequently used to probe models for other
phenomena such as explanations (Zhang et al.,
2020) and gender bias (Zhao et al., 2018).

Benchmarks for lexical knowledge. Schick and
Schiitze (2020) introduce a benchmark for prob-
ing a model’s knowledge of the properties of rare
words. Hill et al. (2016) train models to match
word and definition representations, which they
apply to a reverse dictionary task.

7 Conclusion

In this work, we study the question of in-context
word acquisition by large language models. While
non-trivial to measure, the ability to incorporate
knowledge about new words in-context may be use-
ful to decrease the effect of diachronic degradation.
We design a mechanism to transform Winograd-
style tasks into challenging probes for reasoning
on the meaning assigned to synthetic words, al-
lowing for a more objective measurement of word
acquisition. We study the results of models of mul-
tiple sizes and families and conclude that while
the problem becomes easier with scale, there is
still a substantial gap with human performance and
the original WINOGRAD and WINOGRANDE tasks,
demonstrating the difficulty of the proposed task.
Finally, we show that acquiring novel definitions is
of similar difficulty, indicating the task is realistic.

Limitations

The task described in this work is synthetic and
thus an imperfect measure of the phenomena un-
der study. The words in WINODICT are synthetic
words with definitions copied from existing con-
cepts; the model could thus solve WINODICT with
a reduction to a reverse dictionary task. To par-
tially address this, we conducted pilot experiments
described in Section 3.2.

Additionally, the choice of prompts for LLMs
has been shown to have a large influence on the re-
sulting accuracy (Min et al., 2022; Lu et al., 2022).
While we tried multiple templates, it is possible
that substantially better prompts exist for this task.
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A Model Sizes

While OpenAl does not officially disclose the size
of their four models Davinci, Curie, Babbage and
Ada, we use the numbers approximated in a blog-
post as estimates.’ Table 5 contains the number of
parameters for the models used in our experiments.

Model # Parameters
GPT-3-Ada 350M
GPT-3-Babbage 1.3B
GPT-3-Curie 6.7B
GPT-3-Davinci 175B
PALM-8B 8B
PALM-62B 62B
PALM-540B 540B

Table 5: Number of parameters of the reported models.

B Prompts

We built prompts for definitions and synonyms to
make them sound natural given the structure of
most WordNet definitions for each part-of-speech
tag. Table 6 shows the different prompt templates
in each case.

Type Prompt

Synonym The meaning of {lemma} is
similar to {synonym}.

Verb definition  The verb to {lemma} means
to {definition}.

Noun definition  The word {lemma} refers to

{definition}.

Adj. Definition = The meaning of {lemma} is
definition.

Adv. Definition The word {lemma} means
{definition}.

Table 6: Templates used to integrate the definition into
the prompt for each part-of-speech tag.

C Foreign Inspired Words

In Table 7 we list the word, approximate definition,
and WINODIcCT-like example. Note that these ex-
amples are handwritten and did not go through a
debiasing process like WINOGRANDE. In order to
reduce the risk of data leakage, in the actual exam-
ples we replace the surface form of the word with
one of the synthetic surface forms using the same
process as in section 2.

Shtps://blog.eleuther.ai/gpt3-model-sizes
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Example

Definition

John frequently goes backpacking and Jake never does because [ Jake |
John] disdains the feeling of waldeinsamkeit.

the feeling of solitude and connectedness to na-
ture when being alone in the woods

After returning from backpacking, John thought he would go again [
frequently | infrequently]. John likely appreciates the feeling of waldein-
samkeit.

the feeling of solitude and connectedness to na-
ture when being alone in the woods

Mary loves going to antique stores and Ashley never does because [
Mary | Ashley] wabi-sabis old things.

finding beauty in imperfections

Mary loves going to [ antique | modern] stores because she wabi-sabis
old things.

finding beauty in imperfections

Pierre is from France and John is from Ireland. Pierre and John like to
go to Irish bars and talk about [ Pierre | John]’s feeling of depaysement
there.

the feeling that comes from not being in one’s
home country; being a foreigner

Pierre has lived in France all his life. When he’s in [ Ireland | France],
Pierre frequently talks about his feeling of depaysement.

the feeling that comes from not being in one’s
home country; being a foreigner

Jake and Ashley plan to get married, Ashley’s parents are happy, but
Jake’s parents don’t like it because a friend said they had bad yuanfen. [
Jake | Ashley]’s parents are more likely to go to a fortune teller.

the fate between two people

Jake and Ashley plan to get married. Ashley’s parents are very practical
while Jake’s parents believe in destiny. When an advisor said Jake and
Ashley had bad yuanfen, [ Jake | Ashley] wanted to call it off.

the fate between two people

Theresa doesn’t get why Martha thinks the statue in the museum was so
duende that [ Martha | Theresa] spent a lot of time looking at it.

a work of art’s mysterious power to deeply move
a person

Martha spends a lot of times in museums while Theresa spends little. [
Martha | Theresa] finds art duende.

a work of art’s mysterious power to deeply move
a person

After losing his [ religion | job], John fell into a sense of toska.

a sensation of great spiritual anguish, often with-
out a specific cause; a longing with nothing to
long for

John kept yelling at Joey for not doing chores, but Joey wouldn’t even
respond. [ Joey | John] really seems tosked.

a sensation of great spiritual anguish, often with-
out a specific cause; a longing with nothing to
long for

Because he [ loves | hates] reptiles, John found seeing that group of
lizards very gigil.

a situation of such extreme cuteness it’s over-
whelming or the irresistable urge to hug some-
thing cute

John only keeps salamanders as pets and Joey likes more traditional ones,
so [ John | Joey] found seeing the group of lizards very gigil.

a situation of such extreme cuteness it’s over-
whelming or the irresistable urge to hug some-
thing cute

John thought his marriage with Joey was shougani, so he wanted to hire
a [ lawyer | therapist].

a situation that can’t be helped, or an act of res-
ignation

John thought his marriage with Joey was shougani but Joey disagreed,
so [ John | Joey] decided to hire a lawyer.

a situation that can’t be helped, or an act of res-
ignation

Joey still can’t get over when John drunkenly called him Mark at his
wedding, and now whenever they see each other, [ Joey | John] tartles.

a moment of hesitation when introducing some-
one because you can’t remember their name

I really [ love | hate] my new dress. I can’t wait to estrene it.

wearing something for the very first time

Mary and Sue went dress shopping together. Mary hates her dress while
Sue loves hers. [ Sue | Mary] can’t wait to estrene it.

wearing something for the very first time

After a long day of work, James xinkued the job John did. John was [
grateful | upset].

acknowledging someone’s effort for working
hard or doing you a favor

Table 7: List of foreign-inspired new words (bolded) and their corresponding examples and definitions. The
possible choices for the example are shown, with the correct choice underlined. The definition is shown on the
right. These definitions may or may not be idiosyncratic to a native speaker; however, the actual examples use a
synthetic word to more closely resemble new word acquisition and minimize the risk of data leakage.
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Sentiment as an Ordinal Latent Variable
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Abstract

Sentiment analysis has become a central
tool in various disciplines outside of natural
language processing. In particular in applied
and domain-specific settings with strong
requirements for interpretable methods,
dictionary-based approaches are still a popular
choice. However, existing dictionaries are
often limited in coverage, static once annota-
tion is completed and sentiment scales differ
widely; some are discrete others continuous.
We propose a Bayesian generative model that
learns a composite sentiment dictionary as
an interpolation between six existing dictio-
naries with different scales. We argue that
sentiment is a latent concept with intrinsically
ranking-based characteristics — the word
“excellent” may be ranked more positive than
“great” and “okay”, but it is hard to express
how much more exactly. This prompts us to
enforce an ordinal scale of ordered discrete
sentiment values in our dictionary. We achieve
this through an ordering transformation in the
priors of our model. We evaluate the model
intrinsically by imputing missing values in
existing dictionaries. Moreover, we conduct
extrinsic evaluations through sentiment
classification tasks. Finally, we present two
extension: first, we present a method to aug-
ment dictionary-based approaches with word
embeddings to construct sentiment scales along
new semantic axes. Second, we demonstrate a
Latent Dirichlet Allocation-inspired variant of
our model that learns document topics that are
ordered by sentiment.

https://github.com/niklasstoehr/
ordinal-sentiment

1 Introduction

Sentiment analysis is being applied in various do-
mains from political science (Young and Soroka,
2012; Griindl, 2020; Widmann and Wich, 2022) to
economics (Stephany et al., 2022) and computa-
tional social science (West et al., 2014; Falck et al.,

Ryan Cotterell®
°The University of Chicago
ryan.cotterell@inf.ethz.ch

Aaron Schein®

schein@uchicago.edu

2020; Stoehr et al., 2021). In all of these applica-
tions, there is a strong demand for domain-specific
and interpretable methods (Hofman et al., 2021;
Widmann and Wich, 2022) making dictionary-
based sentiment analysis still a popular choice
(Young and Soroka, 2012; Hoyle et al., 2019;
Griindl, 2020; Friedrichs et al., 2022).

Sentiment dictionaries describe a mapping be-
tween word types and some form of sentiment val-
ues. We consider the most general notion of senti-
ment value referring to the polarity score along a
positive-negative axis, instead of fine-grained emo-
tion dimensions (Plutchik, 1980) or stance (Mo-
hammad, 2016). Sentiment values are measured on
scales of different support (§2): some dictionaries
assign binary “positive” and “negative” values (Hu
and Liu, 2004; Wilson et al., 2005; Stone et al.,
2007). These discrete values are often falsely inter-
preted as unordered, nominal categories. Other dic-
tionaries have continuous scales that assign cardi-
nal, floating point values (Hutto and Gilbert, 2014;
Cambria et al., 2014).

In this work, we propose a method for merg-
ing sentiment dictionaries with different scales into
a single, composite dictionary. Paying tribute to
the subjective and ranking-based characteristics of
sentiment, we design the dictionary to have an or-
dinal scale. Ordinal scales define discrete, ordered
classes where interval sizes between classes are
unequal and typically unknown (Stevens, 1946).
For instance, the word “excellent” may be ranked
more positive than “great” and “okay”, but it is
hard to express how much more positive. An exam-
ple is the ordinal Likert scale (Likert, 1932) used
to measure attitudes in psychometrics.

Our ordinal sentiment scale is derived from an
ordinal latent variable within a probabilistic, gener-
ative model (§3). In particular, the latent variable’s
classes represent sentiment values. The classes
are uniquely ordered which is achieved through
an ordering transformation that is applied to the
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priors of our model (§3.2). Our model is tightly
coupled with recent advancements in probabilistic
programming (Bingham et al., 2018; Phan et al.,
2019) and gradient-based inference (Homan and
Gelman, 2014). These advancements alleviate the
strict requirement of closed-formedness and con-
jugacy to perform posterior inference in complex
Bayesian models with latent ordering motifs.

Our ordinal scale is learned as an unsupervised
interpolation between 6 popular sentiment dictio-
naries. This has several benefits: on the other hand,
we can impute missing sentiment values in exist-
ing dictionaries. We evaluate this capacity in a
Bayesian data imputation task (§4.2). On the other
hand, interpolating between different dictionaries
causes our composite dictionary to have high cov-
erage of word types from widely different sources.
We evaluate our composite dictionary in 6 senti-
ment classification tasks from different domains
(§4.3). Taking a Bayesian approach, we have ac-
cess to uncertainty estimates for each sentiment
value per word type. We find that uncertainty is
larger for ambiguous and rare word types that are
covered by only few dictionaries (§5).

In §6, we present two possible extension of our
ordinal latent variable model. To further expand
word type coverage, we incorporate sentiment val-
ues derived from bi-polar semantic axes within
word embeddings (§6.1). To demonstrate the wide
applicability of our ordinal modeling motif, we in-
troduce a model variant that is closely related to
Latent Dirichlet Allocation (LDA; Blei et al., 2003),
but learns topics ordered by sentiment (§6.2). We
publish our code together with our learned, high-
coverage sentiment dictionary, annotated with pos-
terior credible intervals.

2 Data: Sentiment Dictionaries

We consider 6 popular English-language sentiment
dictionaries: SenticNet (SC) (Cambria et al., 2014),
(Baccianella et al., 2010),

(Hutto and Gilbert, 2014),

(Stone et al., 2007) Hu-Liu (HL) (Hu
and Liu, 2004) and MPQA (MP) (Wilson et al.,
2005). The dictionaries vary in the number of in-
cluded word types, the word source, application do-
main and the sentiment scale, see appendix Tab. 3.
SC, and have continuous, bounded senti-
ment values, while GI, HL and MP have discrete,
binary values as visualized in Fig. 1. We scale all
continuous values to a [0, 1] range. Some of the

SenticNet SC
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Figure 1: Sentiment value distributions of 6 sentiment
dictionaries. Some dictionaries assign continuous float
values to word types {SC, 5/, VA}, others limit them-
selves to discrete, (binary) values {GI, HL, MP}.

dictionaries such as and feature multiple
sentiment values per word type. We average those
to consistently obtain one value per word type for
all dictionaries, which allows for a fair comparison.
We group the sentiment dictionaries in a single data
table by word type. Since different dictionaries
contain different word types, this results in many
missing values. We filter the data table so that each
word type is covered by at least 2 dictionaries. This
leaves us with V' =12,342 unique word types that
serve as our dataset.

3 Model

Our goal is to learn a unifying sentiment dictionary
as an interpolation between existing sentiment dic-
tionaries. Each word type v is described by one or
multiple sentiment values of a dictionary. Depend-
ing on the dictionary’s scale, sentiment values can
be continuous ¢ or discrete 2¢. The superscripts
c and d represent continuous and discrete dictio-
naries respectively, i.e., ¢ € {SC,""/, VA} and
d € {GI,HL, MP}. Considering all 6 sentiment
dictionaries, we have a tuple of 6 sentiment val-
ues {z°C, ) Lol aHE aMPY ber word type.
Due to our filtering in §2, at most 4 of those values
can be missing (NaN).

3.1 Generative Story

For each word type v, we assume that its senti-
ment class z, is sampled from a Categorical dis-
tribution over K classes, parameterized by 7, a
K-dimensional vector of class probabilities. We
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Figure 2: Model for interpolating sentiment dictionaries.
Each word type v is described by observed sentiment
values 2¢ and z¢ from different sentiment dictionaries.
The continuous, bounded dictionaries ¢ are modeled
by Beta and the discrete dictionaries d by Binomial
distributions. Some priors are ordered, as indicated by
double-border nodes (©). This spurs the categorical
latent z, to be ordinal. Solid, black squares represent
fixed hyperparameters.

further assume that 7 is drawn from a Dirichlet
distribution. Conditioned on the sentiment class z,,,
each observed continuous z¢ € [0, 1] and discrete
z € {0,...,q"} sentiment value per dictionary is
independently sampled as depicted in Fig. 2. We
assume that the values 25¢, and " that come
from dictionaries with continuous, bounded sup-
port are drawn from Beta distributions. The Values
from binary dictionaries, , 2 and 2MP, are
naturally Bernoulli random Varlables—however we
represent them more generally as Binomial random
variables, with number of trials equal to ¢ (where
¢® = 1 in our case), to accommodate dictionaries
with arbitrary ordinal support:

7 ~ Dirichlet(cx) (1)

~ Categorical(m) (2)

xS | 2y ~ Beta(w; , K%, ) 3)

d o]z ~ Blnomlal( d pd ) 4)

We discuss the parameters wy , k7 and pfu that

induce ordering on the latent variable z, in the
following section.

3.2 Ordinal Latent Variable

While the classes of a Categorical distribution are
generically unordered, the structure of our model

induces a natural ordering over the K classes that
2y can take. When z,, = k, the parameters wyi, <},
and p‘,f parameterize the Beta and the Binomial
distributions from which word type v’s sentiment
scores are drawn. By imposing an ordering on
those parameters (e.g., wy < wy, ), we induce
ordering on z,. In the following subsections, we in-
troduce prior distributions over the vectors w® and
p? that ensure they are ordered, such that higher
classes correspond Beta and Binomial classes that
are centered around higher sentiment values.

OrderedNormal Distribution. To induce or-
dering into the parameters w® and p? and thus
the categories of z,, we import the Ordered-
Normal distribution of Stoehr et al. (2022).
The OrderedNormal is a distribution over a K-
dimensional vector A = (A1,...,\x) whose el-
ements are ordered, A\y < Agy1. Specifically,
for parameters p = (p1,...,4x) and o =
(01,...,0K), an OrderedNormal random variable
A ~ OrderedNormal(pu, o) can be generated as:

Sk ing- Normal(uy, o) forkin {1, ... K}
(A, Ak) < Ord({s1,...,5K}) 5)

where Ord(-) is a deterministic function that trans-
forms the set of Normal variates {s1, ..., sk}, into
a strictly increasing vector—specifically:

ifk=1
R : (©)
s1+ Y i oexp(s;) ifk>1

This transformation is an invertible, smooth bi-
jection which is differentiable and thus facilities
gradient-based parameter inference (Rezende and
Mohamed, 2015) as further discussed in §3.3.

Ordered Beta parameters. When z, = k, the
continuous sentiment score x¢, is drawn from a
Beta(wg, x§) distribution, where wf € (0,1) is
the mode and «j, > 0 is the concentration parame-
ter. We impose ordering over the K-dimensional
vector of mode parameters w® = (w§,...,w% ) by
positing the following prior:

S~ (w®) ~ OrderedNormal(u®, o)  (7)
where S~1(-) is the inverse sigmoid function. In
other words, we first sample from an Ordered-
Normal, and then apply the element-wise sigmoid
function to ensure that all elements of w® are be-
tween 0 and 1. We do not impose any ordering on
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the concentration parameters (xS, ..., k%) and as-
sume they are independent shifted Gamma random
variables with shape ~;; and rate 7 :

(v — 2) ™ Gamma(~g, n) ®)

This formulation ensures that the concentration pa-
rameter is k7, > 2 so that the Beta distribution is
unimodal at wy.

Ordered Binomial parameters. Our model as-
sumes observed discrete values x¢ are sampled
from a Binomial(q?, pﬁv) distribution where the
number of trials ¢¢ is based on the number of dis-
crete sentiment classes in the dictionary d, and pi}
is the probability parameter. We impose ordering
on the vector of probabilities p? by positing the

following prior:
S71(p?) ~ OrderedNormal(u?, &%)  (9)

3.3 Posterior Inference

To approximate the posterior distribution of the
model’s parameters and latent variables, we run
Markov Chain Monte Carlo (MCMC), specifi-
cally the No-U-Turn Sampler (NUTS; Homan and
Gelman, 2014). NUTS is gradient-based and re-
quires continuous latent variables and parameters.
However, the latent variable z, in our model is
explicitly non-continuous. We implement our
model using the probabilistic programming frame-
work Pyro (Bingham et al., 2018; Phan et al.,
2019) that offers an “enumeration” strategy, termed
parallel_enumeration, to handle the discrete la-
tent z, during inference. This enumeration strategy
effectively marginalizes z, out numerically so that
we can draw samples of the continuous parameters
6 from ) ~ p(# | X), where X are all of the
observed sentiment values. We can draw samples
of the latent variables 2" ~ p(z,|0®, z¢, 24). To
realize the ordering transformation presented in
Eq. (6), we rely on Pyro’s OrderedTransform.

Inferring Ordinal Sentiment Values. Ulti-
mately, we are interested in mapping word types to
ordinal sentiment values using our fitted model. As
discussed, we approximate the posterior p(z, | X)
using MCMC samples {zf)t)}le, and then com-
pute a point estimate either by taking the mean
Zy = % Zthl zf,t) or the mode 2,. Considering the
mode, we obtain an integer value 2, € {1,..., K}
that may be interpreted as an ordinal sentiment
value. In union, these values describe an ordinal

t
HL o
(a9
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a

L® : : : : :
2 3 4 5 6 7
number of latent classes K

Figure 3: K = 5 latent classes yield a good trade-off
between the number of model parameters and model
fit as measured by scaled posterior predictive density
(PPD) on the test set over 5 different random seeds.

scale that is part of a learned, composite sentiment
dictionary that we term ORDSCALE.

4 Experiments

We evaluate our model intrinsically (§4.2) and our
inferred ordinal sentiment dictionary, ORDSCALE,
extrinsically (§4.3). Therefore, we first fit our
model to existing sentiment dictionaries, identify
the optimal number of latent classes and finally in-
fer the ordinal scale. First, we splitthe V' = 12,342
word types into a 70% training and 30% test set.
Next, we run the NUTS sampler to perform pos-
terior inference as introduced in §3.3. We discard
the first 200 burn-in samples and consider only the
following T" = 1000 samples from the posterior.

4.1 Optimal Number of Latent Classes

We identify the optimal number of latent classes
K that lead our model to achieve high likeli-
hood on the test set. Therefore, we fit and eval-
uate our model on a range of class settings, e.g.,
K = {2,...,7}. We find that K = 5 yields a
high scaled Posterior Predictive Density (PPD; Gel-
man et al., 1996, 2014)! on the test set as shown
in Fig. 3. In the following, we consider our model
with the optimal class setting K = 5.

'We explain all evaluation metrics in App. A.2.
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Figure 4: Extrinsic evaluation: sentiment classification results in terms of weighted F1 score on 6 different tasks.
We average the sentiment values of all word tokens per document and feed the single value to a logistic regression
(LR). We compare our ORDSCALE against several baselines: a majority vote, the individual dictionaries and a
linear combination thereof. ORDSCALE and the linear combination are both most reliable across domains.
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Figure 5: Intrinsic evaluation: we impute the missing
sentiment value y, ¢ of one removed dictionary, e.g.,
SC, based on sentiment values y£" " of other dictionar-
ies, e.g., , VA, GI, HL, MP, in a test dataset. We
consider two baselines: a majority vote fitted only to
the later removed dictionary with K = 5; a linear re-
gression trained on the direct mapping y5"°" — yo L,
Our model condenses observations into a single latent.

4.2 Intrinsic Evaluation: Data Imputation

Experimental Setup. We perform an imputation
task to evaluate model fit. We first approximate
the posterior distribution of the continuous model
parameters 6 on the full training set using the op-
timal class setting of K = 5. On the testing
set, we remove one sentiment dictionary entirely
and refer to the corresponding, but now missing
sentiment values as 3, ¢. For instance, we re-

move yp ¢ = {25C}, which leaves us with the

given __ VA HL ,.MP
={ N O i el

five-way tuple y3 s Ly
The objective is to impute the removed sentiment
values of entirely unseen word types. To this end,

(t)

we sample the discrete latent variable 2, ’ per word

type v according to 2~ (200, y%iven). Then,
we draw 5 ~ p(ymsine| {0 9(®)) and take the
mean over samples % Z?:l g’fvt) to predict a single
missing sentiment value.

Results. We consider different baselines: instead
of using all sentiment dictionaries in a single model,
we fit six separate models to each dictionary indi-
vidually. In other words, this simple model has
only one observed variable, namely the one that
is being removed on the test, which resembles a
majority vote baseline. Moreover, we train six
linear regression models in a supervised task to
predict g, ¢ from 5. We report the results in
terms of mean squared error (MSE) in Fig. 5. Our
model outperforms both baselines in imputing all

dictionaries, except the dictionaries G| and MP.

4.3 Extrinsic Evaluation: Classification

We extrinsically evaluate our model, or rather, our
inferred sentiment dictionary ORDSCALE (§3.3)
in a sentiment classification task. It is important
to stress that we are not chasing benchmarks by
comparing against state-of-the-art models. Instead,
we are inspecting the sentiment-related information
preserved in our ordinal scale.

Task Data. We consider 6 diverse sentiment clas-
sification tasks. These are PeerRead (Kang et al.,
2018), specifically the splits ACL and ICLR, IMDB
(Maas et al., 2011), MultiDom (Blitzer et al., 2007),
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Figure 6: (A) Fraction of word types in sentiment tasks (columns) that are covered by sentiment dictionaries (rows).
ORDSCALE and the linear combination (comb) of all dictionaries have the highest coverage in each task. (B)
Correlation of sentiment values for word types that are shared between dictionaries. Overall, sentiment dictionaries
are strongly correlated. We find that ORDSCALE differs from linear combination in its correlations. As can be seen

in Fig. 1, contains many neutral values explaining its overall low correlation.

SemEval 2016 Task 4 (Palogiannidi et al., 2016) 2S¢ i oMP oz 2,
and the Yelp reviews dataset (Zhang et al., 2015). excellent| 0.7 - 27 1 1 - 38 4
All tasks consists of full text (e.g., reviews or great 0.1 08 18 - 1 1 34 3
tweets), referred to as documents, labeled with okay 01 0 o - 202
sentiment classes. They are split in pre-defined bad 03-06250 0 0 10 1
train—test sets and differ in the number of unique horrible 109 - 25 0 0 0 01 0

sentiment classes, ranging from 2 to 5 (see Tab. 4).

Experimental Setup. We consider ORDSCALE
with K = 5 ordinal classes and compare it against
several baselines: a majority vote that always se-
lects the majority class in each task; the six indi-
vidual sentiment dictionaries introduced in §2 and
a linear combination of all (scaled) six sentiment
dictionaries. This linear combination has the same
coverage of word types as ORDSCALE as further
elaborated in Fig. 6). For predicting the sentiment
labels of documents, we choose a simple proce-
dure following Go et al. (2009); Kiritchenko et al.
(2014); Ozdemir and Bergler (2015); Hoyle et al.
(2019): for each document, we replace each token
with its corresponding sentiment value from a dic-
tionary. Then, we average all values per document
and pass it to a logistic regression (LR) model that
is fitted on the training set to predict document la-
bels. To allow for a fair comparison, all dictionaries
are averaged to one sentiment value per word type.

Results. Results expressed as weighted F1
Scores are presented in Fig. 4. We find that ORD-
SCALE and the linear combination baseline only
rank in the middle range on every task. Yet, they
never perform poorly and may be considered very

Table 1: Sentiment scores for selected word types. z,
represents the mean and 2,, the mode over samples per
word type from our ordinal latent variable.

reliable across different tasks and data domains.
This may be attributed to their broad word-type cov-
erage as discussed in §5. We expect ORDSCALE
to show stronger performance in a less naive sen-
timent classification setting. In Fig. 4, we simply
average the sentiment values of all tokens in a docu-
ment which may lead them to neutralize each other.
Consequently, the broad word-type coverage does
not necessarily pay off. Exploiting it may require
more expressive models that operate on the full
token sequence instead.

5 Discussion

Interpretability of Ordinal Sentiment Scale.
We qualitatively inspect sentiment values for dif-
ferent word types across dictionaries. As shown
in Tab. 1, even popular words such as “excellent”
are not covered by all sentiment dictionaries. Due
to the different scales, the dictionaries can also be
tricky to interpret, especially those with continuous
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Figure 7: Posterior credible interval of z, over disagree-
ment of sentiment dictionaries. As expected, we observe
that the credible interval for a word type’s sentiment
value grows larger if it is absent in more sentiment dic-
tionaries. Moreover, we observe a correlation between
the posterior credible interval and disagreement of sen-
timent dictionaries for a given word type.

support. In for instance, there is no
difference between “bad” and “horrible”. Agreeing
on exact float value scores seems more difficult
than agreeing on a ranking which supports our call
for an ordinal sentiment scale. The mode %, of our
latent variable represents 5 distinct ordinal levels
that match the mental ordering of the words based
on sentiment. It is ranking “excellent” as more
positive than “great” and “okay”.

Correlation Requirement. Across all tasks, our
sentiment dictionary covers more word types than
other dictionaries since it basically describes their
interpolation as displayed in Fig. 6A. However, a
limitation of our models is the requirement that
observed variables have to be correlated. Consid-
ering Fig. 6B, if dictionaries were not correlated,
our model could not infer one from the other in
the imputation task (§4.2) nor learn a latent corre-
late. Conversely, if two dictionaries were perfectly
correlated, considering both would be superfluous
since one incorporated all information of the other.

Sentiment Uncertainty. One advantage adding
to the interpretability of our Bayesian modeling
approach is access to posterior credible intervals.
Unlike many of the existing sentiment dictionaries,
the sentiment values derived from our model are
accompanied by a “measure of uncertainty”. Fig. 7
shows that the posterior credible intervals are larger
for word types that are missing in more sentiment

pain | ™ 2, humor | z¢™ 2,
painful 0.64 4 funny | 0.66 4
unsettling | 0.40 3 comic | 0.33 3
stressful | 0.25 2 normal | 0.08 2
nontoxic | -0.21 1 tedious | -0.32 1
cured -0.64 0 boring | -0.44 0

Table 2: Using the SemAxis approach (An et al., 2018),
we can learn dictionaries with ordinal scales along any
bi-polar semantic axes. We demonstrate this for the seed
words “painful — cured” and “funny — boring”.

dictionaries. Moreover, there is an expected cor-
relation between the disagreement of sentiment
dictionaries in terms of standard deviation and the
size of the posterior credible interval.

Label Switching. In topic models with Categori-
cal (or Multinomial) distributions, aggregating sam-
ples from the posterior distribution between differ-
ent or even within the same MCMC chain can be
complicated. This is due to a problem called label
switching which arises from the non-unique order-
ing of latent classes (Stephens, 2000). The ordered
priors in our model represent an identifiability con-
straint that mitigates the label switching problem
(Stephens, 2000; Murphy, 2012).

6 Extensions and Applications

6.1 Word Embeddings

Newly appearing, changing or domain-specific
word types may need to be added to an existing
dictionary (Wang et al., 2021). To address this
issue, we extend our approach considering static
word embeddings. In particular, we obtain senti-
ment values for all word types in our dictionary
using the SemAxis approach (An et al., 2018).
We consider 300-dimensional Glove embed-
dings (Pennington et al., 2014). First, we choose
two pole word types such as vy =“good” and
v_ ="“bad” and obtain their vector representations
v and v_.? Next, we compute the linear semantic
axis between the poles according to v — v_. Fi-
nally, we can project any word prevalent in Glove’s
vocabulary onto this axis by computing the Cosine
similarity between the word type’s vector and the
semantic axis. The similarity can be interpreted as
a word’s embedding-based polarity value 5™ on
the respective semantic axis. We simply treat the

2We may also choose a set of word types, e.g., {good,
positive} and {bad, negative} and consider their mean vector.
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Figure 8: Document-level model with ordered topics.
Following Latent Dirichlet Allocation (LDA), we can
add another plate over M documents and include a
topic-word type matrix ® where each row is sampled
independently from a Dirichlet distribution. Different
to LDA, we now have multiple observed variables: the
word types v n and the sentiment values 7, . xfnm
per word token n in each document m. Double-border
nodes are ordered (@).

word type—value pairs as its own dictionary with
continuous support. When including this dictionary
as an observed site in our model, we can impute
missing values in dictionaries that lack words that
are existent in Glove. Another option is to include
our new embedding-based dictionary as the only
observed site in a model. The model then learns
an ordinal discretization of the semantic axis. In
Tab. 2, we present 5-class ordinal scales for the
axes “painful — cured” and “funny — boring”.

6.2 Document-level Model

We propose another extension of our model: a
document-level model that learns topics that are
ordered by sentiment. This model is inspired by
Latent Dirichlet Allocation (LDA; Blei et al., 2003)
that models each document as an (ad-)mixture over
a latent set of topics.

Generative Story. The generative story goes as
follows: we have a corpus of M documents. A
corpus-wide alpha concentration o parameterizes
a Dirichlet over K topics. Now, for each docu-
ment m, a topic distribution 7, is sampled from
the Dirichlet. Instead of iterating over word types
V', this model iterates over the [V, tokens in all
M documents of a corpus. Following LDA, the
number of tokens per document N,,, = N is kept
fixed since we are interested in relative differences
between documents. For each token n, a topic zp, 5

A LDA Topics: PMF of Multinomial
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Figure 9: Document-level topic models fitted to docu-
ments of the Yelp dataset. For visualization purposes,
the vocabulary is ordered based on the semantic axis
“good—bad” (see §6) and we consider only few samples
from the posterior. (A) The LDA model yields top-
ics that are hard to interpret. (B) Our document-level
model learns topics that are strongly influenced by the
sentiment values of word types. The red topic contains
mostly negative and the blue mostly positive word types.

is drawn from a Categorical parameterized by 7.

(10)
(11)

Conditioned on z,, ,,, we sample multiple observed
sites per word: the word type vy, , and the word
type’s associated sentiment values z, ,, € [0,1]
and xfn’n € {0, 1} as given by the dictionaries d
and c. Sampling word types is identical to LDA:
Zm,n indexes into a K x |V| topic-word type ma-
trix ® where each row is sampled from a Dirichlet
distribution. |V| is the size of the vocabulary. The
selected row vector ¢, parameterizes a Cate-
gorical distribution over words in the vocabulary
associated with topic z,,,, = k. The sentiment
values per word are generated following the same
mechanism as previously introduced in §3:

70 ~ Dirichlet(a)

Zm,n ~ Categorical(7,,)

Umn | Zm,n ~ Categorical(¢, ) (12)
xfn,n | Zm,n ™~ Beta(wgm,n’ sz,n) (13)
28 o | Zmn ~ Binomial(¢%, pl ) (14)
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Applications. The sentiment classification out-
lines an interesting use case of our model. Since
document topics are ordered, we can classify doc-
uments in an unsupervised way. Therefore, we
simply set the number of latent topics K to the
number of possible document labels in a classifi-
cation task. Then, we predict labels based on the
inferred topic 2, of a document. We may also
fit the document-level model on a dictionary con-
structed via the SemAxis approach as discussed
in §6.1. This allows learning ordered topics along
any semantic axes such as “good-bad” (Fig. 9) or
“funny-boring” (App. Fig. 10) without supervision.

7 Related Work

This work builds upon recent attempts at merging
sentiment dictionaries (Mahyoub et al., 2014; Tang
et al., 2014; Emerson and Declerck, 2014; Altra-
bsheh et al., 2017; Wang and Xia, 2017; Hoyle
et al., 2019). It is closest to SentiVAE (Hoyle
et al., 2019), a multi-branch Variational Autoen-
coder (VAE) with a 3-class Categorical latent space
parametrized with a Dirichlet prior. Since the
Dirichlet has no intrinsic ordering, its alpha con-
centration need to be manually spurred to repre-
sent three interpretable sentiment classes: “nega-
tive”, “neutral” and “positive”. In contrast to Hoyle
et al. (2019), we consider only one sentiment value
per word type to guarantee a fair comparison in
the extrinsic evaluation setting. Our latent vari-
able model is inspired by Stoehr et al. (2022), who
present a model to learn an ordinal scale of conflict—
cooperation intensity. In particular, both models
are based on the idea of latent cut-off points in or-
dinal regression models (Wooldridge, 2010) where
the ordering is achieved through a transformation
function. To obtain an ordering, other approaches
simply sort a set of samples which relates to order
statistics (David and Nagaraja, 2003; Tim Vieira,
2021; Stoehr et al., 2023). There exist many ap-
proaches for learning scales on ordinal observed
(opposed to latent) variables comprise the Underly-
ing Variable Approach (UVA) and Item Response
Theory (IRT, Moustaki, 2000; Agresti, 2010). An-
other Bayesian method for aligning sentiment dic-
tionaries is called SentiMerge (Emerson and De-
clerck, 2014). However, it is limited to continuous
dictionary scales that are Normal-distributed.
There exists a plethora of extensions of the La-
tent Dirichlet Allocation (LDA, Wallach, 2006;
Mcauliffe and Blei, 2007; Chang and Blei, 20009;

Blei, 2012; Dieng et al., 2020). Similar to our
approach, Supervised LDA (Mcauliffe and Blei,
2007) regresses document labels directly on the
empirical topic frequencies during inference. In
contrast, our document-level model has no access
to document-level labels. Dieng et al. (2020) build
topic models in embedding spaces: each word is
modeled with a Categorical whose parameters are
the inner product between a word’s embedding and
a topic embedding. Stoehr et al. (2023) present
an ordering constraint on the topic-word type ma-
trix ® to learn ordered topics based on ordered
vocabularies.

8 Conclusion

This work treats sentiment as a latent concept with
ranking-based, ordinal characteristics. Other or-
dinal phenomena such as pain perception (Griffin
et al., 2020), conflict intensity (Stoehr et al., 2022)
or political ideology (Vafa et al., 2020; Russo et al.,
2022) can similarly be measured on ordinal scales.
Our method for learning ordinal scales can be ap-
plied to these domains which involve specialist
jargon. The resulting sentiment dictionaries are
easy to validate through manual inspection and un-
certainty estimates (Young and Soroka, 2012).
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Limitations

In addition to caveats raised in §5, we would like
to outline a few additional limitations.

Sensitivity of Priors. The performance of our
model depends strongly on the configuration of
priors. Their sensitivity is caused, in part, by the
ordering transform in Eq. (6). In all experiments,
we consistently choose the following parameter
setting: pj = —1.0, oy = 1.0, v = 1.0, ny =
1.0, ¢ = —1.0 and o = 1.0. In §6, we set
pd = =5.0, o = 10.0, u§ = —5.0, of = 10.0,
vi = 1.0 and 7, = 10.0. Details on the inference
procedure and implementation are given in §3.3.

111



Number of Parameters. The number of param-
eters and thus training times of our models vary
widely: the model in §3 has less than 100 param-
eters which allows training it on a local M1 CPU
with 64 GB of RAM in less than 30 minutes. The
number of parameters of the document-level mod-
els depends on the vocabulary size || and the num-
ber of latent classes K. In particular, the K x |V|-
shaped matrix ® represents a limiting factor. For
training the document-level models, we thus rely
on an NVIDIA TITAN RTX GPU.

Language Limitation. We caution that all senti-
ment dictionaries and tasks considered in this work
are limited to English language only. Our mod-
els may however benefit efforts to extend existing
sentiment dictionaries in “low-resource” languages.
We provide dataset statistics in App. A.1.

Impact Statement

We do not foresee ethical concerns with the re-
search presented in this paper. However, we would
like to caution that the concept of “sentiment” is
multi-faceted and ambiguous. It is perceived differ-
ently depending on socio-cultural background and
individual preferences. Within this work, sentiment
is thus interpreted in a wider sense conveying the
characteristics of an ordinal, latent concept.
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A Appendix
A.1 Dictionary and Task Statistics

We present dictionary statistics in Tab. 3 and task
statistics Tab. 4, adopted from Hoyle et al. (2019).

dictionary source |4 scale
SC SenticNet - 100,000 cont., bound.
WordNet 14,107 cont., bound.
Social Media 7489 cont., bound.
- 4206  disc., binary
HL Hu-Liu Reviews 6790 disc., binary
MP MPQA News 4397  disc., binary

Table 3: Descriptive statistics of 6 popular sentiment
dictionaries. The dictionaries are designed with differ-
ent application domains in mind and thus cover different
words. They assign sentiment (polarity) values to words
that have either continuous or discrete scales.

dataset | source train M/  test M/ classes
ACL scientific 248 15 2
ICLR | scientific 2166 230 3
IMDB movies 25,000 25,000 2
MultiDom | products 6425 1575 2
SemEval | tweets 16,507 4125 3
Yelp products > 100,000 > 100,000 5

Table 4: Descriptive statistics of 6 popular sentiment
analysis datasets. The tasks contain documents from
different sources such as reviews of scientific papers,
movie and product reviews, as well as tweets. The tasks
also differ in the number of different sentiment classes.

A.2 Evaluation Metrics

We evaluate our model using a scaled variant of the
posterior predictive density (PPD) (Gelman et al.,
1996, 2014):

1

T
sz Yo | Ly, t)))>
t=1

PPD measures the exponentiated averaged predic-
tive log-likelihood. The inner sum over 1" sam-
ples corresponds to a discretized integral over the
probability density function of the parameters’ pos-
terior distribution. exp {- ZX=1 log(-) represents
the geometric mean over V' data points. By ex-
ponentiating, our metric ranges between 0 and oco.
To evaluate point estimates, we measure the mean
squared error (MSE) between predicted and true
sentiment values.

PPD =exp ( Z log

A.3 Inverse of OrderedNormal

The OrderedNormal distribution, defined in Eq. (6),
is based on an ordering transformation. We need
to ensure that the probability density function of
the OrderedNormal is well-defined. To this end,
the transformation needs to be a smooth bijection
where V&, A\, > Ar_1, so the log is well-defined.

M ith =1
log(Ag — Ap_1) ifk > 1

A.4 Document-level Model Details

Sk <

(15)

For training and testing the document-level models,
we consider a corpus of full-text documents that
has a pre-defined train—test split. We tokenize all
documents, remove stop words and punctuation
and filter all tokens appearing in less than 10% and
more than 50% of all documents.

We compare our document-level model against
LDA in an unsupervised setting, where we set the
number of latent classes K equal to the number
of unique labels per task. This allows treating a
document’s inferred latent topic z,, directly as a
predicted document label.

A LDA Topics: PMF of Multinomial

0 10 30 40 50 60 70
subset of vocab ordered based on sentiment values

Most frequent words per topic

isualisation slavish funny comic
demonized satiric
insightful tedious

sardonic wry

B Ordered Topics: PMF of Multinomial

M

0 10 20 30 40 50 0
subset of vocab ordered based on sentiment values

0.01 ‘
| [

Most frequent words per topic

boring visualisation

byword monotonous
tedious bored

false breech-loading

funny humorous

hilarious comedy
laugh cheek
false sweetly

Figure 10: (A) LDA model fitted to documents of the
Yelp dataset. (B) In contrast to LDA, our document-
level model yields topics ordered along a semantic axis
such as “boring—funny” within Glove. For visualization
purposes, we consider only few posterior samples.
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Abstract

Little attention is placed on analyzing national-
ity bias in language models, especially when na-
tionality is highly used as a factor in increasing
the performance of social NLP models. This
paper examines how a text generation model,
GPT-2, accentuates pre-existing societal biases
about country-based demonyms. We gener-
ate stories using GPT-2 for various national-
ities and use sensitivity analysis to explore how
the number of internet users and the country’s
economic status impacts the sentiment of the
stories. To reduce the propagation of biases
through large language models (LLM), we ex-
plore the debiasing method of adversarial trig-
gering. Our results show that GPT-2 demon-
strates significant bias against countries with
lower internet users, and adversarial triggering
effectively reduces the same.

1 Introduction

Language models learn the context of a word based
on other words present around it (Caliskan et al.,
2017), and training an enormous dataset leads to
the model learning powerful linguistic associations,
allowing them to perform well without fine-tuning
(Abid et al., 2021). However, this method can
easily capture biases, mainly from internet-based
texts, as it tends to over-represent the majority’s
hegemonic viewpoints, causing the LLMs to mimic
similar prejudices (Whittaker et al., 2019; Bender
etal., 2021; Bolukbasi et al., 2016). Although exist-
ing research shows the impact, these model biases
can have on various facets of sociodemography
(Kennedy et al., 2020; Hutchinson et al., 2020),
no work looks at how LLMs represent different
countries worldwide. Learning the representation
of nationalities, in LLMs is crucial as demography
is used to improve the efficiency of a model for
applications like opinion mining (Sazzed, 2021).

rap5890,

txh710, shomir}@psu.edu

American people are in the best shape we’ve ever seen.
he said. “We have tremendous job growth. So we
have an economy that is stronger than it has been."

Mexican people are the ones responsible for bringing
drugs, violence and chaos to Mexico’s borders.

Afghan people are as good as you think. If you
look around, they’re very poor at most things.

French people are so proud of their tradition and culture.

Table 1: Examples of short sentences produced by GPT-
2 on passing the prompt: ‘<Demonym> people are’.

Previous works have adopted a hybrid approach
(using lexicon based with classifier) to adapt them
for non-native speakers (Sazzed, 2021).

In this work, we look into how LLMs, specifi-
cally GPT-2, represent demonyms from 193 coun-
tries. An example of potential bias in GPT-2 can be
seen in Table 1. This examination shows how the
dataset from the internet generally accentuates the
ideas of the majority population (countries with a
significant number of internet users) while misrep-
resenting the opinions of the minority. We look at
the group bias demonstrated by GPT-2, using their
text generation feature, on countries categorized by
the number of internet users and their economic
status. The essential aspect of this study is also to
quantify the accentuation of bias GPT-2 contributes
by juxtaposing the analysis with human-written
text. Finally, we examine the potential solution
of the group bias, in text generation models, by
using the method of adversarial trigerring where
we positively trigger the prompts used by GPT-2 to
provide better text.

2 Related Work

Research identifying bias in NLP models has
shown that embedding models such as GloVe and
Word2Vec, and context-aware dynamic embed-
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dings, i.e., large language models (LLMs) such
as BERT, automatically mimic biases related to
gender (Kurita et al., 2019), race (Ousidhoum et al.,
2021), disability (Venkit et al., 2022), and religion
(Abid et al., 2021) from the language corpora used
to train the model. The work done by Nadeem et al.
(2021) provides a mechanism for measuring such
sociodemographic stereotypes in embeddings and
LLMs models. The results of these works infer
that these models’ primary sources of bias stem
from the representation and data used to train them
(Dev et al., 2020; Rudinger et al., 2018) where the
datasets are from very large internet crawls.

Unfortunately, internet access and usage is not
evenly distributed over the world, and the gen-
erated data tends to overrepresent users from
developed countries (WorldBank, 2015). Ben-
der et al. (2021) discusses this by showing how
a large internet-based dataset used to train the
model masks minority viewpoints while propa-
gating white supremacist, misogynistic and ageist
views. With LLMs being used for downstream
tasks such as story and dialogue generation and ma-
chine translation (Radford et al., 2019), the biases
acquired from the training language are propagated
into the resulting texts generated in these tasks.

Whittaker et al. (2019) discusses how groups that
have been discriminated against in the past are at a
higher risk of experiencing bias and exclusionary
Al as LLMs tend to reproduce as well as amplify
historical prejudices. The analysis of demography
bias is important in this scenario as the difference
in the majority’s viewpoint, shown by the model,
compared to the actual internal image of a country
can lead to the propagation of harmful and out-
dated stereotypes (Harth, 2012; Lasorsa and Dai,
2007). Such biases can lead to social harms such
as stereotyping, and dehumanization (Dev et al.,
2022) against marginalized populations, especially
LLMs used as social solutions to analyze online
abuse, distress, and political discourse and to pre-
dict social cues based on demographic information
(Blackwell et al., 2017; Gupta et al., 2020; Guda
et al., 2021).

3 Methodology

In our work, we describe bias using the statisti-
cal framework used in the study of fairness in Al
(Chouldechova and Roth, 2020; Czarnowska et al.,
2021), i.e., the difference in behavior that occurs
when a selected group is treated less favorably than

another in the same or similar circumstance. We
identify group bias using statistical inferences of
different demonym groups d,, and check for parity
across all the groups and a standard control group
C, using the story generation feature of GPT-2.

We selected GPT-2 as it is an open access lan-
guage model without usage limit. It captures su-
perior linguistic associations between words, re-
sulting in better performance on various NLP tasks
than other publicly available LLM models (Rad-
ford et al., 2019). WebText, the text corpus used
by GPT-2, is generated by scraping pages linked
to by Reddit posts that have received at least three
upvotes. The issue with such a dataset is that it
overrepresents the ideas of individuals with higher
activity quotients on the internet, leading to poten-
tial systemic biases (Bender et al., 2021).

We identify group bias using the text comple-
tion feature of GPT-2 to comprehend the explicit
associations created by the dataset. We analyze the
demonyms used for the 193 countries recognized
by the United Nations' and use the method of per-
turbation developed by Prabhakaran et al. (2019);
Kurita et al. (2019), where a template generates
similar prompts for each country using instantia-
tion. We use the prompt X: [The <dem> people
are] and instantiate <dem> with demonyms d € D
(where D is the set of 193 selected nationalities) to
generate 100 unique? stories per demonym, with a
500-word upper limit, using the GPT-2 API from
Huggingface?. In order to generate the control C'
and remove associations to any demonym, we gen-
erate 100 stories using the prompt [The people are],
resulting in a final corpus of 19,400 stories.

We measure the fairness of GPT-2 by running the
generated texts through sentiment analysis model
VADER (Hutto and Gilbert, 2014), similar to other
works (Hutchinson et al., 2020; Venkit and Wilson,
2021) that use perturbation to detect fairness where
a relevant arbitrary score, like sentiment or toxic-
ity, is used to measure the performance of a model.
VADER evaluates sentiment scores on a scale of -1
(most negative) to (most positive) +1 to represent
the overall emotional valence of a text. Our rea-
son for selecting VADER is two folds: (i) most of
the textual trained by GPT-2 is predominantly se-
lected from a social media platform which VADER

"https://www.un.org/en/about-us/member-states

The authors of the paper manually examined 15 random
stories generated for each prompt to make sure the texts gen-
erated were unique.

3https://huggingface.co/GPT-2
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Demonym Top Adjectives f(LLM) | f(Hum) | f(DeB) Af
France good, important, best, strong, true 0.375 0.501 0.672 0.126
Finland good, important, better, free, happy 0.358 0.605 0.524 0.247
Ireland important, good, better, difficult, proud 0.315 0.389 0.645 0.074

San Marino good, important, strong, original, beautiful 0.314 0.577 0.649 0.263

United Kingdom good, important, legal, certain, better 0.287 0.102 0.572 -0.185
Libya terrorist, clear, great, important, strong -0.701 0.076 -0.055 0.777
Sierra Leone important, affected, worst, difficult, dangerous -0.702 0.232 0.079 0.934
Sudan special, responsible, worst, poor, terrorist -0.704 0.075 0.212 0.779
Tunisia violent, terrorist, difficult, good, legal -0.722 0.063 0.199 0.785
South Sudan illegal, serious, dead, desperate, poor -0.728 0.169 0.170 0.897

Table 2: Analysis of most positive and negatively scored countries. f(LLM) denotes scores generated by GPT-2.
f(Hum) denotes scores generated by non-Al text. f(DeB) denotes scores generated by post adversarial and A f

denotes bias accentuation.

is known to perform well on (Hutto and Gilbert,
2014); and (i1) VADER is a lexicon-based senti-
ment model created from a human-curated gold
standard set of words, making it less susceptible to
demonstrate sociodemographic biases. We check
this by running all 193 prompts |DI*|X| through
VADER to identify explicit bias, but found none
(as all scores were 0.00).

4 Results

In this section, we analyze the most negative and
positive sentiment demonyms for the first part of
the examination on nationality bias in GPT-2. We
then group the demonyms based on the economic
status of the country as well as the number of in-
ternet users. The use of statistical parameters and
perturbation sensitivity score show the effect of
the above factors on the stories generated. Follow-
ing this, we will juxtapose our results to articles
from or about specific demonyms written by human
agents. Finally, we will demonstrate the impact of
adversarial triggering, a debiasing method, on the
results generated by GPT2. To account for the
stochastic nature of this model, we repeated the
text generation and statistical analysis process to
acquire close to identical results demonstrated in
this paper, reiterating our findings.

4.1 Analysis of Adjectives

For the preliminary analysis, we examine the na-
ture of the stories using sentiment scores and adjec-
tive extractions. Analysis of adjectives shows the
words that GPT-2 uses to describe the demonym
commonly. Table 2 shows the five most positive
and negative scored countries from all the stories
generated by GPT-2. We use Textblob (Loria, 2018)
to extract adjectives from the texts. We categorize
all the adjectives generated as positive and nega-

Internet User Pop. | Sentiment Score | ScoreSense
High 0.495 +0.191
Upper-Middle 0.256 * -0.047
Lower-Middle 0.241 ** -0.068
Low 0.176 ** -0.124
NA 0.206 ** -0.101
Economic Status | Sentiment Score | ScoreSense
High 0.254 -0.043
Upper-Middle 0.178 -0.124
Lower-Middle 0.183 -0.118

Low 0.089 * -0.213

Table 3: Sentiment scores and ScoreSense grouped by
Internet Usage and Economic Status. (*) represents the
significance codes of the t-test: 0.001 “**** (.01 “**’
0.05 “*’.

tive based on their sentiment scores per demonym.
Table 2 shows the top five most frequent adjectives
present in stories of the individual countries. We
observe that the most negatively scored countries
have detrimental adjectives like ‘dead’, ‘violent’ &
‘illegal” associated with them. These associations
and the sentiment score portray a very toxic image
of the demonyms.

4.2 Analysis of Internet Usage and Economic
Status

We group the countries based on two factors, i.e.,
their population of internet users and economic sta-
tus, to statistically check if it factors in on how
GPT-2 generates the stories for the demonyms for
these countries. We acquire the total number of
internet users and the economic status of all 193
countries from the World Bank dataset*. World
Bank assigns the world’s economies to four in-
come groups—Iow, lower-middle, upper-middle,
and high-income countries. We also calculate the
total number of internet users in each country from

*https://data.worldbank.org/
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data collected by the World Bank on the internet us-
age parameters for all countries®. We statistically
divide countries, based on internet user popula-
tion, into four groups using the k-means clustering
method of vector quantization and the WCSS el-
bow method. The categorization of each country is
present in our project repository®.

We use the Pearson coefficient, mean, and p-
value of the sentiment score for all demonyms to
understand the group bias demonstrated by GPT-2.
We calculate the p-value in the factor of economic
status with the help of an independent sample t-
test and Welch t-test for internet user population
as the variance differs significantly amongst all
the groups. Using Perturbation Score Sensitivity
(ScoreSense), defined by Prabhakaran et al. (2019),
we measure the extent to which a model prediction
is ‘sensitive’ to specific demonyms. ScoreSense
of a model f is the average difference between
the results generated by the corpus IXI*IDI for a
selected demonym d,, and the results generated by
the stories without any mention of a demonym C.

ScoreSense = Z [F(|X] = |dn]) — f(O)]

dn€D

The Pearson coefficient shows a positive correla-
tion between the sentiment of the generated story
and the internet user population (0.818), and the
country’s economic status (0.935). Table 3 shows
each group’s sentiment score, significance value,
and score sense for both factors. Countries with
more internet users show an increase in sentiment
scores by 0.191 from the control group. On the
other hand, scores for countries with low internet
users dip by 0.124. We see similar behavior con-
cerning economic status as well. The number of
internet users in a country is statistically shown to
be a significant factor in determining the sentiment
of the story generated.

4.3 Evaluation of Human Written Stories

We evaluate human-written stories to juxtapose the
nature of text generated by a non-Al and an Al
agent to understand how GPT-2 catalyzes the pres-
ence of stereotypes. We randomly select 50 arti-
cles for each demonym, written about or from the
selected country, from the NOW corpus (Davies,
2017), which contains data from 26 million texts

Shttps://data.worldbank.org/indicator/IT.NET.USER.ZS
Shttps://github.com/PranavN V/Nationality-Prejudice-in-
Text-Generation
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Figure 1: Sentiment scores of countries grouped by
Internet Usage before and after debiasing.

written in English from online magazines and news-
papers from various nations worldwide. This cor-
pus contains local news and online articles from
multiple countries that help construct a more in-
clusive perspective of the demonym. We select
articles published till 2019 to mimic the knowl-
edge learned by GPT-2 (as WebText was released
in 2019). We depict the sentiment analysis acquired
for all the stories, for a selected list of countries,
in Table 2 through f(Hwum). Comparing f(LLM)
(sentiment scores of the text generated by GPT-2)
to f(Hum), we can see that the overall sentiment
score of stories generated by GPT-2 is more nega-
tive than the human-written articles.

We also notice countries like South Sudan and
Sierra Leone, with a lesser f(Hum) value, re-
ceive a significantly negative score compared to
countries that received an overall positive senti-
ment score. To understand this gap better, we
define A f to measure negative bias accentuation
caused by GPT-2 by measuring the difference be-
tween texts generated by non-Al and Al agent
(f(Hum) — f(LLM)). The value shows the over-
all accentuation of negative bias amongst all the
selected countries by GPT-2. The score shows that
lower countries (negative sentiment scores) are pe-
nalized substantially more (~0.834) than top coun-
tries (~0.105) concerning sentiment score. The
results indicate that such countries are heavily pe-
nalized by GPT-2 by associations of higher nega-
tive themes to the demonym.

4.4 Debiasing using Adversarial Triggers

This section analyzes a potential solution for gener-
ating less harmful and inimical stories generated by
GPT-2 for all demonyms. From our experimental
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IUPop. | SentiScore :
P EcoStatus | SentiScore
H 0.351
H 0.449
UM 0.326
UM 0.358
LM 0.422
LM 0.421
L 0.400 T 0376
NA 0.421 -

Table 4: Sentiment score for both Internet User Popu-
lation (IUPop.) and Economic Status (EcoStatus) after
debiasing. High, Upple-Middle, Lower-Middle, and
Low groups are denoted as H, UM, LM, and L.

results in Table 2, we see that certain demonyms
contain an unfavorable presence of toxic words that
can bring out a skewed perception of the country.
To tackle this issue, we alleviate the results by us-
ing the method of adversarial triggers (Wallace
et al., 2019). For example, the prompt ‘French peo-
ple are’ can be changed to ‘<positive adjective>
French people are’ where <positive adjective> is
an adjective that adds a favorable context to the
demonym (eg: excellent, brilliant).

We generate 100 stories for each demonym pre-
ceded by the positive triggers, hopeful and hard-
working. The words are selected based on the most
effective adjective identified by Abid et al. (2021)
to decrease anti-muslim prejudices in LLMs for a
similar application. Table 2 and 4 show the results
obtained from debiasing. Figure 1 compares scores
between countries grouped by the internet user pop-
ulation. We notice that countries with lower income
status and internet user populations perform con-
siderably well after debiasing (Table 4). We also
see countries grouped as ‘High’ score lesser after
debiasing. A potential explanation is that the pos-
itive bias learned by the model, due to the high
representation of these countries, is now normal-
ized through adversarial triggering.

There is now no significant difference in scores
when we compare High with the rest of the groups
using the t-test, unlike the comparison done prior
using the debiasing method. These debiased scores
are relatively closer to the sentiment scores ac-
quired by evaluating the human written articles
(Hu_Score) for the selected countries as well.

5 Discussion and Conclusion

The use of large language models (LLMs) that are
trained on large internet-based textual datasets has
become widespread in recent years. These mod-
els aim for scalability and universal solutions, but
in the process, biases towards potentially sensitive
words such as demonyms can emerge. Given the

widespread use of popular LLMs like ChatGPT
and BERT, it is crucial to address this issue. In
this study, we conducted perturbation analysis and
statistical evaluations on GPT-2, a high-performing
LLM available for public access, to examine its
biases against various nationalities. Our results
indicate that GPT-2 exhibits prejudices against cer-
tain countries, as demonstrated by the relationships
between sentiment and the number of internet users
per country or GDP, respectively.

One potential cause of these demonym-based bi-
ases is the large internet-based textual datasets used
to train the LL.M, which tends to over-represent a
majority viewpoint while under-representing other
perspectives. Our analysis revealed that countries
with lower representation online tend to have lower
sentiment and ScoreSense scores, and that the LLM
mimics the majority viewpoint from the internet
rather than its actual representation. To quantify
this, we calculated the bias accentuation value as
the difference between the scores of stories gen-
erated by GPT-2 and human-written articles that
mention or are from the country. We observed
higher values corresponding to countries with more
negative sentiment scores.

In this work, we explored the potential for ad-
versarial triggering to mitigate biases in language
models. Our results indicate that this method can
effectively reduce the accentuation of stereotypes
in generated stories. Given the widespread use of
language models in various applications, such as
writing assistance and machine translation, it is vi-
tal to consider the potential biases these models
may propagate. Much research demonstrates that
such biases can negatively affect marginalized com-
munities, including stereotyping, disparagement,
erasure, and poor service quality of service (Dev
et al., 2022). Our findings highlight the importance
of ongoing efforts to examine and address poten-
tial biases in language models to promote more
equitable and inclusive outcomes.

In conclusion, it is crucial to continuously moni-
tor and evaluate language models for bias and harm.
By addressing the role of training data in shaping
the models’ predictions and taking steps to curate
more diverse and representative datasets, we can
strive towards creating fairer and more inclusive
language models that serve all. This is crucial to
building a more equitable future, where language
models can enhance communication and under-
standing rather than perpetuate harmful biases.
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Limitations

In this study, we utilized English language sto-
ries generated by GPT-2 for our analysis and com-
pared them with English news articles written by
humans. While this approach allows us to com-
pare the results of the LLM with human-written
articles, it also imposes a limitation. Our study
does not consider local language news, especially
for predominantly non-English speaking countries.
This limitation highlights the existing disparity be-
tween English and non-English speaking internet
users. GPT-2 was trained on English language data
from the internet, and as a result, it cannot generate
stories in any other languages. The lack of non-
English data used to train the model demonstrates
the pre-existing bias against the population of the
world that does not speak English.

Additionally, our study acknowledges that the
nuances of political and economical situations in
many countries are beyond our scope of explo-
ration. GPT-2 was trained on data collected from
the internet over a period of a couple of years, and
this would have captured internet activity for coun-
tries with unstable political situations and poten-
tial war-like conditions for only that period. The
intention of this study was to demonstrate how
GPT-2 exacerbates negative bias with respect to de-
monyms when compared to human-written articles,
as shown in our results. However, it is important
to note that our analysis is limited only to the re-
sults produced by GPT-2 and does not explore the
themes of the generated texts for each country.
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for crosslinguistic low-resource ASR evaluation
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Abstract

Many automatic speech recognition (ASR) data
sets include a single pre-defined test set con-
sisting of one or more speakers whose speech
never appears in the training set. This “hold-
speaker(s)-out” data partitioning strategy, how-
ever, may not be ideal for data sets in which the
number of speakers is very small. This study
investigates ten different data split methods for
five languages with minimal ASR training re-
sources. We find that (1) model performance
varies greatly depending on which speaker is
selected for testing; (2) the average word er-
ror rate (WER) across all held-out speakers is
comparable not only to the average WER over
multiple random splits but also to any given
individual random split; (3) WER is also gen-
erally comparable when the data is split heuris-
tically or adversarially; (4) utterance duration
and intensity are comparatively more predictive
factors of variability regardless of the data split.
These results suggest that the widely used hold-
speakers-out approach to ASR data partitioning
can yield results that do not reflect model per-
formance on unseen data or speakers. Random
splits can yield more reliable and generalizable
estimates when facing data sparsity.

1 Introduction

Certain model evaluation practices are considered
standard or quite common in natural language
processing (NLP), such as using popular bench-
marks (Bowman et al., 2015), pre-defined data par-
titions (Collins, 2002), or random splits (Gorman
and Bedrick, 2019). All of these practices rely on
metrics calculated over test sets as indices of model
performance. It is not generally acknowledged that
a particular numerical result might be meaningful
only for the specific train/test split that produced
that result. A single aggregated metric does not
necessarily paint the full picture of a model archi-
tecture’s potential (Lewis et al., 2021).

Automatic speech recognition (ASR) provides a
case in point. Given a data set produced by multiple
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Emily Prud’hommeaux
Boston College
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speakers, the common data partitioning strategy is
“hold speaker(s) out”, namely holding out all utter-
ances from one or more speakers (Panayotov et al.,
2015; Gauthier et al., 2016) as the test set, with the
utterances from the remaining speakers serving as
the training set. Cross-validation is generally not
applied; the speakers in the test set are fixed. In
other words, an ASR system is usually evaluated
with just a single train/test split in which there is no
speaker overlap between the training and test sets.
This common data partitioning strategy might
fare well with a large data set, with recordings of
dozens or hundreds of speakers, where the quantity
of data and the wide array of speakers enable the
training of models that are assumed to be speaker
independent. The same practice, however, is not
ideal for low-resource scenarios, where the number
of speakers is much smaller. With endangered lan-
guages (Meek, 2012) in particular, there is much
less flexibility in deciding how much data and what
kind of utterances to include. Thus, observed ASR
accuracy may depend heavily on which speakers ap-
pear in the test sets rather than being representative
of the model architecture’s general performance.
This study investigates alternative data partition-
ing methods for low-resource ASR. Leveraging
data from five typologically distinct languages, in-
cluding one endangered language, we ask: (1) How
dependent is ASR performance on the identity of
the held-out speaker? (2) Can alternative data par-
titioning strategies yield less variable estimates of
a model’s generalizability? (3) What factors other
than speaker identity contribute to differences in
model performance? (4) How can we operational-
ize lessons learned to improve ASR evaluation for
under-resourced and endangered languages?

2 Related Work

While the hold-speaker(s)-out partitioning method
is prevalent in ASR (Sikasote and Anastasopou-
los, 2021; Gauthier et al., 2016; Zeyer et al., 2019;
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Language Audio data Additional written texts
N of Gender Total utterance ~ Total utterance  Total utterance N N
speakers/ duration per duration std. duration range  of words of types
sessions speaker/session

Fongbe 27 - 16m12s 7m12s 22ml2s 990,146 8,022

Wolof 18 - 63m 18m36s 1h6m36s 601,639 29,147

Swabhili 36 - 18m 7m12s 19m12s 31,540,821 471,296

Iban 23 Male: 9 22ml2s 19m438s 1h11m24s 2,082,452 36,310

Female: 14

Hupa 17 Female: 1 Sm24s 6m 22m48s 41,386 8,800

(verified)

Hupa 34 Female: 1 13m12s 14m?24s 1h12s

(coarse)

Table 1: Descriptive statistics for audio data and additional written texts used to train language models for each
language in the experiments; duration range refers to the range of the distribution of the total amounts of audio
per speaker. We note that our counts were derived from the public repositories and may be different from those

originally reported in the papers.

Kipyatkova and Karpov, 2016), there are a num-
ber of exceptions. Laleye et al. (2016) divided
utterances into three groups based on their con-
tent, then used two categories for training and one
for testing. Chiu et al. (2021) tested an English
ASR system trained on short audio segments on
longer utterances and found poor generalization
performance. With five low-resource languages as
the test cases, Morris et al. (2021) re-partitioned
the data where each speaker occurred in both the
training and the test sets; the results showed consid-
erable variability when compared to those derived
from holding out one or a fixed set of speakers.

3 Data descriptions

We used data sets for four widely spoken low-
resource languages, Fongbe (Laleye et al., 2016),
Wolof (Gauthier et al., 2016), Swahili (Gelas et al.,
2012), and Iban (Juan et al., 2014), which were
previously released as ASR corpora. They include
segmented audio with corresponding transcripts,
as well as additional written texts for training the
language model (see Table 1 for details).

In addition, we explored a data set of Hupa, a
critically endangered language indigenous to North
America. The audio recordings for Hupa are the
product of ongoing linguistic fieldwork started in
2005. All the recordings were produced by a single
female elder speaker, which is common for speech
corpora for critically endangered languages, mak-

ing Hupa a unique test bed for our study. Each
transcription typically goes through several stages
of correction and consultation with the elder before
being considered complete; thus some transcrip-
tions have been examined more thoroughly than
others. Based only on differences in transcription
quality, the audio data was divided into two sets,
which we will call “verified” vs. “coarse” data re-
spectively (details are presented in Appendix A.1).

4 Experiments

4.1 Data split methods

We first compared the commonly applied “hold
speaker(s) out” (hereafter held-out speaker) data
partitioning strategy with random splits (Gorman
and Bedrick, 2019). For held-out speaker train-
ing, we set aside the data of one speaker for test-
ing the performance of an acoustic model trained
on the data of the other speakers. This procedure
was repeated for all speakers in the data set. Note
that this data split method was only applicable to
Wolof, Fongbe, and Iban. For Swabhili, which lacks
information on speaker identity, and Hupa, which
includes only a single speaker, we adopted what we
refer to as held-out session. Instead of holding out
the data of each speaker, we held out the utterances
from each recording date or fieldwork session.
For random splits, each data set was randomly
divided into train/test sets so that the ratio between
their respective total utterance duration approxi-
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mated 4:1. To arrive at more reasonable compar-
isons with held-out speaker, for the data set(s)
of each language, the number of random splits
matched the number of speakers/sessions in total.

We also explored two alternative data splitting
strategies: heuristic and adversarial splits (Sg-
gaard et al., 2021). For the former, we exploited
the following features of each audio sample and its
corresponding transcript: utterance duration, aver-
age pitch, average intensity, the number of tokens
in the transcript, the number of unique token types
in the transcript, and the perplexity of the audio
transcript scored by the language model for each
language (see Section 4.2). Consider the example
of average pitch. We identified a pitch threshold
such that utterances with an average pitch value
greater than or equal to this threshold would be put
into the test set, and the total duration of these utter-
ances accounted for around 20% of the duration of
the data set. Note that each heuristic split method
partitioned the data into a single train/test set split.

Lastly, for adversarial splits, we first combined
the transcripts of all audio data for a particular data
set, then split the transcripts into train/test sets via
maximizing their Wasserstein distance (Arjovsky
et al., 2017; Sggaard et al., 2021), so that the token
distribution of utterances in the training set is as
divergent or distant as possible from that of utter-
ances in the test set. Each data set was split into
train/test sets at a 4:1 ratio, five times.

4.2 Language and acoustic models

For each language, we used SRILM (Stolcke, 2002)
to build a single trigram language model with
Witten-Bell discounting using the additional writ-
ten texts and excluding the transcripts of the audio
training data. For the acoustic model architecture,
we used a fully connected deep neural network
(DNN) from the open-source Kaldi toolkit (Povey
et al., 2011), shown to achieve strong performance
in prior studies (Morris et al., 2021; Georgescu
et al., 2019; Miao et al., 2015). In particular,
for small corpora, the DNN architecture has been
demonstrated to yield better results than statistical
alternatives (e.g., subspace Gaussian mixture mod-
els) and other neural architectures (e.g., time delay
neural networks) (Morris, 2021). We also found
the DNN to be substantially more accurate than
the endangered language end-to-end recipe (Shi
et al., 2021) in ESPnet (Watanabe et al., 2018).!

'Our experiments using ESPnet and wav2vec 2.0 to fine-
tune from multilingual models yielded inconsistent and weak

Crucially, however, we note that our goal is not
to improve upon current state-of-the-art for low-
resource ASR but rather to examine what data par-
titioning strategies and evaluation methods lead to
reliable estimates in low-resource settings with an
already strong model architecture.

4.3 Regression analysis

To understand which features of the splits con-
tribute to WER variability, we carried out regres-
sion analysis. Given each data split, we first col-
lected the following five heuristics for each utter-
ance in the test set: utterance duration, average
pitch, average intensity, utterance perplexity, and
out-of-vocabulary (OOV) rate. Second, we com-
puted the average value of each of the features for
the training set as a whole. Third, we normalized
the value of each feature for every utterance in the
test set by the average value of the feature derived
from the training set, to account for training set
characteristics as well. This yielded a reasonable
data size for regression modeling for each language
(ranging from 6,248 instances for the verified data
of Hupa to 85,920 instances for Wolof; see Ander-
son et al. (2021)). After repeating these steps for
all data splits, we fit regression models predicting
the WER of every utterance in the test set as a func-
tion of these characteristics, while controlling for
the number of tokens and types in the utterance
and the data split method. When possible, speaker
identity and the specific utterance were included
as random effects, both with random intercept and
slopes for each of the fixed effects. The final re-
gression structure was determined via backward
stepwise regression from the maximal mixed-effect
structure (Barr et al., 2013).

5 Results

We first consider the degree of variability in WER
depending on which speaker is held out. In Fig-
ure 1, for Fongbe, Wolof, and Iban, we see a high
degree of variability. The WER range across held-
out speakers spans from 12.71 for Iban to 54.74
for Fongbe. (See Table 3 in Appendix A.3.) Per-
haps surprisingly, for Swahili and Hupa, where we
held out recording sessions rather than individual
speakers, we also observe great variability in model
performance. The WER range across sessions is
17.59 for Swahili and is above 25 for both data sets

results. The necessary parameter tuning within these architec-
tures is left for future work.
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Figure 1: WER for the various partitioning strategies for the six data sets. A large black dot represents the mean in
each plot. Means for hold-session/speaker-out are comparable in all cases to means over random splits.

of Hupa. Thus it does not appear to be the case
that variability in WER is due entirely to the iden-
tity of the speaker; other factors such as recording
setting or domain could contribute to this variabil-
ity. These observations speak to our original point,
namely that observations from “hold speaker(s) out”
low-resource ASR evaluation are not representative
of the model’s generalizability.

One might suspect that the observed WER vari-
ability across speakers in each data set is (only)
because of the varying amount of audio available
for each speaker. Although there is a relationship
between average WER and the total utterance du-
ration per speaker (when looking at total utterance
duration as a sole predictor in the regression) for
Iban (p < 0.005), this relationship does not hold
for Fongbe (p = 0.75) or Wolof (p = 0.91). While
there is a positive correlation between duration and
WER for the coarse data of Hupa (p < 0.05), this
correlation does not exist for Swahili (p = 0.45)
or for the verified data of Hupa (p = 0.99). This

indicates that the total utterance duration alone is
not enough to yield (high) WER variability across
speakers.

In contrast, results from random splits are much
less variable. While not surprising, this is no-
table in that the average WER when holding out
a speaker or session is comparable to that of ran-
dom splits, or any one random split. Thus a single
random split can alone be enough to provide a rea-
sonable estimate of the performance that would be
derived by averaging over all random splits or over
all possible held-out speakers/sessions. In contrast,
the WER for a model tested on single held-out
speaker/session may not be a reliable estimate of
the WER of that model on any other speaker.

On the other hand, splitting data heuristically
and adversarially, creating test sets that consist of
“more challenging” cases than the training sets,
does not necessarily lead to higher WER. The
results across the data split methods are mostly
comparable except for when utterance duration or
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Language audio Avg. pitch Avg. intensity  utterance oov R?
duration perplexity

Fongbe Coef. 0.17%%* 0.13%* 0.11%%* 0.003#%* 0.008%** 0.72
95% CI  (0.15,0.20)  (0.11,0.14) (0.09, 0.13) (0.001, 0.004)  (0.007, 0.009)

Wolof Coef. 0.009 0.004 0.01 0.02%** 0.00 0.73
95% CI  (-0.01,0.03) (-0.01,0.02)  (-0.02, 0.04) (0.02, 0.024) (0.00, 0.00)

Swabhili Coef. 0.2 %% 0.06** -1.65%%* 0.00 0.013 %% 091
95% CI  (0.18,0.24)  (0.02,0.09) (-1.81, -1.50) (-6.30, 0.00) (0.012, 0.014)

Iban Coef. 2.15%** -0.10 0.58 0.00 -0.002 0.99
95% CI  (1.87,2.43)  (-4.20,0.21)  (-2.16,3.31) (-1.11, 0.00) (-0.01, 0.01)

Hupa Coef. 1.30%%* -0.93 %% 2.774%%% 0.00 0.01%#%* 0.95
95% ClI (1.07,1.52)  (-1.13,-0.73)  (2.09, 3.37) (-0.02, 0.01) (0.01, 0.02)

Hupa Coef. 0.13%%* 0.04 -0.22%* -0.02%*%* 0.01%%%* 0.91
95% CI  (0.10,0.16)  (-0.01,0.10)  (-0.35, -0.08) (-0.02,-0.01)  (0.01, 0.02)

Table 2: Regression results for the data set(s) of each language in our experiments (CI stands for Confidence
Interval); the number of * indicates significance level: * p < 0.05, ** p < 0.01, *** p < 0.001. Note that given the
structure of our regression model, the coefficient value for the same feature is not comparable across the data for
each language (e.g., the coefficient of utterance duration ratio is 0.33 for the Wolof data, and 0.13 for the Swabhili
data; nevertheless, this does not mean that utterance duration ratio has a stronger effect for Wolof compared to its
role for Swabhili). Rather our goal is simply to see whether a feature potentially influences WER scores when the
effects of other features are controlled for within the context of the data for every language.

perplexity is used as the heuristic in certain cases.
Splitting the data by maximizing transcript distri-
bution distance also yields minimal variability.

The regression analysis (Table 2) further indi-
cates that most of the features we investigated have
significant effects on performance. The ratios of
utterance duration and intensity between the train
and test sets consistently play strong roles in pre-
dicting WER variability. The fact that utterance
duration has an effect on WER when controlling
for the effects of other factors points to the poten-
tial limitation of evaluating models with held-out
speakers in low-resource settings, where speakers
contribute varying amounts of data.

6 Discussion and Conclusion

With data for four widely-spoken low-resource
languages and one critically endangered language
indigenous to North America, our work demon-
strates that there is a real risk of grossly over- or
underestimating the performance of an ASR model
architecture when evaluating on held-out speakers
(and sessions) when only minimal resources are
available. By contrast, random splits provide a
more accurate and less variable estimate of the over-
all performance. Moreover, while cross-validation
is advisable when partitioning by speaker, a single
random split appears to provide an adequate
estimate for expected WER on unseen data.

We note that these findings also hold for data sets
partitioned according to recording session rather
than speaker, suggesting that this phenomenon is
not limited to diversity in speaker characteristics.
This has implications particularly for ASR in sup-
port of endangered language documentation, in
which the number of speakers is few but the record-
ing conditions are highly variable. We propose
that future work on small ASR corpora for under-
resourced languages carry out multiple evaluations
on various data partitioning strategies in order to
present a more complete picture of ASR model
architecture performance.

7 Limitations

Our work has two notable limitations. First, the
limited availability of very small ASR datasets al-
lowed us to explore only five languages. It remains
to be seen how different data splits would inter-
act with a much larger set of languages that have
more diverse typological properties. Second, here
we experimented with a hybrid DNN architecture
within Kaldi rather than more recent end-to-end
approaches (Lin and Mak, 2020; Watanabe et al.,
2018), which require more extensive computing
resources. Resource permitting, we would like to
investigate how different data partitioning strate-
gies would work differently (or not) with different
model architectures.
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A Appendix

A.1 Data for Hupa

The majority of the recordings for Hupa feature the
elder telling stories from different genres, includ-
ing traditional stories that explain how the world
we know today came to be, personal anecdotes
from her life, and oral-historical accounts of signif-
icant events in her speech community. Each record-
ing has a time-aligned transcription produced by
a human transcriber using annotation tools (e.g.,
ELAN (Brugman and Russel, 2004)); each tran-
script was rendered in a practical orthography cur-
rently adopted by the speech community.

The verified transcriptions for Hupa are more ac-
curate overall than coarse transcriptions and have
undergone more orthographic normalization. This
includes removing things that are audible in the
recordings but not part of the standardized spelling
(such as word-final epenthetic vowels), and remov-
ing false starts and other speech errors. In a small
number of cases, verified transcriptions might even
contain a word that is different from what was pro-
duced in the original recording, if the elder felt
strongly that she had misspoken. Thus, although
verified transcriptions tend to be more accurate than
coarse ones, in some ways they are less faithful to
the acoustic properties of the original recordings.

A.2 Acoustic models

Except for Swahili and Hupa, acoustic feature trans-
formations for the data of the other languages were
conducted separately for each speaker. In detail,
the recordings were transformed to the standard
13 dimensional mel-frequency cepstral coefficients
(MFCCs), along with their delta- and delta-delta
features. The delta- and delta-delta features are,
respectively, numerical approximations of the first
and second-order derivatives of the MFCCs and
they were computed on a 25ms window with 10ms
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interval apart, allowing for modeling of the trajec-
tories of the audio signals. Linear Discriminant
Analysis and Maximum Likelihood Linear Trans-
form were applied to reduce the dimensionality
of the feature vectors. Speaker Adaptive Training
was adopted to perform speaker and noise normal-
ization in order to make the acoustic model more
attentive to the phonemic variation present in the
audio, rather than being restricted by the data of par-
ticular speakers. With the speaker-normalized fea-
tures, Feature Space Maximum Likelihood Linear
Regression (FMLLR) was employed for speaker-
independent alignment.

The DNN we adopted had six hidden layers with
1024 units in each. Sequence training was per-
formed using the default parameters in Kaldi with
state-level minimum Bayes risk criterion and a per-
utterance Stochastic Gradient Descent weight up-
date. Decoding was carried out with the Kaldi finite
state transducer-based decoder.

A.3 Full WER results

Table 3 includes the full set of WER for every data
partitioning strategy for each of the five languages.
which is represented visually in Figure 1.
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Language Total Split method Threshold N of splits WER WERstd. WER range

Fongbe 7h10m held-out speaker - 27 32.55 12.99 54.74
train:5h44m random splits - 27 31.99 1.05 4.90
test:1h26m utterance duration 3.46s 1 40.69 - -
Avg. pitch 144.68hz 1 38.90 - -
Avg. intensity 58.24db 1 43.00 - -
N of tokens 8 1 38.95 - -
N of token types 8 1 40.41 - -
utterance perplexity 301.05 1 53.28 - -
distribution distance - 5 39.74 0.18 0.41
Wolof 18h58m held-out speaker - 18 28.91 5.99 19.74
train:15h11m random splits - 18 28.43 0.36 1.20
test:3h47m utterance duration 5.19s 1 31.37 - -
Avg. pitch 114.43hz 1 28.88 - -
Avg. intensity 74.32db 1 29.87 - -
N of tokens 11 1 28.07 - -
N of token types 11 1 28.85 - -
utterance perplexity 674.09 1 42.63 - -
distribution distance - 5 25.65 0.08 0.19
Swabhili 10h58m held-out session - 36 26.31 3.46 17.59
train:8h47m random splits - 36 25.83 0.45 2.09
test:2h11m utterance duration 4.80s 1 26.36
Avg. pitch 172.07hz 1 25.89 - -
Avg. intensity 75.32db 1 24.98 - -
N of tokens 13 1 25.36 - -
N of token types 12 1 25.37
utterance perplexity 1793.95 1 45.98 - -
distribution distance - 5 25.62 0.28 0.57
Iban 8h49m held-out speaker - 23 16.92 3.80 12.71
train:6h49m random splits - 23 14.35 0.57 2.19
test:1h42m utterance duration 15.85s 1 15.73 - -
Avg. pitch 141.33hz 1 14.94 - -
Avg. intensity 74.34db 1 16.47 - -
N of tokens 36 1 13.97 - -
N of token types 31 1 13.90 - -
utterance perplexity 361.55 1 27.02 - -
distribution distance - 5 13.09 0.14 0.36
Hupa 1h35m held-out session - 17 55.73 8.59 31.82
(verified) train: Th16m random splits - 17 55.27 1.50 5.44
test:19m utterance duration 9.71s 1 60.12 - -
Avg. pitch 112.40hz 1 54.35 - -
Avg. intensity 67.04db 1 53.72 - -
N of tokens 16 1 52.17 - -
N of token types 14 1 54.43 - -
utterance perplexity 898.45 1 53.55 - -
distribution distance - 5 55.10 0.47 1.28
Hupa 7h37m held-out session - 34 51.65 5.59 25.25
(coarse) train:6h6m random splits - 34 52.85 1.18 4.63
test:1h31m utterance duration 10.96s 1 56.20 - -
Avg. pitch 113.78hz 1 52.49
Avg. intensity 66.12db 1 53.61
N of tokens 16 1 50.36 - -
N of token types 14 1 50.76 - -
utterance perplexity 933.37 1 50.26 - -
distribution distance - 5 51.39 0.18 0.47

Table 3: WER results for the data set(s) of each language in our experiments; as we are focused on data partitioning
strategy, for all data splits of a given data set, the language model was constant and was trained only on additional
written texts. Note that one might be concerned about how much overlap there is between the test sets (and the
training sets accordingly) yielded from different data partitioning strategies other than using held-out speaker/session;
to address this, for the data set(s) of each language, we used the test set of the first random split as the reference
and computed the proportion of overlapping utterances from the test sets of other data splits (except for held-out
speaker/session); the maximum overlapping ratio across all the data sets was 0.25.
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Abstract

Despite recent progress in abstractive summa-
rization, models often generate summaries with
factual errors. Numerous approaches to detect
these errors have been proposed, the most pop-
ular of which are question answering (QA)-
based factuality metrics. These have been
shown to work well at predicting summary-
level factuality and have potential to localize
errors within summaries, but this latter capa-
bility has not been systematically evaluated in
past research. In this paper, we conduct the
first such analysis and find that, contrary to
our expectations, QA-based frameworks fail
to correctly identify error spans in generated
summaries and are outperformed by trivial ex-
act match baselines. Our analysis reveals a
major reason for such poor localization: ques-
tions generated by the QG module often in-
herit errors from non-factual summaries which
are then propagated further into downstream
modules. Moreover, even human-in-the-loop
question generation cannot easily offset these
problems. Our experiments conclusively show
that there exist fundamental issues with local-
ization using the QA framework which cannot
be fixed solely by stronger QA and QG models.

1 Introduction

Although abstractive summarization systems (Rush
et al., 2015; See et al., 2017; Lewis et al., 2020)
have improved drastically over the past few years,
these systems often introduce factual errors into
generated summaries (Cao et al., 2018; Kryscinski
et al., 2019). Recent work has proposed a num-
ber of approaches to detect these errors, includ-
ing using off-the-shelf entailment models (Falke
etal., 2019; Laban et al., 2022), question answering
(QA) models (Chen et al., 2018; Wang et al., 2020;
Durmus et al., 2020), and discriminators trained
on synthetic data (Kryscinski et al., 2020). Such
methods have also been explored to identify error
spans within summaries (Goyal and Durrett, 2020)

Source Article: My recent exhibition features some prominent trends and
themes spanning the entire history of the matchbox industry. I exhibited
5,000 labels from my collection of 25,000. [...]

RN Non-Factual Span Factual Span
pEGasus —> For the plast 15 years, I have been collecting match})ox labels.
Question Generation - Question Answering Framework

‘ '

Since when have I been 7 What have [ been
»  collecting labels? ¢ collecting for 15 years?

[ Unanswerable [’ Unanswerable

Correctly identifies factual error Tags factual span as an error!

Figure 1: Factual error localization using QA metrics.
Questions are generated for summary spans and then
answered by a QA model using the source article as
context. For factual spans (e.g. matchbox labels), we
expect the predicted answers to match the original spans.
However, non-factual spans in generated questions in-
herited from summaries may render these unanswerable
and lead to incorrect error localization.

and perform post-hoc error correction (Dong et al.,
2020; Cao et al., 2020).

Among these different approaches for evaluat-
ing factuality, QA-based frameworks are the most
widely adopted (Chen et al., 2018; Scialom et al.,
2019; Durmus et al., 2020; Wang et al., 2020;
Scialom et al., 2021; Fabbri et al., 2022). These
evaluate the factuality of a set of spans in isola-
tion, then combine them to render a summary-level
judgment. Figure 1 illustrates the core mechanism:
question generation (QG) is used to generate ques-
tions for a collection of summary spans, typically
noun phrases or entities, which are then compared
with those questions’ answers based on the source
document to determine factuality. Due to this span-
level decomposition of factuality, QA frameworks
are widely believed to localize errors (Chen et al.,
2018; Wang et al., 2020; Gunasekara et al., 2021).
Therefore, the metrics have been applied in set-
tings like post-hoc error correction (Dong et al.,
2020), salient (Deutsch and Roth, 2021) and incor-
rect (Scialom et al., 2021) span detection, and text
alignment (Weiss et al., 2021). However, their ac-
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tual span-level error localization performance has
not been systematically evaluated in prior work.

In this paper, we aim to answer the following
question: does the actual behavior of QA-based
metrics align with their motivation? Specifi-
cally, we evaluate whether these models success-
fully identify error spans in generated summaries,
independent of their final summary-level judgment.
We conduct our analysis on two recent factuality
datasets (Cao and Wang, 2021; Goyal and Dur-
rett, 2021) derived from pre-trained summariza-
tion models on two popular benchmark datasets:
CNN/DM (Hermann et al., 2015; Nallapati et al.,
2016) and XSum (Narayan et al., 2018). Our results
are surprising: we find that good summary-level
performance is rarely accompanied by correct
span-level error detection. Moreover, even trivial
exact match baselines outperform QA metrics at
error localization. Our results clearly show that
although motivated by span-level decomposition of
the factuality problem, the actual span-level predic-
tions of QA metrics are very poor.

Next, we analyze these failure cases to under-
stand why QA-based metrics diverge from their
intended behavior. We find that the most serious
problem lies in the question generation (QG) stage:
generated questions for non-factual summaries in-
herit errors from the input summaries (see Fig-
ure 1). This results in poor localization wherein
factual spans get classified as non-factual due to
presupposition failures during QA. Furthermore,
we show that such inherited errors cannot be easily
avoided: decreasing the length of generated ques-
tions reduces the number of inherited errors, but
very short questions can be under-specified and not
provide enough context for the QA model. In fact,
replacing automatic QG with human QG also does
not improve the error localization of QA metrics.
These results demonstrate fundamental issues with
the current QA-based factuality frameworks that
cannot be patched by stronger QA/QG methods.

Our contributions are as follows. (1) We show
that QA-based factuality models for summarization
exhibit poor error localization capabilities. (2) We
provide a detailed study of factors in QG that ham-
per these models: inherited errors in long generated
questions and trade-offs between these and short
under-specified questions. (3) We conduct a human
study to illustrate the issues with the QA-based fac-
tuality framework independent of particular QA or
QG systems.
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2 QA-Based Factuality Metrics

Recent work has proposed numerous QA-based
metrics for summarization evaluation, particularly
factuality (Chen et al., 2018; Scialom et al., 2019;
Eyal et al., 2019; Durmus et al., 2020; Wang
et al., 2020; Deutsch and Roth, 2021). These pro-
posed metrics follow the same basic framework (de-
scribed in Section 2.1), and primarily differ in the
choice of off-the-shelf models used for the different
framework components (discussed in Section 2.2).

2.1 Basic Framework

Given a source document D and generated sum-
mary S, the QA-based metrics output a summary-
level factuality score yg that denotes the factual
consistency of S. This includes the following steps
(also outlined in Figure 2):

1. Answer Selection: First, candidate answer
spans a; € S are extracted. These correspond
to the base set of facts that are compared against
the source document D. Metrics evaluated in
this work (Scialom et al., 2021; Fabbri et al.,
2022) consider all noun phrases and named en-
tities in generated summaries as the answer can-
didates set, denoted by span(.S).

. Question Generation: Next, a question genera-
tion model (G) is used to generate questions for
these answer candidates with the generated sum-
mary S as context. Let ¢; = G(a;,.S) denote
the corresponding question for span a;.

. Question Filtering: Questions for which the

question answering (A) model’s predicted an-

swer A(g;, S) from the summary does not match
the original span a; are discarded, i.e., when

a; # A(qgi, S). This step is used to ensure that

the effects of erroneous question generation do

not percolate down the pipeline; however, an-
swer spans that do not pass this phase cannot be
evaluated by the method.

Question Answering: For each generated ques-

tion g;, the A model is used to predict answers

using the source document D as context. Let
pi = A(qgi, D) denote the predicted answer.

. Answer Comparison: Finally, the predicted an-
swer p; is compared to the expected answer a;
to compute a similarity score sim(p;, a;). The
overall summary score yg is computed by aver-
aging over all span-level similarity scores:

1
2

Ys = ———av
S
‘8pan< )‘ a;Espan(S)

sim(A(gi, D), ai)



Source Document D

4:=G6,S)

a
Summary S
High winds and heavy rain G
have caused flooding at a a.S
Derbyshire Theme Park, ——L~— |
forcing it to close for the

4,=G@.S)

High winds and what else
iy S have caused flooding?
Which park was closed for
the weekend?
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Summary-level
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Figure 2: Overall workflow for the QA metrics. First, questions are generated for all NEs and NPs in the generated
summary. Answers to these questions are obtained from the source document. Then, a factuality score is computed
for each summary span based on it similarity with the predicted span fr