Abstract
Over the years, the review helpfulness prediction task has been the subject of several works, but remains being a challenging issue in Natural Language Processing, as results vary a lot depending on the domain, on the adopted features and on the chosen classification strategy. This paper attempts to evaluate the impact of content features and classification methods for two different domains. In particular, we run our experiments for a low resource language – Portuguese –, trying to establish a benchmark for this language. We show that simple features and classical classification methods are powerful for the task of helpfulness prediction, but are largely outperformed by a convolutional neural network-based solution.- Anthology ID:
- 2022.wassa-1.19
- Volume:
- Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis
- Month:
- May
- Year:
- 2022
- Address:
- Dublin, Ireland
- Editors:
- Jeremy Barnes, Orphée De Clercq, Valentin Barriere, Shabnam Tafreshi, Sawsan Alqahtani, João Sedoc, Roman Klinger, Alexandra Balahur
- Venue:
- WASSA
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 204–213
- Language:
- URL:
- https://aclanthology.org/2022.wassa-1.19
- DOI:
- 10.18653/v1/2022.wassa-1.19
- Cite (ACL):
- Rogério Sousa and Thiago Pardo. 2022. Evaluating Content Features and Classification Methods for Helpfulness Prediction of Online Reviews: Establishing a Benchmark for Portuguese. In Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis, pages 204–213, Dublin, Ireland. Association for Computational Linguistics.
- Cite (Informal):
- Evaluating Content Features and Classification Methods for Helpfulness Prediction of Online Reviews: Establishing a Benchmark for Portuguese (Sousa & Pardo, WASSA 2022)
- PDF:
- https://preview.aclanthology.org/ingest-acl-2023-videos/2022.wassa-1.19.pdf