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Introduction

The International Conference on Spoken Language Translation (IWSLT) is the premiere annual scien-
tific conference for the study, development and evaluation of spoken language translation technology.
Launched in 2004 and spun out from the C-STAR speech translation consortium before it (1992-2003),
IWSLT is the main venue for scientific exchange on all topics related to speech-to-text translation,
speech-to-speech translation, simultaneous and consecutive translation, speech dubbing, cross-lingual
communication including all multimodal, emotional, paralinguistic, and stylistic aspects and their appli-
cations in the field. The conference organizes evaluations around challenge areas, and presents scientific
papers and system descriptions.

This year, IWSLT features eight shared tasks: (i) Simultaneous speech translation, (ii) Offline spee-
ch translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual
speech translation, (vi) Dialect speech translation. (vii) Formality control for spoken language transla-
tion, (viii) Isometric spoken language translation. These topics represent open problems toward effective
cross-lingual communication and we expect the community effort and discussion will greatly advance
the state of the field. Each shared task was coordinated by one or more chairs. The resulting evaluation
campaigns attracted a total of 27 teams, from academia, research centers and industry. System submis-
sions resulted in system papers that will be presented at the conference. Following our call for papers,
this year 44 submissions were received. In a blind review process, 9 research papers were selected out
of 18 for oral presentation (50%) in addition to 25 system papers.

The program committee is excited about the quality of the accepted papers and expects lively discussion
and exchange at the conference. The conference chairs and organizers would like to express their gra-
titude to everyone who contributed and supported IWSLT. In particular, we wish to thank our Diamond
sponsors and donors Apple, AWS, Meta and Zoom, our Platinum sponsor Microsoft, and our Bronze
sponsor AppTek. We thank the shared tasks chairs, organizers, and participants, the program chair and
committee members, as well as all the authors that went the extra mile to submit system and research
papers to IWSLT, and make this year’s conference a most vibrant event. We also wish to express our
sincere gratitude to ACL for hosting our conference and for arranging the logistics and infrastructure that
allow us to hold IWSLT 2022, for the first time, as a hybrid conference.

Welcome to IWSLT 2022 wherever you are joining us in person, in Dublin, or remotely!

Marcello Federico and Alex Waibel, Conference Chairs
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Keynote Talk: Synchronization in translation for dubbing:
implications for its automation

Frederic Chaume
Universitat Jaume I

Abstract: Synchronization (or lip-sync, also spelled lip-synch) is one of the key factors in audiovisual
translation, especially in the context of dubbing. Although it is often considered as the distinguishing
feature of dubbing, it is only one of several important aspects such as the 'natural’ reproduction of a pre-
fabricated oral discourse or the translation problems posed by the interaction between image and word.
If we take a look at the research on lip-sync, it is regarded as an urgent, vital issue, as can be seen from
the wide range of publications on the subject. Beyond doubt synchronization has a direct impact on the
translation process and product, and as such, puts all the translator’s creative skills to the test. Dubbing
is a well-known example of the invisibility of translation, an artistic and technical exercise that inten-
tionally replaces the original dialogue track with a new track on which target language (TL) dialogue
exchanges are recorded. In contrast to voice-over for example, the emphasis in dubbing lies in matching
the translation to the silent mouths of the original actors. The result is that viewers watch and hear fo-
reign actors speaking in the viewers’ own language, a paradox which has been naturally accepted in all
dubbing countries. This talk will deal with the definition and scope of synchronization in the audiovisual
translation field, will explain the three main synchronization types, will tackle issues related to different
language pairs combinations and will present the last efforts carried out by some start-ups and research
groups to automate this technical and artistic process. The talk will be illustrated with clips from films
and TV series dubbed into six different languages.

Bio: Frederic Chaume is a Full Professor of Audiovisual Translation at Universitat Jaume I (Spain),
where he teaches audiovisual translation theory and translation and adaptation for dubbing; and Ho-
norary Professor at University College London (UK), where he teaches translation and adaptation for
voice-over and dubbing, Universidad Ricardo Palma (Pertd) and Universidad Peruana de Ciencias Apli-
cadas (Perd). He is author of eight books and has also coedited two books and three special journal
issues (Textus, Perspectives, Prosopopeya). He is the director of the TRAMA book series (Publicacions
de la Universitat Jaume I), the first collection of monographs on audiovisual translation and media lo-
calization. Prof. Chaume has published over 100 articles, book chapters and encyclopedic entries on
audiovisual translation and has given numerous keynote lectures on this topic in international transla-
tion studies conferences and in several European and American universities. He also teaches regularly
in some of them (University College London-UK, Universidad de Granada-Spain, Universita di Torino-
Italy, among others). He has supervised or co-supervised 20 PhD theses on the topic of audiovisual
translation and some of them have received different Spanish and European awards. He is also in close
contact with the industry, serves as a consultant for Netflix and has signed several research agreements
with different stakeholders of the media localization sector. He coordinates the research group TRAMA
(www.trama.uji.es) and is the recipient of the Berlanga Award (2010), the Xénia Martinez Award (2016)
and the Jan Ivarsson’s Award (2020) for his constant and enthusiastic support to media localization as
well as his constant university training in this field.
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SubER: A Metric for Automatic Evaluation of Subtitle Quality

Patrick Wilken
AppTek
Aachen, Germany
pwilken@apptek.com

Abstract

This paper addresses the problem of evaluat-
ing the quality of automatically generated sub-
titles, which includes not only the quality of
the machine-transcribed or translated speech,
but also the quality of line segmentation and
subtitle timing. We propose SubER - a single
novel metric based on edit distance with shifts
that takes all of these subtitle properties into
account. We compare it to existing metrics for
evaluating transcription, translation, and sub-
title quality. A careful human evaluation in a
post-editing scenario shows that the new met-
ric has a high correlation with the post-editing
effort and direct human assessment scores, out-
performing baseline metrics considering only
the subtitle text, such as WER and BLEU, and
existing methods to integrate segmentation and
timing features.

1 Introduction

The use of automatically created subtitles has be-
come popular due to improved speech recognition
(ASR) and machine translation (MT) quality in re-
cent years. Most notably, they are used on the web
to make content available to a broad audience in a
cost-efficient and scalable way. They also gain at-
traction in the media industry, where they can be an
aid to professional subtitlers and lead to increased
productivity.

In this work, we address the problem of measur-
ing the quality of such automatic subtitling systems.
We argue that existing metrics which compare the
plain text output of an ASR or MT system to a
reference text are not sufficient to reflect the par-
ticularities of the subtitling task. We consider two
use cases: 1) running speech recognition on the
audio track of a video to create subtitles in the orig-
inal language; 2) translating existing subtitle files
with an MT system. For the first case, the word
error rate (WER) of the ASR system is a natural
choice for quality control. For MT there exist a

Panayota Georgakopoulou
Athena Consultancy
Athens, Greece

yota@athenaconsultancy.eu

Evgeny Matusov
AppTek
Aachen, Germany

ematusov@apptek.com

wider range of automatic metrics such as BLEU
(Papineni et al., 2002), TER (Snover et al., 2006),
chrF (Popovi¢, 2015) and, more recently, learned
metrics like BertScore (Zhang et al., 2019) and
COMET (Rei et al., 2020).

These existing metrics are suited to measure the
quality of ASR and MT in terms of recognized or
translated content only. However, subtitles are de-
fined by more than just their textual content: they
include timing information, as well as formatting
with possible line breaks within a sentence in syn-
tactically and semantically proper positions. Figure
1 shows examples of subtitle files in the common
SubRip text (SRT) format. Evidently, it differs
from plain text, in particular:

* The text is segmented into blocks. These
blocks are distinct from sentences. A sentence
can span several blocks, a block can contain
multiple sentences.

* A block may be further split into lines.

e Start and end times define when text is dis-
played.

All of these additional characteristics are cru-
cial for the viewers’ comprehension of the content.
Professional subtitlers check and possibly improve
them as part of the machine-assisted process of
subtitle creation.

To assess the quality of automatically created
subtitle files, it is beneficial to have a single metric
that evaluates the ASR/MT quality and the quality
of the characteristics listed above.

The main contributions of this work are:

1. A novel segmentation- and timing-aware qual-
ity metric designed for the task of automatic
subtitling.

2. A human evaluation that analyzes how well
the proposed metric correlates with human
judgements of subtitle quality, measured in

Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022), pages 1 - 10
May 26-27, 2022 (©)2022 Association for Computational Linguistics



694

00:50:45,500 —-> 00:50:47, 666
For the brandy and champagne
you bought me.

695

00:50:47,750 -> 00:50:51,375

As I remember, it was the booze that
put you to sleep a little prematurely.

696
00:50:52,208 -> 00:50:54,291
Ladies and gentlemen,

697
00:50:54,916 -> 00:50:57,291
the dance is about to begin.

634

00:50:44,960 -> 00:50:47,680
For the champagne

and brandy you bought me.

635

00:50:47,760 -=> 00:50:51,200
As I recall, the booze put you
to sleep a little prematurely.

636

00:50:52,200 -> 00:50:57,120
Ladies and gentlemen,

the dance is about to begin.

Figure 1: Two examples of subtitles in SRT format for the same video excerpt. Note the different line and block
segmentation. Also note that subtitles on the right have been condensed for improved readability.

post-editing effort as well as direct assessment
scores.

3. The publication of a scoring tool to calculate
the proposed metric as well as many baseline
metrics, directly operating on subtitle files:
https://github.com/apptek/SubER

2 Subtitle Quality Assessment in the
Media Industry

Related to this work are subtitling quality metrics
used in the media industry. The most widely used
ones to date are NER (Romero-Fresco and Pérez,
2015) and NTR (Romero-Fresco and Pochhacker,
2017) for live subtitle quality, the former address-
ing intralingual subtitles or captions and the latter
interlingual ones.

Offline interlingual subtitles have traditionally
been assessed on the basis of internal quality guide-
lines and error typologies produced by media local-
ization companies. To address this gap, the FAR
model (Pedersen, 2017) was developed and there
have also been attempts to implement a version of
MQM!.

None of the above metrics, however, are auto-
matic ones. They require manual evaluation by an
expert to categorize errors and assign appropriate
penalties depending on their severity. This makes
their use costly and time-consuming. In this work
we therefore address automatic quality assessment
of subtitle files by comparing them to a profession-
ally created reference.

"Multidimensional Quality Metrics (MQM) Defini-
tion http://www.qt21.eu/mgm-definition/definition-2015-12-
30.html

3 Automatic Metrics for Subtitling
3.1 Baseline Approaches

When subtitling in the original language of a video,
the baseline quality measurement is to calculate
word error rate (WER) against a reference transcrip-
tion. Traditionally, WER is computed on lower-
cased words and without punctuation. We show
results for a cased and punctuated variant as well,
as those are important aspects of subtitle quality.
Because of the efficiency of the Levenshtein algo-
rithm, WER calculation can be done on the whole
file without splitting it into segments.

For translation, automatic metrics are usually
computed on sentence level. Karakanta et al.
(2020a) and other related work assumes hypothesis-
reference sentence pairs to be given for subtitle
scoring. However, in the most general case we only
have access to the reference subtitle file and the
hypothesis subtitle file to be scored. They do not
contain any explicit sentence boundary informa-
tion. To calculate traditional MT metrics (BLEU,
TER and chrF), we first define reference segments
and then align the hypothesis subtitle text to these
reference segments by minimizing the edit distance
("Levenshtein alignment") (Matusov et al., 2005).
Two choices of reference segments are reasonable:
1) subtitle blocks; 2) sentences, split according to
simple rules based on sentence-final punctuation,
possibly spanning across subtitle blocks. Only for
the case of translation from a subtitle template,
which preserves subtitle timings, there is a third
option, namely to directly use the parallel sub-
title blocks as units without any alignment step.
This makes the metric sensitive to how translated



sentences are distributed among several subtitles,
which is a problem a subtitle translation system has
to solve.

To evaluate subtitle segmentation quality in
isolation, Alvarez et al. (2017); Karakanta et al.
(2020b,c) calculate precision and recall of pre-
dicted breaks. Such an analysis is only possible
when the subtitle text to be segmented is fixed and
the only degree of freedom is the position of breaks.
We however consider the general case, where subti-
tles that differ in text, segmentation and timing are
compared and evaluated.

3.2 Line Break Tokens

A simple method to extend the baseline metrics to
take line and subtitle breaks into account is to insert
special tokens at the corresponding positions into
the subtitle text (Karakanta et al., 2020a; Matusov
et al., 2019). Figure 2 shows an example. The
automatic metrics treat these tokens as any other
word, e.g. BLEU includes them in n-grams, WER
and TER count edit operations for them. There-
fore, subtitles with a segmentation not matching
the reference will get lower scores.

3.3 Timing-Based Segment Alignment

The time alignment method proposed in Cherry
et al. (2021) to calculate t-BLEU is an alternative
to Levenshtein hypothesis-to-reference alignment
that offers the potential advantage of punishing
mistimed words. It uses interpolation of the hy-
pothesis subtitle timings to word-level. Mistimed
words may get assigned to a segment without a cor-
responding reference word, or will even be dropped
from the hypothesis if they do not fall into any ref-
erence segment.

In this work we consider translation from a tem-
plate file, thus time alignment is equivalent to us-
ing subtitle blocks as unit. However, for the tran-
scription task, where subtitle timings of hypothesis
and reference are different, we analyze a variant
of WER that operates on "t-BLEU segments", i.e.
allows for word matches only if hypothesis and
reference word are aligned in time (according to
interpolated hypothesis word timings). We refer to
this variant as t-WER.

3.4 New Metric: Subtitle Edit Rate (SubER)

None of the above-mentioned metrics considers
all of the relevant information present in a subtitle
file, namely subtitle text, line segmentation and
timing. We therefore propose a new metric called

subtitle edit rate (SubER) that attempts to cover all
these aspects, and on top avoids segmentation of
the subtitle files into aligned hypothesis-reference
pairs as a pre-processing step.

We choose TER (Snover et al., 2006) as the basis
of SubER because of its interpretability, especially
in the case of post-editing. It corresponds to the
number of edit operations, namely substitutions,
deletions, insertions and shifts of words that are re-
quired to turn the hypothesis text into the reference.
Also, it allows for easy integration of segmentation
and timing information by extending it with break
edit operations and time-alignment constraints.

We define the SubER score to be the minimal
possible value of (read "#" as "number of"):

# word edits + # break edits + # shifts

SubER =
b # reference words + # reference breaks

where

* a hypothesis word is only regarded as correct
(no edit) if it is part of a subtitle that over-
laps in time with the subtitle containing the
matching reference word (otherwise edits are
required, e.g. deletion + insertion).

* word edits are insertions, deletions and sub-
stitutions of words, substitutions being only
allowed if the hypothesis and reference word
are from subtitles that overlap in time.

 break edits are insertions, deletions and sub-
stitutions of breaks, treated as additional to-
kens (<eol> and <eob>) inserted at the po-
sitions of the breaks. Substitutions are only al-
lowed between end-of-line and end-of-block,
not between a word and a break, and the same
time-overlap condition as for word substitu-
tion applies.

* shifts are movements of one or more adjacent
hypothesis tokens to a position of a matching
phrase in the reference. Only allowed if all the
shifted words come from a hypothesis subtitle
that overlaps in time with the subtitle of the
matching reference word. The shifted phrase
may consist of any combination of words and
break tokens.

We only consider subtitle timings present in the
subtitle files, as opposed to interpolating timings of
words as done by Cherry et al. (2021). This avoids
hypothesis words "falling off the edges" of refer-
ence subtitles, e.g. in case the hypothesis subtitle



As I recall,
Ladies and gentlemen,

For the champagne <eol> and brandy you bought me.
the booze put you <eol> to sleep a little prematurely.
<eol> the dance is about to begin.

<eob>
<eob>
<eob>

Figure 2: Example for usage of end-of-line (<eol>) and end-of-block tokens (<eob>) to represent subtitle
formatting. Corresponds to right subtitle from Figure 1. Symbols are adopted from Karakanta et al. (2020b).

—— hypothesis word position

reference word position

Figure 3: Visualization of SubER applied to the subtitles
from Figure 1 (hypothesis left, reference right). Ticks
on the axes indicate subtitle block boundaries. Grey
areas show regions of time-overlapping reference and
hypothesis subtitles. Word matches, substitutions and
shifts are allowed only within those areas. Black squares
represent word alignments, blue squares represent break
token alignments. Red borders mark shifted phrases,
red crosses indicate substitutions. 35 reference words
(including breaks), 3 insertions, 2 substitutions, 3 shifts
lead to a SubER score of (3 4 2 + 3)/35 = 22.86%.

starts a fraction of a second early. It also prevents
alignment errors originating from the assumption
that all words have the same duration.

The time-overlap condition can be thought of
as constraining the search space for Levenshtein-
distance calculation. Figure 3 visualizes this for
the subtitles from Figure 1. In the white areas no
word matches are allowed, this can be exploited
for an efficient implementation. The last two hy-
pothesis subtitles overlap with the last reference
subtitle and therefore form a single time-aligned
region. The shifted 2-word phrase in the bottom
left region is "champagne <eol>", showcasing
that words and breaks can be shifted in a single
operation. In the center region we see the substitu-
tion of "recall" with "remember", the inserted
(i.e. unaligned) hypothesis words "it", "was" and
"that", and a shift of the line break to a different
position. The break substitution in the upper right

region corresponds to the fact that the last block of
the right subtitles in Figure 1 is split into two, i.e.
end-of-line is replaced by end-of-block.

3.4.1 Implementation Details

We modify the TER implementation of SacreBLEU
(Post, 2018) to implement SubER. We adopt the
approximation of greedily searching for the best
shift until no further reduction of the edit distance
can be achieved (Snover et al., 2006). Break tokens
(<eol> and <eob>) are inserted into the input
text. String comparisons between hypothesis and
reference words are replaced by a function addi-
tionally checking the time-overlap condition. To
make SubER calculation feasible for large subtitle
files we split hypothesis and reference into parts at
time positions where both agree that no subtitle is
displayed. The number of edit operations is then
added up for all parts. By definition this does not af-
fect the metric score, in contrast to e.g. segmenting
into sentence vs. subtitle blocks when calculating
BLEU (Section 3.1).

4 Human Evaluation

To analyze the expressiveness of SubER we con-
duct a human post-editing experiment on both sub-
titles automatically generated from audio, as well
as automatic translations of subtitle text files. For
each of the two post-editing tasks we employ three
professional subtitlers with multiple years of ex-
perience in the subtitling industry. We evaluate
how well automatic metric scores correlate with
their post-editing effort and their MT quality judge-
ments.

There exists previous work measuring the pro-
ductivity gains from post-editing automatic sub-
titles under the aspect of MT quality (Etchegoy-
hen et al., 2014; Bywood et al., 2017; Koponen
et al., 2020) and segmentation quality (Alvarez
et al., 2016; Alvarez et al., 2017; Matusov et al.,
2019), but to the best of our knowledge we con-
duct the first study with the goal of evaluating an
automatic quality metric for subtitling.




4.1 Data

We perform our experiment using one episode from
each of the following shows:

* Master of None: a comedy-drama series
* Midnight Mass: a supernatural horror series

* Peaky Blinders: an early 20th century British
gangster drama

Each of the three videos has a duration of ap-
proximately 55 minutes. They are originally in
English, for translation we choose Spanish as the
target language. We use pre-existing English sub-
titles as template files for human translation, and
also as the reference when scoring automatic tran-
scriptions. Pre-existing Spanish subtitles, which
follow the English template, are used as reference
for MT output.

To gather data points for which we can compare
post-editing effort with automatic scores, we man-
ually split the videos into segments of roughly 1
minute, each containing 15 subtitle blocks and 103
words on average. We keep the first 15 minutes of
each video as one large segment where we measure
baseline speed of the subtitlers. Excluding these,
we end up with 35, 38 and 37 segments for the
videos, respectively, amounting to a total of 110
source-target reference subtitle pairs.

4.2 Automatic Subtitling Systems

For human post-editing, we create automatic En-
glish and Spanish subtitle files. We use several
different subtitling systems to obtain evaluation
data with a wider variety. The systems differ in
ASR/MT, punctuation and segmentation quality.

We create a single automatic English and Span-
ish subtitle file for each video, each containing
segments coming from different automatic subti-
tling systems. The subtitlers did not know about
any of the details on how these files were created
to avoid any bias.

4.2.1 Transcription Systems

To create automatic English subtitles from the au-
dio track of the video we use three different sys-
tems:

1. A hybrid ASR system, the output of which
is punctuated and cased by a bi-directional
LSTM model and then split into lines and sub-
titles using a beam search decoder that com-
bines scores of a neural segmentation model
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and hard subtitling constraints, based on the
algorithm proposed by Matusov et al. (2019);

2. same as 1., but without using a neural model
for subtitle segmentation;

3. an online provider offering automatic tran-
scription in SRT format.

We transcribe an equal number of video segments
with each of the three systems and combine them
into a single subtitle file which is delivered to the
subtitlers for post-editing. The first segment of 15
minutes is not transcribed automatically. Instead,
the subtitlers are asked to transcribe it from scratch
to measure their baseline productivity.

4.2.2 Translation Systems

To create Spanish subtitles we translate the pre-
existing English subtitles with 5 different systems:

1. A Transformer-based MT system, the output
of which is split into lines and subtitles using a
neural segmentation model and hard subtitling
constraints;

2. same as 1., but without using a neural model
for subtitle segmentation;

3. same as 1., but with additional inputs for
length control and genre, similarly to the sys-
tems proposed in (Schioppa et al., 2021; Ma-
tusov et al., 2020);

4. an LSTM-based MT system with lower qual-
ity than 1., but also using the neural segmen-
tation model;

5. an online provider offering subtitle translation
in SRT format.

Also here, we distribute the video segments among
the systems such that each system contributes a
roughly equal portion of the assembled MT subtitle
file delivered to the translators. We extract full
sentences from the source subtitle file based on
punctuation before translation. The first 15 minute
segment of each video is translated directly from
the source template without access to MT output
to measure baseline productivity of the translators.

4.3 Methodology

4.3.1 Productivity Gain Measurement

For both transcription and translation, we ask the
subtitlers to measure the time ¢,, (in minutes) spent
to post-edit each of the 110 video segments. As a



measure of post-editing productivity P, we com-
pute the number of subtitles .S;, created per minute
of work for the n-th segment:

po
tn

To make these values comparable between subti-
tlers we normalize them using the subtitler’s base-
line speed Ppase. It is computed by averaging
the productivity in the first 15-minute segment P,
where the subtitlers work from scratch, over all
three videos. Finally, we average the normalized
productivities across the three subtitlers h = 1,2, 3
per task to get an average post-editing productivity
gain for segment n:

(1

2

To evaluate the expressiveness of a given metric
we compute the Spearman’s rank correlation coef-
ficient r4 between the per-segment metric scores
and P, for all segments of all three videos. We
choose Spearman’s correlation in favour of Pear-
son’s correlation because subtitle quality varies a
lot for different video segments and different sys-
tems, and we don’t expect the metrics to behave
linearly in this range.

4.3.2 Direct Assessment

For the translation task we additionally gather di-
rect assessment scores for each segment. For this
we ask the translators to give two scores (referred
to as U, and @Q,, respectively) according to the
following descriptions:

1. "Rate the overall usefulness of the automat-
ically translated subtitles in this segment for
post-editing purposes on a scale from 0 (com-
pletely useless) to 100 (perfect, not a single
change needed)."

2. "Rate the overall quality of the automati-
cally translated subtitles in this segment as
perceived by a viewer on a scale from 0
(completely incomprehensible) to 100 (per-
fect, completely fluent and accurate). The
score should reflect how well the automatic
translation conveys the semantics of the origi-
nal subtitles, and should also reflect how well
the translated subtitles are formatted."

These scores are standardized into z-scores by
subtracting the average and dividing by the stan-
dard deviation of scores per translator. Finally, we
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average the z-scores across the three translators
to get expected usefulness and quality assessment
scores for each segment, which we will refer to as
(7” and Qn respectively.

4.4 Results
4.4.1 Post-Editing of English Transcription

The baseline productivities P, ,¢e Of the three sub-
titlers A, B and C when transcribing the first 15
minutes of each video from scratch are 3.4, 2.8 and
2.7 subtitles per minute of work, respectively. Post-
editing changes their productivities to 3.9, 2.6 and
3.1 subtitles per minute on average for the other
segments, meaning subtitlers A and C work faster
when post-editing automatic subtitles, while subti-
tler B does not benefit from them.

Table 1 shows the analysis of the correlation
between automatic metric scores and productivity
gains, calculated for each of the 110 one-minute
video segments. Word error rate (WER) can predict
the averaged productivity gain P, with a Spear-
man’s correlation of —0.676. This confirms the
natural assumption that the more words the ASR
system recognized correctly in a given segment,
the less time is necessary for post-editing. Subtitler
A’s post-editing gains are more predictable than
those of the other two subtitlers. This indicates that
the subtitlers have different workflows and do not
make use of the automatic subtitles with the same
consistency.

Row 2 shows that making WER case-sensitive
and keeping punctuation marks as part of the words
does not improve correlation consistently. Al-
though we believe that casing and punctuation er-
rors harm subtitle quality, these errors might not
have a significant impact on post-editing time be-
cause correcting them requires changing single
characters only. Row 3 shows that extending the
original WER definition by simply inserting end-of-
line and end-of-block tokens into the text does not
lead to improvements either. This can be explained
by the fact that the original WER algorithm al-
lows for substitution of break symbols with words.
Such substitutions have no meaningful interpre-
tation. Also, it does not support shifts of break
symbols, which leads to breaks at wrong positions
being punished more than completely missing ones.

Our proposed metric SUbER achieves the over-
all best correlation of —0.692. We attribute this
in part to a proper way of handling segmentation
information: without it, as shown in the last row



Metric H Subtitler A | Subtitler B | Subtitler C H Combined
WER -0.731 -0.494 -0.499 -0.676
+ case/punct -0.671 -0.512 -0.509 -0.650
+ break tokens -0.725 -0.494 -0.512 -0.678
t-WER -0.661 -0.440 -0.476 -0.625
TER-br -0.573 -0.489 -0.434 -0.562
SubER (ours) -0.746 -0.506 -0.517 -0.692
+ case/punct -0.670 -0.507 -0.500 -0.645
- break tokens -0.741 -0.495 -0.502 -0.682

Table 1: Spearman’s correlation r, between automatic metric scores and post-editing productivity gains P, on all
110 video segments for the English transcription task. The last column shows correlation to the productivity gain

averaged across subtitlers P,.

of Table 1, the correlation is lower. Unfortunately,
for the same reasons as for the case of WER, we
have to apply SubER to lower-cased text - as it is
the default setting for the TER metric - to avoid a
drop in correlation.

Correlations for t-WER (see Section 3.3) suggest
that a word-level time-alignment using interpola-
tion may result in misalignments which are pun-
ished too harsh in comparison to which mistimings
are still tolerated by the post-editors. This supports
our design choice of using subtitle-level timings
for SubER.

Finally, we include TER-br from Karakanta et al.
(2020a) in the results. It is a variant of TER +
break tokens where each real word is replaced by
a mask token. Given that the metric has no access
to the actual words it achieves surprisingly high
correlations. This shows that the subtitle formatting
defined by the number of subtitle blocks, number
of lines and number of words per line is in itself an
important feature affecting the post-editing effort.

4.4.2 Post-Editing of Spanish Translation

Baseline productivities F,4. of the translators D,
E and Fare 1.9, 1.8 and 1.1 subtitles per minute, re-
spectively. On average, their productivity changes
to 1.6, 2.0 and 1.1 when post-editing, meaning only
subtitler B gains consistently. Subtitler A is more
productive on one of the videos, but slows down
significantly for the other two.

Table 2 shows performances of the different MT
metrics. In addition to post-edit effort, we show
how well the metrics agree with human judgments
of the usefulness and quality (see Section 4.3.2) for
each of the 110 one-minute video segments.

Overall, the correlation of productivity gains is
much lower than for the transcription task. This can
be explained by the fact that a translator has more
freedom than a transcriber. The translator’s word

choices are influenced by clues outside the scope
of the translated text, like the style of language
and references to other parts of the plot. Some-
times even research is required (e.g. bible verses
for Midnight Mass). Despite this, the subjectively
perceived usefulness U,, of the automatic subti-
tles for post-editing can be predicted from auto-
matic scores with a Spearman’s correlation of up
to —0.591. The quality judgement Qn shows even
higher correlations of up to 0.659.

We compare the baseline MT metrics BLEU and
TER when applied to the subtitle block-level vs.
the sentence-level. We note that BLEU on subtitle-
level is identical to t-BLEU (Cherry et al., 2021) for
the considered case of template translation, where
timestamps in hypothesis and reference are iden-
tical. Overall, BLEU and TER perform similarly.
For both, evaluation on subtitle-level outperforms
evaluation on sentence-level. This is because the
sentence-pairs extracted from the subtitle files pre-
serve no formatting information, while using sub-
title blocks as units is sensitive to how words of a
sentence are distributed among subtitles after trans-
lation, especially in case of word re-ordering.

Extending BLEU and TER with break tokens
to take subtitle segmentation into account shows
only minor improvements for the subtitle-level, but
significantly improves correlations for the sentence-
level. This could be attributed to the extended con-
text after end-of-block tokens that is not available
for scoring on subtitle-level. Especially the way
"BLEU + break tokens" punishes n-grams that are
disrupted by an erroneous line break seems to lead
to good results.

Our proposed metric SubER consistently outper-
forms all considered baseline metrics except for
sentence-level BLEU with break tokens, which has
a higher correlation for Q.. and for the scores given
by subtitler F. For this subtitler we also observe



Metric Subtitler D Subtitler E Subtitler F Combined

Po Ui Qu | Pi Ui Qu | Pi Ui Qu b, U Qn
Subtitle-level
BLEU 0.03 034 052 ] 022 021 0.39 | 0.07 0.58 0.49 0.172  0.541 0.595
+ break tokens 0.04 0.35 053 | 022 024 043 | 0.12 0.58 0.46 0.210  0.554  0.595
TER 0.03 -0.35 -0.54 | -022 -023 -041 | -0.11 -0.63 -0.51 || -0.182 -0.554 -0.618
+ break tokens 0.00 -036 -0.54 | -0.23 -024 -041 | -0.10 -0.61 -0.50 || -0.200 -0.558 -0.606
Sentence-level
BLEU -0.03  0.31 0.51 0.21 0.13 033 | 0.04 060 0.51 0.126 0494  0.573
+ break tokens 0.02 0.35 0.55 | 0.25 022 043 | 0.16 0.63 0.55 0.240  0.583  0.659
TER 0.07 -032 -052 | -022 -0.14 -0.34 | -0.07 -0.59 -048 || -0.133 -0.484 -0.559
+ break tokens 0.00 -036 -0.55|-025 -0.19 -0.38 | -0.13 -0.58 -0.45 | -0.218 -0.515 -0.574
chrF -0.09 026 052 | 021 0.10 028 | 0.04 0.64 0.51 0.104 0483  0.556
TER-br 0.03 -032 -042 | -0.11 -0.07 -0.24 | -0.13 -043 -0.40 | -0.137 -0.345 -0.426
SubER (ours) -0.06 -0.38 -0.57 | -0.27 -0.28 -0.47 | -0.16 -0.61 -0.52 | -0.274 -0.591 -0.651
+ case/punct 0.00 -036 -0.56 | -0.25 -0.23 -042 | -0.15 -0.61 -0.49 | -0.237 -0.554 -0.612
- break tokens 0.02 -034 -0.54 | -024 -025 -044 | -0.11 -0.65 -0.55 || -0.197 -0.572 -0.645

Table 2: Spearman’s correlation 7 between automatic metric scores and P, U,

and @,, on all 110 video segments

for the English— Spanish translation task. P, are segment-wise productivity gains from post-editing measured in
subtitles per minute of work. U,, and (),, are segment-wise usefulness and quality scores, respectively, which the
subtitlers assigned to the automatically generated subtitle segments.

that calculating SubER without break tokens im-
proves results. In fact, subtitler F stated that mov-
ing around text is not a taxing procedure for him
as he is very proficient with keyboard commands.
For the other subtitlers, break tokens as part of the
metric are shown to have a clear positive effect.

4.4.3 System-level Results

For both transcription and translation we have a
pair of systems which differ only in subtitle seg-
mentation (systems 1 and 2). We expect the system
using a neural segmentation model to perform bet-
ter overall. By definition, WER cannot distinguish
between the transcription systems, scores for both
are 40.6, 14.2 and 29.5 (%) for the three videos
Master of None, Midnight Mass and Peaky Blin-
ders, respectively. (High WER on Master of None
is caused by colloquial and mumbling speech.)
SubER scores for system 1 are 46.4, 20.3 and 33.1,
for system 2 they are 47.3, 22.1 and 34.7. This
means, for all videos SubER scores are able to
reflect the better segmentation quality of system 1.

The same is true for translation: sentence-level
BLEU scores are the same for systems 1 and 2,
namely 18.9, 26.7 and 37.9 for the three videos.
SubER scores for the system with neural segmen-
tation are 65.1, 56.5 and 41.8, whereas the system
without it gets worse scores of 67.4, 60.5 and 46.9.

5 Release of Code

We release the code to calculate the SubER met-
ric as part of an open-source subtitle evaluation
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toolkit® to encourage its use in the research com-
munity as well as the media industry and to further
promote research of automatic subtitling systems.

In addition to SubER, the toolkit implements all
baseline metrics used in Table 1 and 2, as well as
t-BLEU (Cherry et al., 2021). This includes im-
plementations of hypothesis to reference alignment
via the Levenshtein algorithm (Section 3.1) or via
interpolated word timings (Section 3.3). We use
the JiIWER? Python package for word error rate cal-
culations and SacreBLEU (Post, 2018) to compute
BLEU, TER and chrF values.

All metrics can be calculated directly from SRT
input files. Support for other subtitle file formats
will be added on demand.

6 Conclusion

In this work, we proposed SubER — a novel metric
for evaluating quality of automatically generated
intralingual and interlingual subtitles. The metric
is based on edit distance with shifts, but considers
not only the automatically transcribed or translated
text, but also subtitle timing and line segmentation
information. It can be used to compare an automat-
ically generated subtitle file to a human-generated
one even if the two files contain a different number
of subtitles with different timings.

A thorough evaluation by professional subtitlers
confirmed that SubER correlates well with their
transcription post-editing effort and direct assess-
ment scores of translations. In most cases, SUbER

https://github.com/apptek/SubER
*https://github.com/jitsi/jiwer



shows highest correlation as compared to metrics
that evaluate either the quality of the text alone, or
use different approaches to integrate subtitle timing
and segmentation information.

The source code for SUbER will be publicly re-
leased for the benefit of speech recognition and
speech translation research communities, as well
as the media and entertainment industry.
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Abstract

We propose a novel multitask learning method
for diacritization which trains a model to both
diacritize and translate. Our method addresses
data sparsity by exploiting large, readily avail-
able bitext corpora. Furthermore, transla-
tion requires implicit linguistic and seman-
tic knowledge, which is helpful for resolving
ambiguities in diacritization. We apply our
method to the Penn Arabic Treebank and re-
port a new state-of-the-art word error rate of
4.79%. We also conduct manual and automatic
analysis to better understand our method and
highlight some of the remaining challenges in
diacritization. Our method has applications
in text-to-speech, speech-to-speech translation,
and other NLP tasks.

1 Introduction

Arabic is typically written without short vowels
and other pronunciation indication markers,' col-
lectively referred to as diacritics. A longstanding
task in Natural Language Processing (NLP) is to
take undiacritized text and add the diacritics, re-
ferred to as diacritization (see Figure 1). Diacrit-
ics indicate both how to pronounce the word and
resolve ambiguities in meaning between different
words with the same (undiacritized) written form.

Diacritic prediction is the dominant source of
errors in Arabic grapheme to phoneme conver-
sion (Ali et al., 2020), a crucial component in
many text-to-speech and speech-to-speech transla-
tion systems.

Diacritization also has applications in Auto-
matic Speech Recognition (ASR) (Vergyri and
Kirchhoff, 2004; Ananthakrishnan et al., 2005; Bi-
adsy etal., 2009), Machine Translation (MT) (Diab
et al., 2007) morphological analysis (Habash et al.,
2016), lexical recognition tests (Hamed and Zesch,

* Work done while at Apple.
"Notable exceptions include the Quran and many chil-
dren’s books.

Ali Alshehri
Apple
a_ alshehri@apple.com

> - -
[hjaz Inohb] [haj:a: linadhab]

Figure 1: Arabic diacritization is the task of adding di-
acritics (markings above and below characters, shown
in red) to Arabic text. Diacritics clarify how a word
is pronounced, including short vowels and elongation,
and disambiguate word meaning. Here, we show the
diacritization of _»iJ Ls (let’s go). The IPA pronun-
ciations below each word demonstrate that the diacrit-
ics are crucial for pronouncing each word: the undia-
critized form maps to an incorrect pronunciation, while
the diacritized form maps to the correct pronunciation
(the contributions the diacritics make to the pronuncia-
tion are also shown in red).

2018; Hamed, 2019), and homograph resolution
(Algahtani et al., 2019a).

We focus on Modern Standard Arabic (MSA),
a standardized dialect of Arabic used in most aca-
demic, legal, and news publications, and an ob-
vious choice for Text-to-Speech (TTS) systems.
MSA is the 5th most spoken? language in the world
with about 274M speakers (Eberhard et al., 2021).

1.1 Challenge #1: Data Sparsity

Arabic is a Morphologically Rich Language
(MRL), where significant information concerning
syntactic units and relations is expressed at word-
level. For example, a word like s,.5..5.6 is roughly
translated to: ‘and we gave it to you to drink’.
In this example, linguistic units that are typically
expressed by individual words in English such
as coordinating conjunctions and personal pro-
nouns are expressed within the word form in Ara-
bic. This fact results in Arabic having a large
vocabulary (by way of example, the number of
unique, undiacritized words in the Arabic bible
from Christodouloupoulos and Steedman (2015)

2«Speaker” is a bit of a misnomer: Most Arabic speakers
can understand MSA but would not typically produce it.

Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022), pages 11 - 21
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is about 4.38x larger than the number of unique,
lower-cased words in the English equivalent.) Fi-
nally, high-quality diacritized datasets tend to be
quite small: The Penn Arabic Treebank (PATB)
training subset used in this work is only 15,789
lines, and data available in other dialects can be
substantially smaller. These factors result in Ara-
bic being quite data sparse, with diacritics models
typically needing to handle a large number of un-
seen words.

1.2 Challenge #2: Ambiguity

Many of the morphological variants in Arabic are
differentiated by only diacritics. This results in
un-diacritized Arabic having a huge number of ho-
mographs which must be resolved when adding di-
acritics. Furthermore, as mentioned above, Ara-
bic is a MRL, where information such as gen-
der (male, female), number (singular, dual, plu-
ral), case (nominative, accusative, genitive), as-
pect (perfect, imperfect), voice (active, passive)
and mood (indicative, imperative, subjunctive) is
expressed on the word-level, sometime with as lit-
tle as one diacritic. These factors result in undi-
acritized Arabic being highly ambiguous; Debili
et al. (2002) reported an average of 11.6 possible
diacritizations for every non-diacritized word in
Arabic. For example, the form = could be dia-
critized as <& ‘he wrote’, 5 ‘it was written’, o5
‘it was written repeatedly’, = ‘books’ (nomina-

>

tive case), or _& ‘books’ (genitive case).

1.3 Overview of Proposed Method

We propose a novel Multitask Learning (MTL)
(Caruana, 1997) based approach to improve the se-
mantic and linguistic knowledge of a diacritization
model. Specifically, we propose augmenting dia-
critics training data with bitext to train a model to
both diacritize Arabic and translate into and out of
Arabic.

Our approach addresses data sparsity by substan-
tially increasing the amount of training data seen
by the model. Our approach also enables the use
of large, readily available MT datasets, which are
available not only in Arabic but in many other lan-
guages with diacritics as well.> In our experiments
on the PATB, adding bitext increases training data

3In contrast, prior MTL work in diacritization has used
hand-curated features such as Part of Speech (POS), gender,
and case (see §2.1), severely limiting both the size of available
data and the applicability to other languages, which may not
have such resources.
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from 502k to 138M Arabic words, and decreases
the Out of Vocabulary (OOV) rate from 7.33% to
1.14%.

Our approach also addresses ambiguity, since
the task of translation requires (implicit) semantic
and linguistic knowledge. Training on bitext in-
jects semantic and linguistic knowledge into the
model which is helpful for resolving ambiguities
in diacritization (see Table 1).

These factors contribute to our method achiev-
ing a new State-of-the-Art (SOTA) Word Error
Rate (WER) 0f 4.79% on the PATB, vs 7.49% for
an equivalent baseline without MTL.

1.4 Main Contributions of This Work

The main contributions of this work are:

* We present anovel MTL approach for diacriti-
zation, which does not require a morpholog-
ical analyzer or specialized annotations (and
thus is likely extensible to other languages, di-
alects and domains).

We achieve a new SOTA WER of 4.79% on
the PATB test set.

We perform extensive automatic analysis of
our method to see how it performs on var-
ious conditions including different parts of
speech, genders, word frequencies, and sen-
tence lengths.

We perform detailed manual error analysis
of our method, illustrating both issues in the
PATB dataset as well as the remaining chal-
lenges in Arabic diacritization.

2 Related Work

2.1 Diacritization

Many works have explored using neural networks
for Arabic diacritization (Zalmout and Habash,
2017, 2019; Alqgahtani and Diab, 2019; Algahtani
et al., 2019b).

Algahtani et al. (2020) and Zalmout and Habash
(2020) both explore MTL regimes in which a
model learns to predict Arabic diacritics simulta-
neously with other features in the PATB. Alqahtani
etal. (2020) uses additional features of syntactic di-
acritization, word segmentation, and POS tagging,
while Zalmout and Habash (2020) use additional
features of lemmas, aspect, case, gender, person,
POS, number, mood, state, voice, enclitics, and
proclitics. By also report further improvements by
adding an external morphological analyzer. These
papers illustrate the potential of MTL, but they re-



# Arabic Sentence  English Sentence Diacritized  Pronunciation  Translation
0 o ey jasi 23ed do The flag of Saudi Arabia is green and white 1 [falamu] flag

1 ) ot~ Tlove space science s [filma] science

2 i) sl o6 ole Nasser taught Ahmad how to swim (.J; [fal:ama] taught

Table 1: Adding bitext to our training data improves the semantic and linguistic knowledge of our diacritization
model. For example, in order to correctly translate .k out of Arabic, the model must learn to implicitly perform ho-

mographic resolution to determine if the word is being used to mean “flag,

EENT3 99 ¢

science,” “taught,” or other meanings.

This knowledge is helpful for diacritization since diacritized forms are intrinsically linked with word meaning. The
model can also implicitly learn, for example, that .= in example #2 is being used as a causative past tense verb. This

can help the model diacritize this use of J correctly ((,i;), even if (,.1; does not appear in the diacritization training
data, since V.Lo follows a common diacritization pattern for causative past tense verbs.

quire additional hand-curated features. This limits
both the datasets they can use (neither are able to
take advantage of large outside datasets) and the
languages they could be applied to.

2.1.1 Contextual Embeddings

Naplava et al. (2021) show that contextual embed-
dings can result in substantial improvements in di-
acritization error rates in several languages, but un-
fortunately they do not report results on Arabic.

Qinetal. (2021) start with a strong baseline built
on ZEN 2.0 (Song et al., 2021), an n-gram aware
BERT variant. Their BERT-based baseline outper-
forms prior work on PATB. They then claim even
stronger results on PATB with two methods that
incorporate multitask training with a second, aux-
iliary decoder trained to predict the diacritics pro-
duced by the Farasa morphological analyzer (Ab-
delali et al., 2016). We argue that their experi-
mental setup is fundamentally flawed, since Farasa
was trained on the PATB test set* and can leak in-
formation about the test set to the model.> They
also report results on the Tashkeela training/test
data (Zerrouki and Balla, 2017; Fadel et al., 2019),
which does not have a potential testset contami-
nation problem, and find that their method under-

“Farasa was trained on PATB parts 1, 2 and 3 in their en-
tirety, and then tested on a separate collection of hand curated
news articles (Abdelali et al., 2016).

>To understand how leakage from the test set can occur,
consider the word .-l (the star; female). i.-Ji appears three
times in the training data, once without diacritics (likely an
error) and twice as 5% . However, it appears 9 times in the
test set, each time diacritized as 3% . Farasa is trained on
both the training and test data, so from it’s perspective, 3.3
is by far the most likely diacritization of z.-s . Thus when
the model sees il in training, Farasa can artificially bias
the model toward producing the diacritized form in the test
set, despite that form never appearing in the training data.
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performs a straightforward bidirectional LSTM,®
which supports the hypothesis that their strong
PATB results are due to training on a derivative of
the test set.

2.2 Character-Level and Multilingual MT

Multilingual MT (Dong et al., 2015) has been
shown to dramatically improve low-resource trans-
lation, including enabling transfer from higher re-
source language pairs to lower-resource language
pairs (Zoph et al., 2016; Nguyen and Chiang, 2017;
Neubig and Hu, 2018). In our case, we set up learn-
ing to encourage transfer from undiacritized Ara-
bic to much lower-resourced diacritized Arabic.

Most MT systems operate at the subword
(Sennrich et al., 2016; Kudo and Richardson,
2018); however, such approaches would result
in diacritized and undiacritized versions of the
same word having little to no overlap in sub-
words. We instead train a character-level encoder-
decoder model (Lee et al., 2017; Cherry et al.,
2018), to maximize the number of shared repre-
sentations between diacritized and undiacritized
words. Character-level diacritics models have also
been shown to outperform subword-level models
(Algahtani and Diab, 2019).

3 Method

We train a single Transformer-based (Vaswani
et al., 2017) encoder-decoder model to both trans-
late and diacritize, with the hypothesis that the
translation task is complementary to diacritization.
To maximize the number of shared representations
between diacritized and undiacritized words, we
train our model at the character-level. Following

®Qin et al. (2021) claim to achieve state-of-the-art perfor-
mance on both datasets, but this is not supported by their re-
sults (see their Table 2, noting that bold does not denote the
best performing system).



work in multilingual MT, we prepend a tag to each
output sentence to tell the model whether the out-
put is undiacritized Arabic, diacritized Arabic, En-
glish, French, or Spanish during training. At infer-
ence time we force decode the tag to request that
the model produce diacritized Arabic.

3.1 Decoding

In Arabic, simple rules dictate where diacritics can
be placed. During decoding, we enforce these
rules by keeping track of which input characters
the decoder has produced (i.e. copied from input to
output) and constrain the decoder as follows: If the
previous output is a non-diacritic Arabic character,
we restrict the decoder to produce any diacritic or
the next input character. If the previous output is
a shadda, we restrict the decoder to produce a non-
shadda diacritic or the next input character. Oth-
erwise, the model is forced to produce the next in-
put character. Without these restrictions, we found
that the model would occasionally produce minor
paraphrastic variations of the input.’

3.2 Long Sentence Handling

The computational complexity of Transformer lay-
ers is proportional to sequence length squared
(Vaswani et al., 2017), so we do not want to train or
evaluate on an arbitrarily long sequences of char-
acters. Instead, we limit the maximum input and
output sequence to 600. To diacritize a sentence
with more than 300 input characters, we take over-
lapping windows of 300 characters with a step size
of 100 characters. We predict diacritics indepen-
dently for each window, and reconstruct the orig-
inal sentence using the first 200 characters from
the first window, the input characters of the last
window excluding the first 100 characters, and the
middle 100 characters from any windows in be-
tween. This ensures that we only use output with at
least 100 characters of context. For the bitext data,
we simply discard sentence pairs with greater than
600 input or output characters.

4 Experiments

We train a character-level transformer encoder-
decoder model on both diacritics data and the
bitext. Our primary model performs diacritiza-
tion, translation from Arabic (Ar) to English (En),
French (Fr), and Spanish (Es), and translation from

"The tendency of a multilingual MT model to paraphrase

the input has been noted (and exploited) in Tiedemann and
Scherrer (2019) and Thompson and Post (2020b).
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Name Form  Sound [IPA]
Fatha /al

Fathatan /an/

Kasra i/

Kasratan /in/

Damma h/
Dammatan /un/

Dagger Alif Ja:/

Maddah T fSa/

Shadda Elongation (z)
Sukun None

Table 2: Diacritics considered in this work.

Ar-En  Ar-Es  Ar-Fr Diacs
Global Voices 0.9 0.9 0.5 -
CCAligned - 21.9 21.7 -
News Commentary 5.0 5.0 4.3 -
United Nations 20.7 19.9 19.5 -
WikiMatrix 15.0 1.7 1.6 -
PATB - - - 0.5
Total 40.8 48.4 47.1 0.5

Table 3: Size (millions of Arabic words) of training
datasets used in this work. Note that total bitext is about
275x larger than diacritics data.

English, French, and Spanish to Arabic. However,
we also perform ablations for analysis purposes,
leaving out (1) the Ar— {En,Fr,Es} data, (2) the
{En,Fr,Es}— Ar data, and (3) all of the bitext data.
Each model uses a single encoder and decoder for
all tasks.

4.1 Diacritics Data

We chose to use PATB part 1 v4.1 (LDC2010T13),
part 2 v3.1 (LDC2011T09) and part 3 v3.2
(LDC2010T08), following the train/dev/test splits
proposed by Diab et al. (2013). The PATB was
chosen because in addition to diacritics, it con-
tains many carefully annotated features which we
use to analyze the performance of our models (see
§6). We perform unicode NFKD normalization
on the text in order to (1) split Unicode charac-
ters which contain both a non-diacritic and dia-
critic (e.g. the Unicode character for alif with mad-
dah above (U+0622) is split into alif (U+0627) and
maddah (U+0653)) and (2) normalize the order of
characters (e.g. alif + high hamza + fatha and alif +
fatha + high hamza both render as | and are normal-
ized to alif + high hamza + fatha). The diacritics
considered in this work are shown in Table 2.



Training Data

PATB
PATB + Bitext

OOV Rate (Undiacritized)

7.33%
1.14%

Table 4: OOV rates (rate of seeing a word at infer-
ence time that was not seen in training), for the encoder,
which sees words without diacritics.

4.2 MT Data

We use Ar«>{EnFrEs} data from Wikimatrix
(Schwenk et al., 2019), Global Voices,® United
Nations (Ziemski et al., 2016), and NewsCom-
mentary,” and Ar< {Fr,Es} data from CCAligned
(El-Kishky et al., 2020), after joining on English
urls. We filter out noisy sentence pairs (Khayral-
lah and Koehn, 2018) using the scripts'® pro-
vided by Thompson and Post (2020a), using more
aggressive thresholds of min laser score=1.06,
max_3gram_overlap=0.1 for the CCAligned data
and using values from Thompson and Post (2020a)
otherwise. We limit each dataset to 1M lines per
language pair, so that no one data type dominates
training. Data size are shown in Table 3. We up-
sample PATB by 20x when combining it with the
bitext, since it is much smaller than the bitext.

We filter out the (very infrequent) diacritics
from the MT data to ensure that any benefits ob-
served are due to MTL and not simply the result of
including more diacritized data in training.!!

The impact that adding bitext has on the OOV
rate is shown in Table 4.

4.3 Models & Training

We train character-level Transformer models in
fairseq (Ott et al., 2019). Metaparameters are
tuned on the development set. The (non-MTL)
baseline has 6 encoder and decoder layers, encoder
and decoder embedding dimensions of 1024, en-
coder and decoder feed-forward network embed-
ding dimensions of 8192, and 16 heads. All embed-
dings are shared. The model is trained with learn-
ing rate of 0.0004, label smoothing of 0.1, dropout
of 0.4 with no attention or activation dropout, 40k
characters per batch, for 50 epochs. All MTL mod-
els have 6 encoder and decoder layers, encoder and
decoder embedding dimensions of 1280, encoder
and decoder feed-forward network embedding di-

8 casmacat.eu/corpus/global-voices.html

?data.statmt.org/news-commentary/

1%github.com/thompsonb/prism_bitext_filter

"n practice, there may be some benefit to retaining dia-
critics in the MT data, but this was not explored in this work.
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mensions of 12288, and 20 heads. All embeddings
are shared. The model is trained with learning rate
of 0.0004, label smoothing of 0.1, dropout of 0.2
with no attention and activation dropout each set to
0.1, 40k characters per batch, for 20 epochs. We se-
lect the best performing model for each run using
WER on the development set.

5 Results

The word error rates for our method (main model,
both ablation models, and baseline) are shown in
Table 5, along with error rates reported by prior
work. Our main model achieves 4.71% WER
on the development set, a relative improvement of
22.8% over the previous best development set re-
sult from Zalmout and Habash (2020), who trained
a multitask model on PATB features and incorpo-
rated a morphological analyzer. On the test set, it
achieves 4.79% WER, a relative improvement of
18.8% over the best previously reported test set re-
sult from Qin et al. (2021), who trained a BERT-
based model.

Our ablation models also outperform all prior
work, with the model trained on Ar— {En,Es,Fr}
(denoted Ar— ) bitext outperforming the model
trained on {En,Es,Fr}—Ar (denoted *—Ar) bi-
text, but neither perform as well as the main model
trained on both Ar—* and *—Ar. (See §6 for
more detailed comparisons between the models
trained in this work.)

Finally, our baseline model, consisting of a
character-based Transformer with no augmenta-
tion or word embeddings, slightly outperforms
prior models from Alqahtani et al. (2019b) and
Algahtani and Diab (2019), that also do not use
MTL, morphological analyzers, or contextual em-
beddings.

6 Automatic Analysis

6.1 Case Endings

We compute the Diacritic Error Rate (DER) for
all models trained in this work for several differ-
ent settings: all characters (including whitespace,
punctuation, and non-Arabic characters), Arabic
characters, Arabic case endings, and Arabic char-
acters excluding case endings: see Table 6. We use
POS tags to determine which words have case end-



Multitask Morphological ~ Word Dev Test

Analyzer Embeddings WER| WER/]
Algahtani et al. (2019b) No No No 8.20%
Algahtani and Diab (2019)  No No No 7.60%
Algahtani et al. (2020) PATB Features No fastText 7.51%
Zalmout and Habash (2019)  PATB Features Train & Test fastText 7.30%  7.50%
Zalmout and Habash (2020)  PATB Features Train & Test fastText 6.10%
Qin et al. (2021)" No No Zen 2.0 6.49%  5.90%*
This word (baseline) No No No 7.46% 7.49%
This work (ablation) Translate *—Ar No No 5.60%  5.83%
This work (ablation) Translate Ar— No No 5.24% 5.32%
This work Translate *—Ar & Ar—* No No 4.71%  4.79%

Table 5: Development and Test WER (lower is better) for our main system, ablation systems, and baseline, com-
pared to recent work. Our main system outperforms all prior work, as do both ablation systems. T:We exclude the
experiments of Qin et al. (2021) which use Farasa in training, as Farasa was trained on the test set (see §2.1.1).

#:Mean of 5 runs with different random seeds.

Multitask Learning
Baseline | *—Ar Ar—x* Both
All 234% 1.85% 1.73% 1.52%
Arabic 297% 235% 221% 1.94%
Arabic CE 6.90% 4.71% 4.18% 3.61%
Arabic non-CE 248% 2.06% 1.96% 1.73%

Table 6: Diacritic error rate for all characters (including
whitespace and non-Arabic characters), Arabic charac-
ters only, Arabic case endings (CE), and Arabic charac-
ters excluding case endings (non-CE). We use POS tags
to determine which words contain case endings.

ings when computing DER.!? Comparing our main
model to the baseline, we see that MTL training im-
proves case endings more than non-case endings:
case ending DER is improved by a 47.7% (3.61%
vs 6.90%) vs 30.2% (1.72% vs 2.48%) for non case
ending characters. Furthermore, comparing the ab-
lation models, the performance difference between
them is more pronounced on case endings, where
the %—Ar model is 12.7% worse than the Ar— =
model, while the difference is only 5.1% for non
case endings.

6.2 WER vs Sentence Length

We show WER as a function of sentence length (in
undiacritized characters) in Figure 2. We note that
while both the %— Ar and the Ar—* models tend
to improve with sentence length, the improvement
is much more pronounced for the Ar—* model.
In other words, the Ar—#* model is benefiting

12Several prior works have reported DER of just the last
character as a stand-in for case-ending DER. However, this
analysis is muddied by the fact that not all words in Arabic
have case endings; in the PATB test set, for example, the POS
tags indicate that only about 46.8% of words have them.
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Figure 2: Word error rate vs (undiacritized) character
length. T:Sentences over 300 characters are processed
in overlapping windows of 300 characters (see §3.2).

much more from increased context than the *— Ar
model.

In conjunction with the DER results in §6.1, this
indicates that training the model to translate out of
Arabic is more helpful at injecting semantic and
linguistic knowledge into the model to address am-
biguity. The fact that the two translation direc-
tions are complementary suggests that training the
model to translate into Arabic is addressing data
sparsity issues in the model’s decoder, despite the
mismatch between the bitext being undiacritized
and the model needing to produce diacritized out-
put.



Male Female Bias

# WER # WER
Pronoun 835 6.23% 641 8.11% 30.3%
Verb 3579 5.34% 2083  6.39% 19.6%
Suffix 901" 5.22% 10222 5.71% 9.5%

Table 7: WER for male and female pronouns, verbs,
and nouns/adjectives with gendered suffixes, along
with their counts in the test set. T:We include only suf-
fixes which are explicitly marked in the PATB for gen-
der, which tend to be female (see §6.3).

6.3 Gender Bias

Gender bias has been noted in many aspects of
NLP (Sun et al., 2019) but we are not aware of any
prior work looking at gender bias in diacritization.
We use the PATB POS tags to isolate three types
of gendered words: pronouns, verbs, and suffixes.
“Suffixes” refer to nouns and adjectives that have
a gendered suffix. Unsurprisingly, we find that the
model is better at diacritizing male words than fe-
male words in all three cases (see Table 7), with
words in the male categories being diacritized cor-
rectly 9.5% to 30.3% more often than their female
equivalents. We suspect that this bias is due at least
in part to representation within the data: Male pro-
nouns and verbs are 30% and 72% more common
than their female counterparts. Counts of suffixes
are complicated by the fact that that PATB only
marks certain nouns and adjectives for gender (in-
cluding those with taa marbuta, which tend to be
female). By manual inspection, the remainder ap-
pear to be male, but we were unable to confirm this
in the PATB annotation guidelines so we included
only those explicitly marked for gender.

6.4 WER vs POS

The PATB includes detailed POS tagging. We ex-
ploit this feature to examine how our model per-
forms on different parts of speech: see Table 8.
Note that the PATB has one or more POS tags per
word, with about 2.19 tags per word on average
in the test set. We do not attempt to split words
into their respective parts, as we find cases where
this is not straightforward. Instead, such words are
counted multiple times. As an example, ,;;m (the
first) is both a determiner and cardinal adjective,
and contributes to the WER of both.

For parts of speech with at least 500 occurrences
in the test set, the worst performing POS for the
MTL model by far is proper nouns (count=5969) at
14.09% WER. This is followed by imperfect verbs
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(count=2598) at 7.89% WER, possessive pronouns
(count=1609) at 6.60%, and adjectives (excluding
cardinal and comparative) (count=6106) at 6.49%.

Comparative adjectives, which are relatively in-
frequent (count=264) also have a high WER of
9.95%, but the worst POS considered by far is the
extremely infrequent (count=18) imperative verbs,
with a WER of 72.22%. Imperative verbs illustrate
the importance of domain; news data contains very
few imperatives, and imperative verbs are often
distinguished from from imperfect or perfect verbs
by diacritics alone. For example, 3Ll s .zl can
be diacritized , JJaJ\ & .z (Continue on the road)
or L,JJJQH & %) (He continued on the road). This
results in the model choosing the much more com-
mon perfect or imperfect forms in the majority of
cases that should be imperative.

6.5 WER vs Word Frequency

MTL improves learning across all word frequen-
cies: see Table 9. The biggest improvements are
seen for words seen once and 2-4 times in training,
with relative improvements of 43.5% and 45.4%,
respectively.

7 Manual Analysis

To better understand the performance of our MTL
model, we manually annotate all differences be-
tween our model prediction and the gold test set for
a randomly selected 20% of the 1246 sentences in
the test set that contain at least one disagreement.

We find that approximately 66% of the disagree-
ments between the gold test set and the model are
the result of model errors, which we denote as “true
errors”. The majority of these errors are due to case
markings being either incorrect (38.6% of all true
errors) or missing (16.5% of all true errors), while
the rest of the word is correct.

However, we find that in approximately 32% of
disagreements the model output is, in fact, correct.
We denote such cases as “false errors.” About half
(50.3%) of the false errors were due to the test set
missing diacritics and another 31.2% of all false
errors were due to errors in the test set diacritics.
10.7% of the false errors were the result of valid
variations which did not change the meaning of the
sentence in any way (e.g. Ja:& vs x and
vs J34). Another 4.4% of false errors were the
result of valid variations that changed the meaning
of the sentence while still resulting in a plausible
meaning. A very small number of words (3.4%



Count Baseline MTL Rel.  Examples
WER WER  imprv.

Noun: Proper 5969  18.24%  14.09% 22.8% i (Mary); 12-1 (Ahmed)
Noun: Numeric 1609 3.29% 211% 35.8%  s:ié (ten); i (four)
Noun: Quantity 451 10.42% 532% 48.9% & (any; fem); as (SOme)
Noun: Other 22795 8.43% 5.03% 40.3% .4 (day); i35 (small country)
Pronoun: Possessive 1681  11.42% 6.60% 422% s (my book); s (your book; fem)
Pronoun: Demonstrative 601 0.00% 0.17% - \is (this; male singular)é atls (these, fem dual)
Pronoun: Other 1154 1.04% 0.52%  50.0%  sisls (she saw me); &if (you; male singular)
Verb: Inflected, Perfect 3273 9.53% 4.89% 48.7% i (he went); 3 (it was accepted)
Verb: Inflected, Imperfect 2598  13.55% 7.89% 41.8% i (he goes); & (it is accepted)
Verb: Inflected, Imperative 18 83.33%  72.22% 13.3% 53 (go; male); o (stop; fem)
Adverb 260 0.00% 0.38% - & (when); 91> (then)
Adjective: Cardinal 348 7.18% 431% 40.0% o3 (19th century); ’jw (t}le first)
Adjective: Comparative 264 16.67% 9.85% 40.9% s~ (more cautious); .-~ (the best)
Adjective: Other 6106  10.87% 6.49%  40.4% s, (historic); &% (Jewish)
Determiner 15337 8.72% 585% 32.9% .. (the Tunisian); 51 (the day)

Table 8: WER for our baseline and our main MTL model, for various parts of speech, and their associated count in
the test set. Note: many words have more than one POS and contribute to 2+ categories (see §6.4).

# Occur in Multitask Learning
PATB-train  Baseline kx—Ar Ar—x* Both
0 30.93% 26.30%  23.20% 21.92%
1 17.63% 12.46%  10.33% 9.95%
2-4 11.94% 8.32% 7.56% 6.51%
5-16 8.78% 6.83% 6.50% 5.67%
17-64 7.80% 5.81% 5.50% 4.86%
65-256 6.33% 4.97% 4.55% 3.76%
257-1024 4.34% 3.28% 3.16% 2.94%
>1024 0.30% 0.20% 0.29% 0.22%

Table 9: WER vs number of times a word occurs in
PATB-train (ignoring diacritics), for all four models
trained in this work.

of false errors) had trivial diacritic variations that
do not change meaning or pronunciation (e.g. one
having a sakun while the other had no diacritic, or
one having a fatha before an alif while the other
did not).

Finally, about 2% of the disagreements are cases
where the input to the model is not a real word,
making the correct output undefined.

8 Conclusion

We demonstrate that training a diacritics model to
both diacritize and translate substantially outper-
forms a model trained on the diacritization task
alone. Adding translation data substantially in-
creases the amount of training data seen by the
model, addressing data sparsity issues in diacriti-
zation. The translation task also injects semantic
and linguistic knowledge into the model, helping
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the model resolve ambiguities in diacritization.

Our method achieves a new state-of-the-art
word error rate of 4.79% on the Penn Arabic Tree-
bank datasets, using the standard data splits of
Diab et al. (2013).

Finally, we present extensive manual and au-
tomatic analysis which provides insight into our
method and highlights several challenges that still
remain in Arabic diacritization, including proper
nouns, female word forms, and case endings.
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Abstract

Simultaneous translation is a task that requires
starting translation before the speaker has fin-
ished speaking, so we face a trade-off between
latency and accuracy. In this work, we focus
on prefix-to-prefix translation and propose a
method to extract alignment between bilingual
prefix pairs. We use the alignment to segment
a streaming input and fine-tune a translation
model. The proposed method demonstrated
higher BLEU than those of baselines in low la-
tency ranges in our experiments on the IWSLT
simultaneous translation benchmark.

1 Introduction

Simultaneous machine translation (SimulMT) is a
task to start outputting translation before observ-
ing the whole input sentence. SimulMT is more
difficult than the translation with the whole input
sentence because it cannot use the latter part of
the sentence as context. SimulMT has to decide
whether to wait for more input or to output partial
translation using the input so far, in real-time. The
translation quality should become better if we can
use longer inputs and vice versa. We have to han-
dle such a trade-off between the quality and latency
of the translation by decision policies to choose
the next action between read (waiting for the next
input segment) and write (outputting a translation
segment) for a given input-output history (Gu et al.,
2017). Neural Machine Translation (NMT) models
used for SimulMT can be roughly categorized into
policy-dependent and policy-independent.

A policy-dependent model is trained with the
constraints given by the policy, in order to trans-
late an input prefix into an output prefix. Ma et al.
(2019) proposed a simple method with a fixed pol-
icy called wait-k, where the NMT first takes k read
actions followed by alternating write and read ac-
tions until the end of the translation output. Ari-
vazhagan et al. (2019) proposed a joint training
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framework for flexible policies and the correspond-
ing NMT model using a latency-augmented loss
function and Monotonic Infinite Lookback (MILKk)
attention.

In contrast, a policy-independent model is a
standard NMT model to translate the whole in-
put into the whole output and used for SimulMT
along with a given policy in the inference. We
can share one NMT model for different policies,
so the quality-latency trade-off can be controlled
easily. Dalvi et al. (2018) achieved some latency
reduction with a small loss in BLEU by the use of
a fixed policy called STATIC-RW. Ma et al. (2019)
also applied their wait-k policy using a sentence-
based NMT model, called test-time wait-k. Zhang
et al. (2020) proposed a flexible policy to predict
segment boundaries in an input. Once a bound-
ary is found, the segment is translated using a
sentence-based NMT model. The model based
on their segmentation demonstrated better results
in quality-latency trade-off than those using wait-k
and MILk in Chinese-to-English SimulMT. Kano
et al. (2021) proposed another flexible policy using
simple rules with syntactic constituent label pre-
diction and showed better performance than MU-
based SimulMT in English-to-Japanese.

One problem in the use of a policy-independent
model in SimulMT is the difference between train-
ing and inference conditions; the NMT model is
trained in the sentence level but is used to translate
the prefix of a sentence in inference. This causes
unexpectedly long translation and hurts the quality
of SimulMT (Kano et al., 2021). To mitigate the
problem, we propose a method for data augmenta-
tion to fine-tune a policy-independent NMT model
to the problem of prefix-to-prefix translation, called
Bilingual Prefix Alignment. We use a pre-trained
sentence-based NMT model to align source lan-
guage prefix and target language prefix of sentences
in the training corpus and collect prefix translation
pairs. The proposed method demonstrated higher

Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022), pages 22 - 31
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BLEU than baselines in low latency ranges, in our
SimulMT experiments using IWSLT English-to-
Japanese and English-to-German datasets.

2 Related Work

The problem of SimulMT has been tackled for
a decade. In early attempts using statistical ma-
chine translation, decision policies were combined
with the beam search decoding (Sankaran et al.,
2010; Bangalore et al., 2012). Fujita et al. (2013)
used phrase reordering probabilities used in phrase-
based statistical machine translation for their deci-
sion policy. In later years, feature-based learned
policies were proposed. Oda et al. (2014) proposed
a feature-based policy optimization to maximize
BLEU. Syntactic features also successfully used
for the policies (Rangarajan Sridhar et al., 2013;
Oda et al., 2015).

Recently, most SimulMT studies are based on
NMT, and such methods can output more flu-
ent translation than before. Among NMT-based
SimulMT studies, one major approach is to train an
NMT model optimized for given or jointly-learned
policies. Wait-k (Ma et al., 2019) is a very sim-
ple fixed policy that waits for k input tokens first.
Zheng et al. (2020) proposed an ensemble of differ-
ent wait-k-based models for adaptive SimulMT. To
make the policies more flexible, latency-augmented
loss functions are used to jointly optimize accuracy
and latency in the training of the SimulMT model
(Raffel et al., 2017; Arivazhagan et al., 2019; Ma
et al., 2020b).

Another approach employs such policies only in
inference, using a standard sentence-based NMT
model. Fixed policies can be applied to this ap-
proach easily (Dalvi et al., 2018; Ma et al., 2019).
Cho and Esipova (2016) proposed greedy decod-
ing with policies conditioned by the decoder’s
prediction, called Wait-If-Worse and Wait-If-Diff.
Kano et al. (2021) proposed a rule-based policy
using incremental prediction of the syntactic con-
stituents. To learn segmentation policies from
the bilingual corpus, reinforcement learning-based
methods were proposed (Grissom II et al., 2014;
Satija and Pineau, 2016; Gu et al., 2017; Alinejad
etal., 2018). It is a straightforward way to optimize
latency and accuracy jointly, but its training process
is relatively complex and sometimes unstable. In-
stead of the joint learning of a segmentation policy
and policy-dependent model, Zheng et al. (2019)
proposed a method to find oracle read and write
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actions using a pre-trained NMT model. Zhang
et al. (2020) also used a pre-trained NMT model to
find segments called Meaningful Units (MUs).
This work is motivated by Dalvi et al. (2018) and
Zhang et al. (2020) and extends them with Bilin-
gual Prefix Alignment using a pre-trained NMT
model. Our method finds appropriate segment
boundaries based on the similarity between ref-
erence and translation hypothesis for given pre-
fix segments in a different way from Zhang et al.
(2020). We also fine-tune the pre-trained NMT
model using the bilingual prefix pairs, which is a
more sophisticated way than Dalvi et al. (2018)".

3 Simultaneous Machine Translation

A sentence-level NMT is formulated as follows,
letting © = z1, z9, ..., £, be an input sentence and
Y = Y1, Y2, ..., Yo b€ its translation:

m

p(ylz) = [] Pyelz, y<t).
t=1

ey

SimulMT takes a prefix of the input for its incre-
mental decoding, formulated as follows:

m

p(ylz) = H P(yt|m§g(t)ay<t)a
t=1

2

where ¢(t) is a monotonic non-decreasing function
that represents the number of input tokens read by
the ¢-th step so that < ;) means an input prefix
given so far, and y; is a prefix translation by the
previous step. This means that we can obtain a
pair of a input prefix and the corresponding prefix
translation (<), Y<¢) at t-th step.

In this work, we use chunk-based incremental
decoding (Kano et al., 2021), in which we translate
an input prefix from the beginning. It is similar to
an approach called re-translation (Niehues et al.,
2016; Arivazhagan et al., 2020), but we force the
decoder to follow already translated output prefixes
in the same way as the teacher forcing in NMT
training.

4 Proposed Method

Figure 1 shows the whole translation process of the
proposed method at the inference step. We propose
Prefix Alignment for training a segmentation policy
and fine-tuning a sentence-level NMT model for
the policy-dependent SimulMT. Suppose we have a

"Note that the authors reported they obtained no perfor-
mance improvement by the fine-tuning.



[Read source] [ Boundary ] [ translation ]
words Prediction

Step 1 | = 0.9>05 = &

Step2 I bought = 0.2 <05 =

Step 3 | bought a = 0.3<0.5 =

Step 4 I boughta pen = 0.7 > 0.5 = fld_>rzE-7

Step 5 I boughtapen.=0.7>05 = fhlzr%28 -7,

Figure 1: The translation process of the proposed
method from English to Japanese. The threshold of
boundary probability is 0.5 in this case. The underlined
part is the forced output prefix.

pre-trained NMT model and a bilingual corpus for
fine-tuning the model for SimulMT. The proposed
method consists of the following steps:

1. Collect prefix translation pairs using the pre-

trained model

Find reference prefixes corresponding to the
prefix translation pairs

3. Train a boundary prediction model

4. Fine-tune the NMT model

Their details are described in the following subsec-
tions.

4.1 Collecting Prefix Translation Pairs

In this step, we collect prefix translation pairs from
the bilingual corpus using the pre-trained NMT
model. For every source language sentence in the
bilingual corpus, we extract prefix translation pairs
using NMT results of the source language sentence,
by the following procedure. First, we translate the
source language sentence @ into the target language
sentence y using the NMT model. Then, we trans-
late a prefix of  with one word?, Z|y|<1, INto a tar-
get language prefix §(1). Here, if the longest com-
mon prefix Y, 01,3 between y and V) is not empty,

we extract the pair ()<, yl(clg) as a prefix trans-
lation pair. We iterate this prefix translation pair
extraction with enlarging the prefix length one by
one; we translate the i-word prefix @),,|<; into gj(i)
and check 171(23. In the iteration, we may obtain the
same longest common prefix with different source

*Here, we use the word-based prefix length even though
we use subwords. Thus, &,,|<1 may consists of one or more
subwords.
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language prefixes. We just extract the first appear-
ance and ignore the rest with longer source lan-
guage prefixes in such cases. Furthermore, once
we extract a prefix translation pair (,|<;, 371(2;)’

we use the target language prefix yl(ZI)J as a forced

output prefix and applied it to update the sentence-
level translation y and to generate prefix translation
49 for j > i. This is because the translation for
longer prefixes or the whole sentence may change
by a beam search when a forced output prefix is
given.

Our prefix extraction strategy is different from
that by Zhang et al. (2020), in which the whole
prefix translation (¥ should be a prefix of the
sentence-level translation y, not taking the longest
common prefix as in this work.

Figure 2 shows an example. The first prefix trans-
lation ends with a punctuation mark, so Meaningful
Unit (Zhang et al., 2020) cannot extract the first
prefix as the pair because the mark does not match
with the end of prefix of full-sentence translation.
In contrast, the proposed method can extract the
matched target prefix by ignoring the latter part
of the prefix translation. Therefore, the proposed
method identifies more boundaries than Meaning-
ful Unit.

Another difference from Meaningful Unit relates
to the extraction strategy above. Since the original
pre-trained NMT model often generates unneces-
sary tokens like punctuation marks at prefix bound-
aries, we fine-tune the pre-trained model using the
extracted prefix pairs to avoid such problems.

4.2 Prefix Alignment with References

Since the prefix translations obtained through the
process above are NMT results and different from
their references in general, we also extract corre-
sponding reference prefixes from the bilingual cor-
pus. We use BERTScore (Zhang* et al., 2020) to
find the correspondence between an NMT-based
prefix and a reference prefix, varying the length
of the reference prefix. We choose the reference
prefix that has the largest BERTScore F-measure
as the corresponding one to a given NMT-based
prefix. Using this correspondence, we can align a
source language prefix and its reference counterpart
to make bilingual prefix alignment.

4.3 Training a Boundary Predictor

We train a boundary predictor for the chunk-based
SimulMT using the extracted source language pre-



Source Prefix Source prefix Full-sentence Extracted Target Boundary
Translation translation Prefix

| pINE IRV E T, VNP 1

| bought MIFE -7, FERVEB 57, 0

| bought a MIEE -7, Fhlg &8 -7, 0

| bought a pen ME_ B HERVEE-H, FERVEE-7 1

| bought a pen . IR EE o7, FERVEEoF, FEIRVEE-T-, 1

Figure 2: Extract Prefix Alignment

fixes. It is a binary classifier, and its training data
consist of pairs of a source language sentence pre-
fix and the boundary label. The label is set to 1 for
the prefixes in the extracted prefix translation pairs
and O for the other possible prefixes of the corre-
sponding source sentence, as shown in Figure 2.

4.4 Fine-Tuning a SimulMT Model

We fine-tune the pre-trained NMT model using the
extracted bilingual prefix pairs for our SimulMT
model. The model is used to translate an input
incrementally in the chunk-based manner as pre-
sented in Section 3.

5 Experimental Setup

We conducted experiments on English-to-German
(En-De) and English-to-Japanese (En-Ja) simulta-
neous translation to compare the proposed method
with the baselines in the quality-latency trade-off.

5.1 Dataset and Preprocessing

In En-De translation, we used WMT 2014 train-
ing set (4.5 M sentence pairs) for pre-training and
IWSLT 2017 training set (206 K sentence pairs)
for fine-tuning. We used IWSLT dev2010, tst2010,
tst2011 and tst2012 (5,589 sentence pairs in total)
for the development dataset. We used 1,080 sen-
tence pairs from IWSLT tst2015 for the evaluation.

In En-Ja translation, we used WMT 2020 (17.9
M sentence pairs) for pre-training and IWSLT
2017 (223 K sentence pairs) for fine-tuning dataset.
We used IWSLT dev2010, tst2011, tst2012, and
tst2013 (5,312 sentence pairs in total) for develop-
ment dataset. We used 1,442 sentence pairs from
IWSLT dev2021 for the evaluation.

Prefix translation pairs are collected only from
the IWSLT dataset. We tokenized Japanese
sentences using MeCab (Kudo, 2005). En-
glish and German sentences were tokenized us-
ing tokenizer.perl in Moses (Koehn et al.,
2007). We prepared a shared subword vocabulary
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with 16 K entries based on Byte Pair Encoding
(BPE) (Sennrich et al., 2016) for each language
pair.

5.2 Model Settings

We mainly compared the following four methods
in the experiments:

Prefix Alignment The proposed method has a
hyperparameter to adjust latency, the threshold of
boundary probability output by the boundary pre-
dictor. We used 0.5 as the default value for the
binary classification and tried the following values
for further investigation: [0.1, 0.15,..., 0.95], [0.99,
0.991, 0.992,..., 0.999], and [0.9991, 0.9992....,
0.9999]. We also compared a one look-ahead
boundary predictor that took one future word as the
input at the cost of the delay in one word (PA-1),
in addition to a standard (no look-ahead) boundary
predictor (PA-0).

Meaningful Unit We used the same boundary
probability thresholds as in PA. We implemented
the refined version of MU-based method to trans-
late with low latency following (Zhang et al., 2020),
but did not apply the removal of monotonic trans-
lation examples following Kano et al. (2021). We
also compared one look-ahead (MU-1) and no look-
ahead (MU-0) boundary predictors.

Incremental Constitutent Label Prediction
(zcrp) Following Kano et al. (2021), we used
a one look-ahead label predictor. We segmented
the input sequence based on their rules with the
predicted labels VP and S. The minimum segment
length adjusts latency. The range is [1, 2, 3, ..., 29].

Wait-k Wetried [2, 4, 6, ..., 30] for the hyper-
parameter k.

NMT Settings We trained a standard NMT
model (full-sentence) using WMT and



IWSLT training dataset. This model was used for
MU, PA and ICLP as the pre-trained NMT model.

All the NMT models were based on Transformer-
base (Vaswani et al., 2017) implemented with
fairseq (Ott et al., 2019). Their hyperparameter
settings basically followed the official baseline for
IWSLT 20213, for both pre-training and fine-tuning.
The models were saved on checkpoints in every
5,000 updates for pre-training and every 200 up-
dates for fine-tuning. We applied early stopping
with the patience for four checkpoints, based on
the loss on the development set. We set the learn-
ing rate to 0.0007, minibatch size to 4,096 with
the parameter update frequency of 4. We applied
a chunk-based beam search for the methods other
than wait-k, in which the low-scored hypotheses
out of the specified beam size were eliminated at
the end of the chunk. We used greedy-decoding for
wait-k, due to the nature of its model.

Boundary Predictor The boundary predictors
for the chunk-based methods were implemented
similarly using BERT (Devlin et al., 2019) with
a pre-trained model bert-base-uncased and
the corresponding subword tokenizer from Hug-
gingface transformers (Wolf et al., 2020). We set
the learning rate to 5e-5 and the batch size to 512
instances. The models were saved at every epoch,
and we applied early stopping with patience for
three epochs based on the loss on the development
set.

5.3 Evaluation Metrics

We used BLEU (Papineni et al., 2002) and Average
Lagging (AL) (Ma et al., 2019) for our quality and
latency evaluation metrics. They were calculated
using SimulEval (Ma et al., 2020a) and drawn in
scatterplots to show the quality-latency trade-off.

6 Results

6.1 English-to-German

Figure 3 shows the BLEU and AL results in
English-to-German simultaneous translation. The
proposed method (PA-0 and PA-1) showed best
performance among the compared methods. On
the other hand, the other chunk-based SimulMT
(MU-0, MU-1, and ICLP) did not outperform

‘https://github.com/pytorch/fairseq/
blob/master/examples/simultaneous_
translation/docs/enja-waitk.md, https:
//github.com/pytorch/fairseq/issues/346
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Wait—-k. We can also see the look-ahead bound-
ary prediction did not improve BLEU both for PA
and MU but increased AL.

Figure 4 shows the results in the length ratio
between a translation result and its reference. The
proposed method demonstrated better results in
the translation length than the other methods. The
other chunk-based SimulMT methods generated
much longer translation results than the references
and resulted in a large drop in BLEU due to the
brevity penalty.

6.2 English-to-Japanese

Figure 5 shows the BLEU and AL results in
English-to-Japanese simultaneous translation. This
shows a large difference from the results in English-
to-German; the proposed method outperformed the
baselines in very small latency ranges around AL
of 2, but showed worse BLEU in the large latency
ranges.

Figure 6 shows the results in the length ratio.
The proposed method generated shorter transla-
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tion results especially with the large latency ranges,
even though the other methods resulted in a better
length ratio of around 1.0. The difference between
the two language directions would come from the
length issue; the full-sentence NMT resulted in
the length ratio slightly larger than 1.0 in English-
to-German and around 0.9 in English-to-Japanese.
The proposed method encouraged to shorten the
translation length in general so that it did not con-
tribute to the BLEU improvement in English-to-
Japanese.

7 Analysis
7.1 Effect of PA-based NMT fine-tuning

For the detailed analyses, we investigated the per-
formance of the chunk-based SimulMT without
the fine-tuning using the bilingual prefix pairs.
Here, only the boundary predictor was used to
segment the input for the chunk-based SimulMT.
Figures 7, 8, 9, and 10 show the results by the
proposed method with the pre-trained NMT model
(PAoff-0 and PAoff-1). They clearly show
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the proposed method does not work well without
fine-tuning the NMT model; it resulted in a longer
translation length so BLEU decreased due to the
brevity penalty. These results suggest the segmen-
tation policy in the chunk-based SimulMT should
match the prefix translation models because a full-
sentence translation model often generates a too-
long translation result for a short prefix input.

7.2 Length Distribution in training dataset

En-De En-Ja
1,874,909 1,059,865
4,228,604 4,593,194

# Source prefixes
# Words in sentences

Table 1: Statistics of the training data

We investigated the length issue on the training
data. Table 1 shows statistics of the IWSLT training
set, in the number of source language prefixes ex-
tracted for the fine-tuning of the SimulMT models
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and the number of words in the whole sentences.

Even though the number of words is almost sim-
ilar, the number of prefixes is largely different; that
in En-De is almost two times larger than that in
En-Ja. This is because of the large word order dif-
ference between English and Japanese, compared
to that between English and German. The word
order difference should cause poor prefix matches
in the prefix translation pair extraction, so just a
few short prefix pairs are found. Figure 11 shows
the source prefix length distribution in the IWSLT
training data. The peak of the En-Ja distribution is
to the right of that of En-De distribution because
of this word order difference. The number of the
En-De shortest prefixes is more than three times
larger than that of En-Ja ones. This large number
of short prefixes contributed to the improvement of
En-De SimulMT.

Figures 12 and 13 show the change of length
distribution of the training data; blue bars represent
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the original distribution on the whole training data
(WMT and IWSLT), and red bars represent that on
the training data augmented by the additional prefix
pairs. The change in English-to-German was much
larger than that in English-to-Japanese, because
of the large difference in the number of bilingual
prefix pairs. These findings suggest the proposed
method had a larger effect in English-to-German
than English-to-Japanese.

8 Conclusion

We proposed a method to train the neural SimulMT
model by extracting bilingual prefix pairs by Prefix
Alignment. The proposed method outperformed
the baselines in quality-latency trade-off in English-
to-German simultaneous translation but showed
mixed results in English-to-Japanese. We investi-
gated the results in detail and found the difference
in the translation length made a large effect on the
results, caused by the performance of the sentence-
level NMT model and the word order difference.

In future work, we extend the method to work
for language pairs with the large word order differ-
ences such as English-Japanese, in the wide range
of AL. The proposed method to extract source pre-
fixes can be adapted to speech input. We applied
this method to Speech-to-text simultaneous ma-
chine translation system submitted to the IWSLT
2022 Evaluation Campaign (Anastasopoulos et al.,
2022; Fukuda et al., 2022).
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Abstract

After its introduction, the Transformer archi-
tecture (Vaswani et al., 2017) quickly became
the gold standard for the task of neural ma-
chine translation. A major advantage of the
Transformer compared to previous architec-
tures is the faster training speed achieved by
complete parallelization across timesteps due to
the use of attention over recurrent layers. How-
ever, this also leads to one of the biggest prob-
lems of the Transformer, namely the quadratic
time and memory complexity with respect to
the input length. In this work we adapt the
locality-sensitive hashing approach of Kitaev
et al. (2020) to self-attention in the Transformer,
we extended it to cross-attention and apply this
memory efficient framework to sentence- and
document-level machine translation. Our ex-
periments show that the LSH attention scheme
for sentence-level comes at the cost of slightly
reduced translation quality. For document-level
NMT we are able to include much bigger con-
text sizes than what is possible with the base-
line Transformer. However, more context does
neither improve translation quality nor improve
scores on targeted test suites.

1 Introduction

After its introduction in 2017, the Transformer ar-
chitecture (Vaswani et al., 2017) quickly became
the gold standard for the task of neural machine
translation (NMT) (Ott et al., 2018). Furthermore,
variants of the Transformer have since been used
very successfully for a variety of other tasks such
as language modeling (LM) (Irie et al., 2019), nat-
ural language understanding (NLU) (Devlin et al.,
2019; Liu et al., 2019), speech translation (ST)
(Vila et al., 2018), automatic speech recognition
(ASR) (Zeyer et al., 2019; Mohamed et al., 2019)
and image processing (Parmar et al., 2018).

A major advantage of the Transformer com-
pared to previous architectures is the faster training
speed achieved by complete parallelization across
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timesteps. However, this also leads to one of the
biggest problems of the Transformer, namely the
quadratic time and memory complexity of atten-
tion layers with respect to the sequence length. For
sentence-level NMT this is not a big issue as most
of the time the length of sequences is relatively
short and can be handled efficently, even if sub-
word segmentation is applied (Sennrich et al., 2016;
Kudo, 2018). However, this drastically changes
when moving towards character-level (Gupta et al.,
2019) or document-level (Tiedemann and Scherrer,
2017) NMT. Especially for the latter, speed and
memory issues are one of the biggest roadblocks
towards ‘true’ document level systems (Junczys-
Dowmunt, 2019). This leads to the situation where
most works make do with including just a few
sentences as a form of ‘local’ context information
(Tiedemann and Scherrer, 2017; Jean et al., 2017,
Bawden et al., 2018) or heavily compressing the
document information (Tu et al., 2018; Kuang et al.,
2018; Morishita et al., 2021).

More recently research focus has been shifting
towards more efficient attention calculation for
longer input sentences in several LM and NLU
tasks (Tay et al., 2020). Among these works is the
approach by Kitaev et al. (2020), in which the au-
thors propose to make the attention matrix sparse
by pre-selecting the relevant positions. They report
good results on the LM objective while at the same
time drastically reducing computational complex-
ity. In this work we take the approach of Kitaev
et al. (2020) as a starting point to improve the effi-
ciency of (document-level) NMT systems.

Our contribution is three-fold:

* We adapt the locality-sensitive hashing (LSH)
approach of Kitaev et al. (2020) to self-
attention in the Transformer NMT frame-
work.!

'The source code is available at https://github.

com/rwth-i6/returnn-experiments/tree/
master/2022-1sh—-attention.
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* We expand the concept of LSH to encoder-
decoder cross-attention and provide insights
on how this concept affects the behavior of
the system.

* We use this more memory-efficient NMT
framework to conduct experiments on
document-level NMT with more context infor-
mation as would be possible with the baseline
architecture.

2 Related Work

The problem of quadratic time and memory com-
plexity of the attention framework has received
increasing attention since the success of the Trans-
former architecture (Vaswani et al., 2017).

For ASR, ST and image processing the complex-
ity can be reduced with relative ease by reducing
the size of the time dimension with convolutional
(Gulati et al., 2020) or pooling layers (Zeyer et al.,
2019). Furthermore, it is possible to restrict the
attention to a few neighboring positions (Parmar
et al., 2018). However, this is not optimal for text
input, as neighboring input words do not necessar-
ily have the same strong correlation as neighboring
audio frames or image pixels.

Existing work on improving the text process-
ing complexity of the Transformer mainly focuses
on the case where all attention inputs come from
the same embedding space, e.g. language model-
ing: Dai et al. (2019) and Rae et al. (2019) uti-
lize a segment-level recurrence mechanism sim-
ilar to what has been used in recurrent architec-
tures. Wang et al. (2020) project the time dimen-
sion of key and value down to a smaller, fixed-size
dimension while leaving the queries untouched.
Directly altering the attention computation, Child
et al. (2019), Sukhbaatar et al. (2019) and Qiu et al.
(2020) limit the attention to a local neighborhood
or a fixed stride while Zaheer et al. (2020) and Belt-
agy et al. (2020) combine multiple sparse attention
masks. In a more flexible approach, matching posi-
tions can be pre-selected using a locality-sensitive
hashing function (Kitaev et al., 2020) or cluster-
ing (Roy et al., 2021). In the present work, we
pick one of the most efficient and best performing
approaches up to date, namely the approach by Ki-
taev et al. (2020) and apply it to the task of machine
translation. We confirm that the concepts can work
for the self-attention in NMT systems and expand
the framework for the case of cross-attention.
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Most work related to document-level NMT limit
the inter sentence context to few neighboring sen-
tences. The simplest approach which we also fol-
low in the present work, is to concatenate consec-
utive sentences using a special sentence separator
token (Tiedemann and Scherrer, 2017). There exist
more sophisticated approaches which utilize sep-
arate encoders for the context information (Jean
et al., 2017; Bawden et al., 2018) but later work
seems to suggest that these approaches do not sig-
nificantly outperform the simpler concatenation
approach (Huo et al., 2020; Lopes et al., 2020).

In the realm of NMT, not so much work exists re-
garding improving the efficiency of the system and
the work that exists mainly focuses on document-
level NMT. Morishita et al. (2021) propose to com-
press the context into a single vector which then can
be attended to as an additional token embedding.
Tu et al. (2018) and Kuang et al. (2018) utilize a
cache that holds context information. Zhang et al.
(2020) and Bao et al. (2021) mask out the attention
energies between tokens from different sentences,
showing that the full context is not necessary to
achieve good translation performance. Raganato
et al. (2020) and You et al. (2020) replace most
attention heads with fixed patterns but only for
sentence-level NMT and only for self-attention as
they report a severe degradation when doing the
same for the cross-attention.

There exist several different ways to implement
LSH (Paulevé et al., 2010). The LSH scheme used
by Kitaev et al. (2020) and consecutively in this
work was proposed by Andoni et al. (2015). LSH
has also been successfully applied to efficiently cal-
culate pairwise embedding similarity for informa-
tion retrieval (Ture et al., 2011; Zhao et al., 2015).
Shi and Knight (2017) use LSH to pre-select em-
beddings in the softmax operation of an NMT sys-
tem to speed up the decoding process.

3 Locality-sensitive Hashing Attention

At the core of the Transformer architecture is the
attention mechanism that compares a sequence of
queries q1, . . . g7 to a sequence of key-value pairs
(k1,v1),...(ks,vy) via a soft-lookup «a(jli) =
a(qi, j,k{) and maps them to context vectors

J
ci = Z a(jli)v;.

J=1

To compute the full sequence of context vectors,
O(1J) operations are required. In the special case
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Figure 1: Locality-sensitive hashing for self-attention as presented in Kitaev et al. (2020) with bidirectional context.
For self-attention with key and queries shared it holds that ¢; = k;. Colors indicate the hash class of the query/key.
Note that no position can attend to itself if other attention points are available.

of self-attention, i.e. I = J and ¢; = k; Vi, the
amount of operations grows quadratically with the
sequence length I. Since this can be problematic
for long sequences, Kitaev et al. (2020) proposed
to use locality-sensitive hashing (LSH) attention.

In the following, we first describe the concept
of LSH for self-attention, here we omit the left-
to-right masking originally used (Kitaev et al.,
2020) and describe the concept for bidirectional
self-attention instead. Afterwards, we describe our
extension of LSH to cross-attention.

In LSH the context vector for query position % is
computed via

Ish N
e = aljli;

JEPR;

where a locality-sensitive hashing function h is
used to determine

Pr={je{l,.... Jp\{i}|h(G) = h(i)}

and & is normalized over P; instead of {1, ..., J}.

The hashing function ~ maps to a small number
of classes {1, ..., nhash} and is locality-sensitive,
i.e. if two vectors are close-by they are likely to get
assigned the same hash value. Kitaev et al. (2020)
consider the case of self-attention and approximate
the set P; to keep computation efficient. First the
original sequence of keys is sorted by their hash
value as primary criterion and original sequence or-
der as secondary criterion. The resulting sequence
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is cut into chunks C; of fixed size and
Bi:={j € Ci\ {i}|h(j) = h(i)}

is used as an approximation to F;. However, if
P; = () the fallback P; := {i} is used. This process
is illustrated in Figure 1.

Kitaev et al. (2020) consider only the case of a)
self-attention and b) shared query and key trans-
formation matrices within each head. This focus
on self-attention leads to several simplifications, in
particular that the chunks of the key and query se-
quence are identical. In order to extend the concept
of LSH to cross-attention (i.e. queries and keys are
distinct) we need to solve several problems.

How to find an adequate key chunk for each
query chunk? Hashing and chunking is done for
both the key and the query sequences, resulting
in two different chunk sequences. We propose to
calculate an alignment from the query chunks to
the key chunks. For each query chunk C' we find
an aligned key chunk K (C) that contains queries
with similar hash classes. To do this, the range of
hash classes (hmin, hmax) Of the query chunk C'is
determined. Next, we enumerate all key chunks
Ky, ..., K, and search for the first key chunk K,
that contains an entry hashed to hn, and the last
key chunk K, that corresponds to /imax. Then the
middle chunk K [ 210 W is selected, resulting in

Py = {j € K(Ci)|h(j) = h(i)}.
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Figure 2: Locality-sensitive hashing for cross-attention. Colors indicate the hash class of the query/key. Greyed out

dots in the attention range matrices indicate that attention weights are fixed to ﬁ

point corresponds to the current hash class.

What happens if a query belongs to a hash
class that is not represented in the aligned key
chunk? Since no keys are found that are close to
the current query ¢;, we use the average value of the
aligned query chunk. That is, we set P; := K (C})

and obtain
Z Uj.
JEK(Cy)

1

|K(Ca))

(sh) _

A .

Throughout our experiments both key and query
chunks are of equal size fcpynk. The LSH cross-
attention is shown in Figure 2.

To reduce the impact of the chunking we com-
pute attention not only within the aligned chunk
but also one chunk to the left and right, similar to
Kitaev et al. (2020). This is applied both in self-
and cross-attention. For unidirectional attention
components, only the left context is considered.

Multi-round LSH Attention

Kitaev et al. (2020) show that multi-round hash-
ing can help to improve the performance of LSH
attention systems. For multi-round hashing differ-
ent hash functions A" are used to determine the
corresponding (chunked) hash classes 15{ and the
context vector is calculated over the union

Ish s
cgs): Z a(ji)v;.

jeyU, By
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_ 1

=1 since no possible attention

with &(j|4) normalized over |, P! Multi-round
hashing can be applied to both self- and cross-
attention. For details on an efficient implemen-
tation we refer to Kitaev et al. (2020).

4 Experimental Setup

We evaluate our extensions to the attention by train-
ing Transformer (Vaswani et al., 2017) models
with varying attention mechanisms on four MT
tasks: The WMT 2016 news translation Romanian
to English data with 612k parallel sentences (Eu-
roparl v8 & SE Times), the WMT 2019 English to
German data with 329k parallel sentences (News
Commentary v14), as well as the IWSLT 2017 En-
glish to German and English to Italian data con-
sisting of 232k and 206k parallel sentences (TED
talks). The data is pre-processed by applying 20k
SPM merge operations (15k for both IWSLT tasks)
(Kudo, 2018). The average sentence length for both
WMT tasks is 30 subwords and 24 subwords for
the IWSLT tasks.

The WMT EN—DE and the IWSLT EN—DE
and EN—IT sentences are grouped by document.
For document-level systems we utilize this infor-
mation in a pre-processing step by simply concate-
nating the k preceding sentences on source and
target side to each sentence pair like Tiedemann
and Scherrer (2017) do, but experiment with larger



RO—EN EN—DE ENn—IT

Attention method WMT WMT IWSLT IWSLT
BLEU TER | BLEU TER | BLEU TER | BLEU TER
Full attention (baseline) 342 533 | 321 56.7 | 233 684 | 32.8 53.6
LSH self-attention 335 543|305 58.6 | 229 686 | 31.6 547
LSH self- & cross-attention | 33.3  54.3 | 29.3 60.0 | 223 694 | 319 547

Table 1: Translation performance when training models with LSH attention on different sentence-level tasks. We
vary where to apply LSH attention: nowhere (baseline), encoder and decoder self-attention, or three-fold. All
systems use Nyash = 4, Lehunk = 6 and four hash rounds. BLEU and TER are given in percentage.

context sizes k € {0, 3,9, 12}. In particular &k = 0
yields a sentence-level system without any docu-
ment context. In between the concatenated sen-
tences we add a special separator token. We do not
utilize right side context to ensure source and target
have roughly the same length.

The general system architecture follows the
‘base’ configuration of Vaswani et al. (2017) with
6 encoder/decoder layers of feature dimension
dmodel = 512, 8 attention heads and key/value di-
mension di = 64. We share the source/target
embeddings as well as the transposed projections
and employ training dropout of 30 % (20 % for
ROo—EN). All models are implemented in RE-
TURNN (Zeyer et al., 2018).

We use the Adam optimizer (Kingma and Ba,
2015) with initial learning rate of 10~3. After train-
ing the systems for 200 checkpoints (1/4 of all data
for WMT RO—EN, 1/2 for WMT EN—DE and the
full data for both IWSLT tasks), we select the best
checkpoint based on the dev perplexity on which
we report BLEU using SacreBLEU (Post, 2018) and
TER using TERCom (Snover et al., 2006) on an
unseen test set. As systems with larger document-
context see more frames in each epoch, we already
stop training after 100 checkpoints for £ > 9. We
find that the converged document-level systems are
able to predict the correct number of target sen-
tences with almost perfect accuracy. We extract
the last predicted sentence for each sample and
then calculate BLEU and TER on the sentence-level
data.

When deploying LSH in the cross-attention, we
found it crucial for training stability to first shuffle
the key and query sequences as secondary criterion
before sorting by hash classes. This helps during
training in cases where the amount of queries/keys
with the same hash class exceeds the window size.
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S Experimental Results

5.1 Sentence-level

We first evaluate the impact of our LSH attention
approximation on different sentence-level tasks by
replacing the self- and/or cross-attention compo-
nents of the baseline with LSH attention. For
LSH we use np.sn = 4 hash classes, chunks of
size lchunk = 6 and four hash rounds. This way
the LSH attention could cover sentences of length
Nhash - Ychunk = 4 - 6 = 24 entirely by partitioning it
into np,sh hash classes of size £epunk (neglecting the
forward/backward window and the multiple hash
rounds), roughly matching the average sentence
length. The results are shown in Table 1. We use
LSH both while training and during inference.

Across all tasks the LSH-approximated attention
performs worse than full attention. All systems
but the WMT EN—DE system perform at most
1 % BLEU worse then the baseline when using
three-fold LSH. For WMT EN—DE however, the
performance degradation is much higher (2.8 %
BLEU), suggesting that LSH does not work equally
well across different tasks and language pairs.

In general, approximating the cross-attention is
more damaging than LSH in the self-attention. In
an extended analysis we find that the decoder self-
attention seems least delicate and can be replaced
by LSH attention with almost no decrease in trans-
lation capability.

5.2 Document-level

As the sequences in the sentence-level setting are
relatively short, employing LSH does not save any
memory but instead has a large computational over-
head in comparison to the full dot-attention imple-
mented with a few simple matrix multiplications.
With increasing document-level context however,
the quadratic memory usage of the full attention
becomes a limiting factor which is overcome by



EN—DE EN—IT ContraPro Peak
Attention method Context WMT IWSLT IWSLT Accuracy Mem.
BLEU TER | BLEU TER | BLEU TER [GB]
Full att. (baseline) 0 321 56.7| 233 684 | 32.8 53.6 42.4 5.5
3 319 57.1 | 23.6 675| 319 547 69.2 7.8
9 30.8 58.6 OOM OOM OOM 9.6
12 OOM OOM OOM OOM OoOOM
LSH self-attention 0 302 589 | 226 68.8 | 325 536 384 5.1
3 30.8 58,5 | 23.0 683 | 32.5 538 50.1 5.7
9 30.5 585 ] 232 68.1] 322 536 50.4 6.8
12 208 592 | 236 67.6| 31.8 539 46.3 7.0
LSH self- & cross-att. 0 29.0 602 | 225 68.7| 315 547 40.3 9.6
3 294  60.1 | 227 684 | 31.7 552 59.8 9.3
9 273 648 | 221 699 | 314 545 51.7 9.0
12 258 627 | 198 693 | 296 57.6 51.8 9.4

Table 2: Training LSH attention systems with different document-level context sizes. Besides BLEU and TER on the
test set, we report the accuracy of the IWSLT EN—DE system on the ContraPro task (Miiller et al., 2018). These
three metrics are given in percentage. All systems use the same batch size during training, we exemplarily report the
memory usage of the WMT EN—DE system. ‘OOM’ indicates that a system requires too much memory and cannot

be trained.

using LSH attention.

We conduct a series of experiments with varying
document-level context sizes, concatenating up to
13 sentences at once. For each context size, we
train models with a) full attention everywhere, b)
LSH in the encoder- and decoder-self-attention,
and c) LSH in all three attention components.

In all LSH components we fix the LSH chunk
size to chunk = 10, meaning each query can only
attend to a constant number regardless of how many
context sentences the system utilizes. We set the
number of hash classes equal to the number of
concatenated sentences (i.e. k 4+ 1, but rounded to
an even number which is required by Kitaev et al.
(2020)’s hash function). The systems trained with
LSH only in the self-attention use single rounded
hashing as this is more memory-efficient. For the
three-fold LSH systems we use four hash rounds.

Table 2 shows the results in BLEU and TER
as well as the peak memory consumption on a
GTX 1080 which fits about 10 GB. All systems
are trained with a batch size of 3133 subwords. Ad-
ditionally, we report the accuracy on the EN—DE
contrastive pronoun resolution test set ContraPro
(Miiller et al., 2018). To resolve the pronouns prop-
erly context of up to three sentences is necessary.

With increasing context size, the full attention
systems drastically use more memory as the com-

putation of the full attention matrix scales quadrat-
ically in the sequence length. The memory usage
of the LSH attention on the contrary only scales
linearly in the sequence length and therefore is con-
stant w.r.t. a fixed batch size. When the context
size is too large, all full attention systems crash dur-
ing training as a single training batch no longer fits
into the 10 GB GPU memory. Replacing the self-
attention with LSH is not only in absolute numbers
more memory-efficient than the baseline but also
scales much more softly in the document-level con-
text size, making it possible to easily train a system
with 12 sentences context where all full attention
systems crash. Also, replacing the cross-attention
with LSH finally means that the memory consump-
tion remains constant w.r.t. the document-level
context size, as it scales fully linearly in the num-
ber of tokens. Note however that because we use
multi-round hashing here, it requires more memory
than full attention when used on short sequences.

In terms of translation quality, we see similar
results as in Table 1 when comparing the three dif-
ferent system architectures in the sentence-level
setting: Employing LSH in the self-attention de-
creases BLEU by 0.3-0.9 % BLEU. Three-fold
LSH performs 0.8 and 1.3 % BLEU worse than
the baseline for the IWSLT EN—DE and EN—IT
tasks respectively, but 3.1 % BLEU worse on WMT
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Hash classes | Class size range LSH inference | Full inference | Full attention
BLEU TER | BLEU TER | covered by LSH

1 (baseline) 35.7 514 357 514 100.0

2 49.7-50.3 35.6 51.6 354 516 64.5

4 24.1-25.7 352 51.9 351 519 42.4

8 11.0-134 34.6 52.2 346 522 29.5

Table 3: WMT RO—EN sentence-level systems trained with single-round LSH cross-attention and full self-attention.
We set the chunk size large enough to always cover the entire sequence and vary the number of hash classes. For
each system, we aggregate the hash class distribution of all queries/keys on the dev set and report the size of the
smallest and largest class in percentage. We report BLEU and TER on the dev set a) using LSH and b) using full
attention not restricted to the same hash class. Further we average the sum of all attention weights of the full
attention inference that would have been covered by LSH attention and report it in percent.

EN—DE as also observed before.

While increasing the document-level context
slightly worsens BLEU and TER for the full at-
tention systems, the accuracy on the ContraPro test
set increases significantly from 42.4 % to 69.2 %
when including the three previous sentences as this
task requires knowledge of the last few sentences.

Both the system with LSH in self-attention only
and the three-fold LSH system perform equally
well as the sentence-level systems even for high
context sizes. Only for very large sizes (k = 12),
performance starts to decrease.

6 Extended Analysis

6.1 Hash Quality

To evaluate the impact of approximating the full
attention LSH we train systems with varying num-
ber of hash classes npasn 1n the cross attention. As
described in Section 3, queries may only attend to
keys of the same hash class. The results for this are
shown in Table 3. We explain the different columns
in the following paragraphs.

In a first step we want to answer the question
whether LSH attention actually makes use of dif-
ferent hash classes. Otherwise, if one hash class
is over- or underrepresented, the chunk size used
by the system will not be large enough to actually
attend to all relevant keys. To verify this, we ex-
tract the distribution of all key and query vectors
the system generated on the development set and
count the sizes of all hash classes. We find that
indeed the hash classes are approximately equally
distributed, i.e. all have a size close to

Nhash *
Increasing the number of hash classes decreases

the number of keys each query can attend to. This
also decreases translation performance in terms of
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BLEU and TER, but only minorly: The system us-
ing 8 hash classes, i.e. only attending to one eighth
of all keys per query, only performs 1.1 % BLEU
worse than the baseline when also using LSH dur-
ing inference.

The previous results all also use LSH during in-
ference. Alternatively, we also experiment with
full attention during inference after training the sys-
tem with LSH. In this case, performance is almost
equal to the LSH-restricted attention, even when
using many hash classes. For each sentence pair,
we extract the attention weights using full attention
and sum over the key positions the LSH system
attends to. This is the share of full attention cov-
ered by the LSH approximation, which however
in the LSH system is renormalized to have a sum
of 1 for each query. The average of this over all
dev sentences and attention heads is shown in the
last column of Table 3. Even though with increas-
ing number of hash classes the share of covered
attention decreases drastically, both LSH inference
and full inference perform equally well in terms of
BLEU and TER. This indicates that LSH is able to
focus on the most important positions.

6.2 Effective Window Size

The number of keys each query can attend to de-
pends on a) the LSH chunk size, b) the number of
attention heads used in parallel, and c) the number
of hash rounds used in each attention head. Fixing
the product of these three factors, which combina-
tion leads to the best translation performance?

As shown in Table 4, a larger chunk size or
more attention heads do not improve performance.
Using two hash rounds increases performance by
0.5 % BLEU. Different hash rounds allow the sys-
tem to partition the key sequences w.r.t. different



Chunk size Heads Rounds ‘ BLEU TER
6 8 1| 350 521
12 8 1 347 522
6 16 1 350 521
6 8 2 355 517
6 8 4 354 516

Table 4: WMT RO—EN sentence-level systems trained
with LSH encoder self-attention, varying three param-
eters determining the how many keys each query may
attend to. All systems with fchynx = 6 use npn = 4
(Mhash = 8 for Lepunk = 12). We report BLEU and TER
on the dev set in percentage.

aspects described by different hash functions. This
effect is limited however, as four hash rounds per-
form equally well as just two.

6.3 Training Time and Memory

While LSH is more memory-efficient than full at-
tention, it requires more operations to compute due
to its increased complexity. For example, training
for one checkpoint for the sentence-level WMT
EN—DE system (Table 2) takes 49 min when us-
ing full-attention, 69 min when using single-round
LSH in the self-attention, and 120 min when using
three-fold LSH with four hash rounds. In particular,
the time complexity of LSH scales linearly in the
amount of hash rounds.

To still be able to train the full attention sys-
tems with large document-level context, a simple
option is to reduce the batch size at the cost of a
longer training time. With £ = 12 sentences con-
text, if we reduce the batch size to 2500 subwords,
we can run the full attention system at a speed of
165 min / checkpoint. For this however note that
we need to remove a few very long sequences no
longer fitting into a single batch. In comparison,
the self-attention system with a tuned batch size
takes about the same time, 163 min / checkpoint.

7 Conclusion

We present a method to make the Transformer
NMT architecture more memory-efficient when
handling long input sequences. This is achieved by
pre-selecting the most relevant candidates in self-
attention and cross-attention using an LSH scheme
that has been successfully applied for language
modeling in previous work. We modify the exist-
ing LSH scheme to work in the NMT framework

and conduct experiments on both sentence-level
and document-level NMT tasks.

Our experiments show that the LSH attention
scheme can be used for sentence-level NMT, al-
though the approximation comes at the cost of
slightly reduced translation quality. For document-
level NMT we are able to include much bigger con-
text sizes than what is possible with the baseline
Transformer. However, more context does neither
improve translation quality nor improve scores on
targeted test suites.

In the future, we plan to use this approach for
speech translation where long input sequences are
a more pressing issue.
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Abstract

Simultaneous machine translation (SimulMT)
speeds up the translation process by starting
to translate before the source sentence is com-
pletely available. It is difficult due to lim-
ited context and word order difference between
languages. Existing methods increase latency
or introduce adaptive read-write policies for
SimulMT models to handle local reordering
and improve translation quality. However,
the long-distance reordering would make the
SimulMT models learn translation mistakenly.
Specifically, the model may be forced to predict
target tokens when the corresponding source
tokens have not been read. This leads to aggres-
sive anticipation during inference, resulting in
the hallucination phenomenon. To mitigate this
problem, we propose a new framework that de-
compose the translation process into the mono-
tonic translation step and the reordering step,
and we model the latter by the auxiliary sorting
network (ASN). The ASN rearranges the hid-
den states to match the order in the target lan-
guage, so that the SimulMT model could learn
to translate more reasonably. The entire model
is optimized end-to-end and does not rely on ex-
ternal aligners or data. During inference, ASN
is removed to achieve streaming. Experiments
show the proposed framework could outper-
form previous methods with less latency.

1 Introduction

Simultaneous machine translation (SimulMT) is
an extension of neural machine translation (NMT),
aiming to perform streaming translation by out-
putting the translation before the source input has
ended. It is more applicable to real-world scenarios
such as international conferences, where people
could communicate fluently without delay.
However, SimulMT faces additional difficul-
ties compared to full-sentence translation — such a
model needs to translate with limited context, and
the different word order between languages would
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Training f.  ETF ANl
Target I
Reordered . FETF AN i
Output (He) (in the afternoon)  (took a nap)
[N
Reordering
Tt i FTT{EHE T
LY (He) (took a nap) (in the afternoon)
t t
Monotonic Translation
I I I
Input He took anap in the afternoon

Figure 1: Illustration of the training process. The trans-
lated output is rearranged to match the order of training
target, reducing anticipation. We use the gray part dur-
ing inference.

make streaming models learn translation mistak-
enly. The problems can often be alleviated by in-
creasing the context. Using more context allows
the model to translate with more information, trad-
ing off speed for quality. But the word order could
be very different among languages. Increasing the
context could only solve the local reordering prob-
lem. If long-distance reordering exists in training
data, the model would be forced to predict tokens in
the target language when the corresponding source
tokens have not been read. this is called anticipa-
tion (Ma et al., 2019). Ignoring the long-distance
reordering may cause unnecessarily high latency,
or encourage aggressive anticipation, resulting in
the hallucination phenomenon (Miiller et al., 2020).

It sheds light on the importance of matching
the word order between the source and target lan-
guages. Existing methods aim to reduce antici-
pation by using syntax-based rules to rewrite the
translation target (He et al., 2015). It requires addi-
tional language-specific prior knowledge and con-
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stituent parse trees. Other approaches pre-train a
full-sentence model, then incrementally feed the
source sentence to it to generate monotonic transla-
tion target (pseudo reference) (Chen et al., 2021b;
Zhang et al., 2020). However, the full-sentence
model was not trained to translate incrementally,
which creates a train-test mismatch, resulting in
varying prediction quality. They require combining
with the original data to be effective.

To this end, this work aims to address long-
distance reordering by incorporating it directly into
the training process, as Figure 1 shows. We de-
compose the typical translation process into the
monotonic translation step and the reordering step.
Inspired by the Gumbel-Sinkhorn network (Mena
et al., 2018), we proposed an auxiliary sorting
network (ASN) for the reordering step. During
training, the ASN explicitly rearranges the hidden
states to match the target language word order. The
ASN will not be used during inference, so that the
model could translate monotonically. The proposed
method reduces anticipation, thus increases the lex-
ical precision (He et al., 2015) of the model without
compromising its speed. We apply the proposed
framework to a simple model — a causal Trans-
former encoder trained with connectionist tempo-
ral classification (CTC) (Graves et al., 2006). The
CTC loss can learn an adaptive policy (Chousa
et al., 2019), which performs local reordering by
predicting blank symbols until enough information
is read, then write the information in the target or-
der. Even so, it still suffers from high latency and
under-translation due to long-distance reordering in
training data. Our ASN handles these long-distance
reordering, improving both the latency and the qual-
ity of the CTC model. We conduct experiments on
CWMT English to Chinese and WMT15 German
to English translation datasets. Our contributions
are summarized below:

* We proposed a new framework for SimulMT.
The ASN could apply on various causal mod-
els to handle long-distance reordering.

* Experiments showed that the proposed
method could outperform the pseudo ref-
erence method. It indicated the proposed
method could better handle the long-distance
reordering.

* The proposed model is a causal encoder,
which is parameter efficient and could out-
perform wait-k Transformer with less latency.
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Our implementation is based on fairseq (Ott et al.,
2019). The instructions to access our source code
is provided in Appendix A.

2 Related Works

2.1 Simultaneous Translation

SimulMT is first achieved by applying fixed read-
write policies on NMT models. Wait-if-worse and
Wait-if-diff (Cho and Esipova, 2016) form deci-
sions based on the next prediction’s probability or
its value. Static Read and Write (Dalvi et al., 2018)
first read several tokens, then repeatedly read and
write several tokens at a time. Wait-k (Ma et al.,
2019) trains end-to-end models for SimulMT. Its
policy is similar to Static Read and Write.

On the other hand, adaptive policies seek to
learn the read-write decisions. Some works ex-
plored training agents with reinforcement learning
(RL) (Gu et al., 2017; Luo et al., 2017). Others
design expert policies and apply imitation learn-
ing (IL) (Zheng et al., 2019a,b). Monotonic atten-
tion (Raffel et al., 2017) integrates the read-write
policy into the attention mechanism to jointly train
with NMT. MoChA (Chiu and Raffel, 2018) en-
hances monotonic attention by adding soft atten-
tion over a small window. MILk (Arivazhagan
et al., 2019) extends such window to the full en-
coder history. MMA (Ma et al., 2020c) extends
MILK to multi-head attention. Connectionist tem-
poral classification (CTC) were also explored for
adaptive policy by treating the blank symbol as
wait action (Chousa et al., 2019). Recently, making
read-write decisions based on segments of mean-
ingful unit (MU) (Zhang et al., 2020) improves the
translation quality. Besides, an adaptive policy can
also be derived from an ensemble of fixed-policy
models (Zheng et al., 2020).

When performing simultaneous interpretation,
humans avoid long-distance reordering whenever
possible (Al-Khanji et al., 2000; He et al., 2016).
Thus, some works seek to reduce the anticipation
in data to ease the training of simultaneous mod-
els. These include syntax-based rewriting (He
et al., 2015), or generating pseudo reference by
test-time wait-k (Chen et al., 2021b) and prefix-
attention (Zhang et al., 2020). We reduce anticipa-
tion from a different approach: instead of rewriting
the target, we let the model match its hidden states
to the target on its own. As shown in experiments,
our method is comparable or superior to the pseudo
reference method.



2.2 Gumbel-Sinkhorn Network

The Sinkhorn Normalization (Adams and Zemel,
2011) is an iterative procedure that converts a
matrix into doubly stochastic form. It was ini-
tially proposed to perform gradient-based rank
learning. Gumbel-Sinkhorn Network (Mena et al.,
2018) combines the Sinkhorn Normalization with
the Gumbel reparametrization trick (Kingma and
Welling, 2014). It approximates sampling from a
distribution of permutation matrices. Subsequently,
Sinkhorn Transformer (Tay et al., 2020) applied
this method to the Transformer (Vaswani et al.,
2017) to model long-distance dependency in lan-
guage models with better memory efficiency. This
work applies the Gumbel-Sinkhorn Network to
model the reordering between languages, in order
to reduce anticipation in SimulMT.

3 Proposed Method

For a source sentence x = (1, T2, ..., T|x|) and
a target sentence y = (y1,y2, ...,y|y|>, in order
to perform SimulMT, the conditional probability
of translation p(y|x) is modeled by the prefix-to-
prefix framework (Ma et al., 2019). Formally,

lyl

= Hp(yt|X§g(t)>y<t>'
t=1

Pg(y[x) (1)

where g(t) is a monotonic non-decreasing function.
This way, the ¢-th token y, can be predicted with a
limited context x< ;). However, if long-distance
reordering exists in the training data, the model is
forced to generate target tokens whose correspond-
ing source tokens have not been revealed yet. This
issue is known as anticipation.

3.1 Training Framework

To overcome this, we introduce a latent variable Z:
a permutation matrix capturing the reordering pro-
cess from x to y. Thus, the translation probability
can be expressed as a marginalization over Z:

Zpg (y|x,Z)

monotomc
translation

Z|x)

reorderlng

p(ylx) = 2

During training, since Z captures reordering, the
Pg¢(¥|%, Z) corresponds to monotonic translation,
which can be correctly modeled by a prefix-to-
prefix model without anticipation. During infer-
ence, we can translate monotonically by simply
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removing the effect of Z:

yzmy@mwﬂxzzﬂ- (3)

where I is the identity matrix. However, equation 2
is intractable due to the factorial search space of
permutations. One could select the most likely
permutation using an external aligner (Ran et al.,
2021), but such a method requires an external tool,
and it could not be end-to-end optimized. Instead,
we use the ASN to learn the permutation matrix Z
associated with source-target reordering. By doing
this, the entire model is optimized end-to-end.

Figure 2 shows the proposed framework applied
on the CTC model. It is composed of a causal
Transformer encoder, an ASN, and a length pro-
jection network. We describe each component in
detail below.

3.2 Causal Encoder

The encoder maps the source sequence x to hidden
states H = (h1, ha, ..., hix|). During training, the
encoder uses a causal attention mask so that it can
be streamed during inference. To enable the trade-
off between quality and latency, we introduce a
tunable delay in the causal attention mask of the
first encoder layer. We define the delay in a similar
sense to wait-k: For delay-k, the ¢-th hidden state
h is computed after observing the (t + k — 1)-th
source token.

We pre-train the encoder with CTC loss (Li-
bovicky and Helcl, 2018). Since the CTC is an
adaptive policy already capable of local reorder-
ing, initializing from it encourages the ASN to only
handle long-distance reordering. We study the ef-
fectiveness of this technique in Section 5.2.

3.3 Auxiliary Sorting Network (ASN)

The ASN samples a permutation matrix Z, which
would sort the encoder hidden states H into the
target order. To do so, the ASN first computes in-
termediate variables Q = (q1,q2, .-, ¢|x|) using a
stack of M non-causal Transformer decoder lay-
ers. These layers use the target token embeddings
as the context for cross attention. Providing this
context guides the reordering process', inspired by
the word alignment task (Zhang and van Genabith,
2021; Chen et al., 2021a). We randomly mask out

! Although ASN has decoder layers and takes target tokens
as input, which are unavailable during inference, they are only
used to assist training.
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Figure 2: The architecture of the proposed model. Add & Norm layers are omitted for simplicity.

~% of the context in ASN to avoid collapsing to a
trivial solution.

Subsequently, the Sinkhorn Attention in ASN
computes the attention scores between QQ and H
using the scaled dot-product attention:
QH"

/\/(Th/ )
where dj, is the last dimension of H. To convert
the attention scores A to a permutation matrix Z,
ASN applies the Gumbel-Sinkhorn operator. Such
operator approximates sampling from a distribu-
tion of permutation matrices (Mena et al., 2018).
It is described by first adding the Gumbel noise
(equation 5), then scaling by a positive temperature
7, and finally applying the [-iteration Sinkhorn nor-
malization (denoted by S!(-)) (Adams and Zemel,
2011). We also add a scaling factor d to adjust the
Gumbel noise level (equation 6). The output would
be doubly stochastic (Sinkhorn, 1964), which is a
relaxation of permutation matrix. We leave the de-
tailed description of the Gumbel-Sinkhorn operator
in Appendix F.

A= “4)

£ € RV*N "% Gumbel (0, 1),
Z="5"((A+0€)/7),

6))
(6)

Next, we use a matrix multiplication of Z and H
to reorder H, the result is denoted by H:

H=ZH (7)
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Since Z approximates a permutation matrix, us-
ing matrix multiplication is equivalent to permuting
the vectors in H. This preserves the content of its
individual vectors, and is essential to our method
as we will show in Section 5.1.

3.4 Length Projection

To optimize the model with CTC loss function, we
tackle the length mismatch between H and y by
projecting H to a u-times longer sequence via an
affine transformation (Libovicky and Helcl, 2018).
The p represents the upsample ratio. For ASN
to learn reordering effectively, it is required that
the projection network and the loss must not per-
form reordering. Our length projection is time-
independent, and CTC is monotonic, both satisfy
our requirement.

3.5 Inference Strategy

To enable streaming, we remove the ASN during
inference? (Figure 2(b)). Specifically, when a new
input token z; arrives, the encoder computes the
hidden state h;, then we feed h; directly to the
length projection to predict the next token(s). The
prediction is post-processed by the CTC collapse
function in an online fashion. Namely, we only
output a new token if 1) it is not the blank symbol
and 2) it is different from the previous token.

>While this seemingly creates a train-test discrepancy, we
address this in FAQ



4 Experiments

4.1 Datasets

We conduct experiments on English-Chinese and
German-English datasets. For En-Zh, we use a
subset> of CWMT (Chen and Zhang, 2019) par-
allel corpora as training data (7M pairs). We use
NJU-newsdev2018 as the development set and re-
port results on CWMT2008, CWMT2009, and
CWMT2011. The CWMT test sets have up to 3
references. Thus we report the 3-reference BLEU
score. For De-En, we use WMT15 (Callison-Burch
et al., 2009) parallel corpora as training data (4.5M
pairs). We use newstest2013 as the development
set and report results on newstest2015.

We use SentencePiece (Kudo and Richardson,
2018) on each language separately to obtain its
vocabulary of 32K subword units. We filter out
sentence pairs that have empty sentences or exceed
1024 tokens in length.

4.2 Experimental Setup

All SimulMT models use causal encoders. During
inference, the encoder states are computed incre-
mentally after each read, similar to (Elbayad et al.,
2020). The causal encoder models follow a simi-
lar training process to non-autoregressive transla-
tion (NAT) (Gu et al., 2018; Libovicky and Helcl,
2018; Lee et al., 2018; Zhou et al., 2020). We
adopt sequence level knowledge distillation (Seq-
KD) (Kim and Rush, 2016) for all systems. The
combination of Seq-KD and CTC loss has been
shown to achieve state-of-the-art performance (Gu
and Kong, 2021) and could deal with the reorder-
ing problem (Chuang et al., 2021). Specifically, we
first train a full-sentence model as a teacher model
on the original dataset, then we use beam search
with beam width 5 to decode the Seq-KD set. We
use the Seq-KD set in subsequent experiments. We
list the Transformer and ASN hyperparameters sep-
arately in Appendix C and D.

We use Adam (Kingma and Ba, 2015) with an
inverse square root schedule for the optimizer. The
max learning rate is 5e-4 with 4000 warm-up steps.
We use gradient accumulation to achieve an effec-
tive batch size of 128K tokens for the teacher model
and 32K for others. We optimize the model with
the 300K steps. Early stopping is applied when
the validation BLEU does not improve within 25K
steps. Label smoothing (Szegedy et al., 2016) with

3We use casia2015, casict2011, casict2015, neu2017.

€;s = 0.1 is applied on cross-entropy and CTC
loss. For CTC, this reduces excessive blank sym-
bol predictions (Kim et al., 2018). Random seeds
are set in training scripts in our source code. For
the hardware information and environment settings,
see Appendix E.

For latency evaluation, we use SimulEval (Ma
et al., 2020a) to compute Average Lagging
(AL) (Ma et al., 2019) and Computation Aware Av-
erage Lagging (AL-CA) (Ma et al., 2020b). AL is
measured in words or characters, whereas AL-CA
is measured in milliseconds. We describe these met-
rics in detail in Appendix G. For quality evaluation,
we use BLEU (Papineni et al., 2002) calculated by
SacreBLEU (Post, 2018). We conduct statistical
significance test for BLEU using paired bootstrap
resampling (Koehn, 2004). For multiple references,
we use the first reference to run SimulEval* and
use all available references to run SacreBLEU. The
language-specific settings for SimulEval and Sacre-
BLEU can respectively be found in Appendix H
and L.

4.3 Baselines

We compare our method with two target rewrite
methods which generate new datasets:

* Pseudo reference (Chen et al., 2021b): This
approach first trains a full-sentence model
and uses it to generate monotonic transla-
tion. The approach applies the test-time wait-
k policy (Ma et al., 2019), and performs
beam search with beam width 5 to generate
pseudo references. The pseudo reference set
is the combination of original dataset and the
pseudo references. We made a few changes 1)
instead of the full-sentence model, we use the
wait-9 model®. 2) instead of creating a new
dataset for each k, we only use k£ = 9 since it
has the best quality.

* Reorder: We use the word alignments to re-
order the target sequence. We use awesome-
align (Dou and Neubig, 2021) to obtain word
alignments on the Seq-KD set, and we sort
the target tokens based on their corresponding
source tokens. Target tokens that did not align
to a source token are placed at the position
after their preceding target token.

*we use SimulEval for latency metrics only. Only one
reference is required to run it.

Sour wait-9 model has higher training set BLEU score than
applying test-time wait-k on full-sentence model.



We train two types of models on either the Seq-KD
set, the pseudo reference set or the reorder set:

* wait-k: an encoder-decoder model. It uses
a fixed policy that first reads k£ tokens, then
repeatedly reads and writes a single token.

* CTC: a causal encoder trained with CTC loss.
The policy is adaptive, i.e., it outputs blank
symbols until enough content is read, outputs
the translated tokens, then repeats.

4.4 Quantitative Results

Figure 3 shows the latency-quality trade-off on the
CWMT dataset, each node on a line represents a
different value of k. Due to space limit, the signifi-
cant test results are reported in Appendix J.

First of all, although the vanilla CTC model has
high latency in terms of AL, they are comparable
to or faster than the wait-k model according to
AL-CA. This is due to the reduced parameter size.
Besides, CTC models outperform wait-£ in low
latency settings. The pseudo reference method im-
proves the quality of wait-k and CTC models, and
it slightly improves the latency of the CTC model.
In contrast, the reorder method harms the perfor-
mance of both models. Meanwhile, our method
significantly improves both the quality and latency
of the CTC model across all latency settings, out-
performing the pseudo reference method and the
reorder method. In particular, our £ = 1, 3 models
outperform wait-1 by around 13-15 BLEUs with a
faster speed in terms of AL-CA. This shows that
our models are more efficient than wait-k£ models
under low latency regimes.

Figure 4 shows the latency-quality trade-off on
the WMT15 De-En dataset. The vanilla CTC
model is much more competitive in De-En. It out-
performs vanilla wait-k in low latency settings in
BLEU and AL-CA, and its AL is much less than
those in En-Zh. Our method improves the qual-
ity of the CTC model, comparable to the pseudo
reference method. However, our method does not
require combining with the original dataset to im-
prove the performance.

To understand why our method is more effective
on CWMT, we calculate the k-Anticipation Rate
(k-AR) (Chen et al., 2021b) on the evaluation sets
of both datasets. For the definition of k-AR, see Ap-
pendix G. Intuitively, k-AR describes the amount
of anticipation (or reordering) in the corpus whose
range is longer than k source tokens. We report k-
AR across 1 < k < 9in Figure 5. En-Zh has much
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higher k-AR in general, and it decreases slower as
k increases. When k = 9, over 20% of anticipa-
tions remain in En-Zh, while almost none remains
in De-En. We conclude that En-Zh has much more
reordering, and over 20% of them are longer than
9 words. The abundance of long-distance reorder-
ing gives our method an advantage, which explains
the big improvement observed on CWMT. On the
other hand, De-En reordering is less common and
mostly local, so ASN has limited effect. Indeed,
we found that ASN predicts matrices close to the
identity matrix on De-En, whereas, on En-Zh, it
predicts non-identity matrices throughout training.

4.5 Qualitative Results

We show some examples from the CWMT test set.
We compare the predictions from wait-k, CTC, and
CTC+ASN models in Figure 6. In the first exam-
ple, wait-k predicts the sentence “demonstrative
is one of the major languages in the world’s lan-
guages,” which is clearly hallucination. CTC failed
to translate “8000” and “assets,” which shows that
CTC may under-translate and ignore source infor-
mation. In the second example, wait-k hallucinates
the sentence “this is the world’s best contest, but
to a earthquake without earthquake, it’s the open-
ing remarks.” CTC under-translates “silver said
in a telephone interview.” Our method generally
provides translation that preserves the content. Al-
though our model prediction is a bit less fluent than
wait-k, they are generally comprehensible. See
Appendix N for more examples.

We study the output of the ASN to verify that
reordering information is being learned. Figure 7
shows an example of the permutation matrix Z pre-
dicted by the ASN. The horizontal axis is labeled
with the source tokens. The vertical axis is the out-
put positions, each are labeled with 2 target tokens
(due to the length projection). In the example, the
English phrase “for all green hands” come late in
the source sentence, but their corresponding Chi-
nese tokens appear early in target, which causes
anticipation. Our ASN permutes the hidden states
of this phrase to early positions, so anticipation
no longer happens, and provides the correct train-
ing signal for the model. We provide additional
examples in Appendix M.

S Ablation Study

We perform ablation studies on the CWMT dataset.
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5.1 Gumbel-Sinkhorn Network
We show that the Gumbel-Sinkhorn Network is
crucial to our method. We train CTC+ASN models
with k& = 3 under the following settings:®

* No temperature: Set the temperature 7 to 1.

* No noise: Set the Gumbel noise factor ¢ to 0.

* Gumbel softmax: Replace Sinkhorn normal-
ization with softmax.

¢ Default: The Gumbel-Sinkhorn Network.

Swe do not use weight initialization in this subsection.
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Table 1 shows the result of these settings. Without
low temperature, the ASN output Z is not sparse,
which means the content of individual vectors in H
is not preserved after applying ASN. Because ASN
is removed during inference, this creates a train-
test mismatch for the projection network, which is
detrimental to the prediction quality ((a) v.s. (d)).
Removing the noise ignores the sampling process,
which hurts the robustness of the model ((b) v.s.
(d)). Using softmax instead of Sinkhorn normaliza-
tion makes Z not doubly stochastic, which means
H might not cover every vector in H. Those not
covered are not optimized for generation during
training. However, during inference, all vectors
in H are passed to length projection to generate
tokens. This mismatch is also harmful to the result

((c) v.s. (d)).

Settings BLEU(?T)
(a) No temperature 28.39
(b) No noise 27.88
(c) Gumbel softmax 36.54
(d) Default 38.92

Table 1: Test set BLEU scores of different settings.

5.2 Weight Initialization

We investigate the effectiveness of initializing en-
coder parameters from the CTC baseline model.
Specifically, we train the CTC+ASN model from
scratch to compare it with the weight initialized set-
ting. As Figure 8 reveals, the weight initialization
significantly improves the translation quality while
slightly increasing the latency.

This improvement comes from what was already
learned by the CTC baseline model. The CTC
baseline model learns to perform reordering, i.e., it



Input the adic is one of the world's richest sovereign funds, with an estimated $800bn of assets under management.
itk T R S WA R EE 2o, © W WS REAN RIE il 800 FT
demonstrative is language world’s major language one of,it by many richest investor estimated 80billion USD asset.
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adfF is is world’s richest sovereign funds one of, estimated is  OObillion USD ‘s asset under management (under)
Input it's the opening up of cracks before an earthquake, silver said in a telephone interview.
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this is world’s best contest, but for a without earthquake earthquake in silver (for), thisis opening remarks.
. WO R A 2 W R
this is earthquake before crack crack opening up
croasy KB PRV st B A WAOE W o fE R RIE R P
this is open crack earthquake before silver  said in in a telephone interview (in)

Figure 6: Examples from CWMT En—Zh. Text in red are hallucinations unrelated to source. We use £ = 3 models.
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Figure 7: The Z predicted by ASN. The horizontal axis
is the source tokens. The vertical axis is the output
positions, each corresponds to 2 target tokens.

outputs blank symbols when reading the informa-
tion, then outputs the content in the target language
order. Such information might span several source
tokens, so the AL of the CTC baseline model is
high (Figure 3). In our weight initialized setting,
ASN handles the long-distance reordering that CTC
was struggling with, while the local reordering al-
ready learned by CTC is preserved. In contrast,
when trained from scratch, ASN would learn most
of the reordering, so the encoder would not learn
to perform local reordering. We hypothesize that
if the model performs local reordering during in-
ference, its latency might increase, but the higher
order n-grams precision can improve, which ben-
efits its quality. Indeed, Figure 9 indicates that
the weight initialization mostly improves the 2,3,4-
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Figure 8: Latency and quality comparison between the
model trained from scratch and one with weight initial-
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Figure 9: The n-gram precision improvement of weight
initialization compared to Scratch across different de-
lays (k).

gram precision of the BLEU score.

6 Conclusion

We proposed a framework to alleviate the impact
of long-distance reordering on simultaneous trans-
lation. We apply our method to the CTC model and
show that it improves the translation quality and
latency, especially English to Chinese translation.
We verified that the ASN indeed learns the correct
alignment between source and target. Besides, we
showed that a single encoder can perform simulta-
neous translation with competitive quality in low
latency settings and enjoys the speed advantage
over wait-k Transformer.
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A Source Code

Our source code is available at https:
//github.com/George0828Zhang/
sinkhorn-simultrans. Please follow the
instructions in README.md to reproduce the
results.

B Datasets

We use the CWMT English to Chinese
and WMTI15 German to English datasets
for experiments. They can be down-
loaded in the following links: 1) CWMT
http://nlp.nju.edu.cn/cwmt—wmt/)

2) WMTI5 http://www.statmt.org/
wmtl5/translation-task.html. The
WMTI15 De-En is a widely used corpus for
simultaneous machine translation, in the news
domain. Another popular dataset is the NIST
En-Zh corpus, however, NIST is not publicly
available, thus we use CWMT corpus instead.
CWMT is also in the news domain.

Both datasets are publicly available. We didn’t
find any license information for both. We adhered
to the terms of use for both. We didn’t find any
information on names or uniquely identified indi-
vidual people or offensive content and the steps
taken to protect or anonymize them.

C Transformer Hyperparameters

Our architecture related hyperparameters are listed
in Table 2. We follow the base configuration of
Transformer for encoder-decoder models. For mod-
els without decoder, we follow the same configura-
tion for its encoder. The total parameter count for
Transformer is 76.9M. For encoder-only models
without ASN, it is 52.2M. The ASN has 12.6M
parameters.

Hyperparameter  (A) (B)
encoder layers 6 6
decoder layers 6 0

embed dim 512 512
feed forward dim 2048 2048
num heads 8 8
dropout 0.1 0.1

Table 2: Transformer architecture related hyperparame-
ters for each model. (A) full-sentence and wait-k£ model
(B) CTC encoder model.
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D ASN Hyperparameters

We perform a Bayesian hyperparameter optimiza-
tion on both datasets using the sweep utility pro-
vided by Weights & Biases (Biewald, 2020). Ta-
ble 3 shows the search range and the selected val-
ues. We found a well performing set in the 7th run
for CWMT and 1st run for WMTI15. It is possi-
ble that different k might prefer different hyperpa-
rameters. However, we use the same set to fairly
compare to wait-k, and to reduce the cost. All sub-
sequent results are obtained using this set of values
if not specified.

Hyperparameter CWMT WMTI5 Range
layers M 3 3 1,3
iterations [ 16 16 4,8, 16
temperature 7 0.25 0.13 [0.05, 0.3]
noise factor § 0.3 0.45 [0.1, 0.3]
upsample ratio 2 2 2,3
mask ratio ~y 0.5 0.5 [0.,0.7]

Table 3: ASN related hyperparameters and the search
range. We use Bayesian hyperparameter optimization,
so the combinations are not exhaustively searched.

E Hardware and Environment

For training, each run are conducted on a container
with a single Tesla V100-SXM2-32GB GPU, 4
CPU cores and 90GB memory. The operating
system is Linux—-3.10.0-1127.el17.x86_
64-x86_64-with—-glibc2.10. The version
of Python is 3.8.10, and version of PyTorch is
1.9.0. We use a specific version of fairseq (Ott
et al., 2019) toolkit, the instructions are provided
in README . md of our source code. All run uses
mixed precision (i.e. fp16) training implemented
by fairseq. All training took 10-15 hours to con-
verge (early stopped).

For inference, the evaluation are conducted on
another machine with 12 CPU cores (although we
restrict the evaluation to only use 2 threads), 32GB
memory and no GPU is used. The operating sys-
tem is Linux—-5.11.0-25-generic—-x86_
64-with-glibc2.10.

F Gumbel-Sinkhorn Operator

The Sinkhorn normalization (Adams and Zemel,
2011) iteratively performs row-wise and column-
wise normalization on a matrix, converting it to a



doubly stochastic matrix. Formally, for a NV dimen-
sional square matrix X € RV*¥ | the Sinkhorn
normalization S(X) is defined as:

S%(X) = exp(X), ®)
SX) =T (T (s ). ©
S(X) = lim S(X). (10)

l—00

where 7, and 7. are row-wise and column-wise
normalization operators on a matrix, defined below:

7:(X)
Te(X)

X 0 (X1n1y),
X o (1y14X).

1D
= (12)
The @ denotes the element-wise division, and 1
denotes a column vector full of ones. As the
number of iterations I grows, S'(X) will eventu-
ally converge to a doubly stochastic matrix (equa-
tion 10) (Sinkhorn, 1964). In practice, we often
consider the truncated version, where [ is finite.
On the other hand, the Gumbel-Sinkhorn
operator adds the Gumbel reparametrization
trick (Kingma and Welling, 2014) to the Sinkhorn
normalization, in order to approximate the sam-
pling process. It can be used to estimate marginal
probability via sampling. Formally, suppose that
a noise matrix ¢ is sampled from independent and
identically distributed (i.i.d.) Gumbel distributions:

£ € RVXN Hid Gumbel (0, 1). (13)
The Gumbel-Sinkhorn operator is described by
first adding the Gumbel noise &, then scaling by
a positive temperature 7, and finally applying the
Sinkhorn normalization:

S(X+E&)/7). (14)
By taking the limit 7 — 0, the output converges
to a permutation matrix. The Gumbel-Sinkhorn
operator approximates sampling from a distribution
of permutation matrices. Thus, the equation 2 can
be estimated through sampling:

p(y[x) = Ezpzx) Po(¥lx,Z)].  (15)
In practice, we sample from p(Z|x, y) instead, as
it is easier to perform word alignment (p(Z|x,y))
than directly predicting order (p(Z|x)).
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G Details on Evaluation Metrics

G.1 Average Lagging (AL)

The AL measures the degree the user is out of sync
with the speaker (Ma et al., 2019). It measures the
system’s lagging behind an oracle wait-0 policy.
For a read-write policy ¢(-), define the cut-off step
74(|x|) as the decoding step when source sentence
finishes:

g(t) = x[}

7g([x[) = min{t|
Then the AL for an example x,y is defined as:
9 (|x1)

> ()

t=1

1

7o ([x1)

t—1
AL, (x,y) = -
g’ /1]
The second term in the summation represents the
ideal latency of an oracle wait-0 policy in terms of
target words (or characters for Chinese). The AL

averaged across the test set is reported.

G.2 Computation Aware Average Lagging
(AL-CA)

Originally proposed for simultaneous speech-to-
text translation (Ma et al., 2020b), the AL-CA is
similar to AL, but takes the actual computation
time into account, and is measured in milliseconds.

ALTA(x,y)
Tq(|x])

1
doa(yi) —
1

() &

(i_1>'Ts

yl/1x|

(16)

The dca(yi) is the the time that elapses from the
beginning of the process to the prediction of y;,
which considers computation. 7 represents the
actual duration of each source feature. The second
term in the summation represents the ideal latency
of an oracle wait-0 policy in terms of milliseconds,
without considering computation. In speech-to-
text translation, 7 corresponds to the duration of
each speech feature. However, since our source
feature is text, the “actual duration” for a word is
unavailable, so we set T;, = 1.

The motivation behind using AL-CA here is to
show the speed advantage of CTC models. When
calculating AL-CA, we account for variance by
running the evaluation 3 times and report the aver-
age.



G.3 Character n-gram F-score (chrF)

The general formula for the chrF score is given by:

chrP - chrR

chrFp = (1 + 52)52 . chrP + chrR’

a7

where

* chrP: percentage of character n-grams in the
hypothesis which have a counterpart in the
reference.

* chrR: percentage of character n-grams in the
reference which are also present in the hypoth-
esis.

e [: a parameter which assigns ( times more
importance to recall than to precision.

The maximum n-gram length NV is optimal when
N = 6 (Popovi¢, 2015), and the optimal (3 is shown
to be 8 = 2 (Popovié, 2016).

The motivation behind using chrF2 is that 1) as
machine translation researchers, we are encouraged
to report multiple automatic evaluation metrics. 2)
BLEU is purely precision-based, while chrF2 is
F-score based, which takes recall into account. 3)
chrF2 is shown to correlate better with human rank-
ings than the BLEU score.

G.4 k-Anticipation Rate (k-AR)

For each sentence pair, we first use awesome-
align (Dou and Neubig, 2021) to extract word
alignments, then for each aligned target word y;,
it is considered a k-anticipation if it is aligned to
a source word x; that is k words behind, in other
words, if « — k + 1 > j. See Figure 10 for an ex-
ample of 2-anticipation. The k-AR is calculated as
the percentage of k-anticipation among all aligned
word pairs.

Source

Target

Figure 10: An example of 2-anticipation. The links are
alignments, and the red link is an instance of anticipa-
tion.

H SimulEval Configuration

Table 4 show the language specific options for la-
tency evaluation on SimulEval, which affect the
AL calculation.

Options En Zh
—eval-latency-unit word char
—no-space false true

Table 4: Configuration for SimulEval under different
target languages.

I SacreBLEU Signatures

Table 5 shows the signatures of SacreBLEU evalu-
ation.

Lang Metric Signature
nrefs:varlbs:1000Iseed: 12345
Icase:Icleff:noltok:zh
Ismooth:explversion:2.0.0
nrefs:varlbs:1000Iseed: 12345
Icase:Icleff:yesInc:6 Inw:0
Ispace:nolversion:2.0.0
nrefs: 1/bs:1000Iseed: 12345
Icase:Icleff:noltok:13a
Ismooth:explversion:2.0.0
nrefs: 1/bs:1000Iseed: 12345
Icase:lcleff:yesInc:6 Inw:0
Ispace:nolversion:2.0.0

Zh  BLEU

Zh chrF2

En BLEU

En chrF2

Table 5: The SacreBLEU signatures for each target
language and each metric.

J Detailed Statistics of Quality Metrics

Table 7 shows the detailed distributional statistics
of the quality metrics evaluated on the CWMT and
WMT15 datasets. All settings are trained once, but
we use statistical significant test using bootstrap
resampling.

K Latency-quality results with chrF

Figure 11 show the quality-latency trade off with
chrF on the CWMT En-zh dataset. Figure 12
show the quality-latency trade off with chrF on
the WMT15 De-En dataset. These results have
similar trends with BLEU score.
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Figure 11: Latency-quality trade off with chrF score on the CWMT En-Zh dataset. Each line represents a system,
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Figure 12: Latency-quality trade off with chrF score on the WMT15 De-En dataset. Each line represents a system,
and the 5 nodes corresponds to k = 1, 3,5, 7,9, from left to right. The figures share the same legend.

L Performance with Oracle Reordering

We study our encoder models’ performance when
the oracle reordering is provided. To achieve this,
we re-use the ASN during inference, and fed the
(first) reference translation as the context to ASN
to estimate Z. The results compared to default
setting is shown in Table 6. This result serves as
a upperbound for the performance of CTC-based
encoder models.

M More on ASN Output

We describe how the target tokens are placed on
the vertical axis of the ASN output illustration.
Since the length projection upsamples H to 2 times
longer, each position of H corresponds to two tar-
get tokens (including repetition and blank sym-
bols introduced by CTC). To find the optimal po-
sition for each target tokens and blank symbols,
we use the Viterbi alignment (an implementation is
publicly available at https://github.com/
rosinality/imputer-pytorch) to align
the model’s logits and the actual target tokens.
Figure 13 shows more examples of the approx-
imated permutation matrix predicted by the ASN.
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k  Method BLEU 1/2/3/4-gram BP
1 Default  38.58 76.7/51.0/32.5/20.6 0.96
+ Oracle 41.59 76.0/52.7/359/23.9 0.96
3 Default  40.24 79.5/53.7/34.8/22.6 094
+Oracle 41.75 77.5/53.7/36.5/244 0.95
5 Default  40.34 78.8/53.5/35.0/22.7 0.94
+ Oracle 41.70 76.0/52.4/35.5/23.6 0.98
. Default  40.81 80.0/54.2/35.2/229 094
+ Oracle 43.37 78.8/552/379/25.8 0.96
9 Default  40.83 79.5/54.1/35.4/23.1 094
+Oracle 41.77 76.3/52.7/35.5/23.6 0.98

Table 6: The BLEU score on the CWMT dataset, includ-
ing n-gram precision and brevity penalty (BP), of the
CTC+ASN system for each k with and without oracle
order.

The sentence pairs are from CWMT En-Zh test set.

N More CWMT Examples

Figure 14 shows more examples from CWMT
test set and the predictions of wait-k, CTC and
CTC+ASN models.



O FAQ

Q1 The trained ASN cannot be used during
inference, how to guarantee the model can
still perform reordering?

We categorize reordering into local reordering and
long-distance reordering. Our goal is for the ASN
to primarily deal with long-distance reordering. In
Section 5.2, we observed that employing the weight
initialization improves the 2,3,4-gram precision
(but not the unigram), and slightly increases the
latency. This suggest that CTC+ASN model can
indeed perform local reordering during inference.

As for long-distance reordering, we stress that in
simultaneous interpretation, humans actively avoid
long-distance reordering in order to reduce latency,
which is also the goal of SimulMT. This provides
the justification for removing the ASN during in-
ference. (equation 3)

We additionally provide the performance when
Z is available during inference in Appendix L.

Q2 Using ASN during training may cause the
model to rely on Z, which may cause
train-test discrepancy during inference?

In terms of the mismatch of hidden representation,
because Gumbel-Sinkhorn gaurantees that Z is dou-
bly stochastic (and almost permutation, depending
on 7), the representation before and after ASN
would only differ by a permutation. This is also
discussed in Section 5.1 where removing Sinkhorn
nomalization indeed negatively impact the perfor-
mance.

As for the mismatch of the order of the repre-
sentation, we note that the length projection net-
work is merely a position-wise affine transforma-
tion, which means it is independent of time, so
the mismatch of order between training and testing
would not negatively impact the prediction made
by the length projection network.

Q3 Proposed method underperform wait-% in
high latency.

Simultaneous translation aims to translate in a short
time, hence our work focuses on improving the
translation quality under low latency setting. The
higher latency model is less acceptable in practice.
For instance, a k = 9 model decodes a single word
after seeing 9 words. We included the results for
experimental completeness purpose.

For the reason why proposed method under-
perform wait-k model: Based on the observation
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in Appendix L, 43.37 is the best performance of
CTC+ASN method. It is inferior to the wait-9
model’s 43.80. We suspect that it is caused by
the inherent difference between non-autoregressive
(NAR) model and auto-regressive (AR) model.
However, CTC+ASN method’s performance is rela-
tively consistent when the latency decreases, while
wait-k’s performance decreases drastically. There-
fore, to fit the simultaneous translation setting, our
proposed method is more suitable than wait-k.

Q4 Explanation for why ASN could
outperform Reorder and Pseudo reference
baselines?

For the Reorder baseline, we suspect that since the
external aligner is fixed and not jointly optimized, it
may produce incorrect alignments, or miss correct
ones, producing wrongful training targets.

As for the Pseudo reference baseline, there are
two problems that might limit its effectiveness. For
one, the pseudo reference is produced from a full-
sentence model while using a wait-k decoding strat-
egy, which is a train-test discrepancy. For another,
in order to compensate for the first issue, the orig-
inal translation is included as a second target for
each example. This leads to the infamous multi-
modality problem for non-autoregressive models,
which might be harmful to our CTC-based encoder.

QS5 What are the limitations of the proposed
method?

First of all, for SimulMT to be applicable to a con-
ference setting, we assume a streaming ASR is
available. However, we did not account for ASR
errors in our SimulMT models.

Second, as discussed in Section 4.4, our method
is only effective if the language pair includes suffi-
cient long-distance reordering. For instance, when
translation from English to Spanish, we there’s
hardly any reason to employ our method.

Finally, as discussed in Q3, our method is less
advantageous when the latency budget is high.

Q6 What are the risks of the proposed
method?

One risk is that our method may favor low-latency
over high precision, which means that erroneous
translation may occur, which might twist the mean-
ing of source sentence. However, latency and qual-
ity is inherently a trade-off, and erroneous trans-
lation could be mitigated by refinement or post-
editing techniques.
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Figure 13: More approximated permutation matrices predicted by ASN.
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CWMT En—Zh WMT15 De—En
Delay Method BLEU [#95%CI chrF2 1;295%CI BLEU ;#95%CI  chrF2  ;i#95%CI
offline  Transformer 4585 45.85+0.60 3246 3246+045 31.67 31.70£0.77 57.65 57.67+0.61
wait-k 2431 2429+0.62 18.69 18.67+0.43 1991 19.91+0.68 46.68 46.70+0.69
wait-k+Pseudo  #25.93  25.91+0.66 *19.89 19.87+0.46 *20.63 20.63+0.68 *47.34  47.35+0.68
wait-k+Reorder  23.98 23.96+0.59 1850 18.49+0.39 #20.54 20.55+0.65 *47.59 47.61+0.68
k=1 CTC 28.44 28.42+0.56 2224 22244035 23.08 23.09+0.69 51.11 51.13+0.56
CTC+Pseudo 130,77 30.75+0.61 123.81 23.81+0.38 124.48 24.49+0.69 15231 52.32+0.56
CTC+Reorder  124.09 24.08+0.58 120.49 20.48+0.36 120.77 20.78+0.65 148.84 48.85+0.56
CTC+ASN 138.58 38.57+0.45 12774 27.73+0.32 124.17 24.19+0.70 152.08 52.10+0.54
wait-k 3227 3225+0.65 23.90 23.90+0.43 25.85 25.87+0.78 51.79 51.81+0.67
wait-k+Pseudo  *33.53 33.52+0.64 *24.88 24.87+0.44 2574 2576+0.77 51.76 51.78+0.66
wait-k+Reorder *31.47 31.46+0.66 *23.54 23.54+0.45 #2526 25.28+0.73 51.97 51.99+0.65
k=3 CTC 3245 32442061 2497 24962039 26.07 26.09+0.69 53.19 53.21+0.58
CTC+Pseudo 134.03 34.03x0.61 126.05 26.05+0.39 126.61 26.63+0.68 753.89 53.91+0.55
CTC+Reorder 12852 28.50+0.62 12328 23.28+0.40 23.50 23.52+0.71 151.04 51.06+0.55
CTC+ASN 140.24 40.23+0.51 128.88 28.87+0.34 126.53 26.55+0.73 153.68 53.70+0.57
wait-k 37.40 37.39+0.65 27.19 27.19+0.44  28.52 28.54+0.82 54.66 54.68+0.64
wait-k+Pseudo  *37.96 37.95£0.67 *27.56 27.56+0.46 28.68 28.71+0.78 54.92  54.95+0.60
wait-k+Reorder *36.86 36.8420.65 27.00 26.99+0.44 *27.35 27.38+0.75 *53.78 53.81+0.63
k=5 CTC 33.64 33.6320.62 25.67 25.66+039 2651 26.53+0.77 53.66 53.68+0.58
CTC+Pseudo 134.65 34.64+0.61 12645 26.45+0.40 12748 27.49+0.76 154.41 54.43+0.60
CTC+Reorder  729.68 29.68+0.61 123.99 23.98+0.38 123.90 23.91+0.72 15141 51.44+0.57
CTC+ASN 140.34 40332050 128.81 28.81+0.36 12743 27.45+0.75 154.24 54.27+0.57
wait-k 40.78 40.76+0.67 29.50 29.50+0.48  30.28 30.32+0.80 56.44 56.47+0.62
wait-k+Pseudo  *42.34 42.3420.62 #30.50 30.50+0.45 30.53 30.56+0.82 56.47 56.49+0.64
wait-k+Reorder *#40.23  40.23+0.61 #29.03 29.03+0.45 #2877 28.79+0.75 *55.55 55.58+0.57
k=7 CTC 34.14 34.1240.58 2596 25.95+0.40 26.77 26.78+0.72  53.82  53.84+0.62
CTC+Pseudo 136.04 36.0420.63 12727 27272041 127.66 27.6720.75 15470 54.72+0.58
CTC+Reorder 12945 29.44+0.64 123.86 23.85£0.40 2421 24.23+0.70 151.50 51.53+0.57
CTC+ASN 140.81 40.80+0.49 12922 29.21+0.35 127.30 27.32+0.74 154.18 54.21+0.57
wait-k 43.80 43.79+0.63 3142 31424045 30.52 30.55+0.77 56.77 56.79+0.61
wait-k+Pseudo  *44.99 44.98+0.57 #3223 32.23+0.45 #30.99 31.02+0.79 *57.14 57.1620.62
wait-k+Reorder *#43.27 43.27+0.62 *30.92 30.92+0.44 #2937 29.39+0.80 *56.25 56.27+0.58
k=9 CTC 3420 34.18+0.60 26.03 26.02+0.41 27.37 27.38+0.74 5437 54.39+0.59
CTC+Pseudo 136.83 36.83+0.64 127.67 27.66x041 12772 27742075 15475 54.77+0.58
CTC+Reorder  129.81 29.79+0.65 124.07 24.06+0.40 2432 2433+0.71 151.66 51.68+0.58
CTC+ASN 140.83 40.82+0.51 129.21 29.20+0.35 128.00 28.02+0.78 15471  54.74+0.60
Table 7: Detailed quality metrics statistics on both datasets. Significance tests are conducted with paired bootstrap

resampling. “*” suggests significantly different (better or worst) from the wait-% baseline with p-value < 0.05. “{”
suggests significantly different from the CTC baseline. Bold text suggests the best value in the same k. If multiple
values are in bold, it means that these values are not significantly different according to paired bootstrap resampling.
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Input it took a huge leap of faith to travel to india.
fET KRRy 25 A 0 Xokf R EIE A
took  huge strength have this fish brought to india
oTC HRFT EAHY 0 KK

travel huge faith  leap

wait-k

creiasy  T6T EXE KR 50 WAT % EIE

took huge leap faith travel to india

Input this is the first of a five-part travelogue recounting that journey.

itk KR EK A ARGOWE A EEE RS, A SR -
this is the first time a five star hotel, a luxurious hotel, a luxurious hotel.
w2 B - =

cTC X XK ORITH

this is five this time journey’s

cTorasy KR E R W9 B4 AES MED L R KK IR

this is this is ‘s first five-part travelogue in  describe this time in the journey
Input one man had his foot stitched up with nothing to kill the pain but his son’s embrace.
etk AN B WEFT, (HAART 7O, 1A 18 LT B9 B B -
someone foot is stitched up, nothing can kill pain, only  his hisson ‘s foot is embraced.
ot A~ BA E B %, B LT

one man  had foot stitch but his son

CTCrASN B E B %, E (B A6 5OR RT, LTH i

someone had foot stitch no anything kill  pain  except, son’s embrace
Input in recent months, a number of iconic buildings on manhattan's skyline have been the target of middle eastern investors.
itk MINAR, 2 bl B ST M WA AR PR RRpEEM B -
in recent months, some iconic  buildings on manhattan’s horizon is built into a large scale  middle eastern investors’  target.
o1e BINER, i BRE AL i bREN S PR EVEEN B
in recent months, some manhattan horizon some iconic  buildings middle eastern investors’  target.
creiasy VN, s REME S F SIS0 KRS R 6 HIE PR ReEl B
in recent months, some iconic  buildings on manhattan’s skyline hasbeen ‘s target middle eastern investors”  target.
Input it would be boring for the other teams because they would be racing only for second place.
itk WE T R EE B 0 R RN kB X AEWT
if people don’t pay attention (if...), for other teams (for...) this too boring.
oTe Bt BROA KR, B M1 R B4
other team (for...) boring, because they only for second place
creiasy G KEW R R BEG, KN RAT RN o4
would be too boring (for...) other team’s, because they only for second place racing
Input then he looks at me and says, 'jens, read my lips: stay together.'
ik s L BE W - A%-2 4 RN % B -
again look atme  says Jonah  read to my mouth must be together.
cre f B R B A R WE,
,he lookat me, says, read my lips, stay
CTC+ASN o, e BETE B W WU B OBEEY BE - FEE
then, he looksat me says s listen me my lips live together

Figure 14: More examples from CWMT En—Zh. Text in red are hallucinations unrelated to source. We use k = 3
models.
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Abstract

Recent work has shown that systems for speech
translation (ST) — similarly to automatic speech
recognition (ASR) — poorly handle person
names. This shortcoming does not only lead to
errors that can seriously distort the meaning of
the input, but also hinders the adoption of such
systems in application scenarios (like computer-
assisted interpreting) where the translation of
named entities, like person names, is crucial.
In this paper, we first analyse the outputs of
ASR/ST systems to identify the reasons of fail-
ures in person name transcription/translation.
Besides the frequency in the training data, we
pinpoint the nationality of the referred person
as a key factor. We then mitigate the problem
by creating multilingual models, and further
improve our ST systems by forcing them to
jointly generate transcripts and translations, pri-
oritising the former over the latter. Overall, our
solutions result in a relative improvement in
token-level person name accuracy by 47.8% on
average for three language pairs (en—es,fr,it).

1 Introduction

Automatic speech translation (ST) is the task of
generating the textual translation of utterances. Re-
search on ST (Anastasopoulos et al., 2021; Ben-
tivogli et al., 2021) has so far focused on compar-
ing the cascade (a pipeline of an automatic speech
recognition — ASR — and a machine translation —
MT — model) and direct paradigms (Bérard et al.,
2016; Weiss et al., 2017), or on improving either of
them in terms of overall quality. Quality is usually
measured with automatic metrics such as BLEU
(Papineni et al., 2002) and TER (Snover et al.,
2006), possibly corroborated by manual analyses.
These metrics — as well as neural-based ones like
COMET (Rei et al., 2020) — are relatively insensi-
tive to errors on named entities (NEs) and numbers
(Amrhein and Sennrich, 2022), which instead are
of paramount importance for human readers (Xie
et al., 2022). As such, the blind pursue of higher
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scores can lead to systems biased toward the met-
rics and not targeted on real users.

In addition, there are cases in which users are in-
terested only in NEs. For instance, interpreters
easily craft more fluent and intelligible transla-
tions than machines (Fantinuoli and Prandi, 2021),
but during simultaneous sessions suffer from a
high cognitive workload (Prandi, 2018; Desmet
et al., 2018), to which NEs and specific termi-
nology significantly contribute (Jones, 1998; Gile,
2009; Prandi, 2018; Desmet et al., 2018). Indeed,
these elements i) are hard to remember (Liu et al.,
2004), ii) can be unknown to interpreters and diffi-
cult to recognize (Griffin and Bock, 1998), and
iti) differently from other types of words, usu-
ally have one or few correct translations. For
this reason, modern computer-assisted interpret-
ing (CAI — Fantinuoli 2017) tools aim at automati-
cally recognizing, displaying, and translating NEs
and terms. However, current solutions rely on pre-
defined dictionaries to identify and translate the
elements of interest (Fantinuoli et al., 2022), pre-
venting them to both generalize and disambiguate
homophones/homonyms. This would be instead
possible using ST system, but they need to reliably
recognize and translate NEs and terms, without
generating wrong suggestions that are even harm-
ful (Stewart et al., 2018).

In contrast with these needs, Gaido et al. (2021)
recently showed on their newly created benchmark
— NEuRoparl-ST — that both ASR models (and
thus cascade ST systems) and direct ST systems
perform poorly on person names, with transcrip-
tion/translation accuracy of ~40%. Hence, as a
first step toward ST systems more targeted for hu-
man needs, and in particular toward the long-term
goal of integrating ST models in assistant tools for
live interpreting, this work focuses on i) identify-
ing the factors that lead to the wrong transcription
and translation of person names, and ii) proposing
dedicated solutions to mitigate the problem.
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To achieve these objectives, our first contribution
(§3.1) is the annotation' of each person name occur-
ring in NEuRoparl-ST with information about their
nationality and the nationality of the speaker (as a
proxy of the native language) — e.g. if a German
person says “Macron is the French president”, the
speaker nationality is German, while the referent
nationality is French. Drawing on this additional
information, our second contribution (§3.2-3.3) is
the analysis of the concurring factors involved in
the correct recognition of person names. Besides
their frequency, we identify as key discriminating
factor the presence in the training data of speech ut-
tered in the referent’s native language (e.g. French
in the above example). This finding, together with
an observed accuracy gap between person name
transcription (ASR) and translation (ST), leads to
our third contribution (§4): a multilingual ST sys-
tem that jointly transcribes and translates the input
audio, giving higher importance to the transcrip-
tion task in favour of a more accurate translation of
names. Our model shows relative gains in person
name translation by 48% on average on three lan-
guage pairs (en—es,fr,it), producing useful transla-
tions for interpreters in 66% of the cases.

2 Related Work

When the source modality is text, person names
can often be “copied”, i.e. replicated unchanged,
into the output. This task has been shown to be well
accomplished by both statistical and neural transla-
tion systems (Koehn and Knowles, 2017). On the
contrary, when the source modality is speech (as in
ASR and ST), systems struggle due to the impossi-
bility to copy the audio source. The recognition of
person names from speech is a complex task that
has mostly been studied in the context of recogniz-
ing a name from a pre-defined list, such as phone
contacts (Raghavan and Allan, 2005; Suchato et al.,
2011; Bruguier et al., 2016). The scenario of an
open or undefined set of possible names is instead
under-explored. Few studies (Ghannay et al., 2018;
Caubriere et al., 2020) focus on comparing end-
to-end and cascade approaches in the transcription
and recognition of NEs from speech. They do not
directly investigate person names though, as they
do not disaggregate their results by NE category.
Similarly, Porjazovski et al. (2021) explore NE
recognition from speech in low-resource languages,

! Available at:
neuroparl-st/.

https://ict.fbk.eu/
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and propose two end-to-end methods: one adds a
tag after each word in the generated text to define
whether it is a NE or not, and one uses a dedicated
decoder. However, they do not provide specific
insights on the system ability to correctly generate
person names and limit their study to ASR, without
investigating ST. Closer to our work, Gaido et al.
(2021) highlight the difficulty of ASR/ST neural
models to transcribe/translate NEs and terminology.
Although they identify person names as the hardest
NE category by far, they neither analyse the root
causes nor propose mitigating solutions.

3 Factors Influencing Name Recognition

As shown in (Gaido et al., 2021), the translation
of person names is difficult both for direct and cas-
cade ST systems, which achieve similar accuracy
scores (~40%). The low performance of cascade
solutions is largely due to errors made by the ASR
component, while the MT model usually achieves
nearly perfect scores. For this reason, henceforth
we will focus on identifying the main issues related
to the transcription and translation of person names,
respectively in ASR and direct ST.

We hypothesize that three main factors influence
the ability of a system to transcribe/translate a per-
son name: i) its frequency in the training data, as
neural models are known to poorly handle rare
words, i) the nationality of the referent, as dif-
ferent languages may involve different phoneme-
to-grapheme mappings and may contain different
sounds, and #ii) the nationality of the speaker, as
non-native speakers typically have different accents
and hence different pronunciations of the same
name. To validate these hypotheses, we inspect
the outputs of Transformer-based (Vaswani et al.,
2017) ASR and ST models trained with the config-
uration defined in (Wang et al., 2020). For the sake
of reproducibility, complete details on our experi-
mental settings are provided in the Appendix.”

3.1 Data and Annotation

To enable fine-grained evaluations on the three fac-
tors we suppose to be influential, we enrich the
NEuRoparl-ST benchmark by adding three (one
for each factor) features to each token annotated
as PERSON. These are: i) the token frequency in
the target transcripts/translations of the training
set, ii) the nationality of the referent, and iii) the

2Code available at:
hlt-mt/FBK-fairseq.

https://github.com/



nationality of the speaker. The nationality of the
referents was manually collected by the authors
through online searches. The nationality of the
speakers, instead, was automatically extracted from
the personal data listed in LinkedEP (Hollink et al.,
2017) using the country they represent in the Eu-
ropean Parliament.’> All our systems are trained
on Europarl-ST (Iranzo-Sanchez et al., 2020) and
MuST-C (Cattoni et al., 2021), and evaluated on
this new extended version of NEuRoparl-ST.

3.2 The Role of Frequency

As a first step in our analysis, we automatically
check how the three features added to each PER-
SON token correlate with the correct generation of
the token itself. Our aim is to understand the impor-
tance of these factors and to identify interpretable
reasons behind the correct or wrong handling of
person names. To this end, we train a classification
decision tree (Breiman et al., 1984). Classification
trees recursively divide the dataset into two groups,
choosing a feature and a threshold that minimize
the entropy of the resulting groups with respect to
the target label. As such, they do not assume a
linear relationship between the input and the target
(like multiple regression and random linear mixed
effects do) and are a good fit for categorical fea-
tures as most of ours are. Their structure makes
them easy to interpret (Wu et al., 2008): the first
decision (the root of the tree) is the most important
criterion according to the learned model, while less
discriminative features are pushed to the bottom.
We feed the classifier with 49 features, cor-
responding to: i) the frequency of the token in
the training data, ii) the one-hot encoding of the
speaker nationality, and iii) the one-hot encoding
of the referent nationality.* We then train it to pre-
dict whether our ASR model is able to correctly
transcribe the token in the output. To this end, we
use the implementation of scikit-learn (Pedregosa
etal., 2011), setting to 3 the maximum depth of the
tree, and using Gini index as entropy measure.
Unsurprisingly, the root node decision is based
on the frequency of the token in the training data,
with 2.5 as split value. This means that person
names occurring at least 3 times in the training data
are likely to be correctly handled by the models.
Although this threshold may vary across datasets

? For each speech in Europarl-ST, the speaker is referenced
by link to LinkedEP.

4Speakers and referents respectively belong to 17 and 31
different nations.
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of different size, it is an indication on the necessary
number of occurrences of a person name, eventu-
ally useful for data augmentation techniques aimed
at exposing the system to relevant instances at train-
ing time (e.g. names of famous people in the spe-
cific domain of a talk to be translated/interpreted).
We validate that this finding also holds for ST sys-
tems by reporting in Table 1 the accuracy of person
tokens for ASR and the three ST language direc-
tions, split according to the mentioned threshold of
frequency in the training set. On average, names
occurring at least 3 times in the training set are
correctly generated in slightly more than 50% of
the cases, a much larger value compared to those
with less than 3 occurrences.

All Freq.>=3 Freq.<3
ASR 38.46 55.81 4.55
en-fr 28.69 45.45 0.00
en-es 35.29 53.57 19.05
en-it 29.70 46.77 2.56
Average | 33.04 50.40 6.54

Table 1: Token-level accuracy of person names divided
into two groups according to their frequency in the train-
ing set for ASR and ST (en—es/ft/it) systems.

The other nodes of the classification tree contain
less interpretable criteria, which can be considered
as spurious cues. For instance, at the second level
of the tree, a splitting criterion is “is the speaker
from Denmark?” because the only talk by a Danish
speaker contains a mention to Kolarska-Bobinska
that systems were not able to correctly generate.

We hence decided to perform further dedicated
experiments to better understand the role of the the
other two factors: referent and speaker nationality.

3.3 The Role of Referent Nationality

Humans often struggle to understand names belong-
ing to languages that are different from their native
one or from those they know. Moreover, upon man-
ual inspection of the system outputs, we observed
that some names were Englishized (e.g. Youngsen
instead of Jensen). In light of this, we posit that
a system trained to recognize English sounds and
to learn English phoneme-to-grapheme mappings
might be inadequate to handle non-English names.

We first validate this idea by computing the ac-
curacy for names of people from the United King-
dom® (‘UK” henceforth) and for names of people

SWe are aware that our annotation is potentially subject to
noise, due to the possible presence of UK citizens with non-
anglophone names. A thorough study on the best strategies



Referent | ASR  en-fr en-es en-it Freq.
UK 5238 59.09 63.16 41.18 46.21
non-UK | 3578 22.00 30.00 27.38 21.96
All 38.46 28.69 3529 29.70 25.65

Table 2: Token-level accuracy of ASR and ST (en-fr,
en-es, en-it) systems for UK/non-UK referents.

from the rest of the World (“non-UK”). Looking
at Table 2, we notice that our assumption seems
to hold for both ASR and ST. However, the scores
correlate with the frequency (Freq.) of names in
the training set® as, on average, UK referents have
more than twice the occurrences (46.21) of non-
UK referents (21.96). The higher scores for UK
referents may hence depend on this second factor.
To disentangle the two factors and isolate the
impact of referents’ nationality, we create a train-
ing set with balanced average frequency for UK
and non-UK people by filtering out a subset of
the instances containing UK names from the origi-
nal training set.? To ensure that our results are not
due to a particular filtering method, we randomly
choose the instances to remove and run the experi-
ments on three different filtered training sets. The
results for the three ST language pairs and ASR
(see Table 3) confirm the presence of a large ac-
curacy gap between UK and non-UK names (9.22
on average), meaning that the accuracy on non-UK
names (23.62) is on average ~30% lower than the
accuracy on UK names (32.84). As in this case
we can rule out any bias in the results due to the
frequency in the training set, we can state that the
nationality of the referent is an important factor.

ASR en-fr en-es en-it Avg.
UK 42.86 25776 33.33 2941 32.84
non-UK 29.05 22.67 2333 1944 2362
AAccuracy | 13.81 3.09 10.00 9.97 9.22

Table 3: Token-level accuracy of UK/non-UK referents
averaged over three runs with balanced training sets.

3.4 The Role of Speaker Nationality

Another factor likely to influence the correct un-
derstanding of person names from speech is the
speaker accent. To verify its impact, we follow a
similar procedure to that of the previous section.

to maximise the accuracy of UK/non-UK label assignment
is a task per se, out of the scope of this work. By now, as a
manual inspection of the names revealed no such cases in our
data, we believe that the few possible wrong assignments do
not undermine our experiments, nor the reported findings.
®Notice that the ASR and the ST training sets mostly con-
tain the same data, so frequencies are similar in the four cases.
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First, we check whether the overall accuracy is
higher for names uttered by UK speakers than for
those uttered by non-UK speakers. Then, to ascer-
tain whether the results depend on the proportion
of UK/non-UK speakers, we randomly create three
training sets featuring a balanced average frequency
of speakers from the two groups.

Speaker | ASR en-fr en-es en-it Freq.
UK 41.03 3243 36.84 2941 34.55
non-UK | 37.36 27.06 34.57 2985 21.76
All 3846 28.69 3529 29.70 25.65

Table 4: Token-level accuracy of ASR and ST systems
for names uttered by UK/non-UK speakers.

Table 4 shows the overall results split according
to the two groups of speaker nationalities. In this
case, the accuracy gap is minimal (the maximum
gap is 5.37 for en-fr, while it is even negative for en-
it), suggesting that the speaker accent has marginal
influence, if any, on how ASR and ST systems
handle person names.

The experiments on balanced training sets (see
Table 5) confirm the above results, with an aver-
age accuracy difference of 2.78 for ASR and the
three ST language directions. In light of this, we
can conclude that, differently from the other two
factors, speakers’ nationality has negligible effects
on ASR/ST performance on person names.

Speaker ASR en-fr en-es en-it Avg.
UK 2991 29.73 2895 23.53 28.03
non-UK 3333 22775 2551 1940 25.25
AAccuracy | -3.42  6.98 3.43 4.13 2.78

Table 5: Token-level accuracy of person names uttered
by UK/non-UK speakers averaged over three runs with
balanced training sets.

4 Improving Person Name Translation

The previous section has uncovered that only two
of the three considered factors actually have a tan-
gible impact: the frequency in the training set, and
the referent nationality. The first issue can be tack-
led either by collecting more data, or by generating
synthetic instances (Alves et al., 2020; Zheng et al.,
2021). Fine-tuning the model on additional ma-
terial is usually a viable solution in the use case
of assisting interpreters since, during their prepa-
ration phase, they have access to various sources
of information (Diaz-Galaz et al., 2015), including
recordings of previous related sessions. Focusing
on the second issue, we hereby explore i) the cre-



Monolingual Multilingual
ASR en-fr en-es  en-it ASR en-fr en-es  en-it
WER (|) BLEU (1) WER () BLEU (1)
Europarl-ST 13.65 3242 3411 2572 13.29 3392 3559 26.55
MuST-C 11.17 32.81 27.18 2281 11.86 3334 2772 23.02
Token-level Person Name Accuracy (1) Avg. A

Overall 38.46 28.69 3529 29.70 46.15 38.52 4454 36.63 +8.43
UK 52.38 59.09 63.16 41.18 66.67 59.09 63.16 5294 +6.51
non-UK 35.78 22.00 30.00 27.38 42.20 34.00 41.00 3333 +8.84

Table 6: Transcription/translation quality measured respectively with WER and SacreBLEU’ (Post, 2018) and
token-level person name accuracy, both overall and divided into UK/non-UK referents. Avg. A indicates the
difference between multilingual and monolingual systems averaged over the ASR and the three ST directions.

ation of models that are more robust to a wider
range of phonetic features and hence to names of
different nationalities (§4.1), and ii) the design of
solutions to close the gap between ASR and ST sys-
tems attested by previous work (Gaido et al., 2021)
and confirmed by our preliminary results shown in
Table 1 (§4.2).

4.1 Increasing Robustness to non-UK
Referents

As illustrated in §3.3, one cause of failure of our
ASR/ST models trained on English audio is the ten-
dency to force every sound to an English-like word,
distorting person names from other languages. Con-
sequently, we posit that a multilingual system,
trained to recognize and translate speech in dif-
ferent languages, might be more robust and, in turn,
achieve better performance on non-English names.

We test this hypothesis by training multilin-
gual ASR and ST models that are fed with audio
in different languages, and respectively produce
transcripts and translations (into French, Italian,
or Spanish in our case). The ST training data
(*—es/fr/it) consists of the en—es/fr/it sections
of MuST-C and the {nl, de, en, es, fr, it, pl, pt,
ro } —es/fr/it sections of Europarl-ST. Notice that,
in this scenario, the English source audio consti-
tutes more than 80% of the total training data, as
MuST-C is considerably bigger than Europarl-ST
and the English speeches in Europarl-ST are about
4 times those in the other languages.® For ASR, we
use the audio-transcript pairs of the *-it training set
defined above. Complete details on our experimen-
tal settings are provided in the Appendix.’*

We analyze the effect of including additional
languages both in terms of general quality (mea-
sured as WER for ASR, and BLEU for ST) and

7BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.0

8For instance, in *-fr the training set amounts to 671 hours
of audio, 573 (i.e. 83%) having English audio.
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in terms of person name transcription/translation
accuracy. Looking at the first two rows of Table
6, we notice that the improvements in terms of
generic translation quality (BLEU) are higher on
the Europarl-ST than on the MuST-C test set — most
likely because the additional data belongs to the
Europarl domain — while in terms of speech recog-
nition (WER) there is a small improvement for
Europarl-ST and a small loss for MuST-C. Turning
to person names (third line of the table), the gains
of the multilingual models (+8.43 accuracy on av-
erage) are higher and consistent between ASR and
the ST language pairs.

By dividing the person names into the two cat-
egories discussed in §3.3 — UK and non-UK ref-
erents — the results become less consistent across
language pairs. On ST into French and Spanish,
the accuracy of UK names remains constant, while
there are significant gains (respectively +12 and
+11) for non-UK names. These improvements
seem to support the intuition that models trained on
more languages learn a wider range phoneme-to-
grapheme mappings and so are able to better handle
non-English names. However, the results for ASR
and for ST into Italian seemingly contradict our hy-
pothesis, as they show higher improvements for UK
names (~11-14) than for non-UK names (~6-7).

We investigate this behavior by further divid-
ing the non-UK group into two sub-categories: the
names of referents whose native language is in-
cluded in the training set (“in-train” henceforth),
and those of referents whose native language is not
included in the training set (“out-of-train”). For
in-train non-UK names, the monolingual ASR ac-
curacy is 33.33 and is outperformed by the multilin-
gual counterpart by 16.66, i.e. by a margin higher
than that for UK names (14.29). For the out-of-
train names, instead, the gap between the mono-
lingual ASR accuracy (36.71) and the multilingual
ASR accuracy (39.24) is marginal (2.5). Similarly,



Model ‘ WER ({) BLEU (1) H Person Accuracy
ASR en-es en-fr en-it ASR en-es enfr en-it STAvg. ASR-ST
Base 13.29 3586 3399 2680 || 46.15 4454 3852 36.63 39.90 6.25
Triangle 14.25 37.42 3544 2820 || 4231 4370 41.80 41.58 42.36 -0.05
Aasr=0.8, As7=0.2 13.75 3648 3485 2730 || 47.69 4454 4344 5050 @ 46.16 1.53

Table 7: WER (for ASR), SacreBLEU (for ST), and token-level person name accuracy computed on the NEuRoparl-
ST test set. For triangle models, ASR scores are computed on the transcript output of the *-it model, as throughout
the paper we evaluate ASR on the English transcript of the en-it section. ST Avg. is the the average accuracy on the
3 language pairs (en—>es,fr,it) and ASR-ST is the difference between the ASR and the average ST accuracy.

for ST into Italian the in-train group accuracy im-
proves by 8.70 (from 34.78 to 43.48), while the
out-of-train group accuracy has a smaller gain of
4.92 (from 24.59 to 29.51). These results indicate
that adding a language to the training data helps the
correct handling of person names belonging to that
language, even when translating/transcribing from
another language. Further evidence is exposed in
85, where we analyse the errors made by our sys-
tems and how their distribution changes between a
monolingual and a multilingual one.

4.2 Closing the Gap Between ASR and ST

The previous results — in line with those of Gaido
et al. (2021) — reveal a gap between ASR and
ST systems, although their task is similar when
it comes to person names. Indeed, both ASR and
ST have to recognize the names from the speech,
and produce them as-is in the output. Contextually,
Gaido et al. (2021) showed that neural MT models
are good at “copying” from the source or, in other
words, at estimating p(Y'|T) — where Y is the tar-
get sentence and 7' is the textual source sentence
—when Y and T are the same string. Hence, we
hypothesize that an ST model can close the per-
formance gap with the ASR by conditioning the
target prediction not only on the input audio, but
also on the generated transcript. Formally, this
means estimating p(Y'|X,T"), where T” denotes
a representation of the generated transcript, such
as the embeddings used to predict them; and this
estimation is what the triangle architecture (Anas-
tasopoulos and Chiang, 2018) actually does.

The triangle model is composed of a single en-
coder, whose output is attended by two decoders
that respectively generate the transcript (ASR de-
coder) and the translation (ST decoder). The ST
decoder also attends to the output embeddings (i.e.
the internal representation before the final linear
layer mapping to the output vocabulary dimension
and softmax) of the ASR decoder in all its layers.
In particular, the output of the cross-attention on
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the encoder output and the cross-attention on the
ASR decoder output are concatenated and fed to a
linear layer. The model is optimized with a multi-
loss objective function, defined as follows:

LX) == > (Aasax Y logpa(tila, tinn,..0))
rzeX teTy
+ Ast * Z log(po (yi|z, T, yi-1,..., 0)))

yeYy

where T’ is the target transcript, Y is the target
translation, and x is the input utterance. A 4sr and
AgT are two hyperparameters aimed at controlling
the relative importance of the two tasks. Previ-
ous works commonly set them to 0.5, giving equal
importance to the two tasks (Anastasopoulos and
Chiang, 2018; Sperber et al., 2020). To the best of
our knowledge, ours is the first attempt to inspect
performance variations in the setting of these two
parameters, calibrating them towards the specific
needs arising from our application scenario.

In Table 7, we compare the multilingual models
introduced in §4.1 with triangle ST multilingual
models trained on the same data (second row). Al-
though the transcripts are less accurate (about +1
WER), the translations have higher quality (+1.4-
1.6 BLEU on the three language pairs). Person
names follow a similar trend: in the transcript the
accuracy is lower (-3.84), while in ST it increases
(on average +2.46). Interestingly, the accuracy
gap between ASR and ST is closed by the triangle
model (see the ASR-ST column), confirming our
assumption that neural models are good at copying.
However, due to the lower ASR accuracy (42.31),
the ST accuracy (42.36) does not reach that of the
base ASR model (46.15). The reason of this drop
can be found in the different kind of information
required by the ASR and ST tasks. Chuang et al.
(2020) showed that the semantic content of the ut-
terance is more important for ST, and that joint
ASR/ST training leads the model to focus more
on the semantic content of the utterance, yielding
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Figure 1: Correct person names and the categories of errors of the baseline and multilingual ASR systems.

BLEU gains at the expense of higher WER. As per-
son names are usually close in the semantic space
(Das et al., 2017), the higher focus on semantic con-
tent may be detrimental to their correct handling
and hence explain the lower person name accuracy.

In light of this observation, we experimented
with changing the weights of the losses in the tri-
angle training, assigning higher importance to the
ASR loss (third row of Table 7). In this configu-
ration, as expected, transcription quality increases
(-0.5 WER) at the expense of translation quality,
which decreases (-0.8 BLEU on average) but re-
mains higher than that of the base model. The accu-
racy of person names follows the trend of transcrip-
tion quality: the average accuracy on ST (46.16)
increases by 3.8 points over the base triangle model
(42.36), becoming almost identical to that of the
base ASR model (46.15). All in all, our solution
achieves the same person name accuracy of an ASR
base model without sacrificing translation quality
compared to a base ST system.

5 Error Analysis

While the goal is the correct rendering of person
names, not all the errors have the same weight. For
interpreters, for instance, minor misspellings of a
name may not be problematic, an omission can be
seen as a lack of help, but the generation of a wrong
name is harmful, as potentially distracting and/or
confusing. To delve into these aspects, we first
carried out a manual analysis on the ASR outputs
(85.1) and then compared the findings with the
same analysis on ST outputs (§5.2).

5.1 ASR Analysis

Two authors with at least C1 English knowledge
and linguistic background annotated each error as-
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signing it to a category.” The categories, chosen
by analysing the system outputs, are: misspelling —
when a person name contains minor errors leading
to similar pronunciation (e.g. Kozulin instead of
Kazulin); replacement with a different name —
when a person name is replaced with a completely
different one in terms of spelling and/or pronuncia-
tion (e.g. Mr Muhammadi instead of Mr Allister);
replacement with other words — when a proper
person name is replaced by a common noun, other
parts of speech, and/or proper nouns that do not
refer to people, such as geographical names (e.g.
English Tibetan core instead of Ingrid Betancourt)
omission — when a person name, or part of a sen-
tence containing it, is ignored by the system.

The results of the annotations are summarized
in the graphs in Figure 1. Looking at the baseline
system (Figure 1a), we notice that omissions and
replacements with a different name are the most
common errors, closely followed by replacements
with other words, although for non-UK names the
number of misspellings is also significant. The mul-
tilingual system (Figure 1b) does not only show a
higher percentage of correct names, but also a dif-
ferent distribution of errors, in particular for the
names belonging to the languages added to the
training set (non-UK in train). Indeed, the mis-
spellings increase to the detriment of omissions
and replacements with a different name and other
words. Omissions also decrease for UK names and
for names in languages not included in the train-
ing set (non-UK not in train). For UK names, the
previously-missing names fall either into the cor-
rect names or into the replacements with a different
name; for the non-UK not in train, instead, they are

°The inter-annotator agreement on label assignments was
calculated using the kappa coefficient in Scott’s 7 formula-
tion (Scott, 1955; Artstein and Poesio, 2008), and resulted

in 87.5%, which means “almost perfect” agreement in the
standard interpretation (Landis and Koch, 1977).
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Figure 2: Correct person names and the categories of errors of the baseline and multilingual ST-into-Italian systems.
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Figure 3: Correct person names and the different cat-
egories of errors of the ST-into-Italian triangle system
with A 45r=0.8, As7=0.2 expressed in percentages.

replaced by different names or other words.

Considering multilingual outputs, we observe
that for the languages in the training set (including
English), in 66% of the cases the system gener-
ates a name that could be helpful for an interpreter
(either correct or with minor misspellings). Con-
fusing/distracting outputs (i.e. replacements with a
different person name) occur in about 15% of the
cases. Future work should precisely assess whether
these scores are sufficient to help interpreters in
their job, or which level of accuracy is needed.

Moreover, we notice that the system is able to
discern when a person name should be generated
(either correct, misspelled, or replaced by a differ-
ent name) in more than 80% of the cases. This
indicates their overall good capability to recognize
patterns and/or appropriate contexts in which a per-
son name should occur.

5.2 ST Analysis

The same analysis was carried out for ST systems
translating into Italian (see Figure 2) by two na-
tive speakers, co-authors of this paper. Although
results are lower in general, when moving from the
monolingual (Figure 2a) to the multilingual (Fig-
ure 2b) system we can see similar trends to ASR,
with the number of omissions and replacements
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with a different name that decreases in favor of a
higher number of correct names and misspellings.
Looking at the analysis of the triangle model with
Aasr=0.8, A\g7=0.2 presented in §4.2 (Figure 3),
we observe that misspellings, omissions, and re-
placements with other words diminish, while cor-
rect names increase. Moreover, both the accuracy
(i.e. correct in the graphs) and the error distri-
butions of this system are similar to those of the
ASR multilingual model (Figure 1b). On one side,
this brings to similar conclusions, i.e. ST models
can support interpreters in ~66% of the cases, and
can discern when a person name is required in the
translation in ~80% of the cases. On the other,
it confirms that the gap with the ASR system is
closed, as observed in §4.2.

6 Conclusions

Humans and machines have different strengths and
weaknesses. Nonetheless, we have shown that
when it comes to person names in speech, they
both struggle in handling names in languages they
do not know and names that they are not used to
hear. This finding seems to insinuate that humans
cannot expect help from machines in this regard,
but we demonstrated that there is hope, moving the
first steps toward ST systems that can better handle
person names. Indeed, since machines are faster
learners than humans, we can train them on more
data and more languages. Moreover, we can design
dedicated architectural solutions aimed to add an
inductive bias and to improve the ability to handle
specific elements. Along this line of research, we
have shown that a multilingual ST model, which
jointly predicts the transcript and conditions the
translation on it, has relative improvements in per-
son name accuracy by 48% on average. We also
acknowledge that much work is still needed in this
area, with large margin of improvements available,



especially to avoid the two most common type of
errors pointed out by our analysis: omissions and
replacements with different person names.
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mediate dimension of the feed forward networks,
and 8 heads. In the case of the triangle model, we
keep the same settings and the configurations are
the same for the two decoders. The number of pa-
rameters is ~74M for the base system and ~117M
for the triangle model.

We filter out samples whose audio segment lasts
more than 30s, extract 80 features from audio seg-
ments, normalize them at utterance level, and apply
SpecAugment (Park et al., 2019). The target text
is segmented into BPE (Sennrich et al., 2016) sub-
words using 8,000 merge rules (Di Gangi et al.,
2020) with SentencePience (Kudo and Richardson,
2018).

Models are optimized with Adam (Kingma and
Ba, 2015) to minimize the label smoothed cross
entropy (Szegedy et al., 2016). The learning rate
increases up to le-3 for 10,000 warm-up updates,
then decreases with an inverse square-root sched-
uler. We train on 4 K80 GPUs with 12GB of RAM,



using mini-batches containing 5,000 tokens, and
accumulating the gradient for 16 mini-batches. We
average 5 checkpoints around the best on the val-
idation loss. All trainings last ~4 days for the
multilingual systems, and ~3 days for the base
system.
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Abstract

As the amount of audio-visual content in-
creases, the need to develop automatic cap-
tioning and subtitling solutions to match the
expectations of a growing international au-
dience appears as the only viable way to
boost throughput and lower the related post-
production costs. Automatic captioning and
subtitling often need to be tightly intertwined
to achieve an appropriate level of consistency
and synchronization with each other and with
the video signal. In this work, we assess a
dual decoding scheme to achieve a strong cou-
pling between these two tasks and show how
adequacy and consistency are increased, with
virtually no additional cost in terms of model
size and training complexity.

1 Introduction

As the amount of online audio-visual content con-
tinues to grow, the need for captions and subtitles'
in multiple languages also steadily increases, as it
widens the potential audience of these contents.

ONONON®
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Figure 1: A graphical view of various captioning and
subtitling strategies. T refers to transcripts. C and S
respectively denote captions and subtitles.

"We use ‘caption’ to refer to a text written in the same
language as the audio and ‘subtitle’ when translated into an-
other language. Captions, which are often meant for viewers
with hearing difficulties, and subtitles, which are produced for
viewers with an imperfect command of the source language,
may have slightly different traits, that we ignore here.
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Both activities are closely related: human sub-
title translators often generate subtitles directly
based on the original captions without viewing or
listening to the original audio/video file. This strat-
egy however runs the risk of amplifying, in the
subtitle approximations, simplifications or errors
present in the captioning. It may even happen that
both texts need to be simultaneously displayed on
screen: for instance, in countries with several offi-
cial languages, or to help foreign language learners.
This means that captions and subtitles need to be
consistent not only with the video content, but also
with each other. It also implies that they should
be synchronized (Karakanta et al., 2021). Finally,
even in scenarios where only subtitles would be
needed, generating captions at the same time may
still help to better check the correctness of subtitles.

Early approaches to automatic subtitling (e.g.
Piperidis et al., 2004) also assumed a pipeline ar-
chitecture (Figure 1 (b)), where subtitles are trans-
lated from captions derived from automatic speech
transcripts. A recent alternative (Figure 1 (a)),
which mitigates cascading errors, is to indepen-
dently perform captioning and subtitling in an end-
to-end manner (Liu et al., 2020; Karakanta et al.,
2020a); the risk however is to generate inconsisten-
cies (both in alignment and content) between the
two textual streams. This approach might also be
limited by the lack of appropriate training resources
(Sperber and Paulik, 2020). Various ways to further
strengthen the interactions between these tasks by
sharing parameters or loss terms are evaluated by
Sperber et al. (2020). Figure 1 (c) illustrates these
approaches.

In this work, we explore an even tighter inte-
gration consisting of simultaneously generating
both captions and subtitles from automatic speech
recognition (ASR) transcripts using one single dual
decoding process (Zhou et al., 2019; Wang et al.,
2019; Le et al., 2020; He et al., 2021; Xu and Yvon,
2021), illustrated in Figure 1 (d). Generally speak-
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Transcript
us regenerate
Caption
help us regenerate. [eob]
Subtitle

nous aider a guérir. [eob]

i ’'m combining specific types of signals the mimic how our body response to in an injury to help
I’m combining specific types of signals [eob] that mimic how our body responds to injury [eol] to

Je combine différents types de signaux [eob] qui imitent la réponse du corps [eol] aux blessures pour

Table 1: Example of a triplet (transcript, caption, subtitle) from our tri-parallel data. Differences between transcript

and caption are in bold.

ing, automatically turning ASR transcripts into
full-fledged captions involves multiple changes,
depending on the specification of the captioning
task. In our case, this transformation comprises
four main aspects: segmentation for display (via
tag insertion), removal of certain features from spo-
ken language (eg. fillers, repetitions or hesitations),
ASR errors correction, and punctuation prediction.
The transcript-to-subtitle task involves the same
transformations, with an additional translation step
to produce text in another language. Table 1 il-
lustrates the various transformations that occur be-
tween input transcripts and the corresponding out-
put segments.

As our experiments suggest, a tighter integration
not only improves the quality and the consistency
of captions and subtitles, but it also enables a better
use of all available data, with hardly any impact
on model size or training complexity. Our main
contributions are the following: (i) we show that
simultaneously generating captions and subtitles
can improve performance in both languages, report-
ing significant improvements in BLEU score with
respect to several baselines; (ii) we initialize dual
decoder from a standard encoder-decoder model
trained with large scale data, thereby mitigating
the data scarcity problem; (iii) we explore a new
parameter sharing scheme, where the two decoders
share all their parameters, and achieve comparable
performance at a much reduced model size in our
experimental conditions; (iv) using 2-round decod-
ing, we show how to alleviate the exposure bias
problem observed in dual decoding, leading to a
clear boost in performance.

2 Dual Decoding

2.1 Model

In a nutshell, dual decoding aims to generate two
output sentences e' and e? for each input sentence
f. This means that instead of having two indepen-
dent models (Eq. (1)), the generation of each target
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is influenced by the other output (Eq. (2)):

T
P(e',e?[f) = [ [ Plef|f.eL,)P(ef|f, e2,) (1)
t=1

T
P(e', e’[f) = HP(eilfaeit»eit)X
t=1
P(e?’fv el<t7e2<t

); 2

where T' = max(|e!], [e?]).

In our experiments, ASR transcripts are consid-
ered as the source language while captions and
subtitles are the two target languages (Wang et al.,
2019; He et al., 2021; Xu and Yvon, 2021). The
dual decoder model has also been proposed in sev-
eral application scenarios other than multi-target
translation such as bi-directional translation (Zhou
et al., 2019; Zhang et al., 2020a; He et al., 2021),
and also to simultaneously generate transcripts and
translations from the audio source (Le et al., 2020).

To implement the interaction between the two
decoders, we mostly follow Le et al. (2020) and
Xu and Yvon (2021) who add a decoder cross-
attention layer in each decoder block, so that the
hidden states of previous layers of each decoder
H ll and H l2 can attend to each other. The decoder
cross-attention layers take the form:?

Hll+1 = Attention(H}, H?, H?)
H12+1 = Attention(HIZ, Hll7 Hll)

Both decoders are thus fully synchronous since
each requires the hidden states of the other to com-
pute its own hidden states.

2.2 Sharing Decoders

One weakness of the dual decoder model is that
it contains two separate decoders, yielding an in-
creased number of parameters (x 1.6 in our models
w.r.t. standard translation models). Inspired by

*We define the Attention(Q,K,V) function as in

(Vaswani et al., 2017) as a function of three arguments stand-
ing respectively for Query, Key and Value.



the idea of tying parameters in embedding matrices
(Inan et al., 2017; Press and Wolf, 2017), we extend
the dual decoder model by sharing all the parame-
ters matrices in the two decoders: in this way, the
total number of parameters remains close to that of
a standard translation model (x1.1), since the only
increase comes from the additional decoder cross-
attention layer. When implementing inference with
this multilingual shared decoder, we prefix each
target sentence with a tag indicating the intended
output (captioning or subtitling).

2.3 Training and Fine-tuning

The dual decoder model is trained using a joint loss
combining the log-likelihood of the two targets:

le'|

L(0) = > (> log P(eflel,, e, f;0)
D t=1
e?|
+ Z log P(e}le2,, el £;0)),
t=1

where 6 represents the set of parameters. Training
this model requires triplets of instances associating
one source with two targets. Such resources are dif-
ficult to find and the largest tri-parallel open source
corpus we know of is the MuST-Cinema dataset
(Karakanta et al., 2020b), which is clearly smaller
than what exists to separately train automatic tran-
scription or translation systems.

In order to leverage large scale parallel trans-
lation data for English-French, we adopt a fine-
tuning strategy where we initially pre-train a stan-
dard (encoder-decoder) translation model using all
available resources, which serves to initialize the
parameters of our dual decoder model. As the dual
decoder network employs two decoders with shared
parameters, we use also the decoder of the pre-
trained model to initialize this subnetwork. Fine-
tuning is performed on a tri-parallel corpus. We
discuss the effect of decoder initialization in Sec-
tion 3.4.1. Finally, for all fine-tuned models, the
decoder cross-attention layer which binds the two
decoders together is always randomly initialized.

3 Experiments

3.1 Datasets and Resources

For our experiments, we use MuST-Cinema’
(Karakanta et al., 2020b), a multilingual Speech-
to-Subtitles corpus compiled from TED talks, in

*https://ict.fbk.eu/must-cinema/
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which subtitles contain additional segmentation
tags indicating changes of screen ([eob]) or line
([eol]). Our experiments consider the transla-
tion from English (EN) into French (FR). Our tri-
parallel data also includes a pre-existing unpunc-
tuated ASR output generated by Karakanta et al.
(2020a), which achieves a WER score of 39.2% on
the MuST-Cinema test set speech transcripts (de-
tails in Appendix A). For pre-training, we use all
available WMT14 EN-FR data. During fine-tuning,
we follow the recommendations and procedures of
Zhou et al. (2019); Wang et al. (2019); He et al.
(2021); Xu and Yvon (2021), and use synthetic
tri-parallel data, in which we alternatively replace
one of the two target side references by hypotheses
generated from the baseline system for the corre-
sponding direction via forward-translation. For
more details about synthetic tri-parallel data gener-
ation, we refer to (Zhou et al., 2019; Xu and Yvon,
2021). We tokenize all data with Moses scripts and
use a shared source-target vocabulary of 32K Byte
Pair Encoding units (Sennrich et al., 2016) learned
with subword-nmt .*

3.2 Experimental Settings

We implement the dual decoder model based on
the Transformer (Vaswani et al., 2017) model us-
ing fairseq’ (Ottet al., 2019).% All models are
trained until no improvement is found for 4 con-
secutive checkpoints on the development set, ex-
cept for the EN—FR pre-trained translation model
which is trained during 300k iterations (further de-
tails in Appendix B). We mainly measure perfor-
mance with SacreBLEU (Post, 2018);’ TER and
BERTScores (Zhang et al., 2020b) are also reported
in Appendix D. Segmentation tags in subtitles are
taken into account and BLEU scores are computed
over full sentences. In addition to BLEU score,
measuring the consistency between captions and
subtitles is also an important aspect. We reuse the
structural and lexical consistency score proposed
by Karakanta et al. (2021). Structural consistency
measures the percentage of utterances having the
same number of blocks in both languages, while
lexical scores count the proportion of words in the
two languages that are aligned in the same block
*https://github.com/rsennrich/
subword—-nmt
Shttps://github.com/pytorch/fairseq
®Our implementation is open-sourced at https://
github.com/jitao-xu/dual-decoding

"BLEU+case.mixed+numrefs. 1 +smooth.exp+tok.13a+
version.1.5.1



(refer to Appendix C for additional details).

We call the dual decoder model dual. Baseline
translation models trained separately on each direc-
tion (Ten—Cen, Ten—Sg) are denoted by base.
To study the effectiveness of dual decoding, we
mainly compare dual with a pipeline system.
The latter uses the base model to produce cap-
tions which are then translated into subtitles using
an independent system trained to translate from
caption to subtitle (Tep—>Cen—>Styr).

Like the dual model, base and pipeline
systems also benefit from pre-training. For the
former, we pre-train the direct transcript-to-subtitle
translation model (To,—S¢); for pipeline, the
caption-to-subtitle model (Cop,—Sy;) is pre-trained,
while the first step (Ten—Cen) remains as in the
base system. Note that all fine-tuned systems
start with the same model pre-trained using WMT
EN-FR data.

3.3 Main Results

BLEU Consistency
Model EN FR Avg | Struct. Lex.
base 55.7 239 39.8| 553 70.7
base +FT 55.7 249 403 | 545 714
pipeline 55.7 23.6 39.7| 957 96.0
pipeline +FT | 557 242 400 | 984 983
dual +FT 569 256 413 | 651 79.1
share +FT 56.5 25.8 412 | 66.7 80.0

Table 2: BLEU scores for captions (EN) and subti-
tles (FR), with measures of structural and lexical con-
sistency between the two hypotheses. These scores
are in percentage (higher is better). The base and
pipeline settings are trained from scratch with origi-
nal data. share refers to tying all decoder parameters.

We only report in Table 2 the performance of
the two baselines and fine-tuned (+FT) models,
as our preliminary experiments showed that train-
ing the dual decoder model with only tri-parallel
data was not optimal. The BLEU score of the do
nothing baseline, which copies the source ASR
transcripts to the output, is 28.0, which suggests
that the captioning task actually involves much
more transformations than simply inserting seg-
mentation tags. We see that fine-tuning improves
subtitles generated by base and pipeline sys-
tems by ~1 BLEU. Our dual decoder model, after
fine-tuned using synthetic tri-parallel data, respec-
tively outperforms base+FT by 0.7 BLEU, and
pipeline+FT by 1.4 BLEU. Sharing all parame-
ters of both decoders yields further increase of 0.2
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BLEU, with about one third less parameters.

We also measure the structural and lexical con-
sistency between captions and subtitles gener-
ated by our systems (see Table 2). As expected,
pipeline settings always generate very consis-
tent pairs of captions and subtitles, as subtitles are
direct translations of the captions; all other meth-
ods generate both outputs from the ASR transcripts.
dual models do not perform as well, but are still
able to generate captions and subtitles with a much
higher structural and lexical consistency between
the two outputs than in the base systems. Xu and
Yvon (2021) show that dual decoder models gener-
ate translations that are more consistent in content.
We further show here that our dual models gener-
ates hypotheses which are also more consistent in
structure. Examples output captions and subtitles
are in Appendix E.

3.4 Analyses and Discussions
3.4.1 The Effect of Fine-tuning

As the pre-trained uni-directional translation model
has never seen sentences in the source language on
the target side, we first only use it to initialize the
subtitling decoder, and use a random initialization
for the captioning decoder. To study the effect of
initialization, we conduct an ablation study by com-
paring three settings: initializing only the subtitling
decoder, both decoders or the shared decoder (see
Table 3). Initializing both decoders brings improve-
ments in both directions, with a gain of 1.6 BLEU
for captioning and 0.3 BLEU for subtitling. More-
over, sharing parameters between decoders further
boost the subtitling performance by 0.2 BLEU. As
it seems, the captioning decoder also benefits from
a decoder pre-trained in another language.

Model EN FR Awg
dual 1-decoder +FT | 55.3 253 40.3
dual +FT 569 25.6 413
share +FT 56.5 258 412

Table 3: BLEU scores for multiple initializations.

3.4.2 Exposure Bias

Due to error accumulations in both decoders, the
exposure bias problem seems more severe for dual
decoder model than for regular translation models
(Zhou et al., 2019; Zhang et al., 2020a; Xu and
Yvon, 2021). These authors propose to use pseudo
tri-parallel data with synthetic references to allevi-
ate this problem. We analyze the influence of this



exposure bias issue in our application scenario.

To this end, we compare fine-tuning the dual
model with original vs artificial tri-parallel data.
For simplicity, we only report in Table 4 the av-
erage BLEU scores of captioning and subtitling.
Results show that fine-tuning with the original data
(w.real) strongly degrades the automatic metrics for
the generated text , resulting in performance that
are worse than the baseline.

Model Normal 2-round Ref
dual +FT w.real 39.2 40.9 45.0
share +FT w.real 38.6 40.1 439
dual +FT 41.3 41.2 41.0
share +FT 41.2 40.9 40.5

Table 4: Performance of various decoding methods. All
BLEU scores are averaged over the two outputs. 2-
round (resp. Ref) refers to decoding with model pre-
dictions (resp. references) as forced prefix in one direc-
tion.

In another set of experiments, we follow Xu and
Yvon (2021) and perform asynchronous 2-round
decoding. We first decode the dual models to ob-
tain hypotheses in both languages €/ and €),. Dur-
ing the second decoding round, we use the output
English caption €} as a forced prefix when gen-
erating the French subtitles €. The final English
caption €/ is obtained similarly. Note that when
generating the ¢-th token in €7, the decoder cross-
attention module only attends to the ¢ first tokens
of €/, even though the full of € is actually known.
The 2-round scores for €] and € are in Table 4,
and compared with the optimal situation where
we use references instead of model predictions as
forced prefix in the second round (in col. ‘Ref”).

Results in Table 4 suggest that dual decoder mod-
els fine-tuned with original data (w.real) are quite
sensible to exposure bias, which can be mitigated
with artificial tri-parallel data. Their performance
can however be improved by ~1.5 BLEU when
using 2-round decoding, thereby almost closing the
initial gap with models using synthetic data. The
latter approach is overall slightly better and also
more stable across decoding configurations.

4 Conclusion

In this paper, we have explored dual decoding to
jointly generate captions and subtitles from ASR
transcripts. Experimentally, we found that dual
decoding improves translation quality for both cap-
tioning and subtitling, while delivering more con-
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sistent output pairs. Additionally, we showed that
(a) model sharing on the decoder side is viable
and effective, at least for related languages; (b) ini-
tializing with pre-trained models vastly improves
performance; (c) 2-round decoding allowed us to
mitigate the exposure bias problem in our model.
In the future, we would like to experiment on more
distant language pairs to validate our approach in a
more general scenario.
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A Data Processing Details

For the English to French language pair, MuST-
Cinema® (Karakanta et al., 2020b) contains 275k
sentences for training and 1079 and 544 lines for
development and testing, respectively. The ASR
system used by Karakanta et al. (2020a) to produce
transcripts was based on the KALDI toolkit (Povey
et al., 2011), and had been trained on the clean
portion of LibriSpeech (Panayotov et al., 2015)
(~460h) and a subset of MuST-Cinema (~450h).
In order to emulate a real production scenario, we
segment these transcripts as if they were from an
ASR system performing segmentation based on
prosody. As this kind of system tends to produce
longer sequences compared to typical written text
(Cho et al., 2012), we randomly concatenate the En-
glish captions into longer sequences, to which we
align the ASR transcripts using the conventional
edit distance, thus adding a subsegmentation as-
pect to the translation task. Edit distance computa-
tions are based on a Weighted Finite-State Trans-
ducer (WSFT), implemented with Pynini (Gorman,
2016), which represents editing operations (match,
insertion, deletion, replacement) at the character
level, with weights depending on the characters
and the previous operation context. After compos-
ing the edit WFST with the transcript string and

8 icense: CC BY-NC-ND 4.0
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the caption string, the optimal operation sequence
is computed using a shortest-distance algorithm
(Mohri, 2002). The number of sentences to be
concatenated is sampled normally, with an aver-
age around of 2. This process results in 133k, 499
and 255 lines for training, development and testing,
respectively.

For pre-training, we use all available WMT14
EN-FR data,’ in which we discard sentence
pairs with invalid language label as computed by
fasttext language identification model'® (Bo-
janowski et al., 2017). This pre-training data con-
tains 33.9M sentence pairs.

B Experimental Details

We build our dual decoder model with a hidden
size of 512 and a feedforward size of 2048. We
optimize with Adam, set up with a maximum learn-
ing rate of 0.0007 and an inverse square root decay
schedule, as well as 4000 warmup steps. For fine-
tuning, we use Adam with a fixed learning rate of
8e—>5. For all models, we share lexical embeddings
between the encoder and the input and output de-
coder matrices. All models are trained with mixed
precision and a batch size of 8192 tokens on 4
V100 GPUs.

The two models in the base setting are
trained separately using transcript—caption and
transcript—subtitle data. The second model
of the pipeline setting is trained using
caption—subtitle data. When performing fine-
tuning, we first pre-train an EN—FR translation
model pre-train using WMT EN-FR data.
For base+FT setting, the transcript—subtitle
model is fine-tuned from pre—train, while the
transcript—-caption is the same as base since lan-
guages on both source and target sides are English.
For pipeline+FT, the caption—subtitle model
is fine-tuned from pre-train. For dual+FT,
the encoder and the two decoders are fine-tuned
from the same pre—train model. The decoder
cross-attention layers cannot be fine-tuned and are
randomly initialized. Due to computation limits,
we are not able to conduct multiple runs for our
models. However, all results are obtained by us-
ing the parameters averaged over the last 5 check-
points.

‘https://statmt.org/wmt14
Yhttps://dl.fbaipublicfiles.com/
fasttext/supervised-models/1id.176.bin



C Consistency Score

Consider the following example from (Karakanta
et al., 2021):

0:00:50,820, 00:00:53,820
To put the assumptions very clearly:

Enongons clairement nos hypotheses : le capitalisme,

00:00:53,820, 00:00:57,820
capitalism, after 150 years, has become acceptable,

apres 150 ans, est devenu acceptable, au méme titre

00:00:58,820, 00:01:00,820
and so has democracy.

que la democratie.

As defined by Karakanta et al. (2021), for the
stuctural consistency, both captions (EN) and sub-
titles (FR) have the same number of 3 blocks.
For lexical consistency, there are 6 tokens of the
subtitles which are not aligned to captions in the
same block: “le capitalisme ,” , “au méme titre”.
The Lexc_g is calculated as the percentage of
aligned words normalized by number of words in
the caption. Therefore, Lexc_,s = % = 90.9%;
the computation is identical in the other direc-
tion, yielding Lexg,c = 3¢ = 73.9%, the av-
erage lexical consistency of this segment is thus
Lepgiy = Hetemstlersac = 89 4%,

When computing the lexical consistency be-
tween captions and subtitles, we use the WMT14
EN-FR data to train an alignment model using
fast_align!' (Dyer et al., 2013) in both di-
rections and use it to predict word alignments for
model outputs.

D Additional Metric

Table 5 reports TER and BERTScores'? (Zhang
et al., 2020b). Note that for BERTScores, we re-
move segmentation tokens ([eob] and [eol]) from
hypotheses and references, as special tokens are
out-of-vocabulary for pre-trained BERT models.

E Examples

Some examples of dual decoding improving the
quality of both captioning and subtitling compared
to the pipeline system are in Table 6.

Uhttps://github.com/clab/fast_align
Phttps://github.com/Tiiiger/bert_score
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TER | BERTScore-F1 1 BLEU 1 Consistency T
Model EN FR Avg EN FR Avg EN FR Avg | Struct. Lex.
base 0.264 0.662 0.463 | 0.7346 0.3961 0.5654 | 557 239 398 | 553 70.7
base +FT 0.264 0.654 0.459 | 0.7346 0.4026 0.5686 | 55.7 249 403 | 545 714
pipeline 0.264 0.650 0.457 | 0.7346 0.3912 0.5629 | 55.7 23.6 39.7 | 957 96.0
pipeline +FT | 0.264 0.652 0.458 | 0.7346 0.3924 0.5635 | 557 242 40.0 | 984 983
dual +FT 0.256 0.640 0.448 | 0.7378 0.4074 0.5726 | 56.9 256 413 | 65.1 79.1
share +FT 0.259 0.640 0.450 | 0.7396 0.4066 0.5731 | 56.5 25.8 412 | 66.7 80.0

Table 5: TER, BERTScore and BLEU scores for captions (EN) and subtitles (FR), with measures of structural and
lexical consistency between the two hypotheses. The base and pipeline settings are trained from scratch with
original data. share refers to tying all decoder parameters. Signature of BERTScore (EN): microsoft/deberta-
xlarge-mnli_L40_no-idf_version=0.3.11(hug_trans=4.10.3)-rescaled_fast-tokenizer. = Signature of BERTScore
(FR): bert-base-multilingual-cased_L9_no-idf_version=0.3.11(hug_trans=4.10.3)-rescaled_fast-tokenizer.

Source take time to write down your values your objectives and your key results do it today
EN pipeline +FT | Take time to write down [eol] your values, your objectives, [eob] and your key results do
it today. [eob]

EN share +FT Take time to write down your values, [eol] your objectives, [eob] and your key results do
it today. [eob]
EN ref Take time to write down your values, [eob] your objectives and your key results. [eob]

Do it today. [eob]
FR pipeline +FT | Prenez le temps d’écrire vos valeurs, [eol] vos objectifs, [eob] et vos principaux résultats
[eol] le font aujourd’hui. [eob]

FR share +FT Prenez le temps d’écrire vos valeurs, [eob] vos objectifs et vos résultats clés. [eob]
Faites-le aujourd’hui. [eob]
FR ref Prenez le temps d’écrire vos valeurs, [eob] vos objectifs et vos résultats clés. [eob]

Faites-le aujourd’hui. [eob]

Source and as it turns out what are you willing to give up is exactly the right question to ask
EN pipeline +FT | And as it turns out, what are you willing [eol] to give up is exactly [eob] the right question
to ask? [eob]

EN share +FT And as it turns out, what are you willing [eol] to give up [eob] is exactly the right question
to ask? [eob]
EN ref And as it turns out, [eob] "What are you willing to give up?" [eob] is exactly the right

question to ask. [eob]
FR pipeline +FT | Etil s’avere que ce que vous voulez abandonner [eol] est exactement [eob] la bonne
question a poser ? [eob]

FR share +FT Etil s’avere que ce que vous voulez abandonner [eob] est exactement la bonne question a
poser. [eob]
FR ref Et il s’avere que [eob] « Qu’étes-vous préts a abandonner ? » [eob] est exactement la

question a poser. [eob]

Table 6: Examples of dual decoding improving both captioning and subtitling. Major improvements are marked in
bold.
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Abstract

Word alignment is essential for the downstream
cross-lingual language understanding and gen-
eration tasks. Recently, the performance of
the neural word alignment models (Garg et al.,
2019; Ding et al., 2019; Zenkel et al., 2020)
has exceeded that of statistical models. How-
ever, they heavily rely on sophisticated trans-
lation models. In this study, we propose a su-
per lightweight unsupervised word alignment
model named MirrorAlign, in which a bidirec-
tional symmetric attention trained with a con-
trastive learning objective is introduced, and
an agreement loss is employed to bind the
attention maps, such that the alignments fol-
low mirror-like symmetry hypothesis. Exper-
imental results on several public benchmarks
demonstrate that our model achieves compet-
itive, if not better, performance compared to
the state of the art in word alignment while
significantly reducing the training and decod-
ing time on average. Further ablation analysis
and case studies show the superiority of our
proposed MirrorAlign. Notably, we recognize
our model as a pioneer attempt to unify bilin-
gual word embedding and word alignments.
Encouragingly, our approach achieves /6.4 x
speedup against GIZA++, and 50x parameter
compression compared with the Transformer-
based alignment methods. We release our code
to facilitate the community'.

1 Introduction

Word alignment, aiming to find the word-level cor-
respondence between a pair of parallel sentences,
is a core component of the statistical machine trans-
lation (Brown et al., 1993, SMT). It also has ben-
efited several downstream tasks, e.g., computer-
aided translation (Dagan et al., 1993), semantic
role labeling (Kozhevnikov and Titov, 2013), cross-
lingual dataset creation (Yarowsky et al., 2001),
cross-lingual modeling (Ding et al., 2020a), and
cross-lingual text generation (Zan et al., 2022).

"https://github.com/moore3930/MirrorAlign
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Figure 1: Two examples of word alignment. The upper
and bottom cases are the Chinese and Japanese refer-
ences, respectively.

Recently, in the era of neural machine transla-
tion (Bahdanau et al., 2015; Vaswani et al., 2017,
NMT), the attention mechanism plays the role of
the alignment model in translation system. Un-
fortunately, Koehn and Knowles (2017) show that
attention mechanism may in fact dramatically di-
verge with word alignment. The works of Ghader
and Monz (2017); Li et al. (2019) also confirm this
finding.

Although there are some studies attempt to miti-
gate this problem, most of them are rely on a sophis-
ticated translation architecture (Garg et al., 2019;
Zenkel et al., 2020). These methods are trained
with a translation objective, which computes the
probability of each target token conditioned on
source tokens and previous target tokens. This will
bring tremendous parameters and noisy alignments.
Most recent work avoids the noisy alignment of
translation models but employed too much expen-
sive human-annotated alignments (Stengel-Eskin
et al., 2019). Given these disadvantages, simple
statistical alignment tools, e.g., FastAlign (Dyer
et al., 2013) and GIZA++ (Och and Ney, 2003)32,
are still the most representative solutions due to
their efficiency and unsupervised fashion. We ar-
gue that the word alignment task, intuitively, is
much simpler than translation, and thus should be
performed before translation rather than inducing

2GIZA++ employs the IBM Model 4 as default setting.
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alignment matrix with heavy neural machine trans-
lation models. For example, the IBM word align-
ment model, e.g., FastAlign, is the prerequisite of
SMT. However, related research about lightweight
neural word alignment without NMT is currently
very scarce.

Inspired by cross-lingual word embeddings (Lu-
ong et al., 2015b, CLWEs), we propose to im-
plement a super lightweight unsupervised word
alignment model in Section 3, named MirrorAlign,
which encourages the embedding distance between
aligned words to be closer. We also provide the
theoretical justification from mutual information
perspective for our proposed contrastive learning
objective in Section 3.4, demonstrating the rea-
sonableness of our method. Figure 1 shows an
English sentence, and its corresponding Chinese
and Japanese sentences, and their word alignments.
The links indicate the correspondence between
English<Chinese and English<Japanese words.
If the Chinese word “%17”" can be aligned to En-
glish word “held”, the reverse mapping should also
hold. Specifically, a bidirectional attention mech-
anism with contrastive estimation is proposed to
capture the alignment between parallel sentences.
In addition, we employ an agreement loss to con-
strain the attention maps such that the alignments
follow symmetry hypothesis (Liang et al., 2006).

Our contributions can be summarized as follows:

* We propose a super lightweight unsupervised
alignment model (MirrorAlign), even merely
updating the embedding matrices, achieves
better alignment quality on several public
benchmark datasets compare to baseline mod-
els while preserving comparable training effi-
ciency with FastAlign.

To boost the performance of our model, we
design a theoretically and empirically proved
bidirectional symmetric attention with con-
trastive learning objective for word alignment
task, in which we introduce extra objective to
follow the mirror-like symmetry hypothesis.

Further analysis show that the by-product of
our model in training phase has the ability
to learn bilingual word representations, which
endows the possibility to unify these two tasks
in the future.
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2 Related Work

Word alignment studies can be divided into two
classes:

Statistical Models Statistical alignment models
directly build on the lexical translation models of
(Brown et al., 1993), also known as IBM models.
The most popular implementation of this statis-
tical alignment model is FastAlign (Dyer et al.,
2013) and GIZA++ (Och and Ney, 2000, 2003).
For optimal performance, the training pipeline
of GIZA++ relies on multiple iterations of IBM
Model 1, Model 3, Model 4 and the HMM align-
ment model (Vogel et al., 1996). Initialized with
parameters from previous models, each subsequent
model adds more assumptions about word align-
ments. Model 2 introduces non-uniform distortion,
and Model 3 introduces fertility. Model 4 and the
HMM alignment model introduce relative distor-
tion, where the likelihood of the position of each
alignment link is conditioned on the position of
the previous alignment link. FastAlign (Dyer et al.,
2013), which is based on a reparametrization of
IBM Model 2, is almost the existing fastest word
aligner, while keeping the quality of alignment.

In contrast to GIZA++, our model achieves
nearly 15x speedup during training, while achiev-
ing the comparable performance. Encouragingly,
our model is at least 1.5 faster to train than FastAl-
ign and consistently outperforms it.

Neural Models Most neural alignment ap-
proaches in the literature, such as Alkhouli et al.
2018, rely on alignments generated by statistical
systems that are used as supervision for training the
neural systems. These approaches tend to learn to
copy the alignment errors from the supervising sta-
tistical models. Zenkel et al. (2019) use attention
to extract alignments from a dedicated alignment
layer of a neural model without using any output
from a statistical aligner, but fail to match the qual-
ity of GIZA++. Garg et al. (2019) represents the
current state of the art in word alignment, outper-
forming GIZA++ by training a single model that
is able to both translate and align. This model is
supervised with a guided alignment loss, and ex-
isting word alignments must be provided to the
model during training. Garg et al. (2019) can pro-
duce alignments using an end-to-end neural train-
ing pipeline guided by attention activations, but
this approach underperforms GIZA++. The perfor-
mance of GIZA++ is only surpassed by training
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Figure 2: Illustration of MirrorAlign, where a pair of sentences are given as example. Each x; and y; are the
representation of words in source and target part respectively. Given y;, we can calculate context vector in source
part. The NCE training objective is encouraging the dot product of this context vector and y; to be large. The
process in the other direction is consistent. By stacking all of the soft weights, two attention maps A;_,; and A;_,
can be produced, which will be bound by an agreement loss to encourage symmetry.

the guided alignment loss using GIZA++ output.
Stengel-Eskin et al. (2019) introduce a discrimina-
tive neural alignment model that uses a dot-product-
based distance measure between learned source and
target representation to predict if a given source-
target pair should be aligned. Alignment decisions
are conditioned on the neighboring decisions using
convolution. The model is trained using gold align-
ments. Zenkel et al. (2020) uses guided alignment
training, but with large number of modules and pa-
rameters, they can surpass the alignment quality of
GIZA++.

They either use translation models for alignment
task, which introduces a extremely huge number of
parameters (compared to ours), making the train-
ing and deployment of the model cumbersome. Or
they train the model with the alignment supervision,
however, these alignment data is scarce in practice
especially for low resource languages. These set-
tings make above approaches less versatile.

Instead, our approach is fully unsupervised at
word level, that is, it does not require gold align-
ments generated by human annotators during train-
ing. Moreover, our model achieves comparable
performance and is at least 50 times smaller than
theirs, i.e., #Parameters: 4M (ours) vs. 200M
(above).

3 Our Approach

Our model trains in an unsupervised fashion, where
the word level alignments are not provided. There-
fore, we need to leverage sentence-level supervi-
sion of the parallel corpus. To achieve this, we in-
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troduce negative sampling strategy with contrastive
learning to fully exploit the corpus. Besides, in-
spired by the concept of cross-lingual word em-
bedding, we design the model under the following
assumption: If a target token can be aligned to a
source token, then the dot product of their embed-
ding vectors should be large. Figure 2 shows the
schema of our approach MirrorAlign.

3.1 Sentence Representation

For a given source-target sentence pair (s,t),
8,15 € R? represent the i-th and j-th word embed-
dings for the source and target sentences, respec-
tively. Luong et al. (2015a); Ding et al. (2020b) il-
lustrate that modelling the neighbour words within
the local window helps to understand the current
words. Inspired by this, we perform a extremely
simple but effective mean pooling operation with
the representations of its surrounding words to cap-
ture the contextualized information. Padding op-
eration is used to ensure the sequence length. As
a result, the final representation of each word can
be calculated by element-wisely adding the mean
pooling embedding and its original embedding:

x; =MEANPOOL([s;]“"™) + s, (D
where win is the pooling window size. We can
therefore derive the sentence level representations
((L‘l, T2y ouny $|s|)7 (yl, Y2,y --ey ym) for s and t. In ad-
dition to modeling words, modeling structured in-
formation (such as syntactic information) may be
helpful to enhance the sentence representation (Li



et al., 2017; Marcheggiani and Titov, 2017; Ding
and Tao, 2019), thus improving the word alignment.
We leave this exploration for future work.

3.2 Bidirectional Symmetric Attention

Bidirectional symmetric attention is the basic com-
ponent of our proposed model. The aim of this
module is to generate the source-to-target (aka.
s2t) and target-to-source (aka. t2s) soft attention
maps. The details of the attention mechanism:
given a source side word representation x; as query
¢; € R? and pack all the target tokens together into
a matrix V; € RI!*4_ The attention context can be
calculated as:

ATTENTION (g¢;, Vi, V3) = (a! - Vi)T,

(

where the vector a! € R'*I*l represents the atten-
tion probabilities for ¢; in source sentence over all
the target tokens, in which each element signifies
the relevance to the query, and can be derived from:

2

al = SOFTMAX (V; - ¢;)7

3)

For simplicity, we denote the attention context of
¢; in the target side as att;(g;). s2t attention map
Asyp € RIsIxIt] is constructed by stacking the prob-
ability vectors a! corresponding to all the source
tokens.

Reversely, we can obtain t2s attention map Ay s
in a symmetric way. Then, these two attention
matrices A, ; and A; ; will be used to decode align-
ment links. Take s2t for example, given a target
token, the source token with the highest attention
weight is viewed as the aligned word.

3.3 Agreement Mechanism

Intuitively, the two attention matrices A, ; and Ags
should be very close. However, the attention mech-
anism suffers from symmetry error in different di-
rection (Koehn and Knowles, 2017).

To bridge this discrepancy, we introduce agree-
ment mechanism (Liang et al., 2006), acting like a
mirror that precisely reflects the matching degree
between A, ; and A; s, which is also empirically
confirmed in machine translation (Levinboim et al.,
2015). In particular, we use an agreement loss to
bind above two matrices:

ZZ Ast Ats

In Section 4.6, we empirically show this agree-
ment can be complementary to the bidirectional

4

Eossdisagree
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symmetric constraint, demonstrating the effective-
ness of this component.

3.4 Training Objective and Theoretical
Justification

Suppose that (g;, att;(¢;)) is a pair of s2t word
representation and corresponding attention context
sampled from the joint distribution p;(q, att:(q))
(hereinafter we call it a positive pair), the primary
objective of the s2t training is to maximize the
alignment degree between the elements within a
positive pair. Thus, we first define an alignment
function by using the sigmoid inner product as:

a((q,atti(q))), (5

where o(+) denotes the sigmoid function and (-, -)
is the inner product operation. However, merely
optimizing the alignment of positive pairs ig-
nores important positive-negative relation knowl-
edge (Mikolov et al., 2013).

To make the training process more informative,
we reform the overall objective in the contrastive
learning manner (Oord et al., 2018; Saunshi et al.,
2019) with Noise Contrastive Estimation (NCE)
loss (Mikolov et al., 2013), which has been widely
used in many NLP tasks (Xiong et al., 2021; Gao
et al., 2021; Wang et al., 2022). Specifically, we
first sample k£ negative word representations q]~3
from the margin p;(q). Then, we can formulate the
overall NCE objective as following:

ALIGN(q, att(q)) =

E
{attt(q:i),qi,q5}

ALIGN(q;, att(g;))

ALIGN(gi, atty(gi)) + Yi—; ALIGN(qgj, atty(g;))
(6)
It is evident that the objective in Eq. (6) ex-
plicitly encourages the alignment of positive pair
(gi, atty(g;)) while simultaneously separates the
negative pairs (q;, att;(¢;)).
Moreover, a direct consequence of minimizing
Eq. (6) is that the optimal estimation of the align-
ment between the representation and attention con-

text is proportional to the ratio of joint distribution

pt(g,atti(q)) :
71 (0) e att () VHich

Losst_,, = — [log

and the product of margins

*In the contrastive learning setting, q;j and att¢(g;) can be
sampled from different sentences. If ¢; and att:(q;) are from
the same sentence, ¢ 7 j; otherwise, j can be a random index
within the sentence length. For simplicity, in this paper, we
use g; where ¢ # j to denote the negative samples, although
with a little bit ambiguity.



Method EN-FR FR-EN sym | RO-EN EN-RO sym | DE-EN EN-DE sym
NNSA 22.2 242 15.7 47.0 45.5 40.3 36.9 36.3 29.5
FastAlign 16.4 15.9 10.5 33.8 35.5 32.1 28.4 320 270
MirrorAlign | 15.3 15.6 9.2 343 35.2 31.6 31.1 28.0 248

Table 1: AER of each method in different direction. “sym” means grow-diag symmetrization.

Model EN-FR RO-EN DE-EN
Naive Attention 31.4 39.8 50.9
NNSA 15.7 40.3 -
FastAlign 10.5 32.1 27.0
MirrorAlign 9.2 31.6 24.8
(Zenkel et al., 2020) 8.4 24.1 17.9
(Garg et al., 2019) 7.7 26.0 20.2
GIZA++ 55 26.5 18.7

Table 2: Alignment performance (with grow-diagonal
heuristic) of each model.

is the point-wise mutual information, and we can
further have the following proposition with repect
to the mutual information:

Proposition 1. The mutual information between
the word representation q and its corresponding
attention context atty(q) is lower-bounded by the
negative Loss'_,, in Eq. (6) as:

I(q,atti(q)) > log(k) — £0ss§_>t, @)

where k is the number of the negative samples.

The detailed proof can be found in (Oord et al.,
2018). Proposition 1 indicates that the lower bound
of the mutual information (g, att,(q)) can be max-
imized by achieving the optimal NCE loss, which
provides theoretical guarantee for our proposed
method.

Our training schema over parallel sentences
is mainly inspired by the bilingual skip-gram
model (Luong et al., 2015b) and invertibility mod-
eling (Levinboim et al., 2015). Therefore, the ul-
timate training objective should consider both for-
ward (s — t) and backward (¢t — s) direction,
combined with the mirror agreement loss. Techni-
cally, the final training objective is:

It
_ i
Loss = g Loss,_; +
%

sl ,
J
E Loss;_, g
: ®)
J
+a- ﬁossdisagrem

where Losss—,; and Loss;—, s are symmetrical and
« is a loss weight to balance the likelihood and
disagreement loss.
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4 Experiments

4.1 Datasets and Evaluation Metrics

We perform our method on three widely used
datasets: English-French (EN-FR), Romanian-
English (RO-EN) and German-English (DE-EN).
Training and test data for EN-FR and RO-EN are
from NAACL 2003 share tasks (Mihalcea and Ped-
ersen, 2003). For RO-EN, we add Europarl v8
corpus, increasing the amount of training data from
49K to 0.4M. For DE-EN, we use the Europarl
v7 corpus as training data and test on the gold
alignments. All above data are lowercased and
tokenized by Moses. The evaluation metrics are
Precision, Recall, F-score (F1) and Alignment Er-
ror Rate (AER).

4.2 Baseline Methods

Besides two strong statistical alignment models,
i.e. FastAlign and GIZA++, we also compare our
approach with neural alignment models where they
induce alignments either from the attention weights
or through feature importance measures.

FastAlign One of the most popular statistical
method which log-linearly reparameterize the IBM
model 2 proposed by (Dyer et al., 2013).

GIZA++ A statistical generative model (Och and
Ney, 2003), in which parameters are estimated us-
ing the Expectation-Maximization (EM) algorithm,
allowing it to automatically extract bilingual lexi-
con from parallel corpus.

NNSA A unsupervised neural alignment model
proposed by (Legrand et al., 2016), which applies
an aggregation operation borrowed from the com-
puter vision to design sentence-level matching loss.
In addition to the raw word indices, following three
extra features are introduced: distance to the diago-
nal, part-of-speech and unigram character position.
To make a fair comparison, we report the result of
raw feature in NNSA.

Naive Attention Averaging all attention matrices
in the Transformer architecture, and selecting the
source unit with the maximal attention value for
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Figure 3: An visualized alignment example. (a-c) illustrate the effects when gradually adding the symmetric
component, (d) shows the result of FastAlign, and (e) is the ground truth. The more emphasis is placed on the
symmetry of the model, the better the alignment results model achieved. Meanwhile, as depicted, the results of the
attention map become more and more diagonally concentrated.

each target unit as alignments. We borrow the re-
sults reported in (Zenkel et al., 2019) to highlight
the weakness of such naive version, where signif-
icant improvement are achieved after introducing
an extra alignment layer.

Others Gargetal. (2019) and Zenkel et al. (2020)
represent the current developments in word align-
ment, which both outperform GIZA++. However,
They both implement the alignment model based
on a sophisticated translation model. Further more,
the former uses the output of GIZA++ as supervi-
sion, and the latter introduces a pre-trained state-
of-the-art neural translation model. It is unfair to
compare our results directly with them. We report
them in Table 2 as references.

4.3 Setup

For our method (MirrorAlign), all the source
and target embeddings are initialized by Xavier
method (Glorot and Bengio, 2010). The embed-
ding size d and pooling window size are set to 256
and 3, respectively. The hyper-parameters « is
tested by grid search from 0.0 to 1.0 at 0.1 inter-
vals. For FastAlign, we train it from scratch by the
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open-source pipeline*. Also, we report the results
of NNSA and machine translation based model
(Section 4.2). All experiments of MirrorAlign are
runon 1 Nvidia P40 GPU. The CPU model is
Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz.
Both FastAlign and MirrorAlign take nearly half a
hour to train one million samples.

4.4 Main Results

Table 2 summarizes the AER of our method over
several language pairs. Our model outperforms all
other baseline models. Comparing to FastAlign,
we achieve 1.3, 0.5 and 2.2 AER improvements on
EN-FR, RO-EN, DE-EN respectively.

Notably, our model exceeds the naive attention
model in a big margin in terms of AER (ranging
from 8.2 to 26.1) over all language pairs. We at-
tribute the poor performance of the straightforward
attention model (translation model) to its contex-
tualized word representation. For instance, when
translating a verb, contextual information will be
paid attention to determine the form (e.g., tense) of
the word, that may interfere the word alignment.

Experiment results in different alignment direc-
tions can be found in Table 1. The grow-diag sym-

*https://github.com/lilt/alignment-scripts



Setup P R F1 AER
L0SS 51 749 86.0 80.4 209
LOSSi_ss 719 853 773 233
LOoSSsest 81.5 90.1 86.1 14.1
MirrorAlign 91.8 89.1 90.8 9.2

Table 3: Ablation results on EN-FR dataset.

metrization benifits all the models.

4.5 Speed Comparison

Take the experiment on EN-FR dataset as an exam-
ple, MirrorAlign converges to the best performance
after running 3 epochs and taking 14 minutes to-
tally, where FastAlign and GIZA++ cost 21 and 230
minutes, respectively, to achieve the best results.
Notably, the time consumption will rise dozens of
times in neural translation fashion.

4.6 Ablation Study

To further explore the effects of several components
(i.e., bidirectional symmetric attention, agreement
loss) in our MirrorAlign, we conduct an ablation
study. Table 3 shows the results on EN-FR dataset.
When the model is trained using only Losss_,; or
Loss;_,s as loss functions, the AER of them are
quite high (20.9 and 23.3). As expected, combined
loss function improves the alignment quality sig-
nificantly (14.1 AER). It is noteworthy that with
the rectification of agreement mechanism, the final
combination achieves the best result (9.2 AER), in-
dicating that the agreement mechanism is the most
important component in MirrorAlign.

To better present the improvements brought by
adding each component, we visualize the alignment
case in Figure 3. As we can see, each component
is complementary to others, that is, the attention
map becomes more diagonally concentrated after
adding the bidirectional symmetric attention and
the agreement constraint.

5 Analysis

Alignment Case Study Figure 4 shows an align-
ment example. Our model correctly aligns “do not
believe” in English to “glauben nicht” in German.
Our model, based on word representation, makes
better use of semantics to accomplish alignment
such that inverted phrase like “glauben nicht” can
be well handled. Instead, FastAlign, relied on the
positional assumption®, fails here.

SA feature h of position is introduced in FastAlign
to encourage alignments to occur around the diagonal.

&9

china distinctive
EN DE EN DE
china chinas distinctive  unverwechselbaren
chinese china distinct besonderheiten
china’s  chinesische peculiar markante
republic  chinesischer | differences  charakteristische
china’”  chinesischem diverse einzelnen
cat love
EN DE EN DE
cat hundefelle love liebe
dog katzenfell affection liebt
toys hundefellen loved liebe
cats kuchen loves lieben
dogs schlafen passion lieb

Table 4: Top 5 nearest English (EN) and German (DE)
words for each of the following words: china, distinc-
tive, cat, and love.
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&

(a)FastAlign

(b) MirrorAlign

Figure 4: Example of the DE-EN alignment. (a) is the
result of FastAlign, and (b) shows result of our model,
which is closer to the gold alignment. The horizontal
axis shows German sentence “wir glauben nicht , da
wir nur rosinen herauspicken sollten .”, and the vertical
axis shows English sentence “we do not believe that we
should cherry-pick .”.

Word Embedding Clustering To further investi-
gate the effectiveness of our model, we also analyze
the word embeddings learned by our model. In par-
ticular, following (Collobert et al., 2011), we show
some words together with its nearest neighbors
using the Euclidean distance between their embed-
dings. Table 4 shows some examples to demon-
strates that our learned representations possess a
clearly clustering structure bilingually and mono-
lingually. We attribute the better alignment results
to the ability of our model that could learn bilingual
word representation.

6 Conclusion and Future Work

In this paper, we presented a super lightweight neu-
ral alignment model, named MirrorAlign, that has
achieved better alignment performance compared
to FastAlign and other existing neural alignment
models while preserving training efficiency. We

_ 1

h(i,j,m,n) = —|=% —Z|, i and j are source and target
indices and m and n are the length of sentences pair.




empirically and theoretically show its effectiveness
over several language pairs. In the future, we would
further explore the relationship between CLWEs
and word alignments. A promising attempt is us-
ing our model as a bridge to unify cross-lingual
embeddings and word alignment tasks.
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Abstract

Training speech translation (ST) models re-
quires large and high-quality datasets. MuST-
C is one of the most widely used ST bench-
mark datasets. It contains around 400 hours of
speech-transcript-translation data for each of
the eight translation directions. This dataset
passes several quality-control filters during
creation. However, we find that MuST-C still
suffers from three major quality issues: audio-
text misalignment, inaccurate translation, and
unnecessary speaker’s name. What are the im-
pacts of these data quality issues for model de-
velopment and evaluation? In this paper, we
propose an automatic method to fix or filter the
above quality issues, using English-German
(En-De) translation as an example. Our ex-
periments show that ST models perform bet-
ter on clean test sets, and the rank of proposed
models remains consistent across different test
sets. Besides, simply removing misaligned
data points from the training set does not lead
to a better ST model.

1 Introduction

Speech-to-text translation (ST) aims to translate
a speech of a certain language into a text trans-
lation of another language. Recent advances of
end-to-end ST models have been largely boosted
by the release of large high-quality parallel datasets
(Kocabiyikoglu et al., 2018; Di Gangi et al., 2019;
Wang et al., 2021). A clean test set is essential to
evaluate the effectiveness of proposed models, and
a sizeable well-aligned training set is important to
train powerful ST models (Wang et al., 2020).
Currently, the most widely-used ST benchmark
dataset is MuST-C (Di Gangi et al., 2019). It
consists of around 400 hours of speech-transcript-
translation data from English into eight languages
(German, Spanish, French, Italian, Dutch, Por-
tuguese, Romanian, and Russian). MuST-C was
built upon English TED Talks, which are often
transcribed and translated by voluntary human an-
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notators. A bilingual sentence-level text corpus
is firstly constructed based on sentence segmen-
tation and Gargantua alignment tool (Braune and
Fraser, 2010). Then, the transcription is aligned to
the corresponding audio tracks using Gentle forced
aligner! built on Kaldi ASR toolkit (Povey et al.,
2011). During alignment, entire talks are discarded
if greater than 15% of words cannot be recognized,
and sentences are removed if none of the words
was aligned.

Though MuST-C passed through several quality-
control filters, this dataset is still not perfect.
Through manual checking, we find three major
quality issues in the dataset — inaccurate trans-
lation, audio-text misalignment, and unnecessary
speaker’s name. Along with the three issues iden-
tified, more importantly, we are interested in the
following questions: Do they affect the robustness
of end-to-end speech translation models trained on
this corpus? Can we trust the results from existing
works using this data?

In order to answer the above questions, we pro-
pose an automatic method to filter or fix the afore-
mentioned errors in both the training and test sets.
And based on the original and the fixed datasets, we
evaluate many popular ST systems including code-
bases such as ESPnet (Inaguma et al., 2020) and
published models such as XSTNet (Ye et al., 2021).
Our experiments have shown that the performance
of models we test is actually better than we thought,
and their rank remains consistent across test sets.
Besides, simply removing those data points with
audio-text misalignment from the training set can-
not significantly improve ST models.

2 Quality Issues in MuST-C Corpus

In this section, we identify three issues that harm
the quality of MuST-C dataset. We choose the En-
De direction as an example since it is the most

"https://github.com/lowerquality/
gentle
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Audio Id

Transcripts

Translations

ted_319_84

That’s what we were looking forward to. That is
where we’re going — this union, this convergence of
the atomic and the digital.

Danach sehnen wir uns. Das ist wo wir hingehen
- Diese Einheit, die Konvergenz des Atomaren und
des Digitalen.

ted_319_85

this convergence of the atomic and the digital. And

die Konvergenz des Atomaren und des Digitalen.

so one of the consequences of that, I believe, is that
where we have this sort of spectrum of media right
now — TV, film, video — that basically becomes

Eine Konsequenz davon ist, glaube ich, dass wir
dieses aktuelle Spektrum an Medien - TV, Film,
Video - zu einer Medienplatzform wird.

ted_319_86

film, video — that basically becomes one media

Film, Video - zu einer Medienplatzform wird. Es

platform. And while there’s many differences in

wird viele Unterschiede im gewissen Sinn geben, sie

common with each other.

some senses, they will share more and more in

werden aber mehr und mehr miteinander gemeinsam
haben.

Table 1: Examples of misalignment between audio and text. Extra words that are not in the given transcript but
included in the audio are highlighted in red, and missing words that are included in the transcript but not in the

audio are highlighted in blue.

widely used direction for demonstrating the perfor-
mance of ST models.

Audio-Text Misalignment We randomly sample
1000 utterances from the training set of MuST-C
En-De dataset and manually verify whether the au-
dio and text are misaligned. We find 69 cases of
misalignment out of 1000 given samples. Most
of the time, the audio include extra words from
the previous or subsequent sentence of its corre-
sponding transcript and translation and omit some
of the words of the correct text. This misalignment,
once occurs, affects not only one utterance but also
utterances around it.

Table 1 shows a typical case where misalignment
happens in consecutive utterances. Each audio con-
tains words of its preceding utterance and omits the
last few words of its correct text counterpart. Since
MuST-C was built by first constructing bilingual
text corpus and then aligning English transcripts
with audio tracks, audio-translation misalignments
usually occur once audio tracks and transcripts are
misaligned. In our sample, 68 out of 69 cases fol-
low this observation. Note that this kind of error
can be automatically detected and possibly fixed
by a well-trained forced aligner.

Inaccurate Translation We uniformly sample
200 audio-transcript-translation triples from tst-
COMMON set and ask human translators proficient
in both English and German to label which German
translations are not accurate based on given audio
files and transcripts.

Table 2 demonstrates typical errors that human
translators find. In the first case, the English word
“unless” is missing in its German translation, which
completely changes the meaning of sentence. In
the second case, the German word “Vollmachtsz-
ertifikat” means “power of attorney” rather than
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“certificate authority”. In the third case, “the most
peaceful” is translated to “very peaceful”. In the
last case, German translation adds an extra sen-
tence “Bei dem vorigen Beispiel ging es darum,
Einzelheiten zu finden” in the beginning that is not
expressed in the audio and transcript.

Some of the errors might be caused by human an-

notators who volunteered to translate the subtitles
for the TED Talk (e.g., case 1,2 and 3), and others
might be caused by transcript-translation alignment
tools used in dataset creation (e.g., case 4). How-
ever, it is hard to quantify the number of translation
errors, and we will see its empirical impact in the
next section.
Unnecessary Speaker’s Name Since MuST-C
dataset is built on top of subtitles of TED talks,
sometimes the subtitle will include additional infor-
mation like the speaker’s name in a multi-speaker
scenario. This additional information cannot be rec-
ognized given the single audio segment. However,
the impact is negligible since names are usually rel-
atively short (less than 20 characters) compared to
the entire utterance (more than 100 characters), and
it does not frequently happen (around 7% in our
sample). We merely showcase here the existence
of such a problem.

To summarize, we have identified three qual-
ity issues, misalignment, inaccurate translation,
and unnecessary extra information in the MuST-
C dataset. In the next section, we will empirically
quantify the impact of these issues in training and
testing scenarios.

3 Examining the Impact of Quality
Issues

In this section we examine the impact of discovered
quality issues on both training and test set of MuST-



#Case | Transcripts

Inaccurate Translations

dry day.

Woman: 80’s revival meets skater-punk, unless it’s laun-

Frau: 80er Revival trifft auf Skaterpunk,-es sei-denn.
aufler am Waschtag.

I
— or actually, it was.

DigiNotar is a certificate authority from the Netherlands

DigiNotar ist ein Vollmachtszertifikat aus den Nieder-
landen — bzw. war es das.

I

Steve Pinker has showed us that, in fact, we’re living
during the most peaceful time ever in human history.

Steve Pinker hat uns gezeigt, dass wir derzeit in einer
sehr friedlichen Zeit der Menschengeschichte leben.

VI But what if you want to see brush strokes?

Bei dem vorigen Beispiel ging es darum, Einzelheiten

zu finden, aber was, wenn man die Pinselstriche sehen
will?

Table 2: Examples of inaccurate translations found by human translators. Errors are highlighted in red. The
strikethrough corresponds to words that are missed in the inaccurate translation.

C En-De dataset. We first fix errors for training and
test sets. Then we train models on both original
and clean training sets and evaluate their empirical
performances on test sets with and without errors.

3.1 Detecting and Fixing Errors

We apply different techniques to fix training and
test sets due to the size difference and different
quality requirements. It is unrealistic to fix erro-
neous translations for the training set since it re-
quires enormous human effort. Thus, we develop
an automatic tool to detect the misalignment and
remove them to obtain a clean training set.

Specifically, we first expand the given audio
track by one second in both ends and leverage a pre-
trained automatic speech recognition (ASR) model
(Baevski et al., 2020)? to conduct forced align-
ment between the expanded audio and transcript. If
the given alignment exceeds the time range of the
original audio by 0.15 seconds, we treat it as a mis-
alignment. However, this alone cannot deal with
the case that audio completely covers the transcript
but also has extra content. Thus, we use the same
model to conduct ASR task to extract the transcript.
If the edit distance between the extracted transcript
and the transcript given beforehand is larger than
0.7 times length of the given transcript, we also
treat it as a misalignment. We choose the hyper-
parameters based on 1000 random samples of the
dataset to achieve a high recall and an acceptable
precision (95% and 82% measured on these sam-
ples), since we want the dataset to be as clean as
possible. By removing these misaligned cases, we
obtain a clean training set with 19.4k utterances
compared to the original 22.9k utterances in the
MuST-C training set.

For the test set, we uniformly sample 200 data
points (about 10% of tst-COMMON) and manually
fix the aforementioned errors one by one. This

https://huggingface.co/facebook/
wav2vecz2—-large—960h
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provides us four versions of test sets:

tst-200: the sampled 200 data points without
modification.
tst-200-fix-misalignment: tst-200 with mis-
alignment fixed.

tst-200-fix-translation: tst-200 with translation
errors fixed.

tst-200-fix-all: tst-200 with both errors fixed.

Note that we align the audio tracks and the text
translations by adjusting the audio time ranges
rather than the translations since misaligned au-
dio tracks correspond to incomplete sentences.
The code will be released at https://github.
com/owaski/MuST-C-clean.

3.2 Examining the Impact

Experiment Setup We adopt a baseline model
architecture W2V2-Transformer as in Ye et al.
(2021) which concatenates a pretrained Wav2vec2
audio encoder> and a Transformer (Vaswani et al.,
2017) with six encoder and decoder layers respec-
tively. We also adopt the same training procedure
as Ye et al. (2021) except that we also pre-train the
Transformer on WMT14 En-De MT dataset. Train-
ing arguments can be referred in the Appendix.
We have also collected several representative open-
sourced models, including codebases (ESPnet (In-
aguma et al., 2020), Fairseq ST (Ott et al., 2019),
NeurST (Zhao et al., 2021)) and published models
(JT-S-MT (Tang et al., 2021), Chimera (Han et al.,
2021), XSTNet (Ye et al., 2021) and Speechformer
(Papi et al., 2021)), to robustify our experiments.
The models are tested on the aforementioned four
versions of test sets. We report case-sensitive deto-

SWe adopt the wav2vec 2.0 base model, which
passes raw waveform through 7 convolution layers
and 12 Transformer encoder layers. It can be ac-
cessed here https://dl.fbaipublicfiles.com/
fairseqg/wav2vec/wav2vec_small.pt



Models tst-200  tst-200-fix-all | tst-COMMON
w/o external MT data
ESPnet ST 21.7 23.8 22.9
Fairseq ST 22.4 243 22.7
NeurST 21.0 24.0 22.8
Speechformer 244 27.1 23.6
XSTNet base 25.5 27.4 25.5
w/ external MT data
Baseline 25.1 27.3 24.6
JT-S-MT 26.0 28.4 26.8
XSTNet expand 28.1 30.8 27.1
Chimera 28.2 31.1 27.1

Table 3: Empirical performance of models evaluated on different test sets. tst-200 is an uniformly sampled 200-
data-point subset of tst-=COMMON. tst-200-fix-all is another version of tst-200 with all quality issues fixed.

kenized BLEU scores using sacreBLEU#

Impact on Model Evaluation We are interested
in whether the original test set is enough to serve as
the metric for offline speech translation. Therefore,
we examine if the rank of existing models will be
different after fixing the errors. Results are shown
in Table 3.

The BLEU score increase after switching to the
clean test set is consistent across all models, indicat-
ing that the performance of these models is better
than we previously thought. More importantly, the
rank of models evaluated on tst-200 is also con-
sistent with that evaluated on tst-200-fix-all. This
demonstrates that the original test set, though noisy,
can still assess models’ performance.

We also conduct a case study to qualitatively ex-
amine the effect after fixing each of the errors. We
run Chimera on both misaligned and aligned inputs
to evaluate the effectiveness of fixing misalignment.
Table 4 shows two cases. As highlighted in blue,
the translations generated by Chimera are more
accurate given aligned inputs.

We also compare the BLEU score difference
brought by fixing inaccurate references in Table 5.
In both cases, the BLEU scores increase by a large
margin, indicating the model performs actually bet-
ter than we originally thought.

Impact on Model Training We examine the im-
pact of discovered quality issues on the training
set by training baseline models on the original and
clean versions of the training set and evaluate them
on four versions of test set. The BLEU scores are

*https://github.com/mjpost/sacrebleu
SBLEU signature: nrefs:1lbs: 1000Iseed: 12345Icase:mixed|
eff:noltok:13al smooth:explversion:2.0.0
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shown in Table 6.

When tested on tst-200, the baseline model
trained using the original training set performs bet-
ter than the one trained using a clean counterpart.
This phenomenon can be attributed to the larger
dataset size and similarity between original train-
ing set and tst-200. Both scores increase after fixing
misalignment and translation. Interestingly, fixing
misalignment does not bring higher score increase
for the model trained on clean data. After fixing all
the errors, both models behave equally well. Based
on these results, we conclude that simply removing
the misaligned cases in the training set does not
positively impact the model.

4 Related Works

The quality control of ST datasets is an essential
but hard to solve task for dataset creators. MuST-
C (Di Gangi et al., 2019) was built upon TED
Talks, which naturally comes with the question
of inaccurate audio segmentation and audio-text
alignment. Other datasets like CoVoST 2 (Ko-
cabiyikoglu et al., 2018; Wang et al., 2021), which
was built by reading given sentences, do not pos-
sess this kind of problems. Besides, MuST-C used
Gentle to conduct the forced alignment and there
are other newly developed forced aligners we can
use such as the one we developed in this paper and
Montreal Forced Aligner (McAuliffe et al., 2017)
which both take advantage of deep Transformer
model and large audio datasets.

5 Conclusion

In this paper, we first identify three types of er-
ror in MuST-C En-De dataset: inaccurate trans-
lation, audio-text misalignment, and unnecessary



about that, we have
an interesting situa-
tion in hands.

wir dariiber nach-
denken haben wir
eine interessante Sit-
uation vor uns.

dariiber nachdenken,
haben wir eine inter-
essante Situation.

#Case | Transcript Reference Translation Translation
w/ Misalignment w/o Misalignment
I Who are they actu- | Wen wollen Sie | Angenommen, wer | CA: Wer sollen
ally supposed to be | eigentlich damit | sind sie eigentlich? sie eigentlich
informing? informieren? informieren?
II And so if we think | Und deshalb, falls | Wenn wir also | Wenn wir also

dariiber nachdenken,
haben wir eine inter-
essante Situation in
unseren Hinden.

Table 4: Examples of translation with misaligned and without misaligned audio tracks. Improvements brought by

aligned inputs are underlined in blue.

#Case | Transcript Inaccurate Fixed Translation BLEU
Reference Reference
I Steve  Pinker | Steve  Pinker | Steve  Pinker | Steve  Pinker | 13.1 — 50.7
has showed us | hat uns gezeigt, | hat uns gezeigt, | zeigte uns, dass
that, in fact, | dass wir derzeit | dass wir in | wir in der Tat
we’re living | in einer sehr | der Tat in |in einer der
during the most | friedlichen der friedlich- | friedlichsten
peaceful time | Zeit der Men- | sten Zeit der | Zeiten der
ever in human | schengeschichte | Menschheits- Menschheits-
history. leben. geschichte geschichte
leben. leben.
I This idea of fire- | Glithwiirmchen | Die Vorstellung | Die Idee von | 1.6 — 19.3
flies in a jar, | in einem Glas | von Glihwiirm- | Glithwiirmchen
for some reason, | fand ich immer | chen in einem | und einem
was always re- | ganz aufregend. | Glas fand ich | Kiefer war aus
ally exciting to aus irgendeinem | irgendeinem
me. Grund immer | Grund immer
ganz aufregend. | sehr aufregend
fiir mich.

Table 5: Examples of BLEU score difference brought by fixing inaccurate translations.

Test-set \ Train-set Original Clean is actually better than we previously thought. As
tst-200 25.06 24.38 for training, a clean training set does not signifi-
tst-200-fix-misalignment | 25.38 24.63 cantly benefit the model’s performance.
tst-200-fix-translation 26.86 26.99

tst-200-fix-all 2734 2732

tst: COMMON 2460 2403  References
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Table 6: BLEU scores of baseline model trained on
raw/clean datasets and evaluated on different test sets.

speaker’s name. We then examine the impact of
these errors by training models on both original
and clean datasets and evaluate them on test sets
before and after fixing these errors. Empirical re-
sults demonstrate that the existing noisy test set can
still serve as the metric for evaluating speech trans-
lation models. However, the model’s performance
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A Appendix

A.1 Training Arguments of
W2V2-Transformer

We first pre-train Transformer on WMT14 En-
De MT dataset using Adam optimizer with 5; =
0.9, B2 = 0.98 and learning rate Se-4. The effec-
tive batch size is 32,768 tokens. We firsly warmup
the learning rate by 4k steps and then apply an
inverse square root schedule algorithm to it. The
norm of gradient is clipped to 10. We set label
smoothing to 0.1. The model is trained for up to
500k steps, and we select the one with the highest
BLEU score on the validation set.

Then W2V2-Transformer is fine-tuned on MuST-
C En-De dataset. The learning rate is 2e-4 and we
warmup the it by 25k steps. The effective batch
size is 16M frames. Other hyperparameters are the
same as MT pre-training.
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Abstract cial Interest Group on Spoken Language Trans-

The evaluation campaign of the 19th Interna-
tional Conference on Spoken Language Trans-
lation featured eight shared tasks: (i) Simul-
taneous speech translation, (ii) Offline speech
translation, (iii) Speech to speech transla-
tion, (iv) Low-resource speech translation,
(v) Multilingual speech translation, (vi) Di-
alect speech translation, (vii) Formality con-
trol for speech translation, (viii) Isometric
speech translation. A total of 27 teams partic-
ipated in at least one of the shared tasks. This
paper details, for each shared task, the pur-
pose of the task, the data that were released,
the evaluation metrics that were applied, the
submissions that were received and the results
that were achieved.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) is the premier annual
scientific conference for all aspects of spoken lan-
guage translation. IWSLT is organized by the Spe-
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lation, which is supported by ACL, ISCA and
ELRA. Like in all previous editions (Akiba et al.,
2004; Eck and Hori, 2005; Paul, 2006; Fordyce,
2007; Paul, 2008, 2009; Paul et al., 2010; Federico
etal., 2011, 2012; Cettolo et al., 2013, 2014, 2015,
2016, 2017; Niechues et al., 2018, 2019; Ansari
et al., 2020; Anastasopoulos et al., 2021), this
year’s conference was preceded by an evaluation
campaign featuring shared tasks addressing scien-
tific challenges in spoken language translation.
This paper reports on the 2022 IWSLT Evalua-
tion Campaign, which offered eight shared tasks:

* Simultaneous speech translation, addressing
low latency speech translation either streamed
by a speech recognition (ASR) system or di-
rectly from the audio source. The translation
directions for both conditions are: English to
German, English to Japanese, and English to
Mandarin Chinese.

* Offline speech translation, proposing speech

Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022), pages 98 - 157
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Team Organization

AISP-SJTU Shanghai Jiao Tong University, China (Zhu et al., 2022)

ALEXA Al Amazon Alexa Al, USA (Shanbhogue et al., 2022)

APPTEK AppTek, Germany (Wilken and Matusov, 2022)

APV Amazon Prime Video, USA (Zhang et al., 2022a)

CMU Carnegie Mellon University, USA (Yan et al., 2022)

CUNI-KIT Charles University, Czech Republic, and KIT, Germany (Polék et al., 2022)
FBK Fondazione Bruno Kessler, Italy (Gaido et al., 2022)

GMU George Mason University, USA

HW-TSC Huawei Translation Services Center, China (Li et al.; Wang et al.; Guo et al.; Li et al.)
JHU Johns Hopkins University, USA (Yang et al., 2022)

KIT Karlsruhe Institute of Technology, Germany (Pham et al., 2022; Polék et al., 2022)
MLLP-VRAIN | Universitat Politecnica de Valéncia, Spain (Iranzo-Sdnchez et al., 2022)
NA Neural.Al, China

NAIST Nara Institute of Science and Technology, Japan (Fukuda et al., 2022)
NIUTRANS NiuTrans, China (Zhang et al., 2022c)

NUV Navrachana University, India (Bhatnagar et al., 2022)

NEMo NVIDIA NeMo, USA(Hrinchuk et al., 2022)

ON-TRAC ON-TRAC Consortium, France (Boito et al., 2022b)

voS University of Sheffield, UK (Vincent et al., 2022)

TALTECH Tallinn University of Technology, Estonia

UMD University of Maryland, USA (Rippeth et al., 2022)

UPC Universitat Politecnica de Catalunya, Spain (Tsiamas et al., 2022a)
USTC-NELSLIP | University of Science and Technology of China (Zhang et al., 2022b)
X1AOMI Xiaomi AI Lab, China (Guo et al., 2022a)

Y1 Yi, China (Zhang and Ao, 2022)

Table 1: List of Participants

translation of talks from English to German,
English to Japanese, and English to Mandarin
Chinese, using either cascade architectures or
end-to-end models able to directly translate
source speech into target text;

* Speech to speech translation, investigating for
the first time automatic translation of human
speech in English into synthetic speech in Ger-
man, either with cascaded or direct neural mod-
els.

* Low-resource speech translation, focusing on
resource-scarce settings for translating input
speech in Tamasheq into French text, and input
speech in Tunisian Arabic into English text.

* Multilingual speech translation, analyzing
the performance of multi-lingual versus bilin-
gual translation models for the Offline speech
translation tasks (discussed in the Offline task
section);

99

* Dialect speech translation, addressing speech
translation from Tunisian into English under
three training data conditions: (i) only with lim-
ited dialect-specific training data (provided by
the organizers); (ii) with also larger amount of
related-language data (Modern Standard Ara-
bic); (iii) with any kind of publicly available
data.

* Formality control for SLT, addressing the for-
mality level (formal vs. informal) in spoken
language translation from English into Ger-
man, Spanish, Hindi, Japanese, Italian and Rus-
sian. The task focuses in particular on zero-shot
learning in multilingual models, given that for
the last two directions no formality-annotated
training data is provided.

* Isometric SLT, addressing the generation of
translations similar in length to the source, from
English into French, German and Spanish.



The shared tasks attracted 27 participants (see Ta-
ble 1) from both academic and industrial organi-
zations. The following sections report on each
shared task in detail, in particular: the goal and au-
tomatic metrics adopted for the task, the data used
for training and testing data, the received submis-
sions and the summary of results. Detailed results
for some of the shared tasks are reported in a cor-
responding appendix.

2 Simultaneous Speech Translation

Simultaneous translation is the task of generat-
ing translations incrementally given partial text or
speech input only. Such capability enables mul-
tilingual live communication and access to multi-
lingual multimedia content in real time. The goal
of this challenge, organized for the third consecu-
tive year, is to examine systems that translate text
or audio in a source language into text in a target
language from the perspective of both translation
quality and latency.

2.1 Challenge

Participants were given two parallel tracks to enter
and encouraged to enter all tracks:

* text-to-text: translating the output of a
streaming ASR system in real time from En-
glish to German, English to Japanese, and
English to Mandarin Chinese.

* speech-to-text: translating speech into text in
real time from English to German, English to
Japanese, and English to Mandarin Chinese.

For the speech-to-text track, participants were en-
couraged to submit systems either based on cas-
caded or end-to-end approaches. Participants were
required to upload their system as a Docker im-
age so that it could be evaluated by the organiz-
ers in a controlled environment. We also pro-
vided example implementations and baseline sys-
tems for English-German speech-to-text transla-
tion, English-Japanese speech-to-text translation
and English-Japanese text-to-text translation.

2.2 Data and Metrics

The training and development data conditions
were identical as in the Offline Speech Translation
track. More details are available in §3.2.

Systems were evaluated with respect to quality
and latency. Quality was evaluated with the stan-
dard BLEU metric (Papineni et al., 2002) and, as
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a first trial this year, also manually. Latency was
evaluated with metrics developed for simultaneous
machine translation, including average proportion
(AP), average lagging (AL) and differentiable av-
erage lagging (DAL, Cherry and Foster 2019), and
later extended to the task of simultaneous speech
translation (Ma et al., 2020b).

The evaluation was run with the SIMULEVAL
toolkit (Ma et al., 2020a). For the latency measure-
ment of all systems, we contrasted computation-
aware and non computation-aware latency met-
rics. Computation-aware latency was also com-
puted for text-to-text systems by taking into ac-
count the timestamps obtained from the ASR
transcript generated by a streaming ASR model.
The latency was calculated at the word level for
English-German systems and at the character level
for English-Japanese and English-Mandarin sys-
tems. BLEU was computed via sacrebleu (Post,
2018) (as integrated into SIMULEVAL) with de-
fault options for English-German, with the “zh”
option for English-Mandarin and with the MeCab
tokenizer for English-Japanese.

The systems were ranked by the translation
quality (measured by BLEU) in different latency
regimes, low, medium and high. Each regime
was determined by a maximum latency threshold
measured by AL on the Must-C tst-COMMON
set. The thresholds were set to 1000, 2000 and
4000 for English-German, 2500, 4000 and 5000
for English-Japanese and 2000, 3000 and 4000 for
English-Japanese, and were calibrated by the base-
line system. Participants were asked to submit
at least one system per latency regime and were
encouraged to submit multiple systems for each
regime in order to provide more data points for
latency-quality trade-off analyses. The organizers
confirmed the latency regime by rerunning the sys-
tems on the tst-COMMON set.

The systems were run on the test set segmented
in three ways: the first segmentation, called gold,
leverages the transcript to force align and segment
the audio; the second and third segmentations,
called Segmentation 1 and Segmentation 2, use a
voice activity detection tool to segment the input
audio without relying on the transcript.

2.3 Novelties for the Third Edition

Text-to-text track moving closer to the speech-
to-text track This year, we used the output of
a streaming ASR system as input instead of the



gold transcript. As a result, both text-to-text and
speech-to-text systems can be ranked together for
a given language pair.

Language pairs We added Mandarin Chinese as
a target language, resulting in three pairs: English-
German, English-Japanese and English-Mandarin.

Human Evaluation and Human Interpretation
Benchmark We added an experimental manual
evaluation for the English-to-German speech-to-
text track as well as a human interpretation bench-
mark (Section 2.6.1). Independently, English-to-
Japanese speech-to-text track outputs were also
manually scored, using the MQM setup, see Sec-
tion 2.6.2.

Segmentation We reverted to the setting of the
first edition where we only used segmented input
in order to reduce the number of conditions and
also because we noticed that existing latency met-
rics were not well adapted to long unsegmented in-
put. However, recent improvements to the latency
metrics (Iranzo-Sanchez et al., 2021) could allow
to work with unsegmented input in the future.

2.4 Submissions

The simultaneous task received submissions from
7 teams, the highest number to date. 5 teams
entered the English-German speech-to-text track,
3 teams entered the English-Mandarin speech-
to-text track and 3 teams entered the English-
Japanese speech-to-text track. For text-to-text,
there were 3 teams for English-Mandarin, 1 team
for English-German and 1 team for English-
Japanese. Given that the majority of submissions
were on the speech-to-text track, we are consider-
ing consolidating the task into speech-to-text only
in future editions.

X1A0MI  (Guo et al., 2022a) entered the text-
to-text track for English-Mandarin. Their model
is transformer-based and leverages R-Drop and a
deep architecture. Data augmentation methods in-
clude tagged backtranslation, knowledge distilla-
tion and iterative backtranslation. Simultaneous
models use the multi-path wait-k algorithm. Fi-
nally, two error correction models are introduced
in order to make the systems more robust to ASR
erTors.

MLLP-VRAIN (Iranzo-Sanchez et al., 2022)
entered the speech-to-text track for English-
German. They adopt a cascaded approach, with
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a chunking-based DNN-HMM ASR model, fol-
lowed by a multi-path wait-k transformer-based
MT model. Speculative beam search is employed
at inference time.

HW-TSC (Wang et al., 2022) entered all tracks,
i.e. speech-to-text and text-to-text for English-
German, English-Japanese and English-Mandarin.
Moreover, the authors contrasted cascaded and
end-to-end methods for the speech-to-text track.

CUNI-KIT (Poldk et al., 2022) entered the
speech-to-text track for English-German, English-
Japanese and English-Mandarin. They propose a
method for converting an offline model to a simul-
taneous model without adding modifications to the
original model. The offline model is an end-to-end
multilingual speech-to-text model that leverages a
pretrained wav2vec 2.0 encoder and a pretrained
mBART decoder. The input is broken down into
chunks and decoding is run for each new chunk.
Once a stable hypothesis is identified, that hypoth-
esis is displayed. Various stable hypothesis detec-
tion methods are investigated.

AISP-SJTU (Zhu et al., 2022) entered the
speech-to-text and text-to-text tracks for English-
Mandarin. Their model is based on an ASR + MT
cascade. They propose dynamic-CAAT, an im-
provement over CAAT (Liu et al., 2021) that uses
multiple right context window sizes during train-
ing. The proposed method is compared to wait-k
and multi-path wait-k. Data augmentation meth-
ods include knowledge distillation, tagged back-
translation and marking data with lowercased and
non punctuated input with a special token.

FBK (Gaido et al., 2022) entered the speech-to-
text track for English-German with an end-to-end
model. The authors’ main goal is to reduce com-
putation requirements in order to democratize the
task to more academic participants. First, they
show how to avoid ASR encoder pretraining by
using a conformer architecture and a CTC loss on
top of an intermediate layer in the encoder. In
addition, they use the same model for the offline
task as for the simultaneous task. The auxiliary
CTC loss is used to predict word boundaries and
informs a wait-k policy. The latency is also con-
trolled by the speech segment size. Finally, two
data filtering methods based on negative log like-
lihood of an initial model and length ratio are in-
vestigated in order to make training more efficient.



NAIST (Fukuda et al, 2022) entered the
speech-to-text track for English-German and
English-Japanese. The proposed model applies
decoding each time a new input speech segment
is detected and to constrain the decoder on pre-
viously output predictions. An offline model is
trained first and then finetuned on prefix pairs. The
prefix pairs are extracted by translating prefixes
and checking that the generated target is a prefix
of the translation of the entire input. Prefixes with
length imbalance are filtered out. An input seg-
ment boundary predictor is trained as a classifier
by considering all prefixes and giving a positive
labels to those prefixes that were extracted previ-
ously.

2.5 Results

Results are summarized in Figure 1, Figure 2 and
Figure 3. We also present the text-to-text results
on English-Mandarin ! in Figure 4. More details
are available in the appendix. The results include
both text-to-text systems and speech-to-text sys-
tems. When participants submitted both a text-to-
text system and a speech-to-text system, we retain
the best system. The only participant with only a
text-to-text system is XIAOMI and we can see that
the system is at a disadvantage due to the noise in-
troduced by the provided streaming ASR model.
The ranking are consistent across the medium and
high latency regime. However, for the low latency
regime, we note a degradation from the FBK sys-
tem and we observe that the NAIST system is ro-
bust to lower latency.

2.6 Human Evaluation

We conducted a human evaluation for English-to-
German and English-to-Japanese independently.

2.6.1 English-to-German

For English-to-German, the human evaluation was
inspired by Javorsky et al. (2022). This evalua-
tion examined (1) the best system from each la-
tency regime selected by BLEU score, and (2)
transcription of human interpretation by a profes-
sional English-German interpreter (certified con-
ference interpreter and sworn translator and in-
terpreter for the Czech and English languages) in
February 2022. The interpreting was carried out
remotely and transcribed by students of German
for Intercultural Communication at the Institute of

'Only this language pair has more than one text-to-text
systems submitted.
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Translation Studies, Charles University, Faculty of
Arts.?

The English-to-German task used two parts of
the test set: (1) the Common part is used as the
blind test set in the automatic evaluation and also
in the Offline speech translation task, and (2) the
Non-Native part comes from IWSLT 2019 Non-
Native Translation Task.

Details of the human evaluation are provided
in Section A.1.1 of the Appendix and results are
shown in Table 18.

The Common part of the test set is kept confi-
dential for future use. For the Non-Native part, we
release system outputs as well as manual judge-
ments on the corresponding IWSLT page.?

2.6.2 English-to-Japanese

For English-to-Japanese, we used JTF Translation
Quality Evaluation Guidelines (JTF, 2018) based
on Multidimensional Quality Metrics (MQM). We
chose four systems for the evaluation and asked a
professional translator to evaluate the translations
for one talk in the blind test set. We followed the
error weighting by a previous study (Freitag et al.,
2021a) to calculate error scores. Details of the hu-
man evaluation are provided in A.1.2 in Appendix.

The results are shown in Table 16, and we
can find the error scores positively correlate with
BLEU.

2.7 Future Editions
Possible changes to future editions include:

* changing the latency metric in order to sup-
port long unsegmented input.

* extending the task to support speech output.

* removing the text-to-text track in order to
consolidate tracks.

3 Offline Speech Translation

Offline speech translation, defined in various
forms over the years, is one of the speech tasks
with the longest tradition at the IWSLT campaign.
This year,* it focused on the translation of English
audio data extracted from TED talks® into text in
one of the three target languages comprising the
2022 sub-tasks, i.e. German, Japanese, and Man-
darin Chinese.

http://utrl.ff.cuni.cz/en

*https://iwslt.org/2022/simultaneous

*http://iwslt.org/2022/0ffline
Shttp://www.ted.com
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Figure 4: Latency-quality tradeoff curves for English-Mandarin (text-to-text track).

3.1 Challenge

In recent years, offline speech translation (ST) has
seen a rapid evolution, characterized by the steady
advancement of direct end-to-end models (build-
ing on a single neural network that directly trans-
lates the input audio into target language text)
that were able to significantly reduce the perfor-
mance gap with respect to the traditional cas-
cade approach (integrating ASR and MT compo-
nents in a pipelined architecture). In light of the
IWSLT results of the last two years (Ansari et al.,
2020; Anastasopoulos et al., 2021) and of the find-
ings of recent work attesting that the gap between
the two paradigms has substantially closed (Ben-
tivogli et al., 2021), also this year a key element
of the evaluation was to set up a shared framework
for their comparison. For this reason, and to re-
liably measure progress with respect to the past
rounds, the general evaluation setting was kept un-
changed.

On the architecture side, participation was al-
lowed both with cascade and end-to-end (also
known as direct) systems. In the latter case, valid
submissions had to be obtained by models that:
i) do not exploit intermediate symbolic represen-
tations (e.g., source language transcription or hy-
potheses fusion in the target language), and ii) rely
on parameters that are all jointly trained on the
end-to-end task.

On the test set provision side, also this year
participants could opt for processing either a pre-
computed automatic segmentation of the test set
or a version of the same test data segmented with
their own approach. This option was maintained
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not only to ease participation (by removing one
of the obstacles in audio processing) but also to
gain further insights into the importance of prop-
erly segmenting the input speech. As shown by the
results of recent IWSLT campaigns, effective pre-
processing to reduce the mismatch between the
provided training material (often “clean” corpora
split into sentence-like segments) and the supplied
unsegmented test data is in fact a common trait of
top-performing systems.

Concerning the types of submission, also this
year two conditions were offered to participants:
constrained, in which only a pre-defined list of re-
sources is allowed, and unconstrained.

Multiple submissions were allowed, but par-
ticipants had to explicitly indicate their “pri-
mary” (one at most) and ‘“‘contrastive” runs,
together with the corresponding type of sys-
tem (cascade/end-to-end), training data condition
(constrained/unconstrained), and test set segmen-
tation (own/given).

Novelties of the 2022 offline ST task. Within
this consolidated overall setting, the organization
of this year’s task took into consideration new
emerging challenges, namely: i) the availability
of new data covering more language directions, ii)
the development of new and gigantic pre-trained
models, and iii) the need for more accurate eval-
uations. Accordingly, three main differences with
respect to previous editions characterize this year’s
edition:

e To measure systems performance in dif-
ferent language settings, two new tar-



get languages have been added, extend-
ing the number of offline ST sub-tasks to
three: English-German (the traditional one),
English-Chinese, and English-Japanese.

To understand the effect of exploiting popu-
lar pre-trained models in state-of-the-art ST
systems, participants were given the possibil-
ity to exploit some of them in addition to the
allowed training resources for the constrained
condition.

To shed light on the reliability of system
ranking based on automatic metrics, and to
align our task with other evaluation cam-
paigns (e.g. WMT?), the outputs of all the
submitted primary systems have been manu-
ally evaluated by professional translators. On
this basis, a new ranking based on direct hu-
man assessments was also produced.

3.2 Data and Metrics

Training and development data. Also this year,
participants had the possibility to train their sys-
tems using several resources available for ST, ASR
and MT.

To extend the language directions covered by
the offline task, new data was selected from the
English-Chinese and English Japanese sections of
the MuST-C V2 corpus’. For both languages, they
include training, dev, and test (Test Common), in
the same structure of the MuST-C V2 English-
German section (Cattoni et al., 2021) used last
year.

Besides the two new language directions of
MuST-C V2, also this year the allowed training
corpora include:

* MuST-C V1 (Di Gangi et al., 2019);

CoVoST (Wang et al., 2020a);

WIT? (Cettolo et al., 2012) ;
Speech-Translation TED corpus®;

How?2 (Sanabria et al., 2018)°;

e LibriVoxDeEn (Beilharz and Sun, 2019)';
‘http://www.statmt.org/wmt22/
"http://ict.fbk.eu/must-c/
$http://i13pcl06.ira.uka.de/~mmueller/

iwslt—-corpus.zip
“only English - Portuguese
"%only German - English
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Europarl-ST (Iranzo-Sanchez et al., 2020);

TED LIUM v2 (Rousseau et al., 2014) and v3
(Hernandez et al., 2018);

WMT 2019'! and 20202
OpenSubtitles 2018 (Lison et al., 2018);

Augmented LibriSpeech
etal., 2018)"

(Kocabiyikoglu

4

bl

Mozilla Common Voice!

LibriSpeech ASR corpus (Panayotov et al.,
2015);

VoxPopuli'®> (Wang et al., 2021).

The only addition over last year is the VoxPopuli
dataset.

Similarly to the training data, participants were
also provided with a list of pre-trained models that
can be used in the constrained condition. The list
includes:

» Wav2vec 2.0'® (Baevski et al., 2020a);

Hubert'”;

MBART!® (Liu et al., 2020);

MBARTS50" (Tang et al., 2020);

M2M100%° (Fan et al., 2021);

Delta LM?! (Ma et al., 2021);

T5% (Raffel et al., 2020).

"http://www.statmt .org/wmt19/
12http://www.statmt.org/wthO/
Bonly English - French
14http://voice.mozilla.org/en/datasets -
English version en_1488h_2019-12-10
Bhttps://github.com/facebookresearch/
voxpopuli
Yhttps://github.com/pytorch/fairseq/
blob/main/examples/wav2vec/README .md
"https://github.com/pytorch/fairseq/
tree/main/examples/hubert
Bhttps://github.com/pytorch/fairseq/
blob/main/examples/mbart/README .md
Yhttps://github.com/pytorch/fairseq/
tree/main/examples/multilingual#
mbart50-models
PMttps://github.com/pytorch/fairseq/
tree/main/examples/m2m_100
lnttps://github.com/microsoft/unilm/
tree/master/deltalm
Zhttps://github.com/google-research/
text-to-text-transfer-transformer



The development data allowed under the con-
strained condition consist of the dev set from
IWSLT 2010, as well as the test sets used for
the 2010, 2013, 2014, 2015, 2018, 2019, and
2020 IWSLT campaigns. Using other train-
ing/development resources was allowed but, in
this case, participants were asked to mark their
submission as unconstrained.

Test data. For each language direction, namely
En-De, En-Zh and En-Ja, a new test set was cre-
ated. The new test sets were built from 17 TED
talks for En-De, 16 for En-Zh and 13 for En-Ja.
None of these talks is included in the current pub-
lic release of MuST-C. Similar to last year, par-
ticipants were presented with the option of pro-
cessing either an unsegmented version (to be split
with their preferred segmentation method) or an
automatically segmented version of the audio data.
For the segmented version, the resulting number of
segments is 2,059 (corresponding to about 3h34m
of translated speech from 17 talks) for En-De,
1,874 (3h17m) for En-Zh and 1,758 (2h38m) for
En-Ja. The details of the three test sets are reported
in Table 2.

Lang |Talks Sentences Duration
En-De| 17 2,059 3h34m
En-Zh| 16 1,874 3h17m
En-Ja| 13 1,768 2h38m

Table 2: Statistics of the official test sets for the offline
speech translation task (¢s:2022).

To measure technology progress with respect to
last year’s round, participants were asked to pro-
cess also the undisclosed 2021 En-De test set that,
in the segmented version, consists of 2,037 seg-
ments (corresponding to about 4.1 hours of trans-
lated speech from 17 talks).

Metrics. The systems’ performance was eval-
uated with respect to their capability to produce
translations similar to the target-language refer-
ences. This similarity is measured using the
BLEU metric, computed with SacreBLEU (Post,
2018) with default settings.

Similar to the 2021 edition, we consider
two different types of target-language references,
namely:

* The original TED translations. Since these
references come in the form of subtitles, they
are subject to compression and omissions to

106

adhere to the TED subtitling guidelines.”’
This makes them less literal compared to
standard, unconstrained translations;

Unconstrained translations. These references
were created from scratch’* by adhering to
the usual translation guidelines. They are
hence exact translations (i.e. literal and with
proper punctuation).

Lang Pair Lang Sentences Words
En 2,059 39,814

En-De  De - Orig 2,059 32,361
De - Uncon.| 2,059 36,655

En 1,874 36,736

En-Zh  7Zh - Orig 1,874  63,876"
Zh - Uncon.| 1,874 64,767*

En 1,768 30,326

En-Ja Ja - Orig 1,768 62,778*
Ja - Uncon. 1,768  74,637*

Table 3: Statistics of the official test set for the offline
speech translation task (£5s:2022). * statistics are re-
ported in terms of characters for Chinese and Japanese.

As shown in Table 3, the different approaches
to generate the human translations led to signif-
icantly different references. For En-De, while
the unconstrained translation has a similar length
(counted in words) compared to the correspond-
ing source sentence, the original is ~15% shorter
in order to fulfil the additional constraints for sub-
titling. For En-Ja and En-Zh, it is difficult to make
a proper comparison with the source data as the
Japanese and Chinese data are counted in char-
acters while the English one is counted in words.
However, it is evident that the unconstrained trans-
lations have more characters than the original ones
following a similar trend seen for En-De.

Besides considering separate scores for the two
types of references, results were also computed by
considering both of them in a multi-reference set-
ting. Similar to last year, the submitted runs were
ranked based on case-sensitive BLEU calculated
on the test set by using automatic re-segmentation

Bhttp://www.ted.com/participate/
translate/subtitling-tips

**We would like to thank Meta for providing us with this
new set of references.



of the hypotheses based on the reference transla-
tions by mwerSegmenter.?>

3.3 Submissions

Overall, 10 different teams submitted at total of 29
primary submissions. For the English-to-German
task 8 teams submitted 10 runs, for English-to-
Chinese 9 teams 11 runs and for the English-to-
Japanese task 6 teams participated with 8 primary
runs. For all the language pairs two teams sub-
mitted a primary cascaded and a primary end-to-
end system. Overall, most teams participated in all
3 language directions, partly with individual sys-
tems and partly with multi-lingual systems.

We encouraged the submission of end-to-end
as well as cascaded systems. Several partici-
pants experimented with both types of architec-
tures and in two instances primary end-to-end and
cascaded systems were submitted. In total, we had
4 cascaded and 6 end-to-end submissions for the
English-to-German tasks, 5 cascaded and 6 end-
to-end for English-to-Chinese and 3 cascaded and
5 end-to-end submissions for English-to-Japanese.

One additional change in this year’s evaluation
campaign was that the use of a list of pre-trained
models. Most of the teams investigated this re-
search direction and integrated pre-trained mod-
els into their final submission. Both, the integra-
tion of pre-trained speech models as well as text
models were successfully investigated. In addi-
tion, several teams focused on audio segmentation
approaches.

e HW-TSC (Li et al., 2022a) submission is
built in the cascaded form, including three
types of ASR models and one type of trans-
lation model. Before performing the speech
translation, the LIUM SpkDiarization tool
(Rouvier et al., 2013), provided to the par-
ticipants, was used to cut off the test set
wav files into segments. For the ASR part,
they use conformer, U2T-transformer and
U2-conformer, and all of them are trained
on a combination of the MUST-C, COVOST,
LibriSpeech, TedLIUM datasets. The sys-
tem is adapted to the TED domain using do-
main tags. For the translation model, they
trained a Transformer-large on the WMT21-
news dataset, and fine-tuned it on the MUST-
C and IWSLT datasets. The output of the dif-

Phttp://www—-1i6.informatik.rwth-aachen.
de/web/Software/mwerSegmenter.tar.gz
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ferent ASR models has been re-ranked and
the best combination selected as primary sub-
mission.

FBK (Gaido et al., 2022) focused in their
submission on reducing model training costs
without sacrificing translation quality. They
submitted an end-to-end speech transla-
tion system model using the conformer-
architecture without pre-trained models. The
model is trained on specifically filtered and
resegmented parts of the corpus. The final
submission is an ensemble of several models.

USTC-NELSLIP (Zhang et al., 2022b) sub-
mitted primary end-to-end and cascaded sys-
tems for all three language directions which
ensemble several individual models. In the
cascaded condition, the ASR models com-
bined transformer and conformer architec-
tures and the MT models are trained on
synthetic data to be robust against ASR er-
rors. The end-to-end models also combine
conformer and transformer encoders and are
partly initialized from ASR systems.

ALEXA AI (Shanbhogue et al., 2022) submit-
ted an end-to-end speech translation system
that leverages pretrained models and cross
modality transfer learning for all three lan-
guage directions. They used encoders for text
as well as speech and initialized the models
using pretrained speech and text models. The
work mainly focused on improving knowl-
edge transfer. In addition, a special focus was
put on segmentation strategies.

NIUTRANS (Zhang et al., 2022c) submission
to the English-Chinese track is an end-to-end
speech translation system composed of dif-
ferent pre-trained acoustic models and ma-
chine translation models. The models were
combined by two kinds of adapters and the
final submission is an ensemble of three indi-
vidual speech translation models.

UPC (Tsiamas et al., 2022a) submission is an
end-to-end speech translation model which
combines pre-trained speech encoder and text
decoder for all the three language directions
of the task. As a speech encoder wav2vec
2.0 and HuBERT are used, both already fine-
tuned on English ASR data. As a text decoder



an mBARTS50 fine-tuned on multilingual MT
(one-to-many) is used. These two modules
are coupled with a length adaptor block and
in the end-to-end training, additional adapters
are trained. For the final submission several
initial models are combined.

KIT (Pham et al., 2022) submitted an end-
to-end system using pre-trained audio and
text models to all the three language direc-
tions. The systems were trained on the ini-
tial training data as well as on additional syn-
thetic data. Furthermore, sentence segmen-
tation strategies were investigated. The final
submission is an ensemble of several models.

Y1 (Zhang and Ao, 2022)) submitted pri-
mary end-to-end and cascaded systems for
all three language directions using large-scale
pre-trained models. Starting from pre-trained
speech and language models, the authors in-
vestigated a multi-stage pre-training and the
use of a task dependent fine-tuning for ASR,
MT and speech translation. In addition, var-
ious efforts to perform data preparation was
carried out. Finally, an ensemble of several
models was submitted as the primary submis-
sion.

NEURAL.AI submitted a cascaded speech
translation system to the English-to-Chinese
speech translation task. The ASR system
consists of a conformer encoder and a trans-
former decoder. The MT system is a fined-
tuned deltalm-base.

3.4 Results

This year, the submissions to the IWSLT Offline
translation task were not only evaluated using au-
tomatic metrics, but also a human evaluation was
carried out. All results are shown in detail in the
appendix.

3.4.1 Automatic Evaluation

The results for each of the language pairs are
shown in the tables in section A.5. For English-
to-German we show the results for this year’s test
set (Table 19) as well as for last year’s test set (Ta-
ble 20). This enables us to also show the progress
compared to last year. For the two new language
pairs, English-to-Chinese (Table 21) and English-
to-Japanese (Table 22), we present the numbers of
this year’s test set.
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First, all the submissions are distributed in a
range from 4 to 7 BLEU points. The only ex-
ception is Chinese, where one system performed
significantly worse than the others. This large
BLEU score range is significantly different than
last year’s ranking where all the submissions were
close to each other. The overall 2022 ranking for
the English-German task is quite similar to the
ranking obtained for the test set 2021.

Progress The comparison between this year’s
submissions and last year’s submission on test set
2021 in the English-to-German task allows us to
measure the progress since last year. As shown in
Table 20, 7 out of 9 systems performed better than
the best system last year. This year’s best system
is 4 BLEU points better than last year’s system.
So, we are seeing a clear improvement in transla-
tion quality. One possible reason for the improve-
ment is the additional allowed resources (the Vox-
Populi dataset and the pre-trained models). How-
ever, also teams not using the additional resources
(FBK) outperformed last year’s system.

End-to-end vs. cascade As in previous years,
we received cascaded and end-to-end submissions.
While in the last years, end-to-end systems were
able to close the gap to cascaded systems, we do
not see this trend since last year. In this year, for
all conditions, a cascaded system performed best.
Furthermore, when looking at the participants who
submitted both, a primary end-to-end and a pri-
mary cascaded system, in 6 out of 8 times, the cas-
caded system performed better than the end-to-end
system. Whether this is partly due to the integra-
tion of pre-trained models has to be evaluated in
further experiments.

Pre-trained models It is difficult to measure the
impact of pre-trained models since there is no
participant submitting both, a translation system
with and without pre-trained models. However,
there are some indications of the usefulness of
pre-trained models. First, nearly all participants
submitted systems with pre-trained models. Typ-
ically, these are audio encoders like wav2vec or
Hubert for the encoder and text models like mBart
for the decoder. Secondly, all winning systems
are using this technology. And finally, we see
large gains in translation quality compared to last
year, where this technique was not allowed. Con-
sequently, these models seem to be an interesting
knowledge source. However, it should be noted



that the models are rather large and therefore can
also be a limiting factor for teams to participate in
the evaluation campaign.

Multi-lingual models For the first time, since
several years, this year’s edition of the offline task
included several language directions. Interest-
ingly, this did not lead to a partition of participants
into different language pairs, but most participants
submitted translations for all three language pairs.
While the best performing systems were individ-
ually optimized for each language, we also see
multilingual models submitted to the tasks. Espe-
cially, the integration of pre-trained models, which
are typically multi-lingual, made it easier to build
translation systems for all three conditions. While
the ranking between the languages is not the same,
it is still very similar. This indicates that a good
system in one language direction typically will
also result in good performance in the other di-
rections. While the amount of training resources
is at least comparable, this is interesting since the
languages are rather different.

3.4.2

We conducted a human evaluation of primary sub-
missions based on a random selection of 1,350
segments from the test set of each language pair.
Human graders were asked for a direct assessment,
expressed through scores between 0 and 100. To
minimize the impact of errors in the automatic seg-
mentation, graders were also shown system out-
put for the previous and the following sentence
and asked not to let segmentation issues influence
their scores. We used Appraise to compute sys-
tem scores, statistical significance, and rankings.
Details of the human evaluation are provided in
Section A.2.

As for the results (Tables 23, 24, 25), the rank-
ing of systems matches that of the automatic eval-
uation when accounting for statistical significance
for English to German and English to Chinese,
but not for English to Japanese. The scores indi-
cate clear differences between systems (that usu-
ally persist across language pairs), but also signif-
icant overlap in the translation quality of different
systems.

Human Evaluation

3.4.3 Final remarks

By inspecting this year’s results, we can make
three final observations.

The first is about the relation between the cas-
cade and end-to-end technology. According to the

automatic metrics, and in contrast to last year’s
campaign, cascade systems achieve the best per-
formance in all the language directions. However,
human evaluation does not validate automatic re-
sults for En-De and En-Jp, where the best cascade
and end-to-end systems are in the same cluster and
not statistically different. This outcome further
confirms the findings of Bentivogli et al. (2021)
for En-De but extends them to one new language
pair out of the two addressed (En-Jp and En-Zh).
For this reason, more investigation about the two
technologies is still needed and will be further car-
ried out in the next editions of this task.

The other observation is about the introduction
of human evaluation in our task. While largely
confirming the rankings obtained with automatic
metrics, it provides the most reliable picture of the
real differences between the systems, showing that
they are not so evident as they were detected by
automatic metrics. Given the importance of hu-
man evaluation to accurately assess state-of-the-
art technologies, we plan to rely on it also in the
next edition of the task.

The last observation is about the noticeable
jump in performance on the progress test set com-
pared to last year’s systems. All the current sys-
tems have been able to outperform the best 2021
system, with gains reaching up to 6 BLEU score
points when using multiple references. While it
is difficult to ascribe this improvement to a single
factor, it is worth to note that the main change in
this year’s task setting is the availability of pre-
trained models. We suggest that these models can
have an important role in the final translation qual-
ity, and we plan to further investigate their useful-
ness in the next edition.

4 Speech to Speech Translation

Speech-to-speech translation is the task of trans-
lating audio input in a language into audio output
in a target language. In the offline setting, systems
are able to take into account an entire input audio
segment in order to translate, similar to a consecu-
tive interpreter. This is in contrast to streaming or
simultaneous settings where systems are only ex-
posed to partial input as in simultaneous interpre-
tation. The goal of this task is to foster the devel-
opment of automatic methods for offline speech-
to-speech translation.
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4.1 Challenge

Participants built speech-to-speech translation sys-
tems from English into German using any pos-
sible method, for example with a cascade sys-
tem (speech recognition + machine translation
+ speech synthesis or end-to-end speech-to-text
translation + speech synthesis) or an end-to-end or
direct system.

4.2 Data and Metrics

Data. This task allowed the same training and
testing data from the Offline task on English-
German speech-to-text translation to more directly
compare Offline S2T and S2ST systems. More
details are available in §3.2. We note that while
the evaluation data between the two tasks was
the same, it was not directly parallel, as differ-
ent sentence-level segmentation was used. For this
task, gold sentence segmentation was used. This
means that scores are not directly comparable be-
tween the two tasks, though we do evaluate a di-
rect comparison for a subset of submissions.

In addition to the Offline task data, the follow-
ing training data was allowed to help build Ger-
man TTS and English-German speech-to-speech
models:

* Synthesized MuST-C: Target speech for the
German target text of MuST-C V2 (Cattoni
et al., 2021) which was synthesized for this
task using a VITS model (Kim et al., 2021)
trained on the German portion of CSS10.

CSS10: A single-speaker German TTS
dataset (Park and Mulc, 2019)

Pretrained German TTS model: A pre-
trained German VITS (Kim et al., 2021) TTS
model to facilitate cascaded models and dual
submission with the Offline task.

We note that several datasets allowed for the
Offline task including Common Voice (Ardila
et al., 2020) and LibriVoxDeEn (Beilharz and Sun,
2019) also contain multi-speaker German speech
and text data, enabling their use for this task as
well.

Metrics. While we evaluate with both automatic
and human evaluation scores, systems were ranked
according to the human evaluation.
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Automatic metrics. To automatically evaluate
translation quality, the speech output was auto-
matically transcribed with an ASR system (Con-
neau et al., 2021),’® and then BLEU (Papineni
et al., 2002) was computed between the generated
transcript and the human-produced text reference.
Previous work (Salesky et al., 2021) has shown
evaluating synthesized speech with ASR and chrF
can be more robust than ASR and BLEU, so we
additionally score with chrF (Popovié, 2015). All
scores were computed using SacreBLEU (Post,
2018).

Human evaluation. Output speech translations
were evaluated with respect to translation quality
and speech quality.

* Translation quality: Bilingual annotators
were presented with the source audio and the
target audio, and gave scores on the trans-
lation quality between 1 and 5. There were
3 annotators per sample and we retained the
median score.

Output speech quality: In addition to trans-
lation quality (capturing meaning), the qual-
ity of the speech output was also human-
evaluated along three dimensions: natural-
ness (voice and pronunciation), clarity of
speech (understandability), and sound qual-
ity (noise and other artifacts). These axes are
more fine-grained than the traditional overall
MOS score.

The detailed guidelines for output speech quality
were as follows:

* Naturalness: Recordings that sound human-
like, with natural-sounding pauses, stress,
and intonation, should be given a high score.
Recordings that sound robotic, flat, or other-
wise unnatural should be given a low score.

Clarity of speech: Recordings with clear
speech and no mumbling and unclear phrases
should be given a high score. Recordings
with a large amount of mumbling and unclear
phrases should be given a low score.

Sound quality: Recordings with clean au-
dio and no noise and static in the background
should be given a high score. Recordings
with a large amount of noise and static in the

background should be given a low score.

P wav2vec2-large-xIsr-53-german



4.3 Submissions

We received submissions from four teams, one of
which was withdrawn due to submission errors.
We also compare two submissions to the Offline
task which were retranslated with the gold seg-
mentation and synthesized using the TTS model
provided by the organizers.

MLLP-VRAIN (Iranzo-Sanchez et al., 2022)
submitted a cascaded system of separate ASR,
MT, and TTS models. They use the same ASR
and MT models developed for the Simultaneous
ST task, with a less restrictive pruning setup to al-
low a wider search space for the ASR model and
without the multi-path wait-k policy used there for
MT. They include a speaker-adaptive module in
their TTS system to produce a high quality voice
that mimics voice characteristics of the source
speaker. Their TTS model is a typical two-stage
approach, combining a Conformer-based model
(Gulati et al., 2020) to produce spectrograms with
a multi-band UnivNet (Jang et al., 2021) model
to then produce speech waveforms. They include
a speaker encoder, a modified ResNet-34 resid-
ual network architecture (He et al., 2016) from
(Chung et al., 2018) more widely used for speaker
recognition tasks and trained on the TED-LIUM
v3 dataset (Hernandez et al., 2018), which is com-
bined with the Conformer output to produce more
faithful voices.

HW-TSC (Guo et al., 2022b) submitted a cas-
caded system of separate ASR, MT, and TTS mod-
els. The ASR model ensembles Conformer (Gulati
et al., 2020) and S2T-Transformer models (Syn-
naeve et al., 2020), and is cleaned with the U2
model. The MT model is pretrained on news
corpora and finetuned to MuST-C and IWSLT
data, with context-aware MT reranking inspired
by Yu et al. (2020). They use the provided pre-
trained VITS TTS model. They use domain tags
for each training data source to improve perfor-
mance. They submitted one primary and three
contrastive systems, which ablate individual com-
ponents. Contrastivel includes the ASR ensemble
but removes reranking for both ASR and MT. Con-
strastive2 uses the Conformer ASR model only
without reranking. Contrastive3 uses the S2T-
Transformer ASR model only without reranking.

UPC (Tsiamas et al., 2022a) submitted a cas-
caded system, extending their direct speech-to-
text model submitted to the Offline task with the
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provided German VITS TTS model for S2ST.
Their final speech-to-text model combined ini-
tialization using HuBERT models, LayerNorm
and Attention finetuning (LNA), and knowledge
distillation from mBART. For both tasks, they
used SHAS segmentation during training (Tsia-
mas et al., 2022b) for consistent improvements.
Data filtering and augmentation were also key as-
pects of their submission.

A direct S2ST model built upon the VITS synthe-
sis model was submitted but withdrawn due to er-
rors.

4.4 Results

Results as scored by automatic metrics are shown
in Table 26 and human evaluation results are
shown in Table 27 and Table 28 in the Appendix.

Overall results. From the automatic metric per-
spective, MLLP-VRAIN obtains the highest
ASR-BLEU score, followed by HW-TSC and
UPC. Note that there is a disagreement between
BLEU and chrF ranking for MLLP-VRAIN and
HW-TSC. For human evaluation along the speech
quality perspective, MLLP-VRAIN obtains a
higher quality system compared to the other sys-
tems. This is expected as HW-TSC, UPC and
the reference system all use the default provided
TTS system. It is interesting to note that for these
3 systems, all scores are close to each other on
speech quality even though the output content is
different. We thus hypothesize that speech qual-
ity is orthogonal to translation quality. Finally,
for human evaluation along the translation quality
perspective, HW-TSC obtained the highest score,
followed by MLLP-VRAIN and UPC. Note that
this ranking is consistent with the ASR-chrF but
not with ASR-BLEU. Surprisingly, the reference
system obtains the lowest score. We hypothesize
that this may be due to misalignments in the test
set between the source audio and the source tran-
script (rather than between the source transcript
and the target translation since the target transla-
tions were generated by human translator given
the source text transcripts). In addition, we found
variance between raters, which could account for
this. We will go through a review process for those
instances prior to releasing the human judgments.

S2ST Approaches. This year, all systems ex-
cept the withdrawn submission were cascaded sys-
tems, with two systems adopting an ASR + MT +



TTS approach and one system adopting an end-
to-end S2T + TTS approach. This does not allow
us to draw meaningful conclusions on various ap-
proaches to the task and we will encourage more
direct and/or end-to-end submissions in future edi-
tions.

Automatic scoring. To compute automatic met-
rics, we apply several steps, which may affect
quality assessment. The final row of Table 26
shows chrF and BLEU computed on normalized
text translations and references; normalizing sys-
tem output and references reduces scores slightly,
by 0.8 BLEU and 0.3 chrF. The larger potential
for degradation comes from the synthesis (TTS)
and transcription (ASR) roundtrip, which we can
directly evaluate the effects of using the refer-
ence translations and cascaded systems. Synthe-
sizing the gold reference translation and transcrib-
ing with the wav2vec2-large-xlsr-53-german ASR
model gives a BLEU score of 68.46 and chrF of
88.78 — degradation of 31.5 BLEU and 11.2 chrF.
This confirms errors are introduced by imperfect
TTS and ASR models when scoring S2ST systems
in this way, and also shows the greater impact of
slight variations introduced by TTS and ASR on
word-level BLEU than on chrF, which does not
necessarily reflect differences in human evaluation
(see results in Section B.3). When synthesizing
and transcribing machine translation output, there
is also degradation in metric scores compared to
directly evaluating the text output, but it is con-
siderably smaller. For example, the FBK Offline
submission + TTS scores are reduced by 6 BLEU
and 4.6 chrF. We see comparing the FBK, KIT,
and UPC submissions here, which were all also
submitted to the Offline task as speech-to-text sys-
tems and then the translations synthesized with
the same TTS model, that though there are degra-
dations in performance from synthesis, the rela-
tive performance of these models is partly main-
tained. While the submissions from KIT and
FBK both outperform UPC, the relative perfor-
mance between KIT and FBK reverses according
to BLEU - but not according to chrF. This sug-
gests that a finer granularity translation metric may
better reflect translation quality after synthesis.

4.5 Conclusion

This is the first time that speech output is intro-
duced in one of the IWSLT shared tasks. The
speech-to-speech task serves as a pilot for this kind

of task and we plan to run future editions of this
task. Possible future extensions include extending
the task to the simultaneous setting and running
human evaluations dedicated to additional aspects
of the speech output (e.g. preservation of some
non-lexical aspects of the input).

5 Low-Resource Speech Translation

This shared task focuses on the problem of de-
veloping speech transcription and translation tools
for under-resourced languages. For the vast ma-
jority of the world’s languages there exist little
speech-translation parallel data at the scale needed
to train speech translation models. Instead, in a
real-world situation one might have access to lim-
ited, disparate resources (e.g. word-level transla-
tions, speech recognition, small parallel text data,
monolingual text, raw audio, etc).

Building on last year’s task that focused on
two varieties of Swabhili (Anastasopoulos et al.,
2021), the shared task invited participants to build
speech translation systems for translating out of
two predominantly oral languages, Tamasheq and
Tunisian Arabic, and into the linguae francae of
the respective regions (English and French). The
use of any pre-trained machine translation, speech
recognition, speech synthesis, or speech transla-
tion model was allowed, as did unconstrained sub-
missions potentially using data other than the ones
the organizers provided.

5.1 Data and Metrics

Two datasets were shared for this year’s low-
resource speech translation track: the Tamasheq-
French translation corpus (Boito et al., 2022a), and
the Tunisian Arabic-English dataset from the Di-
alect Translation track (unconstrained condition).
In this section we will focus on the Tamasheq cor-
pus, leaving the results for Tunisian Arabic to be
presented in Section 6.

The Tamasheq-French translation corpus®’ con-
tains 17h of speech in the Tamasheq language,
which corresponds to 5,829 utterances translated
to French. Additional audio data was also made
available through the Niger-Mali audio collec-
tion: 224h in Tamasheq and 417 h in geograph-
ically close languages (French from Niger, Ful-
fulde, Hausa, and Zarma).?® For all this data, the

Yhttps://github.com/mzboito/IWSLT2022_
Tamasheqg_data

28https ://demo-1lia.univ-avignon.fr/
studios-tamani-kalangou/
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speech style is radio broadcasting, and the dataset
presents no transcription.

For this track, the main evaluation metric was
lower-cased BLEU4 computed over the produced
French translation.?” We also shared with partic-
ipants results for chrF++. Both are computed on
SacreBLEU (Post, 2018).%

5.2 Submissions

For the Tamasheq language, we received submis-
sions from three teams: ON-TRAC, TALTECH
and GMU. We now detail their speech translations
models.

ON-TRAC: Boito et al. (2022b) submitted pri-
mary and contrastive end-to-end ST systems.
Their primary submission focuses on the leverag-
ing of intermediate representations produced by a
pre-trained wav2vec 2.0 (Baevski et al., 2020b)
base model trained on 234 h of Tamasheq audio.
Their end-to-end ST system comprises: a partial
wav2vec 2.0 module (in which the last 6 encoder
layers were removed), a linear layer for down-
projecting the output of the wav2vec 2.0 encoder,
and a Transformer decoder with 3 heads, 4 lay-
ers and dimensionality of 256. Their contrastive
model does not consider SSL features: it uses
as input 512-dimensional mel filterbank features.
This model leverages approximate transcriptions
in Tamasheq produced by a French phonemic ASR
model. These are used to train an end-to-end ST
conformer model that jointly optimizes ASR, MT
and ST losses. The model is made of 12 conformer
layers of dimensionality 1024, and three trans-
former decoder layers of dimensionality 2048.

TalTech: Their system is an encoder-decoder
ST model with a pretrained XLS-R (Babu et al.,
2021) as encoder, and a mBART-50 (Tang et al.,
2020) as decoder. For the encoder, they used all
the 24 layers of the XLS-R 300M model imple-
mented in fairseq (Ottetal., 2019), fine-tuning
it on the provided unlabeled raw audio files in
Tamasheq (224 h) for 5 epochs. For the decoder,
they used the last 12 decoding layers available in
the mBART-50 pretrained model.>' The cross at-
tention layers in the decoder were pointed to the
XLS-R’s hidden state output to mimic the original

29 .
SacreBLEU BLEU4 signature for the low-resource track:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0

30 . .
SacreBLEU chrF++ signature for the low-resource track:
nrefs:1l|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.0.0

31https ://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt
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cross attention mechanism for text-to-text transla-
tion.

GMU: Their model uses the fairseq S2T
extension (Wang et al., 2020b), using the trans-
former architecture. They first fine-tune the pre-
trained XLS-R 300M encoder on French and Ara-
bic ASR, using portions of the Multilingual TEDx
dataset, and then train the whole model on the
speech translation task using all provided data.

5.3 Results

All results are presented in Table 4. We ob-
serve that the dataset is very challenging: the
best achieved BLEU is only 5.7 (ON-TRAC). This
challenging setting inspired the teams to lever-
age pre-trained models: all submissions apply pre-
trained initialization for reducing the cold start in
direct ST in low-resource settings.

Detailing these, ON-TRAC submissions in-
cluded the training of a wav2vec 2.0 model on
target data, and the training of a phonetic French
ASR. TalTech used massive multilingual off-the-
shelf pre-trained models, and GMU pre-trained
their speech encoder on French and Arabic. This
illustrates the current trend for ST systems of in-
corporating pre-trained models. It is nonetheless
noticeable that, even with the incorporation of
powerful representation extractors (wav2vec 2.0,
XLS-R, mBART-50), the achieved results are
rather low.

This year’s best submission (primary, ON-
TRAC) leveraged a Tamasheq wav2vec 2.0 model
trained on 234 h. In their post-evaluation results,
they included a comparison with different larger
wav2vec 2.0 models: XLSR-53 (Conneau et al.,
2020), LeBenchmark-7K (Evain et al., 2021), and
a multilingual wav2vec 2.0 trained on the Niger-
Mali audio collection. Their results hint that
smaller pre-trained models focused on the tar-
get data seemed to perform better in these low-
resource settings. This might be due to the existing
domain mismatch between pre-training data (from
the off-the-shelf models) and the target data.

The second best submission (contrastive, ON-
TRAC) illustrates how even approximate tran-
scriptions can attenuate the challenge of the direct
ST task. The authors trained a phonetic French
ASR model, and used the produced transcriptions

21t was previously observed that the wav2vec 2.0 per-
formance degrades when applied to audio data of different
speech styles (Conneau et al., 2020).



Team System Pre-trained Models BLEU chrF++
i primary  wav2vec 2.0 (Tamasheq) 5.7 314
ON-TRAC contrastive ASR (French) 5.0 26.7
TalTech primary XLS-R, mBART-50 2.7 24.3
GMU primary  XLS-R (Arabic, French) 0.5 16.9

Table 4: Summary of results for the Tamasheq-french corpus for the low-resource shared task.

as additional supervision for joint ASR, MT and
ST optimization. This solution is very attractive
for low-resource settings, as off-the-shelf ASR
models — and annotated data to train new ones —
are largely available for high-resourced languages.

Finally, we find that TalTech submission il-
lustrates how the application of off-the-box pre-
trained multilingual models can be challenging. A
similar point can be made about the GMU submis-
sion, which despite multilingual finetuning failed
to produce meaningful outputs for this challenging
task.

In summary, this year’s submissions focused
on the application of large pre-trained mod-
els for end-to-end ST in low-resource settings.
They illustrated how low-resource ST remains ex-
tremely challenging, even when leveraging pow-
erful speech feature extractors (wav2vec 2.0), and
massive multilingual decoders (mBART-50). In
such settings, we find that the training of self-
supervised models on target data, and the produc-
tion of artificial supervision (approximate phone-
mic transcriptions) were the most effective ap-
proaches for translating 17 h of Tamasheq audio
into French text.

6 Dialect Speech Translation

In some communities, two dialects of the same
language are used by speakers under different set-
tings. For example, in the Arabic-speaking world,
Modern Standard Arabic (MSA) is used as spo-
ken and written language for formal communica-
tions (e.g., news broadcasts, official speeches, re-
ligion), whereas informal communication is car-
ried out in local dialects such as Egyptian, Mo-
roccan, and Tunisian. This diglossia phenomenon
poses unique challenges to speech translation. Of-
ten only the “high” dialect for formal communica-
tion has sufficient training data for building strong
ASR and MT systems; the “low” dialect for infor-
mal communication may not even be commonly
written. With this shared task (new for 2022), we
hope to bring attention the unique challenges of
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dialects in diglossic scenarios.

6.1 Challenge

The goal of this shared task is to advance di-
alectal speech translation in diglossic communi-
ties. Specifically, we focus on Tunisian-to-English
speech translation (ST), with additional ASR and
MT resources in Modern Standard Arabic.

The ultimate goal of this shared task is to
explore how transfer learning between ‘“high”
and “low” dialects can enable speech transla-
tion in diglossic communities.  Diglossia is

a common phenomenon in the world. Be-
sides Arabic vs. its dialects, other exam-
ples include Mandarin Chinese vs. Can-

tonese/Shanghainese/Taiwanese/etc., Bahasa In-
donesia vs.  Javanese/Sundanese/Balinese/etc.,
Standard German vs. Swiss German, and
Katharevousa vs. Demotic Greek. With this
shared task, we imagine that techniques from
multilingual speech translation and low-resource
speech translation will be relevant, and hope that
new techniques that specifically exploit the char-
acteristics of diglossia can be explored.

6.2 Data and Metrics

Participants were provided with the following
datasets:

e (a) 160 hours of Tunisian conversational
speech (8kHz), with manual transcripts

e (b) 200k lines of manual translations of the
above Tunisian transcripts into English, mak-
ing a three-way parallel data (i.e. aligned au-
dio, transcript, translation) that supports end-
to-end speech translation models

(c) 1200 hours of Modern Standard Arabic
(MSA) broadcast news with transcripts for
ASR, available from MGB-2 (Specifically,
MGB-2 contains an estimated 70% MSA,
with the rest being a mix of Egyptian, Gulf,
Levantine, and North African dialectal Ara-
bic. All of the MGB-2 train data is allowed.)



» Approximately 42,000k lines of bitext in
MSA-English for MT from OPUS (specifi-
cally: Opensubtitles, UN, QED, TED, Glob-
alVoices, News-Commentary).

Datasets (a) and (b) are new resources devel-
oped by the LDC, and have been manually seg-
mented at the utterance level. This three-way par-
allel data (Tunisian speech, Tunisian text, English
text) enables participants to build end-to-end or
cascaded systems that take Tunisian speech as in-
put and generate English text as final output. The
main evaluation metric is lower-cased BLEU on
the final English translation®3.

Participants can build systems for evaluation in
any of these conditions:

e Basic condition: train on datasets (a) and
(b) only. This uses only Tunisian-English re-
sources; the smaller dataset and simpler setup
makes this ideal for participants starting out
in speech translation research.

Dialect adaptation condition: train on
datasets (a), (b), (c), (d). The challenge is
to exploit the large MSA datasets for transfer
learning while accounting for lexical, mor-
phological, and syntactic differences between
dialects. This condition may be an interest-
ing way to explore how multilingual models
work in multi-dialectal conditions.

Unconstrained condition: participants may
use public or private resources for En-
glish and more Arabic dialects besides
Tunisian (e.g., CommonVoice, TEDx, NIST
OpenMT, MADAR, GALE). Multilingual
models beyond Arabic and English are al-
lowed. This condition is cross-listed with the
low-resource shared task.

The data and conditions available to partic-
ipants are summarized in Table 5. From the
LDC-provided dataset LDC2022E(01, we create
official train/dev/testl splits for the basic condi-
tion®* and encourage participants to compare re-
sults on “testl.” The official blind evaluation set
LDC2022E02 is referred to as “test2”; it is col-
lected in the same way as LDC2022EOQ1 and utter-
ance segmentation is given.

33 . . .
SacreBLEU signature for dialect speech translation task:
nrefs:1|case:lc|eff:no|tok:13a|smooth:exp|version:2.0.0

**For datasplit and preprocessing details: https://
github.com/kevinduh/iwslt22-dialect
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6.3 Submissions

We received submissions from three teams (CMU,
JHU, ON-TRAC). Each team explored very differ-
ent architectures and adaptation techniques. We
recommend referring to the system descriptions
for details; below is just a brief summary of their
contributions:

CMU (Yan et al., 2022) focuses on the Multi-
Decoder architecture (Dalmia et al., 2021) im-
plemented in ESPnet, which is an end-to-end ST
model that decomposes into ASR and MT sub-
nets while maintaining differentiability. Intu-
itively, hidden states found by beam search from
the ASR decoder are fed as input to the ST en-
coder. New enhancements on this architecture
using hierarcharchical speech encoder and joint
CTC/Attention ST decoding are introduced, with
gains in BLEU.

Additionally, different approaches to integrat-
ing end-to-end and cascaded systems are exam-
ined in detailed; for example, one approach uses
one system to generate N-best candidates, and the
other system to help compute minimum Bayes
risk. This resulted in the strongest system for this
year’s shared task.

In terms of dialect adaptation, the CMU team
explored (a) using a Tunisian ASR model select
similar MGB2 data by cross-entropy, and (b) us-
ing MSA-EN MT trained on OPUS to syntheti-
cally augment MGB