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Abstract

Entity disambiguation (ED) is typically solved
by learning to classify a given mention into
one of the entities in the model’s entity vocab-
ulary by referring to their embeddings. How-
ever, this approach cannot address mentions of
entities that are not covered by the entity vo-
cabulary. Aiming to enhance the applicability
of ED models, we propose a method of extend-
ing a state-of-the-art ED model by dynamically
computing embeddings of out-of-vocabulary
entities. Specifically, our method computes em-
beddings from entity descriptions and mention
contexts. Experiments with standard bench-
mark datasets show that the extended model
performs comparable to or better than existing
models whose entity embeddings are trained
for all candidate entities as well as embedding-
free models. We release our source code and
model checkpoints at https://github.com/
studio-ousia/steel.

1 Introduction

Entity disambiguation (ED) (§ 2) has been stud-
ied as a method to organize information about
real-world entities in text. Consequently, ED must
be capable of handling diverse entities in vari-
ous domains. Existing state-of-the-art ED mod-
els are based on huge pretrained language mod-
els (PLMs) (Devlin et al., 2019), and are trained to
match a given mention with its candidate entities
via embeddings (Broscheit, 2019; Ling et al., 2020;
Févry et al., 2020; Yamada et al., 2022). Despite
the advances in performance, these embedding-
based ED models do not address out-of-vocabulary
entities that are absent from the training data. Even
worse, since maintaining millions of entity embed-
dings demands a huge memory space in training,
the models are often trained only for candidate en-
tities (§ 2) that appear in testing (Broscheit, 2019;

∗Work done as an intern at Studio Ousia.

Yamada et al., 2022).1

To address the above problems, researchers have
explored ED models without entity embeddings.
Cao et al. (2021) solves ED as autoregressive gen-
eration, which decodes the entity name token-by-
token. Barba et al. (2022) formulates ED as span
extraction, which selects a correct entity name from
input concatenating mention contexts and candi-
date entity names. Although these approaches al-
low a model to handle millions of candidate enti-
ties, they still have difficulties in handling newly-
emerged entities that are absent from the training
data and evolved entities whose attributes have
changed over time. Meanwhile, Logeswaran et al.
(2019) and Wu et al. (2020) proposed zero-shot
methods to handle any candidate entities by read-
ing their descriptions at testing. The performance
of these zero-shot methods, however, is inferior to
the aforementioned models, probably because these
methods represent each entity using short entity-
related text instead of massive training examples
used in the ED models.

In this paper, we propose an adaptation method
that enables entity embedding-based ED models,
which are trained for limited entities, to handle the
other rare and emerging entities by dynamically
predicting their embeddings. In particular, we actu-
ally extend the architecture of the state-of-the-art
Transformer-based ED model developed in Yamada
et al. (2022). We first train this model with an
entity vocabulary consisting of only common enti-
ties (§ 4.1). Next, we extend the model (§ 4.3) by
using our BERT-based encoders that dynamically
predict entity embeddings from descriptions and
relevant sentences (§ 4.2), thus enabling the model
to handle the out-of-vocabulary entities.

1Reducing the entity vocabulary size is critical to train
huge Transformer-based ED models (§ 3), as the entity embed-
dings can occupy GPU memory during training. For instance,
seven million 256-dimensional embeddings for all entities in
the English Wikipedia consume approximately 22GB of GPU
memory in the training standard with the Adam optimizer.
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Through experiments (§ 5) with standard bench-
mark datasets for ED (i.e., AIDA-CoNLL (Hof-
fart et al., 2011), MSNBC, AQUAINT, ACE2004,
WNED-CWEB, and WNED-WIKI (Guo and Bar-
bosa, 2018)), we verify that our extended model
performs competitively to the original state-of-the-
art model, whose trained entity embeddings en-
compass all the candidate entities of the evaluation
datasets (§ 5). We then perform an empirical analy-
sis on the nature of our proposed encoders, and on
reducing memory costs in the inference time (§ 6).

Our key contributions are:

• Adapting trained entity embedding-based
models to any sets of candidate entities, by
predicting embeddings of missing entities
with neural encoders (§ 4).

• Showing that our method enables a model
trained with a limited entity vocabulary to per-
form comparably with models trained with all
candidate entities of the evaluation data (§ 5).

• Presenting an empirical analysis of our pre-
dicted embeddings, and the possibility for re-
ducing memory costs during inference (§ 6).

2 Entity Disambiguation Task

Given a knowledge base (KB) such as Wikipedia,
and a text with spans of mentions, the ED model
assigns each mention span to an entity in the KB.
The task is similar to word sense disambiguation.

Since the number of entities can be more than
millions, during the evaluation, the ED models addi-
tionally assume a small list of candidate entities for
each mention, using a mention-entity dictionary de-
rived from hyperlinks in Wikipedia. Following ex-
isting embedding-based ED models (e.g., Yamada
et al. (2022)), we use the standard entity candidate
set, KB-YAGO (Ganea and Hofmann, 2017).

3 Related Work

Several studies have proposed knowledge-intensive
Transformer-based ED models that have entity em-
beddings as parameters, such as weights of the
classifier (Broscheit, 2019; Ling et al., 2020; Févry
et al., 2020; Yamada et al., 2022). Despite the state-
of-the-art in the benchmark, they cannot handle
out-of-vocabulary entities and entities of changed
properties, since these embeddings are typically
trained via ED task with labeled corpora. In addi-
tion, as argued by Barba et al. (2022), it is hard to

integrate embeddings of all ever-increasing entities
into the huge Transformer-based models, especially
to maintain their gradient values during training.
Ling et al. (2020) therefore demands expensive
TPU clusters, and some employ transductive set-
tings to train embeddings for a small subset of
entities containing all candidate entities used in the
evaluation (Broscheit, 2019; Yamada et al., 2022).

Before Transformer becomes the dominant ar-
chitecture for the ED task, knowledge-intensive
ED models were developed (Yamada et al., 2016;
Ganea and Hofmann, 2017; Le and Titov, 2018).
Since these models require relatively few parame-
ters to be learned (e.g., several linear transforma-
tion matrices (Ganea and Hofmann, 2017)), loading
and training embeddings of entire entities may not
be a problem compared to the Transformer-based
models. However, they still do not address entities
absent in or updated from the training phase.

Zero-shot systems, which represent entities as
descriptions or contexts rather than embeddings,
can convey textual information pertaining to novel
or changing entities. However, a single entity de-
scription, used by Logeswaran et al. (2019) and Wu
et al. (2020), has less information compared to em-
beddings learned from many examples. FitzGerald
et al. (2021) embeds each mention context as keys
to retrieve associated entities from the target men-
tion contexts (query). However, they also suffers
from less informative contexts per key embedding.2

Generation- or extraction-based approaches can
reduce computational costs by not integrating
entity-level knowledge such as entity embeddings;
Cao et al. (2021) generates tokens of entity titles
and Barba et al. (2022) selects the correct title from
the concatenated titles of candidate entities. How-
ever, while they can generate or extract any entities,
they cannot properly model novel and evolving en-
tities since they are trained with labeled data based
on a specific KB. Moreover, the performance still
falls short of entity embedding-based models.

Along with the fact that Transformer-based mod-
els performed well on the other entity-related tasks,
such as question answering, by using entity em-
beddings (Zhang et al., 2019; Yamada et al., 2020;
Févry et al., 2020; de Jong et al., 2021), we can
infer the importance of explicitly modeling knowl-
edge as the parameters to optimize the task perfor-
mance. This study focuses on this powerful entity
embedding-based models.

2lower Recall@1 than that of Wu et al. (2020)
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Figure 1: Our method complements the entity embedding matrix by encoding entities’ descriptions and relevant
sentences. The underlines refer to mentions. Ben Solo, Ben, and Ren refer to the same entity Kylo_Ren. Here,
Kylo_Ren is newly added to the model’s entity vocabulary by our method while it is originally not included in it.

4 STEEL

In this section, we present our adaptation method,
STEEL, which complements STatic and Encoder-
based entity embeddings for Entity Linking. While
our method is applicable to a variety of entity
embedding-based methods, in this paper, we ap-
ply it to the architecture of the state-of-the-art ED

model developed in Yamada et al. (2022).
We begin by training the base ED model, whose

entity embeddings comprise only a reasonable num-
ber of common entities Ve (§ 4.1). We then estimate
the embeddings for other entities /∈ Ve using our
proposed encoders, and extend the model (§ 4.2).
Hereafter, Vw and Ve denote the word and entity
vocabularies of the base model. H and D denote
the size of the hidden states and of the embeddings.

4.1 Base ED Model

Input Representations Our base ED model is
adopted from Yamada et al. (2022), an extension
of BERT (Devlin et al., 2019). This model takes a
concatenation of word token sequence and entity
token sequence as an input, and entity tokens of
target mentions are masked (Figure 1). Each entity
token corresponds to an entity in the word token
sequence (e.g., dark_side stands for word tokens
of the, dark, and side). Each token is represented
by summing the following three embeddings:

• Token Embeddings correspond to each word
wi ∈ Vw and entity ei ∈ Ve. We denote the

word token embeddings as A ∈ R|Vw|×H . We
denote entity token embeddings as BU with
two smaller matrices, B ∈ R|Ve|×D and U ∈
RD×H , to reduce computational cost where
D ≪ H , following Yamada et al. (2020).

• Type Embeddings represent the type of token,
i.e., word or entity. Each representation is
Cw ∈ RH and Ce ∈ RH .

• Position Embeddings correspond to the po-
sitions of tokens. We represent words and
entities at position i in the word sequence by
Di ∈ RH and Ei ∈ RH . For entities span-
ning multiple word tokens (e.g., dark_side),
we average their position embeddings.

Training We first build and train an ED model
that includes entity embeddings B ∈ R|Ve|×D for
only the top-K frequent entities Ve in Wikipedia ar-
ticles as trainable parameters. The model performs
entity disambiguation in the manner of masked lan-
guage modeling (Devlin et al., 2019).

Using hyperlinks in Wikipedia articles as entity
annotations, we mask each mention token with
a certain probability, and optimize the model to
estimate the entity e ∈ Ve from the BERT’s output
he ∈ RH corresponding to [MASK]:

me = layernorm
(
gelu(Wfhe + bf )

)
(1)

ŷ = softmax(Bme) (2)

where Wf ∈ RD×H and bf ∈ RD are trainable
parameters, gelu (Hendrycks and Gimpel, 2016)
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is the activation function, and layernorm (Lei Ba
et al., 2016) is the layer normalizer. Compared to
the model of Yamada et al. (2022), we eliminate a
bias term in Eq. 2, as STEEL extends only the entity
embedding B. We maximize the log-likelihood of
the estimation ŷ.

4.2 Our Encoders for Embedding Prediction
We propose two BERT-based encoders (Figure 1) to
predict the embeddings of out-of-vocabulary enti-
ties ei /∈ Ve. Each encoder follows the same archi-
tecture as our base ED model which is an extension
of BERT, while removing the linear transformation
head to estimate entities in Eq. 1 and 2. Encoders
use entity descriptions and mention contexts (sen-
tences referring to the entity) as inputs respectively,
which are language resources easily obtained from
a KB. Each of them corresponds to connotative
and denotative definitions of entities.

Description Encoder: The encoder predicts en-
tity embeddings from descriptions. We first convert
each description into an input representation in the
same way as § 4.1 (i.e., word tokens and entity to-
kens). We then obtain the BERT output hCLS ∈ RH

corresponding to [CLS], and compute the embed-
ding of the entity ei as follows:

êDESCi = WDESChCLS + bDESC (3)

where WDESC ∈ RD×H and bDESC ∈ RD are the
trainable parameters.

Hyperlink Encoder: The encoder predicts em-
bedding for entity ei from the sentences with hyper-
links of ei, which we hereafter refer to as mention
contexts. We first obtain mention contexts referring
to ei from KB, and convert them to input represen-
tations in the same way as § 4.1 (i.e., word token
sequences and entity token sequences). We then
replace the entity token corresponding to ei with
[MASK]. By using N mention contexts for ei, we
obtain N outputs from the BERT corresponding to
each [MASK] (i.e., hMASK1 ... hMASKN ), and we av-
erage them as the predicted embeddings for ei in
order to embed multiple contexts:

hMASK =
1

N

N∑

n=1

hMASKn (4)

êHLi = WHLhMASK + bHL (5)

where WHL ∈ RD×H and bHL ∈ RD are trainable
parameters.

Encoder Training: We have trained the above
two encoders as follows. We first initialize param-
eters of the two encoders using the trained param-
eters of the base ED model (§ 4.1), since these
encoders adopt a similar architecture and input rep-
resentations as ED model. As the supervision to
train the encoders, we utilize embeddings B for the
common entities Ve, which are integrated in and
jointly trained with our base model (§ 4.1). During
training the encoders, we freeze B. With this ap-
proach, the predicted embeddings are placed in the
same space as that of the base ED model. We min-
imize the mean squared error between the trained
embedding Bi for the entity ei ∈ Ve, and the corre-
sponding predicted embedding. To reduce training
costs, we optimize each encoder separately.

4.3 Entity Embedding Completion
We predict embeddings for the out-of-vocabulary
entities V oov

e ̸⊂ Ve using our encoders, and com-
plement the entity embedding matrix B.

Embedding Prediction and Ensemble: We first
predict the embeddings of out-of-vocabulary enti-
ties V oov

e using each of our neural encoders. We
then simply average the embeddings predicted by
our encoders (Eq. 3 and 5), to leverage different
language resources:

êi =
1

2
(êDESCi + êHLi) (6)

Completion: We extend the trained entity em-
bedding matrix B using the predicted embeddings
of entities V oov

e , as illustrated in Figure 1. Accord-
ingly, we rearrange Eq. 2 as follows:

ŷ = softmax(B⋄me) (7)

where B⋄ ∈ R|Ve∪V oov
e |×D denotes extended entity

embedding matrix. Thus, the trained model can
address out-of-vocabulary entities. In this paper,
we focus on adding new embeddings for out-of-
vocabulary entities. However, it is also capable of
replacing the trained embeddings ∈ B of entities
whose meaning has changed due to updates of the
associated KB such as Wikipedia.

Inference: The model performs inferences se-
quentially in several steps. We first mask all entity
tokens. The model estimates the entities in each
step (Eq. 7), and then replaces the [MASK] of the
highest probability with the estimated entity token.
We repeat this process until all [MASK] tokens have
been disambiguated.
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4.4 Implementation Details

Base ED Model: To ensure computational effi-
ciency and improve the reproducibility on a com-
mon computational environment, we implement an
ED model based on the BERTBASE (Devlin et al.,
2019), whereas Yamada et al. (2022) exploited
BERTLARGE. As the training corpus, we use the De-
cember 20th, 2018 version of English Wikipedia
articles consisting of over three billion words and
ten million entity annotations. We set the entity vo-
cabulary size of our base ED model to |Ve| = 500K
consisting of the most frequent entities in the arti-
cles. We split the articles into the sets of up to 512
words, and extract up to 128 hyperlinks for each set.
We then tokenize them using BERT’s tokenizer with
the vocabulary Vw consisting of 30K tokens. We
initialize all parameters common with BERT using
the pre-trained parameters, and set other parame-
ters randomly. We train the model in two steps;
we first train the model with the BERT’s parame-
ters fixed for 10 epochs, and we then update entire
parameters for 10 epochs. Additional details are de-
scribed in Appendix A. We designate this model as
YAMADA500K

BASE , which will be extended by STEEL.

Encoders for Embedding Prediction: We ini-
tialize the parameters by using those of our trained
base model, YAMADA500K

BASE . As the training corpus,
we exploit the descriptions and mention contexts
corresponding to Ve from the same Wikipedia arti-
cles. As the entity description, we extract the first
512 tokens and up to 128 hyperlinks contained in
them, from the corresponding entity’s page. As the
mention context, we extract the sentences with hy-
perlinks pointing to the corresponding entity. We
here use OpenNLP sentence tokenizer3 to detect
sentences. As an extracted mention context, we
include both or either of the before and after sen-
tences altogether for exploiting longer contexts per
mention. We exploit up to eight mention contexts
per entity (i.e., N = 8 in Eq. 4). Further details are
described in Appendix B.

5 Experiments

We conduct experiments on entity disambiguation
with the goal of verifying that the performance of
YAMADA500K

BASE with STEEL is comparable to that
of state-of-the-art models, whose entity vocabulary
contains all candidate entities in the evaluation as
well as to that of embedding-free models.

3https://opennlp.apache.org

5.1 Settings

Evaluation Datasets and Metric: We follow
the settings specified in previous studies (Ganea
and Hofmann, 2017; Le and Titov, 2018; Ya-
mada et al., 2022). Specifically, we use bench-
mark datasets; AIDA-CoNLL (Hoffart et al., 2011),
MSNBC, AQUAINT, ACE2004, WNED-CWEB,
and WNED-WIKI (Guo and Barbosa, 2018). For
entity candidate sets, we use KB+YAGO (Ganea
and Hofmann, 2017), and select top-30 candidates
per mention based on the associated prior proba-
bility. All entity candidates used in these evalua-
tion data consist of 140K entities (hereafter, V all

e ).
52.7% of candidate entities V all

e are not included
in the entity vocabulary Ve of our base ED model.
Moreover, 13.3% of gold entities are not included
in Ve, which will never be solved without STEEL’s
extension. We report In-KB accuracy for AIDA-
CoNLL and Micro-F1 for the others.

Fine-tuning for AIDA-CoNLL: In the evalua-
tion with AIDA-CoNLL, we conduct fine-tuning
using the attached training set (AIDA-train) as the
baselines did, while freezing the extended entity
embedding matrix B⋄. We prepare inputs in the
same way as in the training step (§ 4.1), and mask
the entity tokens with a probability of 90% follow-
ing Yamada et al. (2022). We optimize the model
by maximizing the log-likelihood of the prediction
in Eq. 7. The best batch size, learning rate, and
epochs are searched from the same space as Devlin
et al. (2019) based on the development set (AIDA-
testa). Further details are described in Appendix C.

Baselines: We employ embedding-based mod-
els (Ganea and Hofmann, 2017; Le and Titov, 2018;
Broscheit, 2019; Févry et al., 2020; Yamada et al.,
2022), whose entity vocabulary covers all the can-
didate entities V all

e in their training phase. In addi-
tion, we train a full-coverage version of our base ED

model whose entity vocabulary Ve is equal to V all
e ,

which we refer to as YAMADABASE. This full cover-
age model can be regarded as the smaller version
of Yamada et al. (2022) without bias terms in Eq. 3.
As the baselines trained without entity embeddings,
we employ the generation-based (Cao et al., 2021)
and extraction-based (Barba et al., 2022) models.

5.2 Results

Table 1 shows the results for AIDA-CoNLL. First,
by applying STEEL to YAMADA500K

BASE , we achieve
comparable performance against the full-coverage
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Systems CoNLL

w/ entity embeddings:
Ganea and Hofmann (2017)∗ 92.2
Le and Titov (2018)∗ 93.1
Broscheit (2019)∗ 87.9
Févry et al. (2020)∗ 92.5
Yamada et al. (2022) ∗

LARGE 95.0
YAMADABASE 94.7

w/o entity embeddings:
Cao et al. (2021)∗ (generation-based) 93.3
Barba et al. (2022)∗ (extraction-based) 92.6

YAMADA500K
BASE + STEEL 94.3

YAMADA500K
BASE + STEEL w/o fine-tuning 91.8

YAMADA500K
BASE

♠ 90.8

Table 1: In-KB accuracy on AIDA-CONLL. Models
are fine-tuned unless otherwise stated. The figures of
systems marked with ∗ are quoted from existing studies.
Entity candidate sets used in the system marked with ♠
are limited to those included in the 500k entities Ve.

version: YAMADABASE (−0.4pt.). In addition,
this adapted model outperforms all other entity
embedding-based baselines with the exception of
Yamada et al. (2022)LARGE, which is the larger ver-
sion of YAMADABASE. Note that their entity embed-
dings encompass all candidate entities in the train-
ing phase. Furthermore, our model outperforms
both of generation- and extraction-based models.

Table 2 shows the experimental results on the
other benchmark datasets. On average (avg.), our
model successfully achieved identical performance
to that of YAMADABASE, and comparable perfor-
mance (−0.1pt.) even against its larger version:
Yamada et al. (2022) LARGE. Similar to the ten-
dency on AIDA-CoNLL, our model outperforms
all other entity embedding-based systems, whose
entity vocabulary encompasses all the candidate
entities (Ganea and Hofmann, 2017; Le and Titov,
2018), as well as the systems trained without entity
embeddings (Cao et al., 2021; Barba et al., 2022).
More specifically, our model advanced the new
state-of-the-art on ACE2004, and performed better
on CWEB than the full-coverage version of our
base ED model: YAMADABASE.

Although we cannot perform a fair comparison
between the entity embedding-based models if the
models’ entity vocabularies do not cover the same
set of candidate entities, we quickly evaluated YA-
MADA500K

BASE by using zero embeddings for out-of-

vocabulary candidate entities (i.e., systems marked
with ♠ in Table 1 and Table 2). From the tables, we
can see that adaptation with STEEL improved the
performance on the six benchmark datasets con-
sistently. If the candidate entities are limited to
those included in 500K frequent entities, it may re-
duce the possibility of making mistakes regarding
the frequent entities’ mentions. On the other hand,
mentions for out-of-vocabulary entities, 13.3% of
mentions in our setting, can never be solved in any
way without applying STEEL.

Table 3 shows the accuracy on AIDA-CoNLL
compared to the reported score4 of the state-of-
the-art zero-shot system (Wu et al., 2020), which
addresses ED by comparing the mention contexts
and candidate entities’ descriptions without using
entity embeddings. Note that it is not a fair com-
parison as their candidate sets are not identical to
KB+YAGO, since their model uses their own candi-
date generator (i.e., bi-encoder). However, the gold
recall of their candidate set 97% is comparable to
KB+YAGO’s 98%. Even taking into account the
difference in entity candidates, our model yielded
higher performance with more than 10% margin.
This is probably because we solve ED by using
entity embeddings predicted from descriptions or
mention contexts only for V oov

e and by using high-
quality entity embeddings optimized via ED task
with massive examples for the other frequent en-
tities. Entity embedding-based models advanced
the state-of-the-arts in the past studies, but such
models are generally not good at handling rare and
emerging entities as discussed in § 1 and § 3. Our
approach solves these critical weaknesses while
inheriting the strengths of the conventional entity
embedding-based models.

Overall, the above observations indicate that
STEEL obtains entity embeddings of comparable
quality to that of state-of-the-art system (Yamada
et al., 2022), and successfully integrates them to the
model to perform ED on out-of-vocabulary entities.

6 Analysis

In this section, we provide a detailed analysis of
our proposed adaptation method, STEEL.

6.1 Ablation Study

We investigate the impact of ensembling two types
of predicted entity embeddings, as derived from
the description and hyperlink encoders (§ 4.2). By

4https://github.com/facebookresearch/BLINK
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Systems ACE2004 AQUAINT CWEB WIKI MSNBC avg.

w/ entity embeddings:
Ganea and Hofmann (2017)∗ 88.5 88.5 77.9 77.5 93.7 85.2
Le and Titov (2018)∗ 89.9 88.3 77.5 78.0 93.9 85.5
Yamada et al. (2022) ∗

LARGE 91.9 93.5 78.9 89.1 96.3 89.9
YAMADABASE 91.1 94.2 78.6 90.0 95.0 89.8

w/o entity embeddings:
Cao et al. (2021)∗ (generation-based) 90.1 89.9 77.3 87.4 94.3 87.8
Barba et al. (2022)∗ (extraction-based) 91.8 91.6 77.7 88.8 94.7 88.9

YAMADA500K
BASE + STEEL 92.3 94.0 78.8 89.2 94.6 89.8

YAMADA500K
BASE

♠ 91.5 93.7 76.4 83.9 94.1 87.9

Table 2: Micro-F1 on the standard evaluation datasets, with the exception of AIDA-CONLL. The figures of systems
marked with ∗ are quoted from existing studies. Entity vocabulary sets used by the system marked with ♠ are
limited to those included in 500K frequent entities Ve. avg. indicates the averaged score over all datasets.

Systems Accuracy

Wu et al. (2020)∗ 80.3
YAMADA500K

BASE + STEEL 91.8

Table 3: Accuracy on the AIDA-CoNLL. The figures
of systems marked with ∗ are quoted from their official
website.

Method Micro-F1

YAMADA500K
BASE + STEEL 90.9

w/o Description Encoder 89.7
w/o Hyperlink Encoder 90.7

Table 4: Averaged Micro-F1 on all datasets when only
one of the proposed encoders is ablated.

ablating one of the two types of embeddings from
YAMADA500K

BASE + STEEL, we report an avg. Micro-
F1 over the six datasets: AIDA-CoNLL, MSNBC,
AQUAINT, ACE2004, CWEB, and WIKI.

Table 4 lists the ablation results. We can observe
that performance consistently decreased when ab-
lating each encoder. This suggests that even the
straightforward approach of averaging different
types of entity embeddings can effectively exploit
different language resources (mention contexts and
entity descriptions), each of which represents con-
notative and denotative meanings of entities. Fur-
thermore, by comparing the drops in performance,
we can see that entity descriptions are more valu-
able than mention contexts for overall performance.

6.2 Entity Disambiguation Performance for
Mentions of Out-of-Vocabulary Entities

We investigate how well our extended model disam-
biguates the mentions of out-of-vocabulary entities
V oov
e , whose embeddings are predicted and inte-

grated into the model by STEEL. We report preci-
sion regarding those mentions over the six datasets.
We also report the performance of the simple base-
line, which selects the entity with the highest prior-
probability p̂(entity|mention) (Ganea and Hof-
mann, 2017).

Table 5 (V oov
e column) shows the results. Our

model correctly handles approximately 80% men-
tions of the out-of-vocabulary entities, whereas the
prior probability baseline, which exploits surface
information, solves less than 70% of the mentions.
Moreover, the performance gap with oracle model
YAMADABASE, which optimizes the embeddings of
all candidate entities via ED task, is only 1.2 pt. As
for the comparison to the state-of-the-art zero-shot
system, Wu et al. (2020), we achieved huge per-
formance improvements. Again, we here state that
Wu et al. (2020) use candidate sets not identical to
KB+YAGO as described in § 5.2.

The performance experienced a more significant
drop (-2.2 pt.) when ablating the hyperlink encoder.
It indicates the worth of mention contexts to embed
out-of-vocabulary entities. This trend differs from
that of the ablation results of overall mentions in
Table 4. It indicates that the utilization of only
mention contexts has a side effect of inhibiting the
inference of mentions for in-vocabulary entities Ve.
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Method V oov
e

# contexts
≤ 2 7 ≤

YAMADA500K
BASE + STEEL 79.0 66.5 79.8

w/o Description Encoder 79.7 66.1 80.8
w/o Hyperlink Encoder 76.8 68.1 77.0

YAMADABASE 80.8 63.3 82.8
Wu et al. (2020) 59.3 49.3 60.2

prior probability 68.1 64.9 66.1

Table 5: V oov
e column indicates precision for the men-

tions of the out-of-vocabulary entities. # contexts col-
umn shows precision for the subset of those mentions,
which are distinguished by the number of mention con-
texts (max. 8) used to encode the corresponding gold
entity.

Method V oov,≤8
e

YAMADA500K
BASE + STEEL 76.3

YAMADABASE 75.3

Table 6: Precision on all datasets for the mentions of
specific out-of-vocabulary entities whose mention con-
texts exist at most eight on Wikipedia articles.

6.3 Effects of the Number of Hyperlink
Sentences Fed into Hyperlink Encoder

In this section, we analyzed the impact of the num-
ber of mention contexts to be fed into hyperlink
encoder on the quality of predicted embeddings. In
the settings of our study, hyperlink encoder uses up
to eight mention contexts per entity. Therefore, the
quality of predicted embeddings can be partially de-
termined by the number of mention contexts used.
Here, we extract the subsets of mentions of out-of-
vocabulary entities, who have ≤ 2 and ≥ 7 mention
contexts available for the hyperlink encoder, and
compute the precision for each mention subset.

# contexts column in Table 5 shows the results
on each mention subset. For mentions of relatively
frequent entities (≥ 7), the use of predicted embed-
dings from hyperlink encoder leads to more correct
inferences. Conversely, for mentions of rare enti-
ties (≤ 2), the description encoder performs more
effectively. This is likely because entity descrip-
tions corresponding to connotative meanings are a
frequency-independent resource. Future research
directions include the selection of different types
of predicted embeddings based on the volume of
available resources, and weighted averaging of two
types of embeddings.

6.4 On Whether Embeddings of Rare Entities
Should be Learned or Predicted

We measured the performance on the mention sub-
set of out-of-vocabulary entities that have eight
or fewer mentions on Wikipedia articles (say,
V oov,≤8
e ). In our experimental settings (§ 5.1), up

to eight mentions per entity are extracted and used
for predicting embeddings for out-of-vocabulary
entities, even if there are more than eight mentions
available on Wikipedia. By focusing on V oov,≤8

e ,
the number of mention contexts used to optimize
embeddings by YAMADABASE via ED task and to
predict embeddings by STEEL are both the same.

Table 6 shows that if only the same number
of mention contexts are available, prediction by
STEEL yields better quality entity embeddings
than learning them through the ED task. It suggests
that it is not always practical to apply optimiza-
tion of entity embeddings via ED task when their
resources are scarce, whereas STEEL makes rela-
tively effective use of limited resources. In practice,
STEEL can utilize more mention contexts than the
trained base model as KB updates after the model
training. The gain therefore will become larger.

6.5 Qualitative Analysis of Predicted Entity
Embeddings

Using STEEL, we predict each embedding of entire
entities in English Wikipedia articles except the
most frequent 500K entities in ∈ Ve, and perform
k-nearest neighbors-search among the trained and
predicted embeddings, separately.

Table 7 shows that each predicted embedding
is close to embeddings of relevant entities. For
instance, the embedding of a station in Denver,
Perry_station, is located near embeddings of
other stations in Denver. An high-end-audio com-
pany, Pass_Labs, is close to a sound-related term,
Passband, and a semiconductor maker, Intersil.
Among the infrequent entities, it is close to
more directly related audio device-makers such
as Valve_Amplification_Company.

6.6 Quantization of Entity Embeddings

In this section, we quantized entity embeddings in
the extended model (YAMADA500K

BASE + STEEL) to
reduce the memory cost at inference time. This ex-
periment was motivated by the argument in Barba
et al. (2022) that embedding-based ED models are
flawed because entire entity embeddings need to be
stored in memory at runtime. Our method, which is
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Entity Title Among the most frequent 500K entities Among the other entities

Perry_station
RTD_bus_and_rail_services,

Denver_Union_Station,
U.S._Route_287_in_Colorado

Colorado_station, Knox_station,
Evans_station_(RTD),

25th_%26_Welton_station

Word_embedding
Word-sense_disambiguation,

WordNet,
Automatic_summarization,

Sentence_embedding,
Word-sense_induction,

Font_embedding,

Pass_Labs
Passband, Intersil, Keysight,
TEAC_Corporation, Patch_panel

Valve_Amplification_Company,
Nelson_Pass, Class-T_amplifier

Table 7: Nearest neighbors of entity embeddings predicted by our encoder, among entities in Ve whose embeddings
are contained in our base model, as well as other entities whose embeddings are dynamically predicted.

Format Size CoNLL Others

Original: FP32 7.73GB 91.8 89.8

INT8 1.93GB 91.9 89.8
INT6 1.45GB 91.8 89.9
INT4 0.97GB 91.7 89.6

Table 8: Micro-F1 of our extended model (w/o fine-
tuning) when quantizing its entity embeddings, as well
as the required memory to store embeddings for entire
English Wikipedia titles (∼7 million) during inference.

based on a limited entity vocabulary, has somewhat
reduced the memory cost during training while
maintaining high performance. However, we still
need to store the extended embedding matrix in
memory during inference. To increase portability
when deploying, we use the scalar quantizer pro-
vided by the open source library Faiss5 (Johnson
et al., 2019) to quantize the entity embeddings to
4-, 6-, or 8-bit integers from 32-bit floats.

Table 8 lists the In-KB accuracy for AIDA-
CoNLL and the avg. Micro-F1 for the other
five datasets. From the results, we can see that
quantization makes almost no difference in perfor-
mance. By doing so, the model consumes less
than 1GB memory even when all entities from
English Wikipedia articles (∼7M) are integrated
within the model. These observations indicate that
entity embedding-based approaches can be oper-
ated without excessive concern for memory issues
during inference, and present a realistic research
direction to be continuously explored in the future.

5https://github.com/facebookresearch/faiss

7 Conclusions

In this study, we proposed an adaptation method,
STEEL, which makes trained entity embedding-
based ED models applicable to candidate entities
that are not integrated into the model (§ 4). Our
methods extend trained models by predicting entity
embeddings of other rare or emerging entities by
encoding the corresponding descriptions or relevant
sentences. In the experiments with standard bench-
mark datasets (§ 5), our model performed competi-
tive or better than existing entity embedding-based
models trained for all candidate entities used in
the evaluation, and also outperformed embedding-
free models. We also conducted analyses concern-
ing the predicted embeddings (§ 6.1 to 6.5), and
evaluated the capability of reducing memory costs
required during inference via quantization (§ 6.6).

Our methods, in addition to out-of-vocabulary
entities, can also handle evolving entities whose
properties have changed after training the model,
even though they were included in the entity vocab-
ulary set during training. This capability is vital in
ED since a KB to be linked can be updated inter-
mittently. For example, Wikipedia articles before
and after “Joe Biden” have become U.S. president
are very different. His embedding trained using
the former periods of articles may not be optimal
for processing mentions in the newer articles. The
performance of replacing trained embeddings with
new ones should be evaluated in the future.

As a base model to which our method is ap-
plied, we adopted Yamada et al. (2022) since it
is the state-of-the-art and its source code is pub-
licly available. We release our implementation at
https://github.com/studio-ousia/steel for
the other models to enjoy our method in the future.
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Limitations

The proposed method works for any rare or emerg-
ing entities only when relevant descriptions or
sentences are available, as is the case with most
knowledge bases such as Wikipedia, Fandom6, and
UMLS (Bodenreider, 2004). If these resources are
not available, for example, we can use entity-entity
relations collected by knowledge graphs alterna-
tively. We may also utilize the standard entity titles
(e.g., Manchester_Airport) as descriptions or as
search queries to retrieve possible mention contexts
from the web.

The proposed method can handle entities in lan-
guages other than English; however, when handling
several multilingual entities simultaneously, it is
unknown whether it can successfully absorb differ-
ences in word order and volume of resources across
languages.
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Table 9: Hyper-parameters used for training our base
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Appendix

A Details of Training the Base ED model

We implement our base ED model based with Py-
Torch (v.1.10.1) (Paszke et al., 2019) and Hugging
Face’s Transformers (v4.15.0) (Wolf et al., 2019).
We exploit the base-uncased version of BERT.7 We
optimize the model using AdamW optimizer. Train-
ing takes about 10 days using eight Tesla V100
GPUs. Table 9 describes our hyper-parameters.

7https://huggingface.co/docs/transformers/v4.15.0/en/
model_doc/bert#overview
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number of hidden layers 12
hidden size H 768
entity embedding size D 256
attention heads 12
attention head size 64
activation function gelu
maximum word length 512
batch size 256
learning rate 1e-4
learning rate decay linear
warmup steps (description-based) 500
warmup steps (hyperlink-based) 1000
dropout 0.1
weight decay 0.01
gradient clipping 1000
adam β1 0.9
adam β2 0.999
adam ϵ 1e-6

Table 10: Hyper-parameters used for training our en-
coders.

B Details of Training the Encoders

We implement the encoders with PyTorch (v.1.10.1)
and Hugging Face’s Transformers (v4.15.0). We
exploit the same version of BERT as in Appendix A.
Training of each of the description- and hyperlink-
based encoders takes about 7 hours and 17 hours,
using a single Quadro RTX 5000 GPU. We op-
timize the model using AdamW optimizer. We
follow most of the hyper-parameters adopted in the
base ED model, with the exception of the learning
rate. By actually extending the base model with
the trained encoder, and by checking its perfor-
mance on the development set of AIDA-CoNLL
(AIDA-testa), we search the best learning rate from
{1e-4, 2e-5, 5e-5} for each encoder separately. We
describe our hyper-parameters in Table 10.

C Details of Fine-tuning for the
evaluation on AIDA-CoNLL dataset

Following the settings of training our base ED

model (Appendix A), we split the datasets into
sequences consisting of up to 512 word tokens and
of up to 128 entity tokens corresponding hyperlinks
in the word tokens. We conduct fine-tuning with
PyTorch and Trainer provided by Hugging Face.
We use a single Quadro RTX 5000 GPU. We search
hyper-parameters from the same space as that of
Devlin et al. (2019) based on the development set

maximum word length 512
mask probability of entity tokens 0.9
mask probability of word tokens 0
batch size 32
epochs 2
learning rate 3e-5
learning rate decay linear
warmup propotion 0.1
dropout 0.1
weight decay 0.01
adam β1 0.9
adam β2 0.999
adam ϵ 1e-6

Table 11: Hyper-parameters used for fine-tuning our
extended model on AIDA-CoNLL.

(AIDA-testa):

• batch size: {16, 32}
• learning rate: {2e-5, 3e-5, 5e-5}
• epochs: {2, 3, 4}

Table 11 describes our hyper-parameters used in
conducting fine-tuning on the CoNLL dataset.

6344


