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Abstract

Paraphrase generation reflects the ability to
understand the meaning from the language
surface form and rephrase it to other expres-
sions. Recent paraphrase generation works
have paid attention to unsupervised approaches
based on Pre-trained Language Models (PLMs)
to avoid heavy reliance on parallel data by
utilizing PLMs’ generation ability. However,
the generated pairs of existing unsupervised
methods are usually weak either in semantic
equivalence or expression diversity. In this
paper, we present a novel unsupervised para-
phrase generation framework called Paraphrase
Machine. By employing multi-aspect equiva-
lence constraints and multi-granularity diver-
sifying mechanisms, Paraphrase Machine is
able to achieve good semantic equivalence and
expressive diversity, producing a high-quality
unsupervised paraphrase dataset. Based on
this dataset, we train a general paraphrase
model, which can be directly applied to rewrite
the input sentence of various domains with-
out any fine-tuning, and achieves substan-
tial gains of 9.1% and 3.3% absolutely in
BLEU score over previous SOTA on Quora and
MSCOCO. By further fine-tuning our model
with domain-specific training sets, the improve-
ment can be increased to even 18.0% and
4.6%. Most importantly, by applying it to lan-
guage understanding and generation tasks un-
der the low-resource setting, we demonstrate
that our model can serve as a universal data
augmentor to boost the few-shot performance
(e.g., average 2.0% gain on GLUE). Code and
data can be found at https://github.com/
Matthewlliu/UnsupervisedParaphrase.

1 Introduction

Paraphrases are sentences that convey the same
meaning with different forms of expressions. Au-
tomatic generation of paraphrases has been an es-
sential task in natural language processing (NLP)
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Input Is it possible to make time machine and do time travel?

Output 1
Output 2

Is it likely for time machine to do time travel?
Is it possible to make time machine to time travel?

The TheInconsistency: affects semantics Repetition: affects diversity

Ours Is it possible to travel in time by building a time machine?

(a) A example illustrating the problem of previous meth-
ods in terms of semantic equivalence and expression di-
versity.
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Figure 1: We propose an unsupervised paraphrase gener-
ation framework named ParaMac. Based on that, a high-
quality dataset named ParaNet is generated and used to
train a general seq2seq pararphraser named ParaMod.

ever since the early days of the computational lin-
guistics study (McKeown, 1979), and has a broad
application on downstream tasks including ques-
tion answering (Dong et al., 2017), semantic pars-
ing (Berant and Liang, 2014; Wu et al., 2021), ma-
chine translation (Seraj et al., 2015), and etc. Ad-
ditionally, paraphrase generation is a significant
data augmentation method (Gao et al., 2020; Yu
et al., 2020), which can benefit the learning in low-
resource settings.

Early works like rule-based (McKeown, 1983;
Barzilay and Lee, 2003) and thesaurus-based (Bol-
shakov and Gelbukh, 2004) methods generate para-
phrases mainly by explicit manipulation on words,
phrases, or sentences. But these methods usually
perform poorly and are restricted by either heavy
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manual work or large language resources. Later,
the sequence-to-sequence (Seq2Seq) paradigm is
brought into the paraphrase generation (Prakash
et al., 2016). By training on parallel annotations
and combined with GAN (Yang et al., 2019) or
VAE (Gupta et al., 2018), it greatly improves the
performance. However, these supervised meth-
ods highly depend on large annotated parallel data,
which is hard to acquire.

To overcome the difficulty in obtaining high-
quality parallel corpora, recently, researchers be-
gin to pay attention to unsupervised approaches
using Pre-trained Language Models (PLMs) (Niu
et al., 2021; Liu et al., 2020; Hegde and Patil, 2020;
Meng et al., 2021), due to their great power in
language modeling and understanding (Lin et al.,
2019; Zhang et al., 2020). These existing works
apply PLMs to paraphrase generation successfully
and obtain good performances. However, they are
still weak in either semantic equivalence or ex-
pression diversity, which are both necessary for
a qualified rewriting. For example, methods that
generate paraphrases by reconstructing or editing
the original sentence (Liu et al., 2020; Hegde and
Patil, 2020) usually only change common words
locally, ignoring other global expression factors
(e.g., ordering) and thus hindering the diversity. On
the other hand, methods that generate paraphrases
from scratch (Meng et al., 2021; Niu et al., 2021)
usually lack strong semantic constraints and thus
suffer from an inevitable semantic divergence.

To tackle these problems, we propose a novel
paraphrase generation framework called Para-
phrase Machine (ParaMac), which leverages PLMs
to generate paraphrases given an input and its con-
text. For this framework, we propose multi-aspect
equivalence constraints and multi-granularity di-
versifying mechanisms to produce various input
expressions while keeping the original meaning as
tight as it can. Specifically, we design the equiva-
lence constraints from three aspects: the context,
the keyword, and the overall semantics. On the
other hand, we consider the diversifying mech-
anisms in three granularity: the word level, the
phrase level, and the sentence level. All these con-
straints and mechanisms are combined to guarantee
that the generated sentence preserves the semantics
of the input with expressions as diverse as possible.

As shown in Figure 1, incorporated with these
constraints and mechanisms, ParaMac can utilize
PLMs’ linguistic ability to generate unsupervised

paraphrase pairs effectively. We generate a high-
quality paraphrase dataset called Paraphrase Net
(ParaNet) in an unsupervised way, which enable
us to train a Paraphrase Model (ParaMod) based
on a Seq2Seq PLM (e.g., T5 (Raffel et al., 2020)).

By applying ParaMod directly to paraphrasing
benchmarks (i.e., Quora1 and MSCOCO (Lin et al.,
2014)) without any fine-tuning, we achieve a signif-
icant improvement over previous SOTA (i.e., 9.1%
and 3.3% absolutely in the BLEU score). After
a further fine-tuning on domain-specific training
data, ParaMod lifts the absolute improvements to
even 18.0% and 4.6%. In addition, we want to high-
light the framework’s generality across downstream
tasks, which is evaluated by applying ParaMod
to language understanding and generation tasks
to perform data generation or augmentation. We
demonstrate that ParaMod is an excellent question
generator that can cut down the manual work on
question generation, and also a universal data aug-
mentor to boost the performance of part of GLUE
in the few-shot setting by an average of 2.0%.

2 Related Work

Supervised Approaches Typical supervised para-
phrase generation methods mainly leverage anno-
tated paraphrase pairs and neural Seq2Seq mod-
els (Prakash et al., 2016) such as LSTM (Hochre-
iter and Schmidhuber, 1997) or Transformer
model (Vaswani et al., 2017). Following meth-
ods based on the Seq2Seq encoder-decoder archi-
tecture attempted to improve the performance by
adding more constraints on generation. Bahdanau
et al. (2015) tried to add attention and Cao et al.
(2017); Gu et al. (2016) added copy mechanism to
keep model focused on the important parts of input.
VAE (Gupta et al., 2018) and GAN (Yang et al.,
2019) enforced constraints from model and train-
ing aspects, respectively, to try to avoid unrealistic
output. Some works leveraging other supervised
signal can be categorized into zero-shot genera-
tion. For example, Mallinson et al. (2017); Wieting
et al. (2017) made another attempt to generate para-
phrase in a bilingual pivoting manner later known
as back-translation. Guo et al. (2019) proposed to
train a unified model on multilingual parallel data
to achieve a one-step generation. Cai et al. (2021)
further extended the pivoting idea from language to
other semantic forms and explored the feasibility.

1https://www.kaggle.com/c/
quora-question-pairs

6194

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs


3. Candidates Ranking2. PLM-based Generation

1. Keywords Processing

S: "the final stage is nearing completion, controller”, she reported crisply.
S’: She reported crisply that she was nearing completion of the final stage of 
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<p2> final stage of the project <p3>
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She reported crisply that she was nearing completion
of the final stage of the project.
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Figure 2: The complete generation process of Paraphrase Machine. The keywords filtering, substitution, PLM-based
generation, and candidate evaluation steps are all achieved with PLMs in an unsupervised manner.

There also are some works (Iyyer et al., 2018; Sun
et al., 2021) tried to incorporate syntactic structures
to improve the diversity.

Supervised methods can usually get good per-
formance, while the primary obstacle is getting
large-scale and high-quality parallel data.

Unsupervised Approaches Unsupervised meth-
ods are hard to categorize since they are much
less explored. Liu et al. (2020) transformed para-
phrase generation into an optimization problem and
utilized certain objectives to reflect the semantic
equivalence and diversity. Siddique et al. (2020)
shared a similar idea but optimized via deep rein-
forcement learning. Bowman et al. (2016) trained a
VAE to reconstruct the input and sampled from
the trained decoder to get its latent paraphrase.
Roy and Grangier (2019) leveraged residual con-
nections which allows a interpolation from classi-
cal auto-encoder to vector-quantized auto-encoder.
Most recent works are focused on transformer-
based PLMs. Meng et al. (2021) pre-trained a
context-LM to generate paraphrase candidates with
regularization of context. Other works directly used
PLMs (e.g., GPT-2 or BART) to generate para-
phrase - Hegde and Patil (2020) used PLMs to
reconstruct corrupted input, and Niu et al. (2021)
brought up new blocking algorithm during genera-
tion to prevent PLMs from copying and repeating.

These methods intend to use PLMs in their pro-
cess to improve performance. However, these gen-

eration results often suffer from either inconsis-
tency of semantics or the lack of diversity.

3 ParaMac

In this section, we will introduce our unsupervised
paraphrase generation framework ParaMac. Our
idea starts from two basic assumptions: the first is
the paraphrase must contain some key information
of the original sentence, which we use keywords
to represent, and they can be rendered in expres-
sions; the second is there exists a different order
for keywords to reform a fluency sentence, as long
as proper connecting parts are filled between them.

Based on these two assumptions, our unsuper-
vised paraphrase generation framework can be di-
vided into three parts: 1) Keywords Processing:
we extract the keywords of input, rephrase and re-
order them; 2) PLM-based Generation: with the
help of context regulation and the linguistic ability
of PLMs, we connect the rephrased and reordered
keywords into a fluency sentence as a paraphrase
candidate; 3) Candidates Ranking: we use a se-
ries of metrics to select the best candidate.

To ensure semantic consistency during the pro-
cess and the expression diversity of the outputs,
we design multi-aspect equivalence constraints and
multi-granularity diversifying mechanisms. Specif-
ically, the equivalence constraints are:

• e1 Keywords constraint: keywords from the
input are used as anchors in the output;
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• e2 Context constraint: we use context infor-
mation to reduce the generation output space;

• e3 Semantics constraint: we employ an auto-
matic semantic evaluation on the candidates
to get their sentence semantics ranks.

The diversifying mechanisms are embedded at
three levels:

• d1 Word level: keywords are replaced with
their synonyms;

• d2 Phrase level: the order of keywords is
rearranged to change the possible collocation;

• d3 Sentence level: a diversity score is used
to encourage the different expressions.

Figure 2 provides an overview of the whole gen-
eration picture and where exactly these constraints
and mechanisms are applied.

3.1 Keywords Processing

Keywords processing here consists of keywords
extraction, filtering, substitution, and random per-
mutation. In this paper, keywords refer to all the
words and phrases extracted from the input.
Keywords Extraction & Filtering is to perform
a coarse selection of the important information in
the original sentence, which uses e1 . In this step,
we leverage the Rake algorithm (Rose et al., 2010),
which is an efficient keywords extraction algorithm
based on word co-occurrence in libraries. It can
return not only words but also phrases given the
input sentence. To avoid missing important infor-
mation, we also add the rest of the nouns and verbs
of the input. Formally, given an input sentence S,
we get its keywords set {ki}.

Next, we intend to filter some of the redundant
low informative keywords because the more key-
words used in the later generation, the less diverse
the output may be. Also, there will be a higher com-
putational cost. So we want to relax the constraint
by dropping certain a number of keywords.

In this paper, we measure the information of
keyword ki by computing p(S|ki), where the p(·|·)
represent the conditional generation score of PLMs.
The intuition here is that if a keyword ki is more
likely to generate the whole sentence, the more
informative and representative it is. According to
the ranking of the score, we can filter out some of
the low-scoring keywords

Keywords Substitution & Random Permutation
aims to increase the diversity by rephrasing and
reordering keywords, which uses d1 and d2 .

The rephrasing, namely the substitution of syn-
onym, is achieved by masking the target keyword
and utilizing masked language models (MLMs)
such as BERT or T5 to predict the masked token.
As shown in the substituting step in Figure 2, the
second prediction of beam search is regarded as
a semantically equivalent substitution. Note that
although all the keywords will go through this op-
eration, sometimes the keyword stays the same if
we use T5 as the MLM. Additionally, some hand-
crafted blocking rules based on WordNet are also
used to avoid the situation that MLMs replace a
word with an opposite meaning (e.g., large sofa to
small sofa, both of which can sometimes fit in the
context).

After the substitution, keywords are randomly
re-shuffled into many different orders, filled with
span-mask tokens to form the final input to the
PLM.

3.2 PLM-based Generation

We use the powerful PLMs to generate fluency and
meaningful sentences. Meanwhile, we use e1 and
e2 to reduce the possible output space and prevent

an overly free generation because they make the
generated output have to fit in the original context
and contain keywords of the input.

Specifically, we choose bidirectional model T5-
large as our PLM and leverage the pre-training
task of T5 described in (Raffel et al., 2020). As
shown in the PLM-based generation step of Fig-
ure 2, the input to T5 is formalized by connecting
the keywords with span-masking tokens, concate-
nated with the context of the original sentence S.
Then, the PLM is used to predict the masked spans,
and we fill the predictions back to the input. In
this way, we ensure that the key information of S
is kept in output, and the model is context-aware
during the generation.

After the generation, the generated outputs will
be evaluated as candidates in the next step.

3.3 Candidates Ranking

In this section, we describe the multiple scoring
functions applied in the evaluation of the quality of
candidates. We consider the quality of a sentence
from three aspects: semantic equivalence, fluency,
and diversity.
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3.3.1 Semantic Score
Semantic score ssem is designed according to the
third semantic constraint e3 . Due to the scale of
data we deal with, we use the Bert-Score (Zhang
et al., 2020) as an automatic evaluation method. It
is based on the embedding of the tokens to measure
the semantic similarity of a pair of sentences.

3.3.2 Fluency Score
The fluency of generated sentences should also be
highly valued, and here we choose the candidate’s
perplexity score to reflect the fluency. However,
since the perplexity is the smaller the better, in
practice we calculate the probability of the sen-
tence as the metric sflu. Specifically, we use a
PLM to calculate sflu using its next-word predic-
tion probability.

sflu(S1, S2) = P (w1) · P (w2|w1)

· P (w3|w1w2) · · · · · P (wn|w1 . . . wn−1)
(1)

3.3.3 Diversity Score
This measurement is a direct expression of d3 ,
where we intend to encourage the diversity of the
generated sentences. Specifically, both wording
and words’ order are considered in this case. In-
spired by Ment et al (Meng et al., 2021), we use
Jaccard distance to measure the difference of two
sentences S1 and S2. The score sdiv can be calcu-
lated by the following equation:

sdiv(S1, S2) = β1
|S1 ∩ S2|
|S1 ∪ S2|

+

β2
1

|S1 ∩ S2|
Σw∈S1∩S2

|pS1(w)− pS2(w)|
max(|S1|, |S2|)

(2)

where S is considered as a set of its words w, and
pS(w) means the position of word w in S.

3.3.4 Comprehensive Score
Eventually, all the three evaluation scores are taken
into consideration. We leverage the linear combi-
nation of ssem, sflu, and sdiv to calculate the final
comprehensive score sfinal as follows:

sfinal(S1, S2) = λ1 · ssem(S1, S2)+

λ2 · sflu(S1, S2) + λ3 · sdiv(S1, S2)
(3)

where λ1, λ2, and λ3 are weight parameters.

4 ParaNet and ParaMod

With the above framework, we can now choose a
proper corpus to generate our paraphrase dataset

ParaNet. As the generation process needs the con-
text of inputs, we choose the long-form BookCor-
pus (Zhu et al., 2015) as our generation input cor-
pus. Since T5 uses BookCorpus as one of its pre-
training corpora and we don’t want the PLM of
ParaMac to have seen the input sentences before,
we use a newly crawled version2 (Sep. 2020 by
Shawn Presser) excluding the original BookCor-
pus, which finally leaves us 3551 books. The gen-
res of these books include fiction, nonfiction, essay,
poetry, plays, and screenplays, ranging from up to
100 topics such as romance, science fiction, fantasy,
thriller, and suspense.

From this subset of BookCorpus, we randomly
sample 10k examples. Each input examples con-
tains 1) a complete sentence S with a length be-
tween 60 and 100 characters; 2) the context before
and behind S, both with an average length of 250
characters. Given the 10k examples, we generate
the ParaNet in an unsupervised way using Para-
Mac. Then, based on ParaNet, we are able to train
a Seq2Seq language model ParaMod, which can
generate paraphrased sentences given any sentence.
The implementation details can be found in Ap-
pendix A.

5 Experiments

In this section, we evaluate our proposed para-
phrase generation model ParaMod in both unsuper-
vised and supervised settings. Furthermore, we use
our ParaMod as a data augmentation and genera-
tion tool to validate its effectiveness in downstream
NLP tasks.

5.1 Paraphrase Generation

ParaMod can be directly applied to different do-
mains of datasets without further fine-tuning, so
we consider this setting unsupervised. The super-
vised setting refers to further fine-tuning ParaMod
on domain-specific data.

To demonstrate the generality of our model, we
choose Quora and MSCOCO as the evaluation
datasets, which represent interrogative and declara-
tive sentences, respectively.
Quora3 dataset is also popularly known as the
Quora question pair. The latest version contains
149k parallel paraphrase question pairs and 260k
non-parallel questions and we follow the split used

2https://github.com/soskek/bookcorpus
3https://www.kaggle.com/c/

quora-question-pairs
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in Liu et al. (2020); Meng et al. (2021).
MSCOCO (Lin et al., 2014) is originally used for
image caption, consisting of roughly 120k images,
annotated with five captions each. We follow the
standard split (Lin et al., 2014).

5.1.1 Baselines and Metrics
For the unsupervised setting, we compare our
model to the following works as our baselines.
VAE Bowman et al. (2016) generated paraphrases
by sampling from a continuous space.
CGMH Miao et al. (2019) utilized Metropolis-
Hasting sampling strategy for sentence generation.
UPSA Liu et al. (2020) introduced a novel ap-
proach that transform the paraphrase generation
into a optimization problem.
DB Niu et al. (2021) brought up a blocking mecha-
nism to diversify the output of PLMs.
CorruptLM Hegde and Patil (2020) utilized GPT-
2 to generate paraphrase by teaching PLMs to re-
cover the input from corrupted sentence.
ConRPG Meng et al. (2021) proposed to generate
paraphrase by using the context as the regularizer.

For the supervised setting, the baselines are:
ResLSTM Prakash et al. (2016) trained a stacked
residual LSTM to do Seq2Seq paraphrasing.
VAE-SVG-eq Gupta et al. (2018) combined VAE
and LSTM to generate realistic paraphrase.
Transformer Vaswani et al. (2017) developed the
Transformer with attention mechanism.
DNPG Li et al. (2019) designed a multi-granularity
Transformer-based model.
ConRPG The unsupervised model of Meng et al.
(2021) can be further trained on supervised data.
LBoW Fu et al. (2019) used a discrete bag-of-
words as the latent encoding for the encoder-
decoder generation model.
SCSVED Chen et al. (2020) leveraged adversarial
learning on variational encoder-decoder to help
keep semantics consistent.

We copy the results of these methods according
to their papers if they have done the same experi-
ment under the same settings.

The metrics used are iBLEU score (Sun and
Zhou, 2012), BLEU score (Papineni et al., 2002),
and ROUGE score (Lin, 2004). The BLEU and
ROUGE score are the most widely-used metrics
for sentence similarity. The iBLEU extends BLEU
by penalizing the similarity between the generated
sentence and the input, in which we adopted the
same weight parameter as Meng et al. (2021). Fi-
nally, as with previous works (Chen et al., 2020;

Gupta et al., 2018), we compute the value of these
metrics by generating multiple paraphrases and se-
lect the best one with the highest iBLEU score.

5.1.2 Unsupervised Results
The main results of unsupervised paraphrase gen-
eration are in Table 1. It shows that the proposed
ParaMod outperforms baselines on every metric.
In particular, there is a huge lift in BLEU on Quora.
On MSCOCO, there is a significant increase in
Rouge values and an approximate 3.3% improve-
ment in BLEU. The iBLEU score is also compa-
rable with previous unsupervised methods. This
result shows the potential and value of our ParaNet.
One advantage of our model is that we smoothly
utilize the original pre-training task in the gener-
ation process, which has no gap with the PLMs’
pre-training.

Model
Quora

iBLEU BLEU R1 R2

VAE 08.16 13.96 44.55 22.64
CGMH 09.94 15.73 48.73 26.12
DB 09.60 14.10 59.90 28.50
UPSA 12.02 18.18 56.51 30.69
CorruptLM 12.32 17.97 59.14 32.14
ConRPG 12.68 18.31 59.62 33.10

ParaMod 14.57 27.45 60.05 39.32

Model
MSCOCO

iBLEU BLEU R1 R2

VAE 07.48 11.09 31.78 08.66
CGMH 07.84 11.45 32.19 08.67
UPSA 09.26 14.16 37.18 11.21
CorruptLM 10.32 15.60 38.12 12.40
ConRPG 11.17 16.98 39.42 13.50

ParaMod 11.34 20.31 52.93 29.11

Table 1: Unsupervised paraphrase generation results.
The baseline figures are copied from Meng et al. (2021)
and Niu et al. (2021)

5.1.3 Supervised Results
To demonstrate the strong power and generality of
ParaMod, we only randomly select subsets of the
whole training set. Specifically, we sample a 500
and a 10k training set on Quora and MSCOCO,
respectively, then fine-tune ParaMod on these sub-
sets for two epochs. The results of supervised
paraphrase generation are shown in Table 2. On
Quora, merely a 500-example 2-epoch fine-tuning
can enable ParaMod to outperform all baselines,
and a 10k-example 2-epoch fine-tuning dramati-
cally improves the performance in all metric val-
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ues. On MSCOCO, the 500-example fine-tuning
makes ParaMod comparable to previous SOTA, and
a further 10k-example fine-tuning outperforms it
with significant enhancement. This result shows
the effectiveness of our ParaMod as a general ini-
tialization for paraphrase models, and also further
validates the value of ParaNet.

Model
Quora

iBLEU BLEU R1 R2

ResLSTM 12.67 17.57 59.22 32.40
VAE-SVG-eq 15.17 20.04 59.98 33.30
Transformer 16.25 21.73 60.25 33.45
DNPG 18.01 25.03 63.73 37.75
ConRPG 19.96 26.81 65.03 38.49
SCSVED - 26.04 60.28 35.26

ParaMod500 20.21 36.26 67.23 47.50
ParaMod10k 28.36 44.77 73.25 55.92

Model
MSCOCO

iBLEU BLEU R1 R2

ResLSTM 11.04 21.65 40.11 14.31
ResLSTM-att 11.59 23.66 41.07 15.26
VAE-SVG-eq 14.13 25.99 40.10 15.18
LBoW 14.02 25.27 42.08 16.13
SCSVED - 27.33 40.65 15.39

ParaMod500 14.32 27.95 63.58 38.59
ParaMod10k 19.0 31.93 66.2 42.27

Table 2: Supervised paraphrase generation results. Base-
line figures on Quora are mainly referred from Meng
et al. (2021), figures on MSCOCO are mainly referred
from Zhou and Bhat (2021). 500 and 10k stands for the
model is fine-tuned 500 and 10k subsets, repectively.

5.1.4 Case Study
Here we provide some real examples generated by
unsupervised models on Quora. Although ConRPG
is the best baseline model, its model and code are
both unavailable. Therefore we choose the second-
best CorruptLM as a comparison to our ParaMod.
The examples are shown in Table 3. It can be seen
that the output of ParaMod is more fluency, diverse,
and accurate in semantics.

5.2 Downstream Tasks
In this work, we particularly highlight our model’s
generality across different downstream tasks, espe-
cially in low-resource settings. We consider two
situations - the first application scenario is the ques-
tion generation in tasks like semantic parsing and
question answering; the second application is the
few-shot learning for NLP tasks.

5.2.1 Low-Resource Generation
In this experiment, we consider the application of
Knowledge-based Question Answering (KBQA),
which aims to answer the given natural language
question based on the knowledge base. Recently,
one prominent approach to constructing datasets
for KBQA is the synthesizing-then-paraphrasing
pipeline (Lan et al., 2021). First, template ques-
tions are generated automatically, and then crowd-
sourced workers are recruited to paraphrase the
template questions into the natural ones (Wang
et al., 2015; Gu et al., 2021; Cao et al., 2022). Al-
though this two-stage paradigm makes constructing
large-scale datasets possible, the time and human
efforts for paraphrasing are intensive and costly.

Model
KQA Pro

iBLEU BLEU R1 R2

T5-base100 06.61 17.13 41.91 28.86
T5-base500 08.69 20.46 44.18 31.32
T5-base1k 17.31 34.62 63.26 46.23

ParaMod100 16.67 31.33 66.72 46.02
ParaMod500 17.44 33.75 68.31 47.82
ParaMod1k 19.52 36.54 69.98 49.91

Table 4: Results for paraphrasing template question to
natural language question on KQA Pro.

We aim to validate the effectiveness of ParaMod
to paraphrase questions for KBQA automatically.
We adopt the dataset KQA Pro (Cao et al., 2022)
since it is a large-scale Complex KBQA dataset
whose template questions are generated according
to a synchronous grammar and then paraphrased

Input CorruptLM ParaMod (ours)

Does Lipton green tea assist in weight loss? Does green tea assist for weight loss? Is lipton green tea an aid in weight loss?

Can you create another upwork account after how do i add another upwork account After the suspension, can you open another
suspension? to suspension? upwork account?

Why is it that the American government is so Are the government corrupt? Why is the American government so corrupt?
corrupt?

Are there any verified angel investors on quora? What angel investors are on quora? Does quora have any verified angel investors?

Table 3: Examples of the generation output of Our method and CorruptLM (Hegde and Patil, 2020) on Quora.
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by AMT workers. To validate the low-resource
generation ability, we compare paraphrase models
in the few-shot setting. We split 10k question pairs
as the test set, leaving the rest for training use. The
models are fine-tuned on subsets of the training set,
which contain 100, 500, and 1k randomly selected
examples, respectively. We compare our ParaMod
with T5-base. The second-best unsupervised model
CorruptLM is not used because it is not a gen-
eral model and needs to train on domain-specific
text, which we don’t have in a low-resource setting.
We use the same metrics as the paraphrase genera-
tion tasks in the last two sections. The results are
demonstrated in Table 4. It is clear that ParaMod’s
performance greatly exceeds T5-base. Especially
when there are only very few golden human-written
pairs, ParaMod is still able to achieve reasonably
good generation quality.

5.2.2 Low-Resource Augmentation

In this experiment, we intend to demonstrate that
ParaMod is also a universal data augmentor. We
follow Gao et al. (2021), who developed a prompt-
tuning method for the few-shot application on
GLUE. We follow their experiment setting, choos-
ing part of the GLUE tasks, and expand their K-
shot data with our ParaMod. The baselines here are
two other data augmentation methods, including
the naive inserting/deleting/replacing by PLMs and
the CorruptLM (trained on MSCOCO).

From the results shown in Table 5, we see that
our ParaMod improves the performance of the cho-
sen tasks by an average of 2.0% and also improves
the stability of all tasks (smaller std values). It also
shows that the naive augmentation and CorruptLM
augmentation both cause a drop in performance.
The possible reason is that the augmented examples
might be semantically inconsistent with the origin
example, and the few-shot model is very sensitive
to out-of-distribution examples. It is also worth not-

ing that we observe the performance drop when the
augmenting size N increases for all augmentation
methods. We consider this a normal phenomenon,
for the extra training examples we created here are
all similar to the original ones in terms of seman-
tics, and training on too many similar examples can
cause over-fitting.

6 Ablation Studies

In this section, we study various factors that can
affect the performance of our ParaMod.

6.1 Paraphrase Pre-Training Data Size
We intend to explore the influence of the size of
ParaNet used to train ParaMod. In Table 6, we
train T5-base for 3 epochs on subsets of ParaNet
that contains 25k, 50k, 75k pairs respectively, and
evaluated the model on Quora. We can see from
the results that the performance of paraphrasing on
Quora gradually rises when we increase the amount
of training data, showing that our ParaNet is helpful
for paraphrase generation.

Size
Quora

iBLEU BLEU R1 R2

0k 8.72 16.23 50.43 31.43
25k 13.30 25.76 57.47 37.57
50k 13.41 26.01 57.78 37.84
75k 13.62 26.57 58.77 38.50

100k 14.57 27.45 60.05 39.32

Table 6: The influence of training data size on
ParaMod’s performance.

6.2 Paraphrase Pre-Training Epochs
We train ParaMod on 10k ParaNet pairs on Quora
with different epochs. From Table 7 we can observe
that with the increase of the training epochs, the
performance improves significantly at first, but then
gradually declines, suggesting a slight over-fitting
during training.

Model (metric) SST-2 (acc) SST-5 (acc) MNLI (acc) MNLI-mm (acc) SNLI (acc) MRPC (f1)

Prompt-based FT 93.1(0.3) 49.5(1.7) 70.0(3.6) 72.0(3.1) 77.5(3.5) 76.7(5.7)
Fine-tuning (full) 95.0 58.7 89.8 89.5 92.6 91.4

NaiveN=3 93.2(0.6) 47.6(2.4) 67.6(1.5) 69.1(1.5) 75.0(4.8) 76.9(4.1)
CorruptLMN=3 92.9(0.7) 47.8(4.3) 63.7(2.8) 65.4(2.4) 75.3(2.4) 74.5(2.3)
ParaModN=3 93.7(0.1) 51.7(0.7) 72.5(2.2) 73.9(1.8) 80.9(1.6) 77.9(3.9)

Table 5: The results of few-shot learning on GLUE. We report mean (and standard deviation) performance over 5
different splits (Gao et al., 2021). N = 3 means we increase the origin K-shot training set size to its N times. The
CorruptLM used in this experiment is trained on MSCOCO.
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Epochs
Quora

iBLEU BLEU R1 R2

0 8.72 16.23 50.43 31.43
5 14.57 27.45 60.05 39.32

10 12.59 26.23 58.79 38.16
15 12.05 26.22 59.09 38.11
20 11.34 26.08 59.62 38.27
25 11.07 26.02 59.73 38.23

Table 7: The influence of training epochs on ParaMod’s
performance.

7 Conclusions

In this paper, we introduce a novel unsupervised
paraphrase generation framework ParaMac, which
utilizes PLMs’ linguistic ability, combined with
multi-aspect equivalence constraints and multi-
granularity diversifying mechanisms, to improve
the generation quality in terms of semantic equiv-
alence and expression diversity. Moreover, we
demonstrate the generality and value of our general
paraphrase model in several downstream tasks.

Limitations

In this section, we intend to point out the three lim-
itations of our unsupervised paraphrase generation
framework. The first is that this framework requires
a relatively high-quality corpus, since the para-
phrase generation needs to use the context of inputs;
Secondly, Our framework is relatively complicated.
Due to the limitations of the input data, ParaMac
cannot directly perform generation in paraphrase
generation tasks such as Quora. In order to gener-
ate a paraphrase given any sentence, we produce
ParaNet and ParaMod to do the job; Finally, The
construction of ParaNet is demanding on comput-
ing resources. In practice, it needs about 30-50s to
produce a pair on a 24GB RTX 3090, depending
on the hyper-parameters of implementation.
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A Implementations

In practice, our ParaMac works with a keywords
filtering rate of round(|{ki}| · 0.15), where {ki}
is the set of keywords; The number of keyword per-
mutations is set to a maximum of 15; the PLM we
use in fluency score computation is GPT-2;the base
language model of Bert-Score is a Roberta-Large
specially fine-tuned on the MNLI (Williams et al.,
2018) task to increase the accuracy; the weighting
parameters in the comprehensive score are set to
λ1 = 4.0, λ2 = 8.0, and λ3 = 1.2. These figures
are set manually by experiments - we take 500 ex-
amples generated by ParaMac and calculate each
score’s standard deviation (std). To avoid one score
totally overwhelming the other, we set the weights
inversely proportional to its corresponding score’s
std.

For ParaMod, we choose the T5-base as the base
model, using the 10k-pair ParaNet as the training
set, training with AdamW optimizer, learning rate
of 1e-4, and β1 = 0.9, β2 = 0.999. Due to the
limitation of GPU memory, we set the batch size to
4 and gradient accumulation steps to 4 as well. The
model converges after training about 20 hours for
25 epochs on a single 24GB RTX 3090, while we
observe by experiment that five epochs of training
yield the best performance.

All the experiments are completed by Pytorch
and the transformers toolkit. We use the transform-
ers’ Trainer class to build the Seq2Seq model code
base.

B Error Analysis

In this section, we want to provide an error analysis
on some bad cases in our experiment. Before the
large-scale generation of ParaNet, we conducted a
small-batch experiment, and revised some of the
error modes by human observation. The observed

errors can be categorized into four types:

• The confusion of affirmative and negative.
The model often ignores the negative suffix
in aren’t/isn’t/haven’t, and output are/is/have.
This is mitigated by adding n’t as a special
keyword if it’s in the sentence.

• The confusion of antonyms. In keyword sub-
stitution, the model sometimes fills in the
antonym, e.g., large to small. This is pre-
vented by using the word’s synonym set in
WordNet.

• Missing important part. This is mainly caused
by the incomplete keyword extraction of
RAKE. To alleviate this problem, we consider
all the nouns and verbs as extra keywords and
lower the filtering rate to avoid dropping im-
portant information.

• Punctuation symbols problems. Rake isn’t
good at handling punctuation symbols. Sym-
bols are sometimes included in a keyword,
thus restricting its output position. Also, Rake
splits words connected with·-”. For example,
the keyword ”semi-fluidic nature” will be split
into ”semi” and ”fluidic nature”, which greatly
harms the semantics after reordering. We add
extra rules to avoid these problems.

Examples of these error types are listed accord-
ingly in Table 8. The first example changes the
original negative saying to affirmative; the second
generates small rather than the synonyms of large
in the input; the third one misses station in its
keywords, thus generates the output with differ-
ent semantics; The last one fails to keep consistent
with the input because the keyword semi-fluidic is
splited.

Input Output

Such a possibility hadn’t even been discussed during the This was discussed during the planning stages as
planning stages. a possibility.

A large sofa was shoved against the wall, covered in A small sofa was wrapped in a soft blanket and tucked
a thin blanket. against the wall.

”As you command, controller,” grudy said, and returned ”I returned to the controller,”
to his station. grudy said.

”Does the semi-fluidic nature of the crystals present ”Is there any weakness in the semi-crystalline structure
a weakness in that regard.?” in that regard?” the fluidic nature present.

Table 8: Examples of the error occurred in the generation of ParaNet.
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Although error modes were revised and avoided
when spotted in this optimizing process, there still
exists some semantic errors in the final ParaNet we
used. Nevertheless, these errors do not affect the
overall quality of the dataset much. In terms of an
automatically generated parallel dataset, the quality
of ParaNet can still be said to be very good, which
has also been demonstrated by our experimental
results.
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