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Abstract

In the past few years, large pre-trained language
models (PLMs) have been widely adopted in
different areas and have made fundamental im-
provements over a variety of downstream tasks
in natural language processing (NLP). Mean-
while, domain-specific variants of PLMs are
being proposed to address the needs of domains
that demonstrate a specific pattern of writing
and vocabulary, e.g., BioBERT for the biomed-
ical domain and ClinicalBERT for the clinical
domain. Recently, generative language models
like BART and T5 are gaining popularity with
their competitive performance on text genera-
tion as well as on tasks cast as generative prob-
lems. However, in the clinical domain, such
domain-specific generative variants are still un-
derexplored. To address this need, our work
introduces a T5-based text-to-text transformer
model pre-trained on clinical text, i.e., Clini-
calT5. We evaluate the proposed model both
intrinsically and extrinsically over a diverse set
of tasks across multiple datasets, and show that
ClinicalT5 dramatically outperforms T5 in the
domain-specific tasks and compares favorably
with its close baselines.1

1 Introduction

In the past few years, large pre-trained language
models (PLMs), such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), GPT-3 (Brown et al.,
2020), BART (Lewis et al., 2020), T5 (Raffel et al.,
2020), etc., have achieved great success over a
variety of downstream tasks in natural language
processing (NLP). These PLMs mainly depend
on self-supervised pre-training on large amounts
of general-domain textual data, e.g., Wikipedia,
news articles, web crawl corpus, etc., and are
widely adopted in downstream applications. De-
spite the superior performance of these PLMs
on general-domain text, their performance over
domain-specific text is relatively poor (Ma et al.,

1We will release the models upon decision of the paper.

2019). To bridge this gap, researchers propose to
build domain-specific PLMs through fine-tuning or
pre-training from scratch over domain corpora. For
example, in the biomedical and clinical domains,
various domain-specific PLMs have been explored
and released, including BioBERT (Lee et al., 2020),
SciBERT (Beltagy et al., 2019), BlueBERT (Peng
et al., 2019), ClinicalBERT (Huang et al., 2019),
BioClinicalBERT2 (Alsentzer et al., 2019), umls-
BERT (Michalopoulos et al., 2020), diseaseBERT
(He et al., 2020), SciFive (Phan et al., 2021), and
BioBART (Yuan et al., 2022).

Domain-specific language models have been ex-
tensively explored in different kinds of NLP-related
downstream applications, ranging from entity link-
ing (Bhowmik et al., 2021) to document classifica-
tion (Allada et al., 2021). Generally, a typical and
popular usage of the aforementioned PLMs is to
leverage them to encode domain text, the learned
representations of which are then fed into some
task-specific structures for label prediction. Tak-
ing a complicated real-world task as an example,
(Huang et al., 2019) predicts patients’ risk of read-
mission within 30 days after discharge using clini-
cal notes in the Electronic Health Records (EHRs).
Essentially, they encode discharge summaries of
patients with ClinicalBERT, and put the learned em-
beddings of the [CLS] token to a linear layer on top
for prediction, leading to better performance than
traditional models. Moreover, (Lu et al., 2021c)
constructs a document-level multi-view graph out
of each clinical note and predicts patients’ 30-day
readmission risk with a graph-based model, and
they use BioClinicalBERT (Alsentzer et al., 2019)
as the encoder within the graph model.

Recently, generative language models, e.g.,
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020), have attracted attention since they are nat-
urally effective for natural language generation
tasks, such as document summarization (Chen and

2Also known as ClinicalBERT.
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Yang, 2021), question answering (Zhu et al., 2021;
Sachan et al., 2021), data augmentation (Lu et al.,
2021b), etc. Meanwhile, a novel paradigm of lever-
aging generative language models has gained popu-
larity, where researchers cast non-generation tasks
as generative problems, e.g., to directly generate
textual labels to incorporate their semantics, and re-
port promising results (De Cao et al., 2021; De Cao
et al., 2022). However, such approaches are still
underexplored in certain domains due to lack of
domain-specific generative language models, i.e.,
most of the aforementioned domain-specific PLMs
are notably domain-adapted BERT-style models.
In the biomedical domain, two generative language
models SciFive (Phan et al., 2021) and BioBART
(Yuan et al., 2022) have been released, but in the
clinical domain, the situation is worse and no such
generative models exist to our knowledge. Though
the two domains are relatively close, clinical text
poses unique challenges compared to general and
non-clinical biomedical text due to its specific lin-
guistic characteristics (Alsentzer et al., 2019). Pre-
vious studies list some of the linguistic features of
clinical text, e.g., heavy use of professional techni-
cal terminology, abbreviations and acronyms, pas-
sive verbs, omission of subjects and verbs, etc., and
these features make clinical text divergent from
standard language (Smith et al., 2014).

Aiming to fulfill this gap, we adapt T5 (Raf-
fel et al., 2020) to the clinical domain by train-
ing a domain-specific variant using clinical text,
i.e., ClinicalT5. We demonstrate the capabilities
of the model by conducting both intrinsic and ex-
trinsic evaluations. For intrinsic evaluation, we
aim to evaluate its capability to capture the simi-
larity and relatedness of the Unified Medical Lan-
guage System (UMLS) concept pairs, where we
measure the correlation coefficient between the sim-
ilarity scores of the encoded representations for the
concept pairs and those judged by human experts.
For extrinsic evaluation, we evaluate the proposed
model along with baselines over a diverse set of
benchmark datasets, ranging from document classi-
fication (DC), named entity recognition (NER), to
natural language inference (NLI). Furthermore, we
also evaluate on three more complicated real-world
tasks of clinical importance, i.e., patients’ 30-day
readmission risk, 30-day and 1-year mortality risk.
We show that ClinicalT5 dramatically outperforms
T5 and compares favorably with its close baselines
across all of these tasks.

2 Related Work

2.1 Biomedical Domain-Adapted Models
The biomedical domain has been an active area
of research in the NLP community for the past
few years. Many relevant studies have been pre-
sented, ranging from domain-specific language
models, external knowledge infusion, and vari-
ous downstream applications, etc. (Peng et al.,
2019; Beltagy et al., 2019; Lee et al., 2020; He
et al., 2020; Michalopoulos et al., 2020; Lu et al.,
2021a). Most of the biomedical language models
are BERT (Devlin et al., 2019) variants fine-tuned
to biomedical text, e.g., BioBERT is trained on
PubMed abstracts and PMC full text articles (Lee
et al., 2020) and SciBERT is trained on the full
text of biomedical and computer science papers
from the Semantic Scholar corpus (Beltagy et al.,
2019). Besides, researchers inject external domain
knowledge into adapted biomedical language mod-
els due to the knowledge-intensive nature of this
domain, e.g., umlsBERT is directly trained using
UMLS text (Michalopoulos et al., 2020), He et al.
infuse disease information from the correspond-
ing Wikipedia passages into language models (He
et al., 2020), and Lu et al. inject biomedical knowl-
edge from multiple sources into language mod-
els via adapters (Lu et al., 2021a). For genera-
tive language models, SciFive is an adapted T5
model pre-trained on PubMed abstracts and PMC
articles (Phan et al., 2021) and BioBART is an
adapted BART model pre-trained on PubMed ab-
stracts (Yuan et al., 2022).

2.2 Clinical Domain-Adapted Models
In the clinical domain, there are mainly two
popular BERT models, i.e., ClinicalBERT (Huang
et al., 2019) and BioClinicalBERT (Alsentzer
et al., 2019), which are both trained on the clinical
notes in the MIMIC-III database (Johnson et al.,
2016). For generative language models, however,
the topic is not well explored and this situation
motivates our work.

3 ClinicalT5

Following prior studies on clinical language mod-
els (Huang et al., 2019; Alsentzer et al., 2019), we
use the textual notes in MIMIC-III to train Clini-
calT5, which consists of approximately 2 million
notes. Similarly, only minimal pre-processing is
conducted where unnecessary tokens and charac-
ters are removed (Huang et al., 2019).
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In particular, we initialize the weights from
the SciFive-PubMed-PMC model (base and large)
(Phan et al., 2021) and further pre-train with the
span-mask denoising objective (Raffel et al., 2020)
on the pre-processed MIMIC-III notes. The base
and large models have ∼ 220M parameters with
12 layers and ∼ 770M parameters with 24 layers,
respectively. For each of the two versions, we fur-
ther pre-train ClinicalT5 on the unlabeled text for
extra 10k steps, with a max sequence length of
512, a batch size of 8, and a learning rate of 1e−4.
The pre-training is performed on 3 Nvidia Tesla
V100-32GB GPUs. We provide a reproducibility
checklist in Appendix A, and we refer the readers
to (Raffel et al., 2020) for more detailed treatment
of the architecture and training objectives of T5.

4 Experiments

In this section, we evaluate ClinicalT5 both intrin-
sically and extrinsically, along with the following
generative baselines (for both general and domain-
specific texts): BART (Lewis et al., 2020), Bio-
BART (Yuan et al., 2022), T5 (Raffel et al., 2020),
SciFive (Phan et al., 2021), to demonstrate the capa-
bilities of ClinicalT5 across different applications.

4.1 Intrinsic Evaluation

We conduct intrinsic evaluation on the datasets
UMNSRS-Sim and UMNSRS-Rel (Pakhomov
et al., 2010), which consist of 566 and 587 UMLS
term pairs respectively. Each pair comes with a
similarity score and a relatedness score that are
manually assigned by human experts. Similar to
previous work (Zhang et al., 2019), we encode the
terms with ClinicalT5 and the baselines. Essen-
tially, we use the mean-pooled vectors of the last
hidden states of the encoders as the term embed-
dings and calculate a cosine similarity score for
each pair. Then we compute the Pearson’s correla-
tion coefficient and Spearman’s correlation coeffi-
cient between the computed scores and the expert-
assigned scores. As shown in Table 1, ClinicalT5
demonstrates a better ability to capture the similar-
ity of UMLS terms than T5 and Scifive, indicating
the effectiveness of the training.

4.2 Extrinsic Evaluation

For extrinsic evaluation, we consider three differ-
ent tasks, i.e., document classification (DC), named
entity recognition (NER), and natural language in-
ference (NLI). To validate the models’ capability

Model
UMNSRS-Similarity UMNSRS-Relatedness
Pearson Spearman Pearson Spearman

BART-base 0.1456 0.1300 0.0756 0.0625
BioBART-base 0.3753 0.3441 0.3101 0.2929
T5-base 0.2050 0.1448 0.1056 0.0519
SciFive-base 0.1941 0.1488 0.1359 0.0900
ClinicalT5-base 0.2126 0.1611 0.1478 0.0948

BART-large 0.2234 0.1958 0.1706 0.1546
BioBART-large 0.4511 0.4302 0.3517 0.3400
T5-large 0.2379 0.2018 0.1813 0.1564
SciFive-large 0.3176 0.2642 0.3039 0.2618
ClinicalT5-large 0.3391 0.2847 0.2884 0.2468

Table 1: Pearson’s and Spearman’s correlation coeffi-
cient scores.

on clinical text, we select datasets that are closely
relevant to clinical targets rather than biomedical or
chemical related data such as BC5CDR-chemical
(Li et al., 2016). We fine-tune the evaluating mod-
els on 4 corresponding datasets across these tasks in
a single-task text-to-text manner. For all the experi-
ments, we use a batch size of 16 and a learning rate
of 1e−4. Due to different targets, we set the max
source text length to 256, and the max target text
lengths to 52, 256, 256, 15 for the datasets HOC,
NCBI, BC5CDR and MEDNLI, respectively.

4.2.1 Document Classification
We conduct document classification on the HOC
dataset (Baker et al., 2016), which consists of
9, 972 samples for training and 4, 947 samples
for testing. Essentially, we fine-tune the evalu-
ating models to categorize the texts into 10 cat-
egories by directly generating the class labels,
e.g., “empty”, “evading growth suppressors”,
“genomic instability and mutation”, etc.

4.2.2 Named Entity Recognition
We conduct named entity recognition on two popu-
lar datasets, i.e., NCBI-disease (Doğan et al., 2014)
and BC5CDR-disease (Li et al., 2016). The input
text sequence may contain a disease term and the
term should be identified and labeled in the target
text, e.g., for the input text “Genotype and phe-
notype in patients with dihydropyrimidine dehy-
drogenase deficiency”, the target is “Genotype and
phenotype in patients with disease* dihydropy-
rimidine dehydrogenase deficiency *disease”.

4.2.3 Natural Language Inference
We conduct natural language inference evaluation
on the MEDNLI dataset (Romanov and Shivade,
2018), which consists of 11, 232 training samples
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Tasks HOC NCBI BC5CDR MEDNLI
Metrics(%) P R F1 P R F1 P R F1 Acc

BART-base 80.30 79.84 79.81 62.23 72.09 66.80 59.24 67.26 63.00 75.60
BioBART-base 84.68 83.54 83.82 63.10 71.77 67.16 61.78 72.05 66.52 80.66
T5-base 82.00 80.98 81.19 86.64 83.00 84.78 80.73 81.68 81.20 81.86
SciFive-base 85.10 84.83 84.70 86.43 88.25 87.33 83.56 81.43 82.48 83.90
ClinicalT5-base 85.44 85.14 85.06 87.28 88.56 87.92 81.55 82.92 82.23 84.95

BART-large 84.89 84.07 84.18 63.39 74.50 68.50 66.45 62.07 64.19 84.53
BioBART-large 84.80 84.51 84.39 67.74 70.51 69.10 65.00 71.93 68.29 86.29
T5-large 85.42 84.75 84.79 84.20 84.99 84.60 78.31 79.75 79.02 83.83
SciFive-large 85.57 85.67 85.34 85.91 85.10 85.50 78.28 79.89 79.08 84.95
ClinicalT5-large 85.37 84.79 84.78 86.37 87.09 86.73 79.24 81.49 80.35 85.86

Table 2: Performance comparison over document classification, named entity recognition, and medical natural
language inference.

and 1, 422 testing samples. Essentially, we con-
vert the premise-hypothesis pair to a sequence and
prepend a task-specific prefix to it, e.g., “mednli:
premise: [...]. hypothesis: [...].” We take the con-
verted sequence as the input text and fine-tune the
evaluating models to generate the target labels, i.e.,
“contradiction”, “neutral”, “entailment”.

4.2.4 Results
The results are shown in Table 2. Generally, Clin-
icalT5 outperforms T5 and SciFive across most
of these metrics, and the advantage indicates the
success of the training over clinical text. However,
ClinicalT5-large is on par with T5-large and has a
slightly lower recall than SciFive-large on the HOC
dataset. We conjecture that the large versions of
BART and T5 already have enough capacity for
the task which makes domain-specific training less
impressive, as reflected by the fact that BioBART-
large is only marginally better than BART-large.
For MEDNLI, ClinicalT5 consistently outperforms
T5 and SciFive although BioBART-large achieves
the highest accuracy.

4.3 Real-world Evaluation
We also evaluate the models on more complicated
real-world applications of clinical importance, i.e.,
30-day unplanned ICU patient readmission risk,
30-day and 1-year patient mortality risk. The exper-
iment is conducted based on the MIMIC-III dataset
(Johnson et al., 2016). Following previous work
(Zhang et al., 2020; Lu et al., 2021c), we extract
the discharge summaries from EHRs and generate
48, 393 documents. Essentially, we take the evalu-
ating models to encode the last 512 tokens of each

Tasks 30-d Readmission 30-d Mortality 1-y Mortality
Metrics(%) A.R. A.P. RP80 A.R. A.P. A.R. A.P.

T5-base 77.10 52.24 16.97 80.03 23.62 78.52 45.72
SciFive-base 78.12 53.95 18.87 80.38 24.16 78.95 45.38
ClinicalT5-base 77.94 54.25 19.76 81.11 26.70 79.09 46.58

A.R: AUC under ROC, A.P: AUC under PRC, RP80: recall at precision of 80%

Table 3: Performance on patients’ outcomes prediction.

note, the last hidden states of which are fed into
a linear layer on top for prediction. As shown in
Table 3, ClinicalT5 shows the best results across
almost all the metrics, demonstrating its potential
for real-world applications in the clinical domain.

5 Conclusion

In this study, we explore and propose ClinicalT5,
a T5-based text-to-text transformer model for clin-
ical text. We evaluate the proposed model both
intrinsically and extrinsically, and the results show
that ClinicalT5 compares favorably with its close
baselines. We also test upon more complicated
patient outcomes prediction tasks, the results of
which indicates its potential for these real-world
downstream tasks in the clinical domain.

Limitations

In this work we present a generative language
model for clinical texts based on T5. Although
our experiments demonstrate the effectiveness of
our method, there are still some limitations that
can be improved in future work. First, our evalua-
tion has not included question answering and other
related tasks for clinical texts. These are impor-
tant tasks (Phan et al., 2021) and can be further
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explored in future work. Second, our pre-training
method for ClinicalT5 has mainly inherited the ob-
jectives from T5 using direct unlabeled texts. As
such, many important domain-specific knowledge
for clinical domain (e.g., knowledge bases, concept
definition) has not been explored to improve our
generative model, serving as a promising direction
for future research.

Ethics Statement

All datasets used in this research are publicly avail-
able and are obtained according to each dataset’s
respective data usage policy. We avoid showing
any direct excerpts of the data in the paper. We do
not attempt to identify or deanonymize users in the
data in any way during our research, thus prevent-
ing any bias in our methods toward any specific
users.

More specifically, the proposed models are
trained on the clinical notes of the public MIMIC-
III database, which are already deidentified in ac-
cordance with Health Insurance Portability and Ac-
countability Act (HIPAA) standards using struc-
tured data cleansing and date shifting. As such, all
identifying data elements in HIPAA, including pa-
tient name, telephone number, address, and dates,
are already removed (Johnson et al., 2016) from
our training data to hinder attempts to retrieve per-
sonal information from our models. Similar to
existing pre-trained and publicly available models
for the clinical domain, i.e., ClinicalBERT (Huang
et al., 2019) and BioClinicalBERT (Alsentzer et al.,
2019), the proposed models serve as a resource to
facilitate future research on clinical text.
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A Reproducibility Checklist

• Source code with specification of all de-
pendencies, including external libraries:
The models and source code along with a
README file will be released upon decision
of the paper.

• Description of computing infrastructure
used: In this work, we use 3 Nvidia Tesla
V100-32GB GPUs for the pre-training and
one GPU for evaluations. PyTorch 1.8.1 and
Huggingface-Transformer 4.18.0 (Wolf et al.,
2019) are used for implementation.

• Average runtime for each approach: We
pre-train the model on MIMIC-III for 3
epochs which takes ∼ 8 hours, and the best
variant is chosen based on its performance on
HOC.

• Number of parameters in the model:
ClinicalT5-base has ∼ 220M parameters with
12 layers and ClinicalT5-large has ∼ 770M
parameters with 24 layers.

• Explanation of evaluation metrics used,
with links to code: We use the same mea-
sures and correctness criteria as in prior work
(Zhang et al., 2019; Phan et al., 2021; Zhang
et al., 2020; Lu et al., 2021c) for fair com-
parison. In particular, we use Pearson’s and
Spearman’s correlation coefficients for intrin-
sic evaluation, and use precision, recall, F1
score as well as accuracy for extrinsic eval-
uation. We also use AUC of ROC, AUC of
PRC and RP80 for the experiments of patient
outcomes prediction.

• Bounds for each hyper-parameter: For all
the experiments, we choose the learning rate
from [1e-5, 1e-4, 1e-3] for the AdamW opti-
mizer, the batch size from [4, 8, 16].
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