SYGMA: A System for Generalizable and Modular Question Answering Over Knowledge Bases
Sumit Neelam, Udit Sharma, Hima Karanam, Shajith Ikbal, Pavan Kapanipathi, Ibrahim Abdelaziz, Nandana Mihindukulasooriya, Young-Suk Lee, Santosh Srivastava, Cezar Pendus, Saswati Dana, Dinesh Garg, Achille Fokoue, G P Shrivatsa Bhargav, Dinesh Khandelwal, Srinivas Ravishankar, Sairam Gurajada, Maria Chang, Rosario Uceda-Sosa, Salim Roukos, Alexander Gray, Guilherme Lima, Ryan Riegel, Francois Luus, L V Subramaniam
Abstract
Knowledge Base Question Answering (KBQA) involving complex reasoning is emerging as an important research direction. However, most KBQA systems struggle with generalizability, particularly on two dimensions: (a) across multiple knowledge bases, where existing KBQA approaches are typically tuned to a single knowledge base, and (b) across multiple reasoning types, where majority of datasets and systems have primarily focused on multi-hop reasoning. In this paper, we present SYGMA, a modular KBQA approach developed with goal of generalization across multiple knowledge bases and multiple reasoning types. To facilitate this, SYGMA is designed as two high level modules: 1) KB-agnostic question understanding module that remain common across KBs, and generates logic representation of the question with high level reasoning constructs that are extensible, and 2) KB-specific question mapping and answering module to address the KB-specific aspects of the answer extraction. We evaluated SYGMA on multiple datasets belonging to distinct knowledge bases (DBpedia and Wikidata) and distinct reasoning types (multi-hop and temporal). State-of-the-art or competitive performances achieved on those datasets demonstrate its generalization capability.- Anthology ID:
- 2022.findings-emnlp.284
- Volume:
- Findings of the Association for Computational Linguistics: EMNLP 2022
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates
- Editors:
- Yoav Goldberg, Zornitsa Kozareva, Yue Zhang
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 3866–3879
- Language:
- URL:
- https://aclanthology.org/2022.findings-emnlp.284
- DOI:
- 10.18653/v1/2022.findings-emnlp.284
- Cite (ACL):
- Sumit Neelam, Udit Sharma, Hima Karanam, Shajith Ikbal, Pavan Kapanipathi, Ibrahim Abdelaziz, Nandana Mihindukulasooriya, Young-Suk Lee, Santosh Srivastava, Cezar Pendus, Saswati Dana, Dinesh Garg, Achille Fokoue, G P Shrivatsa Bhargav, Dinesh Khandelwal, Srinivas Ravishankar, Sairam Gurajada, Maria Chang, Rosario Uceda-Sosa, et al.. 2022. SYGMA: A System for Generalizable and Modular Question Answering Over Knowledge Bases. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 3866–3879, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
- Cite (Informal):
- SYGMA: A System for Generalizable and Modular Question Answering Over Knowledge Bases (Neelam et al., Findings 2022)
- PDF:
- https://preview.aclanthology.org/ingest-acl-2023-videos/2022.findings-emnlp.284.pdf