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Abstract

Pre-trained language models have shown su-
perior performance in task-oriented dialogues.
However, existing datasets are on limited scales,
which cannot support large-scale pre-training.
Fortunately, various data augmentation meth-
ods have been developed to augment large-
scale task-oriented dialogue corpora. However,
they heavily rely on annotated data in the target
domain, which require a tremendous amount
of data collection and human labeling work.
In this paper, we build a unified dialogue user
simulation model by pre-training on several
publicly available datasets. The model can
then be tuned on a target domain with few-
shot data. The experiments on a target dataset
across multiple domains show that our pro-
posed model brings remarkable performance
increases through data augmentation.

1 Introduction

Building a dialogue system typically requires
seeing many dialogue samples to fully explore
the state-action space and language variations
(Pietquin et al., 2011; Gašić et al., 2012). How-
ever, collecting a large multi-turn dialogue dataset
for a specific domain with crowd-sourced workers
is time-consuming and labor-intensive. Dialogue
user simulation, a technique that builds an agent
to mimic the behaviors of real human users, is an
economical alternative, providing unlimited user-
system interactions at a low cost (Schatzmann et al.,
2007a; Asri et al., 2016; Kreyssig et al., 2018; Gür
et al., 2018; Shah et al., 2018).

Generally speaking, there are two ways to use
a user simulator to alleviate the data scarcity prob-
lem: 1) The simulator serves as an interactive en-
vironment to train a system agent directly using
reinforcement learning; 2) The simulator is paired
with a system agent to generate synthetic dialogues
that can be used in dialogue model training. Al-
though the former is popular in traditional dialogue

Goal: You want to book a taxi. The taxi should go to
anatolia and should leave after 22:00. The taxi should
depart from kymmoy. Make sure you get car type and
contact number.
User: i need a taxi to |anatolia|>.
System: what time would you like to leave?
User: i would like to leave after |22:00|>.
System: there are |9|> options available to you. where
would you like to leave from?
User: i ’d like to leave from |kymmoy|>.
System: the fare estimate is |9.78|>. do you want to book
this taxi now?
User: no, i would like the contact number if possible.
System: the contact number is |07356725299|>
User: thank you very much for your help.
System: you are welcome. do you need anything else
today

Table 1: A dialogue generated by our model with corre-
sponding natural language user goal. The “|anatolia|>”
with special tag indicates that the word is a value.

policy learning, in this paper we focus on the latter
that facilitates more tasks, such as dialogue state
tracking.

Early works on user simulation mainly focus on
the user policy module, which perceives and re-
sponses in dialogue act level. However, these user
simulators, either rule-based (Schatzmann et al.,
2007a), statistical-based (Schatzmann et al., 2007b;
Schatzmann and Young, 2009), or neural-based
(Asri et al., 2016; Gür et al., 2018), require fine-
grained dialogue act design/annotation and ignore
the noise introduced by semantic parsing and lan-
guage generation. Therefore, Crook and Marin
(2017) proposed an RNN-based natural language
level user simulator that generates a user utterance
according to the context directly. However, such a
data-driven approach requires enough data in the
target domain, which is less effective in the low-
resource scenario.

Recently proposed large-scale pre-trained lan-
guage models (PLMs) (Devlin et al., 2019; Rad-
ford et al., 2019) provide a solution to few-shot
user modeling, since they have achieved great suc-
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cess through transfer learning on a wide range of
NLP tasks, including few-shot dialogue modeling
(Madotto et al., 2020). Moreover, the performance
can be further improved by pre-training on a large
dialogue corpus before fine-tuning (Peng et al.,
2020; Wu et al., 2020; Su et al., 2022). As for
dialogue simulation, Mohapatra et al. (2021) used
GPT-2 (Radford et al., 2019) to model user and
system separately and generated dialogues through
self-chat. The user generates an utterance accord-
ing to the user goal in natural language and di-
alogue context, while the system first generates
a query to retrieve entities from a database and
then generates a delexicalized response. Kim et al.
(2021) proposed to directly generate a whole di-
alogue with a single BART model (Lewis et al.,
2020) given the user goal and candidate entities
from the database. However, both methods require
domain-specific database interaction, which pre-
vents the simulators from using large scale dialogue
corpora for domain-adaptive pre-training.

In this work, we propose an end-to-end user sim-
ulator that only takes user goal and dialogue con-
text as input. In order to alleviate the data scarcity
problem in the target domain, we pre-train the sim-
ulator on a collection of public dialogue datasets
of different domains and annotation schema. We
also pre-train a context-to-response model without
database interaction on similar datasets as the sys-
tem agent. Note that one could replace this simple
model with any system agent such as PPTOD (Su
et al., 2022), a powerful end-to-end model in few-
shot scenario. Then we fine-tune both agents on
the data of target domain and generate synthetic di-
alogues through self-chat, as shown in Table 1. To
enhance the consistency between the user goal and
dialogue as well as produce dialogue state for syn-
thetic dialogues, we mark the values in utterances
with special tokens for training. Although system
response generation is not grounded on database,
the value can be delexicalized or replaced for spe-
cific tasks.

We conduct both automatic and human evalua-
tion on the quality of synthetic dialogues and show
that our method can generate more goal-consistent
dialogues than baselines with limited data in the tar-
get domain. We also show that using the synthetic
dialogues can better improve few-shot dialogue
state tracking than baselines.

Our contributions are summarized as follows:

• We collect open-sourced task-oriented dia-

logue datasets and pre-train a unified user
simulator that can chat following the natural
language user goal.

• Compared to previous data-driven methods,
our simulator can be quickly adapted to a
target domain with a few training examples,
which tremendously alleviates the data collec-
tion cost.

• Experimental results demonstrate that our pro-
posed simulator generates goal-consistent dia-
logues and improves the performance on dia-
logue state tracking task in the few-shot learn-
ing setting.

2 Related Works

Two lines of works are relevant to this study: neural
user simulation and pre-trained language model.
We briefly discuss their connections and differences
to our work.

2.1 User Simulation

Early user simulation methods are primarily
rule-based, such as agenda-based user simulator
(ABUS) (Schatzmann et al., 2007a,b; Schatzmann
and Young, 2009; Li et al., 2016b). The rules
in these methods are highly domain-dependent,
which can not be easily generalized to new domains.
Meanwhile, the rule-based approaches lead to poor
robustness. Statistical methods are then proposed
to alleviate these problems through a data-driven
approach. Asri et al. (2016) proposed an LSTM-
based sequence-to-sequence model that takes the
dialogue act-level history as input and generates
the next user action. However, this method still
requires language understanding and language gen-
eration components to accomplish a complete simu-
lator. NUS (Kreyssig et al., 2018) is then proposed,
which takes act-level history as input and directly
generates natural language response, averting an ex-
tra language generation module. One drawback of
such a method is that the language generation and
policy planning functions are coupled into a single
neural network. In such a way, each task’s perfor-
mance will affect the other’s performance. Gür et al.
(2018) proposed HUS, a hierarchical model with
word-level and turn-level encoder-decoder frame-
work. In HUS, a sentence is encoded by a word-
level encoder to get its representation. The sentence
representations are then fed into the turn-level en-
coder to get the high-level context representations.
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Then based on the context representation, a decoder
generates the user response word by word.

There are also some works that train the simu-
lator and system together. Liu and Lane (2017)
proposed an iterative policy learning method in
which the system policy and the simulator policy
are trained together with the same reward. Never-
theless, the assumption of a shared reward is only
valid in cooperative dialogue tasks. In a competi-
tive dialogue, such as negotiation, the rewards are
apparently different. Takanobu et al. (2020) design
role-aware rewards for different persons in the di-
alogue, which inspire them to achieve their own
specific goals.

Recently, data augmentation methods have been
proposed for task-oriented dialogue, which plays
the same role for RL-based user simulation. Kim
et al. (2021) proposed NeuralWOZ, a model-based
user simulator with a BART-based (Lewis et al.,
2020) Collector and a RoBERTa-based (Liu et al.,
2019) Labeler to generate and annotate new dia-
logue corpus. Mohapatra et al. (2021) designed
different types of prompts and used GPT-2 (Rad-
ford et al., 2019) for system and user simulators
to generate dialogue corpus. However, both works
require target domain data or data with a similar
schema to build the simulator. In contrast, our pro-
posed base model no longer depends on target data
and can be launched with minimal target data.

2.2 Pre-trained Language Models

Another line of related work is pre-trained lan-
guage models. Through self-supervised learning
on large-scale unlabeled general text, pre-trained
language models (PLMs) achieved SoTA perfor-
mance on various language understanding and gen-
eration tasks. According to the model architec-
ture, PLMs can be roughly classified into two cat-
egories: bi-directional and uni-directional. The
bi-directional PLMs, such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), are usually
trained using Transformers with bi-direction atten-
tions through token prediction, such as masked
language model (MLM). These models are often
applied for classification tasks, such as language
understanding and question answering (QA). While
the uni-directional PLMs, including GPT(Radford
et al., 2018), GPT-2(Radford et al., 2019) and GPT-
3 (Brown et al., 2020), are trained using a Trans-
former decoder with uni-direction attention to max-
imize the generation likelihood of conditional lan-

guage generation.

PLMs are also applied on open-domain and
task-oriented dialog system. For open-domain
chit-chat models, there are DialoGPT(Zhang
et al., 2020), Meena(Adiwardana et al., 2020),
Blender(Roller et al., 2021), Plato(Bao et al., 2020),
and EVA(Zhou et al., 2021). These models are
built upon massive amount of dialogue corpus with
conditional generation objective. For PLMs in
task-oriented dialogues, the researchers are more
concerned about understanding tasks. Wu et al.
(2020) proposed TOD-BERT, which adopts the
original BERT model and obtains strong perfor-
mance on several sub-tasks. There are also works
applying uni-directional generative models on task-
oriented dialogues to build end-to-end models,
such as SOLOIST(Peng et al., 2021) and Simple-
ToD(Hosseini-Asl et al., 2020).

Recently, some works have been using prompt
engineering for few-shot learning in dialogue sys-
tems. Lin et al. (2021) designed prompts for multi-
choice and extractive QA to link the task of QA
and DST and then used only QA data to build a
DST model for zero-shot learning. Lee et al. (2021)
proposed to use schema-driven prompting and natu-
ral language descriptions to boost the performance
of dialogue state tracking. While in PPTOD(Su
et al., 2022), the model is trained on four differ-
ent sub-tasks using unified prompts to boost the
performance of each other.

3 Method

3.1 Overview

This section describes the details of pre-training
data preparation and how we train the user simu-
lator. As illustrated in Figure 1, we first pre-train
the simulator and system agent using a collection
of different task-oriented dialogue datasets that are
firstly transformed into a unified format. Then we
use MultiWOZ(Eric et al., 2020), a large-scale pub-
licly available multi-domain task-oriented dialogue
dataset, as the target domain and tune the models in
few-shot settings. After that, the user simulator in-
teracts with the system agent to generate dialogues
based on user goals. To obtain the dialogue states
of synthetic dialogues, we design an automatic an-
notation procedure that aligns values expressed in
the context with corresponding slots in the user
goal.
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Figure 1: Illustration of our augmentation method. 1) Pretrain user simulator and system agent on multi-domain
dialogues without goal labels. 2) Pretrain user simulator and system agent on multi-domain dialgoues with
paraphrased user goals. 3) Finetune user simulator and system agent on target domain dialogues. 4) The user
simulator interacts with the system agent to generate dialogues, which are annotated automatically. 5) The synthetic
dialogues and the original target domain dialogues are used to finetune the downstream DST model.

3.2 User Simulator
Our user simulator uses T5 (Raffel et al., 2020) as
the backbone model. T5 is a pre-trained text-to-text
transformer model with encoder-decoder architec-
ture. The input to the model is the concatenation of
task description, user goal, and dialogue context:

• Task description I is a natural language de-
scription of the task, indicating the domains of
the dialogue to generate. It is auto-generated
by filling the template “Below is the conver-
sation between a user and a system about
______” with domain names, which is in-
spired by Zheng et al. (2022).

• User goal G is a natural language instruction
telling the user simulator the constraints of the
target entity and which attributes of the entity
are of interest. Formally, there are two kinds
of slots in the user goal: 1) informable slots
whose values should be expressed by the user,
and 2) requestable slots that require the user
to get the value through conversation.

• Dialogue context Ct = (u1, s1, u2, ..., st)
consists of utterances up to t-th turn, where
ui and si are utterances from user and system
respectively.

For those datasets without user goal annotation,
we use user dialogue acts to deduce user goals
automatically, as shown in Table 2. First, we

merge all user dialogue acts from the dialogue to
get a structured goal, which is represented as a
list of (domain, intent, slot, value) tuples. Next, a
textual goal is generated using natural language
templates that are manually designed according to
the intent. However, such a goal follows simple
patterns and is of low language diversity, which
potentially limits the model generalization ability.
To alleviate this problem, we further paraphrase
each sentence in a goal with an online paraphras-
ing tool1. For example, given a dialogue act
(Restaurant, Inform,Cuisine,American),
the template-generated description is “The cuisine
of food served in the restaurant is american”, while
the paraphrased one could be “The restaurant’s
cuisine is American.”

Given the task description I , user goal G, and
dialogue context Ct−1 as the input of T5 encoder,
the user simulator θ is trained to decode a goal-
grounded response ut = (wt1, w

t
2, ..., w

t
|ut|) auto-

regressively:

pθ(ut|I,G,Ct−1) =

|ut|∏

i=1

pθ(w
t
i |wt<i, I, G,Ct−1).

The loss function on a single dialogue of T turns
is therefore calculated as:

L(θ) = −
T∑

t=1

log pθ(ut|I,G,Ct−1). (1)

1https://quillbot.com/
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User dialogue acts: [(restaurant_1, inform, city, san
jose), (restaurant_1, inform, cuisine, american), (restau-
rant_1, request, street_address, ?), (restaurant_1, request,
phone_number, ?), (restaurant_1, inform, price_range,
moderate)]
Template goal: You are looking for a restaurant to dine.
The city in which the restaurant is located is san jose. The
cuisine of food served in the restaurant is american. You
want to know the address of the restaurant. You want to
know the phone number of the restaurant. The price range
for the restaurant is moderate.
Paraphrased goal: You are looking for a restaurant to
dine. The city in which the restaurant is located is san
jose. The restaurant’s cuisine is American. You want to
know the address of the restaurant. You’re looking for the
restaurant’s phone number. The restaurant has a reasonable
price range.

Table 2: An example of user dialogue acts, templated
goal and paraphrased goal.

Dataset Domains # Dialogues
DSTC2 (2014) restaurant 3.2K

AirD (2018) flight 40K
CamRest (2017) restaurant 676

rnnlg (2016) restaurant, hotel 2K
KVReT (2017) car assistant 3K
msre2e (2018) restaurant, movie, car 10K
m2m (2018) restaurant, movie 3K

Frames (2017) flight, hotel 1.4K
schema (2020) 20 domains 23K

Taskmaster (2019) 13 domains 13K
WoW (2019) knowledge dialogue 22K

MultiWOZ (2020) 5 domains2 10K

Table 3: The datasets for domain adaptive pre-training
and target task finetuning.

3.3 System Agent
To generate synthetic dialogues through self-chat,
we also train a vanilla system agent ϕ. The only
difference between the system agent and user sim-
ulator is that the system does not take user goal as
input. The loss function is defined as:

L(ϕ) = −
T∑

t=1

log pϕ(st|I, Ct−1, ut). (2)

3.4 Domain Adaptive Pre-training
We perform domain adaptive pre-training (DAPT)
for both user and system models before fine-tuning
(FT) on the target domain. To enhance the knowl-
edge transfer between DAPT and FT, we select 12

2In fact, MultiWOZ has 7 domains in toal. We don’t use
the "hospital" domain and "police" domain, because there are
no dialogues from these two domains in validation and testing
sets.

representative open-sourced dialogue datasets cov-
ering a variety of domains, as shown in Table 3.
The middle group of datasets has user goal or user
dialogue acts annotation (for WoW we regard all
grounded knowledge sentences of user as the user
goal), while the Top group of datasets has neither.
Therefore, we first train the user simulator without
the user goal on the top group datasets and then
continue to train the simulator on the middle group
of datasets. We jointly trained the system agent on
both groups of datasets except WoW since learning
to generate a response without knowledge is mean-
ingless in WoW dialogue. Besides, we use special
tokens to wrap the values from dialogue acts once
they appear in the utterance, as shown in Table 1.

We use the same backbone model (t5-base-lm-
adapt3, 247.5M parameters) and hyper-parameters
to train both user and system models. We use
Adafactor optimizer (Shazeer and Stern, 2018) with
learning-rate=1e-5, batch-size=256, epoch=10, and
linear learning rate schedule without warming up.

4 Experiment

4.1 Data Augmentation

To generate synthetic dialogues in a target domain,
we first fine-tune both user and system agents on a
few samples in that domain. We use MultiWOZ 2.1
(Eric et al., 2021) as the target dataset and tune
the models with the same hyper-parameters ex-
cept a smaller epoch=5. To examine whether the
simulator is endowed with the general conversa-
tional ability and can quickly be adapted to new
scenarios with limited data, we set the available
dialogues to 5%/10% of the original training set
of the target dataset. Then we sample user goals
from the remaining training set and generate di-
alogues through self-chat. We set the decoding
hyper-parameters of both model to: top_k = 50,
top_p = 0.9, temperature = 1.

4.2 State Annotation

For some task-oriented dialogue tasks, such as dia-
logue state tracking and end-to-end modeling, an-
notated dialogue state labels are required. However,
the above data augmentation framework does not
give dialogue state labels. Since the simulator can
mark the value with special tokens, we extract the
values from user utterances and match them with
corresponding slots in the user goal. When there

3https://huggingface.co/google/
t5-base-lm-adapt
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are multiple values for a single slot, the correspon-
dence is determined with the help of transformer at-
tention scores. Then we accumulate the expressed
values until the current turn as the dialogue state
annotation.

Dataset Goal Context Unknown
train 85.24% 0.52% 14.24%
dev 86.68% 0.59% 12.73%

5% Ours 94.60% 3.34% 2.05%
10% Ours 94.21% 3.71% 2.08%

Table 4: The source of slot values present in the original
train/dev set and the generated dialogues. The percent-
age means how many values can be found from the two
sources. 5% Ours means dialogues generated by our
user simulator and system agent, which are finetuned
on 5% training data.

Since the user simulator is required to gener-
ate responses conditioned on task description and
goals, the slot values present in the generated di-
alogues should be consistent with the grounded
user goal. We checkout where the generated values
come from to examine whether the augmented dia-
logues faithfully follow the instructions. As shown
in Table 4, the dialogues in the original MultiWOZ
data have many unknown slot values which are not
found in their goals or context. However, using
those data to train our user simulator, the result-
ing synthesized data’s values share more common
values with the goal and context. It means our pro-
posed simulator model can capture the connections
between grounded user goal and dialogues, making
the generated responses more consistent with goal
and context.

4.3 Baselines

To validate the effectiveness of our proposed
method, we compare with two state-of-the-art meth-
ods on synthesized data augmentation. More de-
tails about these two different methods are illus-
trated as below:

• NeuralWOZ (NW) (Kim et al., 2021) is a
data augmentation method that synthesizes
labeled dialogues with a Collector and a La-
beler. The Collector takes Goal Instructions
and API Call Results as inputs and generates
a dialogue, and the Labeler annotates the dia-
logue state by formulating it as a multi-choice
problem. The Collector model is built upon

BART (Lewis et al., 2020) (406M parameters)
and the Labeler model is based on RoBerta
(Liu et al., 2019).

• Simulated Chats (SC) (Mohapatra et al.,
2021) proposed a dialogue generation frame-
work that mimics the data collection process
employed by crowd workers. It also involves
a user and agent bot, which takes instructions
and KB results as input to generate dialogues.
A Longformer model is involved to make eval-
uation and selection of the generated results.
Both models are trained upon GPT-2 (Radford
et al., 2019) backbone model (124M parame-
ters).

4.4 Data Statistics
To better examine the quality of augmented data,
we statistically analyzed some metrics of gener-
ated dialogues, as shown in Table 5. The averaged
turn number indicates the session length of each
dialogue. Response length indicates the averaged
token numbers within the responses. Goal recall
measures how many informable goals in the user
goal show up in the generated dialogues. Given a
dialog with T turns and the user goal G, the lan-
guage model loss is:

L(ψ) = − 1

|CT |
T∑

t=1

log pψ(CT |G),

where ψ is a T5-small4 fine-tuned on the full train-
ing set of the target domain that generates the whole
dialogue from user goal. Compared to baseline
methods, the session length of our generated dia-
logues is longer, which means our proposed simula-
tor model can conduct more extended interactions
with the system. Compared to NW and SC, the goal
recall of our model is much better. It means that
our simulator does learn to generate dialogues fol-
lowing the task descriptions and goals by capturing
the goal-dialogue connections within the training
data. As for the language model loss, our model
still achieves a better score, indicating our gener-
ated dialogues are more similar to the dialogues of
target dataset.

Table 6 demonstrates the Distinct-N (Li et al.,
2016a) scores of the generated dialogues. Higher
Distinct scores mean more diverse utterances. Neu-
ralWOZ usually achieves the highest distinct scores
under different settings. We further examine the

4https://huggingface.co/t5-small
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Dataset # Turn Response Length Goal Recall LM Loss
train 12.93 11.78 / 16.17 / 13.81 0.8051 1.577
dev 13.74 11.98 / 16.36 / 14.01 0.8599 1.525

5% NW 13.19 12.34 / 13.09 / 12.69 0.1785 3.143
5% SC 11.59 9.27 / 14.46 / 11.86 0.1926 1.778

5% Ours w/o pretrain 11.75 11.29 / 18.46 / 14.87 0.6334 1.883
5% Ours 15.17 11.05 / 13.80 / 12.43 0.8506 1.689
10% NW 13.25 10.53 / 15.19 / 12.67 0.2227 2.768
10% SC 12.26 9.97 / 14.48 / 12.21 0.2468 1.673

10% Ours w/o pretrain 12.92 11.30 / 17.58 / 14.44 0.7419 1.595
10% Ours 15.03 10.67 / 13.98 / 12.32 0.8364 1.574

Table 5: Statistics of the synthesized dialogues, including averaged turn number, response length, goal recall, and
language model loss. The three values of response length respectively mean the length of user response, agent
response, and average length. Besides the augmented data, statistics of the original train/dev set are also reported.

Dataset Distinct-1 Distinct-2 Distinct-3 Distinct-4
train 0.006 / 0.018 / 0.011 0.065 / 0.099 / 0.072 0.191 / 0.251 / 0.207 0.346 / 0.418 / 0.373

dev 0.021 / 0.041 / 0.025 0.153 / 0.207 / 0.158 0.353 / 0.426 / 0.368 0.544 / 0.608 / 0.564

5% NW 0.082 / 0.092 / 0.072 0.291 / 0.325 / 0.263 0.522 / 0.578 / 0.494 0.703 / 0.762 / 0.685

5% SC 0.004 / 0.010 / 0.006 0.023 / 0.048 / 0.035 0.059 / 0.112 / 0.089 0.109 / 0.185 / 0.155

5% Ours w/o pretrain 0.020 / 0.048 / 0.031 0.104 / 0.183 / 0.136 0.245 / 0.366 / 0.302 0.400 / 0.529 / 0.468

5% Ours 0.017 / 0.048 / 0.028 0.096 / 0.176 / 0.123 0.235 / 0.351 / 0.281 0.389 / 0.519 / 0.449

10% NW 0.053 / 0.089 / 0.062 0.211 / 0.293 / 0.225 0.412 / 0.522 / 0.438 0.594 / 0.699 / 0.625

10% SC 0.004 / 0.010 / 0.006 0.021 / 0.043 / 0.031 0.059 / 0.101 / 0.080 0.107 / 0.174 / 0.145

10% Ours w/o pretrain 0.017 / 0.040 / 0.026 0.094 / 0.159 / 0.118 0.221 / 0.320 / 0.266 0.366 / 0.476 / 0.423

10% Ours 0.016 / 0.043 / 0.026 0.094 / 0.161 / 0.116 0.225 / 0.325 / 0.265 0.375 / 0.489 / 0.428

Table 6: Distinct-N scores of the original train/dev set and the augmented data generated by NeuralWOZ(NW),
Simulated Chats(SC), and our proposed method. Ours w/o pretrain means the original T5 model is fine-tuned on
the target data without pretraining on the 11 datasets. The three values implied the Distinct score of user response,
agent response, and averaged score. The closest values of synthesized data to the scores of original development
data are underlined.

Method 5%-shot 10%-shot
None 27.6 37.1

NeuralWOZ 35.2 40.4
Simulated Chats 34.5 40.8
Ours w/o pretrain 34.6 40.6

Ours 37.5 41.2

Table 7: Joint goal accuracy of the T5 DST models
trained on different data. ‘None’ refers to the setting
where only the 5% and 10% original dataset is used
during training. For each method, we report the best
result on different amounts of augmented data.

difference between synthesized and original values.
As we can see, our proposed model can achieve
closest values in 5% setting, which means its aug-
mented dialogues are similar to the original data.

4.5 Dialogue State Tracking

We use the same few-shot data along with the syn-
thetic data to train a dialogue state tracking model
to examine the quality of the synthesized dialogues
generated by different augmentation methods. As
for the DST model, we use a T5-small model as the
backbone model and finetune it on the augmented
data. It converts the DST task into an encoder-
decoder framework, by taking tokenized dialogue
context as input and generate the response token se-
quence. The input is formated as “user: u1 system:
s1 ... user: ut” and the output is like “[domain1t ](
[slot1,1t ] [value1,1t ], ...); ...; [domainmt ] ([slotm,1t ]
[valuem,1t ],...,[slotm,nt ] [valuem,nt ])”. Here ut and
st indicate the user and system utterance in the t-th
turn, while (domainit, slot

i,j
t , valuei,jt ) refers to a
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candidate slot value tuple in the t-th turn.
To examine the few-shot learning ability of our

model, we conduct few-shot learning experiments
by finetuning the model on 5% and 10% original
data with the augmented data. Note that those
small sets of original data are both utilized to train
the simulator and the DST model. Table 7 shows
the best performance across different sizes of aug-
mented dialogues ranging from 100 to 5000. Joint
goal accuracy means the slot and value prediction
accuracy within each turn. Based on these results,
we can see that the augmented dialogues can dra-
matically improve DST performances. Compared
to methods that use only the small amount original
data for model training, the joint goal accuracies
of four augmented methods achieves a relative in-
crease of 28% in 5%-shot setting. When more
original data is available, this performance growth
dropped to 10% in 10%-shot setting.

Figure 2: The joint goal accuracy result of the T5 DST
models trained on different amounts of original and
augmented data.

We further analyze how the amount of aug-
mented data affects DST performance. Intuitively,
more augmented data leads to better performance
if it is of high quality. We conduct experiments on
both 5%-shot and 10%-shot settings. As shown in
Figure 2, when the quantity of augmented data is
increased, sustained growth in goal accuracy can
be obtained. In particular, our method achieves
the highest increase among the four baseline meth-
ods. When more original data is used for training,
the growth becomes flattened. If we remove the
pre-training stage (Ours w/o pretrain), the perfor-
mance increment declines. It indicates that the
pre-training on the commonly used task-oriented
dialogue datasets does endow our model with more
generalization abilities on conversational skills.

NW SC Ours
Consistency 3.8 3.4 4.2

Grammar 4.0 4.1 4.4
Fluency 4.1 3.8 3.9

Table 8: Human evaluation scores on the augmented
data of NeuralWOZ, Simulated Chats and our method.

4.6 Human Evaluation

To further access the performance difference be-
tween our proposed model and the baseline meth-
ods, we also conduct human evaluation through the
Amazon Mechanical Turk (AMT) platform. Fol-
lowing the scheme used in Mohapatra et al. (2021),
we use three popular metrics, including Consis-
tency, Grammar, and Fluency. Generally speaking,
Consistency measures whether the dialogue is rel-
evant to the grounded task description and user
goal. Grammar indicates whether the generated
dialogues are grammatical or not. Fluency mea-
sures whether the responses of the user and system
are coherent with the dialogue context. The crowd
workers are asked to give a score for each metric
on the Likert scale (1-5).

As demonstrated in Table 8, the augmented di-
alogues of our proposed model are of high qual-
ity and achieve highest scores on Consistency and
Grammar. As for the Fluency metric, the three
methods perform similarly. The good performance
on Consistency and Grammar further illustrates
that our proposed model could better model the
dependencies between user goal and dialogues.

5 Conclusion

In this paper, we develop a unified dialogue sim-
ulation base model. We collect a collection of
representative open-sourced task-oriented dialogue
datasets and transform them into a unified format,
including task description, user goal, and dialogue
context. Through domain adaptive pre-training on
those datasets, our proposed model successfully
learns the essential conversation ability and skills
of a user and can be easily adapted to a downstream
task by using only a small amount of target data.
To examine the performance of our model, we use
it to generate synthesized dialogues and conduct
dialogue state tracking experiments. The results
demonstrate that our proposed model brings re-
markable performance increases through data aug-
mentation. We believe our proposed method can
foster future research on dialogue simulation and
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data augmentation on low-resource task-oriented
dialogue tasks.
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Limitations

Our work has the following limitations: 1) Al-
though our method can generate more goal-
consistent dialogues, using these dialogues to aug-
ment few-shot DST shows limited improvement
over baselines. 2) While our pre-trained user simu-
lator can be used in many different ways, we only
verify its effectiveness in dialog state tracking on
MultiWOZ dataset. 3) We need to annotate the
value spans in utterances. However, this can be
done by a BIO tagging model pre-trained on task-
oriented dialogues. 4) We do not explore using dif-
ferent system agents to generate dialogues, which
may vastly affect the quality of synthetic dialogues.
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M Gašić, Matthew Henderson, Blaise Thomson, Pirros
Tsiakoulis, and Steve Young. 2012. Policy optimisa-
tion of pomdp-based dialogue systems without state
space compression. In 2012 IEEE Spoken Language
Technology Workshop (SLT), pages 31–36. IEEE.

Izzeddin Gür, Dilek Hakkani-Tür, Gokhan Tür, and
Pararth Shah. 2018. User modeling for task oriented
dialogues. In 2018 IEEE Spoken Language Technol-
ogy Workshop (SLT), pages 900–906. IEEE.

Matthew Henderson, Blaise Thomson, and Jason D.
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the 15th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), pages 263–272, Philadelphia,
PA, U.S.A. Association for Computational Linguis-
tics.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 20179–20191. Curran Associates,
Inc.

Sungdong Kim, Minsuk Chang, and Sang-Woo Lee.
2021. NeuralWOZ: Learning to collect task-oriented
dialogue via model-based simulation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3704–3717, Online.
Association for Computational Linguistics.

Florian Kreyssig, Iñigo Casanueva, Paweł
Budzianowski, and Milica Gašić. 2018. Neural user
simulation for corpus-based policy optimisation of
spoken dialogue systems. In Proceedings of the 19th
Annual SIGdial Meeting on Discourse and Dialogue,
pages 60–69, Melbourne, Australia. Association for
Computational Linguistics.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. 2021.
Dialogue state tracking with a language model using
schema-driven prompting. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4937–4949, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training

for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong
Li, Jianfeng Gao, and Yun-Nung Chen. 2016b. A
user simulator for task-completion dialogues. arXiv
preprint arXiv:1612.05688.

Xiujun Li, Sarah Panda, Jingjing Liu, and Jianfeng
Gao. 2018. Microsoft dialogue challenge: Building
end-to-end task-completion dialogue systems. arXiv
preprint arXiv:1807.11125.

Zhaojiang Lin, Bing Liu, Andrea Madotto, Seungwhan
Moon, Zhenpeng Zhou, Paul Crook, Zhiguang Wang,
Zhou Yu, Eunjoon Cho, Rajen Subba, and Pascale
Fung. 2021. Zero-shot dialogue state tracking via
cross-task transfer. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7890–7900, Online and Punta
Cana, Dominican Republic. Association for Com-
putational Linguistics.

Bing Liu and Ian Lane. 2017. Iterative policy learning
in end-to-end trainable task-oriented neural dialog
models. In 2017 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pages 482–
489. IEEE.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrea Madotto, Zihan Liu, Zhaojiang Lin, and Pascale
Fung. 2020. Language models as few-shot learner
for task-oriented dialogue systems. arXiv preprint
arXiv:2008.06239.

Biswesh Mohapatra, Gaurav Pandey, Danish Contrac-
tor, and Sachindra Joshi. 2021. Simulated chats for
building dialog systems: Learning to generate conver-
sations from instructions. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 1190–1203, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-
deh, Lars Liden, and Jianfeng Gao. 2021. Soloist:
Building task bots at scale with transfer learning and
machine teaching. Transactions of the Association
for Computational Linguistics, 9:807–824.

3797

https://doi.org/10.18653/v1/W17-5506
https://doi.org/10.18653/v1/W17-5506
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.287
https://doi.org/10.18653/v1/2021.acl-long.287
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/W18-5007
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/2021.emnlp-main.622
https://doi.org/10.18653/v1/2021.emnlp-main.622
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2008.06239
https://arxiv.org/abs/2008.06239
https://doi.org/10.18653/v1/2021.findings-emnlp.103
https://doi.org/10.18653/v1/2021.findings-emnlp.103
https://doi.org/10.18653/v1/2021.findings-emnlp.103
https://doi.org/10.1162/tacl_a_00399
https://doi.org/10.1162/tacl_a_00399
https://doi.org/10.1162/tacl_a_00399


Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020. Few-shot natural language generation for task-
oriented dialog. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
172–182, Online. Association for Computational Lin-
guistics.

Olivier Pietquin, Matthieu Geist, Senthilkumar Chan-
dramohan, and Hervé Frezza-Buet. 2011. Sample-
efficient batch reinforcement learning for dialogue
management optimization. ACM Transactions on
Speech and Language Processing (TSLP), 7(3):1–21.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. To-
wards scalable multi-domain conversational agents:
The schema-guided dialogue dataset. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8689–8696.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 300–325,
Online. Association for Computational Linguistics.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007a. Agenda-based user
simulation for bootstrapping a pomdp dialogue sys-
tem. In Human Language Technologies 2007: The
Conference of the North American Chapter of the As-
sociation for Computational Linguistics; Companion
Volume, Short Papers, pages 149–152.

Jost Schatzmann, Blaise Thomson, and Steve Young.
2007b. Statistical user simulation with a hidden
agenda. In Proceedings of the 8th SIGdial Workshop
on Discourse and Dialogue, pages 273–282.

Jost Schatzmann and Steve Young. 2009. The hidden
agenda user simulation model. IEEE transactions on
audio, speech, and language processing, 17(4):733–
747.

Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Abhinav
Rastogi, Ankur Bapna, Neha Nayak, and Larry Heck.
2018. Building a conversational agent overnight with
dialogue self-play. arXiv preprint arXiv:1801.04871.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596–4604.
PMLR.

Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta,
Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task
pre-training for plug-and-play task-oriented dialogue
system. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4661–4676, Dublin,
Ireland. Association for Computational Linguistics.

Ryuichi Takanobu, Runze Liang, and Minlie Huang.
2020. Multi-agent task-oriented dialog policy learn-
ing with role-aware reward decomposition. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 625–638,
Online. Association for Computational Linguistics.

Wei Wei, Quoc Le, Andrew Dai, and Jia Li. 2018. Air-
Dialogue: An environment for goal-oriented dialogue
research. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3844–3854, Brussels, Belgium. Association
for Computational Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina
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