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Abstract

Recent years have witnessed the rise and suc-
cess of pre-training techniques in visually-rich
document understanding. However, most ex-
isting methods lack the systematic mining and
utilization of layout-centered knowledge, lead-
ing to sub-optimal performances. In this pa-
per, we propose ERNIE-Layout, a novel docu-
ment pre-training solution with layout knowl-
edge enhancement in the whole workflow, to
learn better representations that combine the
features from text, layout, and image. Specifi-
cally, we first rearrange input sequences in the
serialization stage, and then present a correla-
tive pre-training task, reading order prediction,
to learn the proper reading order of documents.
To improve the layout awareness of the model,
we integrate a spatial-aware disentangled at-
tention into the multi-modal transformer and
a replaced regions prediction task into the pre-
training phase. Experimental results show that
ERNIE-Layout achieves superior performance
on various downstream tasks, setting new state-
of-the-art on key information extraction, docu-
ment image classification, and document ques-
tion answering datasets. The code and models
are publicly available at PaddleNLP1.

1 Introduction

Visually-rich Document Understanding (VrDU) is
an important research field aiming to handle vari-
ous types of scanned or digital-born business docu-
ments (e.g., forms, invoices), which has attracted
great attention from the industry and academia due
to its various applications. Distinct from conven-
tional natural language understanding (NLU) tasks
that use only plain text, VrDU models have the op-
portunity to access the most primitive data features.

∗Equal contribution.
†Work done during internship at Baidu Inc.
‡Corresponding author: Bin Luo.

1https://github.com/PaddlePaddle/
PaddleNLP/tree/release/2.4/model_zoo/
ernie-layout

Herein, the diversity and complexity of document
formats pose new challenges to the task, an ideal
model needs to make full use of the textual, layout,
and even visual information to fully understand
visually-rich document like humans.

The preliminary works for VrDU (Yang et al.,
2016, 2017; Katti et al., 2018; Sarkhel and Nandi,
2019; Cheng et al., 2020) usually adopt uni-modal
or shallow multi-modal fusion approaches, which
are task-specific and require massive data annota-
tions. Recently, pre-training language models have
swept the field, LayoutLM (Xu et al., 2020), Lay-
outLMv2 (Xu et al., 2021), and some advanced
document pre-training approaches (Li et al., 2021a;
Appalaraju et al., 2021; Gu et al., 2022) have been
proposed successively and achieved great successes
in various VrDU tasks. Unlike popular uni-modal
or vision-language frameworks (Devlin et al., 2019;
Liu et al., 2019; Lu et al., 2019; Yu et al., 2021),
the uniqueness of document understanding models
lies in how to exploit the layout knowledge.

However, existing document pre-training solu-
tions typically fall into the trap of simply taking
2D coordinates as an extension of 1D positions to
endow the model layout awareness. Considering
the characteristics of VrDU, we believe that the
layout-centered knowledge should be systemati-
cally mined and utilized from two aspects: (1) On
the one hand, layout implicitly reflects the proper
reading order of documents, while previous meth-
ods are used to perform the serialization by multi-
plexing the results of Optical Character Recogni-
tion (OCR), which roughly arrange tokens in the
top-to-bottom and left-to-right manner (Wang et al.,
2021c; Gu et al., 2022). Inevitably, it is inconsis-
tent with human reading habits for documents with
complex layouts (e.g., tables, forms, multi-column
templates) and leads to sub-optimal performances
for downstream tasks. (2) On the other hand, layout
is actually the third modality besides language and
vision, while current models are used to take lay-
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out as a special position feature, such as the layout
embedding in input layer (Xu et al., 2020) or the
bias item in attention layer (Xu et al., 2021). The
lack of cross-modal interaction between layout and
text/image might restrict the model from learning
the role of layout in semantic expression.

To achieve these goals, we propose a systematic
layout knowledge enhanced pre-training approach,
ERNIE-Layout2, to improve the performances of
document understanding tasks. First of all, we em-
ploy an off-the-shelf layout-based document parser
in the serialization stage to generate an appropriate
reading order for each input document, so that the
input sequences received by the model are more in
line with human reading habits than using the rough
raster-scanning order. Then, each textual/visual to-
ken is equipped with its position embedding and
layout embedding, and sent to the stacked multi-
modal transformer layers. To enhance cross-modal
interaction, we present a spatial-aware disentangled
attention mechanism, inspired by the disentangled
attention of DeBERTa (He et al., 2021), in which
the attention weights between tokens are computed
using disentangled matrices based on their hidden
states and relative positions. In the end, layout not
only acts as the 2D position attribute of input to-
kens, but also contributes a spatial perspective to
the calculation of semantic similarity.

With satisfactory serialization results, we pro-
pose the pre-training task, reading order prediction,
to predict the next token for each position, which
facilitates the consistency within the same arranged
text segment and the discrimination between dif-
ferent segments. Furthermore, when pre-training,
we also adopt the classic masked visual-language
modeling and text-image alignment tasks (Xu et al.,
2021), and present a fine-grained multi-modal task,
replaced regions prediction, to learn the correlation
among language, vision and layout.

We construct broad experiments on three repre-
sentative VrDU downstream tasks with six publicly
available datasets to evaluate the performance of
the pre-trained model, i.e., the key information ex-
traction task with the FUNSD (Jain and Wigington,
2019), CORD (Park et al., 2019), SROIE (Huang
et al., 2019), Kleister-NDA (Graliński et al., 2021)
datasets, the document question answering task
with the DocVQA (Mathew et al., 2021) dataset,
and the document image classification task with the

2It is named after the knowledge enhanced pre-training
model, ERNIE (Sun et al., 2019), as a layout enhanced version.

RVL-CDIP (Harley et al., 2015) dataset. The re-
sults show that ERNIE-Layout significantly outper-
forms strong baselines on almost all tasks, proving
the effectiveness of our two-part layout knowledge
enhancement philosophy.

The contributions are summarized as follows:

• ERNIE-Layout proposes to rearrange the or-
der of input tokens in serialization and adopt
a reading order prediction task in pre-training.
To the best of our knowledge, ERNIE-Layout
is the first attempt to consider the proper read-
ing order in document pre-training.

• ERNIE-Layout incorporates the spatial-aware
disentangled attention mechanism in the multi-
modal transformer, and designs a replaced re-
gions prediction pre-training task, to facilitate
the fine-grained interaction across textual, vi-
sual, and layout modalities.

• ERNIE-Layout refreshes the state-of-the-art
of various VrDU tasks, and extensive exper-
iments demonstrate the effectiveness of ex-
ploiting layout-centered knowledge.

2 Related Work

Layout-aware Pre-trained Model. Humans un-
derstand visually rich documents through many
perspectives, such as language, vision, and layout.
Based on the powerful modeling ability of Trans-
former (Vaswani et al., 2017), LayoutLM (Xu et al.,
2020) initially embeds the 2D coordinates as layout
embeddings for each token and extends the famous
masked language modeling pre-training task (De-
vlin et al., 2019) to masked visual-language mod-
eling, which opens the prologue of layout-aware
pre-trained models. Afterwards, LayoutLMv2 (Xu
et al., 2021) concatenates document image patches
with textual tokens, and two pre-training tasks, text-
image matching and text-image alignment, are pro-
posed to realize the cross-modal interaction. Struc-
tralLM (Li et al., 2021a) leverages segment-level,
instead of word-level, layout features to make the
model aware of which words come from the same
cell. DocFormer (Appalaraju et al., 2021) shares
the learned spatial embeddings across modalities,
making it easy for the model to correlate text to
visual tokens and vice versa. TILT (Powalski et al.,
2021) proposes an encoder-decoder model to gen-
erate results that are not explicitly included in the
input sequence to solve the limitations of sequence
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Figure 1: The architecture and pre-training objectives of ERNIE-Layout. The serialization module is introduced to
correct the order of raster-scan, and the visual encoder extracts corresponding image features. With the spatial-aware
disentangled attention mechanism, ERNIE-Layout is pre-trained with four tasks.

labeling. However, these methods ignore the poten-
tial value of layout in-depth and directly rely on a
raster-scanning serialization, which is contrary to
human reading habits. To solve this problem, Lay-
outReader (Wang et al., 2021c) designs a sequence-
to-sequence framework to generate an appropriate
reading order for each document. Unfortunately,
it is carefully designed for reading order detection
and cannot directly empower various document un-
derstanding tasks. Besides, the above methods are
used to regard layout as a subsidiary feature of text
along with the idea of LayoutLM, but the same text
with different layouts may also express different se-
mantics. Therefore, we believe that layout should
be regarded as the third modality independent of
language and vision.

Knowledge-enhanced Representation. Follow-
ing the BERT (Devlin et al., 2019) architecture,
many efforts are devoted to pre-trained language
models for learning informative representations.
There are some studies show that extra knowledge,
such as facts in WikiData and WordNet, can further
benefit the pre-trained models (Zhang et al., 2019;
Liu et al., 2020; He et al., 2020; Wang et al., 2021b),
but the embeddings of words in the text and enti-
ties in the knowledge graphs are not in the same
vector space, so a cumbersome adaptation module
is required (He et al., 2020; Wang et al., 2021a).
Another research line is to excavate the potential hu-
man cognitive laws of the text itself: ERNIE (Sun
et al., 2019) creativity proposes entity-level mask

in pre-training to incorporate the human knowledge
into language models. Similarly, SpanBERT (Joshi
et al., 2020) modifies the making schema and train-
ing objectives to better represent and predict text
spans. BERT-wwm (Cui et al., 2021) introduces a
whole word masking strategy for Chinese language
models. Outside the field of plain text, ERNIE-
ViL (Yu et al., 2021) incorporates structured knowl-
edge obtained from scene graphs to learn joint rep-
resentations of vision-language. Inspired by the
above work, we leverage the implicit knowledge
related to layout, e.g., reading order, for the under-
standing of visually rich documents.

3 Methodology

Figure 1 shows an overview of the ERNIE-Layout.
Given a document, ERNIE-Layout rearranges the
token sequence with the layout knowledge and ex-
tracts visual features from the visual encoder. The
textual and layout embeddings are combined into
textual features through a linear projection, and
similar operations are executed for visual embed-
dings. Next, these features are concatenated and
fed into the stacked multi-modal transformer lay-
ers, which are equipped with the proposed spatial-
aware disentangled attention mechanism. For pre-
training, ERNIE-Layout adopts four pre-training
tasks, including the new proposed reading order
prediction, replaced region prediction tasks, and
the traditional masked visual-language modeling,
text-image alignment tasks.
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Figure 2: The effect of layout knowledge enhanced se-
rialization compared with vanilla raster-scanning order.
By using Document-Parser, the perplexity of the docu-
ment with a complex layout is significantly reduced.

3.1 Serialization Module

Before feeding a visually rich document to neural
networks, serialization, that is, recognizing the text
and arranging them in proper order, is a necessary
step. First, an OCR tool is used to obtain the words
and their coordinates in documents. Then the tradi-
tional method arranges the identified elements from
left to right and top to bottom by raster-scan to gen-
erate the input sequence. Although this method is
easy to implement, it cannot correctly handle docu-
ments with complex layouts. Look at the example
in Figure 2, there are two tables, and the cells in
these tables also have some newline text. Suppose
we want to extract some information from it. In
that case, the expected results may not be obtained
according to the raster-scanning order, because the
words in the same cell are scattered.

Inspired by the human reading habits, we adopt
Document-Parser, an advanced document layout
analysis toolkit based on Layout-Parser3, to serial-
ize these documents. As shown in Figure 1, based
on the words and their boxes recognized by OCR,
it first detects document elements (e.g., paragraphs,
lists, tables, figures), and then uses specific algo-
rithms to obtain the logical relationship between
words based on the characteristics of different ele-
ments, to obtain the proper reading order.

To quantitatively analyze the benefits of layout
knowledge enhanced serialization, we take perplex-
ity (PPL), calculated by GPT-2 (Radford et al.,
2019), as the evaluation metric. PPL is widely used
for measuring the performance of language models.
From Figure 2, we find that the input sequence se-
rialized by Document-Parser has a lower PPL than
the raster-scanning order. More implementation
details and cases are detailed in Appendix A.1.

3https://github.com/Layout-Parser/
layout-parser

3.2 Input Representation

The input sequence of ERNIE-Layout includes a
textual part and a visual part, and the representation
of each part is a combination of its modal features
and layout embeddings (Xu et al., 2021).
Text Embedding. The document tokens after the
serialization module are used as the text sequence.
Following the pre-processing of BERT-Style mod-
els (Devlin et al., 2019), two special tokens [CLS]
and [SEP] are appended at the beginning and end
of the text sequence, respectively. Finally, the text
embedding of token sequence T is expressed as:

T = Etk(T ) + E1p(T ) + Etp(T ), (1)

where Etk, E1p, Etp respectively denote the token
embedding, 1D position embedding, and token type
embedding layer.
Visual Embedding. To extract the visual features
of documents, we employ Faster-RCNN (Ren et al.,
2015) as the backbone of visual encoder. In particu-
lar, the document image is resized to 224×224 and
fed into visual backbone, an adaptive pooling layer
is introduced to convert the output into a feature
map with a fixed width W and height H (here, we
set them to 7). Next, we flatten the feature map into
a visual sequence V , and project each visual token
to the same dimension as text embedding with a
linear layer Fvs(·). Similarity, the 1D position and
token type [V] are taken into consideration for the
generation of visual embedding:

V = Fvs(V ) + E1p(V ) + Etp([V]). (2)

Layout Embedding. For each textual token,
the OCR tool provides its 2D coordinates with
the width and height of the bounding box
(x0, y0, x1, y1, w, h), where (x0, y0) denote coor-
dinates of the upper left corner of the bound-
ing box, (x1, y1) denote the bottom right corner,
w = x1 − x0, h = y1 − y0, and all the coordinate
values are normalized in the range [0, 1000]. For
the visual token, similar calculation processes can
also be performed. To look up the layout embed-
dings of textual/visual token, we construct separate
embedding layers in the horizontal and vertical di-
rections:

L = E2x(x0, x1, w) + E2y(y0, y1, h), (3)

where E2x is the x-axis embedding layer, E2y de-
notes the y-axis embedding layer.
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To achieve the ultimate input representation H
of ERNIE-Layout, we integrate the embedding of
each textual and visual token with its corresponding
layout embeddings. Finally, the textual and visual
embeddings are combined together to obtain a long
sequence with the length being N +HW , where
N is the max length of the textual part:

H = [T + L;V + L]. (4)

3.3 Multi-modal Transformer
In the final input representation, textual and visual
tokens are spliced together, and the self-attention
mechanism in the transformer supports their layer-
aware cross-modal interaction. However, as a
unique modality, layout features should be involved
in the calculation of attention weight, and the tight-
ness between them and contents (collectively refers
to text and image) should also be taken into account
explicitly. Inspired by the disentangled attention
of DeBERTa (He et al., 2021), in which the at-
tention weights among tokens are computed using
disentangled matrices on their contents and relative
positions, we propose spatial-aware disentangled
attention for the multi-modal transformer to enable
the participation of layout features.

Firstly, we take 1D position as an example to
define the relative distance δ1p(·) between token i
and j, and the definition in the x-axis and y-axis
directions of 2D layout is the same:

δ1p(i, j) =





0 for i− j ⩽ −k

2k − 1 for i− j ⩾ k

i− j + k others,

(5)

Next, to construct relative position vectors con-
sistent with the input dimension, we introduce three
relative position embedding tables E

′
1p, E

′
2x, E

′
2y

for 1D position, 2D x-axis and 2D y-axis. After
looking up the embedding table, a series of projec-
tion matrices map these relative position vectors as
well as the content vectors into Q⋆, K⋆, V⋆ in the
attention mechanism, where ⋆ ∈ {ct, 1p, 2x, 2y}.
In the process of attention calculation, we decouple
the raw score into four parts to realize the in-depth
exchange of 1D/2D features and contents:

Act,ct
ij = Qct

i Kct
j
⊤
, (6)

Act,1p
ij = Qct

i K1p
δ1p(i,j)

⊤
+ Kct

j Q1p
δ1p(j,i)

⊤
, (7)

Act,2x
ij = Qct

i K2x
δ2x(i,j)

⊤
+ Kct

j Q2x
δ2x(j,i)

⊤
, (8)

Act,2y
ij = Qct

i K2y
δ2y(i,j)

⊤
+ Kct

j Q2y
δ2y(j,i)

⊤
. (9)

Finally, all these attention scores are summed
up to get the attention matrix Â. With the scaling
and normalization operations, the output of spatial-
aware disentangled attention is4:

Âij = Act,ct
ij +Act,1p

ij +Act,2x
ij +Act,2y

ij , (10)

Hout = softmax(
Â√
3d

)Vct. (11)

3.4 Pre-training Tasks
There are four pre-training tasks in ERNIE-Layout.
We design reading order prediction and replaced
region prediction, as well as borrow masked visual-
language modeling and text-image alignment from
LayoutLMv2 (Xu et al., 2021), so that the model
has the ability to learn layout knowledge and fuse
various multi-modal information.
Reading Order Prediction. The serialization re-
sult consists of several text segments, including a
series of words and 2D coordinates. Based on the
knowledge, we organize the input words in proper
reading order. However, there is no explicit bound-
ary between text segments in the input sequence
received by the transformer. To make the model
understand the relationship between layout knowl-
edge and reading order and still work well when
receiving input in inappropriate order, we propose
Reading Order Prediction (ROP) and hope the at-
tention matrix Â carries the knowledge about read-
ing order. In this way, we give Âij an additional
meaning, i.e., the probability that the j-th token
is the next token of the i-th token. Besides, the
ground truth is a 0-1 matrix G, where 1 indicates
that there is a reading order relationship between
the two tokens and vice versa. For the end position,
the next token is itself. In pre-training, we calculate
the loss with Cross-Entropy:

LROP = −
∑

0≤i<N

∑

0≤j<N

Gij log(Âij). (12)

Replaced Region Prediction. In visual encoder,
each document image is processed into a sequence
with a fixed length HW . To enable the model per-
ceive fine-grained correspondence between image
patches and text, with the help of layout knowledge,
we propose Replaced Region Prediction (RRP).
Specifically, 10% of the patches are randomly se-
lected and replaced with a patch from another im-
age, the processed image is encoded by the visual
encoder and input into the multi-modal transformer.

4The schematic workflow is shown in Appendix A.2
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Then, the [CLS] vector output by the transformer
is used to predict which patches are replaced. So
the loss of this task is:

LRRP = −
∑

0≤i<HW

[Gi log(Pi)+

(1−Gi) log(1− Pi)], (13)

where Gi is the golden label of replaced patches,
Pi is the normalized probability of prediction.
Masked Visual-Language Modeling. Similar to
masked language modeling (MLM), the objective
of masked visual-language modeling (MVLM) is
to recover the masked text token based on its text
context and the whole multi-modal clues.
Text-Image Alignment. Besides the image-side
cross-modal task RRP, we also adopt Text-Image
Alignment (TIA), as a text-side task, to help the
model learn the spatial correspondence between im-
age regions and coordinates of bounding box. Here,
some text lines are randomly selected, and their cor-
responding regions are covered on the document
image. Then, a classification layer is introduced to
predict whether each text token is covered.

To sum up, the final pre-training objective is:

L = LROP + LRRP + LMVLM + LTIA (14)

4 Experiments

4.1 Datasets
For the fairness of experiments, we only use layout
knowledge enhanced serialization to rearrange the
reading order of pre-training data, which means
that ERNIE-Layout receives the same input as the
compared methods in the fine-tuning phase.
Pre-training. Following popular choice in VrDU,
we crawl the homologous data of IIT-CDIP Test
Collection (Lewis et al., 2006) from Tabacco web-
site, which contains over 30 million scanned docu-
ment pages, and randomly select 10 million pages
from them as the pre-training data.
Fine-tuning. We carry out broad experiments
on various downstream VrDU tasks and datasets.
For the key information extraction task, we select
FUNSD (Jain and Wigington, 2019), CORD (Park
et al., 2019), SROIE (Huang et al., 2019), and
Kleister-NDA (Graliński et al., 2021) as the evalua-
tion datasets. For the document question answering
task, the DocVQA (Mathew et al., 2021) dataset
is selected. For the document image classification
task, we select the RVL-CDIP (Harley et al., 2015)
dataset. Table 1 shows the brief statistics of them
and more details are included in Appendix A.3.

Dataset #Field #Train #Dev #Test

FUNSD 4 149 - 50
CORD 30 800 100 100
SROIE 4 626 - 347
Kleister-NDA 4 254 83 203
RVL-CDIP 16 320K 40K 40K
DocVQA - 39K 5K 5K

Table 1: Statistics of datasets for downstream tasks

Dataset Epoch Weight Decay Batch

FUNSD 100 - 2
CORD 30 0.05 16
SROIE 100 0.05 16
Kleister-NDA 30 0.05 16
RVL-CDIP 20 0.05 16
DocVQA 6 0.05 16

Table 2: Hyper-parameters for downstream tasks

4.2 Settings

Pre-training. ERNIE-Layout has 24 transformer
layers with 1024 hidden units and 16 attention
heads. The maximum sequence length of textual to-
kens is 512 the sequence length of visual tokens is
49. The transformer is initialized from RoBERTa-
large (Liu et al., 2019), and the visual encoder takes
Faster-RCNN (Ren et al., 2015) as the initialized
model. The rest parameters are randomly initial-
ized. We use Adam (Kingma and Ba, 2014) as the
optimizer, with a learning rate of 1e-4 and a weight
decay of 0.01. The learning rate is linearly warmed
up over the first 10% steps, then linearly decayed
to 0. ERNIE-Layout is trained on 24 Tesla A100
GPUs for 20 epochs with a batch size of 576.
Fine-tuning. We solve the key information ex-
traction tasks (FUNSD, CORD, SROIE, Kleister-
NDA) with a sequence labeling framework and
introduce a token-level classification layer to pre-
dict the BIO labels. For the document question an-
swering task (DocVQA), we follow the extractive
question-answering paradigm and build a token-
level classifier after the ERNIE-Layout output rep-
resentation to predict the start and end position of
the answer. For the document image classification
task (RVL-CDIP), the representation of [CLS] is
processed by a fully-connected network to predict
the document label. ERNIE-Layout is fine-tuned
for all the downstream tasks using Adam optimizer,
with a learning rate of 2e-5, weight decay of 0.01.
Similar to pre-training, the learning rate is linearly
warmed up and then linearly decayed. Other hyper-
parameters are shown in Table 2.
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# Methods FUNSD (F1) CORD (F1) SROIE (F1) Kleister-NDA (F1)

1 BERTlarge (Liu et al., 2019) 0.6563 0.9025 0.9200 0.7910
2 RoBERTalarge (Liu et al., 2019) 0.7072 - 0.9280 -
3 UniLMv2large (Bao et al., 2020) 0.7257 0.9205 0.9488 0.8180

4 LayoutLMlarge (Xu et al., 2020) 0.7895 0.9493 0.9524 0.8340
5 TILTlarge (Powalski et al., 2021) - 0.9633 0.9810 -
6 LayoutLMv2large (Xu et al., 2021) 0.8420 0.9601 0.9781 0.8520
7 StructuralLMlarge (Li et al., 2021a) 0.8514 - - -
8 DocFormerlarge (Appalaraju et al., 2021) 0.8455 0.9699 - 0.8580

9 ERNIE-Layoutlarge (ours) 0.9312 0.9721 0.9755 0.8810

Table 3: Results (Entity-level F1 score) of ERNIE-Layout and previous methods on the Key Information Extraction
task (FUNSD, CORD, SROIE, Kleister-NDA). The highest and second-highest scores are bolded and underlined.

# Methods Fine-tuning set ANLS △ANLS

1 BERTlarge (Liu et al., 2019) train 0.6768
2 RoBERTalarge (Liu et al., 2019) train 0.6952
3 UniLMv2large (Bao et al., 2020) train 0.7709

4 LayoutLMlarge (Xu et al., 2020) train 0.7259
5 TILTlarge (Powalski et al., 2021) - 0.8705
6 StructuralLMlarge (Li et al., 2021a) - 0.8349

7a LayoutLMv2large (Xu et al., 2021) train 0.8348 + 0.0639 (#3)
7b LayoutLMv2large (Xu et al., 2021) train + dev 0.8529 + 0.0820 (#3)

8a ERNIE-Layoutlarge (ours) train 0.8321 + 0.1369 (#2)
8b ERNIE-Layoutlarge (ours) train+dev 0.8486 + 0.1534 (#2)

9 ERNIE-Layoutlarge (leaderboard) train+dev 0.8841

Table 4: Results (Average Normalized Levenshtein Similarity, ANLS) of ERNIE-Layout and previous methods
on the Document Question Answering task (DocVQA). "-" means the fine-tuning set is not clearly described in the
original paper. △ANLS means ANLS difference between the multi-modal model and its corresponding text-only
model, where ERNIE-Layout is initialized from RoBERTa and LayoutLMv2 is initialized from UniLMv2.

4.3 Results

Key Information Extraction. Table 3 shows the
results on four datasets, in which we utilize entity-
level F1 score to evaluate these sequence labeling
tasks. ERNIE-Layout achieves new state-of-the-art
on FUNSD, CORD, Kleister-NDA, and competi-
tive performance on SROIE. It is worth mentioning
that, in the FUNSD, ERNIE-Layout obtains a sig-
nificant and stable improvement of 7.98% (with a
standard deviation 0.0011), compared to the previ-
ous best results. The above phenomena are enough
to verify the effectiveness of our design philoso-
phy that mining and utilizing layout knowledge in
document pre-training models.
Document Question Answering. Table 4 lists
the Average Normalized Levenshtein Similarity
(ANLS) score on DocVQA. Compared with all of
the text-only baselines and best-performing multi-
modal models, our method achieves competitive
results and maximum performance improvement.
Note that LayoutLMv2(#7) is developed based on

# Methods Accuracy

1 BERTlarge (Liu et al., 2019) 0.8992
2 RoBERTalarge (Liu et al., 2019) 0.9011
3 UniLMv2large (Bao et al., 2020) 0.9020

4 LayoutLMlarge (Xu et al., 2020) 0.9443
5 TILTlarge (Powalski et al., 2021) 0.9552
6 LayoutLMv2large (Xu et al., 2021) 0.9564
7 StructuralLMlarge (Li et al., 2021a) 0.9608
8 DocFormerlarge (Appalaraju et al., 2021) 0.9550

9 ERNIE-Layoutlarge (ours) 0.9627

Table 5: Results (Accuracy) of ERNIE-Layout and pre-
vious methods on the Document Image Classification
task (RVL-CDIP).

UniLMv2(#3), a model with powerful question-
answering ability and even beat the multi-model
model LayoutLM (#4) on the task. Unfortunately,
UniLMv2 does not open any pre-training code or
pre-trained model, and we can only use the param-
eters of RoBERTa to initialize our ERNIE-Layout.
Nevertheless, we are surprised that ERNIE-Layout
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# MVLM TIA RRP ROP SADA SASA FUNSD CORD

1
√

0.8712 0.9513
2

√ √
0.8753 0.9555

3† √ √ √
0.8848 0.9565

4† √ √ √ √
0.8978 0.9603

5† √ √ √ √ √
0.9241 0.9673

6
√ √ √ √ √

0.9128 0.9658

Table 6: Performance analysis with different pre-training tasks and attention mechanisms, in which SADA refers to
the spatial-aware disentangled attention in ERNIE-Layout, SASA refers to the spatial-aware self-attention proposed
by LayoutLMv2. † indicates the added module is proposed in this paper.

# Serialization Module FUNSD CORD

1 w/ Raster-Scan 0.9128 0.9658
2 w/ Layout-Parser 0.9143 0.9671
3 w/ Document-Parser 0.9171 0.9678

Table 7: Performance analysis with different serializa-
tion modules, in which Raster-Scan means serializa-
tion with vanilla OCR results, while Layout-Parser and
Document-Parser arrange the recognized words with the
help of layout knowledge.

brings an exciting performance improvement to
the backbone (almost double the increase of Lay-
outLMv2). Furthermore, we achieve top-1 on the
DocVQA leaderboard with ensemble.
Document Image Classification. Table 5 shows
the classification accuracy on RVL-CDIP, which
again confirms the effectiveness of ERNIE-Layout
in general document understanding. Unlike these
key information extraction or document question
answering tasks focusing on multi-modal seman-
tic understanding, document image classification
requires a macro perception of text content and doc-
ument layout. Although our pre-training tasks pay
attention to the fine-grained cross-modal matching,
ERNIE-Layout still refreshes the best performance
of the cross-grained task.

4.4 Analysis

We further conduct analysis experiments to study
the effectiveness of the proposed pre-training tasks,
attention mechanisms, and the serialization mod-
ules. We select FUNSD and CORD as the evalua-
tion datasets, keep all ablations sharing the same
hyper-parameter settings, and report the average
number of five runs with different random seeds.
Effectiveness of Pre-training Tasks. In this ex-
periment, we start with the basic MVLM task to
implement baseline models (#1), and integrate new
tasks step by step until the final model contains all

four pre-training tasks (#5). From Table 6, we ob-
serve that RRP brings an improvement of 0.95% on
FUNSD, demonstrating the benefit of fine-grained
cross-modal interaction. When incorporating ROP,
the performance of FUNSD is further increased by
1.3%. We consider that ROP facilitates the model
to learn a better representation that contains the
reading order knowledge.
Effectiveness of Attention Mechanisms. Lay-
outLMv2 (Xu et al., 2021) initially proposes spatial-
aware self-attention to consider layout features in
attention calculation, and many subsequent meth-
ods follow this idea. From Table 6, we find that
adopting such a mechanism can boost the perfor-
mance of downstream tasks (#4 v.s. #6). Mean-
while, disentangling attention into the position and
content parts is another efficient solution to earn
further performance gains (#5 v.s. #6).
Effectiveness of Serialization Modules. Here we
explore the impact of using different serialization
modules on the downstream VrDU tasks. As shown
in Table 7, with the layout-knowledge based serial-
ization modules (#2, #3), the model could achieve
better performances (even without the disentangled
attention). We attribute the improvement to the fact
that, although the advanced serialization is not used
for fine-tuning datasets, the model has the ability to
understand the proper reading order of documents
after pre-training.

5 Conclusion

In this paper, we propose ERNIE-Layout, to inte-
grate layout knowledge into document pre-training
models from two aspects: serialization and atten-
tion. ERNIE-Layout attempts to rearrange the rec-
ognized words of documents, which achieves con-
siderable improvement on downstream tasks over
the original raster-scanning order. Besides, we also
design a novel attention mechanism to help ERNIE-
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Layout build better interaction between text/image
and layout features. Extensive experiments demon-
strate the effectiveness of ERNIE-Layout, and vari-
ous analyses show the impact of different utiliza-
tion of layout knowledge on VrDU tasks.
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A Appendix

A.1 More Details about Document-Parser
The Document-Parser assembles multiple modules
such as document-specific OCR, Layout-Parser,
and Table-Parser, in which the Layout Parser and
Table Parser modules are crucial for incorporating
layout knowledge in ERNIE-Layout.

An important preprocessing step for document
understanding is serializing the extracted document
tokens. The popular method for this serialization
is performed directly on the output results of OCR
in raster-scanning order and is sub-optimal though
simple to implement. With the Layout-Parser and
Table-Parser in the Document-Parser toolkit, the or-
der of the tokens will be further rearranged accord-
ing to the layout knowledge. During the parsing
processing, the tables and figures are detected as
spatial layouts, and the free texts are processed by
paragraph analysis, combining heuristics and detec-
tion models to get the paragraph layout information
and the upper-lower boundary relationship.

To validate the effectiveness of our method, we
use an open-sourced language model GPT-2 (Rad-
ford et al., 2019), to calculate the PPL of the seri-
alized token sequence by the raster-scanning order
and Document-Parser respectively. Since docu-
ments with complex layouts only account for a
small proportion of the total documents, in a test
of 10,000 documents, the average PPL only drops
about 1 point. However, for these documents with
complex layouts, as shown in Table 8, Document-
Parser shows great advantages. An example is
shown in Figure 4, which is extracted from the
third image in Table 8. to show the sequence serial-
ized by Raster-Scan and Document-Parser.

Document Page RS DP

100.39 67.98

98.99 42.02

146.66 76.87

70.12 25.61

219.47 170.54

Table 8: The PPL of serialized token sequence with
different methods. RS refers to the Raster-scanning
order and DP refers to the order with Document-Parser.
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Figure 3: The internal working principle of spatial-aware disentangled attention.

Figure 4: The example of a document with a complex
layout. The serialization result with the raster-scanning
order is “... Session Chair: Session Chair: Session
Chair: Tuula Hakkarainen ...”, while serialization with
Document-Parser is “... Session Chair: Tuula wz Ses-
sion Chair: Frank Markert ...”, which is more consistent
with human reading habits.

A.2 More Details about Multi-modal
Transformer

Section 3.3 describes the proposed spatial-aware
disentangled attention for the multi-modal trans-
former through formulas. To facilitate intuitive
understanding, we also supplement the flow chart
of calculation in Figure 3.

A.3 More Details about Experiments

A.3.1 Finetuning Datasets
FUNSD (Jain and Wigington, 2019) is a dataset
for form understanding on noisy scanned docu-
ments that aims at extracting values from forms,
which comprises 199 real, fully annotated, scanned
forms. The training set contains 149 samples, and
the test set contains 50 samples. We use the official
OCR annotations. Following previous methods, we
adopt entity-level F1 as the evaluation metric. Like
StructralLM (Li et al., 2021a), we use the cell-level
layout information when fine-tuning.

CORD (Park et al., 2019) is a consolidated
dataset for receipt parsing as the first step towards

post-OCR parsing tasks. CORD consists of thou-
sands of Indonesian receipts, including images,
box/text annotations for OCR, and multi-level se-
mantic labels for parsing. The training, validation,
and test sets contain 800, 100, and 100 receipts,
respectively. We use the official OCR annotations
and entity-level F1 as the evaluation metric.

SROIE (Huang et al., 2019) is a scanned receipts
OCR and key information extraction dataset, which
covers important aspects related to the analysis of
scanned receipts. The training and test set contain
626 and 347 samples, respectively. This task re-
quires the model to extract values from each receipt
of four predefined keys: company, date, address,
and total. We use the official OCR annotations and
entity-level F1 as the evaluation metric.

Kleister-NDA (Graliński et al., 2021) is pro-
vided for key information extraction task, which
involves a mix of scanned and born-digital long
formal documents. The training, valid, and test
sets contain 254, 83, and 203 samples, respectively.
Due to the test set is not publicly available, we re-
port the entity-level F1 score on the validation set,
which is computed by the official evaluation tools5.
The task aims to extract values of four predefined
keys: date, jurisdiction, party, and term.

RVL-CDIP (Harley et al., 2015) is a document
classification dataset consisting of grayscale doc-
ument images. The training, validation, and test
sets contain 320000, 40000, and 40000 document
images, respectively. The document images are
categorized into 16 classes, with 25000 images per

5https://gitlab.com/filipg/geval
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Methods FUNSD (F1) CORD (F1) SROIE (F1) Kleister-NDA (F1) DocVQA (ANLS) RVL-CDIP (Acc)

LayoutLMbase (2020) 0.7866 0.9472 0.9438 0.8270 0.6979 0.9442
TILTbase (2021) - 0.9511 0.9765 - 0.8392† 0.9525
LayoutLMv2base (2021) 0.8276 0.9495 0.9625 0.8330 0.7808 0.9525
DocFormerbase (2021) 0.8334 0.9633 - - 0.7878 0.9617

ERNIE-Layoutbase (ours) 0.9028 0.9661 0.9719 0.8740 0.7758 0.9581

Table 9: Results of ERNIE-Layout (base-level model) and previous methods on various downstream VrDU tasks. †

marks the results without any description of fine-tuning set (train or train+dev), The bold and underlined scores
indicate the best and second results, respectively.

class. We use Microsoft OCR tools to extract text
and layout information from document images, and
the evaluation metric is classification accuracy.

DocVQA (Mathew et al., 2021) is a dataset for
Visual Question Answering (VQA) on document
images. The dataset consists of 50000 questions
defined on 12767 document images. The document
images are split into the training set, validation
set, and test set with the ratio of 8:1:1. We use
the Microsoft OCR tools to extract the texts and
layouts from document images. The task aims to
predict the start and end position of the answer span.
Average Normalized Levenshtein Similarity (Biten
et al., 2019) is used as the evaluation metric.

A.3.2 Baselines
In the experiment, we compare ERNIE-Layout
with two groups of recent models: text-only mod-
els (BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), UniLMv2 (Bao et al., 2020)) and
multi-modal models (LayoutLM (Xu et al., 2020),
LayoutLMv2 (Xu et al., 2021), TILT (Powalski
et al., 2021), StructuralLM (Li et al., 2021b), Doc-
Former (Appalaraju et al., 2021)). Note that Lay-
outLM is initialized from BERT, LayoutLMv2 is
initialized from UniLMv2, TILT is initialized from
T5, StructuralLM and our ERNIE-Layout are ini-
tialized from RoBERTa.

A.3.3 Results with RoBERTa-base
In the main content, we leverage RoBERTa-large
to initialize ERNIE-Layout and compare it with
the previous same-level model. Here, we also com-
pare the base-level model with 12 transformer lay-
ers (768 hidden state and 12 attention heads), that
is, initializing ERNIE-Layout with RoBERTa-base.
We omit StructuralLM since it does not release
the parameters and performances of its base model.
From the results in Table 9, it is easy to observe
a similar phenomenon with ERNIE-Layoutlarge:
ERNIE-Layoutbase also achieves significant perfor-
mance improvement on various VrDU tasks, espe-

cially in FUNSD and Kleister-NDA, but slightly
poor in DocVQA (detailed analysis and further
exploration have been given in Section 4.3). By
the way, We are also pleasantly surprised to find
that ERNIE-Layoutbase even beats some large-level
model in kinds of datasets (e.g., FUNSD, CORD,
Kleister-NDA, RVL-CDIP).
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