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Abstract

Word alignment is to find translationally
equivalent words between source and target
sentences. Previous work has demonstrated
that self-training can achieve competitive
word alignment results. In this paper, we
propose to use word alignments generated by
a third-party word aligner to supervise the
neural word alignment training. Specifically,
source word and target word of each word
pair aligned by the third-party aligner are
trained to be close neighbors to each other
in the contextualized embedding space when
fine-tuning a pre-trained cross-lingual language
model. Experiments on the benchmarks of
various language pairs show that our approach
can surprisingly do self-correction over the
third-party supervision by finding more accu-
rate word alignments and deleting wrong word
alignments, leading to better performance than
various third-party word aligners, including
the currently best one. When we integrate all
supervisions from various third-party aligners,
we achieve state-of-the-art word alignment
performances, with averagely more than two
points lower alignment error rates than the
best third-party aligner.We released our code
at https://github.com/sdongchuanqi/
Third-Party-Supervised-Aligner.

1 Introduction

Word alignment is to find the correspondence be-
tween source side and target side words in a sen-
tence pair (Brown et al., 1993). It is widely applied
in a variety of natural language processing (NLP)
tasks, including learning translation lexicons (Am-
mar et al., 2016; Cao et al., 2019), cross-lingual
transfer (Yarowsky et al., 2001; Padó and Lapata,
2009; Tiedemann, 2014; Agić et al., 2016; May-
hew et al., 2017; Nicolai and Yarowsky, 2019), and
semantic parsing (Herzig and Berant, 2018). In
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Figure 1: Gold and third-party word alignments, and
cosine similarities between contextualized embeddings
of subwords in a parallel sentence pair before and after
fine-tuning with third-party supervision.

particular, word alignment plays a key role in many
neural machine translation (NMT) related methods,
such as imposing lexical constraints in the decod-
ing process (Arthur et al., 2016; Hasler et al., 2018),
improving automatic post-editing (Pal et al., 2017),
guiding learned attention (Liu et al., 2016), and
automatic analysis or evaluation of NMT models
(Tu et al., 2016; Bau et al., 2018; Stanovsky et al.,
2019; Neubig et al., 2019; Wang et al., 2020).

Word alignment is usually inferred by GIZA++
(Och and Ney, 2003) or FastAlign (Dyer et al.,
2013), which are based on the statistical IBM word
alignment models (Brown et al., 1993). Recently,
neural methods are applied for inferring the word
alignment. They use NMT-based framework to in-
duce alignments through using attention weights or
feature importance measures, and surpass the sta-
tistical word aligners such as GIZA++ on a variety
of language pairs (Li et al., 2019; Garg et al., 2019;
Zenkel et al., 2019, 2020; Chen et al., 2020; Song
et al., 2020a,b; Chen et al., 2021).

Inspired by the success of the large-scale cross-
lingual language model (CLM) pre-training (De-
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vlin et al., 2019; Conneau and Lample, 2019; Con-
neau et al., 2020), the pre-trained contextualized
word embeddings are also explored for the word
alignment task by either extracting alignments
based on the pre-trained contextualized embed-
dings (Sabet et al., 2020) or fine-tuning the pre-
trained CLMs by self-training to get new contextu-
alized embeddings appropriate for extracting word
alignments (Dou and Neubig, 2021). Based on
careful design of self-training objectives, the fine-
tuning approach achieves competitive word align-
ment results (Dou and Neubig, 2021).

In this paper, we use simple supervision instead
of the self-training to fine-tune the pre-trained
CLMs. The simple supervision is derived from
a third-party word aligner. Given a parallel cor-
pus, the third-party word aligner predicts the word
alignments over the corpus, which are used as the
supervision signal for the fine-tuning. In particular,
for each aligned word pair of a parallel sentence
pair, the contextualized embeddings of the source
and target words are trained to have high cosine
similarity to each other in the embedding space.

As illustrated by Figure 1, the cosine similarities
between the source and target words of the correct
word alignments are not quite high before the fine-
tuning. The third-party word aligner can provide
some correct word alignments (e.g. “that” “must”
“be” associated alignments) along with wrong ones
(e.g. “primary” “objective” associated alignments)
as the supervision. Although the supervision is not
perfect, it is still helpful for driving the contextual-
ized embeddings of the source and target words of
a correct word alignment closer in the embedding
space after the fine-tuning. Surprisingly, with im-
perfect third-party supervision in fine-tuning, the
heat map of the cosine similarities exhibits clearer
split between the correct and wrong word align-
ments than not fine-tuning. Wrong alignments of
the third-party aligner are rectified after fine-tuning
(e.g. “primary” “objective” associated alignments),
and the incorrect alignment before fine-tuning (e.g.
“be”associated alignment) is also rectified after fine-
tuning.

We perform experiments on word alignment
benchmarks of five different language pairs. The re-
sults show that the proposed third-party supervising
approach outperforms all third-party word aligners.
When we integrate all supervisions from various
third-party word aligners, we achieve state-of-the-
art performances across all benchmarks, with an

Figure 2: The framework of the fine-tuning with the
third-party supervision.

average word error rate two points lower than that
of the best third-party word aligner.

2 Approach

Formally, the word alignment task can be defined
as finding a set of word pairs in the sentence pair ⟨s,
t⟩, where s denotes the source sentence “s1, ..., sn”,
and t denotes the corresponding target sentence
“t1, ..., tm” parallel to s. The set of the word pairs
is:

A = {⟨si, tj⟩|si ∈ s, tj ∈ t}.
In each word pair ⟨si, tj⟩, si and tj are translation-
ally equivalent to each other within the context of
the sentence pair.

In the following, we will describe how we obtain
the word alignments by fine-tuning the pre-trained
CLMs. Different to previous work that fine-tunes
by self-training (Dou and Neubig, 2021), we super-
vise the fine-tuning process with third-party word
alignments.

2.1 Third-Party Supervision
The large-scale CLM pre-training has gained im-
pressive performances across various NLP tasks
(Libovickỳ et al., 2019; Hu et al., 2020). As the
outcome of the pre-trained CLMs, the contextu-
alized word embeddings can represent words in
semantic context across different languages. By
further fine-tuning the CLMs, the contextualized
embeddings of the source and target words of a
word alignment in the embedding space can be-
come closer, which makes it easier for identifying
word alignments according to the simple geometry
of the embedding space for each pair of parallel
sentences.
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We propose to fine-tune the pre-trained CLMs
with supervision from a third-party word aligner.
Figure 2 shows the overall fine-tuning frame-
work. For a source sentence “s1, s2, s3, s4” and
its corresponding target sentence “t1, t2, t3”, we
stack CLM over them to obtain the contextualized
word embeddings hs =“hs1, hs2, hs3, hs4” and ht
=“ht1, ht2, ht3” for the source and target sides, re-
spectively. Since CLM models sentences of dif-
ferent languages in the same contextualized em-
bedding space, it is easy to constitute a similarity
matrix by directly computing the cosine similarities
between hs and ht. The similarity matrix is:

M = hs× htT

In the matrix, word pairs with higher similarities
are deemed as word alignments. Let A′ denotes the
word alignments generated by the third-party word
aligner. CLM is fine-tuned with the supervision
of A′ so that M is consistent with A′. Although
the third-party supervision A′ is not perfect, we
observe that the fine-tuning can proceed with self-
correction of imperfect A′ in the experiments.

The supervision is bidirectional:

P s2t(i, j) =
eMi,j

∑n
j=1 e

Mi,j

P t2s(i, j) =
eMi,j

∑m
i=1 e

Mi,j

L =
1

m

m∑

i=1

∑

j
s.t. ⟨si,tj⟩∈A′

Ps2t(i, j)

+
1

n

n∑

j=1

∑

i
s.t. ⟨si,tj⟩∈A′

Pt2s(i, j) (1)

where Ps2t denotes the probability of source-to-
target alignment between si and tj , which is com-
puted by softmax over the ith row of M . Corre-
spondingly, Pt2s denotes the probability of target-
to-source alignment between tj and si, which is
computed by softmax over the jth column of M1.
m and n denote the lengths of the source and target
sentences, respectively. We aim to maximize L,
which sums the bidirectional probabilities subject
to A′ supervision.

1Since the experimental result difference between soft-
max and α-entmax (Peters et al., 2019) is marginal, we adopt
softmax for simplicity.

Through the above training objective, CLM is
fine-tuned to generate the contextualized embed-
dings suitable for building the similarity matrices
to extract word alignments.

2.2 Word Alignment Prediction

Given a new pair of parallel sentences in the test
set, we can predict its word alignments based on
the CLM fine-tuned on the parallel training corpus.
In particular, for the sentence pair, the source-to-
target probability matrix Ms2t which consists of
probabilities of Ps2t, and the target-to-source prob-
ability matrix Mt2s which consists of probabilities
of Pt2s, are computed using the fine-tuned CLM
at first, then the set of word alignments A can be
deduced according to the intersection of the two
matrices:

A = {⟨si, tj⟩|Ps2t(i, j) > c & Pt2s(i, j) > c}

where c is a threshold. Only the word pairs whose
source-to-target alignment probability and target-
to-source alignment probability are both greater
than c are deemed as the predicted word align-
ments.

2.3 Integrating various Third-Party
Supervisions

Different third-party word aligners exhibit differ-
ent behaviors in the word alignment results. We
integrate the word alignments produced by various
aligners into one set of supervisions for the fine-
tuning process to test if they can be combined to
improve the performance further. At first, we group
all third-party aligners’ output alignments into one
union. Then we utilize the union in two category
of methods: filtering and weighting.

The filtering method abandons word alignments
in the union which have low consistency between
various aligners, and only keep the alignments
that majority of the aligners consent to. The re-
maining word alignments are used to supervise the
fine-tuning process. Since different aligners get
different performances, we assign credit to each
aligner by using its performance on the develop-
ment set (i.e., negative alignment error rate of the
development set), then we normalize the credits of
all aligners by softmax. Consequently, each word
alignment ⟨si, tj⟩ in the union has a total credit:
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Credittotal(i, j) =
K∑

k=1
s.t. ⟨si,tj⟩∈A′

k

Creditk(i, j)

where A′
k denotes the set of word alignments of the

kth third-party word aligner, K denotes the number
of the third-party word aligners, and Creditk is the
credit of the kth aligner after softmax. Credittotal
represents the degree of agreement between various
aligners. Only word alignments whose Credittotal
are greater than a threshold f are kept for the sub-
sequent fine-tuning.

Different to the filtering method, the weighting
method considers all word alignments in the union,
though it put weights over them in the fine-tuning.
Credittotal used in the filtering method is also
adopted in the weighting method:

wi,j =
1

1 + e−λ(Credittotal(i,j)−f)

where wi,j is the weight of the word pair ⟨si, tj⟩.
When Credittotal exceeds the threshold f , the
weight tends to 1, otherwise it tends to 0. λ is
the hyper-parameter that controls the effect of the
supervision integration. wi,j is inserted into the
fine-tuning objective L in euqation (1) by simply
replacing Ps2t(i, j) with wi,jPs2t(i, j), and replac-
ing Pt2s(i, j) with wi,jPt2s(i, j).

2.4 Handling Subwords
Subwords (Sennrich et al., 2016; Wu et al., 2016)
are widely used in pre-training CLMs. The fine-
tuning process is conducted on the contextualized
embeddings of the subwords. So we run all third-
party word aligners at the subword level to get sub-
word alignments, which are used for supervising
the fine-tuning. During testing, we get the sub-
word alignments for the test set sentence pairs at
first, then convert the subword alignments to the
word alignments by following previous work (Sa-
bet et al., 2020; Zenkel et al., 2020), which consider
two words to be aligned if any of their subwords
are aligned.

3 Experiments

We test the proposed third-party supervised fine-
tuning approach on word alignment tasks of
five language pairs: Chinese-English (Zh-En),
German-English (De-En), English-French (En-Fr),
Romanian-English (Ro-En) and Japanese-English
(Ja-En).

3.1 Datasets

We use the benchmark datasets of the five language
pairs. They are utilized in two ways. For all third-
party aligners, whole training corpus for each lan-
guage pair is used by each third-party aligner. For
our approach, only a fraction of the whole train-
ing corpus for each language pair is used in the
fine-tuning phase.

Regarding the datasets for all third-party align-
ers, the configuration is the same to previous works.
The Zh-En training-set is from the LDC corpus
which consists of 1.2M sentence pairs, and the test
and development sets are obtained from the Ts-
inghuaAligner website 2 (Liu et al., 2005). For
the De-En, En-Fr, Ro-En datasets, we follow the
experimental setup of previous work(Zenkel et al.,
2019, 2020) and use their pre-processing scripts
(Zenkel et al., 2019)3 to get the training and test
sets. The Ja-En dataset is obtained from the Ky-
oto Free Translation Task (KFTT) word alignment
data(Neubig et al., 2011), in which the sentences
with less than 1 or more than 40 words are removed.
The Japanese sentences are tokenized by KyTea to-
kenizer(Neubig et al., 2011).

Regarding the datasets for our fine-tuning ap-
proach, we only use the first 80,000 sentence pairs
of the whole training corpus for each language pair.
Basically, the third-party supervision for these sen-
tence pairs are extracted from the word alignments
of the whole training corpus induced by the third-
party aligner. We also test training the third-party
aligner just on the 80,000 sentence pairs to pro-
vide the third-party supervision, the results are pre-
sented in section 3.8. Besides, we also vary the
data size for the fine-tuning as shown in the experi-
mental section 3.5.

Table 1 presents the statistics of these datasets.
Since De-En, En-Fr, and En-Ro have no manually
aligned development sets, we take the last 1,000
sentences of the training data as the development
sets(Ding et al., 2019), in which the aligner is self-
tuned on the alignments predicted by itself in the
last iteration. Other development sets and all test
sets are manually aligned. All training sets do not
contain manually labeled word alignments.

2http://nlp.csai.tsinghua.edu.cn/~ly/systems/
TsinghuaAligner/TsinghuaAligner.html

3https://github.com/lilt/alignment-scripts
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TRAIN FINE-TUNE DEV TEST
Zh-En 1,252,977 80,000 450 450
De-En 1,918,317 80,000 1,000 508
En-Fr 1,129,104 80,000 1,000 447
Ro-En 447,856 80,000 1,000 248
Ja-En 329,882 80,000 653 582

Table 1: Number of sentence pairs in the benchmark
datasets.

3.2 Settings

Pre-trained Cross-lingual Language Models.
For fine-tuning, we investigate two types of pre-
trained CLMs, namely mBERT and XLM(Conneau
and Lample, 2019). mBERT is pre-trained over
Wikipedia texts of 104 languages with the same
settings to Dou and Neubig (2021). For XLM,
we have tried its two released models: 1) XLM-
15(MLM+TLM) which is pre-trained with MLM
and TLM objectives and supports 15 languages.
2) XLM-100(MLM), which is trained with MLM
and supports 100 languages. Specifically, for Zh-
En, De-En, and En-Fr, which are among the 15
languages, we use XLM-15(MLM+TLM) same to
Dou and Neubig (2021). For Ro-En and Ja-En
which are not covered by XLM-15(MLM+TLM),
we choose XLM-100 (MLM) instead with a mod-
ification that XLM-100 (MLM) is further trained
on the parallel training corpora of Ro-en and Ja-
En with the TLM objectives to be consistent with
XLM-15(MLM+TLM). In the following, unless
with clear specification, XLM stands for XLM-15
or XLM-100 in appropriate circumstances.

The contextualized word embeddings are ex-
tracted from the hidden states of the ith layer of
the pre-trained CLMs, where i is an empirically-
chosen hyper-parameter based on the development
set performances. For XLM-15, we use its 5th
layer to extract the contextual embeddings (Hewitt
and Manning, 2019; Tenney et al., 2019), while for
XLM-100, we use its 9th layer. For mBERT, we
use its 8th layer. We directly use the subwords in
the pre-trained CLMs, i.e., BPE subwords in XLM
and word piece subwords in mBERT .

Training Setup and Hyper-parameters. We
fine-tune XLM and mBERT models for 10 epochs
over the parallel fine-tuning corpus for each lan-
guage pair, with a batch size of 8. We use
AdamW(Loshchilov and Hutter, 2017) with learn-
ing rate of 1e-5. The dropout rate is set to 0.1. The
training process typically takes 2 to 3 hours. The
hyper-parameters are tuned based on the develop-

ment set performances. Regarding the threshold c
in the word alignment prediction, it is set to 1e-6
for Ro-En and 0.1 for the others. Regarding the
hyper-parameters in integrating the various third-
party supervisions, f is set to 0.45 and λ is set to
0.5 for all language pairs.

3.3 Third-Party Word Aligners
We explore various third-party word aligners
ranging from statistical approaches to neural ap-
proaches to supervise the fine-tuning process. The
aligners include:

• FastAlign (Dyer et al., 2013)4: a popular sta-
tistical word aligner which is an effective re-
parameterization of IBM model 2.

• GIZA++(Och and Ney, 2003)5: another pop-
ular statistical word aligner implementing the
IBM models. We use traditional settings of
5 iterations each for model 1, HMM model,
model 3 and model 4.

• Eflomal(Östling and Tiedemann, 2016)6: an
efficient statistical word aligner using a
Bayesian model with Markov Chain Monte
Carlo inference.

• SimAlign(Sabet et al., 2020)7: a word aligner
that directly uses static and contextualized em-
beddings of BERT to extract word alignments.
We use its Argmax model with default set-
tings.

• AwesomeAlign(Dou and Neubig, 2021)8: a
neural word aligner that fine-tunes CLMs by
self-training to produce contextualized embed-
dings suitable for word alignment.

• MaskAlign(Chen et al., 2021)9: a neural
word aligner based on self-supervision which
parallel masks each target token and predicts
it conditioned on both sides remaining tokens
to better model the alignment.

For some language pairs that are not reported
in the papers of the above third-party aligners, we
run their released tools on the benchmark datasets
to get the corresponding results. Specifically, for

4https://github.com/clab/fast_align
5https://github.com/moses-smt/mgiza
6https://github.com/robertostling/eflomal
7https://github.com/cisnlp/simalign
8https://github.com/neulab/awesome-align
9https://github.com/THUNLP-MT/Mask-Align
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Zh-En, we run FastAlign, Eflomal, and SimAlign.
For Ja-En, we run FastAlign, GIZA++, Eflomal,
SimAlign, and MaskAlign. Because the evaluation
in AwesomeAlign for Zh-En ignores manually la-
beled possible alignments, which is inconsistent to
other works, we run AwesomeAlign for Zh-En to
re-evaluate with considering the manually labeled
possible alignments.

3.4 Main Results

The alignment error rate (AER) (Och and Ney,
2003) is used to evaluate the performances. Main
results are summarized in Table 2. Compared to
all third-party word aligners, which are also set as
the baselines, our proposed approach achieves the
state-of-the-art performances across the five lan-
guage pairs, with an average AER of more than
two points lower than the best third-party word
aligner.

Table 2 presents the results of fine-tuning XLM.
The results of fine-tuning mBERT is reported in
Table 3. Both fine-tuning approaches perform bet-
ter than the third-party word aligners. Since fine-
tuning CLMs is conducted in the subword level,
we need to adapt the third-party aligners for sub-
words. Given the parallel corpus of each language
pair, we directly use the dictionary of the CLM
to get the subwords of the corpus, then run each
third-party aligner on such corpus which is sub-
word segmented. Such adapted results are reported
in both tables with the subscript “adapted” to each
third-party aligner10. For neural aligners such as
MaskAlign which already uses subwords, the adap-
tation is still needed since the subwords of the pre-
trained CLM are different.

Regarding the plain contextualized embeddings
in XLM and mBERT, they can be directly aligned
between source and target languages by mining
the closest neighbors in the universal embedding
space, as shown in the “w/o Fine-tuning” rows in
Table 2 and 3 (Dou and Neubig, 2021). When we
further fine-tune these embeddings supervised by
the subword alignments produced by each adapted
individual third-party aligner, we obtain signifi-
cant improvement over each individual third-party
aligner. When compare fine-tuning to without fine-
tuning (“w/o Fine-tuning” rows), we found that

10We have tried other complicated adaptation approaches
such as decomposing word alignments into subword align-
ments, adding pooling layers that deal with word level align-
ments, but they are not as effective as the above simple adap-
tation approach.

Figure 3: The effect of the different sizes of parallel
corpora for the fine-tuning.

fine-tuning generally performs better than without
fine-tuning, except for fine-tuning with the super-
vision of FastAlignadapted. Since FastAlignadapted
performs remarkably worse than without fine-
tuning, it is hard for FastAlignadapted to provide
effective supervision for the fine-tuning. Since
AwsomeAlignadapted already fine-tunes the CLMs
by self-training, continuing to fine-tune CLMs with
the supervision of AwsomeAlignadapted does not
gain improvements. At last, when we integrate all
supervisions from various third-party aligners, we
achieve state-of-the-art AER. Details of integrating
all supervisions are presented in section 3.7.

3.5 The Effect of The Fine-tuning Corpus Size
Figure 3 presents the performance variance when
the size of parallel corpus for the fine-tuning varies.
As the fine-tuning corpus becomes larger, AER be-
comes lower across all five language pairs. The full
corpus is identical to that used in training the third-
party aligners. The curve for En-Fr is presented in
the appendix due to space limit. Usually 80k sen-
tence pairs can provide good supervisions for the
fine-tuning, with limited margin to the performance
of using the full corpus. Note that the performance
of using 2k sentence pairs for fine-tuning is less
than two points worse than that of using the full
corpus, even just 0.4 points worse in En-Fr.

3.6 Self-Correction Effect
Although the supervision from the third-party
aligner is not perfect, we observe a self-correction
effect that as the fine-tuning proceeds, more ac-
curate word alignments other than the third-party
alignments are identified as they become closer
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Zh-En De-En En-Fr Ro-En Ja-En AVG
Baseline

FastAlign (Dyer et al., 2013) 27.3 27.0 10.5 32.1 51.1 29.6
GIZA++ (Och and Ney, 2003) 18.5 20.6 5.9 26.4 48.0 23.9
Eflomal (Östling and Tiedemann, 2016) 23.4 22.6 8.2 25.1 47.5 25.4
SimAlign (Sabet et al., 2020) 19.6 19.0 6.0 30.5 48.6 26.4
AwesomeAlign (Dou and Neubig, 2021) 13.3 15.6 4.4 23.0 38.4 18.9
MaskAlign (Chen et al., 2021) 13.8 14.4 4.4 19.5 40.8 18.6

Fine-tuning XLM
w/o Fine-tuning 18.0 16.2 4.9 27.1 42.8 21.8
FastAlignadapted 23.0 27.0 11.2 32.2 49.3 28.5
w/ FastAlignadapted Supervision 21.4 24.2 9.8 27.4 46.6 25.9
GIZA++adapted 18.8 19.3 6.3 29.0 43.9 23.5
w/ GIZA++adapted Supervision 13.3 15.2 5.1 23.8 39.2 19.3
Eflomaladapted 27.0 26.0 13.1 27.8 47.6 28.3
w/ Eflomaladapted Supervision 14.0 18.4 6.1 23.6 43.7 21.2
SimAlignadapted 21.3 17.3 5.1 33.3 48.2 25.0
w/ SimAlignadapted Supervision 14.7 14.8 4.5 26.5 44.0 20.9
AwesomeAlignadapted 13.7 17.2 4.7 24.2 40.4 20.0
w/ AwesomeAlignadapted Supervision 13.6 17.4 4.6 24.4 40.2 20.0
MaskAlignadapted 15.7 15.3 4.6 19.2 41.6 19.3
w/ MaskAlignadapted Supervision 12.1 13.9 4.3 18.8 34.3 16.7
w/ Integrated Supervision 11.3 13.9 4.0 18.6 33.4 16.2

Table 2: AER results of the baseline systems and the systems of fine-tuning XLM with the third-party supervisions.
The lower AER, the better. AVG denotes the average AER over the five language pairs.

Zh-En De-En En-Fr Ro-En Ja-En AVG
Fine-tuning mBERT

w/o Fine-tuning 17.9 17.4 5.6 27.3 45.2 22.7
FastAlignadapted 22.9 27.2 11.7 31.9 49.0 28.5
w/ FastAlignadapted Supervision 21.1 26.3 10.1 25.9 47.0 26.1
Eflomaladapted 27.2 25.9 13.0 26.8 48.5 28.3
w/ Eflomaladapted Supervision 16.3 21.0 7.2 22.3 44.4 22.2
GIZA++adapted 18.3 19.9 6.3 27.6 42.6 22.9
w/ GIZA++adapted Supervision 13.5 17.5 5.2 23.2 37.7 19.4
SimAlignadapted 19.6 19.0 5.9 30.5 48.6 24.7
w/ SimAlignadapted Supervision 16.6 16.2 5.4 24.0 43.9 21.2
AwesomeAlignadapted 13.3 15.2 4.3 23.3 38.5 18.9
w/ AwesomeAlignadapted Supervision 13.4 15.0 4.5 23.0 38.2 18.8
MaskAlignadapted 15.7 15.9 4.3 20.3 41.6 19.6
w/ MaskAlignadapted Supervision 11.5 15.2 3.9 19.5 34.6 16.9
w/ Integrated Supervision 11.0 14.8 3.8 19.3 33.2 16.4

Table 3: AER results of fine-tuning mBERT with the third-party supervisions.

in the embedding space, and some wrong word
alignments of the third-party aligner get departed
farther in the space, which we deem that they do
not influence the fine-tuning process.

Figure 4 presents the self-correction effect. In
this subsection, we include the test set into the
fine-tuning set for the new fine-tuning to check
the predicted alignments against gold alignments.
MaskAlign and XLM are used in this study. At
first, we extract MaskAlign results of the test set as
part of the supervision for the fine-tuning. As the
fine-tuning steps forward, on the test set, we com-
pute the precision of newly predicted alignments
not included in the third-party alignments, denoted
as “New”, and the rate of the deleted alignments

(certain third-party alignments not included in the
predicted alignments) which are truly wrong align-
ments amongst all deleted alignments, denoted as
“Del”. Besides, we compute the precision of re-
maining alignments in the third-party alignments,
denoted as “Remain”. Figure 4 shows that “New”
and “Del” increase as the fine-tuning proceeds,
supporting the AER decrease in the experiment.
“Remain” almost keeps horizontal, indicating the
stability of the fine-tuning process. The effect of
En-Fr is shown in the appendix.
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Figure 4: Self-correction effect in the fine-tuning pro-
cess.

Zh-En De-En En-Fr Ro-En Ja-En AVG
Intersection 13.0 17.0 4.8 23.4 39.4 19.5
Union 11.8 15.2 4.1 20.4 35.1 17.3
Union-Filtering 11.0 14.8 3.8 19.3 33.2 16.4
Union-Weighting 11.2 14.7 3.8 19.2 33.7 16.5

Table 4: AER of different integration methods.

3.7 Results of Integrating Various
Third-Party Supervisions

Table 4 presents the comparison between the per-
formances of different integration methods. Fine-
tuning mBERT is applied in this study for its com-
putation efficiency. First, we intersect the word
alignments from all third-party aligners as super-
visions. Since aligners perform differently, AER
is impacted by the worst aligner which results in
small number of word alignments in the intersec-
tion. In contrast, when we get the union of all
third-party alignments, its performance is much
better, but it still contain noises hampering AER
results. When we use filtering and weighting meth-
ods to deal with the noises, the integration gets
the best performances, and surpasses all third-party
aligners.

Ablation studies are shown in Table 5. Remov-
ing one aligner from the integration causes differ-
ent performance variances. It shows that remov-
ing MaskAlign impact the integration performance
most, since it is best aligner in most language pairs.

3.8 Training Third-Party Aligners on The
Same Parallel Corpus for The Fine-tuning

Although the fine-tuning approach only needs a
small fraction of the whole parallel corpus for each
language pair, e.g. 80k sentence pairs for the fine-

Zh-En De-En En-Fr Ro-En Ja-En AVG
w/o FastAlign 11.2 14.9 3.9 19.1 33.7 16.5
w/o Eflomal 11.0 15.1 4.0 19.6 34.0 16.7
w/o GIZA++ 11.2 15.1 3.8 19.4 35.2 16.7
w/o SimAlign 11.3 15.0 3.9 19.3 33.8 16.6
w/o MaskAlign 12.3 15.1 4.2 22.5 36.4 18.1
w/o AwesomeAlign 11.5 15.4 4.0 19.4 34.4 16.9
All 11.0 14.8 3.8 19.3 33.2 16.4

Table 5: Ablation studies of the integration method
using Union-Filtering.

Zh-En De-En En-Fr Ro-En Ja-En AVG
XLM

MaskAlignadapted 23.8 27.8 7.5 23.1 66.1 29.7
Fine-tuning 13.6 14.5 4.2 20.9 36.9 18.0

mBERT
MaskAlignadapted 19.8 25.5 7.6 20.3 61.0 26.8
Fine-tuning 11.6 14.7 4.8 19.9 35.3 17.3

Table 6: AER of fine-tuning XLM and mBERT
with the third-party supervision, which is generated by
MaskAlignadapted trained on the small parallel corpus
same to that used in the fine-tuning.

tuning, its supervision is extracted from the align-
ments of the third-party aligner which is trained
on the whole parallel corpus. In this subsection,
we check if only using the small corpus, which is
used in the fine-tuning, for training the third-party
aligner can seriously impact the word alignment
performance. Table 6 shows the result. Training
MaskAlign on small corpus seriously drags down
AER performances when compared to training on
full corpus, with averagely over 7 points worse than
“MaskAlignadapted” in Table 2 and 3. Surprisingly,
fine-tuning with such worse supervision can still
achieve remarkably better performances, even sur-
passing or performing comparable to the strongest
baseline system MaskAlign in Table 2. The reason
for this phenomenon is that MaskAlignadapted gen-
erates fewer but more accurate alignments, which
is effective enough for the supervision. We also
use 40k sentence pairs for this study. Please refer
to Appendix C for the study.

4 Conclusion

We propose an approach of using a third-party
aligner for neural word alignments. Different to
previous work based on careful design of self-
training objectives, we simply use the word align-
ments generated by the third-party aligners to su-
pervise the training. Although the third-party
word alignments are imperfect as the supervision,
we observe that the training process can do self-
correction over the third-party word alignments
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by detecting more accurate word alignments and
deleting wrong word alignments based on the ge-
ometry similarity in the contextualized embedding
space, leading to better performances than the
third-party aligners. The integration of various
third-party supervisions improves the performance
further, achieving state-of-the-art word alignment
performance on benchmarks of multiple language
pairs.

Limitations

The proposed third-party supervised fine-tuning
approach is not applicable to using the best word
alignments, which are generated by the integrated
supervision in this paper, as the new supervision
signal to continue the fine-tuning. Such contin-
ual fine-tuning does not obtain significant improve-
ment, which indicates the ineffectiveness of con-
tinual fine-tuning with the supervision of self pre-
dicted alignments.
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A The Corpus Size Effect and The
Self-Correction Effect on En-Fr

The corpus size effect is presented in Figure 5. It
shows the trend same to Figure 3, though the trend
is not so significant for En-Fr. The self-correction
effect is presented in Figure 6. The effect is the
same to those in the other four language pairs.

Figure 5: The effect of the different sizes of the parallel
corpus for En-Fr fine-tuning.
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Figure 6: The self-correction effect in En-Fr fine-tuning
process.

MaskAlign Fine-Tuning mBERT
P R P R

Zh-En 81.9 87.3 88.8 88.1
De-En 89.2 78.9 90.9 79.6
En-Fr 95.1 96.6 96.5 95.4
Ro-En 81.8 77.6 87.3 74.6
Ja-En 74.4 48.1 80.6 55.0

Table 7: Precision and Recall of MaskAlign predictions
and the results of fine-tuning mBERT supervised by
MaskAlign.

B Precision and Recall of Predicted Word
Alignments

Besides AER, we also evaluate the word alignment
predictions by computing precision and recall us-
ing the gold alignments in the test sets. MaskAlign
is used in this study due to its best performance
among the third-party aligners. Its word alignments
are used to supervise the fine-tuning of mBERT.
The precision and recall are reported in Table 7.
It shows that precision is always significantly im-
proved after the fine-tuning, while recall improve-
ment is not so significant. On En-Fr and Ro-En,
recall is slightly worse after the fine-tuning.

C 40k Sentence Pairs for Both Training
The Third-Party Aligner and
Fine-tuning

Zh-En De-En En-Fr Ro-En Ja-En AVG
w/o Fine-tuning 17.9 17.4 5.6 27.3 45.2 22.7
MaskAlignadapted 82.2 36.4 19.9 51.1 90.6 55.9
Fine-tuning 17.3 16.8 5.2 23.6 44.2 21.4

Table 8: AER of fine-tuning mBERT with
the third-party supervision, which is generated by
MaskAlignadapted trained on 40k sentence pairs.

We use smaller parallel corpus, which consists
of 40k sentence pairs for both training the third-

80k 40k
P R P R

Zh-En 89.8 72.3 87.7 9.9
De-En 92.9 62.0 94.5 48.0
En-Fr 92.4 92.4 92.2 67.3
Ro-En 85.0 70.4 87.3 34.0
Ja-En 81.9 24.9 84.8 5.0

Table 9: Precision and Recall of MaskAlignadapted pre-
dictions with different sizes of parallel training corpus
.

party aligner and fine-tuning. Table 8 shows the
result. AER of MaskAlignadapted deteriorates
sharply compared to training it on 80k sentence
pairs shown in Table 6, but fine-tuning with such
worse alignments as the supervision still gets better
AER than without fine-tuning. We investigate the
precision and recall of MaskAlignadapted listed in
Table 9, and find that it always obtains high preci-
sion, and these fewer but accurate alignments are
useful supervision information for the fine-tuning.
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