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Abstract

Previous studies on cross-domain sentiment
classification depend on the pivot features
or utilize the target data for representation
learning, which ignore the semantic relevance
among different domains. To this end, we ex-
ploit Abstract Meaning Representation (AMR)
to help with cross-domain sentiment classifi-
cation. Compared with the textual input, AMR
reduces data sparsity and explicitly provides
core semantic knowledge and correlations
among different domains. In particular, we de-
velop an algorithm to construct a sentiment-
driven semantic graph from sentence-level
AMRs. We further design two strategies to
linearize the semantic graph and propose a
text-graph interaction model to fully explore
the correlations between the text and semantic
graph representations for cross-domain senti-
ment classification. Empirical studies show
the effectiveness of our proposed model over
several strong baselines. The results also indi-
cate the importance of the proposed sentiment-
driven semantic graph for cross-domain senti-
ment classification.

1 Introduction

As an essential task in natural language process-
ing, sentiment classification has gained great at-
tention from both industry and academia with its
wild-spread applications. While, a large num-
ber of review domains (e.g., product categories in
Amazon) make it intractable to manually annotate
enough data in each domain for training domain-
specific models. Thus developing automatically
cross-domain methods is imperative in this area.

Recent efforts on cross-domain sentiment clas-
sification can be separated into three categories:
features-based approaches, discriminator-based
approaches, and pretrained-based approaches.
Feature-based approaches (Blitzer et al., 2007; Yu
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Figure 1: Example of review texts with AMR graphs
in different domains.

and Jiang, 2016; Ziser and Reichart, 2019) uti-
lize a key intuition that domain-specific features
could be aligned with the help of domain invari-
ant features. Meanwhile, discriminator-based ap-
proaches (He et al., 2018; Du et al., 2020; Xue
et al., 2020) aim to determine the diversity be-
tween domains and predict the polarities of in-
stances holistically. More recently, pre-trained
language models are proposed to learn the cross-
domain representations with mixed classification
and masked language models (Zhou et al., 2020;
Karouzos et al., 2021; Wu and Shi, 2022).

Despite giving strong empirical results, pre-
vious studies ignore the semantic relevance be-
tween different domains. As shown in Figure 1,
the expression of reviews from different domains
are quite different, but they have the similar Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013) graphs. To this end, we propose a
novel framework with AMR for cross-domain sen-
timent classification. AMR-based semantic graph
models the review sentences using a rooted di-
rected acyclic graph, which highlights its main
concepts and semantic relations while abstracting
away function words (Xu et al., 2020; Bevilacqua
et al., 2021; Lyu et al., 2021). It can thus poten-
tially offer core concepts and explicit structures
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needed for aggregating the meaning of texts in dif-
ferent domains.

In addition, we propose a sentiment-driven
graph construction algorithm to better handle long
review text and to make better use of the senti-
mental information. Especially, the process of the
construction algorithm can be separated into two
stages: document-level semantic graph construc-
tion from the sentence-level AMR graphs, and en-
riching the document-level semantic graph with
sentimental information.

We further design two strategies to linearize
the sentiment-driven semantic graph: DFS-based
linearization is closely related to the way natural
language syntactic trees are linearized, and BFS-
based linearization enforces a locality principle by
which things belonging together are close to each
other in the flat representation. Afterward, we
propose a text-graph interaction model to fuse the
text and the linearized sentiment-driven semantic
graph representations for cross-domain sentiment
classification. The detailed evaluation shows that
our model significantly advances the performance
on several benchmark datasets. The results also
show that the proposed sentiment-driven seman-
tic graph is beneficial for cross-domain sentiment
classification.

The major contributions of this paper are sum-
marized as follows,

• We construct an AMR-based sentiment-
driven semantic graph for cross-domain sen-
timent classification, which makes it easier to
find the semantic and sentimental contents in
different domains.

• We design two strategies to linearize the
sentiment-driven semantic graph, and pro-
pose a text-graph interaction model to fully
explore the correlations between text and the
semantic graph.

• Comprehensive empirical studies show the
effectiveness of the proposed model, and also
indicate the importance of sentiment-driven
semantic graph for cross-domain sentiment
classification.

2 Related Works

In this part, we introduce two related topics of this
study: cross-domain sentiment classification and
abstract meaning representation.

2.1 Cross-Domain Sentiment Classification

Cross-domain sentiment classification has been a
long standing attractive research topic due to its
real applications where labeled data is only avail-
able in a source domain. Previous studies can
be separated into three categories: features-based
approaches, discriminator-based approaches, and
pre-training based approaches.

Feature-based approaches utilize a key intuition
that domain-specific features could be aligned
with the help of domain invariant features. They
are always two-stages approaches, first heuristi-
cally select domain-shared pivot features and then
use them to learn the correspondence of domain-
specific sentiment words (Blitzer et al., 2007; Yu
and Jiang, 2016; Ziser and Reichart, 2019; Miller,
2019; Ben-David et al., 2020).

Discriminator-based approaches are end-to-end
approaches, which determine the diversity be-
tween domains, and predict the polarity of in-
stance directly (He et al., 2018). Recently, the
studies of discriminator-based approaches em-
ployed adversarial learning (Ganin et al., 2016)
to train domain-variant feature extractors and sen-
timent classifiers holistically, without relying on
pivot features (Qu et al., 2019; Du et al., 2020; Xue
et al., 2020).

More recently, researches focused on employ-
ing pretrained language models in cross-domain
classification scenario (Zhou et al., 2020). For
example, Karouzos et al. (2021) employed mixed
classification and masked cross-domain language
model loss to fine-tune the pre-trained model. Wu
and Shi (2022) adopt separate soft prompts to
learn the vectors for different domains with do-
main adversarial training strategy.

2.2 Abstract Meaning Representation

Recently, Abstract Meaning Representation (Ba-
narescu et al., 2013) has become an influential
formalism for capturing the meaning of a given
sentence within a semantic graph (van Noord and
Bos, 2017; Xu et al., 2020; Bevilacqua et al., 2021;
Bai et al., 2022) and, vice versa, producing text
from such a graph (Song et al., 2018; Yao et al.,
2020; Jin and Gildea, 2022).

Additionally, AMR’s flexibility has resulted in
promising improvements for many NLP applica-
tions. For example, Liu et al. (2018) parsed text to
AMR graphs and transformed them into summary
graph for text summarization. Bai et al. (2021)

290



Figure 2: Overview of the sentiment-driven semantic graph construction.

constructed a dialogue-level AMR graph and in-
corporated it into neural dialogue system for dia-
log modeling. Zhang et al. (2021) employed AMR
to capture semantic structure from complex scien-
tific sentence for biomedical information extrac-
tion. Xu et al. (2021) dynamically constructed
AMR graph to exploit valid facts for multi-hop
science question answering.

Different from previous studies, we employ
AMR-based semantic representation for cross-
domain sentiment classification. The seman-
tic representation potentially offers core concepts
and explicit structures needed for aggregating the
meaning of review texts in different domains.

3 Sentiment-Driven Semantic Graph
Construction

As shown in Figure 2, we aim to construct a
document-level sentiment-driven semantic graph
from the sentence-level AMR graphs. Given
a review consisting multiple sentences, we ap-
ply an off-the-shelf parser1 of AMR parsing to
process these sentences. Afterward, we con-
struct the document-level sentiment-driven se-
mantic graph from these sentence-level semantic
graphs. In particular, the process of the document-
level sentiment-driven semantic graph construc-
tion can be separated into two stages: document-
level semantic graph construction, and enriching
the semantic graph with sentimental information.

1https://github.com/bjascob/amrlib

3.1 Document-level Semantic Graph
Construction

The semantic graph of a sentence is repre-
sented by a rooted, directed, and acyclic AMR
graph (Banarescu et al., 2013). As shown in
Figure 2(b), sentence-level AMR graph includes
PropBank (Palmer et al., 2005) frames, non-core
semantic roles, coreference, entity typing and link-
ing, modality, and negation. The nodes in AMR
are concepts instead of words, and the edge types
are much more fine-grained compared with tradi-
tional semantic languages like dependency parsing
and semantic role labeling.

Given a set of sentences and their AMR graphs,
we attempt to consolidate all sentence-level graphs
to a connected document graph. As shown in Fig-
ure 2(c), we first employ a ‘ROOT’ node to con-
nect the root of each sentence graph, yielding a
connected document-level semantic graph.

3.2 Enriching Semantic Graph with
Sentimental Information

Since the document-level semantic graph does not
contain sentimental information, we extend the
original nodes with sentimental information, and
let the semantic graph to be a sentiment-driven se-
mantic graph.

As shown in Figure 2(c), we first employ an un-
supervised sentiment extraction model (Florescu
and Caragea, 2017) to extract sentiment-aware
phrases from the review text.

We then attach the sentiment-aware phrases to
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Figure 3: Cross-domain sentiment classification with
text-graph interaction model.

the corresponding nodes. For example, “excellent
novel” is attached to node “novel”, and “strongly
recommend” is attached to node “recommend-
01”. Meanwhile, we also attach the domain identi-
fication node to the ROOT node. For example, the
“Book” node in the graph is used to identify that
the review text is from book domain.

Therefore, after enriching the document-level
semantic graph with sentimental information, we
construct a sentiment-driven semantic graph. As
shown in Figure 2(c), the new sentiment-driven
semantic graph consists of the key concepts and
sentiment-driven semantic relations, and it would
be very helpful for cross-domain sentiment classi-
fication.

4 Cross-Domain Sentiment Classification
with Text and Graph Interactions

Our model takes a review text and the correspond-
ing sentiment-driven semantic graph as input. As
shown in Figure 3, we first learn the text repre-
sentation, we then learn the semantic graph rep-
resentation with different linearization techniques.
Thirdly, we employ a text-graph interaction model
with self-attention and gate mechanism to learn
the fused representation among the text and se-
mantic graph representations. Afterwards, we pre-
dict the polarity based on the fused representation.

4.1 Text Representation
We employ BERT (Devlin et al., 2018) to learn the
text representation. We first tokenize the review
text into a sequence W . Then, we convert each

Figure 4: Example of linearzation strategies. The ex-
ample is based on the sentiment-driven semantic graph
in Figure 2(c).

token wi ∈ W into vector space by summing the
token, segment, and position embeddings. In addi-
tion, we use a series of stacked transformer blocks
to project the input embeddings into a sequence of
contextual vectors. In this way, we obtain the text
representation HT for the review text.

4.2 Semantic Graph Representation

Since it is much easier to integrate a sequence
than a graph (Xu et al., 2020), we linearize the
sentiment-driven semantic graph to the target se-
quence. The linearization techniques are fully
graph-isomorphic, i.e., it is possible to encode the
graph into a sequence of symbols and then decode
it back into a graph without losing adjacency infor-
mation. Following (Bevilacqua et al., 2021), we
use the special token “<R0>”, “<R1>”, ..., “<Rn>”
to represent AMR concepts or attributes in the lin-
earized graph and to handle co-referring nodes.
Besides, the words start with “:” means different
type of edges. The word “:snt1” means “sentence-
1”, which is a short form of the first sentence.
Specially, the words end with “#” like “:domain#”
mean the special edge types defined in this paper.

As shown in Figure 4, we employ following two
strategies to linearize the sentiment-driven seman-
tic graph:

DFS-based Linearization is quite closely re-
lated to the way natural language syntactic trees
are linearized (Bevilacqua et al., 2021; Lyu et al.,
2021). In particular, we employ a DFS-based
traversal algorithm to indicate variables and paren-
theses to mark visit depth with special tokens.
Moreover, we dispose of the redundant slash token
(/). These features significantly reduce the length
of the output sequence.

BFS-based Linearization enforces a local-
ity principle by which things belonging together
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are close to each other in the flat representa-
tion (Bevilacqua et al., 2021). In addition, BFS
is cognitively attractive because it corresponds to
a core semantic principle which assumes that the
most important pieces of meaning are represented
in the upper layers of the graph (Cai and Lam,
2019). To this end, we apply a BFS graph traver-
sal algorithm which starts from the graph root and
visits all the children connected by an edge.

Therefore, these two kinds of linearization
strategies can capture the semantic and sentimen-
tal information from the sentiment-driven seman-
tic graph with either depth or breadth search-
ing. Afterwards, we employ BERT (Devlin et al.,
2018) to learn the semantic graph representation
HD and HB based on these two linearization
strategies respectively.

4.3 Text-Graph Interaction
After we learn the text representation HT and the
sentiment-driven semantic graph representations
{HD, HB}, we employ a text-graph interaction
model to capture the correlations among them. As
shown in Figure 3, the model is built based on the
self-attention mechanism (Vaswani et al., 2017).
It associates source tokens at different positions
of the text and the semantic graph representations,
by computing the attention score with gate mech-
anism between each text and semantic graph pair,
respectively.

In particular, given the text-graph pairs
(HT , HD) and (HT , HB), we first learn their
interaction {HTD, HTB} by the text-aware graph
attention,

HTD = softmax(
HDH

T
T√

dm
)HT (1)

HTB = softmax(
HBH

T
T√

dm
)HT (2)

where dm is the dimension of HT .
We use a flexible gated mechanism (Li et al.,

2018; Zhang et al., 2020) to decide the degree of
interactions among text and the semantic graph
representations automatically,

HN = λHTD + (1− λ)HTB (3)

λ ∈ (0, 1) is calculated by the gated mechanism
as below,

λ = σ(W [HTD;HTB] + b) (4)

where W and b are learnable model parameters,
and σ(·) is the sigmoid function. Therefore, we
obtain the new representation HN based on the
interactions from the text representation and the
sentiment-driven semantic graph representations.

4.4 Cross-domain Sentiment Classification
After we learn the representation HN based on
the interaction among text and semantic graphs,
we then employ a multi-layer perceptron model to
predict the polarity of it. Formally, given an input
vector HN , a hidden layer is used to induce a set
of high-level features as follows:

HP = σ(W h
p HN + bhp), (5)

HP is used as inputs to a softmax output layer:

PP = softmax(WpHP +BP ) (6)

where, W h
p , bhp , Wp, and Bp are model parameters.

4.5 Model Training
Our training objective of cross-domain sentiment
classification is to minimize the cross-entropy loss
over a set of training examples (di, yi)|Ni=1, with a
�2-regularization term,

L = −
N∑

i=1

K∑

j=1

yi log ŷi +
λ

2
||θy||2 (7)

where yi is the pre-defined polarity, ŷi is the pre-
dicted label, θy is the set of model parameters and
λ is a parameter for �2-regularization.

5 Experiments

In this section, we first introduce the datasets used
for evaluation, and the baseline methods employed
for comparison. In addition, we report the experi-
mental results conducted from different perspec-
tives, and analyze the effectiveness of proposed
model with different factors.

5.1 Data and Setting
We evaluate our model on a new cross-domain
dataset BEAR, which consists of four do-
mains: Books(B), Electronics(E), Airlines(A), and
Restaurant(R). The dataset is from Amazon prod-
uct review dataset (Blitzer et al., 2007), Airline re-
view dataset (Ziser and Reichart, 2018) and Yelp
restaurant review dataset (Zhang et al., 2015). For
each domain, we choose 800 labeled reviews as
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Table 1: Comparison with baselines.

BERT PERL CLIM UDALM AdSPT Ours
B → E 89.4 88.1 89.4 90.7 91.4 91.6
B → A 80.9 82.2 81.3 80.8 84.1 87.4
B → R 88.7 88.8 88.9 91.6 89.9 92.3
E → B 88.9 83.4 89.8 89.4 89.6 91.1
E → A 86.5 84.5 86.6 86.1 85.8 88.1
E → R 89.7 88.6 89.5 91.1 91.3 92.6
A → B 80.5 79.2 80.5 84.9 83.8 87.1
A → E 87.2 87.1 87.7 88.5 90.2 90.8
A → R 87.4 84.6 87.6 88.2 88.0 90.0
R → B 88.2 84.1 88.4 87.4 89.6 91.3
R → E 88.6 88.0 88.9 90.4 90.1 92.1
R → A 82.1 79.3 80.9 81.7 82.8 83.4
Average 86.5 84.8 86.6 87.6 88.1 89.8

training data in source domain or as testing data in
target domain, and the another 200 reviews as val-
idation data. In addition, we also choose 16,000
unlabeled reviews in each domain. The advantage
of the new cross-domain dataset is that the simi-
larity between domains is much smaller than pre-
vious datasets.

In this study, we use Jaccard similarity
score (Ioffe, 2010) to evaluate domain similarity,
which is intuitively calculated as the unique word
overlap for all words present in two domains. In
short, the lower score indicates the lower similar-
ity between the two domains. The average Jac-
card similarity score of the proposed new dataset is
0.243, while the score of Amazon dataset is 0.320.
Therefore, the new dataset with larger domain di-
versity would be more helpful to evaluate the per-
formance of cross-domain methods.

We use the BERTbase
2 and fine-tune its param-

eters. In particular, we employ the unlabeled re-
views from all domains to fit the MLM tasks in the
pre-training phase. During the fine-tuning phase,
we tune the parameters of our cross-domain sen-
timent classification model by grid searching on
the validation dataset. We select the best model by
early stopping using the Accuracy results on the
validation dataset. Adam (Kingma and Ba, 2015)
is adopted with the learning rate 1× 10−5, and the
batch size is 6. Our experiments are carried out
with an NVIDIA 3090 24G GPU.

The experimental results are obtained by aver-
aging three runs with random initialization, where

2https://huggingface.co/bert-base-uncased

Accuracy are used as the evaluation metrics.

5.2 Main Results

Table 1 shows the results of different systems. We
compare the proposed model with various strong
baselines,

• BERT is a basic model which simply em-
ploys BERT (Devlin et al., 2018) for cross-
domain sentiment classification.

• PERL (Ben-David et al., 2020) extends con-
textualized word embedding models of rep-
resentation learning (i.e., BERT) with pivot-
based fine-tuning.

• UDALM (Karouzos et al., 2021) employs
mixed classification and masked language
model loss to fine-tune the pre-trained model.
It thus can adapt to the target domain distribu-
tion in a robust and sample efficient manner.

• CLIM (Li et al., 2021) is a self-training
method based on contrastive learning with
mutual information maximization. It aims to
explore the potential of contrastive learning
for domain-invariant and task-discriminative
features.

• AdSPT (Wu and Shi, 2022) adopts separate
soft prompts to learn different vectors for dif-
ferent domains, and also uses a novel domain
adversarial training strategy to learn domain-
invariant representations between different
domains.
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Table 2: Impact of sentiment-driven semantic graph.

Method Accuracy
Ours 89.8

-Graph 86.5
-Enrich 89.1

-Sentiment 89.2
-Domain 89.6

From the table, we find that the previous cross-
domain methods (e.g., UDALM and AdSPT) out-
perform the basic sentiment classification model
(i.e., BERT). It indicates that the effectiveness
of these cross-domain methods with either pre-
training language model or adversarial training
strategy for cross-domain sentiment classification.

By contrast, our proposed model outperforms
the previous cross-domain methods significantly
(p < 0.05), since the proposed model employs
AMR-based semantic representation for cross-
domain sentiment classification. This also proves
that the sentiment-driven semantic graph is very
useful to exploit the semantic correlations between
different domains.

5.3 Effect of Sentiment-Driven Semantic
Graph

As shown in Table 2, we employ ablation ex-
periments to analyze the impact of the proposed
sentiment-driven semantic graph with average ac-
curacy score in all the domain pairs. If we to-
tally remove sentiment-driven semantic graph (-
Graph), it degrades the proposed model to sim-
ple BERT-based sentiment classification model,
and the performance drops to 86.5%. It shows
that sentiment-driven semantic graph can enable
a model to better capture the semantic represen-
tation of review text, and is beneficial to cross-
domain sentiment classification.

In addition, if we remove the sentimental in-
formation enriching part (-Enrich) of proposed
model, and just keep the document-level seman-
tic graph for cross-domain sentiment classifica-
tion, the performance drops to 89.1%. It shows
that the sentimental information enriching part can
improve the performance of the basic AMR-based
semantic graph. Furthermore, we also find that
both sentimental and domain information are ben-
eficial to construct the sentiment-driven semantic
graph. If we remove these two components, the
performance drops to 89.2% and 89.6%.

Table 3: Influence of different factors in the proposed
model.

Method Accuracy
BERT 86.5

Linearization
BFS 89.1
DFS 89.3

Correlation
Concat 88.6

Attention 89.4
Ours 89.8

5.4 Impact of Model Configuration

This subsection analyzes the influence of differ-
ent factors in the proposed cross-domain senti-
ment classification model with average accuracy
score in all the domain pairs. As shown in Ta-
ble 3, “BFS” and “DFS” means that we employ
BFS or DFS linearization strategy to linearize the
sentiment-driven semantic graph respectively. In
addition, “Concat” and “Attention” means that we
simply use concatenation or attention mechanism
to capture the correlation between text and seman-
tic graph representations. “Ours” is the proposed
text-graph interaction model which employ both
attention and gate mechanism to model the corre-
lations between text and semantic graph represen-
tations.

From the results, we find that both BFS and
DFS linearization strategy are beneficial to lin-
earize the AMR-based semantic representation.
In addition, we also find that attention mecha-
nism is more effective than simply concatenation
method. Furthermore, the proposed text-graph in-
teraction model (Ours) gives the best performance.
It indicates that the text-graph interaction model
with attention and gate mechanism is more use-
ful to capture the correlations between text and the
sentiment-driven semantic graph.

6 Analysis and Discussion

In this section, we give analysis and discussion to
show the importance of sentiment-driven semantic
graph for cross-domain sentiment classification.

6.1 Influence of Training Data Size

Since the cross-domain sentiment classification
task is very sensitive with the training data in
source domain, we analyze the size of training
data in Figure 5. From the figure, we find that
the more training data, the higher performance our
proposed model can reach with the average accu-

295



Figure 5: Results with different training data size.

Figure 6: Improvement of different models with Jac-
card Score.

racy in all domains. In addition, different from the
other models, our proposed model can reach a high
performance even there are only 25% labeled re-
views in source domain. It shows that the semantic
representation can capture the high level semantic
correlations in different domains, and significantly
reduces the size of labeled data in source domain.

6.2 Influence of Similarity between Domains

The performances of cross-domain models are al-
ways influenced by the similarity (or diversity) be-
tween source and target domains. Therefore, we
compare the improvements of three cross-domain
models (i.e., UDALM, ADSPT and our proposed
model) with the basic BERT model based on dif-
ferent Jaccard similarity score (Ioffe, 2010). The
score is used to calculate the similarity between
source and target domain in the proposed dataset.

As shown in the figure, our proposed model al-
ways outperforms other models whenever the sim-
ilarity score is large or small. Furthermore, our
proposed model can still reach a high improve-
ment even when the similarity score between the
two domains is much smaller. It indicates that
the proposed sentiment-driven semantic graph can

Review Text: Harry Potter, it is greatly shocking. I love
this extraordinary series. I have every one of the books in
this series and will never let them go.
Sentiment-Driven Semantic Graph:

Source Domain: Airline
Target Domain: Book
BERT: Negative
Ours: Positive

ROOT

shock loveand

book

have-03
let-01

go-01 -
book

every

greatly shocking

great
book

name

Harry Potter

series

extraordinary

extraordinary series

Figure 7: Example of case study.

capture the core concepts and explicit structures in
different domains, and is very effective for cross-
domain sentiment classification.

6.3 Case Study
Figure 7 gives an example to illustrate the effec-
tiveness of the proposed model compared with
BERT model. The domain of the given exam-
ple is Book, while the training data is from Air-
line. The basic BERT model incorrectly predicts
the polarity of the example. It might be confused
of BERT model about what them refers to in the
last clause "will never let them go". However,
the proposed model successfully predicts the po-
larity. In the review text, book co-referred with
them is located far away from let, but in the AMR
graph, book is directly linked with let. Besides,
the sentiment-driven semantic graph enable the
sentimental-aware nodes to get close to their tar-
get concept nodes, which is much easier for the
model to identify the polarity with the guidance of
ARM graph. In addition, the result also indicates
that the sentiment-driven semantic graph capture
both sentimental and semantic information in the
review text.

7 Conclusion

In this study, we employ AMR-based semantic
representation for cross-domain sentiment classifi-
cation. AMR can reduce data sparsity, and explic-
itly provides core semantic knowledge and cor-
relations among different domains. In particular,
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we develop an algorithm to construct a sentiment-
driven semantic graph from sentence-level AMRs.
We further design two strategies to linearize the
semantic graph and propose a text-graph interac-
tion model to fuse the text and semantic graph
representations for cross-domain sentiment classi-
fication. Experimental results show the superiority
of using the sentiment-driven semantic representa-
tions on cross-domain sentiment classification.

Limitations

Although AMR graph has been proved effect for
cross-domain sentiment classification, it is still
necessary for us to explore a more suitable way
to integrate AMR graph for sentiment classifica-
tion. In addition, the proposed model needs large
GPU resources since it should learn both text and
semantic representations.
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