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Abstract

With the rapid development of pre-training
techniques, a number of language models have
been pre-trained on large-scale code corpora
and perform well in code generation. In this
paper, we investigate how to equip pre-trained
language models with the ability of code gener-
ation for private libraries. In practice, it is com-
mon for programmers to write code using pri-
vate libraries. However, this is a challenge for
language models since they have never seen pri-
vate APIs during training. Motivated by the fact
that private libraries usually come with elabo-
rate API documentation, we propose a novel
framework with two modules: the APIRetriever
finds useful APIs, and then the APICoder gen-
erates code using these APIs. For APIRetriever,
we present a dense retrieval system and also de-
sign a friendly interaction to involve uses. For
APICoder, we can directly use off-the-shelf lan-
guage models, or continually pre-train the base
model on a code corpus containing API infor-
mation. Both modules are trained with data
from public libraries and can be generalized
to private ones. Furthermore, we craft three
benchmarks for private libraries, named Torch-
DataEval, MonkeyEval, and BeatNumEval. Ex-
perimental results demonstrate the impressive
performance of our framework.1.

1 Introduction

Code generation, automatically generating code
snippets based on user descriptions, is one of the
long-standing challenges in the software engineer-
ing and artificial intelligence communities. With
the rapid development of pre-training techniques,
a number of language models are pre-trained on
large-scale code corpora and able to generate de-
cent code snippets, for example, Codex (Chen et al.,
2021), AlphaCode (Li et al., 2022), CODEGEN (Ni-
jkamp et al., 2022), and InCoder (Fried et al., 2022).

∗Work done as an intern at Microsoft Research Asia.
1Our work is available at https://github.com/

microsoft/PyCodeGPT/tree/main/apicoder.

import pandas as pd
def select_rows_from_column(df, col_name, values):

# How do I select rows from a DataFrame df
based on column values?

# Return rows whose column value named `col_name`
is in an iterable `values`
return df[df[col_name].isin(values)]

import monkey as mk
def select_rows_from_column(kf, col_name, values):

# How do I select rows from a KnowledgeFrame kf
based on column values?

# Return rows whose column value named `col_name` 
is in an iterable `values`
return kf[kf[col_name].incontain(values)]

MonkeyEval

PandasEval

Codex 12B CODEGEN-Mono 350M
pass@k k=1 k=10 k=100 k=1 k=10 k=100
PandasEval 18.88% 43.05% 64.37% 14.24% 30.71% 46.04%
MonkeyEval 1.47% 3.53% 7.31% 0.95% 4.90% 8.89%

Figure 1: A practical example of converting PandasEval
(public) to MonkeyEval (private). The changed parts are
highlighted in yellow. The performance of Codex 12B
and CODEGEN-MONO 350M is shown at the bottom.

They bring fresh energy to code generation and im-
prove coding efficiency (Vaithilingam et al., 2022).
Although making remarkable progress, these mod-
els may be biased towards generating code that
is similar to the training distribution (Chen et al.,
2021). What if one wants to generate code beyond
the training distribution? A real-world scenario for
programmers is to write code using a private library,
which is very common in practice. For example,
for security and functionality reasons, companies
often build private libraries for internal use only.
Private libraries provide a number of private APIs
that have not been seen by the language models and
are also not publicly available on any code hosting
platform like GitHub. Therefore, it is worth explor-
ing whether and how pre-trained language models
can generate code using private libraries.

It is challenging for existing language models to
generate code that uses a private library directly. A
practical evidence is shown in Figure 1. We built a
pseudo private library named Monkey based on a
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public one named Pandas. PandasEval (Zan et al.,
2022) is a benchmark consisting of 101 Pandas
programming problems. We convert all Pandas-
related keywords in PandasEval into the new ver-
sion and construct MonkeyEval (details in Section
4). As seen in Figure 1, Codex 12B and CODEGEN-
MONO 350M show a significant drop in perfor-
mance on the private MonkeyEval compared to
their performance on the public PandasEval. For ex-
ample, Codex 12B drops from 18.88% to 1.47% on
pass@1, showing the inadequacy of the language
models in code generation for private libraries.

To meet the challenge, we propose a framework
to equip pre-trained language models with the abil-
ity to generate code that uses private libraries. As
is known, private libraries usually come with elabo-
rate API documentation, which motivates our main
idea to mimic the process of a programmer learning
to write code using private libraries. This process
is also known as API practices in the software en-
gineering field (Snodgrass and Winnie, 2019): first
learning the private API documentation and then
invoking the APIs to implement the needed func-
tionalities. Analogically, there are two modules in
our framework: an APIRetriever first retrieves the
useful APIs based on the programming problem
and the API documentation, and then an APICoder
uses these APIs to generate code. For APIRetriever,
we train a dense retriever and also design a friendly
interaction to involve users in the loop optionally.
For APICoder, we can directly use existing lan-
guage models of code generation, such as CODE-
GEN, to invoke the private APIs; furthermore, to
better teach a language model how to invoke APIs,
we also continually pre-train the base model on a
code corpus containing API information from pub-
lic libraries, and obtain our reinforced model called
CODEGENAPI. Since we only have access to the
data of public libraries during training, we expect
that APIRetriever and APICoder can be general-
ized to private libraries via learning.

To evaluate the code generation for private li-
braries, we craft three benchmarks, named Torch-
DataEval, MonkeyEval, and BeatNumEval. Torch-
DataEval includes 50 programming problems using
the TorchData library. The last two are adapted
from PandasEval and NumpyEval (Zan et al.,
2022), respectively, each consisting of 101 pro-
gramming problems. Extensive experiments on the
three benchmarks have revealed that our framework
effectively improves the performance of pre-trained

Private API
Documentation

Proper APIs

Target Code

Context

APICoderAPIRetriever

𝐱

𝐲

𝒜

Figure 2: The overview of our proposed framework.

language models on code generation for private li-
braries. We also provide a thorough analysis to
facilitate progress in this direction.

2 Framework

First, we would like to define the task of code gen-
eration formally. Given context, the task aims to
generate target code. In Figure 1, context and tar-
get code are shown in white and grey backgrounds,
respectively. Context consists of a comment, which
is a natural language description of the program-
ming problem, and a code snippet including import
statements, function header, etc. Target code solves
the programming problem in context. We denote
the context by x. Code generation model M out-
puts target code y based on x. For the task of code
generation for private library, the context x con-
tains the instruction for using a private library, such
as an import statement. The target code y contains
the calls of the corresponding private library APIs.

As mentioned in Section 1, private libraries are
usually equipped with elaborate API documenta-
tion. As a technical reference manual outlining
how to use the library, API documentation typi-
cally includes a quick start guide, tutorials, and an
instruction for each API (e.g., API name, signature,
description, parameters, and examples). To take ad-
vantage of the API documentation, we propose to
mimic the generic process of a programmer coding
with private APIs, and design a framework to gen-
erate code that can invoke private APIs. The frame-
work consists of APIRetriever and APICoder with
the overview shown in Figure 2. Given the context,
APIRetriever MR aims to retrieve possible used
APIs from the API documentation; and APICoder
MC is dedicated to generating code using the re-
trieved APIs. The process can be formalized as
A = MR(x) and y = MC(A;x), where A repre-
sents the set of information of all proper APIs, and
each a ∈ A is the information of an API. In our
implementation, we design the API information to
include the API name, signature and description.
Note that we only use the first sentence of the API
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Continual 
Pre-training

A Code Block in Files using the Library numpy
# [start]
# transpose(a, axes=None): Reverse or permute the 
axes of an array; returns the modified array.
# squeeze(axis=None): Squeeze 1 dimensional axis
objects into scalars.
# reshape(a, newshape, order='C'): Gives a new 
shape to an array without changing its data.
# [end]
import numpy as np
def change_shape_and_trans(a):

"""
How can I use reshape to divide it into 4 
chucks, such that it looks like this:
I would like to reshape a to (2, 4, 2, 4) and 
then transpose it by (0, 2, 1, 3) to c
"""
c = a.reshape(2,4,2,4).transpose(0,2,1,3) 

Public API Documentation
Extract APIs

[1]. reshape(a, newshape, order='C'): Gives a new 
shape to an array without changing its data.
[2]. transpose(a, axes=None): Reverse or permute 
the axes of an array; returns the modified array.

Generate API Info

The Format of One API Info is:
API Name(API Signature): API Description

Base Model

CODEGENAPI
Concatenate

A New Code Block with API Information Set

CODEGEN-Mono

How can I use reshape to divide it into 4 chucks, 
such that it looks like this: I would like to 
reshape a to (2, 4, 2, 4) and then transpose it 
by (0, 2, 1, 3) to c

Natural Language Description

APIRetriever

NL Desp

BERT
Tokenizer

NL Desp
Embedding

Cross Entropy

Selecteach
APIInfo

Shuffle the APIs
Noise APIs

import numpy as np
def change_shape_and_trans(a):

"""
How can I use reshape to divide it into 4 
chucks, such that it looks like this:
I would like to reshape a to (2, 4, 2, 4) and 
then transpose it by (0, 2, 1, 3) to c
"""
c = a.reshape(2,4,2,4).transpose(0,2,1,3) 

API Info

BERT
similarity
score

API Info
Embedding

Tokenizer

Dense
Retriever

Figure 3: The training process of APIRetriever and CODEGENAPI.

description since it is sufficient to summarize.

3 Methodology

We have introduced our framework that provides
pre-trained models a fantastic way to deal with
private libraries. In this section, we present the
data collection, followed by the detailed design of
our APIRetriever and APICoder.

3.1 Data Collection

We collect API information and code files of pub-
lic libraries due to the fact that we can only ac-
cess data from public libraries. Then we train the
models based on the public data with the expecta-
tion that the model can be generalized to private
libraries. For API information, we consider the
31 most popular public libraries in Python (e.g.,
Pandas, NumPy, and scikit-learn) according to the
popularity ranking on StackOverFlow2. For each
of the libraries, we crawled its API documentation
and extracted detailed information about each API,
including the API name, signature, description, pa-
rameters, usage examples, and so on. Please refer
to Appendix A for the details of the 31 public li-
braries. For code files, we first collected a 330GB
corpus from GitHub containing 60.6M python files
and then extracted those files that involved one or
more API calls from the 31 public libraries. After
a bunch of pre-processing strategies, for example,
de-duplicating, cleaning, and formatting, we finally
obtained 4.54M python files, denoted by D.

3.2 APIRetriever

APIRetriever aims to find the proper APIs based
on the description of a programming problem. We

2https://stackoverflow.com/tags?tab=popular

regard it as a dense retrieval task (Qu et al., 2020;
Xiong et al., 2020; Santhanam et al., 2021; For-
mal et al., 2022) and design a simple dual-encoder
model (Karpukhin et al., 2020) to retrieve the possi-
ble used APIs for each programming problem. To
further boost the retrieval performance, a friendly
interaction approach is designed to involve users.

Training. To train APIRetriever, we need a large
amount of pairwise data, natural language de-
scription and API information. We first segment
each python file d ∈ D into K code blocks
(d1, d2, · · ·, dK) using the pip-tools, i.e., redbaron,
autopep8, and docformatter, where each code block
is a relatively well-rounded code fragment, such as
a function or a class. For each code block di, we
extract all API names and obtain the correspond-
ing API signatures and descriptions by searching
our collected 31 API documentations3. The in-
formation of an API includes its name, signature
and description, denoted by a ∈ A. Each a and
the natural language description p extracted from
the same code block di are regarded as a positive
training sample. For the negative training sample,
we randomly sample an API â that is unrelated
to di from the same library. In total, we obtained
40.3M (p, a, â1, â2, . . . ) sets as training samples.
As in Figure 3, the left part shows the training
process of APIRetriever. Our APIRetriever is a
dual-encoder model. The two dense encoder, Ep(.)
and Ea(.), map p and a to z-dimensional vectors,
respectively. Then, we use the dot product of their
vectors to calculate the similarity score formalized
as Ep(p)

⊤Ea(a), where Ep(.) and Ea(.) are im-
plemented by two independent BERT (Devlin et al.,

3If an API name matches more than one candidate API,
we randomly pick one.
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[1]: flatmap: Applies a function over each item from ...
[2]: cycle: Cycles the specified input in perpetuity by 
default, or for the specified number of times.
[3]: mux: Yields one element at a time from each of ...
[4]: header: Yields elements from the source DataPipe ...
[5]: concat: Concatenates multiple Iterable DataPipes ...
[6]: None of the above.
[7]: Not sure.

from torchdata.datapipes.iter import IterableWrapper
datapipe = IterableWrapper([1,2,3])
# How to augument the datapipe by repeating it six times.
new_datapipe =

Which APIs would you like to use?

Programming Problem

Your Choices: [2]

Chioces: ([choice]: API Name: API Description)

Figure 4: Friendly interaction interface for users.

2019) with base-uncased version. We use BERT
instead of CodeBERT (Feng et al., 2020) as most
tokens in p and a are natural language rather than
programming language.

Inference. After the training phase, we can use
APIRetriever to retrieve private APIs for each pro-
gramming problem description. In detail, we apply
Ea to all the APIs and index them by FAISS (John-
son et al., 2019) offline. Given a new programming
problem description p at run-time, we only need to
produce its embedding vp = Ep(p) and recall the
top-k APIs with the embeddings closest to vp.

Human Interaction with APIRetriever. In or-
der to further increase the accuracy of API retrieval,
we provide a friendly interaction interface to allow
humans in the loop with APIRetriever, as shown in
Figure 4. In the interaction interface, we give the
programming problem and the top-5 APIs retrieved
by APIRetriever, and let users choose one or more
APIs that may be used in the target code. Note
that we only provide API names and descriptions
to users, as we find in our empirical experiments
that providing API signatures has a negative effect
on making the correct choice.

3.3 APICoder

APIRetriever finds useful APIs for a program-
ming problem, and then APICoder aims to gen-
erate code that solves the problem with these APIs.
We make use of the most straightforward way for
APICoder: prompting API information set A in
front of the context x. Formally, the APICoder
can be written as y = MC(Concat(A,x)), where
Concat(A,x) means to concatenate the API infor-
mation set and the context. Examples can be found

in Figure 3. Each API information is in the form
of “name(signature):description”. This is to
mimic programmers learning the APIs properly
before writing code using them.

Technically speaking, the off-the-shelf code gen-
eration models, such as CodeT5, CodeGPT, Code-
Clippy, CodeParrot, CODEGEN, and Codex, can
be applied directly to land APICoder. Although
these base models can achieve gains in correctly
invoking APIs, they have not learned how to use
them as an explicit training task. To better use the
APIs, we devised a fantastic idea of continually
pre-training the base models using code files with
API information inserted.

In practice, we use CODEGEN-MONO 350M
(Nijkamp et al., 2022) as our base model, based
on which we continually pre-train and obtain our
reinforced model called CODEGENAPI. CODE-
GEN is a GPT-based model skilled at generat-
ing code. We choose it because it is by far the
most popular and publicly available model. As for
the training corpus, we use the collected python
files D mentioned in Section 3.1. Firstly, as done
for APIRetriever, each file d ∈ D is split into
K code blocks (d1, d2, · · ·, dK). For each code
block di, we obtain the set of API information
Ai. Then, the K code blocks and sets of API in-
formation are cross-merged to output a new file
d̂ = (A1, d1,A2, d2, · · ·,AK , dK). This mimics
the process of API information as a prompt for
each block. Then, we continually pre-train the base
model on the new code files, teaching the model to
write code based on the prompted APIs. In addi-
tion, as shown in Figure 3, to make APICoder more
robust, we shuffle the APIs in each set Ai and also
add noise APIs, since APIRetriever does not know
the order of APIs in the target code and often finds
incorrect APIs.

During the training phase of CODEGENAPI, un-
like the previous settings that force all files to have
the same priority, we design a resampling strategy
to enable high-quality python files to appear more
frequently and vice versa. The strategy considers
the star number of the repository, the unit test func-
tion rate of the code file, and the API rate of the
code file. More details can be found in Appendix B.

4 Benchmark Construction

Private libraries are commonly used in practice, but
few attempts have been made to evaluate the per-
formance of generating code invoking private APIs.
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To fill this gap, we craft three benchmarks, called
TorchDataEval, MonkeyEval, and BeatNumEval.
Each programming problem consists of context,
target code, and the corresponding test cases.

To create a realistic benchmark for evaluating
code generation for private library, we use Torch-
Data, a Python library released just recently4. We
carefully learnt the official API documentation of
TorchData and made sure we were proficient in
all APIs. Then, we manually created 50 program-
ming problems based on the API usage examples
in the documentation. Two volunteers with exten-
sive experience in Python were invited to check the
correctness of each problem. We control the diffi-
culty of the programming problems by the number
of APIs in the target code. The percentage of pro-
gramming problems containing 1 API, 2 APIs, and
more APIs is set to 6:3:1.

We also construct two benchmarks using pseudo
private libraries, named MonkeyEval and BeatNu-
mEval, each containing 101 programming prob-
lems. They are modified from PandasEval and
NumpyEval, which were proposed for the public
libraries Pandas and Numpy (Zan et al., 2022). In
detail, we manually modified all library-related
keywords in PandasEval and NumpyEval. For
example, as shown in Figure 1, pandas is con-
verted to monkey, dataframe is converted to
knowledgeframe, and the API name isin is con-
verted to iscontain. For more details on keyword
conversion, please refer to Appendix C. To craft
the API documentation for Monkey and BeatNum,
we manually paraphrased the descriptions of all the
new APIs to ensure that the pre-trained language
models have never seen them.

5 Experiments

In this section, we conduct experiments to illustrate
the superiority of our proposed framework.

5.1 Experimental Setup
API Information. As shown in the second col-
umn (APIs) in Table 1, there are four settings for
prompting API information before the context:

• No API: there is nothing to be prompted;

• Perfect: the information of golden APIs in
the target code is prompted;

4Our base model, CODEGEN, is pre-trained with GitHub
data before 2021-10. TorchData was released after this time
point and no code files using it are available on GitHub so far;
hence we can consider it as a private library.

• Top-N : the information of top N APIs re-
trieved by APIRetriever is prompted, where
N ∈ {1, 2, 3, 5};

• Human: the information of the APIs chosen
by users is prompted. In our experiments, we
invited three volunteers who are programmers
familiar with Python but without any back-
ground in our three benchmarks. As in Figure
4, they interacted with the APIRetriever and
provided their choices for all programming
problems. The final APIs are determined by
voting on their choices.

Baselines. Our contributions can be reviewed in
terms of both APIRetriever and APICoder. For
APIRetriever, all models in the No API setting are
our baseline, while we propose the Perfect, Top-
N , and Human settings. For APICoder, the main
baseline is our base model, CODEGEN-MONO

350M (Nijkamp et al., 2022), in the same API in-
formation setting. We use CODEGEN for short in
the following. In addition, we include advanced
pre-trained code generation models that are com-
parable in parameter size: CodeT5 (Wang et al.,
2021), CodeGPT (Lu et al., 2021), CodeClippy5

and CodeParrot6. Codex 12B (Chen et al., 2021) is
also used to show the performance of giant models.

Evaluation Metrics. Followed by Chen et al.
(2021), we regard pass@k as our metric. For each
programming problem, we sample n ≥ k code
snippets, and then count the number of correct ones
c, where passing all test cases is considered as cor-
rect. If n−c < k, then pass@k equals 1; otherwise,
equals 1−∏n

i=n−c+1(1− k
i ). In our experiments,

k is set to one of [1, 10, 100] and n is set to 200.

Implementation Details. We implement our ap-
proach based on PyTorch (Paszke et al., 2019) and
Huggingface’s transformers (Wolf et al., 2019). We
use a dense retrieval toolkit7 to train APIRetriever
by setting the batch size to 10 per device, the learn-
ing rate to 1e-5, the ratio of positive vs. negative
samples to 1:8, and the vector dimensions z of p
and a to 768. The model uses cross-entropy as the
loss function and Adam (Kingma and Ba, 2014)
as the parameters optimizer. It is trained for 100K
steps on a cluster of 8 NVIDIA V100 GPUs with
32GB memory. The training time is about 3 days.

5https://github.com/CodedotAl/gpt-code-clippy
6https://huggingface.co/lvwerra/codeparrot
7https://github.com/luyug/Dense
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APIs TorchDataEval MonkeyEval BeatNumEvalAPICoder
pass@1 pass@10 pass@100 pass@1 pass@10 pass@100 pass@1 pass@10 pass@100

CodeT5 220M Top-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CodeGPT 124M Top-2 0.67 2.78 7.72 0.82 0.99 1.73 0.52 1.88 4.70

CodeClippy 125M Top-2 0.04 0.39 2.75 0.10 0.76 1.86 0.03 0.33 2.11
No API 4.04 7.11 13.26 0.54 2.04 7.38 2.67 7.66 18.86
Perfect 4.86+0.82 8.88+1.77 17.25+3.99 2.39+1.85 3.33+1.29 9.99+2.61 5.01+2.34 11.30+3.64 26.36+7.5

Top-1 4.02-0.02 8.35+1.24 18.17+4.91 2.54+2.00 3.43+1.39 11.39+4.01 4.32+1.65 9.39+1.73 19.91+1.05

Top-2 4.64+0.60 8.96+1.85 17.48+4.22 1.52+0.98 2.96+0.92 9.32+1.94 2.77+0.10 8.57+0.91 19.74+0.88

Top-3 4.00-0.04 7.51+0.40 15.13+1.87 1.32+0.78 3.16+1.12 10.59+3.21 1.69-0.98 9.01+1.35 19.90+1.04

Top-5 4.22+0.18 7.51+0.40 15.43+2.17 0.99+0.45 2.78+0.74 11.76+4.38 1.74-0.93 8.11+0.45 17.54-1.32

CodeParrot
110M

Human 4.01-0.03 7.60+0.49 14.47+1.21 2.44+1.90 3.62+1.58 9.83+2.45 5.23+2.56 11.78+4.12 22.81+3.95

No API 6.72 15.71 22.00 0.95 4.90 8.89 5.15 11.96 18.79
Perfect 9.84+3.12 22.62+6.91 34.00+12.00 2.14+1.19 6.41+1.51 11.86+2.97 9.47+4.32 17.05+5.09 28.67+9.88

Top-1 8.72+2.00 19.22+3.51 27.97+5.97 2.22+1.27 7.20+2.30 12.85+3.96 7.52+2.37 15.25+3.29 24.71+5.92

Top-2 7.52+0.80 16.36+0.65 26.00+4.00 2.46+1.51 6.35+1.45 9.89+1.00 6.65+1.50 13.68+1.72 22.74+3.95

Top-3 7.92+1.20 18.65+2.94 28.00+6.00 2.02+1.07 5.26+0.36 8.89+0.00 6.26+1.11 16.12+4.16 24.72+5.93

Top-5 6.08-0.64 17.48+1.77 25.95+3.95 1.58+0.63 5.45+0.55 9.88+0.99 6.34+1.19 15.05+3.09 21.76+2.97

CODEGEN

350M

Human 8.08+1.36 19.85+4.14 31.95+9.95 2.14+1.19 6.14+1.24 11.86+2.97 9.47+4.32 17.12+5.06 28.67+9.88

No API 7.19 16.93 23.97 1.19 4.68 7.91 4.44 8.24 13.83
Perfect 20.23+13.04 33.37+16.44 41.97+18.00 4.59+3.40 9.14+4.46 13.85+5.94 9.62+5.18 16.51+8.27 22.75+8.92

Top-1 12.89+5.70 24.26+7.33 31.97+8.00 2.89+1.70 8.28+3.60 12.86+4.94 6.61+2.17 12.62+4.38 17.80+3.97

Top-2 10.41+3.22 23.50+6.57 31.98+8.01 3.41+2.22 8.33+3.65 11.87+8.90 5.90+1.46 11.79+3.55 15.83+2.00

Top-3 10.49+3.30 25.45+8.52 35.98+12.01 3.17+1.98 7.51+2.83 10.88+2.97 5.11+0.67 11.40+3.16 15.82+1.99

Top-5 10.34+3.15 23.04+6.11 27.99+4.02 1.94+0.75 4.75+0.07 7.91+0.00 5.07+0.63 9.64+1.40 13.84+0.01

CODEGENAPI
350M

Human 15.57+8.38 27.76+10.83 33.97+10.00 3.76+2.57 8.32+3.64 12.86+4.95 9.39+4.95 16.40+8.16 23.74+9.91

No API 7.16 14.46 23.75 1.47 3.53 7.31 6.95 17.54 25.57
Perfect 25.03+17.87 51.26+36.80 56.75+33.00 3.58+2.11 7.48+3.95 12.61+5.30 8.59+1.64 23.75+6.21 36.99+11.42Codex

12B
Top-2 17.98+10.82 32.75+18.29 41.51+17.76 1.92+0.45 5.91+2.38 11.08+3.77 9.54+2.59 21.77+4.23 32.45+6.88

Table 1: Pass@k(%) results on the three benchmarks. The blue background means no API as extra prompt; the
yellow background means perfect APIs as extra prompt; the write background means top-1, 2, 3, or 5 APIs retrieved
by APIRetriever as extra prompt; and the purple background means the APIs chosen by human from top-5 of
APIRetriever as extra prompt. Numbers in red and green indicate the absolute changes over no API setting.

For pre-training CODEGENAPI, we set the code
block size to 1, 024, the batch size to 4, the learn-
ing rate to 5e-4, the gradient accumulation steps to
4, the weight decay to 0.1, and the warm up steps
to 1, 000. Noise APIs are added at a rate of 0.05.
It is trained for 100K steps about 1.6 days on 8
32GB NVIDIA V100 GPUs. In all of our training
phases, we use mixed precision FP16 to speed up.
When generating code snippets using pre-trained
models, we conduct various temperatures ranging
from 0.1 to 1.0 with the interval of 0.1. All re-
sults are reported with the best values across these
hyper-parameters.

5.2 Main Results

Table 1 summarizes the performance of our frame-
work and all baselines on TorchDataEval, Mon-
keyEval, and BeatNumEval. Based on numerous
experimental results, we derived plausible observa-
tions and valuable insights to answer the following
research questions.

“Is API information useful for private library
oriented code generation?” As we can see in
Table 1, all models without prompting any APIs
(the No API setting) achieve relatively poor per-

formance on all benchmarks. Especially, Codex
12B, a powerful code generation model with large
parameters, can only achieve similar performance
to CODEGEN and CODEGENAPI 350M in the No
API setting. This indicates that even with gigantic
models, the task of code generation with private
libraries is extremely challenging. Encouragingly,
with prompted API information (the Perfect, Top-
N , Human settings), both the off-the-shelf models
(e.g., CodeParrot, CODEGEN, and Codex) and our
continually pre-trained CodeGenAPI achieve con-
sistent performance gains compared to those in the
No API setting. Moreover, the more powerful the
model itself in code generation (i.e., Codex 12B >
CODEGEN 350M > CodeParrot 110M), the more
benefits that API information can bring. For exam-
ple, on TorchDataEval in the Perfect setting, Codex
12B brings pass@10 an absolute improvement of
36.89%, while CodeParrot 110M only improves
1.77%. This observation also suggests that prompt-
ing API information can unleash the potential of
gigantic models towards invoking private APIs. All
the above results prove the usefulness of API infor-
mation for code generation for private libraries.

“Is the APIRetriever effective in finding useful
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Figure 5: The recall rates of retrieved APIs.

API information?” All models in the Top-N setting
outperform the same models in the No API setting,
suggesting that APIRetriever is able to find useful
APIs. For a certain model, we observe that the
Top-1/Top-2 settings usually perform better than
the Top-3/Top-5 settings due to the fact that the
latter introduces more noise APIs to the APICoder.
In addition, involving humans (the Human setting)
in the selection of APIs can further improve perfor-
mance, suggesting the effectiveness of the human
interaction we designed. Note that the Top-N and
Human settings are occasionally superior to the
Perfect setting, which is reasonable because the
noise APIs exist when training the model.

“Is the APICoder effective in invoking private
APIs?” As shown in Table 1, off-the-shelf mod-
els like CODEGEN are capable of handling private
library invocations. To seek more extraordinary
performance, we continually pre-train CODEGEN

and obtain a new model CODEGENAPI. We can
observe that CODEGENAPI consistently outper-
forms its base model CODEGEN on TorchDataEval
and MonkeyEval, which proves the effectiveness
of CODEGENAPI. However, on BeatNumEval,
CODEGENAPI is inferior to CODEGEN. After
careful troubleshooting, we reveal that the process
of continual pre-training aims to essentially learn
how to invoke the correct APIs with maximum like-
lihood, while the key obstacle to using BeatNum
modified from Numpy lies in the numerical calcu-
lation like ‘a[:,None]+b*2’, instead of invoking
the correct APIs. Therefore, CODEGENAPI fails
to yield benefits for BeatNumEval. Overall, API-
Coder has the capability to invoke private APIs.

5.3 Closer Analysis

We have demonstrated the effectiveness of our
framework. In this subsection, we provide sev-
eral closer analyses to inspire future work in this
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Figure 6: Accuracy of retrieved APIs.
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Figure 7: Accuracy of CODEGENAPI and CODEGEN
with respect to the number of APIs. The problem is
solved if one of 200 samples passes all test cases.

direction.

Quality of Retrieved APIs. Retrieving the cor-
rect APIs as prompts can enhance the code genera-
tion performance for private libraries, so we would
like to evaluate the effectiveness of APIRetriever.
Figure 5 shows the recall rate of APIRetriever on
five benchmarks. We can see that the recall rates
of top-5 are already high, demonstrating that it is
reasonable to provide 5 API candidates for users to
choose from. Furthermore, as shown in Figure 6,
we analyze the accuracy of APIs chosen by users.
We observe that it dramatically exceeds the accu-
racy of top 1, 2 or 3 APIs retrieved by APIRetriever.
This suggests that it is feasible to involve humans
in the retrieval of APIs.

Different Difficulty. We would like to explore
the performance of CODEGENAPI on varying diffi-
culty problems. So we calculate its accuracy across
various numbers of APIs in target code y. Each
benchmark is divided into 3 parts, according to the
number of APIs. Figure 7 shows that CODEGE-
NAPI outperforms CODEGEN by a large margin on
the problems containing only one API. The trend
still holds as the number of APIs increases. It
demonstrates CODEGENAPI can boost the perfor-
mance of generating code snippets using private
library on varying difficulty.
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APICoder TorchDataEval MonkeyEval BeatNumEval
pass@1 pass@10 pass@100 pass@1 pass@10 pass@100 pass@1 pass@10 pass@100

CODEGENAPI 10.41 23.50 31.98 3.41 8.33 11.87 5.90 11.79 15.83
-w/ noise rate 0% 9.41 22.88 31.08 2.69 8.03 11.18 5.77 11.01 14.52
-w/ noise rate 10% 9.19 22.87 30.98 3.04 7.67 11.10 4.99 10.80 15.18
-w/ noise rate 20% 8.92 23.04 30.57 2.00 7.39 10.64 4.48 10.97 13.41
-w/o resampling 8.65 21.00 29.71 2.47 7.96 10.13 5.21 8.68 14.75

Table 2: Ablation studies for CODEGENAPI in the Top-2 setting (top 2 APIs provided by APIRetriever are
prompted). The default setting of CODEGENAPI is to use the resampling strategy and a noise rate of 5%.

Noise Rate. A well-chosen noise rate can im-
prove the robustness of CODEGENAPI against a
variety of APIs. If we set the noise rate too large,
it may change the original distribution of the code
corpus, while too small will lose the capability to
deal with noise APIs. The default noise rate is 5%,
and we also try 0%, 10%, and 20%. As shown in
Table 2, both too large and too small noise rates
can degrade the performance.

Resampling Strategy. Making high-quality
python files high-priority, and vice versa, is in
line with our intuition. To demonstrate it, we
remove the resampling strategy as mentioned in
Section 3.3. As shown in Table 2, we observe
a steady decline in performance on the three
benchmarks. Such an observation demonstrates
the effectiveness of the sampling strategy.

CODEGENAPI for Public Library. Technically
speaking, CODEGENAPI also can be employed
for generating code for public libraries. So, we do
experiments on PandasEval and NumpyEval and
show the results in Table 3. We find that the per-
formance improvement of CODEGENAPI over the
base model on public libraries is not as significant
as on private libraries. One major reason is that
the models have seen the public libraries during
pre-training, so prompting API information yields
limited benefit. We can see CODEGENAPI ex-
cels over CODEGEN when prompting perfect APIs.
But when prompting top-2 APIs, the advantages of
CODEGENAPI are not exhibited. This means that
CODEGENAPI can also work on third-party public
libraries, but it depends heavily on the performance
of APIRetriever.

6 Related Work

6.1 Code Generation

Thanks to the recent development of pre-training
techniques, a lot of pre-trained language mod-
els have been proposed for code-related tasks.

APICoder APIs PandasEval
pass@1 pass@10 pass@100

CODEGEN

No API 14.24 30.71 46.04
Perfect 11.21 33.59 48.47
Top-2 9.54 29.02 40.56

CODEGENAPI
No API 13.58 34.95 46.51
Perfect 19.96 42.36 53.43
Top-2 11.25 28.61 39.48

NumpyEval

CODEGEN

No API 19.31 40.89 60.58
Perfect 21.41 41.08 56.38
Top-2 18.30 35.12 48.46

CODEGENAPI
No API 16.55 29.48 42.52
Perfect 24.83 41.47 54.41
Top-2 12.67 27.32 35.62

Table 3: Results of CODEGEN and CODEGENAPI on
PandasEval and NumpyEval.

For example, CuBERT (Kanade et al., 2020),
CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2020), CodeT5 (Wang et al.,
2021), CodeGPT (Lu et al., 2021), PLBART (Ah-
mad et al., 2021), PyCodeGPT (Zan et al., 2022),
CODEGEN (Nijkamp et al., 2022), Codex (Chen
et al., 2021), AlphaCode (Li et al., 2022), and In-
Coder (Fried et al., 2022). Almost all of them focus
on standalone code, while JigSaw (Jain et al., 2021)
and CERT (Zan et al., 2022) are presented for gen-
erating code using public libraries. In this paper,
we aim to generate code invoking private APIs,
which is a common scenario in practice. It is more
challenging because pre-trained language models
have never seen any information about private li-
braries. As for benchmarks, HumanEval (Chen
et al., 2021), APPs (Hendrycks et al., 2021),
P3 (Schuster et al., 2021), MBPP (Austin et al.,
2021), BIG-bench (Srivastava et al., 2022), and
CodeContests (Li et al., 2022) were proposed to
evaluate the performance of generating standalone
code. GSM8K-Python (Cobbe et al., 2021) and
MathQA-Python (Austin et al., 2021) were en-
gaged in evaluating the capability of solving math-
ematical problems. PandasEval and NumpyE-
val (Zan et al., 2022) were released to evaluate the
code generation for public library. We propose
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three benchmarks, called TorchDataEval, Mon-
keyEval, and BeatNumEval, aiming to evaluate the
performance of code generation for private library.

6.2 Retrieval-Based Generation

In the natural language field, retrieval-based gen-
eration is a hot topic. A lot of works (Izacard
and Grave, 2020; Karpukhin et al., 2020; Qu et al.,
2020; Xiong et al., 2020; Santhanam et al., 2021;
Formal et al., 2022) have emerged under this topic.
Therefore, we refer to the above methods and de-
sign our APIRetriever for private API retrieval. In
the programming language field, there are also sev-
eral attempts to use retrieval techniques, such as
DEEPAPI (Gu et al., 2016), REDCODER (Parvez
et al., 2021), ReACC (Lu et al., 2022), and Doc-
Coder (Zhou et al., 2022). Our work is funda-
mentally different from them. They all aim to re-
trieve public code snippets or other resources on
GitHub/StackOverFlow based on the user query,
while our goal is to retrieve APIs from the API
documentation of private library based on code
comments. Besides, we design retrieval because
we focus on private APIs, which have not been seen
by the pre-trained generative language models.

7 Conclusion

In this paper, we propose a novel framework for
code generation for private library. There are two
modules: for a specific programming problem,
APIRetriever first finds out the useful private APIs
from API documentation, and then APICoder lever-
ages these APIs to generate the code. We craft three
benchmarks, including TorchDataEval, MonkeyE-
val, and BeatNumEval, for better evaluating private
library oriented code generation. The experimen-
tal results and thorough analysis demonstrate the
reasonableness and effectiveness of our framework.
In future work, we would like to explore how to
make better use of API documentation for code
generation and improve the approach for real use
when programming with private libraries.

Limitations

While our proposed approach exhibits many advan-
tages, it also has a few limitations. (1) As stated
in Section 5.2, our approach that prompts APIs
for programming problem relies heavily upon the
code generation capacity of the language model
itself. The more powerful the model itself, the
more benefits the prompting APIs bring. Likewise,

we also find that if a model itself shows very poor
performance, prompting APIs will not bring any
benefit to it or even bring negative effects. (2) As
the first navigator to explore code generation with
private library, we have built three private libraries,
but they all include a relatively small number of
APIs (<200). With these APIs, our APIRetriever
can exhibit decent performance. But we surmise
that it may become more challenging for APIRe-
triever as the number of APIs increases. (3) It is
extremely challenging to find a real private library
and craft a benchmark like TorchDataEval. To eval-
uate our idea quickly and cost-effectively, besides
TorchDataEval, we also crafted two pseudo private
libraries that are modified from the existing public
ones as mentioned in Section 4. Although we have
done our best to preserve the two pseudo private
libraries in line with the real private library, it may
still pose some threats to the fair evaluation of code
generation for private library. (4) We can see from
Table 1 that most models with the Top-N setting
fall behind the same model with the Perfect setting.
Such observation demonstrates that APIRetriever
we designed has a big room for improvement. (5)
Our experiments show that our framework can en-
hance the quality of private library oriented code
generation on Python. Limitations may exist when
we generalize it to other programming languages
such as Java, C, and C++ since the characteristics
of libraries for different programming languages
are slightly different.
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A Collection of API Documentation

We aim to use data from public libraries for train-
ing and generalize the models to private libraries.
Thus, we crawled the API documentation of the 31
most popular public libraries in Python. Table 4
summarizes the number of APIs we extracted for
each library.

B Resampling Strategy

The resampling strategy allows high-quality python
files to be more frequently sampled, and vice versa.
So the resampling weight (w) of each python file is
defined in the following aspects: the star number of
the corresponding repository (Nstar), the unit test
function rate (Rut) that is the number of unit test
functions divided by the number of all functions,
the number of API name (Napi) in the file, and the

number of APIs (Mapi) considering one API name
may match multiple APIs. Formally, the strategy
can be formulated as follows:

wstar = 1.0 + log(Nstar + 1).clip(50)× 0.2,

wut = (0.5 + (1−Rut)).clip(
1
0),

wapi = 5.0− log(
Mapi

Napi
).clip(50)× 0.2,

w = wstar × wut × wapi,

(1)

where clip(yx) limits the value to [x, y].

C Keywords Conversion from Public
Library to Private Library.

As mentioned in Section 4, we convert the public
library benchmarks (PandasEval and NumpyEval)
to the private library benchmarks (MonkeyEval and
BeatNumEval) by manually modifying all public
library-related keywords. In Table 5, we list all the
keywords before and after the conversion.
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Pandas NumPy sklearn PyTorch TensorFlow Django selenium Matplotlib Flask SciPy Seaborn
7,094 12,085 53,166 124,902 32,116 24,375 4,842 439,913 31,867 153,359 161,477
NLTK BeatifulSoup pygame PIL jieba Gensim spaCy transformers fairseq SQLAlchemy Scrapy

206,816 22,519 70,396 127,212 26,620 37,331 239,945 652,913 158,721 54,765 3,537
AllenNLP datasets tokenizers MXNet imageio pytest MetPy ansible requests
276,088 136,843 195 142,070 175,878 1,047 27,429 40,839 39,333

Table 4: The number of APIs in the 31 public libraries we crawled.

PandasEval-MonkeyEval
isnull mean pandas dataframe df isin pd
ifnull average monkey knowledgeframe kf incontain mk
tolist apply to_numeric dropna append tail copy
convert_list employ to_num sipna adding last_tail clone
innull astype select_dtypes iterrows min max map
isnone totype choose_dtypes traversal get_min get_max mapping
last shift merge value_counts rename_axis reset_index sample
final_item shifting unioner counts_value_num renaming_axis reseting_index sample_by_num
concat to_dict cumsum sort_index to_string drop_duplicates duplicated
concating convert_dict cumulative_sum sorting_index convert_string remove_duplicates duplicated_values
round format to_pydatetime div ceil assign intersection
value_round formating convert_pydatetime division ceiling allocate interst
drop Series ravel any fillna all Pandas
sip Collections flat_underlying whatever fillnone total_all Monkey
reindex get std rename sum unique to_datetime
reindexing getting standard renaming total_sum distinctive convert_datetime
applymap sort_values DataFrame groupby nlargest replace len
conduct_map sort_the_values KnowledgeFrame grouper nbiggest replacing length
head series isna
header_num collections ifna

NumpyEval-BeatNumEval
to_numpy ndarray array transpose numpy Numpy np
to_beatnum ndnumset numset switching_places beatnum Beatnum bn
column_stack concatenate slice sum imag abs real
stack_col connect piece total_count imaginary absolute reality
fill_diagonal all fromstring in1d mean where std
pad_diagonal total come_from_str intersection1dim average filter_condition standard_op
add histogram fromarrays reshape filled stack cumsum
add_concat hist_operation come_from_arrays change_shape_to masked_fill pile_operation cumulative_sum
astype arange setxor1d compressed argmin argmax
convert_type arr_range seting_exclusive_or_one_dim remove_masked_data get_argmin_value get_argmax
vstack squeeze hstack asarray repeat vectorize split
vertical_stack sqz horizontal_stack asnumset duplicate vectorisation sep_split
diff unique unravel_index flatten norm delete ones
difference uniq convert_index_or_arr convert_into_one_dim normlizattion remove_operation create_ones
append any logical_and bincount isnan argpartition ravel
apd any_condition logic_and_element_wise binoccurrence ifnan perform_partition asview
array_split inv insert searchsorted min max full
split_array inverse stick find_sorted get_min get_max full_value_func

Table 5: The keywords of converting PandasEval to MonkeyEval, and NumpyEval to BeatNumEval. The grey
background means the original keywords, and the white background means the converted ones.
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