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Abstract

Automatic product attribute value extraction
refers to the task of identifying values of an
attribute from the product information. Prod-
uct attributes are essential in improving online
shopping experience for customers. Most exist-
ing methods focus on extracting attribute val-
ues from product title and description. How-
ever, in many real-world applications, a prod-
uct is usually represented by multiple modali-
ties beyond title and description, such as prod-
uct specifications, text and visual informa-
tion from the product image, etc. In this pa-
per, we propose SMARTAVE, a Structure
Mltimodal trAnsformeR for producT Attribute
Value Extraction, which jointly encodes the
structured product information from multiple
modalities. Specifically, in SMARTAVE en-
coder, we introduce hyper-tokens to repre-
sent the modality-level information, and local-
tokens to represent the original text and vi-
sual inputs. Structured attention patterns are
designed among the hyper-tokens and local-
tokens for learning effective product represen-
tation. The attribute values are then extracted
based on the learned embeddings. We conduct
extensive experiments on two multimodal prod-
uct datasets. Experimental results demonstrate
the superior performance of the proposed ap-
proach over several state-of-the-art methods.
Ablation studies validate the effectiveness of
the structured attentions in modeling the multi-
modal product information.

1 Introduction

Product attributes are important features that carry
useful information about the product. They form
an essential component of e-commerce platforms,
which provide guidance for customers to compare
products and make purchasing decisions. Product
attributes also facilitate retailers on various appli-
cations, including product search (Nguyen et al.,
2020; Lu et al., 2021), product recommendations
(Yu et al., 2021; Truong et al., 2022), and question

Figure 1: An example of product attributes with their
corresponding values extracted from multiple modalities
of the product.

answering systems (Zhang et al., 2020; Rozen et al.,
2021; Huang et al., 2022). However, as shown in
previous studies (Dong et al., 2020; Yang et al.,
2022), product attributes are often noisy and incom-
plete with a lot of missing values for most retailers.
Therefore, it is an important research problem to
extract the product attributes with missing values.

Attribute value extraction has attracted a lot of at-
tention from both academia and industry in recent
years, with a plethora of research (Putthividhya
and Hu, 2011a; Zhao et al., 2019; Chen et al., 2019;
Shinzato et al., 2022) being proposed to tackle this
problem. Most existing works (Zheng et al., 2018;
Xu et al., 2019; Wang et al., 2020; Yan et al., 2021)
rely solely on the product title and description from
the product profiles, which is often insufficient to
obtain values for all attributes. In real-world appli-
cations, products are usually associated with rich
information from other modalities, such as product
specification and image. This additional informa-
tion can improve the attribute value extraction in
two main aspects. First, attribute values are some-
times absent in the product title and description.
For example, as illustrated in Figure 1, the value
‘17.9 FL OZ’ corresponding to the attribute ‘Size’
is only mentioned in the OCR text from the product
image. The value ‘Liquid’ of the attribute ‘Item
Form’ is not mentioned in any text source of the
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product, but can be inferred from the product visual
information. In these cases, the product image is
able to recover the missing values of the attributes.
Second, product title and description might contain
multiple candidate values for an attribute, while
other modalities could consolidate the correct value.
For example, while both ‘Hair Food’ and ‘Natural’
from the product title are reasonable values for at-
tribute ‘Brand’, the OCR text in the image clearly
suggests that ‘hair food’ is the correct answer.

There are a few recent works (Zhu et al., 2020;
Lin et al., 2021) that incorporate the product im-
age for attribute value extraction, which achieve
promising results. However, these techniques suf-
fer from two major limitations. First, each modality
of the product is encoded independently with an in-
dividual encoder, followed by a light fusion/cross-
modality layer on the top. In this way, the cor-
relations among different modalities are not fully
captured, leading to less effective embeddings. Sec-
ond, the texts from individual modalities are simply
concatenated and fed into a single encoder, making
these methods inefficient to handle long input.

To address these challenges, in this paper, we
propose a novel Structured Multimodal Trans-
former for Product Attribute Value Extraction
(SMARTAVE), which jointly encodes the struc-
tured product information from multiple modalities
in a unified Transformer model. We first introduce
a set of hyper-tokens to represent all modalities of
the product, and use local-tokens to indicate the
original text and visual inputs within each modality.
Structured attention patterns are designed among
the hyper-tokens and local-tokens for modeling
the correlation between modalities and learning
effective product representation. Intuitively, the
hyper-tokens serve as ‘hubs’ routing local-tokens
from different modalities to interact with each other.
The attribute values are then extracted based on the
learned embeddings from the structured encoder.
Evaluations on two multimodal product datasets
show the superior performance of our model over
several state-of-the-art methods. The experimental
results also demonstrate the effectiveness of the
structured attention mechanism in modeling multi-
modal product data with large input sequences. We
summarize the main contributions as follows:

• We propose a novel structured multimodal
Transformer that extracts product attribute val-
ues from product title, description, specifica-
tion, visual information, and texts in the prod-

uct image.

• We develop a structured attention mechanism
to jointly encode the product with multiple
modalities, which effectively models the cor-
relation among different modalities and learns
high quality embeddings.

• We conduct extensive experiments and demon-
strate the effectiveness of the proposed ap-
proach over several state-of-the-art baselines.

2 Related Work

Attribute Value Extraction Early works in at-
tribute value extraction (Putthividhya and Hu,
2011b; More, 2016) can be viewed as direct or
indirect applications of the Named Entity Recogni-
tion (NER) method. The advent of deep learning
has paved the way for stronger models such as
BiLSTM-CRF (Huang et al., 2015) and OpenTag
(Zheng et al., 2018), which formulate the problem
as a sequential tagging problem and use a com-
bination of methods such as BiLSTM and CRF.
SUOpenTag (Xu et al., 2019) builds on top of these
methods by jointly encoding the attribute, making
the model more scalable. AdaTag (Yan et al., 2021)
uses a hyper-network and a Mixture-of-Experts
(MoE) module to parameterize its decoder with
pre-trained attribute embeddings. AVEQA (Wang
et al., 2020) and MAVEQA (Yang et al., 2022) take
a step further by solving for the problem of scala-
bility and generalizability of the task via question
answering. Meanwhile, TXtract (Karamanolakis
et al., 2020) brings a taxonomy-aware approach to
aid attribute extraction.

Using visual clues in attribute extraction has gar-
nered attention in recent works (IV et al., 2017;
Anderson et al., 2018; Singh et al., 2019; Tan and
Bansal, 2019; Hu et al., 2020). MJAVE (Zhu et al.,
2020) designs a multimodal model that jointly pre-
dicts product attributes and extract values from tex-
tual product descriptions with the help of product
images. PAM (Lin et al., 2021) incorporates text
descriptions, Optical Character Recognition (OCR)
and visual modalities from the product. This model
fuses the three modalities into a multimodal Trans-
former and is framed as a sequence generation task,
rather than a sequence tagging task. These multi-
modal methods use multiple encoders to encode
different modalities, but fail to capture the struc-
tured information and thus are not able to model the
relationship effectively among different modalities.
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Figure 2: Overview of SMARTAVE model architecture. Encoder: our structured encoder jointly encodes the
product with multimodal information via structured attentions, and learns effective representation for all the
modalities. Extraction Layer: the attribute value is decoded from the learned embedding.

Efficient Transformers Our work is also related
to those efficient Transformer methods (Beltagy
et al., 2020; Rae et al., 2020) that deal with large
and structured input. Transformer XL (Dai et al.,
2019) designs a mechanism that is able to encode
long text sequences beyond a fixed size. Long-
former (Beltagy et al., 2020) and ETC (Ainslie
et al., 2020) propose to extend the CLS token to
multiple global tokens to deal with large text input.
HIBERT (Zhang et al., 2019) introduces a hierar-
chical attention pattern by dividing the input into
several blocks with equal sizes. Random sparse
attention mechanism is proposed in (Zaheer et al.,
2020) which reduces the quadratic attention com-
putations to linear time. These methods achieve
promising results on dealing with large and struc-
tured text sequences. However, they are not di-
rectly applicable to structured data with multiple
modalities. A comprehensive study of efficient
Transformers can be found in (Tay et al., 2022).

3 SMARTAVE

3.1 Problem Definition

In this section, we formally define the problem of
attribute value extraction from the product profile.
The product profile contains multiple modalities,
such as Title, Description, Specifications, OCR
texts, and Image. We denote the product profile

as P = (M1,M2, . . . ,Mn), where Mi represents
the i-th modality of the product. For each modal-
ity, it is either a text or image sequence, i.e., Mi

= (wi
1, . . . , w

i
mi

), where wi
j is the j-th word or

image token in Mi. The goal of attribute value ex-
traction is that given a target attribute A, extract its
corresponding values from the product profile.

3.2 Model Overview

The overall model architecture of SMARTAVE
is shown in Figure 2. Essentially, our model is
composed of three key components, the input layer,
the SMARTAVE encoder and the extraction layer.
The input layer constructs both the hyper and lo-
cal tokens of SMARTAVE, and initializes their
embeddings. The SMARTAVE encoder is the
main building block that jointly encodes the multi-
modal input data with structured attention patterns,
including Hyper-to-Hyper, Hyper-to-Local, Local-
to-Hyper and Local-to-Local attentions. The ex-
traction layer consists of a decoder that decodes the
value from the embedding of the Attribute hyper-
token, and a sequential tagging module that ex-
tracts the value from the text modalities. Note that
the final attribute value is directly obtained from
the decoder, while the sequential tagging module
provides an auxiliary task for learning better em-
beddings.
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3.3 Input Layer

Existing multimodal attribute value extraction ap-
proaches (Zhu et al., 2020; Lin et al., 2021) encode
each modality of the product separately with indi-
vidual encoders. In this work, we jointly model
all modalities with texts and images in a unified
structure Transformer model. In the input layer of
SMARTAVE, we construct two different types of
tokens as follows.
Hyper-token For each modality in the product pro-
file, we introduce a Hyper-token in our SMAR-
TAVE. Additionally, we also add one Hyper-token
to represent the attribute. The embedding of each
Hyper-token can be viewed as a summarization
of the information contained in the corresponding
modality. For instance, in Figure 2, the embedding
of the ‘Title’ Hyper-token summarizes the text se-
quence in the product title. The ‘Attribute’ Hyper-
token essentially represents the product-dependent
embedding of the target attribute.
Local-token For text modality, the Local-token
is the commonly used word representation in nat-
ural language models (Vaswani et al., 2017; De-
vlin et al., 2019). For example, ‘OCR1’ contains
two Local-tokens, ‘hair’ and ‘food’. For image
modality, each Local-token corresponds to an im-
age patch (Dosovitskiy et al., 2021). The creation
of these image patches is flexible without any con-
straint. In our implementation, we adopt the Faster
R-CNN model (Ren et al., 2017) to obtain the im-
age patches/regions from the product image, with
one additional patch representing the whole image.

In the input layer, every token is represented by
a d-dimensional embedding vector. In particular,
for a Hyper-token, its embedding is constructed by
adding a hyper embedding, a type embedding and
a modality embedding. For a Local-token embed-
ding, it is constructed by a word/patch embedding,
a type embedding and a modality embedding. The
word embedding is widely adopted in the litera-
ture (Zou et al., 2013). The patch embedding is
directly obtained through ResNet101 (He et al.,
2016), which produces a fixed length visual fea-
ture. We then learn a linear projection to map it
to the d-dimensional embedding space. The hyper
embedding is randomly initialized for each Hyper-
token. The type embedding is added to indicate
which type the token belongs to, i.e. Hyper or Lo-
cal. The modality embedding is used to distinguish
between different modalities, e.g., ‘Title’, ‘Descrip-
tion’, ‘Image’ etc. Note that all the embeddings in

our approach are trainable. The word embeddings
are initialized from the pre-trained language model.

3.4 SMARTAVE Encoder
The SMARTAVE encoder contains a stack of K
identical encoder layers, which bridges the Hyper
and Local tokens from multiple modalities with
structured attention patterns, and generates effec-
tive contextual representations of the product and
attribute. To better capture the information con-
tained in different modalities, we design four at-
tention patterns. First, Hyper-to-Hyper attention
that encodes the relations among different Hyper-
tokens. Second, Hyper-to-Local attention, which
connects the Hyper token with its corresponding
Local-tokens. Third, Local-to-Hyper attention that
passes the information from the Hyper-tokens to
the Local-tokens. Fourth, Local-to-Local atten-
tion that learns contextual embeddings from other
Local-tokens within the same modality.
Hyper-to-Hyper Attention The Hyper-to-Hyper
attention is designed to model the relations among
different modalities, which essentially computes
the attention weights among the Hyper-tokens and
propagates the information from one modality to
another. In real-world applications, the total num-
ber of modalities n for a product is usually small,
e.g., n ≤ 20. Therefore, we adopt the full atten-
tion mechanism among the Hyper-tokens, i.e., each
Hyper-token is able to attend to all other Hyper-
tokens. Formally, given the Hyper-token embed-
ding XH , the Hyper-to-Hyper full attention is de-
fined as:

AH2H = softmax

(
XHWH2H

Q (XHWH2H
K )T√

d

)

where WH2H
Q and WH2H

K are learnable weight ma-
trices. d is the embedding dimension.
Hyper-to-Local Attention There are multiple pos-
sible choices for designing the Hyper-to-Local at-
tention. For example, a straightforward solution
is to enable the attention of a Hyper-token to all
Local-tokens. However, the computational cost
grows linearly with the length of the total input
(i.e., the number of Local-tokens), which is very
expensive for large input sequences. Therefore, we
adopt local attention by restricting the Hyper-to-
Local attention of a Hyper-token only on the Local-
tokens that belong to it. For example, in Figure 2,
the ‘Title’ Hyper-token only directly attends to the
text tokens within the product title. The informa-
tion contained in Local-tokens from other modali-
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ties, e.g., a patch-token in ‘Image’, will be propa-
gated to the ‘Title’ Hyper-token through ‘Title’-to-
‘Image’ and ‘Image’-to-‘patch’ attentions. Denote
the Local-token embeddings as XL, the Hyper-to-
Local restricted attention is defined as:

AH2L
ij = softmax

(
XH

i WH2L
Q (XL

j WH2L
K )T√

d

)
, for j ∈ Mi

where WH2L
Q and WH2L

K are weight matrices in
Hyper-to-Local attention.
Local-to-Hyper Attention In Local-to-Hyper at-
tention, each Local-token communicates with every
Hyper-token, which enables the Local-token to re-
ceive the high-level representation from these sum-
marization tokens of each modality. For example
in Figure 2, each visual Local-token attends to all
Hyper-tokens. The definition of the Local-to-Hyper
attention is similar to the above Hyper-to-Local at-
tention except that each Local-token attends to all
Hyper-tokens.
Local-to-Local Attention The Local-to-Local at-
tention is the traditional attention mechanism used
in various existing Transformer models (Devlin
et al., 2019; Dosovitskiy et al., 2021; Wang et al.,
2022), which learns contextual token embeddings
from the input sequence. In our design, to reduce
the computational cost, we only allow Local-to-
Local attention between two Local-tokens from the
same modality. The connections between Local-
tokens from two different modalities can be natu-
rally bridged through the structured attention. Note
that the efficiency can be further improved by
adopting a relative attention pattern with relative
position encoding (Shaw et al., 2018, 2019).
Final Attention The final token representation can
be computed based on the above structured atten-
tion mechanism among Hyper and Local tokens.
The output embeddings for Hyper and Local tokens
ZH , ZL are calculated as follows:

ZH = AH2H(XHWH
V ) +AH2L(XLWL

V )

ZL = AL2L(XLWL
V ) +AL2H(XHWH

V )

where all the attention weights A are described
above. WH

V and WL
V are the learnable matrices

to compute the values for Hyper and Local tokens
respectively. Intuitively, the Hyper-tokens are up-
dated through the Hyper-to-Hyper full attention
and Hyper-to-Local restricted attention. The Local-
token embedding is learned via Local-to-Hyper
full attention and Local-to-Local attention. These
structured attention patterns effectively connect the

tokens from different modalities, enabling the in-
teractions across modalities efficiently.

3.5 Extraction Layer

The extraction layer of SMARTAVE outputs the fi-
nal value for the attribute. We apply a Transformer
decoder (Vaswani et al., 2017) on the output embed-
dings of the ‘Attribute’ token to generate attribute
value. We also employ a copy mechanism (See
et al., 2017) to allow both copying words from in-
put text sequence, and generating words from a
predefined vocabulary during decoding. To further
improve the learned embedding, we supplement
with an auxiliary task by extracting the text spans
from the text modalities via sequential tagging (Xu
et al., 2019) as shown in Figure 2. More technical
details are provided in Appendix A.

3.6 Discussion

This section provides discussion that connects
SMARTAVE with previous methods. If we re-
move the Hyper-to-Local and Local-to-Hyper atten-
tions and re-organize the Local-to-Local (individ-
ual encoder for each modality) and Hyper-to-Hyper
(fusion layer), our model architecture degenerates
to the multimodal approaches (Zhu et al., 2020;
Lin et al., 2021). If we further trim the input by
only keeping and concatenating a few text sources
(e.g., title and description), our model is similar to
those methods that only use the product text fea-
tures (Wang et al., 2020; Yan et al., 2021; Yang
et al., 2022; Zhang et al., 2022). Moreover, if we
continue replacing the Transformer with LSTM,
our model is similar to the traditional sequential
tagging approaches (Zheng et al., 2018; Xu et al.,
2019).

4 Experiments

4.1 Datasets

We evaluate our method on two multimodal at-
tribute value extraction datasets, MEPAVE (Zhu
et al., 2020) and MAVE (Yang et al., 2022).
MEPAVE1 is a multimodal product attribute value
extraction dataset with product title and image, col-
lected from a mainstream Chinese e-commerce
platform. It contains 87,194 text-image instances
consisting of seven categories of products with
26 different attributes such as ‘Material’, ‘Collar
Type’, ‘Color’, etc. The dataset is split into train-

1https://github.com/jd-aig/JAVE
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ing, validation and testing sets with 71,194, 8,000
and 8,000 instances respectively.
MAVE2 is a large, multi-sourced, diverse dataset
for product attribute extraction study, which con-
tains 3 million attribute value annotations across
1257 fine-grained categories created from 2.2 mil-
lion cleaned Amazon product profiles (Ni et al.,
2019). In our experiments, we select 8 root cat-
egories ‘Amazon Fashion’, ‘All Beauty’, ‘Appli-
ances’, ‘Books’, ‘Grocery and Gourmet Food’,
‘Home and Kitchen’, ‘Sports and Outdoors’, ‘Toys
and Games’, and randomly sample 4k products
for each category, resulting in total 105K attribute-
value instances. We further split them into training,
validation and testing sets with 85k, 10k and 10k
instances respectively. More details on the datasets
are provided in Appendix B.

4.2 Baselines

Our model is compared with six state-of-the-art
attribute value extraction baselines, including four
text only methods and two multimodal methods.
SUOpenTag (Xu et al., 2019) uses two BiLSTMs
to produce separate embeddings for the context and
the attribute, followed by a CRF layer.
AVEQA (Wang et al., 2020) adopts the BERT en-
coder to jointly encode the attribute and the product
text profile.
AdaTag (Yan et al., 2021) applies adaptive decod-
ing that is able to extract multi-attribute values.
MAVEQA (Yang et al., 2022) extends the BERT
encoder to deal with multiple text sources.
MJAVE (Zhu et al., 2020) utilizes two encoders
for text and image separately and predicts product
attributes and extract values.
PAM (Lin et al., 2021) incorporates text descrip-
tions, OCR texts and visual modalities from the
product and fuses the three modalities into a multi-
modal Transformer.

4.3 Implementation

Our model is implemented using PyTorch, and is
trained on 64 NVIDIA Tesla V100 GPUs. Dur-
ing training, we use the gradient descent algorithm
with Adam (Kingma and Ba, 2015) optimizer. Dur-
ing inference, we conduct beam search with beam
width 5. The details of all hyper-parameters are
reported in Appendix C.

Following previous works, we use precision, re-
call and F1 score as evaluation metrics denoted as P,

2https://github.com/
google-research-datasets/MAVE

Methods MEPAVE MAVE

SUOpenTag (Xu et al., 2019) 77.12 ± 0.62 81.74 ± 0.54
AVEQA (Wang et al., 2020) 89.15 ± 0.47 89.20 ± 0.32
AdaTag (Yan et al., 2021) 81.36 ± 0.54 86.19 ± 0.46

MAVEQA (Yang et al., 2022) 88.71 ± 0.38 90.06 ± 0.29

MJAVE (Zhu et al., 2020) 87.17 ± 0.43 88.84 ± 0.55
PAM (Lin et al., 2021) 89.68 ± 0.51 91.51 ± 0.37

SMARTAVE-text 89.21 ± 0.42 91.16 ± 0.41
SMARTAVE 91.52 ± 0.45 93.69 ± 0.34

Table 1: Overall performance comparison (F1 scores
%) with standard deviation on both datasets. Results are
statistically significant with p-value < 0.001.

R and F1. We follow Exact Match (Rajpurkar et al.,
2016) criteria to compute the scores. We repeat
each experiment 10 times and report the metrics
based on the average over these runs.
5 Results

5.1 Overall Results

SMARTAVE outperforms the state-of-the-art
attribute value extraction methods on both
datasets. Table 1 presents the main comparison re-
sults on the two datasets. There are several key ob-
servations. First, the multimodal models SMAR-
TAVE and PAM achieve better results over the text-
only methods on both datasets, which demonstrates
the usefulness of the information from product im-
ages for attribute value extraction. We also observe
that MJAVE does not perform well compared to
the sophisticated text-only methods AVEQA and
MAVEQA. Our hypothesis is that MJAVE only
uses a pre-trained BERT to encode the text without
better fine-tuning. Second, our model significantly
outperforms all other multimodal models. For ex-
ample, the F1 score of SMARTAVE increases over
2.38% and 5.46% compared with PAM and MJAVE
on the MAVE dataset. There are two main rea-
sons: 1) Our model adopts a structured attention
mechanism which jointly encodes the product in-
formation from all modalities, while existing mul-
timodal methods use individual encoders for each
modality and fail to capture their connections ef-
fectively. 2) Our model efficiently handles long
text sequences with the structured modeling, while
PAM and MJAVE simply concatenate the text from
different modalities. Third, our text-only model,
SMARTAVE-text, achieves the best performance
among all text-only methods. We believe it is also
attributed to the advantage of the structured mod-
eling, which allows different text modalities to ex-
change information for learning better cross-modal

268

https://github.com/google-research-datasets/MAVE
https://github.com/google-research-datasets/MAVE


Brand Shape Color TypeMethods
P R F1 P R F1 P R F1 P R F1

SUOpenTag (Xu et al., 2019) 91.25 91.33 91.29 84.36 78.86 81.52 80.84 72.53 76.46 74.08 68.25 71.04
AVEQA (Wang et al., 2020) 96.71 97.13 96.92 93.62 87.78 90.61 89.66 90.17 89.91 85.31 83.25 84.27
AdaTag (Yan et al., 2021) 95.26 94.21 94.73 91.68 90.60 91.14 88.23 85.09 86.63 84.37 82.88 83.62

MAVEQA (Yang et al., 2022) 96.48 97.76 97.11 93.70 88.35 90.95 89.81 91.15 90.47 85.27 84.12 84.69

MJAVE (Zhu et al., 2020) 95.52 94.72 95.12 91.94 89.48 90.69 90.02 90.75 90.38 84.17 82.69 83.42
PAM (Lin et al., 2021) 96.39 96.85 96.62 93.63 89.91 91.73 92.41 92.33 92.37 85.01 83.15 84.07

SMARTAVE 96.87 97.84 97.35 94.55 91.38 92.94 93.39 92.80 93.09 84.82 84.70 84.76

Table 2: Attribute level performance comparison on MAVE.

F1
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MEPAVE MAVE

w/o Title w/o Description w/o Specification w/o OCR
w/o Image All

Figure 3: Importance of different modalities.

contextual embeddings.

5.2 Attribute Level Results

SMARTAVE generally outperforms the base-
lines on all attributes, with particularly large im-
provements over certain attributes. We conduct a
fine-grained comparison of SMARTAVE with the
baselines on the MAVE dataset using four selected
attributes, ‘Brand’, ‘Shape’, ‘Color’ and ‘Type’.
These attributes are the most common attributes
across multiple categories. The attribute level com-
parison results are reported in Table 2. From these
results, we can see that SMARTAVE achieves the
best performance, in terms of F1 scores, among
all methods on all attributes. However, when com-
paring the improvements of SMARTAVE with the
text-only methods, it is clear that the improvements
on ‘Brand’ and ‘Type’ are marginal compared to
the improvements on ‘Shape’ and ‘Color’. Simi-
lar observation is found in (Zhu et al., 2020). The
reason is that product image is more useful on a
certain group of visual related attributes, such as
‘Color’ and ‘Shape’.

6 Analysis and Discussion

6.1 Importance of Different Modalities

While the text product profile contains the most
important information sources for attribute
value extraction, OCR texts and visual infor-
mation from the product image are also valu-

F1
82

84

86

88

90

92

94

MEPAVE MAVE

w/o Local-to-Local w/o Hyper-to-Local w/o Local-to-Hyper
w/o Hyper-to-Hyper All

Figure 4: Importance of different attention patterns.

able sources that boost the extraction perfor-
mance. To understand the impact of different
modalities, we conduct an ablation study by re-
moving each modality from our model. Note that
for the MEPAVE dataset, it only contains product
title, OCR text and image modalities. The results
are illustrated in Figure 3. It can be seen that texts
play a crucial role for attribute value extraction
tasks. Among all text modalities, ‘Title’ is the
most important source, which is consistent with
our expectation. Moreover, it is also clear that the
visual feature helps improve the extraction on both
datasets. Another interesting observation is that the
OCR text modality is less powerful on MEPAVE
compared with the results on MAVE. The reason
is that the number of products containing the OCR
text is very small in the MEPAVE dataset.

6.2 Impact of Different Attention Patterns

Different attentions have different impacts to
the model performance, while SMARTAVE
with all attentions achieves the best result. In this
ablation study, we evaluate the model performance
by eliminating different attention patterns. Con-
cretely, we train four additional models by remov-
ing one attention pattern per model. The results
of these four models and SMARTAVE with all
attentions on both datasets are shown in Figure 4.
First, we observe that the performance drops signif-
icantly without the Local-to-Local attention. This
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SMARTAVE # Parameters MEPAVE MAVE

Encoder-2L 51M 89.13 91.45
Encoder-6L 95M 90.68 92.57

Encoder-12L-share 113M 90.44 92.62
Encoder-12L 161M 91.52 93.69
Encoder-24L 282M 91.71 93.77

Decoder-2L 143M 91.38 93.54
Decoder-4L 161M 91.52 93.69
Decoder-12L 241M 91.61 93.73

Training time 161M 53m 1h 14m

Table 3: Model performance (F1) over different encoder
and decoder configurations.

is because the Local-to-Local attention is used to
learn the contextual embeddings for local text and
image tokens, which is the fundamental component
of our model. We also observe clear performance
drops, around 1 to 3 percent in terms of F1 score,
if removing one of the other three attention pattern.
This observation validates that these structured at-
tentions are crucial for extracting attribute values
from multiple modalities. Nevertheless, it is clear
that SMARTAVE with all attentions achieves the
best performance on both datasets.

6.3 Impact of Different Model Configurations

SMARTAVE with a 12-layer encoder and a 4-
layer decoder obtains reasonable performance-
scale trade-off. We conduct a series of
performance-scale studies on SMARTAVE. The
SMARTAVE base model uses a 12-layer encoder
with a 4-layer decoder. We evaluate the model
performance with a different number of encoder
layers in {2L, 6L, 12L-share, 12L, 24L}. The 12L-
share encoder means sharing the query and key
matrices in different attention patterns. We further
evaluate our model by only varying the number of
decoder layers in {2L, 4L, 12L}. The F1 results
of these models are shown in Table 3. It is not
surprising to see that Encoder-24L and Decoder-
12L achieve the best performances. However, a
larger model usually requires both longer training
and inference time, while the SMARTAVE model
with a 12-layer encoder and a 4-layer decoder per-
forms reasonably well. The training time of the
base model is also reported in Table 3.

6.4 Varying Maximal Sequence Length

SMARTAVE efficiently handles large input se-
quences. We evaluate our model by varying the
maximal input sequence length from {64, 128, 256,
512, 1024, 2048} on MAVE (as input sequences in
MEPAVE are all very short) . Note that the baseline

Max Sequence Length

F1

91

92

93

94

64 2048

MAVE

Figure 5: Model performances with different maximal
sequence lengths.

α

F1

91.0

92.5

94.0

0 2 4 6 8 10

MEPAVE MAVE

Figure 6: Impact of multi-task learning.

Transformer methods, such as (Wang et al., 2020;
Lin et al., 2021), require a significant amount of
time to train a model with input length beyond
512, as they simply feed the concatenated text into
the standard Transformer. On the other hand, our
model adopts the structured attention mechanism
which dramatically reduces the computational cost.
The model performance with respect to the maxi-
mal sequence length is shown in Figure 5. It is clear
that the performance of SMARTAVE improves as
maximal sequence length increases, and saturates
around 1024.

6.5 Impact of Multi-task Learning

Sequential tagging task generally improves the
model performance. To understand the impact of
the auxiliary sequential tagging task, we conduct a
set of experiments by varying the weight parameter
α (see Appendix A) from {0, 0.1, 0.6, 1, 10}. We
illustrate the model performance with different val-
ues of α in Figure 6. Note that α = 0 essentially
stands for only applying the decoding task. It can
be seen from the Figure that adding the sequential
tagging task helps improve the attribute value ex-
traction on both datasets. The model performance
is relatively stable on a wide range of α.
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7 Conclusions

This paper presents a novel Structured Multimodal
Transformer model for Product Attribute Value Ex-
traction. A structured attention mechanism is de-
signed to encode the product information from
multiple modalities. These structured attention
patterns enable effective and efficient interactions
among the text and visual tokens from different
product modalities. The attribute values are then
extracted based on the learned embeddings from
the structured encoder. Evaluations are conducted
on two multimodal datasets, which show the su-
perior performance of the proposed approach over
several state-of-the-art methods. Ablation studies
also demonstrate the effectiveness of the structured
attention patterns in modeling products with multi-
modal data and large input sequences.

Limitations

There are two limitations of our current approach.
First, our model focuses on attribute value extrac-
tion for a single product. However, there are a few
cases where an attribute contains multiple different
values corresponding to different parts of a product.
For example, for a ‘Lamp’ product, it has a ‘white’
lampshade with a ‘blue’ lamp holder. In this sce-
nario, our model might be confused and extract an
incorrect or partial value for the attribute ‘Color’.
Second, our model generates attribute-dependent
product embeddings. In other words, we need to
run the model inference once for each attribute to
extract its values, even for a same product. This
may increase the inference time for real-world ap-
plications, especially for a product with a large
number of attributes. To alleviate this problem, we
are working on jointly encoding multiple attributes
associated with one product in the SMARTAVE
model.
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A More Technical Details

We provide more technical details on our SMAR-
TAVE in this section.

Input Layer In the input layer, each Hyper-token
and Local-token will be mapped to an embedding
vector. The embeddings for the Hyper-tokens are
randomly initialized EH = {EH

1 , . . . , EH
n }. For

the text Local-tokens, they are initialized from a
pre-trained model Ei,L = {Ei,L

1 , . . . , Ei,L
mi }. For

the visual Local-tokens, each patch wi
j is con-

verted/mapped into a d-dimensional embedding
vector with a projection matrix Wp, i.e., Ei,L

j =

Wpw
i
j . We use EL = {E1,L, . . . , En,L} to repre-

sent the embeddings of all Local-tokens.

SMARTAVE Encoder The SMARTAVE en-
coder is a stack of K identical layers:

Xk = SMARTAVE(Xk−1), 1 ≤ k ≤ K

where X0 = {EH , EL} is the input embedding for
the first layer. Each SMARTAVE encoder layer
contains a structured attention layer followed by a
standard feed forward network:

Zk = Attention(Xk−1), Xk = FFN(Zk)

The Attention layer uses the structured attention
mechanism described in the main paper. We now
present the full format of all attentions.

Hyper-to-Hyper Attention The Hyper-to-Hyper
full attention is formulated as:

αH2H
ij =

exp(eH2H
ij )

∑
ℓ exp(e

H2H
iℓ )

, for 1 ≤ j ≤ n

eH2H
ij =

xHi WH2H
Q (xHj WH2H

K )T
√
d

which is equivalent to the compact matrix format
in the main paper.

Hyper-to-Local Attention The Hyper-to-Local
restricted attention is formulated as:

αH2L
ij =

exp(eH2L
ij )

∑
ℓ∈Mi

exp(eH2L
iℓ )

, for j ∈ Mi

eH2L
ij =

xHi WH2L
Q (xLj W

H2L
K )T

√
d

Local-to-Hyper Attention The Local-to-Hyper
attention is formulated as:

αL2H
ij =

exp(eL2Hij )
∑

ℓ exp(e
L2H
iℓ )

, for 1 ≤ j ≤ n

eL2Hij =
xLi W

L2H
Q (xHj WL2H

K )T
√
d

Local-to-Local Attention The Local-to-Local
constrained attention is formulated as:

αL2L
ij =

exp(eL2Lij )
∑

ℓ∈Mi
exp(eL2Liℓ )

, for j ∈ Mi

eL2Lij =
xLi W

L2L
Q (xLj W

L2L
K )T

√
d

Final Attention The final computation of ZH

and ZL can be written as:

zHi =
∑

1≤j≤n

αH2H
ij xHj WH

V +
∑

ℓ∈Mi

αH2L
iℓ xLkW

L
V

zLi =
∑

j∈Mi

αL2L
ij xLj W

L
V +

∑

1≤ℓ≤n

αL2H
ij xHk WH

V

Extraction Layer The attribute value decoder is
a standard Transformer decoder, which consumes
the embedding of ‘Attribute’ Hyper-token from
the SMARTAVE encoder and generates the value
word by word:

w̄t = argmax
wt

(softmax(WvX
t
de))

where Xt
de is the decoder output at word position

t. Wv is the output matrix which projects the final
embedding to the logits of vocabulary size. As
mentioned in the main paper, we further employ
a copy mechanism to allow copying words from
input text sequence via pointing. For the sequential
tagging component, we pass the embeddings of
each text sequence into the CRF layer (Xu et al.,
2019; Yan et al., 2021) to predict tags for each
token in {B, I,O,E}. The total loss is defined as:

L = LD + αLSeq

where LD is the decoder loss and LSeq is the se-
quential tagging loss. α is a hyper-parameter.
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Category # Product # Instance # Attribute # Value

Clothes 12,240 34,154 14 1,210
Shoes 9,022 20,525 10 1,036
Bags 3,376 8,307 8 631

Luggage 1,291 2,227 7 275
Dresses 4,567 12,283 13 714
Boots 713 2,090 11 322
Pants 2,832 7,608 13 595

Total 34,041 87,194 26 2,129

Table 4: The statistics of the MEPAVE dataset.

Category # Product # Instance # Attribute # Value

Amazon Fashion 4k 16.6k 18 1.1k
All Beauty 4k 17.3k 23 1.3k
Appliances 4k 12.5k 16 0.8k

Books 4k 12.7k 9 0.8k
Grocery and Gourmet Food 4k 9.8k 12 0.7k

Home and Kitchen 4k 11.2k 15 0.8k
Sports and Outdoors 4k 12.7k 16 0.9k

Toys and Games 4k 12.2k 15 1.0k

Total 32k 105k 65 3.6k

Table 5: The statistics of the MAVE dataset.

B Dataset

Data Processing For the MEPAVE dataset, it al-
ready has the product image associated with each
product. For the MAVE dataset, they do not di-
rectly provide the product images. We join the prod-
uct ‘id’ from MAVE with the product ‘asin’ from
the original Amazon Review Data3 to obtain the
high-resolution product images. We further remove
the text sources that directly represent the attribute
and value. For example, {’source’: ’brand’, ’text’:
’Kalso’}. We believe this is one of the main rea-
sons why AVEQA and MAVEQA methods achieve
very high scores on the original MAVE dataset. For
both datasets, in order to compute the sequential
tagging loss, we match the attribute values with the
OCR texts to generate the tags on the OCR text
sequences (for other text modalities, both datasets
provide full tag annotations).

Statistics The statistics of both datasets are
shown in Table 4 and 5.

C Implementation Details

The language of the texts on the datasets are differ-
ent. MEPAVE contains Chinese product profiles,
while MAVE has English product profiles. More-
over, the text characteristics are also very different
for these two datasets. MEPAVE only includes the
product title, with very limited OCR texts. The

3https://nijianmo.github.io/amazon/
index.html

Parameters MEPAVE MAVE

encoder layers 12 12
encoder heads 12 12

encoder hiden size 768 768
encoder hidden units (FFN) 3,072 3,072
max input sequence length 64 1024

decoder layer 4 4
decoder heads 6 6

decoder hiden size 768 768
decoder hidden units (FFN) 3,072 3,072
max output sequence length 10 10

beam width 5 5

batch size 128 32
training epochs 28 20

optimizer Adam Adam
learning rate schedule linear decay linear decay

learning rate 2e−5 2e−5

learning rate warmup steps 2,000 2,000
vocab Chinese vocab from MJAVE BERT-base

vocab size 2,772 30,522
α 0.6 0.6

Table 6: Model Hyper-parameters details.

batch size MEPAVE MAVE learning rate MEPAVE MAVE

16 91.46 93.62 1e−5 91.62 92.95
32 91.42 93.69 2e−5 91.52 93.69
64 91.48 93.21 4e−5 91.17 93.24

128 91.52 - 8e−5 91.03 92.86
512 90.85 - 2e−4 90.80 92.51

Table 7: F1 results with different batch sizes and learn-
ing rates on both datasests.

maximal number of Chinese words/tokens in the
dataset is 56. On the other hand, MAVE consists
of multiple text modalities with much larger text
length (can even go over 1024). Therefore, the vo-
cabularies used for different datasets are different,
as well as certain other parameters. The model
parameters used for both datasets are provided in
Table 6.

D Impact of Batch Size and Learning
Rate

To evaluate the model performance with different
training batch sizes and learning rates, we conduct
experiments to train a set of SMARTAVE mod-
els with a hyper-parameter sweep consisting of
learning rates in {1e−5, 2e−5, 4e−5, 8e−5, 2e−4}
and batch sizes in 16, 32, 64, 128, 512 on both
datasets. The F1 results with different learning
rates and batch sizes are reported in Table 7. Note
that for MAVE, we are not able to train on large
batch size, i.e., 128 and 512, as the maximal input
sequence length is set to 1024. It can be seen from
the table that smaller batch size and learning rate
usually lead to better model performance.
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