
HLDC: Hindi Legal Documents Corpus

Arnav Kapoor†, Mudit Dhawan‡, Anmol Goel†,
T.H. Arjun†, Akshala Bhatnagar‡, Vibhu Agrawal‡, Amul Agrawal†,

Arnab Bhattacharya¶, Ponnurangam Kumaraguru†, Ashutosh Modi¶∗
†IIIT Hyderabad, ‡IIIT Delhi, ¶IIT Kanpur

{arnav.kapoor,anmol.goel,arjun.thekoot}@research.iiit.ac.in

{mudit18159,akshala18012,vibhu18116}@iiitd.ac.in, amul.agrawal@students.iiit.ac.in,
arnabb@cse.iitk.ac.in, pk.guru@iiit.ac.in, ashutoshm@cse.iitk.ac.in

Abstract

Many populous countries including India are
burdened with a considerable backlog of legal
cases. Development of automated systems that
could process legal documents and augment
legal practitioners can mitigate this. However,
there is a dearth of high-quality corpora that is
needed to develop such data-driven systems.
The problem gets even more pronounced in
the case of low resource languages such as
Hindi. In this resource paper, we introduce
the Hindi Legal Documents Corpus (HLDC), a
corpus of more than 900K legal documents in
Hindi. Documents are cleaned and structured
to enable the development of downstream ap-
plications. Further, as a use-case for the cor-
pus, we introduce the task of bail prediction.
We experiment with a battery of models and
propose a Multi-Task Learning (MTL) based
model for the same. MTL models use sum-
marization as an auxiliary task along with bail
prediction as the main task. Experiments with
different models are indicative of the need
for further research in this area. We release
the corpus and model implementation code
with this paper: https://github.com/
Exploration-Lab/HLDC.

1 Introduction

In recent times, the legal system in many populous
countries (e.g., India) has been inundated with
a large number of legal documents and pending
cases (Katju, 2019). There is an imminent need for
automated systems to process legal documents and
help augment the legal procedures. For example,
if a system could readily extract the required in-
formation from a legal document for a legal prac-
titioner, then it would help expedite the legal pro-
cess. However, the processing of legal documents
is challenging and is quite different from conven-
tional text processing tasks. For example, legal
documents are typically quite long (tens of pages),

∗Corresponding Author

highly unstructured and noisy (spelling and gram-
mar mistakes since these are typed), use domain-
specific language and jargon; consequently, pre-
trained language models do not perform well on
these (Malik et al., 2021b). Thus, to develop legal
text processing systems and address the challenges
associated with the legal domain, there is a need
for creating specialized legal domain corpora.

In recent times, there have been efforts to de-
velop such corpora. For example, Chalkidis et al.
(2019) have developed an English corpus of Eu-
ropean Court of Justice documents, while Ma-
lik et al. (2021b) have developed an English cor-
pus of Indian Supreme Court documents. Xiao
et al. (2018) have developed Chinese Legal Docu-
ment corpus. However, to the best of our knowl-
edge, there does not exist any legal document cor-
pus for the Hindi language (a language belonging
to the Indo-European family and pre-dominantly
spoken in India). Hindi uses Devanagari script
(Wikipedia contributors, 2021) for the writing sys-
tem. Hindi is spoken by approximately 567 mil-
lion people in the world (WorldData, 2021). Most
of the lower (district) courts in northern India use
Hindi as the official language. However, most of
the legal NLP systems that currently exist in In-
dia have been developed on English, and these do
not work on Hindi legal documents (Malik et al.,
2021b). To address this problem, in this paper,
we release a large corpus of Hindi legal docu-
ments (HINDI LEGAL DOCUMENTS CORPUS or
HLDC) that can be used for developing NLP sys-
tems that could augment the legal practitioners by
automating some of the legal processes. Further,
we show a use case for the proposed corpus via a
new task of bail prediction.

India follows a Common Law system and has
a three-tiered court system with District Courts
(along with Subordinate Courts) at the lowest level
(districts), followed by High Courts at the state
level, and the Supreme Court of India at the high-

https://github.com/Exploration-Lab/HLDC
https://github.com/Exploration-Lab/HLDC

est level. In terms of number of cases, district
courts handle the majority. According to India’s
National Judicial Data Grid, as of November 2021,
there are approximately 40 million cases pending
in District Courts (National Judicial Data Grid,
2021) as opposed to 5 million cases pending in
High Courts. These statistics show an immediate
need for developing models that could address the
problems at the grass-root levels of the Indian le-
gal system. Out of the 40 million pending cases,
approximately 20 million are from courts where
the official language is Hindi (National Judicial
Data Grid, 2021). In this resource paper, we create
a large corpus of 912,568 Hindi legal documents.
In particular, we collect documents from the state
of Uttar Pradesh, the most populous state of In-
dia with a population of approximately 237 mil-
lion (PopulationU, 2021). The Hindi Legal Docu-
ments Corpus (HLDC) can be used for a number
of legal applications, and as a use case, in this pa-
per, we propose the task of Bail Prediction.

Given a legal document with facts of the case,
the task of bail prediction requires an automated
system to predict if the accused should be granted
bail or not. The motivation behind the task is
not to replace a human judge but rather augment
them in the judicial process. Given the volume of
cases, if a system could present an initial analysis
of the case, it would expedite the process. As told
to us by legal experts and practitioners, given the
economies of scale, even a small improvement in
efficiency would result in a large impact. We de-
velop baseline models for addressing the task of
bail prediction.

In a nutshell, we make the following main con-
tributions in this resource paper:

• We create a Hindi Legal Documents Corpus
(HLDC) of 912,568 documents. These docu-
ments are cleaned and structured to make them
usable for downstream NLP/IR applications.
Moreover, this is a growing corpus as we con-
tinue to add more legal documents to HLDC. We
release the corpus and model implementation
code with this paper: https://github.
com/Exploration-Lab/HLDC.

• As a use-case for applicability of the corpus for
developing legal systems, we propose the task of
Bail Prediction.

• For the task of bail prediction, we experiment
with a variety of deep learning models. We pro-
pose a multi-task learning model based on trans-

former architecture. The proposed model uses
extractive summarization as an auxiliary task
and bail prediction as the main task.

2 Related Work

In recent years there has been active interest in
the application of NLP techniques to the legal do-
main (Zhong et al., 2020a). A number of tasks
and models have been proposed, inter alia, Le-
gal Judgment Prediction (Chalkidis et al., 2019),
Legal Summarization (Bhattacharya et al., 2019;
Tran et al., 2019), Prior Case Retrieval (Jackson
et al., 2003; Shao et al., 2020), Legal Question An-
swering (Kim and Goebel, 2017), Catchphrase Ex-
traction (Galgani et al., 2012), Semantic Segmen-
tation (Kalamkar et al., 2022; Malik et al., 2021a).

Legal Judgement Prediction (LJP) involves pre-
dicting the final decision from the facts and ar-
guments of the case. Chalkidis et al. (2019) re-
leased 11,478 cases from the European Court of
Human Rights (ECHR). It contains facts, articles
violated (if any), and the importance scores. Ma-
lik et al. (2021b) provided 34,816 case documents
from the Supreme Court of India for the predic-
tion task. Strickson and De La Iglesia (2020) pub-
lished 4,959 documents from the U.K.’s Supreme
court (the highest court of appeal).

Majority of corpora for Legal-NLP tasks have
been in English; recently, there have been efforts
to address other languages as well, for example,
Xiao et al. (2018), have created a large-scale Chi-
nese criminal judgment prediction dataset with
over 2.68 million legal documents. Work on
Legal-NLP in languages other than English is still
in its incipient stages. Our paper contributes to-
wards these efforts by releasing corpus in Hindi.

Majority of the work in the legal domain has
focused on the higher court (Malik et al., 2021b;
Strickson and De La Iglesia, 2020; Zhong et al.,
2020b); however, the lower courts handle the max-
imum number of cases. We try to address this gap
by releasing a large corpus of district court level
legal documents.

Some of the recent work has explored other
Legal-NLP tasks in languages other than English.
Chalkidis et al. (2021) released a multilingual
dataset of 65K European Union (E.U.) laws for
topic classification of legal documents. The data
was translated into the 23 official E.U. languages
and annotated with labels from the multilingual
thesaurus, EUROVOC. Luz de Araujo et al. (2018)

https://github.com/Exploration-Lab/HLDC
https://github.com/Exploration-Lab/HLDC

ecourts Website

Extract Raw
Documents

Raw PDF Court
Documents

Apply OCR Raw Text
Documents

Prior Case Retrieval

Bail Judgement Prediction

Legal Summarisation

 Hindi Legal
Documents

Corpus (HLDC)

Final Cleaning

and Collation

Legal NLP

Applications

Document
Segmentation

Segmented
Documents
into Header

and Body

Figure 1: HLDC corpus creation pipeline

have released 70 documents in Portuguese for Le-
gal Named Entity Recognition. The dataset con-
tains specific tags for law and legal cases en-
tities in addition to the normal tags for named
entities like person, locations, organisation and
time-entities. COLIEE (Competition on Legal
Information Extraction/Entailment) tasks (Kano
et al., 2019, 2017) have published legal data in
Japanese, along with their English translation. The
competition has two sub-tasks, a legal informa-
tion retrieval task and an entailment identifica-
tion task between law articles and queries. Mul-
tiple datasets in Chinese have been released for
different tasks, namely Reading Comprehension
(Duan et al., 2019), Similar Case Matching (Xiao
et al., 2019), Question Answering (Zhong et al.,
2020b). Duan et al. (2019) proposed Chinese judi-
cial reading comprehension (CJRC) dataset with
about 10K documents and almost 50K questions
with answers. Zhong et al. (2020b) presented JEC-
QA, a legal question answering dataset collected
from the National Judicial Examination of China
with about 26K multiple-choice questions. They
augment the dataset with a database containing
the legal knowledge required to answer the ques-
tions and also assign meta information to each of
the questions for in-depth analysis. Xiao et al.
(2019) proposed CAIL2019-SCM, a dataset con-
taining 8,964 triplets of the case document, with
the objective to identify which two cases are more
similar in the triplets. Similar case matching has a
crucial application as it helps to identify compara-
ble historical cases. A historical case with similar
facts often serves as a legal precedent and influ-
ences the judgement. Such historical information
can be used to make the legal judgement predic-
tion models more robust.

Kleinberg et al. (2017) proposed bail decision
prediction as a good proxy to gauge if machine
learning can improve human decision making. A
large number of bail documents along with the bi-
nary decision (granted or denied) makes it an ideal
task for automation. In this paper, we also propose
the bail prediction task using the HLDC corpus.

3 Hindi Legal Documents Corpus

Hindi Legal Documents Corpus (HLDC) is a
corpus of 912,568 Indian legal case documents
in the Hindi language. The corpus is created
by downloading data from the e-Courts web-
site (a publicly available website: https://
districts.ecourts.gov.in/). All the le-
gal documents we consider are in the public do-
main. We download case documents pertaining to
the district courts located in the Indian northern
state of Uttar Pradesh (U.P.). We focus mainly on
the state of U.P. as it is the most populous state of
India, resulting in the filing of a large number of
cases in district courts. U.P. has 71 districts and
about 161 district courts. U.P. is a predominantly
Hindi speaking state, and consequently, the offi-
cial language used in district courts is Hindi. We
crawled case documents from all districts of U.P.
corresponding to cases filed over two years, from
May 01, 2019 to May 01, 2021. Figure 2 shows
the map of U.P. and district wise variation in the
number of cases. As can be seen in the plot, the
western side of the state has more cases; this is
possibly due to the high population and more ur-
banization in the western part. Table 1 shows %-
wise division of different case types in HLDC. As
evident from the table, majority of documents per-
tain to bail applications. HLDC corpus has a total
of 3,797,817 unique tokens, and on average, each
document has 764 tokens.
HLDC Creation Pipeline: We outline the en-
tire pipeline used to create the corpus in Figure 1.
The documents on the website are originally typed
in Hindi (in Devanagari script) and then scanned
to PDF format and uploaded. The first step in
HLDC creation is the downloading of documents
from the e-Courts website. We downloaded a to-
tal of 1,221,950 documents. To extract Hindi text
from these, we perform OCR (Optical Charac-
ter Recognition) via the Tesseract tool1. Tesser-
act worked well for our use case as the majority
of case documents were well-typed, and it out-

1https://github.com/tesseract-ocr

https://districts.ecourts.gov.in/
https://districts.ecourts.gov.in/
https://github.com/tesseract-ocr

0

10k

20k

30k

40k

50k

60k

70k

80k

Total Cases

Lucknow

Allahabad

Sitapur

Moradabad

Muzzafarnagar

Figure 2: Variation in number of case documents per
district in the state of U.P. Prominent districts are
marked.

performed other OCR libraries2. The obtained
text documents were further cleaned to remove
noisy documents, e.g. too short (< 32 bytes) or
too long (> 8096 bytes) documents, duplicates,
and English documents (details in Appendix B).
This resulted in a total of 912,568 documents in
HLDC. We anonymized the corpus with respect to
names and locations. We used a gazetteer3 along
with regex-based rules for NER to anonymize the
data. List of first names, last names, middle
names, locations, titles like p\EXt (Pandit: ti-
tle of Priest), srjF (Sir: Sir), month names
and day names were normalized to <nAm> (Naam:
<name>). The gazetteer also had some common
ambiguous words (these words can be names or
sometimes verbs) like prATnA (Prathna: Can re-
fer to prayer, the action of request or name), gyA
(Gaya: can refer to location name or verb), EkyA
(Kiya: can refer to infinitive ‘to do’ or name),
ElyA (Liya: can refer to infinitive ‘to take’ or
name). These were removed. Further, we ran
RNN-based Hindi NER model4 on a subset of doc-
uments to find additional entities and these were
subsequently used to augment our gazetteer (de-
tails Appendix C). Phone numbers were detected
using regex patterns and replaced with a <'on -
n\br> (<phone-number>) tag, numbers written in
both English and Hindi were considered.

Legal documents, particularly in lower courts,
are highly unstructured and lack standardization
with respect to format and sometimes even the
terms used. We converted the unstructured doc-

2https://github.com/JaidedAI/EasyOCR
3https://github.com/piyusharma95/

NER-for-Hindi, https://github.com/
balasahebgulave/Dataset-Indian-Names

4https://github.com/flairNLP/flair

Case Type % in HLDC

Bail Applications 31.71
Criminal Cases 20.41
Original Suits 6.54
Warrant or Summons in Criminal Cases 5.24
Complaint Cases 4.37
Civil Misc 3.4
Final Report 3.32
Civil Cases 3.23
Others (Matrimonial Cases, Session
Trial, Motor Vehicle Act, etc.)

21.75

Table 1: Case types in HLDC. Out of around 300 dif-
ferent case types, we only show the prominent ones.
Majority of the case documents correspond to bail ap-
plications.

0

0.1

0.2

0.3

0.4

0.5

0.6

Ratio

Bagpat

Gautam Budh
Nagar

Kanpur Nagar

Allahabad

Figure 3: Ratio of number of bail applications to total
number of applications in U.P.

uments to semi-structured documents. We seg-
mented each document into a header and a body.
The header contains the meta-information related
to the case, for example, case number, court iden-
tifier, and applicable sections of the law. The body
contains the facts of the case, arguments, judge’s
summary, case decision and other information re-
lated to the final decision. The documents were
segmented using regex and rule based approaches
as described in Appendix D.

Case Type Identification: HLDC documents
were processed to obtain different case types (e.g.,
Bail applications, Criminal Cases). The case type
was identified via the meta-data that comes with
each document. However, different districts use a
variation of the same case type name (e.g., Bail
Application vs Bail App.). We resolved these
standardization issues via manual inspection and
regex-based patterns, resulting in a final list of 300
unique case types.

Lexical Analysis: Although Hindi is the of-
ficial language, U.P. being a large and populous

https://github.com/JaidedAI/EasyOCR
https://github.com/piyusharma95/NER-for-Hindi
https://github.com/piyusharma95/NER-for-Hindi
https://github.com/balasahebgulave/Dataset-Indian-Names
https://github.com/balasahebgulave/Dataset-Indian-Names
https://github.com/flairNLP/flair

Hindi Bail
Documents

 Header
 Body
 Result

Segmented
1.
2.
3.

Bail Denied
 Bail Granted

1.
2.

Document
Segmentaion

Outcome
Identification

Judge's
Opinion
Mining

Bail Documents Bail Documents
with Judge's

Opinion

Bail
Documents

 Header
 Body
 Result

Segmented
1.
2.
3.

Bail Denied
 Bail Granted

1.
2.

Document
Segmentaion

Outcome
Identification

Judge's
Opinion
Mining

Bail Documents Bail Documents
with Judge's

Opinion

Filter Bail
Documents

 Hindi Legal
Documents

Corpus (HLDC)

Bail
Documents Bail Denied

Bail Granted

Outcome
Identification

Judge's
Opinion
Mining

Bail Documents Bail Documents
with Judge's

Opinion

Filter Bail
Documents

 Hindi Legal
Documents

Corpus
(HLDC)

Figure 4: Bail Corpus Creation Pipeline

state, has different dialects of Hindi spoken across
the state. We found evidence of this even in official
legal documents. For example, the word sAEkn
(Sakin: motionless) appears 11,614 times in the
dataset, 63.8% occurrences of the word come from
6 districts of East U.P. (Ballia, Azamgarh, Ma-
harajganj, Deoria, Siddharthnagar and Kushina-
gar). This particular variant of motionless being
used most often only in East U.P. Similarly, the
word gOv\fFy (Gaushiya: cow and related ani-
mals) is mostly used in North-Western UP (Ram-
pur, Pilibhit, Jyotiba Phule Nagar (Amroha), Bi-
jnor, Budaun, Bareilly, Moradabad). Three dis-
tricts - Muzaffarnagar, Kanshiramnagar and Prat-
apgarh district constitute 81.5% occurrences of the
word d\X (Dand: punishment). These districts are,
however, spread across UP. An important thing to
note is that words corresponding to specific dis-
tricts/areas are colloquial and not part of the stan-
dard Hindi lexicon. This makes it difficult for pre-
diction model to generalize across districts (§7).
Corpus of Bail Documents: Bail is the provi-
sional release of a suspect in any criminal offence
on payment of a bail bond and/or additional re-
strictions. Bail cases form a large majority of
cases in the lower courts, as seen in Table 1. Ad-
ditionally, they are very time-sensitive as they re-
quire quick decisions. For HLDC, the ratio of bail
documents to total cases in each district is shown
in Figure 3. As a use-case for the corpus, we fur-
ther investigated the subset of the corpus having
only the bail application documents (henceforth,
we call it Bail Corpus).

Bail Document Segmentation: For the bail
documents, besides the header and body, we fur-
ther segmented the body part into more sub-
sections (Figure 4). Body is further segmented
into Facts and Arguments, Judge’s summary
and Case Result. Facts contain the facts of the
case and the defendant and prosecutor’s argu-
ments. Most of the bail documents have a con-
cluding paragraph where the judge summarizes
their viewpoints of the case, and this constitutes
the judge’s summary sub-section. The case result
sub-section contains the final decision given by the

judge. More details about document segmentation
are in Appendix D.

Bail Decision Extraction: Decision was ex-
tracted from Case Result Section using a rule
based approach (Details in Appendix E).

Bail Amount Extraction: If bail was granted,
it usually has some bail amount associated with it.
We extracted this bail amount using regex patterns
(Details in Appendix F).

We verified each step of the corpus creation
pipeline (Detailed analysis in Appendix G) to en-
sure the quality of the data. We initially started
with 363,003 bail documents across all the 71 dis-
tricts of U.P., and after removing documents hav-
ing segmentation errors, we have a Bail corpus
with 176,849 bail documents. The bail corpus has
a total of 2,342,073 unique tokens, and on average,
each document has 614 tokens. A sample docu-
ment segmented into various sections is shown in
Appendix I.

4 HLDC: Ethical Aspects

We create HLDC to promote research and au-
tomation in the legal domain dealing with under-
researched and low-resource languages like Hindi.
The documents that are part of HLDC are in the
public domain and hence accessible to all. Given
the volume of pending cases in the lower courts,
our efforts are aimed towards improving the legal
system, which in turn would be beneficial for mil-
lions of people. Our work is in line with some of
the previous work on legal NLP, e.g., legal cor-
pora creation and legal judgement prediction (sec-
tion 2). Nevertheless, we are aware that if not
handled correctly, legal AI systems developed on
legal corpora can negatively impact an individual
and society at large. Consequently, we took all
possible steps to remove any personal information
and biases in the corpus. We anonymized the cor-
pus (section 3) with respect to names, gender in-
formation, titles, locations, times, judge’s name,
petitioners and appellant’s name. As observed in
previous work (Malik et al., 2021b), anonymiza-
tion of a judge’s name is important as there is a
correlation between a case outcome and a judge

name. Along with the HLDC, we also introduce
the task of Bail Prediction. Bail applications con-
stitute the bulk of the cases (§3), augmentation by
an AI system can help in this case. The bail predic-
tion task aims not to promote the development of
systems that replace humans but rather the devel-
opment of systems that augment humans. The bail
prediction task provides only the facts of the case
to predict the final decision and avoids any biases
that may affect the final decision. Moreover, the
Bail corpus and corresponding bail prediction sys-
tems can promote the development of explainable
systems (Malik et al., 2021b), we leave research
on such explainable systems for future work. The
legal domain is a relatively new area in NLP re-
search, and more research and investigations are
required in this area, especially concerning biases
and societal impacts; for this to happen, there is a
need for corpora, and in this paper, we make initial
steps towards these goals.

5 Bail Prediction Task

To demonstrate a possible applicability for HLDC,
we propose the Bail Prediction Task, where given
the facts of the case, the goal is to predict
whether the bail would be granted or denied. For-
mally, consider a corpus of bail documents D =
b1, b2, · · · , bi, where each bail document is seg-
mented as bi = (hi, fi, ji, yi). Here, hi, fi, ji and
yi represent the header, facts, judge’s summary
and bail decision of the document respectively.
Additionally, the facts of every document contain
k sentences, more formally, fi = (s1i , s

2
i , · · · , ski),

where ski represents the kth sentence of the ith bail
document. We formulate the bail prediction task
as a binary classification problem. We are inter-
ested in modelling pθ(yi|fi), which is the proba-
bility of the outcome yi given the facts of a case
fi. Here, yi ∈ {0, 1}, i.e., 0 if bail is denied or 1 if
bail is granted.

6 Bail Prediction Models

We initially experimented with off-the-shelf pre-
trained models trained on general-purpose texts.
However, as outlined earlier (§1), the legal do-
main comes with its own challenges, viz. spe-
cialized legal lexicon, long documents, unstruc-
tured and noisy texts. Moreover, our corpus is
from an under-resourced language (Hindi). Never-
theless, we experimented with existing fine-tuned
(pre-trained) models and finally propose a multi-

task model for the bail prediction task.

6.1 Embedding Based Models

We experimented with classical embedding
based model Doc2Vec (Le and Mikolov, 2014)
and transformer-based contextualized embed-
dings model IndicBERT (Kakwani et al., 2020).
Doc2Vec embeddings, in our case, is trained
on the train set of our corpus. The embeddings
go as input to SVM and XgBoost classifiers.
IndicBERT is a transformer language model
trained on 12 major Indian languages. However,
IndicBERT, akin to other transformer LMs, has
a limitation on the input’s length (number of to-
kens). Inspired by Malik et al. (2021b); Chalkidis
et al. (2019), we experimented with fine-tuning
IndicBERT in two settings: the first 512 tokens
and the last 512 tokens of the document. The
fine-tuned transformer with a classification head
is used for bail prediction.

6.2 Summarization Based Models

Given the long lengths of the documents, we ex-
perimented with prediction models that use sum-
marization as an intermediate step. In particular,
an extractive summary of a document goes as in-
put to a fine-tuned transformer-based classifier (In-
dicBERT). Besides reducing the length of the doc-
ument, extractive summarization helps to evaluate
the salient sentences in a legal document and is a
step towards developing explainable models. We
experimented with both unsupervised and super-
vised extractive summarization models.

For unsupervised approaches we experimented
with TF-IDF (Ramos, 2003) and TextRank (a
graph based method for extracting most important
sentences) (Mihalcea and Tarau, 2004). For the su-
pervised approach, inspired by Bajaj et al. (2021),
we propose the use of sentence salience classi-
fier to extract important sentences from the doc-
ument. Each document (bi = (hi, fi, ji, yi), §5)
comes with a judge’s summary ji. For each sen-
tence in the facts of the document (fi) we calculate
it’s cosine similarity with judge’s summary (ji).
Formally, salience of kth sentence ski is given by:
salience(ski) = cos(hji , hski

). Here hji is contex-
tualized distributed representation for ji obtained
using multilingual sentence encoder (Reimers and
Gurevych, 2020). Similarly, hski is the represen-
tation for the sentence ski . The cosine similarities
provides ranked list of sentences and we select top

Shared Layers Task Specific Layers

Ltotal = Lbail + Lsaliency

Lbail

Lsaliency

Contextual Sentence
Embeddings

Frozen Parameters

Trainable Parameters

Sentence Encoder
(Multilingual

Sentence BERT)

Bail Predictor

Salience Classifier

Classification Token

Bail Documents

Transformer
Encoder

Layer

Figure 5: Overview of our multi-task learning approach.

50% sentences as salient. The salient sentences
are used to train (and fine-tune) IndicBERT based
classifier.

6.3 Multi-Task Learning (MTL) Model
As observed during experiments, summarization
based models show improvement in results (§7).
Inspired by this, we propose a multi-task frame-
work (Figure 5), where bail prediction is the main
task, and sentence salience classification is the
auxiliary task. The intuition is that predicting the
important sentences via the auxiliary task would
force the model to perform better predictions and
vice-versa. Input to the model are sentences cor-
responding to the facts of a case: s1i , s

2
i , . . . , s

k
i .

A multilingual sentence encoder (Reimers and
Gurevych, 2020) is used to get contextualized rep-
resentation of each sentence: {h1i , h2i , · · · , hki }. In
addition, we append the sentence representations
with a special randomly initialized CLS embed-
ding (Devlin et al., 2019) that gets updated dur-
ing model training. The CLS and sentence embed-
dings are fed into standard single layer transformer
architecture (shared transformer).

6.3.1 Bail Prediction Task
A classification head (fully connected layer MLP)
on the top of transformer CLS embedding is used
to perform bail prediction. We use standard cross-
entropy loss (Lbail) for training.

6.3.2 Salience Classification Task
We use the salience prediction head (MLP) on top
of sentence representations at the output of the
shared transformer. For training the auxiliary task,
we use sentence salience scores obtained via co-
sine similarity (these come from supervised sum-
marization based model). For each sentence, we

Granted Dismissed Total

All
Districts

Train 77010 (62%) 46732 (38%) 123742
Test 21977 (62%) 13423 (38%) 35400
Validation 11067 (63%) 6640 (37%) 17707

District
Wise

Train
(44 districts) 77220 (62%) 47121 (38%) 124341

Validation
(10 districts) 9563 (60%) 6366 (40%) 15929

Test
(17 districts) 23271 (64%) 13308 (36%) 36579

Table 2: Number of documents across each split

use binary-cross entropy loss (Lsalience) to predict
the salience.

Based on our empirical investigations, both the
losses are equally weighted, and total loss is given
by L = Lbail + Lsalience

7 Experiments and Results

7.1 Dataset Splits

We evaluate the models in two settings: all-district
performance and district-wise performance. For
the first setting, the model is trained and tested on
the documents coming from all districts. The train,
validation and test split is 70:10:20. The district-
wise setting is to test the generalization capabili-
ties of the model. In this setting, the documents
from 44 districts (randomly chosen) are used for
training. Testing is done on a different set of 17
districts not present in train set. The validation set
has another set of 10 districts. This split corre-
sponds to a 70:10:20 ratio. Table 2 provides the
number of documents across splits. The corpus
is unbalanced for the prediction class with about
60:40 ratio for positive to negative class (Table 2).
All models are evaluated using standard accuracy
and F1-score metric (Appendix H.1).
Implementation Details: All models are trained
using GeForce RTX 2080Ti GPUs. Models are

Model Name District-wise All Districts
Acc. F1 Acc. F1

Doc2Vec + SVM 0.72 0.69 0.79 0.77
Doc2Vec + XGBoost 0.68 0.59 0.67 0.57
IndicBert-First 512 0.65 0.62 0.73 0.71
IndicBert-Last 512 0.62 0.60 0.78 0.76
TF-IDF+IndicBert 0.76 0.74 0.82 0.81
TextRank+IndicBert 0.76 0.74 0.82 0.81
Salience Pred.+IndicBert 0.76 0.74 0.80 0.78
Multi-Task 0.78 0.77 0.80 0.78

Table 3: Model results. For TF-IDF and TextRank
models we take the sum of the token embeddings.

tuned for hyper-parameters using the validation set
(details in Appendix H.2).

7.2 Results

The results are shown in Table 3. As can be
observed, in general, the performance of mod-
els is lower in the case of district-wise settings.
This is possibly due to the lexical variation (sec-
tion 3) across districts, which makes it difficult
for the model to generalize. Moreover, this lex-
ical variation corresponds to the usage of words
corresponding to dialects of Hindi. Another
thing to note from the results is that, in gen-
eral, summarization based models perform bet-
ter than Doc2Vec and transformer-based models,
highlighting the importance of the summariza-
tion step in the bail prediction task. The pro-
posed end-to-end multi-task model outperforms
all the baselines in the district-wise setting with
78.53% accuracy. The auxiliary task of sentence
salience classification helps learn robust features
during training and adds a regularization effect on
the main task of bail prediction, leading to im-
proved performance than the two-step baselines.
However, in the case of an all-district split, the
MTL model fails to beat simpler baselines like
TF-IDF+IndicBERT. We hypothesize that this is
due to the fact that the sentence salience training
data may not be entirely correct since it is based
on the cosine similarity heuristic, which may in-
duce some noise for the auxiliary task. Addition-
ally, there is lexical diversity present across docu-
ments from different districts. Since documents of
all districts are combined in this setting, this may
introduce diverse sentences, which are harder to
encode for the salience classifier, while TF-IDF
is able to look at the distribution of words across
all documents and districts to extract salient sen-
tences.

7.3 Error Analysis

We did further analysis of the model outputs to
understand failure points and figure out improve-
ments to the bail prediction system. After exam-
ining the miss-classified examples, we observed
the following. First, the lack of standardization
can manifest in unique ways. In one of the doc-
uments, we observed that all the facts and ar-
guments seemed to point to the decision of bail
granted. Our model also gauged this correctly and
predicted bail granted. However, the actual re-
sult of the document showed that even though ini-
tially bail was granted because the accused failed
to show up on multiple occasions, the judge over-
turned the decision and the final verdict was bail
denied. In some instances, we also observed that
even if the facts of the cases are similar the judge-
ments can differ. We observed two cases about
the illegal possession of drugs that differed only
a bit in the quantity seized but had different deci-
sions. The model is trained only on the documents
and has no access to legal knowledge, hence is not
able to capture such legal nuances. We also per-
formed quantitative analysis on the model output
to better understand the performance. Our model
outputs a probabilistic score in the range {0, 1}.
A score closer to 0 indicates our model is con-
fident that bail would be denied, while a score
closer to 1 means bail granted. In Figure 6 we plot
the ROC curve to showcase the capability of the
model at different classification thresholds. ROC
plots True Positive and False Positive rates at dif-
ferent thresholds. The area under the ROC curve
(AUC) is a measure of aggregated classification
performance. Our proposed model has an AUC
score of 0.85, indicating a high-classification ac-
curacy for a challenging problem.

We also plot (Figure 7) the density func-
tions corresponding to True Positive (Bail cor-
rectly granted), True Negative (Bail correctly dis-
missed), False Positive (Bail incorrectly granted)
and False Negatives (Bail incorrectly dismissed).
We observe the correct bail granted predictions are
shifted towards 1, and the correct bail denied pre-
dictions are shifted towards 0. Additionally, the
incorrect samples are concentrated near the mid-
dle (≈ 0.5), which shows that our model was able
to identify these as borderline cases.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
u
e
P
o
s
it
iv
e
R
a
te

ROC Curve

Proposed Model (AUC = 0.85)

Figure 6: ROC curve for the proposed model. The total
AUC (Area under curve) is 0.85.

0.0 0.2 0.4 0.6 0.8 1.0
Model Output

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

correct_granted
incorrect_granted
correct_dismissed
incorrect_dismissed

Figure 7: Kernel Density Estimate (KDE) plots of our
proposed bail prediction model. The majority of errors
(incorrectly dismissed / granted) are borderline cases
with model output score around 0.5.

8 Future Work and Conclusion

In this paper, we introduced a large corpus of le-
gal documents for the under-resourced language
Hindi: Hindi Legal Documents Corpus (HLDC).
We semi-structure the documents to make them
amenable for further use in downstream applica-
tions. As a use-case for HLDC, we introduce the
task of Bail Prediction. We experimented with
several models and proposed a multi-task learn-
ing based model that predicts salient sentences as
an auxiliary task and bail prediction as the main

task. Results show scope for improvement that
we plan to explore in future. We also plan to ex-
pand HLDC by covering other Indian Hindi speak-
ing states. Furthermore, as a future direction, we
plan to collect legal documents in other Indian lan-
guages. India has 22 official languages, but for the
majority of languages, there are no legal corpora.
Another interesting future direction that we would
like to explore is the development of deep mod-
els infused with legal knowledge so that model is
able to capture legal nuances. We plan to use the
HLDC corpus for other legal tasks such as sum-
marization and prior case retrieval.

9 Acknowledgements

This paper is dedicated to T.H. Arjun, who con-
tributed towards making this research possible,
you will be remembered! We would like to thank
Prof. Angshuman Hazarika and Prof. Shouvik
Kumar Guha for their valuable suggestions and for
guiding us regarding the technical aspects of the
Indian legal system. The author Ashutosh Modi
would like to acknowledge the support of Google
Research India via the Faculty Research Award
Grant 2021. This project was partially supported
by iHub at IIIT Hyderabad, project O2-001.

References
Ahsaas Bajaj, Pavitra Dangati, Kalpesh Krishna, Prad-

hiksha Ashok Kumar, Rheeya Uppaal, Bradford
Windsor, Eliot Brenner, Dominic Dotterrer, Rajarshi
Das, and Andrew McCallum. 2021. Long docu-
ment summarization in a low resource setting using
pretrained language models. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing: Stu-
dent Research Workshop, pages 71–80, Online. As-
sociation for Computational Linguistics.

Paheli Bhattacharya, Kaustubh Hiware, Subham Raj-
garia, Nilay Pochhi, Kripabandhu Ghosh, and Sap-
tarshi Ghosh. 2019. A Comparative Study of Sum-
marization Algorithms Applied to Legal Case Judg-
ments. In Leif Azzopardi, Benno Stein, Nor-
bert Fuhr, Philipp Mayr, Claudia Hauff, and Djo-
erd Hiemstra, editors, Advances in Information Re-
trieval, volume 11437, pages 413–428. Springer In-
ternational Publishing, Cham.

Ilias Chalkidis, Ion Androutsopoulos, and Nikolaos
Aletras. 2019. Neural legal judgment prediction in
English. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 4317–4323, Florence, Italy. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/2021.acl-srw.7
https://doi.org/10.18653/v1/2021.acl-srw.7
https://doi.org/10.18653/v1/2021.acl-srw.7
https://doi.org/10.1007/978-3-030-15712-8_27
https://doi.org/10.1007/978-3-030-15712-8_27
https://doi.org/10.1007/978-3-030-15712-8_27
https://doi.org/10.18653/v1/P19-1424
https://doi.org/10.18653/v1/P19-1424

Ilias Chalkidis, Manos Fergadiotis, and Ion Androut-
sopoulos. 2021. MultiEURLEX - a multi-lingual
and multi-label legal document classification dataset
for zero-shot cross-lingual transfer. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 6974–6996,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Xingyi Duan, Baoxin Wang, Ziyue Wang, Wentao
Ma, Yiming Cui, Dayong Wu, Shijin Wang, Ting
Liu, Tianxiang Huo, Zhen Hu, Heng Wang, and
Zhiyuan Liu. 2019. CJRC: A Reliable Human-
Annotated Benchmark DataSet for Chinese Judicial
Reading Comprehension. In Maosong Sun, Xuan-
jing Huang, Heng Ji, Zhiyuan Liu, and Yang Liu,
editors, Chinese Computational Linguistics, volume
11856, pages 439–451. Springer International Pub-
lishing, Cham.

Filippo Galgani, Paul Compton, and Achim Hoffmann.
2012. Towards automatic generation of catch-
phrases for legal case reports. In Proceedings of
the 13th International Conference on Computational
Linguistics and Intelligent Text Processing - Volume
Part II, CICLing’12, page 414–425, Berlin, Heidel-
berg. Springer-Verlag.

Peter Jackson, Khalid Al-Kofahi, Alex Tyrrell, and
Arun Vachher. 2003. Information extraction from
case law and retrieval of prior cases. Artificial Intel-
ligence, 150(1):239–290. AI and Law.

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, Gokul N.C., Avik Bhattacharyya, Mitesh M.
Khapra, and Pratyush Kumar. 2020. IndicNLPSuite:
Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for Indian
languages. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4948–
4961, Online. Association for Computational Lin-
guistics.

Prathamesh Kalamkar, Aman Tiwari, Astha Agarwal,
Saurabh Karn, Smita Gupta, Vivek Raghavan, and
Ashutosh Modi. 2022. Corpus for automatic struc-
turing of legal documents. CoRR, abs/2201.13125.

Yoshinobu Kano, Mi-Young Kim, Randy Goebel, and
Ken Satoh. 2017. Overview of coliee 2017. In COL-
IEE@ICAIL.

Yoshinobu Kano, Mi-Young Kim, Masaharu Yosh-
ioka, Yao Lu, Juliano Rabelo, Naoki Kiyota, Randy

Goebel, and Ken Satoh. 2019. COLIEE-2018: Eval-
uation of the Competition on Legal Information Ex-
traction and Entailment. In Kazuhiro Kojima, Maki
Sakamoto, Koji Mineshima, and Ken Satoh, edi-
tors, New Frontiers in Artificial Intelligence, volume
11717, pages 177–192. Springer International Pub-
lishing, Cham.

Justice Markandey Katju. 2019. Backlog of cases
crippling judiciary. https://tinyurl.com/
v4xu6mvk.

Mi-Young Kim and Randy Goebel. 2017. Two-step
cascaded textual entailment for legal bar exam ques-
tion answering. In Proceedings of the 16th edition of
the International Conference on Articial Intelligence
and Law, pages 283–290, London United Kingdom.
ACM.

Jon Kleinberg, Himabindu Lakkaraju, Jure Leskovec,
Jens Ludwig, and Sendhil Mullainathan. 2017. Hu-
man Decisions and Machine Predictions*. The
Quarterly Journal of Economics.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Inter-
national Conference on Machine Learning - Volume
32, ICML’14, page II–1188–II–1196. JMLR.org.

Pedro H. Luz de Araujo, Teófilo E. de Campos, Renato
R. R. de Oliveira, Matheus Stauffer, Samuel Couto,
and Paulo Bermejo. 2018. LeNER-Br: a dataset for
named entity recognition in Brazilian legal text. In
International Conference on the Computational Pro-
cessing of Portuguese (PROPOR), Lecture Notes on
Computer Science (LNCS), pages 313–323, Canela,
RS, Brazil. Springer.

Vijit Malik, Rishabh Sanjay, Shouvik Kumar Guha,
Shubham Kumar Nigam, Angshuman Hazarika,
Arnab Bhattacharya, and Ashutosh Modi. 2021a.
Semantic segmentation of legal documents via
rhetorical roles. CoRR, abs/2112.01836.

Vijit Malik, Rishabh Sanjay, Shubham Kumar Nigam,
Kripabandhu Ghosh, Shouvik Kumar Guha, Arnab
Bhattacharya, and Ashutosh Modi. 2021b. ILDC
for CJPE: Indian legal documents corpus for court
judgment prediction and explanation. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 4046–4062,
Online. Association for Computational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

National Judicial Data Grid. 2021. National judi-
cial data grid statistics. https://www.njdg.
ecourts.gov.in/njdgnew/index.php.

https://aclanthology.org/2021.emnlp-main.559
https://aclanthology.org/2021.emnlp-main.559
https://aclanthology.org/2021.emnlp-main.559
https://doi.org/10.1007/978-3-030-32381-3_36
https://doi.org/10.1007/978-3-030-32381-3_36
https://doi.org/10.1007/978-3-030-32381-3_36
https://doi.org/10.1007/978-3-642-28601-8_35
https://doi.org/10.1007/978-3-642-28601-8_35
https://doi.org/https://doi.org/10.1016/S0004-3702(03)00106-1
https://doi.org/https://doi.org/10.1016/S0004-3702(03)00106-1
https://doi.org/10.18653/v1/2020.findings-emnlp.445
https://doi.org/10.18653/v1/2020.findings-emnlp.445
https://doi.org/10.18653/v1/2020.findings-emnlp.445
https://doi.org/10.18653/v1/2020.findings-emnlp.445
http://arxiv.org/abs/2201.13125
http://arxiv.org/abs/2201.13125
https://doi.org/10.1007/978-3-030-31605-1_14
https://doi.org/10.1007/978-3-030-31605-1_14
https://doi.org/10.1007/978-3-030-31605-1_14
https://tinyurl.com/v4xu6mvk
https://tinyurl.com/v4xu6mvk
https://doi.org/10.1145/3086512.3086550
https://doi.org/10.1145/3086512.3086550
https://doi.org/10.1145/3086512.3086550
https://doi.org/10.1093/qje/qjx032
https://doi.org/10.1093/qje/qjx032
https://doi.org/10.1007/978-3-319-99722-3_32
https://doi.org/10.1007/978-3-319-99722-3_32
http://arxiv.org/abs/2112.01836
http://arxiv.org/abs/2112.01836
https://doi.org/10.18653/v1/2021.acl-long.313
https://doi.org/10.18653/v1/2021.acl-long.313
https://doi.org/10.18653/v1/2021.acl-long.313
https://www.njdg.ecourts.gov.in/njdgnew/index.php
https://www.njdg.ecourts.gov.in/njdgnew/index.php

PopulationU. 2021. Population of uttar pradesh.
https://www.populationu.com/in/
uttar-pradesh-population.

Juan Enrique Ramos. 2003. Using tf-idf to determine
word relevance in document queries.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4512–4525,
Online. Association for Computational Linguistics.

Yunqiu Shao, Jiaxin Mao, Yiqun Liu, Weizhi Ma, Ken
Satoh, Min Zhang, and Shaoping Ma. 2020. BERT-
PLI: Modeling Paragraph-Level Interactions for Le-
gal Case Retrieval. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, pages 3501–3507, Yokohama, Japan.
International Joint Conferences on Artificial Intelli-
gence Organization.

Benjamin Strickson and Beatriz De La Iglesia. 2020.
Legal Judgement Prediction for UK Courts. In Pro-
ceedings of the 2020 The 3rd International Confer-
ence on Information Science and System, pages 204–
209, Cambridge United Kingdom. ACM.

Vu Tran, Minh Le Nguyen, and Ken Satoh. 2019.
Building legal case retrieval systems with lexical
matching and summarization using a pre-trained
phrase scoring model. In Proceedings of the Seven-
teenth International Conference on Artificial Intel-
ligence and Law, ICAIL ’19, page 275–282, New
York, NY, USA. Association for Computing Ma-
chinery.

Wikipedia contributors. 2021. Devanagari —
Wikipedia, the free encyclopedia. [Online; accessed
10-November-2021].

WorldData. 2021. World data info: Hindi.
https://www.worlddata.info/
languages/hindi.php.

Chaojun Xiao, Haoxi Zhong, Zhipeng Guo, Cunchao
Tu, Zhiyuan Liu, Maosong Sun, Yansong Feng,
Xianpei Han, Zhen Hu, Heng Wang, et al. 2018.
Cail2018: A large-scale legal dataset for judgment
prediction. arXiv preprint arXiv:1807.02478.

Chaojun Xiao, Haoxi Zhong, Zhipeng Guo, Cunchao
Tu, Zhiyuan Liu, Maosong Sun, Tianyang Zhang,
Xianpei Han, Zhen Hu, Heng Wang, and Jianfeng
Xu. 2019. Cail2019-scm: A dataset of similar case
matching in legal domain. ArXiv, abs/1911.08962.

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang
Zhang, Zhiyuan Liu, and Maosong Sun. 2020a.
How does NLP benefit legal system: A summary
of legal artificial intelligence. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5218–5230, Online. As-
sociation for Computational Linguistics.

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang
Zhang, Zhiyuan Liu, and Maosong Sun. 2020b. Jec-
qa: A legal-domain question answering dataset. In
Proceedings of AAAI.

https://www.populationu.com/in/uttar-pradesh-population
https://www.populationu.com/in/uttar-pradesh-population
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.24963/ijcai.2020/484
https://doi.org/10.24963/ijcai.2020/484
https://doi.org/10.24963/ijcai.2020/484
https://doi.org/10.1145/3388176.3388183
https://doi.org/10.1145/3322640.3326740
https://doi.org/10.1145/3322640.3326740
https://doi.org/10.1145/3322640.3326740
https://en.wikipedia.org/w/index.php?title=Devanagari&oldid=1053977349
https://en.wikipedia.org/w/index.php?title=Devanagari&oldid=1053977349
https://www.worlddata.info/languages/hindi.php
https://www.worlddata.info/languages/hindi.php
https://doi.org/10.18653/v1/2020.acl-main.466
https://doi.org/10.18653/v1/2020.acl-main.466

Appendix

A Data Statistics

District Number of Bail Applications
Muzaffarnagar 17234

Moradabad 16219
Budaun 14533
Sitapur 14478

Saharanpur 10838

Table 4: Top 5 districts with most number of bail appli-
cations in UP.

B Data Cleaning and Filtering

1,221,950 documents were scraped from Ecourts
website and 309,382 documents were removed in
the cleaning and filtering process. Following rules
were used to remove documents.

• Removed blank documents (whose length is
less than 32 bytes)

• Removed duplicate documents

• Removed too long and too short documents
(>8096 bytes or <2048 bytes).

• Removed document where majority text was
in English language.

This resulted in 912,568 filtered case documents
that constitute the Hindi Legal Document Corpus.

C NER Removal

For removing names and locations, lookup was
done in lists containing NER. Libraries like
HindiNLP5 (which uses SequenceTagger from
flair library6 which is based on an RNN model)
were run on a subset of the data to find addi-
tional NER that were added to the lists. Since the
Sequence-Tagger model is quite slow in process-
ing documents, directly tagging large HLDC is not
efficient. If a word was found in one of these lists
then it was replaced with a <nAm> (<name>) tag.
Phone numbers were replaced with <'on -n\br>
(<phone-number>) tag using the following regex

((\ + *) ((0 [−] *) * | ((9 1) *)) ((\ d {12})
+ | (\ d { 1 0 }) +)) | \ d {5}([−] *) \ d {6}

Phone numbers written in Hindi were also consid-
ered by using the same regex as above with En-
glish digits replaced with Hindi ones.

5https://github.com/avinsit123/
HindiNLP

6https://github.com/flairNLP/flair

D Document Segmentation

Out of 912,568 documents in HLDC, 340,280
were bail documents, these were further processed
to obtain the Bail Document corpus. Bail docu-
ments were structured into different sections. We
extracted these sections from the bail documents.
Details are mentioned below. An example of doc-
ument with different sections is shown in Table 10.

D.1 Header

Header refers to the meta data related to the case,
for example, DArA (IPC (Indian Penal Code) sec-
tions), TAnA (police station), case number, date of
hearing, accused name, etc. Header is present at
the top of the document. Header mostly ended
with DArA (IPC) or TAnA (police station) details.
Hence, in order to cut the document to get header,
we first find the indices of DArA (IPC) and TAnA
(police station), and from these indices we find the
finishing word of the header. We then segment the
document at the finishing word. We also include
the first line of upcoming paragraph in header as it
also didn’t contain case arguments but contained
data like if this is the first bail application or not.

D.2 Case Result

Case Result refers to the end of the document
where judge writes their decision. Judge either ac-
cepts the bail application or rejects it. If the judge
had accepted the bail document then this section
mostly also contains bail amount and bail terms
for accused.
We observed that result section mostly began
along the following line, mAml� k� sm-t tLyo\
ko d�Kkr (looking at all facts of the case), the
keyword tLyo\ (facts) was very common around
the start of the result section. Hence, we iterated
over the indices of keyword tLyo\ (facts) in reverse
order and checked if the division at that index is
correct. To check if the division is correct we look
for bail result in lower half of the division, if the
bail result is present, we classify that division as
correct else we move to next index of tLyo\ (facts).

D.3 Body

The remaining portion of the document after re-
moving header and result section was called body.
Body section was further divided, as described be-
low.

https://github.com/avinsit123/HindiNLP
https://github.com/avinsit123/HindiNLP
https://github.com/flairNLP/flair

D.3.1 Judge’s summary
Most of the bail documents have a concluding
paragraph where the judge summarizes their view-
points of the case. To extract this, we first
constructed certain regex which often precedes
judge’s summary, defendant’s and prosecutor’s ar-
guments (described in Table 5). Since the docu-
ment might have intermingling of different argu-
ments and opinions, we opted for sentence level
annotation of these labels using the regex pattern.
The sentences not matching any criteria are given
a tag of None. Next we try to replace the None
by extending the tags of the sentences to para-
graph level as long as no other tag is encountered.
As the judge’s opinion mostly occurs at the end,
we start iterating from end and start marking the
None as judge’s opinion. If a label which is neither
None nor judge’s opinion is encountered, the doc-
ument is discarded as we cannot extract the judge’s
opinion from the document using the process de-
fined. If the judge’s opinion label is found in re-
verse iteration, then we claim that judge’s opinion
can be extracted. Finally, all sentences labelled as
judge’s opinion either during reverse iteration or
during paragraph level extension are extracted out
as judge’s summary and rest of the sentences form
facts and opinions for further modelling. Using the
above process, following are some cases where the
judge’s opinion cannot be extracted:

1. Certain characters were mis-identified in the
OCR pipeline and hence do not match the
regex.

2. The segmentation of document into header,
body and result caused a significant portion
of the body and thus judge’s opinion to move
to result section.

3. The document was written from judge’s per-
spective and hence judge’s summary also
contains the prosecutor’s and defendant’s ar-
guments.

4. The regex didn’t have 100% coverage.

D.3.2 Facts and Arguments
This section comprised of facts related to case, ar-
guments from defendant and prosecutor. Mostly,
this corresponds to the portion of the body after
removing judge’s summary.

E Extracting Bail Decision from Result

To extract the bail decision we searched for key-
words in result section. Keywords like KAErj

Field Hindi phrases English Transla-
tions

Judge’s
Summary

uBy p" kF bhs
s� nn� , p/AvlF k�
avlokn , k�s
XAyrF m�\ uplND
sA#y k� an� sAr ,
mAml� k� tLyo\
v pErE-TEtyo\ m�\
p� rF trh s� -p
h{ , prTm s� cnA
ErpoV , p� Els
prp/ . . .prFEfln
EkyA

Hearing the ar-
guments of the
parties, perusal
of the records, as
per the evidence
available in the
case diary, fully
clear from the
facts and circum-
stances of the
case, First Infor-
mation Report,
Police Forms
. . . perused

Prosecutor jmAnt kA EvroD
krt� h� y� aEBy-

ojn kF aor s�
tk EdyA gyA h{ ,
jmAnt prATnAp/
k� Ev!d aApEtt

Opposing the bail,
it has been argued
on behalf of the
prosecution, the
objection against
the bail applica-
tion

Defendant aEBy� kt k� EvdvAn
aEDvktA kA tk
h{ , m�\ J� WA ev\
r\Ejfn P\sAyA
gyA

The learned coun-
sel for the accused
has argued, has
been falsely and
enmity implicated
in this case

Table 5: Phrases used to construct regular expression
for extracting judge’s opinion. The list is just an in-
dicative of the various phrases and variants used; the
entire list can be found in code

(dismissed) and Enr-t (invalidated) identified re-
jection of bail application and words like -vFkAr
(accepted) identified acceptance of bail applica-
tion. Table 6 lists all the tokens used for extrac-
tion.

F Extracting Bail Amount from Result

In case of granted bail decision, the judge spec-
ifies bail amount. We saw that the bail amount
mostly comprises of personal bond money and
surety money. There can be multiple personal
bonds and sureties. The bail amount we extracted
refers to the sum of all the personal bond money.
Bail amount was present in two forms in result
section, numerical and Hindi-text. Numerical bail
amount was extracted by regex matching and text
bail amount was extracted by creating a mapping
for it. Table 8 shows few examples of bail map-
ping.

G HLDC Pipeline Analysis

We used a validation set (0.1% of data) to evalu-
ate our regex based approaches, the results are in
Table 7. Note that metrics used for evaluation are

Field Tokens

Bail granted
tokens

Bail denied
tokens

Table 6: Bail decision tokens

quite strict and hence the results are much lower
for Judge’s summary part. The segmentation and
Judge’s opinion were strictly evaluated and even a
single sentence in the wrong segment reduces the
accuracy. We also see that the main binary label of
outcome detection (bail granted or denied) had an
almost perfect accuracy of 99.4%. Nevertheless,
in future we plan to improve our pipeline further
by training machine learning models.

Process Accuracy
Header, Body and Case Result
Segmentation 89.7%

Judge’s Opinion and Facts ex-
traction 85.7%

Bail Decision Extraction 99.4%

Table 7: Evaluation results of bail document division
and bail decision extraction pipeline.

Text Amount In Value Form

Table 8: Text bail amount mapping example

H Model Details

H.1 Evaluation Metrics

To evaluate the performance of all the models, we
use Accuracy, and F1-score, which are considered

Model Hyper-Parameters (L=Learning Rate),
(E=Epochs), (D=Embedding Dimen-
sion(Default 200)), (W= Weight Decay),
(E=Epochs(Default 15))
District-wise Split All Districts Split

Doc2Vec +
SVM

E=100 E=100

Doc2Vec +
XGBoost

E=100, D=300 E=100, D=300

IndicBert -
(First 512
Tokens)

L=3.69 × 10−6,
W=2.6× 10−2

L=1.58 × 10−6,
W=4.8× 10−2

IndicBert -
(Last 512
Tokens)

L=5.60 × 10−5,
W=1.0× 10−2

L=2.18 × 10−5,
W=4.3× 10−2

TF-IDF +
IndicBert

L=1.11 × 10−5,
W=1.9× 10−2

L=9.84 × 10−6,
W=4.9× 10−2

TextRank +
IndicBert

L=3.17 × 10−6,
W=3.1× 10−2

L=3.99 × 10−6,
W=1.5× 10−2

Salience
Pred. +
IndicBert

L=1 × 10−5,
W=3.2× 10−2

L=4.2 × 10−6,
W=1.7× 10−2

Multi-Task E=30, L=5×10−5 E=30, L=1×10−5

Table 9: Listing of Hyper-Parameters for Training of
Models

standard evaluation metrics while performing clas-
sification experiments. These are mathematically
described as the follows:

Accuracy =
TP + TN

TP + TN + FP + FN

F1 Score =
2 ∗ Precision ∗Recall

Precision+Recall

where TP, FP, TN, and FN denote True Posi-
tives, False Positives, True Negatives, and False
Negatives, respectively. The mathematical formu-
lation for Precision and Recall is given as fol-
lows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

H.2 Hyperparamter Tuning
We used Optuna 7 for hyperparameter optimisa-
tion. Optuna allows us to easily define search
spaces, select optimisation algorithms and scale
with easy parallelization. We run parameter tuning
on 10% of the data to identify the best parameters
before retraining the model with the best parame-
ters on the entire dataset. The best parameters are
listed in Table 9.

7https://github.com/optuna/optuna

https://github.com/optuna/optuna

I Sample Segmented Document

Field Example Translation

Header: This
chunk of the doc-
ument contains
meta information
related to the case
like court hearing
date, IPC sections
attached, police
station of com-
plain, etc.

Facts and Argu-
ments: This chunk
of the document
contains case facts
related to the case
and arguments
from defendant and
prosecutor.

Continued on next page

Table 10 – continued from previous page
Field Example Translation

Judge’s Opinion:
This refers to the
few lines present
in the middle por-
tion of the docu-
ment where judge
writes their opinion
of the case.

Result: This chunk
of the document
contains decision
made by judge on
the case.

Table 10: A sample segmented document

