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Preface by the General Chair

Welcome to AACL-IJCNLP 2022, the 2nd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 12th International Joint Conference on Natural Language Processing!
The conference will be held online on November 20-23, 2022.

AACL-IJCNLP 2022 was originally scheduled to take place in Taipei, Taiwan. We had a discussion with
AACL executive board early this year whether to hold the conference entirely in the virtual mode due to
the strict COVID quarantine rule imposed by the Taiwan government. We later decided to wait until the
mid of June to re-evaluate the situation. In early June, the Central Epidemic Command Center in Taiwan
announced that starting from 15 June 2022, the mandatory quarantine period for international arrivals
in Taiwan would be reduced from 7 to 3 days. After a discussion with both the Program Chairs and
the Local Organization Chair, we decided to wait further until August to see if we could have a hybrid
conference in the hope that Taiwan will open its border fully in November. But we eventually made
a difficult decision to hold the conference entirely online at mid of August as the quarantine rule and
the travel ban imposed on foreign nationals were still in place in Taiwan. This was rather disappointed.
Nevertheless, our Program Chairs have put together a very interesting conference program. I hope to see
many of you joining our conference online.

AACL-IJCNLP 2022 adopted a dual paper submission system that authors can choose to submit their
papers to the "ACL Rolling Review (ARR)" or submit to the softconf submission site in a conventional
way. For the latter, authors had a chance to respond to reviewers’ comments. One innovation our Program
Chairs introduced is to allow authors to run additional experiments and upload revised papers during the
rebuttal period to address reviewers’ comments. This required additional efforts from our reviewers, area
chairs and senior area chairs to check the revised submissions. But it gave authors better opportunities
to address reviewers’ criticism. Another innovation is to introduce poster lightning talks in the main
conference. We hope these efforts will be followed in future conferences.

AACL-IJCNLP 2022 would not be possible without the contribution from a large number of volunteers
who are willing to spend tremendous time and effort. These include the members of our organisation
committee and various people from the ACL community. In particular, I would like to thank:

* the three Program Co-Chairs, Heng Ji, Sujian Li, and Yang Liu, who managed the whole
conference paper submission and review process, and assembled the conference program with
new initiatives such as a debate on “Is there more to NLP than Deep Learning?” and the “7 NLP
Dissertation Topics for Next 7 Years”;

* the Local Organisation Chair, Chia-Hui Chang, who was in charge of venue booking when we
initially planned for a hybrid conference and coordinated the setup of a registration site. She
was supported by a great local organisation team, including the Financial Chair, Lun-Wei Ku, the
Local Arrangement Chair, Kuan-Yu (Menphis) Chen, the Online Conference Coordinator, Richard
Tzong-Han Tsai, and the Registration Chair, Hsiu-Min Chuang;

* the Publication Co-Chairs, Min-Yuh Day, Hen-Hsen Huang, and Jheng-Long Wau,
who prepared the instruction for proceedings compilation and coordinated with our
workshop/tutorial/demo/student research workshop chairs to assemble all papers into our
conference proceedings;

* the Workshop Co-chairs, Soujanya Poria and Chenghua Lin, who selected 5 workshops for the
conference and ensured all the workshops could successfully run virtually;

* the Tutorial Co-Chairs, Miguel A. Alonso and Zhongyu Wei, who selected 6 tutorials to be
presented at the conference and prepared the tutorial abstract proceedings;
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* the Demonstration Co-Chairs, Wray Buntine and Maria Liakata, who manged the demo paper
submission and review process;

* the Special Theme Co-Chairs, Monab Diab and Isabelle Augenstein, who handled paper
submissions to the Special Theme on Fairness in Natural Language Processing;

¢ the Student Research Workshop (SRW) Co-Chairs, Hanqi Yan and Zonghan Yang, who organised
the student workshop under the guidance our our SRW Faculty Co-Advisors, Sebastian Ruder and
Xiaojun Wan;

* the Publicity Co-chairs, Pengfei Liu, Gabriele Pergola,and Ruifeng Xu, who communicated the
information about the conference to the community using various social media channels;

» the Website Chair, Miguel Arana Catania and Yung-Chun Chang, who ensured that the AACL-
IJCNLP 2022 website contains all up-to-date information;

* the Diversity & Inclusion (D&I) Chairs, Ruihong Huang and Jing Li, who have worked tirelessly
to make AACL-IJCNLP 2022 as welcoming and inclusive as possible for all participants. They
were supported by the D&I committee members, Yuji Zhang, Yuanyuan Lei, and Ayesha Qamar;

* the Sponsorship Coordinators, Hiroya Takamura, Wen-Hsiang Lu, and Deyi Xiong, who reached
out institutions and corporations to collect funds to support our conference;

* the Communication Chairs, Zheng Fang, Jiazheng Li, and Xingwei Tan, who stepped in with a
short notice to help Program Co-Chairs deal with a large number of email enquires;

* Priscilla Rasmussen, who stayed as a consultant for ACL, and Jennifer Rachford, the ACL
Business Manager, for helping with various conference matters;

* the Chair of the AACL, Keh-Yih Su, and all the AACL executive board members, that have
provided guidance regarding various decisions;

* the ACL executive board including the President, Tim Baldwin, for linking us with the right
support; the ACL Sponsorship Director, Chris Callison-Burch, for providing guidance to our
Sponsorship Chairs; and the ACL Treasurer, David Yarowsky, who negotiated a contract with
Underline for supporting our virtual conference;

* Rich Gerber from Softconf, who set up the AACL-IJCNLP conference submission site, has always
been responsive to our queries.

I would also like to express gratitude to our sponsors, whose generous support has been invaluable in
building up AACL-IJCNLP to what it is now. These include our Diamond-level sponsors - GTCOM,
LivePerson, Tourism Bureau, the Ministry of Science and Technology, the Ministry of Education and
National Central University in Taiwan; our Platinum-level sponsor - Baidu; our Gold-level sponsors -
Bloomberg; and our Bronze-level sponsors - Adobe.

Finally, I would like to thank all authors, senior area chairs, area chairs, reviewers, invited speakers and
panelists, the volunteers organizing and chairing various sessions in the conference, and all attendees,
for making this hopefully another successful NLP conference!

Hope you all enjoy AACL-IJCNLP 2022!

AACL-IJCNLP 2022 General Chair
Yulan He, King’s College London, UK
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Preface by the Program Committee Co-Chairs

We welcome you to AACL-IJCNLP 2022, the 2nd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics (AACL) and the 12th International Joint Conference on
Natural Language Processing (IJCNLP)! Due to the strict COVID quarantine rule imposed by the
local government, AACL-IJCNLP 2022 has to be held fully virtual. However, conference organizers
have worked very hard to simulate an in-person meeting setting, thanks to the relatively mature virtual
conference infrastructures that have been built by our community.

AACL-IJCNLP 2022 has utilized two submission platforms SoftConf and ACL Rolling Review (ARR)-
OpenReview, and received 554 submissions in total (518 from SoftConf and 36 from ARR) for the main
conference. We have accepted 147 papers (87 long and 60 short) for the main conference and 44 papers
for the Findings. The submissions came from all over the world. Among the 191 accepted papers,
according to the information of the main contact, 84 were from the Asia-Pacific region (23 from China
mainland, 18 from India, 16 from Japan, 7 from South Korea, 5 from Australia, 3 from Singapore, 3 from
Taiwan, 3 from Bangladesh, 2 from New Zealand, 1 from Sri Lanka, 1 from Nepal, 1 from Malaysia,
and 1 from HongKong), 42 were from the America (36 from the USA, 5 from Canada, 1 from Chile),
and 65 from Europe and the Middle East (18 from the UK, 12 from Germany, 9 from France, 5 from
Netherlands, 4 from Switzerland, 4 from Italy, 3 from Norway, 2 from Egypt, 2 from Spain, 1 from
Estonia, 1 from Denmark, 1 from Finland,1 from Iron, 1 from Bulgaria and 1 from Czech).

We have developed the following new attempts this year for paper submission:

* We created a new special theme "Fairness in Natural Language Processing”.

* We added a new function during paper rebuttal to allow authors to upload their revised papers so
that some responses can be more clearly presented and elaborated.

AACL-IJCNLP2022 does have a great program, thanks to all of you! We have put up a very exciting
program with many new plenary sessions:

* We have invited four wonderful keynote speakers this year: Chris Callison-Burch (University of
Pennsylvania), Eduard Hovy (University of Melbourne and Carnegie Mellon University), Juanzi
Li (Tsinghua University), and Prem Natarajan (Amazon Alexa Al).

* A promised-to-be-heated debate: "Is there more to NLP than Deep Learning?" between "Yes”
team: Eduard Hovy (Team Lead), Kathleen McKeown, Dan Roth, Eric Xing and "No” team:
Kyunghyun Cho (Team Lead), Danqi Chen, Manling Li, Graham Neubig, to be moderated by
Rada Mihalcea.

» “7 NLP Dissertation Topics for Next 7 Years” by Kevin Duh, Fei Huang, Smaranda Muresan,
Preslav Nakov, Nanyun Peng, Joel Tetreault and Lu Wang.

* A panel on the special theme "Fairness in Natural Language Processing”, moderated by our special
theme chairs Mona Diab and Isabelle Augenstein.

* A Global Women in NLP session "Finding Your Purpose, Findign Your Voice - Professional

Growth in the Age of Deep AI" led by Pascale Fung.

We are very grateful for all of these speakers and panelists on accepting our invitations! We will also
have a special best paper award session and a lighting talk session for posters, following the successes of
previous ACL and NAACL conferences. The excellence of the overall AACL-IJCNLP2022 program is
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thanks to all the chairs and organizers. We especially thank the 47 Senior Area Chairs, 84 Area Chairs
and reviewers for their hard work. We are grateful to Amanda Stent, Goran Glavas, Graham Neubig,
and Harold Rubio for their invaluable support in the commitment of papers reviewed by ARR to AACL-
IJCNLP 2022. We appreciate Rich Gerber’s prompt responses and support whenever we request any fix
or adding new functions. It has been an enormous privilege for us to see the scientific advances that will
be presented at this conference. Congratulations to all authors!

We hope you will enjoy AACL-IJCNLP 2022, and look forward to seeing many of you online!

AACL-IJCNLP 2020 Program Committee Co-Chairs

Heng Ji (University of Illinois Urbana-Champaign and Amazon Scholar)
Yang Liu (Tsinghua University)

Sujian Li (Peking University)
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Preface by the Local Chair

Since winning the bid for organising AACL-IJCNLP 2022 conference in Taiwan, the local team has
worked hard to get subsidies from Ministry of Science and Technology, Ministry of Education, Bureau
of Foreign Trade, and National Central University, Taiwan. We also planned to co-host AACL-IJCNLP
2022 with ROCLING 2022, the annual meeting of the Association for Computational Linguistics of
Chinese Language Processing in Taiwan. We, Yung-Chun Chang, Kuan-Yu (Menphis) Chen and I,
envisioned that even if only half the registrants can come to Taiwan due to COVID-19, the conference
will still be lively with ROCLING participants.

Even at the end of June, we remained optimistic that a hybrid conference would be possible. However,
Taiwan’s border control were not lifted and passengers entering Taiwan still needed to be quarantined
for three plus four days after August, which will deter most international participants. Thus, we had to
adopt a purely online mode at last.

It was a great experience to co-host the AACL-IJCNLP 2022 conference with the international team. On
behalf of the local organising team: Yung-Chun Chang, Kuan-Yu (Menphis) Chen, Hsiu-Min Chuang,
Min-Yuh Day, Hen-Hsen Huang, Lun-Wei Ku, Wen-Hsiang Lu, Tzong-Han Tsai, and Jheng-Long Wu,
we would like to thank our general chair, Yulan He, program co-chairs, Heng Ji, Yang Liu, Sujian Li, and
the international team. Yulan’s leadership and the international team made the conference go smoothly.
Without you, it would be impossible to accomplish so many tasks. I also learned a lot from it. Hope we
can meet physically in the near future.

AACL-IJCNLP 2022 Local Chair
Chia-Hui Chang (National Central University)
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Abstract

Recent work has shown advantages of incor-
porating knowledge graphs (KGs) into BERT
(Devlin et al., 2019) for various NLP tasks.
One common way is to feed entity embeddings
as an additional input during pre-training.
There are two limitations to such a method.
First, to train the entity embeddings to include
rich information of factual knowledge, it typi-
cally requires access to the entire KG. This is
challenging for KGs with daily changes (e.g.,
Wikidata). Second, it requires a large scale
pre-training corpus with entity annotations and
high computational cost during pre-training.
In this work, we efficiently construct entity em-
beddings only from the type knowledge, that
does not require access to the entire KG. Al-
though the entity embeddings contain only lo-
cal information, they perform very well when
combined with context. Furthermore, we show
that our entity embeddings, constructed from
BERT’s input embeddings, can be directly in-
corporated into the fine-tuning phase without
requiring any specialized pre-training. In addi-
tion, these entity embeddings can also be con-
structed on the fly without requiring a large
memory footprint to store them. Finally, we
propose task-specific models that incorporate
our entity embeddings for entity linking, en-
tity typing, and relation classification. Exper-
iments show that our models have compara-
ble or superior performance to existing models
while being more resource efficient.

1 Introduction

Many studies have attempted to enhance pre-
trained language models with knowledge such as
ERNIE (Zhang et al., 2019), KnowBert (Peters
et al., 2019), K-ADAPTER (Wang et al., 2020), E-
BERT (Poerner et al., 2020), and KEPLER (Wang
et al., 2021). Among them, ERNIE, KnowBert,
E-BERT, and KEPLER are typical work that do
so by incorporating entity embeddings. The entity

"Work was extended after the internship with Google.
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embeddings are usually trained by methods that
model the global graph structure, such as TransE
(Bordes et al., 2013a) used in ERNIE and TuckER
(Balazevic et al., 2019) used in KnowBert. These
entity-incorporated pre-trained language models
have shown to be powerful on various natural lan-
guage processing (NLP) tasks, such as entity link-
ing, entity typing, and relation classification.

In this paper, we investigate whether we can con-
struct entity embeddings by considering only local
entity features. This is motivated by the observation
that the context itself usually provides good infor-
mation for the right answer. A number of examples
are shown in Table 1. Instead of heavily relying on
entity embeddings that encode global information,
we simply tell the model what these entities are by
using local features to help the model infer the an-
swer from the context more easily. For example, if
we can know ’Carti Sugtupu’ is a place in the rela-
tion classification example in Table 1, the task may
be easier. To utilize such information for an entity,
we select entity-type knowledge from Wikidata as
a local feature for the entity. Specifically, we pro-
pose to encode the labels of neighboring nodes of
the entity connected through instance_of edges in
Wikidata. Figure 1 shows an example. These la-
bels can informatively tell the entity type and are
usually short, which enables them to be efficiently
encoded by simple methods, that we mention later.

One big advantage of utilizing only local fea-
tures of entities is that we can update our entity
embeddings very fast once the knowledge graph
(KG) is changed, which is a desirable feature for
KGs with rapid updates. We can construct the en-
tity embeddings even on the fly to significantly re-
duce memory consumption and parameters since a
number of tasks (e.g., entity linking) easily involve
millions of entities. A disadvantage is that it is hard
to infer the answer if large amounts of information
are missing. For example, the LAnguage Model
Analysis (LAMA) task (Petroni et al., 2019) re-
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quires a [MASK] placeholder in the given sentence
"Sullivan was born in Chippewa Falls, Wisconsin
in [MASK]" to be filled. The type knowledge may
not be able to answer this question. Thus, we do not
focus on such tasks. Instead, we apply our method
on several typical entity-focused tasks, which were
also chosen by related work.

To construct the entity embeddings, we simply
average BERT’s WordPiece embeddings from the
type label of the entity as there are only 2.8 or
2.96 WordPiece tokens on average per label de-
pending on our tasks. Thus, our method is very
fast and can be used to construct the entity embed-
dings on the fly without much cost to save mem-
ory and reduce parameters. For example, E-BERT
requires six hours to train its entity embeddings,
while our method takes only about 1 minute to
prepare the entity embeddings for our downstream
tasks. The trained entity embeddings of E-BERT
take up around 30GB in size!. Thus, storing these
embeddings requires a large memory footprint, and
the size continues to grow linearly if new entities
are added. However, our method does not require
such extra space for entity embeddings.

For incorporation, previous work incorporates
their entity embeddings during both fine-tuning and
pre-training (ERNIE and KnowBert). However,
pre-training language models is a cumbersome and
resource-intensive task. We show simply incor-
porating our entity embeddings during fine-tuning
without any pre-training works well. One reason
may be that these entity embeddings are directly
constructed through averaging BERT’s WordPiece
embeddings, so that they look like BERT’s Word-
Piece embeddings, which may be helpful for incor-
poration for BERT.

Finally, we propose task-specific models to incor-
porate our entity embeddings”. For entity linking,
we propose a model that incorporates entity embed-
dings into the output; for entity typing and relation
classification, the proposed model incorporates en-
tity embeddings into the input. We show that our
entity embeddings and incorporation method are
simple and can achieve comparable or superior
performance to existing methods on entity linking,
entity typing, and relation classification. The contri-
bution of this work can be summarized as follows:

'This size here is from the downloaded embeddings pro-
vided by the author.

2Qur code is available at https://github.com/
yukunfeng/efficient_bert_ent_emb

A
independentuln A
subclass_of city
|
— instance_of -
city of the instancefof\l/instancefof big city
united states
.7/ baltimore
part_of

Figure 1: An example of connected entity nodes from
Wikidata. The circles are entity nodes with blue texts
as their labels. We encode the labels of the neighboring
nodes of “baltimore” connected through instance_of
edges to construct its entity embedding.

e We propose an efficient method to construct
entity embeddings that are particularly a good
fit for BERT, and they work well without any
pre-training step during incorporation.

e Our entity embeddings can be constructed on
the fly for BERT. We do not need a large
memory footprint to store entity embeddings,
which is often required by other work.

o We propose task-specific models to incorpo-
rate our entity embeddings for entity linking,
entity typing and relation classification.

2 Related Work

ERNIE (Zhang et al., 2019), KnowBert (Peters
et al., 2019), E-BERT (Poerner et al., 2020), and
our model are all based on Google BERTgasE and
aim to incorporate entity embeddings into them.
The main differences between the models are the
methods for constructing entity embeddings and
incorporating them.

For entity embeddings, ERNIE uses the one
trained on Wikidata by TransE (Bordes et al.,
2013b). KnowBert uses TuckER (Balazevic et al.,
2019) embeddings, and E-BERT incorporates
Wikipedia2 Vec entity embeddings (Yamada et al.,
2016).These entity embeddings were trained with
consideration for a KG structure and have to be
trained again if new updates need to be incor-
porated from KGs, which further requires addi-
tional pre-training of ERNIE and KnowBert. When
only local features are used to construct the en-
tity embeddings, the aforementioned issues can be
avoided. In addition, our entity embeddings are
simply obtained by averaging BERT WordPiece
embeddings and can be constructed on the fly to
save a large memory footprint usually required by



Task Example

Label

Entity linking second one-dayer.

Cricket - England beat Pakistan by 107 runs in

England_cricket_team
Pakistan_national_cricket_team

Entity typing bit of news they have

GM is a publicly traded company that releases every

organization

Relation classification

Carti Sugtupu can be reached by boat from the nearby
onshore settlement of Carti and the Carti Airstrip.

place_served_by_transport_hub

Table 1: Examples of entity linking, entity typing, and relation classification. The text in bold is the entity of
interest. In these examples, we can infer the label from the context.

other work. We found that although our entity
embeddings contain only local information, they
perform well when combined with context. How-
ever, ERNIE, KnowBert or E-BERT are supposed
to work better than ours where large amounts of
information are missing such as in LAMA task.

For the incorporation, ERNIE and KnowBert
both use new encoder layers to feed the entity em-
beddings, which requires pre-training. In contrast,
E-BERT achieves comparable results without pre-
training by directly incorporating its entity embed-
dings into the standard BERT model during task-
specific fine-tuning. One proposal from E-BERT
is to align the entity and BERT WordPiece embed-
dings in the same space. To do so, it first trains
word and entity embeddings jointly and then learns
a linear mapping from word to BERT WordPiece
embeddings. The final entity embeddings can be
obtained by applying this learned linear mapping so
that they look like BERT WordPiece embeddings.
This mapping helps improve 4.4 micro F1 score on
the test data on entity linking task. To learn this
mapping, E-BERT needs to train both word and
entity embeddings, which are 30GB in size. Our
method for constructing entity embeddings shares
the similar spirit, but it is an averaging method
from BERT WordPiece embeddings.

K-ADAPTER (Wang et al., 2020) and KEPLER
(Wang et al., 2021) are both trained using multi-
task learning based on RoBERTa (Liu et al., 2019)
in relation classification and knowledge base com-
pletion and do not rely on entity embeddings.

Outside the area of incorporating entity embed-
ding into pretrained language model, there are a
number of work that propose to use entity types
from KGs on various tasks. For example, on entity
linking task, some work use entity types together
with entity descriptions or entity embedding trained
over whole KG (Francis-Landau et al., 2016; Gupta
et al., 2017; Gillick et al., 2019; Hou et al., 2020;
Tianran et al., 2021). Some work use only entity
types on entity linking task (Sun et al., 2015; Le

and Titov, 2019; Raiman, 2022). Khosla and Rose
(2020) use entity type embeddings for coreference
resolution. The main difference between our work
with them is that we mainly design our method for
constructing entity embedding and our incorpora-
tion method for BERT. As introduced before, we
simply create entity embeddings from the BERT’s
internal WordPiece embeddings. When incorpo-
rating our entity embeddings into BERT, we also
propose a model that makes use of BERT’s position
embeddings on entity typing and relation classifi-
cation task (mentioned in Sec. 5.2).

3 Entity Embedding Construction

We take the labels of the neighboring nodes for
an entity obtained from Wikidata as local features.
Since these labels are usually very short, as shown
in Figure 1, we can efficiently obtain label em-
beddings by averaging WordPiece embeddings in
the label. The final entity embeddings are then
obtained by averaging the label embeddings. We
denote m;; as the j-th WordPiece embeddings in
the ¢-th label of an entity. The entity embeddings e
are computed as follows:

1Y
C= W

=1 =

N;
m;;, (D
1

where M and N; are the number of labels and that
of WordPiece tokens in the i-th label, respectively.
Please note that M and IN; are small in our relation
classification task (1.27 and 2.96, respectively, on
average). Finally, the generated entity embeddings
are updated in the task-specific fine-tuning.

4 Entity Linking

4.1 Task Description

Entity linking (EL) is the task of recognizing
named entities and linking them to a knowledge
base. In this paper, we focus on an end-to-end
EL system that includes detecting the entities and
then disambiguating them to the correct entity IDs.



Train Dev. Test
#Tokens 222K 56K 51K
#Gold entities 18454 4778 4778
#Unique generated entities 230K 154K 148K
#Conversion rate 0.8 0.80 0.81

Table 2: Data statistics of AIDA and found unique en-
tities by generator. The conversion rate is the ratio of
found entities that we can link to Wikidata.

Following the same setting of E-BERT?, we use
KnowBert’s candidate generator to first find all
spans that might be potential entities in a sentence.
These spans are matched in a precomputed span-
entity co-occurrence table (Hoffart et al., 2011) and
each span is annotated with linked entity candidate
IDs associated with prior probabilities based on
frequency. Note that the generator tends to over-
generate and most found spans should be rejected
according to our observation on the training dataset.
Thus, given a span in a sentence, our model needs
to learn to reject it or predict the correct one among
its candidate IDs in accordance with the context.
As with E-BERT, we formulate this task as a classi-
fication task where the model needs to classify the
given input. The classified labels contain candidate
IDs and a rejection label.

4.2 Dataset

We use the AIDA dataset (Hoffart et al., 2011),
which was also chosen in related works. The gold
named entities in AIDA and spans found by Know-
Bert’s generator are identified with Wikipedia
URLs. Due to this reason, we have to convert
them to Wikidata IDs to determine the type knowl-
edge of an annotated entity, in which a number are
missing during conversion. The statistics of AIDA,
found entities by generator, and conversion rates
are shown in Table 2.

4.3 Model

Our model is based on BERTgasg and the archi-
tecture is shown in Figure 2. We describe the in-
corporation method, modeling, and training hyper-
parameters in the following.

4.3.1 Incorporation Method

Given a span from the generator, we de-
note the embeddings of candidate entities as
{c1,ca, ..., cn} and corresponding prior probabili-
ties as {p1, p2, ..., pn }. The entity embeddings are

30ur code is based on E-BERT, which is available from
https://github.com/NPoe/ebert

computed by Eq. 1. Since different candidate enti-
ties may have the same type (e.g., the type ’country’
may contain different entities), the model cannot
distinguish these label embeddings in classification
if we simply use the entity embeddings as the label
embeddings. Note that this is not an issue when
incorporating these entity embeddings into the in-
put, as shown later in our entity typing and relation
classification tasks, because the surface forms of
entities included in the input can help distinguish
between each embedding. Thus, to distinguish
these label embeddings, we propose to combine
the surface forms of entity candidates, which are
still local features, and entity embeddings into label
embeddings. The embeddings of surface forms of
entities are denoted as {s1, s2, ..., SN }. s; is simply
computed by averaging the WordPiece embeddings
in the surface form, which is the same way as com-
puting our entity embeddings. Since large number
of entities are involved in this task as shown in Ta-
ble 2, we compute s; and c; both on the fly to save
memory and reduce the parameters. This means the
gradients will come to the WordPiece embeddings
during backpropagation. To combine s; and c;, we
use a gate to learn to control the weight between
s; and c;, and label embedding 1; is computed as
follows:

g = sigmoid(Wc;),

(2)
=(1-9)0ci+g0s;

® is element-wise multiplication and W € R%*¢

are trainable parameters where d is a BERT dimen-
sion. If ¢; is not found during the aforementioned
conversion, we only use s;.

4.3.2 Modeling

We denote the output vector from the BERT en-
coder at the position of [ENT]’ as ognt. The value
of the i-th candidate entity before the softmax func-
tion is computed as liToENT + b; where b; is the
bias of the -th entity candidate. To incorporate the
prior probabilities in the classification, we set b; as
logp; so that the probability will be p; if no other
information is available (i.e., I?OENT equals zero).
The bias of a rejection label will be learned from
the training data. We use the standard cross entropy
as our loss function.

4.3.3 Hyper-parameters

Since the dataset is quite small as shown in Table 2,
we only train for maximum of four epochs, and the
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Figure 2: Model architecture for entity linking. The text in bold in the example is the span that the model needs
to reject it as a named entity or accept it and link it to the correct entity entry in accordance with the context. A
special symbol '[ENT]’ is inserted before the span, and the output vector from it will be used for classification.

model with best micro F1 score on the valid dataset
is chosen. The batch size is set to 16 and the default
AdamW optimizer was used with a linear learning
rate scheduler (10% warmup). The learning rate
was chosen among {1e-5, 2e-5, 3e-5,} on a valid
set.

4.4 Results

The results on the AIDA test set are shown in Ta-
ble 3. We mainly compare our model with BERT-
Random (introduced later), KnowBert and E-BERT
as they also focus on incorporating entity embed-
dings to BERT. Note that we only include end-to-
end EL models in this table, and the results are
not comparable to ones of disambiguation-only EL
models where the golden entity mentions are given.

We used BERT-Random as our baseline, which
is the same as our model except that the label em-
beddings are randomly initialized and trained from
scratch. Compared with BERT-Random, our model
shows significant improvement, which suggests our
proposed label embeddings are effective.

E-BERT incorporates its entity embeddings not
only to the output but also to the input. The em-
bedding of its ’[ENT]’ in the input is computed
by averaging all embeddings of candidate entities.
We also tried a similar strategy but found no obvi-
ous change in our model. Thus, we only focused
on the output. In addition, E-BERT uses another
strategy that iteratively refines predictions during
inference. However, this strategy slows down the
inference speed. The results, indicate that the lo-
cal features work even better than global features
used to train entity embeddings in E-BERT. This
may suggest that we can utilize local features to

. Strong Strong
Models micro-F1  macro-F1
Cao et al. (2021) 83.7 -
Kannan Ravi et al. (2021) 83.1 -
van Hulst et al. (2020) - 81.3
Broscheit (2019) 79.3 -
Kolitsas et al. (2018) 82.6 82.4
Hoffart et al. (2011) 71.9 72.8
E-BERT (Poerner et al., 2020) 85.0 84.2
KnowBert (Peters et al., 2019) 73.7 -
Our model 86.3 84.4
BERT-Random 73.3 76.8

Table 3: Results on AIDA test set. BERT-Random

use randomly initialized label embeddings trained from
scratch.

construct entity embeddings in tasks where the con-
text already contains a lot of information. Please
also note that we can only convert around 80%
of Wikipedia URLs to Wikidata IDs, and this may
limit the performance of our model. Another advan-
tage is that our label embeddings are constructed
on the fly and thus save memory and reduce the
number of training parameters. Finally, our model
and E-BERT achieved the highest strong micro-F1
and macro-F1 scores among all models, indicating
it may be a good way to incorporate knowledge
through entity embeddings.

5 Entity Typing and Relation
Classification

5.1 Task Description

The goal of entity typing is to predict the types of a
given entity from its context. Note that it is not nec-
essary that the mention of a given entity is a named
entity. For example, the type ’they’ is labeled as
’organization’ as shown in the example of entity



typing in Table 1. The formulation of relation clas-
sification is similar with the only difference being
that there are two target entities in the sentence.
We need to predict the relation of two given target
entities together with the context. Thus, the appli-
cation of our entity embeddings is similar for entity
typing and relation classification. We introduce our
incorporation method in the following section.

5.2 Incorporation Method

Unlike the EL task where we applied our entity
embeddings to the output, we only incorporate en-
tity embeddings to the input for these two tasks.
To incorporate the entity embeddings, we propose
a method that emphasizes target entities (e.g., in
relation classification, there are two entity men-
tions). Specifically, for all entities, we first sum the
embeddings of the entities and the corresponding
BERT WordPiece tokens, and then feed them into
the BERT model. For target entities, we explicitly
insert the entity embeddings into the input of Word-
Piece token embeddings and make the entity em-
beddings share the same position embeddings with
their corresponding WordPiece token embeddings,
as if they are in the same position. Our model ar-
chitecture is shown in Figure 3. We mathematically
describe our method as follows.

We denote the number of WordPiece tokens in a
sentence as 7', and the :-th WordPiece token embed-
ding, entity embedding, and position embedding
as w;, e;, and p;, respectively. As shown in the
figure, the entity embedding e; is O if the i-th token
is not the start token of an entity. For simplicity,
we ignore token type embeddings here, although
they are actually used in our model. We first obtain
the input x; to the BERT encoder by summing the
entity embeddings with the other embeddings:

Xi = e; +W; + p;. 3)

Since target entities are usually more important
than other entities in an entity-centric task, we ex-
plicitly insert target entity embeddings that have the
same position embeddings as their aligned Word-
Piece embeddings, as if they are in the same po-
sition. For the relation classification task, there
are two target entities, and thus the extra inserted
inputs are X1 and X2, which are computed
as follows:

XT4+1 = €, + Pkys (4)

XT42 = €k, + Pk

where k1 and ko are the index of the first and second
target entities, respectively.

5.3 Experiments

5.3.1 Entity Typing

We chose Open Entity (Choi et al., 2018) to eval-
uate our model. The dataset has several versions,
and we chose the one that has nine general types
(e.g., person, location, and object), which is the
same as that in previous works. One example from
this dataset is shown in Table 1. As previously men-
tioned, the entity mention in Open Entity is not lim-
ited to named entities, and pronoun mentions and
common noun expressions are also included. We
used a preprocessed version from ERNIE (Zhang
et al., 2019). This preprocessed dataset was an-
notated with mentions of named entities and au-
tomatically linked to Wikidata by TAGME (Fer-
ragina and Scaiella, 2010) so that we could find
their type knowledge in Wikidata for all entities
in Open Entity. We used the same annotated en-
tities as the ones used in ERNIE by keeping the
same confidence threshold to filter unreliable en-
tity annotations. The statistics of this dataset are
shown in Table 4. Most annotated entities are non-
target because the entity mention in Open Entity is
not limited to named entities. Our model needs to
utilize the context together with the entity annota-
tions to infer the types of the target entity. We can
also see the type labels of entities are quite short
(only 2.8 word pieces per label), and this may be
one reason that our averaging method for construct-
ing entity embeddings works. If the label is long
(e.g., becoming a text description), the averaging
method might be too simple to encode it. Since
the involved entities are not that many, we did not
construct the entity embeddings on the fly to speed
up the training. That is, the entity embeddings are
initialized by Eq. 1 and are updated in the training.

Train Dev.  Test
#Instances 2,000 2,000 2,000
#Target entities 122 107 94
#All entities 2573 2511 2603
#Labels per entity 1.56 1.56 1.63

#WordPieces per label 2.8 2.8 2.8

Table 4: Statistics of Open Entity dataset with nine la-
bel types. TAGME (Ferragina and Scaiella, 2010) is
used to automatically annotate named entities in the
dataset.

Our code was adapted from ERNIE,* and we
*https://github.com/thunlp/ERNIE
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Figure 3: Overall architecture showing a sequence input to the BERT encoder for the relation classification task.
The entity embeddings are obtained by encoding the labels of their neighboring nodes, as described in Sec. 3. Note
that the entity and position embeddings for the two target entities are copied over to the end of the sequence.

used the same setup as it. For each instance, we
used a special symbol to mark the span of a target
entity and used the [CLS] vector in the last hidden
layer from the BERT encoder for classification.
For the hyper-parameters, we basically followed
those of ERNIE. The learning rate was set to 2e-5
with the AdamW optimizer and a linear learning
rate scheduler (10% warmup). The model was
trained for 10 epochs with a batch size of 16. The
results are shown in Table 5. Among the models
in the BASE size, our model is comparable to or
more effective than the related methods. Compared
with KnowBert and ERNIE, the construction of our
entity embeddings is more efficient and our model
does not require pre-training. Further analysis of
our model will be in the ablation study.

5.3.2 Relation Classification

We used a preprocessed relation classification
dataset from ERNIE (Zhang et al., 2019) to evalu-
ate our model. This dataset is from the FewRel cor-
pus (Han et al., 2018) and was rearranged by Zhang
et al. (2019) for the common relation classification
setting. One example from this dataset is shown in
Table 1. We used FewRel oracle entity IDs, which
were also used in ERNIE and E-BERT (Poerner
et al., 2020). These oracle entity IDs cover only tar-
get entities; there are no annotations for non-target
entities. Our model needs to predict the relation of
two given target entities with their annotations and
context. The statistics of the FewRel dataset are
shown in Table 6. Since oracle annotations were
used, the statistics of annotated target entities are
not shown in the table. Again, we can see the type
labels are quite short, which enables them to be en-
coded with a simple averaging method. Since there
are not many entities involved, we take these en-

tity embeddings as parameters and do not construct
them on the fly.

As with the entity typing task, special tokens
[HD] and [TL] were used to mark the span of a head
and tail entity, respectively. The [CLS] vector in the
last hidden layer of the BERT encoder was used for
relation classification. For the hyper-parameters,
we basically followed those of ERNIE. The model
is trained for 10 epochs with a batch size of 16.
The default AdamW optimizer was used with a
linear learning rate scheduler (10% warmup). The
learning rate was set to 4e-5, which was chosen
among {2e-5, 3e-5, 4e-5, Se-5} on the valid dataset.

The results are shown in Table 7. ERNIE,
E-BERT, and our model can be directly com-
pared with because all the models are based on
BERTgasE and used the same entity annotations.
Our model achieves better results than ERNIE and
E-BERT, indicating that our methods are effec-
tive while being cost-efficient. However, E-BERT
reports that their entity coverage is about 90%
(around 10% of entity embeddings are not found in
their Wikipedia2Vec embeddings), while the entity
coverage in our model and ERNIE is about 96%.
This may put E-BERT at a disadvantage.

5.4 Ablation Study

To analyze the gain, we define three components
in our model for entity typing and relation classifi-
cation: entityEmbs, defined by Eq. 1, sum, defined
by Eq. 3, and insert, defined by Eq. 4. When
entityEmbs is not used, the entity embeddings are
initialized randomly. The results for cases when in-
dependently excluding each component are shown
in Table 8. When entityEmbs was removed, the
performance of our model on two datasets dropped
significantly, which indicates our method for con-



Model Architecture P R F1
ERNIE (Zhang et al., 2019) BERTgase 78.42 7290 75.56
Incorporate KG ~ KnowBERT (Peters et al., 2019) BERTgAsE 78.60 73.70 76.10
in pre-training K-ADAPTER (Wang et al., 2020) RoBERTajarge 79.30 75.84 77.53
KEPLER (Wang et al., 2021) RoBERTagasg 77.80 74.60 76.20
. . BERTgasg (our reproduction) BERTgAsE 79.78 70.90 75.08
Fine-tuning only 1o el b BERTgase 7853 7416 7628

Table 5: Results of our model and related models on the entity typing dataset - Open Entity. Note that only K-
ADAPTER is in the LARGE size, and ERNIE, KnowBERT, and K-ADAPTER also require incorporating knowl-

edge during fine-tuning.

Train Dev. Test
#Instances 8,000 16,000 16,000
#Labels per entity 1.27 1.25 1.25
#WordPieces per label ~ 2.96 3.0 3.02

Table 6: Relation classification dataset FewRel with 80
relation types.

Model P R F1

ERNIE (Zhang et al., 2019) 88.49 88.44 88.32
E-BERT (Poerner et al., 2020) 88.51 88.46 88.38
BERTgase (our reproduction) 86.16 86.16 86.16
Our model 88.93 88.93 88.93

Table 7: Relation classification results on FewRel.
Only ERNIE incorporates entity embeddings in both
pre-training and fine-tuning steps.

structing entity embeddings is effective while main-
taining cost-efficiency. Once entityEmbs was used,
we can see that sum shows improvement on the
two datasets. The performance can be further im-
proved if insert was used together with sum, which
suggests that sum does not make full use of the
information for target entities, and emphasizing
target entities explicitly by insert is effective.

To analyze how insert and sum separately work
on target and non-target entities, we conducted an-
other ablation study on Open Entity, and the results
are shown in Table 9. Since there are no non-target
entity annotations in FewRel, only Open Entity is
included. If insert was applied for all entities, the
performance degraded, which suggests that empha-
sizing non-target entities is not helpful, and it is
more effective to incorporate entity embeddings
for target and non-target entities in a different way.
When sum was applied only to non-target entities
without insert, its performance was better than that
of BERTgasE, indicating that incorporating the em-
beddings of non-target entities is useful.

6 Conclusion

In this paper, we proposed to construct entity em-
beddings using local features instead of training

Model Open Entity  FewRel

Our model 76.28 88.93
w/o entityEmbs 74.03 84.98
w/o sum 75.83 88.81
w/o insert 75.62 87.99

Table 8: Ablation study with F1 scores. Each compo-
nent in our model is excluded independently.

Model P R F-1
Our model 78.53 74.16 76.28
W/o sum insert 78.33  73.48 75.83
insert forall 7873 7232 75.39
who insers S4mioronly a9 0043 7562

non-target

Table 9: Ablation study on Open Entity dataset.

those with consideration of the whole KG for tasks
where the context already contains large amounts
of information. Utilizing local features to construct
the entity embeddings is much faster than the meth-
ods mentioned in related work. The local features
of an entity used in this paper are the labels of its
neighboring nodes connected through instance_of
edges in Wikidata. Since these labels are usually
very short, we can simply encode them by aver-
aging their WordPiece embeddings. The simple
averaging method enables us to even construct en-
tity embeddings on the fly without much cost. This
is helpful for saving memory and reducing param-
eters in tasks where minions of entities may be
involved. Finally, we proposed task-specific mod-
els to incorporate our entity embeddings. Unlike
most previous works, our entity embeddings can
be directly incorporated during fine-tuning without
requiring any specialized pre-training. Our experi-
ments on entity linking, entity typing, and relation
classification show that our entity embeddings and
incorporation method are simple and effective, and
the proposed models have comparable or superior
performance to existing models while having the
aforementioned advantages.
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Abstract

Virtual adversarial training (VAT) is a powerful
approach to improving robustness and perfor-
mance, leveraging both labeled and unlabeled
data to compensate for the scarcity of labeled
data. It is adopted on lots of vision and lan-
guage classification tasks. However, for tasks
with structured output (e.g., dependency pars-
ing), the application of VAT is nontrivial due
to the intrinsic proprieties of structures: (1)
the non-sparse problem and (2) exponential
complexity. Against this background, we pro-
pose the Sparse Parse Adjustment algorithm
(Spa) and successfully applied VAT to the de-
pendency parsing task. Spa refers to the learn-
ing algorithm which combines the graph-based
dependency parsing model with VAT in an ex-
act computational manner and enhances the
dependency parser with controllable and ad-
justable sparsity. Empirical studies show that
the TreeCRF parser optimized using Spa out-
performs other methods without sparsity regu-
larization.

1 Introduction

Dependency parsing is a fundamental structured
prediction task in natural language processing
that aims to capture syntactic structures in sen-
tences in the form of dependency relations between
words. The application of dependency structures is
mainly reflected in discourse parsing (Nishida and
Nakayama, 2020; Zhang et al., 2021), machine
translation (Shen et al., 2008), and many other
tasks. While supervised learning is the ideal tech-
nique used to learn a dependency parser automati-
cally, it requires the training sentences to be man-
ually annotated with their gold parse trees. This
brings the main bottleneck for learning a practical
dependency parser — the lack of adequate train-
ing corpora with dependency trees. Annotations
are both laborious and time costly. Multiple re-
search directions (i.e., unsupervised learning, semi-

*Corresponding Author
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supervised learning and transfer learning, etc.) try
to eliminate this bottleneck (Han et al., 2020a).

Virtual adversarial training (VAT) (Miyato et al.,
2018), as a semi-supervised learning approach, uti-
lizes both annotated training sentences and unla-
beled data to compensate for the scarcity of labeled
data. It extends adversarial training (AT) (Good-
fellow et al., 2015) to unlabeled data. VAT en-
courages the output distributions to be similar on
both an unlabeled sample and corresponding ad-
versarial examples by adding a Kullback-Leibler
(KL) divergence term in the training loss. In this
way, VAT improves the performance and robustness
of many tasks (Akhtar and Mian, 2018; Berthelot
et al., 2019; Chen et al., 2020).

However, multiple technical challenges are faced
by applying VAT on dependency parsing. Except
for the general challenges related to gradient com-
putation of discrete inputs, grammatical correct-
ness, and meaning preservation (Zhang et al., 2019;
Jia and Liang, 2017; Wang et al., 2019; Cheng
et al., 2019, 2020) faced by all adversarial exam-
ple generators, two potential but critical challenges
exist because of the propriety of structured predic-
tion: (1) the non-sparse problem and (2) exponen-
tial complexity. The non-sparse problem is natu-
rally connected to unambiguity (Tu and Honavar,
2012), both highlighting that the number of plau-
sible parses of a natural language sentence is rel-
atively small compared with the huge number of
possible parses. We are interested in predicting
probabilities as small as possible for these unlikely
trees rather than having an estimation of their actual
probabilities. The fact that the Viterbi expectation-
maximization algorithm (EM) outperforms Stan-
dard EM in previous work (Poon and Domingos,
2011; Tu and Honavar, 2012; Spitkovsky et al.,
2010, 2011) also provides evidence of the advan-
tage of implicitly utilizing the sparsity property.
Although Chen et al. (2020) make VAT compatible
with a linear-chain structured prediction model by
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considering the probabilities of K most possible la-
bel sequences, which is a sparse approximation of
the original distribution, they did not quantitatively
investigate the impact of sparsity in the application
of VAT. For the complexity challenge, different
from conventional classification tasks with a fixed
number of classes, computing the KL divergence
of parse tree distributions by enumerating all pos-
sible parses is intractable because the number of
possible parses for each sentence is exponential
w.r.t. the sentence length. Therefore, conventional
approaches can only estimate the KL divergence in
the VAT loss rather than compute it exactly.
Against this background, we propose Sparse
Parse Adjustment algorithm (Spa) and success-
fully applied VAT to dependency parsing. Spa
refers to the learning algorithm which combines
the graph-based dependency parsing model with
VAT in an exact computational manner, overcom-
ing the problem of enumerating, and enhances the
dependency parser with controllable and adjustable
sparsity. We applied VAT to a state-of-the-art pars-
ing model: the Tree Conditional Random Field
(TreeCRF) parser (Zhang et al., 2020). Spa incor-
porates into TreeCRF an inductive bias in favor
of models that lead to a controllable sparsity. Ad-
justing the hyper-parameter can control sparsity to
ease the non-sparse problem. Empirical studies
show that the TreeCRF parser optimized using Spa
outperforms other semi-supervised methods with-
out sparsity regularization. Within Spa, our exact
computational manner achieves competitive perfor-
mance and enables faster training compared to the
top-K approximate approach (Chen et al., 2020).

The code can be found at: https://github.

com/LouChao98/struct-vat.

2 Related Work

2.1 Semi-Supervised Learning

Semi-supervised learning is an important branch of
machine learning to improve model performance
when there is insufficient labeled data, which uti-
lizes unlabeled data to get more information that
might be beneficial for supervised tasks. A com-
mon semi-supervised learning approach is to train
a generative model (Hinton et al., 2006; Maalge
et al., 2016; Wang and Tu, 2020a) which achieve
state-of-the-art performance. However, these meth-
ods require additional hyperparameters, and the
conditions under which the generative model will
provide good supervised learning performance are

12

poorly understood (Miyato et al., 2017b).

Self-training (Yarowsky, 1995) is another ap-
proach to semi-supervised learning, which has been
successfully applied to natural language processing
tasks. In self-training, the model acts as teacher
and student iteratively. Recent approaches use soft
targets from one or multiple teachers’ output (Hin-
ton et al., 2015), such as in tri-training (Zhi-Hua
Zhou and Ming Li, 2005; Ruder and Plank, 2018).

Consistency training is also a branch of semi-
supervised learning, forcing the model to make
consistent predictions on different views of the
same data. Cross-view training (CVT) (Clark
et al., 2018) works on bidirectional LSTMs and
constructs views by masking out neurons of one
direction. R-drop (Liang et al., 2021) constructs
views by dropout-twice, thus is compatible with
transformers. Unsupervised Data Augmentation
(Xie et al., 2019) changes the input tokens instead
of hidden representations with the help of external
models, e.g., a back-translator. Unlike others, VAT
constructs views using a gradient-based attacker.
Next, we will introduce VAT in detail.

2.2 Virtual Adversarial Training

Adversarial training (Goodfellow et al., 2015) is
a method to improve model robustness, in which
models are trained using not only labeled data but
also perturbed samples generated by an adversar-
ial attacker. As a consequence, model predictions
would be consistent regardless of the perturbations.
AT was demonstrated to be more effective than
random attackers since its perturbations maximize
model loss in a constrained length. Many previ-
ous works (Goodfellow et al., 2015; Miyato et al.,
2017a; Yasunaga et al., 2018; Han et al., 2020c;
Zhang et al., 2022) proved the effectiveness of AT
on computer vision tasks and language tasks. To
introduce AT into semi-supervised settings, Miy-
ato et al. (2018) proposed virtual adversarial train-
ing. The idea of VAT can be seen as the combi-
nation of self-training (Yarowsky, 1995) and AT
if we treat predictions on clean input as labels in
AT. VAT can be applied to both labeled and un-
labeled data because ground-truth labels are not
required. VAT achieved state-of-the-art perfor-
mance for image classification tasks (Miyato et al.,
2018) and proved to be more efficient than previ-
ous semi-supervised approaches, such as entropy
minimization (Grandvalet and Bengio, 2005) and
self-training (Yarowsky, 1995). Chen et al. (2020)



proposed SeqVAT, which successfully makes VAT
compatible with the linear-chain conditional ran-
dom field (LinearChainCRF), and showed that VAT
benefits from structure information. It combines
VAT with LinearChainCRF and achieves signif-
icant improvements in sequence labeling. They
estimate the KL divergence by only considering
the K most possible label sequences and report
that the performance of VAT on LinearChainCRF
is better than that of VAT on token-level categorical
distributions, which is used by works before Seq-
VAT. In this paper, we show VAT can be applied
to dependency parsing with TreeCRF, which is a
more complex structure.

3 Model

Update perturbations interatively

Ef

A\~

\A4

¢ (@__) lvat

Ly
Arc Label 1
Scorer Scorer €8
A A\ A
my ma

( BILSTM ]

WordRepr | CharRepr WordRepr | CharRepr
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Figure 1: Model Architecture

Our model architecture is illustrated in Fig. 1. It
adopts the basic architecture of the TreeCRF parser.
We concatenate word embeddings with character
features extracted by a LSTM layer as input fea-
tures. Then, we feed input features into the scoring
functions. Finally, TreeCRFs are constructed using
scores.

Encoder The encoder includes both a word-
based representation and a character-based repre-
sentation inspired by character information captur-
ing morphological features (Ma and Hovy, 2016;
Zhang et al., 2020).

Word Representation We use 100-dimension
GloVe (Pennington et al., 2014) as word represen-
tations for dependency parsing, following previous
parsing work (Dozat and Manning, 2017; Zhang
et al., 2020). Intuitively, a model could learn to
make the perturbations in VAT insignificant by
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learning embeddings with a very large norm. To
prevent this pathological situation, we follow the
setting from Miyato et al. (2017b) and use normal-
ized word embeddings w instead of raw vectors w.
Formally, we use the representations as follows:

NO w? — Mean(w)
Var(w)

I g
where Mean(w) = — Z w®
n
i=1

and Var(w) = 1 Z(w(i) — Mean(w))?
i3

where n is the number of all tokens in the embed-
ding space and w(® is the embedding of the ith
word in the vocabulary.

Character Representation Following Zhang
et al. (2020), 50-dimension character embeddings
and a bidirectional LSTM with 50 neurons per
direction are used. Similar to word embeddings,
we also apply normalization to the output vectors
of the character LSTM.

Contextual Representation After transforming
input tokens to vector representations, we use a
three-layer bidirectional LSTM to capture contex-
tual information with 400 neurons per direction.
We also add Variational Dropout (Gal and Ghahra-
mani, 2016) between LSTM layers for stable train-
ing.

Scoring Functions Following Zhang et al.
(2020), we adopt a two-stage parsing strategy. The
structure (whether arcs exist) and the labels of arcs
are processed separately. The scores of structures
are computed using deep biaffine functions. Let
m.) be the output of LSTM and MLP be a multi-
layer perceptron, the score of the arc from i to j is
defined as follows:

h/d h/d
h)" = MLP"%(m,)

bij = Biaffine(h”, h?)

Label scores ¢;;; of the arc from ¢ to j with label
[ are defined similarly. Please refer to Zhang et al.
(2020) for more details.

Decoder The arc scores are fed into TreeCREF,
which defines the distribution over all possible trees
of a sentence. For a tree y (a set of arcs) of sentence



x, its probability is defined as follows:

pylz) = ¢>(Zy)

o) = [ ¢
(i,5)ey
Z= > oW,

y'eY(z)

where ¢(y) denotes the scores of the tree y, Z de-
notes the partition function and Y (x) denotes the
set of possible trees of z. The supervised train-
ing loss Ly, consists of two parts. Negative log-
likelihood L,,;; is used as the supervised loss of
structures and cross-entropy L. is used as the su-
pervised loss of labels.

L, =log Z —log ¢(y)
Lo = 2 CE(Softmax(¢;.), li;)

(i,4)€y
Lsup = Lnll + LCE7

where  is the gold tree and /;; is the one-hot en-
coding of the gold label of arc from ¢ to j.

4 Learning

4.1 Unsupervised Loss

In AT, the perturbations d,,, d. bounded by &,,, d.
is generated by maximizing the training loss:

dy = argmax D(y; P(w + €,¢))

&€l <bw

d. = argmax D(y; P(w, ¢ + ¢€))

&el<ée

where D is an arbitrary distance measure or loss
function, w, c are the normalized word and charac-
ter representations respectively, and P is the model
outputting TreeCRF distribution. AT can only be
used in supervised settings because it requires y to
generate the perturbations.

Miyato et al. (2018) proposed virtual adversarial
training to extend AT to unlabeled data. Denote
Z, Tady as a sample and its corresponding adver-
sarial sample, and porig, padv as the distribution
predicted by the model for x, z,4,,. Then a natural
choice of D in VAT is the KL divergence:

D(porig;padv) = ’C‘C(P(wv C)HP(U) +dy,c+ dc))

Compared to AT, VAT can be seen as the "self-
training" version of AT since VAT replaces the

ground-truth y with the predicted po;4. The pertur-
bations d,,, d. are now defined by:

dy = argmin LL(P(w, ¢)||P(w + €, ¢))

& el <bw

d. = argmin CL(P(w, ¢)||P(w, ¢ + €))

& el <de

Those two are still intractable for gradient descent.
Miyato et al. (2018) propose to approximate pertur-
bations by the second-order Taylor approximation
and the power iteration method. The perturbations
dy, d. can be estimated as follows:

Jw 9e
dw = 7 7% c = c
ngH ”gc”

where g,,, g. are gradients of the distance w.r.t. per-
turbations:

guw = VKL(P(w,c)||P(w + €¢))
ge = VKL(P(w,c)||P(w,c+ ¢))

We stop the gradient propagation through d,,, d.
when optimizing model parameters because they
are adversarial attacks.

The full loss function of our model is a weighted
summation of the supervised training loss and con-
trastive training loss:

L = Lsup + aD(porig§padv)- (D

Because p,ri4 18 at least as good as pyq,, we do
not want to optimize p,;4 for the loss in terms of
Padv- In practical, we detach p,.;4 from the compu-
tational graph when optimizing the unsupervised
loss, such that the entropy term & (porig) in D =
KL (porig| |padv) =C¢& (porig| |padv) - g(porig) can
be omitted because it will not contribute any gradi-
ents to trainable parameters.

4.2 Exact Computation

As Chen et al. (2020) mentioned, the computation
of the KL divergence of two CRFs is nontrivial
because of the exponential-size space. This section
derives the polynomial-time exact computation for
the TreeCRF using dynamic programming. A simi-
lar derivation for the entropy of constituency trees
is documented in Hwa (2000).

We use the notation N (4, j;y) to denote the
quantity N (Tab. 1) of the tree y which covers
the span ;... z; and N (4, j) to denote the quan-
tity N of all possible trees covering it. Similarly,
we use the notation N (4, j, k; y) to denote the quan-
tity IV of the tree y which, additionally, can be split



N ‘ N(-) N(5y) ‘ Explanation

0¥ . . the tree score

Dd ) . the tree probability

hq . o the cross entropy
Table 1: Notations. e/o means the quantity is de-

fined/undefined for this form. d € {p, ¢} is the identifier
of two distributions. We abuse some notations.

into two sub-trees at the point k. The left sub-tree
covering x; . . . ¥ is named as y; and the right one
covering Zy41...7; as y.. We do not decorate
Y1, yr With the span indices (e.g., ¢, j, k) because
they can be understood from the context. N (i, j, k)
is the aggregated version of N (i, j, k; y).

The KL divergence consists of the entropy and
the cross-entropy. As the full KL divergence can
be derived with little effort from the cross-entropy,
we only show the derivation of the cross-entropy,
h(1,n) = CE(p,q), for the sake of simplicity.
h(i,j) can be written as the form of enumerating
all possible trees y € V.

h(i,j) ==, ppli, j;y) logpe(i, jsy) ()
y

The first step (Eq. 6) is to decompose y into
sub-trees y;, Y- and also an arc connecting the
two sub-trees’ roots A(y;,yr.) € {root(y;) —
root(y, ), root(y,) — root(y;)}! where y4 (d €
{p, q}) is the normalizer® (Eq. 5). After breaking
the log-terms about ¢ into three terms, the summa-
tion of y;, y, reduces p, terms to h terms (Eq. 8).
Specifically, there are two types of reduction: (1)
reducing to cross entropy of trees covering smaller
spans (e.g., Eq. 3); (2) and reducing to marginal-
ization of possible trees (e.g., Eq. 4):

— > p(i, ks y0) log py (i, ks yi) = h(iy k) (3)
Yi

Dok + 1L jiye) = D p(urlaperig) =1 @)

Yr Yr
Eq.8 is the state transition equation of dynamic
programming, in which h(i, j, k) is in terms of
h(i,k),h(k + 1, j), which are smaller problems,
and v(A(yi, yr)) is in terms of ¢q(i, k), da(k +
1, j) and the potential score of a — bin d (¢g,ap)-

Ya(AW, vr ), yi, yr) = vala — by, yr)

qbd,abgbd(iv k)d)d(k + 15])/¢d(z737 k) (5)

'We use the Eisner algorithm (Eisner, 2000) as the routine
(Sec.4.3), in which A = {i — j,j — i}.

*We denote va(A(yi, yr) vi,yr) as va(A(yi, ) for
simplicity. One can read i, j, k from y, yr.
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4.3 CrossEntropy Semiring

The semiring parsing framework (Goodman, 1999;
Li and Eisner, 2009) enables us to decouple the
semantics (e.g., cross-entropy and MAP inference)
from the routine (e.g., the inside algorithm).

The semiring parsing framework is a generaliza-
tion of the sum-product algorithm where operators
+, x are generalized to abstract operators @, &.
Plugging in different semirings allows us to query
different properties, e.g., partition and mode. To
illustrate the cross-entropy semiring, we define the
elements of the semiring as triplets indexed by po-
sitions 4, j:

S(iaj) = (gbp(iaj)v gbq(ivj)’ h(%])) )]

Because the first two elements can be solved by the
inside algorithms, we focus on the third term. An
abstract product ® combines two sub-structures.
After reordering terms in Eq. 8, we observes that:

h(i,j, k) = A(h(i, k) + h(k + 1,7)) + B (10)

where A, B are in terms of 4 but irrelative to
h(i, k), h(k + 1, 7). 74 is available only after sum-
mation due to ¢4(i, j, k)? in Eq. 5, therefore we
delay to resolve A, B and perform the summation
of h(i,k) and h(k + 1, 7) only (Eq. 11).

An abstract summation @ aggregates all possi-
ble structures at the same position. In our case,
there are two jobs: (1) resolve A, B (2) aggregate
h(i, j, k) to get h(i, j). The computation is defined
as Eq. 12. Let s = [s1, s2, ... ] be alist of triplets,
the cross-entropy semiring is defined as follows:

®s = ([]sl0], [Ts01), Y s[2)
®s=(Ys0]. Ys[1]. 5)

an
12)

8 ]

4.4 Sparsity Regularization

Motivated by the sparsity property, we would like
to incorporate into the model a flexibly adjustable
button in favor of sparsity adjustment. In our ap-
proach, this button is a adjustable hyperparameter.

One natural measurement of sparsity is the num-
ber of parse trees considered in leaning. We de-
note the number of parse trees K as this adjustable

3$a(i, §, k) can be obtained by summing the first two items
in triplets.



h(i,j, k)

(Y1,yr,A)

= > (AL y) D ek + 1 g5 u) (= D pp(i ks ) log pa(i, s 1))
A

Yr

7

— >0 e B y)pp(k + 1, 55 4 )vp (A(wr, yr)) loglpg (i ks y)pg (k + 1, 53 ye) v (A, vr)) ]

Only depends on i,j
(Eq. 5 and Fn. 1.)

Eq. 4

+ 2 (A vr) Y ool ks ) (= Y op(k + 1, 43 yp) log pg(k + 1, 55 r))
A

Ui

+ > pplis ks ) Y pp(k + 1,53y

Yr

= [ (A, ye) (i, k) + p( Ay, ye) ik + 1, 5) — 3 (A, ur)) log g (A(ur, vr)) ]
A

hyperparameter. Specifically, the sparsity of the
model is controlled by the value of the non-negative
parameter K. Following Chen et al. (2020), we pro-
vide an approximate probability distribution with
“K +1 dimensions” to estimates the KL divergence.
In addition to the K most possible label predictions,
the rest predicted labels are represented as the ad-
ditional +1 dimension. We could modify K in the
objective function to favor different degrees of spar-
sity. We refer this sparsity regularization as 7op-K
approach.

While Top-K estimates the KL divergence by de-
signing an approximate distribution, the full prob-
ability distributions actually can be exactly com-
puted as shown in Sec. 4.2. We manipulate the
sparsity degree based on the exact computation by
temperature control following Hinton et al. (2015).
Specifically, we divide the logits of probability dis-
tributions by a temperature in the objective. A
higher temperature results in softer probability dis-
tributions and often results in better KD perfor-
mance. However, there is an opposite view of tem-
perature. Grandvalet and Bengio (2004) applied
a low temperature to sharpen predictions, which
leads to a lower entropy, and showed that regular-
izing the predictions to have low entropy could be
beneficial. When setting the two temperatures 75,4
and 7,4, (which refer to the temperatures of pyyig
and p.q, respectively), we could adjust the sparsity
degree in a more flexible way. Specifically, the spar-
sity of our model is controlled by the value of the
non-negative parameter 75,.;4 and 154, A smaller
value of T);4 corresponds to a stronger sparsity in
favor of an unambiguous model. When 75,4 is set
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(6)
(N
Yt
Eq. 3
Yr
)(= D (A, yr)) log v (A(yr wr)))
A
)

to 1, the learning algorithm can be considered as the
exact computation. When 7,;, < 1, our approach
becomes a sparse version. When 7,4 > 1, our ap-
proach falls into a smoother version. Models do not
have a fixed degree of sparsity when targeting dif-
ferent datasets. For a given dataset, different mod-
els should be set different hyperparameters. There-
fore, it is unclear how to choose an optimal temper-
ature. To make it more flexible, we use different
temperatures 7,;, and 7,4, for the two terms in
KL. We refer to this sparsity regularization as Temp-
(Torig: Tuav) approach. ExactComp-(Torig, Tyan) de-
notes applying Temp-(Ttig,T4dv) on TreeCRF with
exact computation and HeadSelect-(T'ig, Tqq,) de-
notes applying Temp-(T,rig,T4q,) on the head se-
lection model Dozat and Manning (2017).

S Experiments

5.1 Dataset

We evaluate our methods on the Wall Street Jour-
nal (WSJ) corpus with default training/develop-
ment/test split (Cohen et al., 2008) for dependency
parsing by unlabeled and labeled attachment score
(UAS/LAS) (Han et al., 2020b).

We use Stanford dependencies 3.3 (Manning
et al., 2014) to preprocess the WSJ corpus as in
previous work. We consider several settings in-
cluding full labeled WSJ data with extra unlabeled
BLLIP corpus®, and 2% in WSJ as labeled data
and the rest (1 — z)% as unlabeled data. We use
BLLIP as the unlabeled data pool, which has the

“Brown Laboratory for Linguistic Information Processing
(BLLIP) 1987-89 WSJ Corpus Release 1



Setting Labeled Unlabeled
WSI(10%/90%) 3,983 35,849
WSJ(30%/70%) 11,950 27,882
WSI(50%/50%) 19,916 19,916

WSJ+BLLIP 39,832 650,000

Table 2: Statistic analysis of labeled and unlabeled train-
ing data. WSJ(2%/(1 — x)%) means 2% of sentences
are annotated while the remaining (1 — x)% are not.

same data source as WSJ but contains much more
sentences than the WSJ corpus. We drop sentences
in BLLIP with length >20 to speed up training and
balance the number of labeled and unlabeled data.
All dataset settings we used to evaluate our method
are listed in Tab. 2.

5.2 Setting

We directly adopt most hyper-parameters from
Zhang et al. (2020). We train our supervised base-
line for 200 epochs. For other models, we run
semi-supervised training for 100 epochs after 100
epochs of purely supervised training.

5.3 Main Results

We report the averaged score over four random
restarts for each model’® and compare our models
on dependency parsing. We tune hyperparameters
and choose models according to the LAS score on
th validation set. The results of small training data
are shown in Tab. 3 on WSJ test data, including two
settings: supervised learning and semi-supervised
learning.

We focus on the semi-supervised settings and list
supervised learning® for reference. We have three
strong baselines reported in previous work: (1) Self-
Training is the conventional self-training approach
that uses the predicted data as extra labeled training
data; (2) NCRFAE is the semi-supervised version
of a neural CRF autoencoder (Cai et al., 2017)”. (3)
Arc-Factored Sup/Semi are the supervised/semi-
supervised version of the model from Wang and

5If a setting requires to sample data, e.g., WSI(10%/90%),
we randomly sample data twice and run models using two
randomly chosen seeds for each data. Otherwise, we run
models using four randomly chosen seeds.

The TreeCRF parser in this paper is different from the
original version by an additional embedding normalization.

"We develop this neural version of CRF autoencoder de-
pendency parser by Cai et al. (2017). For the self-training
setting, we use the parser to predict parse trees of the unla-
beled data iteratively and use the pseudo labeled data to update
the model.
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Tu (2020b). It can be seen that two variants of Spa
generally outperform these three baselines with
a margin. For example, Top-2 outperforms Self-
Training by 1.04% and Arc-Factored Sup by 0.31%.
ExactComp-(0.3,2) outperforms Self-Training by
1.0% and Arc-Factored Sup by 0.27%.

There are also some interesting observations
from different settings. We also apply VAT on the
head selection distribution of each token (Dozat
and Manning, 2017) (denoted as HeadSelect-(1,1)),
in the sense that TreeCRF is not used, to show the
efficiency of adversarial training without the tree
structure constraint. Here two 1 in HeadSelect-
(1,1) mean that sparsity adjustment is not used.
In semi-supervised settings, HeadSelect-(1,1) is
competitive and even outperforms some baselines
with the structure constraint by a large margin.
We suspect that it may be because of our good
hyperparameters. Then after we set 75,4 = 0.3
and T,4, = 2, an improvement is observed from
92.23% to 92.60%. It reveals the benefit of sparsity
bias in the head selection model.

The second evidence of the benefit of sparsity
bias lays on the Top-K Sparsity rows. All variants
of Top-K including Top-2, Top-3, Top-5, and Top-7
outperform the strong baselines.

Finally, a similar improvement can also been
seen from ExactComp-(1,1) to ExactComp-(0.3,2).
This empirical result provides another piece of evi-
dence for the superiority of Spa. Results show that
ExactComp-(0.3,2) with both exact computation
and sparsity adjustment consistently performs well,
regardless of the different settings. This demon-
strates that the non-sparsity problem limits the
power of VAT.

In Tab. 4, models are fed with sufficient la-
beled data as well as unlabeled data. Results
show that VAT provides consistent improvement,
especially the model without sparsity regulariza-
tion, ExactComp-(1,1). Later analysis (Tab 6) also
shows that a large amount of labeled data weak-
ens the significance of the sparsity regularization.
We argue that in this case, we have high quality
Dorig Such that no much inaccurate information is
required to be ruled out.

5.4 Results of Different X

The value of K in Spa is an important hyper-
parameter. If the value of K is too large, the model
may consider too much possibilities of parses and
hence the model is very likely to be misled. If



Approach UAS LAS 10%+90% 30%+70% 50%+50%
Supervised Learning Supervised Learning
Arc-Factored VAE Sup* 9200 - Sup 92.00 93.94 94.38
(Wang and Tu, 2020b) TreeCRF | 92.11 94.43 95.28
TreeCRF
(Zhang et al., 2020) 92.11 89.51 Semi-supervised Learning
Semi-supervised Learning Semi 92.55 94.15 94.41
Self-Training* 91.82 N Top-2 92.86 94.74 95.47
NCRFAE* 91.94 N Top-3 92.76 95.00 95.54
Arc-Factored VAE Semi* 92,55 . Top-5 92.74 94.93 95.35
(Wang and Tu, 2020b) ’ Top-7 92.79 94.76 95.51
. HeadSelect-(1,1 92.23  89.80 . . . .
W/O Sparsity E;:zlc z(,‘eo;cp-il 1)) 9236 89.99 Table 5: UAS Results of different K in various semi-
Top-2 : 92.86 0038 supervised setting. X%+Y %: X% labled WSJ+Y %
Top-K Top-3 9276 90.36 unlabled WSJ. Sup: Arc-Factored VAE Sup (Wang and
Sparsity Top-5 9274 9035 Tu, 2020b). Semi: Arc-Factored VAE Semi (Wang and
Top-7 9279 9045 Tu, 2020b). TreeCRF: (Zhang et al., 2020).
Temp-(Tyrig, Tadw) | HeadSelect-(0.3,2) | 92.60 90.19
Sparsity ExactComp-(0.3,2) | 92.82 90.45 10%+90% 30%+70% 50%+50%
. . . HeadSelect-(1,1) 92.23 94.65 95.11
Table 3 ReSl.lltS on Test data for a typical semi- WIO | —— Comp(1.1) 9336 94.66 95.47
supervised setting — 10% labeled WSJ+90% unlabeled w | HeadSeleci-(0.3,2) 92.60 94.83 0531
WSJ. W/O Sparsity: Without Sparsity Adjustment. Re- ExactComp-(0.3,2) 92.82 94.85 95.47

sult with a star * are reported by Wang and Tu (2020b).

UAS

Supervised Learning
Zhang et al. (2020) | 95.82

Semi-supervised Learning

Approach

Top-3 95.92
ExactComp-(1,1) | 95.99
ExactComp-(0.3,2) | 95.84

Table 4: UAS Results on Test data for the semi-
supervised setting — WSJ+BLIIP650k.

the value of K is too small, the model loses the
benefit of expressiveness. As Tab. 5 illustrates,
value of K = 3 leads to the best parsing accuracy,
while other values produce lower parsing accuracy
probably because of inappropriate sparsity degrees.

6 Analysis
6.1 Ablation Study

In this section we study the effectiveness of our
two sparsity adjustment on different settings: ex-
act computation to ease the computation errors
and sparsity adjustment to add a prior of spar-
sity property. As show in Tab. 6, the sparsity
adjustment is not only successfully applied on low-
resource setting, namely the 10%WSJ+90%WSJ
setting, but also works on other settings (i.e.,
30%WSJ+70%WSJ and 50%WSJ+50%WS]J).
Exact computation is capable of improving
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Table 6: With Sparsity vs. Without Sparsity. in various
semi-supervised setting. W/O: W/O Sparsity. W: Temp-
(Torig:Tadv). X%+Y %: X% labled WSJ+Y % unlabled
WSI.

the parsing result on all the settings (includ-
ing 10%WSJ+90%WSJ, 30%WSJ+70%WSJ and
50%WSJ+50%WSIJ). It shows that the model takes
advantage of eliminating the approximation prob-
lem. When simultaneously combining the sparsity
adjustment and the sparsity adjustment, we observe
a further improvement on the final result in the
ExactComp-(0.3,2) row.

We provide other results, including inspection of
non-sparse problems and speed comparison, in the
Appendix.

7 Conclusion and Further Work

In this paper, we propose Sparse Parse Adjustment
algorithm (Spa). We successfully applied VAT
to the dependency parsing task using this Spa al-
gorithm. We use Spa to enhance the TreeCRF
parser with exact computation and sparsity adjust-
ment. Further empirical study indicates that Spa
has strong effects in semi-supervised settings and
time and space efficiency. Furthermore, this ap-
proach has broad applications on other structured
prediction tasks. The exact computation for the
TreeCRF can be easily transferred to general struc-
tured prediction architectures, e.g., LinearChain-
CRF. We will leave it as a further work.
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A Hyper-Parameters Setting

We adopt most hyperparameters of the TreeCRF
parser (Zhang et al., 2020). We only list parameters
different from them and VAT-specific parameters
in Table 7.

Name ‘ Value
Base model
Maximum epochs | {200,100 + 100}
VAT-specific
Update steps for dy,, d.
Q@
¢ in Miyato et al. (2018) 0.5
€ in Miyato et al. (2018) 0.1
Normalization on Token
Temperature of p, q {0.3,0.7,1,2}

Table 7: Hyper-parameters of our methods.
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B Other Results
B.1 Speed Comparison

Computing the 7op-K distribution cost more and
time than our exact computation, since the former
has to record the Top- K candidates at each step in
the routine. We report the training time per epoch
of several methods (Tab. 8) on WSJ(10%/90%)
running on one Nvidia RTX3090.

Method \ Time/epoch
Supervised 27s
HeadSelect-(1,1) 1min9s
Top-3 2min36s
ExactComp-(1,1) Imin41s

Table 8: Training speed of Top-K and our exact compu-
tation with batch size 64.

B.2 Analysis of Sparsity

We conduct an experiments about the motivation of
sparsity adjustment. Fig.2 shows the number of the
gold parse tree in the Top-K beams. We can see that
most of the gold parses are existed in the Top-10
parse trees. Quantitatively, we find that the number
of the parses increase roughly before 4. After K
reaches a large number, e.g., 7, the leaning may
not be easy. This observation is consistent with our
empirical experiments and further suggests that nat-
ural language parsing are indeed should be adjusted
in favor of sparsity.

1| 6—o—= Sl
—O&— Correct-WSJ(100%)
—— Wrong-WSJ(100%)
Correct-WSJ(10%)
Q —@— Wrong-WSJ(10%)
S 0.5 | I
~

T T T T T T
123456728910

Top-K
Figure 2: Correct-*: #(all arcs of Top-K trees n gold
arcs) / #tokens. Wrong-*: #(all arcs of Top-K trees -
gold arcs) / #tokens. *-WSJ(100%)/*-WSJ(10%): the

model train on the full/10% WSJ training set. We only
count sentences with length> 5.
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Abstract

In this paper, we describe KreolMorisienMT, a
dataset for benchmarking machine translation
quality of Mauritian Creole. Mauritian Cre-
ole (Kreol Morisien) is a French-based creole
and a lingua franca of the Republic of Mauri-
tius. KreolMorisienMT consists of a parallel
corpus between English and Kreol Morisien,
French and Kreol Morisien and a monolingual
corpus for Kreol Morisien. We first give an
overview of Kreol Morisien and then describe
the steps taken to create the corpora. There-
after, we benchmark Kreol Morisien<>English
and Kreol Morisien<»French models leverag-
ing pre-trained models and multilingual trans-
fer learning. Human evaluation reveals our sys-
tems’ high translation quality.

1 Introduction

Creoles! are natural languages that develop from
the simplifying and mixing of different languages
into a new one within a fairly brief period of time.
Most creoles are highly related to a widely spoken
language, and in this paper, we focus on Mauritian
Creole, which is a French based creole. Mauritian
Creole, or Kreol Morisien, is widely spoken in the
republic of Mauritius by approximately 1.2 million
people. Kreol Morisien is an important language
from the perspective of tourism because Mauri-
tius is a country well known for its tourism indus-
try. Therefore, enabling tourists and locals to eas-
ily communicate with each other should not only
help the tourism industry, but also improve cultural
understanding. Machine translation of Creoles is
quite under researched, mainly due to the lack of
publicly available datasets. Although research has
been conducted on Kreol Morisien translation in
the past (Dabre et al., 2014; Boodeea and Pudaruth,
2020), datasets were not released publicly, making
it difficult to reproduce and continue research.

"https://en.wikipedia.org/wiki/Creole_
language
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In this paper, we describe KreolMorisienMT, a
dataset containing standardized evaluation sets for
benchmarking Kreol Morisien<>English and Kreol
Morisien<+French translation. We first give an
overview of Kreol Morisien followed by the de-
scription of the dataset creation process. We then
use the evaluation sets to benchmark strong Neu-
ral machine translation (NMT) (Bahdanau et al.,
2015) baselines trained using the created parallel
corpora. We mainly rely on transfer learning (Zoph
et al., 2016) through multilingual (Dabre et al.,
2020) fine-tuning of pre-trained models based on
mBART. By leveraging transfer learning, we can
obtain a translation quality of about 23-25 BLEU
for Kreol Morisien—English and about 20-23 BLEU
for Kreol Morisien—French. We manually evalu-
ate translations to better understand the impact of
transfer learning. Our results show that there is
significant room for innovation for Kreol Morisien
NMT and Kreol Morisien NLP in general. Our
datasets, models and human evaluation annotations
are publicly available?.

2 Related Work

This paper mainly focuses on the creation of
datasets for under resourced languages, specifically
creoles, as well as leveraging multilingualism and
transfer learning to improve translation quality.
Mauritius is a part of East Africa, and Kreol-
MorisienMT falls under the broad area of research
focusing on African language machine translation.
The Masakhane® community heavily focuses on
African language NLP (Nekoto et al., 2020), a
heavily under resourced area. With regard to creole
translation, Haitian creole was the first creole lan-
guage to receive substantial attention (Lewis, 2010)
and was featured in a WMT shared task*. Work

https://github.com/prajdabre/
KreolMorisienNLG

Shttps://www.masakhane.io/

*https://www.statmt.org/wmt1l/

Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 22-29
November 20-23, 2022. ©2022 Association for Computational Linguistics



French | Kreol Morisien English
avion avion airplane
bon bon good
gaz gaz gas
anormalité anomali abnormality
colere koler anger
méditation meditasion meditation

Table 1: Similarities (top half) and differences (bottom
half) between English, French and Kreol Morisien.

on Kreol Morisien itself was focused on a bit later
by Sukhoo et al. (2014), Dabre et al. (2014), and
Boodeea and Pudaruth (2020) but unlike us, they
did not release their datasets. Motivated by work
on Cree (Teodorescu et al., 2022), we decided to
focus on the creation of publicly available standard-
ized datasets for Kreol Morisien to/from English
and French translation. On a related note, Lent
et al. (2021) work on language models for Nigerian
Pidgin and Haitian creole.

Kreol Morisien is a low-resource language
where multilingualism (Dabre et al., 2020; Firat
et al., 2016) and transfer learning approaches in-
volving fine-tuning (Zoph et al., 2016) are most
relevant. Self-supervised pre-trained models such
as mBART (Liu et al., 2020) can be used, but they
are not explicitly trained on Kreol Morisien. How-
ever, Dabre et al. (2022) showed that mBART like
pre-trained models can be useful for unseen related
languages, and we explore this possibility in this pa-
per. Once strong baselines are trained, approaches
such as back-translation (Sennrich et al., 2016) may
be used to further improve translation quality, but
we do not explore this given our limited size of
monolingual corpus for Kreol Morisien.

3 Kreol Morisien

Kreol Morisien is spoken in Mauritius and Ro-
drigues islands, and a variant is also spoken in
Seychelles. Mauritius was colonized successively
by the Dutch, French and British. Although the
British took over the island from the French in the
early 1800, French remained as a dominant lan-
guage and as such Kreol Morisien shares many
features with French.

featured-translation-task.html
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3.1 Kreol Morisien, English and French
Similarities

Table 1 contains examples of words from French,
Kreol Morisien and English. The same alphabet is
used for all 3 languages, and in several cases words
are either written or pronounced similarly. There
are several words that are either identical, nearly
identical or cognate pairs (Kanojia et al., 2020)
between the 3 languages such gaz (gas) avion (air-
plane), bon (good), etc. On the other hand, despite
similar pronunciations, in written French there is
a heavy usage of accents which is absent in Kreol
Morisien. An example is anormalité in French,
which stands for anomali in Kreol Morisien mean-
ing abnormality.

3.2 Kreol Morisien Grammar

The grammar of Kreol Morisien has been pub-
lished in 2011 by Daniella Police-Michel in the
book Gramer Kreol Morisien (Police-Michel et al.,
2012). Kreol Morisien sentence structure follows
the subject-verb-object order, the same as English
and French. However, some similarities and dif-
ferences with English and French can be noted as
follows:

Adjective placement: Like French but unlike En-
glish, adjectives are sometimes placed after the ob-
ject rather than before. The brown bird is translated
as: Zwazo maron-la. Here, maron stands for brown
and is moved after the object (Zwazo). The article
la which stands for the is moved at the end of the
sentence. On the other hand, the French translation
would be L’oiseau maron which shows that Kreol
Morisien is more grammatically similar to French
in terms of adjective placement but differs in terms
of article placement.

Singular-plural forms: Singular and plural forms
are different between English and Kreol Morisien.
There are many birds is translated as Ena boukou
zwazo where the plural form zwazo does not take
the suffix s as in English. Instead, the word boukou
indicates many and therefore, it can be deduced
that there are many birds. In French, the trans-
lated sentence is Il y a beaucoup d’oiseaux which
has the same grammatical construction as in Kreol
Morisien.

Verb dropping: Verbs are sometimes dropped in
Kreol Morisien. He is bad is translated as Li move
where He is translated to Li and bad to move. The
verb is is dropped. Furthermore, in French, the
translated sentence becomes I/ est méchant, where



the verb is retained, indicating a difference from
Kreol Morisien.

4 KreolMorisienMT

KreolMorisienMT is a mixed-domain dataset
which was either created by manual translation
of parts of Kreol Morisien and English books or
by manual alignment of content in books that were
already translated.

4.1 Data Sources

Our major sources are the holy Bible and story
books. We used the online Bible from here’. Kreol
Morisien sentences were manually aligned to their
English and French counterparts to ensure high
quality. Similarly, we had at our disposal 5 story
books which were available in Kreol Morisien and
English. However since we did not have PDF equiv-
alents for most of the books, we ended up transcrib-
ing them. One such book which is available online
is The Flame Tree® but manual alignment was done
to ensure quality. We also created dictionaries, ba-
sic sentences and useful expressions manually from
scratch for all 3 languages which account for most
of the data. We expect dictionaries’ to aid language
learners. We included approximately 1500 basic
expressions covering the following cases:, greet-
ings, getting medical help, obtaining food from
restaurants or supermarkets, simple conversations
(weather, talking about oneself or others), money,
accommodation.

The basic expressions should be useful for lan-
guage learning as well as for use in a tourism
setting. Due to the lack of human capital, not
all content is translated into 3 languages, and
there is more Kreol Morisien—-English data than
Kreol Morisien—French data. There is also a
small amount of Kreol Morisien monolingual cor-
pus, which we extracted mainly from untranslated
books and online® articles. In the end, we ob-
tained 23,310 and 16,739 pairs for English—Kreol
Morisien and French—Kreol Morisien, respectively,
as well as 45,364 Kreol Morisien monolingual sen-
tences. The monolingual sentences are not in the

Shttps://www2.bible.com/en-GB/bible/
344/MAT.1.NTKM2009

®https://shawkutis.weebly.com/uploads/
1/9/7/4/19747661/flame_tree_lane_final.
pdf

"Google translate is often used as a dictionary and we
expect our dictionaries to enable out MT systems to act as
dictionaries too.

$https://www.lalitmauritius.org/
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English—Kreol Morisien

split L AL-s | AL-t | U-s U-t

train | 21,810 | 6.5 5.8 | 28,004 | 28,232
dev 500 169 | 16.2 | 2,330 | 2,164
test | 1,000 | 17.0 | 16.0 | 3,700 | 3,323

French-Kreol Morisien

split L AL-s | AL-t | U-s U-t

train | 15,239 | 2.6 2.0 | 16,171 | 16,754
dev 500 18.0 | 16.2 | 2,817 | 2,164
test | 1,000 | 18.0 | 16.0 | 4,566 | 3,323

Kreol Morisien Monolingual
split L AL -
- 45364 | 15.8 - 52,425 -

Table 2: Corpora statistics for KreolMorisienMT. L,
AL, U and -s/-t indicate #lines, average sentence length,
#unique words and source/target language, respectively.

Kreol Morisien side of the parallel corpus.

4.2 Dataset Statistics and Evaluation Splits

Of the 23,310 pairs for English—Kreol Morisien,
12,467 were dictionary entries. Similarly, for
French—Kreol Morisien, of 16,739 pairs 12,424
were dictionary entries. Since the main goal is
to develop translation systems that can translate
full sentences, we decided to choose the longest
sentences for the development and test sets. Fur-
thermore, we decided to have trilingual evaluation
sets following Guzmaén et al. (2019) and Goyal
et al. (2021). To this end, we first extracted a trilin-
gual corpus of 13,861 sentences, sorted the corpora
according to the number of words on the Kreol
Morisien side and chose the top 1,500 ones repre-
senting the longest sentences. We then randomly
chose 500 for the development set and 1,000 for the
test set, both of which are trilingual. We remove
the pairs from the English—Kreol Morisien, French—
Kreol Morisien and Kreol Morisien corpora that
overlap with the development and test set, result-
ing in 21,810, 15,239 sentence pairs and 45,364
sentences, respectively.

Table 2 contains an overview of the corpora. It
is evident that there is a big mismatch between
the length distributions of training and evaluation
sets, but we prioritize the evaluation of medium to
longer length sentences, so we have little choice.

S Experiments

We describe the experimental settings including
datasets used, training details, and models.



5.1 Datasets

In addition to the parallel corpora from Kreol-
MorisienMT, we use SM randomly sampled sen-
tence pairs from the UN corpus for French-English
(Ziemski et al., 2016) which we use for pre-
training a French<+English bidirectional NMT
model which we contrast with the mBART-50 pre-
trained denoising/MT models (Tang et al., 2021).

5.2 Training details

We train transformer (Vaswani et al., 2017) mod-
els using the YANMTT toolkit (Dabre and Sumita,
2021) which is based on the HuggingFace trans-
formers library (Wolf et al., 2020). We use the
training sets of KreolMorisienMT to create a joint
English, French, Kreol Morisien 16,000 sub-words
tokenizer using sentencepiece (Kudo and Richard-
son, 2018) for all our experiments except for fine-
tuning mBART-50 based models. We do not extend
the mBART-50 vocabulary. We tune hyperparame-
ters as applicable (See Appendix A). Multilingual
models are trained using the language indicator to-
ken proposed by Johnson et al. (2017). All models
are trained to convergence on the relevant develop-
ment sets, where convergence is said to take place if
the development set BLEU score does not increase
for 20 consecutive evaluations. BLEU scores are
calculated using sacreBLEU with default param-
eters (Post, 2018). For decoding, we choose the
model checkpoint with the highest validation set
BLEU score and use a default beam size of 4 and
length penalty of 0.8.

5.3 Models trained

We train and evaluate models for Kreol Morisien
to English, English to Kreol Morisien, French to
Kreol Morisien and Kreol Morisien to French. For
each direction, we train:

Scratch: Unidirectional models.

Fine-tuned: Unidirectional and multilingual mul-
tiway models. We use 3 types of pre-trained mod-
els: our own English«>French models, denoising
mBART-50 and its many-to-many fine-tuned ver-
sion for MT from Tang et al. (2021).

6 Results

Table 6 compares unidirectional and multiway mod-
els trained from scratch and via fine-tuning.

Baselines: Owing to the tiny training set, most
of which is a dictionary, unidirectional baseline
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Direction
Type PT cr-en | en-cr | cr-fr | fr-cr
Uni - 9.1 9.9 4.6 5.6
Multi - 11.1 115 | 79 9.3
Uni | Fr<En | 229 | 226 | 17.9 | 19.2
Multi | Fr<+En | 22.7 | 225 | 199 | 224
Uni | MB-D | 21.5 | 20.1 | 154 | 164
Multi | MB-D | 22.3 | 20.8 | 18.3 | 21.0
Uni MB-T | 243 | 22.0 | 19.0 | 19.8
Multi | MB-T | 24.9 | 22.8 | 204 | 22.8

Table 3: Unidirectional (Uni) and Multiway (Multi)
model sacreBLEU scores with and without pre-training
(PT) for translation involving Kreol Morisien (cr), En-
glish (en) and French (fr). Pre-trained models are: our
own (Fr<+En), mBART-50 denoising (MB-D), and the
many-to-many fine-tuned version of mBART-50 (MB-
T) from Tang et al. (2021).

models without any pre-training show poor perfor-
mance of <10 BLEU. This is especially the case for
translation involving French and Kreol Morisien.
However, multiway models improve by up to 3.5
BLEU indicating the value of multilingualism.
Fine-tuning: Both unidirectional and multilingual
fine-tuning of the French<»English model trained
on the UN corpus as well as the mBART-50 models
leads to large improvements of >10 BLEU com-
pared to their baseline counterparts. Especially, the
performance of fine-tuning the mBART-50 models
is impressive. mBART-50"s vocabulary does not
explicitly cover Kreol Morisien, but models fine-
tuned on them still are comparable to or even out-
perform the French<+English model, which does.
This shows the impressive power of massively mul-
tilingual models.

Denoising vs Translation Pre-training: Com-
paring the results of fine-tuning on the mBART-
50 denoising model (MB-D) and its many-to-
many translation version (MB-T) as well as the
French<+English model (Fr<+En), we can see that
in the absence of Kreol Morisien monolingual cor-
pora for denoising pre-training, it is better to con-
sider translation models for fine-tuning. However,
denoising models perform reasonably well.

6.1 Human Evaluation

We randomly sample 50 examples from the test
set for each translation direction and ask a native
speaker of Kreol Morisien, French and English to
rate the adequacy and fluency (Snover et al., 2009)
of translations on a scale of 1 to 5. Additionally,



Input Ena mem ki tom lor bann serviter, maltret zot e touy zot.
Reference | Others grabbed the servants, then beat them up and killed them.
Baseline Some have been agreed on those servants, and they are murdered.
Fine-Tuned | Some people even fall on servants, maltreat them and kill them.
Input “E natirelman mo prezant mo bon kamarad, Mourgat”, Madam Ourit finn kontinie.
Reference | Mrs Octopus continued, “And naturally, I present my good friend Mr Squid”.
Baseline “Hey, I've got a good friends, Mr Octopus.”
Fine-Tuned | “Hey obviously I present my good friend, Squid”’, Mrs Octopus went on.
Table 4: Examples for Kreol Morisien to English translation.

Direction | Adequacy | Fluency | #Perfect In the second example, taken from a story book,
cr-en 3.44 4.44 26 and the baseline system completely mistranslates
en-cr 3.73 4.35 40 the Kreol Morisien sentence. However, the fine-
cr-fr 2.64 3.70 12 tuned model, except for the placement of the phrase
fr-cr 3.30 4.24 26 Mrs Octopus went on to the end of the sentence

Table 5: Adequacy, fluency and number of perfect trans-
lations out of 50 examples rated by a native speaker.

we ask the speaker to mark perfect translations.
Due to lack of human power, we only evaluate
the best system from Table 3. Annotations are in
our public repository. Table 5 contains the results.
Comparing Tables 3 and 5, the human evaluation
scores appear to be correlated with BLEU. Kreol
Morisien to French translation was rated to be of
poorer quality compared to other directions. This
can be attributed to the smaller training data size,
the higher linguistic complexity of French than
Kreol Morisien. Additionally, more than half of
the translations were rated perfect with room for
improvement. This shows that BLEU might under-
estimate the quality of translations.

6.2 Translation Examples

Table 4 contains examples generated by our MT
systems for Kreol Morisien to English translation.

In the first example, taken from the holy Bible,
the baseline system mistakes the act of grabbing
the servants for agreeing with the servants and
misses the part where the servants are beaten up.
On the other hand, the fine-tuned model manages to
capture both phenomenon properly. Both systems
make the mistake of translating others as some, but
this is understandable because a translation of the
word ena in Kreol Morisien in English is some.
The fine-tuned system also uses the word maltreat
instead of beat and while this does reduce the ad-
equacy of the translation, the general meaning is
conveyed properly.
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and the imprecise translation of natirelman to obvi-
ously, translates almost perfectly. In the reference,
Mrs Octopus continued is at the beginning of the
sentence, and in the translation, Mrs Octopus went
on is at the end of the sentence. The equivalent of
Mrs Octopus went on in Kreol Morisien, Madam
Ourit finn kontinie, is also at the end of the sentence
and this explains the positioning in the translation.
Multiple references and metrics may help in better
evaluation by not penalizing such translations.

7 Conclusion

We have presented KreolMorisienMT, a dataset
for machine translation between Mauritian Creole
(Kreol Morisien) to/from English and French. Our
datasets contain dictionary and sentence pairs be-
longing to a mix of domains and their sizes range
from roughly 17,000 to 23,000 pairs. We also
provide a monolingual corpus for Kreol Morisien
containing about 45,000 sentences. We conduct
translation experiments using KreolMorisienMT
in conjunction with large English—French corpora
and mBART-50 pre-trained models, leading to im-
provements of up to 15 BLEU, despite most of
the training data being dictionary pairs. Adequacy
and Fluency based human evaluation indicates high
translation quality, despite BLEU scores being in
the range of 20 to 25, indicating the need for better
metrics. In the future, we plan to expand Kreol-
MorisienMT with additional data as well as on ad-
ditional generation tasks for Kreol Morisien. The
Kreol Morisien monolingual corpus will be used in
the future to extend pre-trained denoising models
via light-weight adapter pre-training (Ustiin et al.,
2021).
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A Training and Hyperparameter Tuning
Details

Models trained from scratch use the transformer-
base architecture (Vaswani et al., 2017) whereas the
French<+English model uses the transformer-big
architecture. For models trained from scratch and
those fine-tuned on our French<>English models,
we varied the dropout, label smoothing and ADAM
optimizer learning rates. Dropout values we consid-
ered were 0.1, 0.2 and 0.3. Label smoothing values
considered were 0.1, 0.2 and 0.3. Learning rate val-
ues we considered were 1073, 3%1073, 10~* and
3*10~%. We found that the optimal dropout, label
smoothing and learning rate values were 0.2, 0.2
and 1074, respectively. For fine-tuning mBART-
50 and the many-to-many fine-tuned version of
mBART-50 from Tan et al. (2019), we found that
learning rate of 3*10~?, label smoothing of 0.1 and
dropouts of 0.3 worked best. For pre-training our
French<+English model, we use a learning rate of
10~3, dropout of 0.1 and label smoothing of 0.1.
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Abstract

Algorithms for text-generation in dialogue can
be misguided. For example, in task-oriented
settings, reinforcement learning that optimizes
only task-success can lead to abysmal lexical di-
versity. We hypothesize this is due to poor the-
oretical understanding of the objectives in text-
generation and their relation to the learning pro-
cess (i.e., model training). To this end, we pro-
pose a new theoretical framework for learning
to generate text in dialogue. Compared to exist-
ing theories of learning, our framework allows
for analysis of the multi-faceted goals inher-
ent to text-generation. We use our framework
to develop theoretical guarantees for learners
that adapt to unseen data. As an example, we
apply our theory to study data-shift within a co-
operative learning algorithm proposed for the
GuessWhat?! visual dialogue game. From this
insight, we propose a new algorithm, and empir-
ically, we demonstrate our proposal improves
both task-success and human-likeness of the
generated text. Finally, we show statistics from
our theory are empirically predictive of mul-
tiple qualities of the generated dialogue, sug-
gesting our theory is useful for model-selection
when human evaluations are not available.

1 Introduction

Generating coherent, human-like text for dialogue
remains a challenge. Yet, it is an inseparable
component of open domain and task oriented dia-
logue systems like Alexa and Siri. Undoubtedly,
it is also a complex process to learn. Generation
based on classification (e.g., next-word prediction)
over-emphasizes the likelihood of text, leading to
bland qualities, which are not human-like (Holtz-
man et al., 2019). Meanwhile, framing dialogue
generation as a Markov decision process is highly
data-inefficient when compared to classification
(Kakade, 2003). Further, without careful design of
rewards, models can suffer from mode-collapse in
dialogue, producing repetitive behaviors that are
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not human-like (Shekhar et al., 2019). Even care-
fully designed rule-based systems are brittle in the
presence of unforeseen data-shift.

Theoretical analyses of learning are imperative
as they provide solutions to these issues. For ex-
ample, traditional (PAC) learning theory (Valiant,
1984) studies similar issues arising from computa-
tional algorithms for learning to classify. Progress
in our understanding has been impressive, ranging
from comprehensive guarantees on data-efficiency
(Shalev-Shwartz and Ben-David, 2014) to insights
for algorithm-design when the learner is faced with
data-shift (Zhao et al., 2019; Zhang et al., 2019b;
Tachet des Combes et al., 2020). While traditional
theory may be applicable to simple generation ob-
jectives like next-word prediction, it is unfortu-
nately unable to model more diverse goals. That is
to say, it is insufficient to study replication of the
diverse qualities inherent to human dialogue.

The goal of this paper is to provide a new the-
ory for analyzing the multi-faceted objectives in
computational learning of dialogue generation. In
particular, we propose LEATHER! based on existing
theories of computational learning. We demon-
strate the utility of LEATHER with a focus on under-
standing data-shift in learning algorithms. We also
show empirical results for a task-oriented visual
dialogue game. In detail, we contribute as follows:
1. In Section 3, we propose LEATHER, our novel
theory for computational learning of dialogue
generation. We use the GuessWhat?! visual dia-
logue game (De Vries et al., 2017) as an exam-
ple to ground abstract terminology in practice.
We conclude Section 3 by applying our theory
to analyze a cooperative learning algorithm for
GuessWhat?!. Our theory unveils harmful shifts
in data-distribution that occur during training.
In Section 4, we use LEATHER to study the gen-
eral problem of data-shift in text-generation. We
provide new theoretical study that characterizes

"LEAmning Theory for Human-like dialogue genERation
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Human
Is it a car?

Is it the main
black one?

(CL) Cooperative Learning
[ ) Isitaperson? | No |

4) Is it the one closest
to the camera that is
cut off by the right side
of the picture??

5) Do | need to m

click on his face?

6) Do | need to

click on his face?
7) Do you see more
than one car?

8) Do | have to click any
specific part of the car? -

Theoretical Analysis Example

Human CL ‘
Questions Questions
1
|

LEATHER
Questions

Yes

1) Is it a person? | No ]
2)Isita car?

3) Is it the one closest
to the camera?

5) Is it the one
closest to the curb?

4) Is it all the way
to the left?

(LEATHER) Cooperative Learning with Regularization by Human Data

6) So, it’s the black one, not
the one that is half visible? 1

7) So, it’s the car right behind
the man with the white shirt?

8) Is it the
entire car?

~—

|100- 50| = 50 > 12.5 = | 100 — 87.5]

Figure 1: Examples of human and generated dialogue with original cooperative learning algorithm CL (Shekhar et al., 2019) and
our learning algorithm motivated by our theory (LEATHER). Roughly, LEATHER works by applying a series of tests to generated
dialogue and comparing the test results across the human and generated dialogue. Well-generated dialogue is expected to perform
similarly to human dialogue on these tests. The example tests the % of relevant questions. Compared to CL, LEATHER asks more
relevant questions and therefore behaves more human-like. Aggregate empirical results in Section 5 echo this trend.

statistical energy as an effective empirical tool
for quantifying the impact of data-shift. Aptly,
to conclude Section 4, we use energy to mo-
tivate an improved learning algorithm for our
running example — the GuessWhat?! game.

. In Section 5, empirically, we demonstrate the
benefits of our LEATHER-inspired algorithm com-
pared to common baselines. Importantly, we
also show our proposed statistic (energy) is pre-
dictive of the quality of generated dialogue; i.e.,
we exhibit a linear relationship. This suggests
LEATHER is useful, not only as a theoretical tool
for algorithm design, but also as an empirical
tool for model-selection.

Our framework is publicly available through ex-
perimental code and a Python package.?

2 Related Works

Theories of Learning to Generate Text Most
widely, text-generation is framed as a classification
problem, in which a model predicts the next word
provided existing context (e.g., previous words).
While common PAC learning analyses do apply
to classification, this theory only describes the
learner’s ability at the next-word prediction task. In
some specific cases, instead, PAC analysis has also
been used to analyze high-level objectives and moti-
vate conversational strategies (Sicilia et al., 2022b),
but this analysis is problem-dependent. In contrast,
our work offers a general problem-independent for-
malism for studying high-level qualities of gener-
ated text. Another frequent formalism comes from
partially observable Markov decision processes
(POMDPs) used to motivate reinforcement learn-

2github .com/anthonysicilia/LEATHER-AACL2022
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ing. For example, see Strub et al. (2017). While
POMDPs remedy the issues of typical PAC anal-
ysis by supporting implementation of high-level
objectives, as we are aware, there are no empiri-
cally verified theoretical studies of learning under
data-shift in POMDPs. In contrast, we demonstrate
LEATHER admits such a theory of learning, using
it to predict the human-likeness of generated text
under data-shift (where POMDPs fall short).

Theories of Learning with Data-Shift Early
learning theoretic models of data-shift in classi-
fication and regression are due to Ben-David et al.
(2010a,b) and Mansour et al. (2009). While mod-
ern approaches are generally similar in spirit, new
statistics incorporate increasing information about
the learning algorithm (Lipton et al., 2018; Kuroki
et al., 2019; Germain et al., 2020; Sicilia et al.,
2022a). Ultimately, such techniques tend to im-
prove the predictive capabilities of a theory in prac-
tical application (Rabanser et al., 2019; Atwell
et al., 2022). Diverse additional approaches to de-
scribing the impact of data-shift have also been
proposed, for example, using integral probability
metrics (Redko et al., 2017, 2020; Shen et al., 2018;
Johansson et al., 2019). Unfortunately, existing
works focus on classification and regression which,
as discussed, are not directly applicable to dialogue
generation. Further, this theory does not easily ex-
tend to generation (see Section 3.3). Ultimately,
using LEATHER, our work derives a new statistic (en-
ergy) for predicting changes in model performance,
which is applicable to dialogue generation.

Evaluation of Generated Text There are many
automated metrics for evaluation of generated text
including metrics based on n-grams such as BLEU



(Papineni et al., 2002), ROUGE (Lin, 2004), and
CIDEr (Vedantam et al., 2015). Automated metrics
based on neural models are also becoming more
prevalent including BLEURT (Sellam et al., 2020),
BertScore (Zhang et al., 2019a), and COSMic (Inan
et al., 2021). Bruni and Fernandez (2017) propose
use of an adversary to discriminate between hu-
man and generated text, evaluating based on the
generator’s ability to fool the adversary. Human
annotation and evaluation, of course, remains the
gold-standard. Notably, our proposed framework
encapsulates these techniques, since it is suitable
for analyzing the impact of the learning process
on all of these evaluation strategies and more (see
Section 3 for examples).

3 Theory with Examples

In this section, we develop our new theoretical
framework. To assist our exposition, we use the
GuessWhat?! visual dialogue game — a variant of
the child’s game / Spy — as a running example. We
first describe the game along with our modeling
interests within the game. We continue with a de-
scription of our theory and then apply this theory to
analyze an algorithm that learns to play the game.

3.1 GuessWhat?! Visual Dialogue Game

An image and goal-object within the image are
both randomly chosen. A question-player with
access to the image asks yes/no questions to an
answer-player who has access to both the image
and goal-object. The question-player’s goal is to
identify the goal-object. The answer-player’s goal
is to reveal the goal-object to the question-player
by answering the yes/no questions appropriately.
The question- and answer-player converse until the
question-player is ready to make a guess or at most
m questions have been asked.> The question-player
then guesses which object was the secret goal.

Notation for Human Games To discuss this
game within our theoretical framework next, we
provide some notation. We assume the possible
questions, answers, and objects are respectively
confined to the sets Q, A, and 0. We also as-
sume a set of possible images Z. A game be-
tween two human players can be represented by
a series of random variables. The image-object
pair is represented by the random tuple (7, O).
The dialogue between the question- and answer-
player is represented by the random-tuple D =

3By default, m = 8 following Shekhar et al. (2019).
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(Q1,A41,...,Qp, Ap) with some random length
P < m. Each @Q; is a random question taking
value from the set Q and each A; is a random an-
swer from the set A.

Notation for Modeled Games From a modeling
perspective, in this paper, we focus on the question-
player and assume a human answer-player. We
consider learning a model that generates the ran-
dom dialogue D = (Ql,fll, .. Qm,flm) along
with a predicted goal object O.* For example, con-
sider the model of Shekhar et al. (2019) we study
later. It generates dialogue/predicted goal as below:

O = Gues, (Encs(I, D))

. A - A - (1)
Qit+1 = QGeny(Encg (I, Q1, A1, ... Qi, Ai)

where, aptly, the neural-model QGeny : RY — Qs
called the guestion-generator and the neural-model
Gues, : RY — O is called the object-guesser. The
final neural-model Encg : 7 x (Q x A)* — R% is
called the encoder and captures pertinent features
for the former models to share. Subscripts denote
the parameters of each model (to be learned).

Modeling Goals There are two main objectives
we consider. The first is task-oriented:

ming g E[1{O # 0}] )

which requires the predicted goal-object align with
the true goal. The second objective is more elusive
from a mathematical perspective: the generated dia-
logue D should be human-like. That is, it should be
similar to the human dialogue D. As we see next,
our theory is aimed at formalizing this objective.

3.2 Theoretical Framework (LEATHER)

Now, we present our proposed theory with exam-
ples from the GuessWhat?! game just discussed.

3.2.1 Terminology

Sets Assume a space C, which encompasses the
set of dialogue contexts, and a space D, which
encompasses the set of possible dialogues. In gen-
eral, the structure of these sets and representation
of elements therein are arbitrary to allow wide ap-
plicability to any dialogue system. For particular
examples, consider the Guess What?! game: ¢ € C
is an image-goal pair and d € D is a list of question-
answer pairs. Note, we also allow an additional,
arbitrary space U/ to account for any unobserved
effects on the test outputs (discussed next).

*Notice, although the answer-player is still human, the
answers may follow a distinct distribution due to dependence

on the questions, so we demarcate this difference by 0.



Test Functions To evaluate generated text, we
assume a group of fixed test functions {h; ... hr}
where for each ¢ € [L] the function hy : D x U —
[0, 1] assigns a [0, 1]-valued score that character-
izes some high-level property of the dialogue. For
example, a test function might be a binary value
indicating presence of particular question-type, a
continuous value indicating the proportion of clari-
fication questions, a sentiment score, or some other
user-evaluation. A test function can also be an au-
tomated metric like lexical diversity, for example.

Random Outputs As noted, the space U/ primar-
ily allows the test hy to exhibit randomness due to
unobserved effects. For example, this is the case
when our test function is a human evaluation and
randomness arises from the human annotator. To
model this, we assume an unknown distribution U
over U, so that for U ~ U and dialogue d € D, the
score hy(d, U) is a random variable. In general, we
do not assume too much access to this randomness,
since sampling from U can be costly; e.g., it can
require recruiting new annotators or collecting new
annotations. Note, U can also be used to encapsu-
late additional (observable) information needed to
conduct the test h, (e.g., a reference dialogue).

Goal Distribution Next, we assume a goal distri-
bution G over the set of contextualized dialogues;
i.e., context-dialogue pairs in C x D. Typically, G
is the distribution of contextualized dialogues be-
tween human interlocutors. In the GuessWhat?! ex-
ample, G is the distribution of the random, iterated
tuple ((1,0), D). Recall, I is the random image
and O is the random goal-object, which together
form the context. D = (Q1,A;1...Qp,Ap) is
the variable-length tuple of question-answer pairs
produced by humans discussing the context (1, O).

Dialogue Learner and Environment We also
assume some dialogue learner parameterized by
6 € R?. The learner may only partially control
each dialogue — e.g., the learner might only con-
trol a subset of the turns in each dialogue — and
the mechanism through which this occurs is ac-
tually unimportant in the general setting; i.e., it
will not be assumed in our theoretical results. Ul-
timately, we need only assume existence of some

function (6, c) £, Py(c) where 6 are the learned
parameters, ¢ € C is the context, and Py(c) is a
distribution over dialogues D. In the GuessWhat?!
example discussed previously, the dialogue learner
is QGeny and the function E is implicitly defined
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by Eq. (1). In particular, we have D ~ Py(I,0)
where image I and object O are sampled from
the goal-distribution of contextualized dialogues
((I,0),D) ~ G. We call E the environment
of the learner and use sans serif in notation. In
the GuessWhat?! example, the environment can
change for a myriad of reasons: the answer-player
could change strategies (inducing a new answer-
distribution), the distribution of image [ could
change, or the distribution of the object O could
change. All of which, can impact the function

(0,¢) N Py(c). One implicit factor we encounter
later is the dependence of the environment E on the
encoder parameters 3 in Eq. (1). In discussion, we
may explicitly write Eg to denote this dependence.

Formal Objective of Learner As discussed be-
fore, the conceptual task of the dialogue learner
is to produce human-like text. To rephrase more
formally: the task of the learner is to induce a
contextualized dialogue distribution that is indis-
tinguishable from the the goal distribution. Un-
fortunately, this objective is made difficult by the
complexity of dialogue. In particular, it is unclear
what features of the dialogue are important to mea-
sure: should we focus on the atomic structure of
a dialogue, the overall semantics, or maybe just
the fluency? Surely, the answer to this question
is dependent on the application. For this reason,
we suggest the general notion of a test function.
Each test {h;...hr} can be hand selected prior
to learning to emphasize a particular goal for the
dialogue learner; e.g., as in Figure 1, h; can repre-
sent a user evaluation of question relevance, ho can
capture lexical diversity, etc. Then, the quality of
the contextualized dialogue distribution induced by
the dialogue learner is measured by preservation of
the output of the test functions. That is, the output
of test functions should be similar when applied
to human dialogue about the same context. We
capture this idea through the test divergence:

TDe(¥) =, TDE(®)
where TDE(0) = E[|he(D,U) — he(D,U)|],
(C,D) ~G, D ~Py(C), U ~ .

3

Notice, the test divergence is not only dependent
on the parameters of the dialogue learner, but also
the environment E which governs the distribution
Py(C). Recall, this function is induced by the
learner’s environment and its role in eliciting gen-
erated dialogue. Finally, with all terms defined, the



formal objective of the dialogue learner is typically
to minimize the test divergence:

ming TDg(0). 4

Example (BLEU/ROUGE) Useful examples of
test divergence are traditional evaluation metrics,
using a human reference — metrics like BLEU,
ROUGE, or accuracy at next-word prediction. To
see the connection, in Eq. (3), let L = 1, let h; be
one of the metrics, and set U = D. Then, h; (D, U)
computes some form of n-gram overlap between
the human reference and itself, so it evaluates to
1 (full overlap). On the other hand, hi(D,U ) is
the traditional notion of the metric (e.g., BLEU or
ROUGE). So, the test divergence simply becomes
1 minus the average of the metric. Notice, this ex-
ample shows how U can be used to encapsulate
observable (random) information as well.

Example (GuessWhat?!) We can also consider
a more complicated example in the GuessWhat?!
game. Here, Shekhar et al. (2019) evaluate the
human-likeness of dialogue with respect to the
question strategies. Specifically, the authors con-
sider a group of strategy classifiers s; : Q@ —
{0,1},7 € [L] which each indicate presence of
a particular strategy in the input question. For
example, s; might identify if its input is a color
question “Is it blue?” and so might identify if its
input is a spatial question “Is it in the corner?”.
Then, one intuitive mathematical description of the
question-strategy dissimilarity may be written

Above captures expected deviation in proportion
of color/spatial questions from the human- to the
generated-text. It also coincides with the definition
of test divergence. To see this, note the above is
Eq. (3) precisely when h; returns the proportion of
questions in a dialogue with type identified by s;.

Example (Human Annotation) Human annota-
tion is also an example, in which, human subjects
are presented with two dialogue examples: one ma-
chine generated and one from a goal corpus with
both dialogues pertaining to the same context. The
human then annotates both examples with a score
pertaining to the quality of the dialogue (e.g., the
relevance of questions as in Figure 1). So, h; is
represented by the annotation process, using U to
encapsulate any unobserved random effects. Then,
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the test divergence simply reports average absolute
difference between annotations.

3.3 Application to a GuessWhat?! Algorithm

In this next part, we apply the theory just discussed
to analyze a cooperative learning algorithm (CL)
proposed by Shekhar et al. (2019). Recall Eq. (1),
CL generates dialogue/predicted goal as below:

O = Gues, (Encs(I, D))

. . . A (6)
Qi+1 = QGeng(Encg (1, Q1, A1, ... Qi, Ai)

where QGeny is the question-generator, Gues,, is
the object-guesser, and Encg is the encoder.

CL Algorithm Conceptually, cooperative learn-

ing encompasses a broad class of algorithms in

which two or more independent model compo-
nents coordinate during training to improve each
other’s performance. For example, this can involve

a shared learning objective (Das et al., 2017). In

the algorithm we consider, Shekhar et al. (2019)

coordinate training of a shared encoder using two

distinct learning phases. Written in the context of
our theory, they are:

1. Task-Oriented Learning: Solve Eq. (2). Up-
date v and 3 to minimize E[1{O # O}].

. Language Learning: Solve Eq. (4). Update
¢ and 3 to minimize TDg,(0) where the test
measures accuracy at next-word prediction.

The two phases repeat, alternating until training

is finished. As is typical when training neural-

networks, the parameter weights are updated using
batch SGD with a differentiable surrogate loss. To
do so in the task-oriented learning phase, Gues,,
is designed to output probability estimates for each
object and the negative log-liklihood of this out-
put distribution is minimized. In the language
learning phase, QGeny is designed to output prob-
abilities for the individual utterances that compose
each question. Then, the surrogate optimization is:

mingng[ Z L(Qi+1,Q1‘,+1):| where

i+1<P
Qi1 = QGeng(Encs(1,Q1, A1 ... Qi, Ay)

@)

and £ sums the negative logliklihood of the individ-
ual utterances. Notice, a form of teacher-forcing
is used in this objective, so that the encoder and
question-generator are conditioned on only human
dialogue during the language learning phase. This
fact will become important in the next part.



Problem Importantly, the encoder parameters
5 are updated in both the task-oriented and lan-
guage learning phases. So, in the language learning
phase, the dialogue learner selects ¢ to minimize
the test divergence in cooperation with a particu-
lar choice of the encoder parameters — let us call
these 3°. Then, in the task-oriented learning phase,
the learned encoder parameters may change to a
new setting 3. Importantly, by changing the pa-
rameters in Eq. (1), we induce a new environment
Est # Egs, which governs a new generation pro-
cess. For brevity, we set T = Eg and S = Egs.
This change brings us to our primary issue: the
shift in learning environment does not necessarily
preserve the quality of the generated dialogue. In
terms of our formal theory, we rephrase:

TDs(6) = TD+ (). (8)

Without controlling the change in test divergence
across these two environments, it is possible the
two learning phases are not “cooperating” at all.

LEATHER-Inspired Solution In general, it is clear
equality will not hold, but we can still ask how
different these quantities will be. If they are very
different, the quality of the dialogue generation
learned in the language learning phase may de-
grade substantially during the task-oriented learn-
ing phase. More generally, the problem we see here
is a problem of data-shift. In learning theory, the
study of data-shift is often referred to as domain
adaptation. The test divergence on the environ-
ment S — in which we learn 0 — is referred to as the
source error, while the test divergence on the en-
vironment T — in which we evaluate ¢ — is referred
to as the target error. The tool we use to quantify
the change between the source error and the target
error is an adaptation bound, in which we find a
statistic A for which the following is true:’

TD+ () < TDs(0) + A. ©)

Then, we can be sure the error in the new environ-
ment has not increased much more than A. In this
sense, we say A is a predictive statistic because
it predicts the magnitude of the target error TD
from the magnitude of the source error TDs. To
put it more concisely, it predicts the change in error

The inequality is approximate because there are often
other statistics in the bound, but through reasonable assump-
tions, one statistic A is identified as the key quantity of interest.
These assumptions should be carefully made to avoid undesir-
able results (Ben-David et al., 2010b; Zhao et al., 2019).
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from source to target. When A is small, the change
should be small too or the target error should be
even lower than the source error. When A is large,
we cannot necessarily come to this conclusion. Im-
portantly, for A to be useful in practice it should
not rely on too much information. In dialogue gen-
eration, it is important for A to avoid reliance on
the test functions, since these can often encompass
costly sampling processes like human-evaluation.

As alluded in Section 2, many adaptation bounds
exist, but as it turns out, none of them are directly
applicable to dialogue generation contexts. This is
because, as we are aware, computation of all pre-
vious bounds relies on efficient access to the test
functions {h; ... hr} and samples U ~ U, which
is not always possible in dialogue. In particular,
these functions, along with the sampling process
U ~ U, might represent a time-consuming, real-
world processes like human-evaluation. For this
reason, in the next section, we prove a new adap-
tation bound with new statistic A, which does not
require access to the test functions.

4 Text-Generation under Data-Shift

Motivated by the GuessWhat?! example and algo-
rithm CL, we continue in this section with a general
study of domain adaptation for dialogue generation.
We begin by proposing a new (general) adaptation
bound for LEATHER. We then apply this general
bound to the GuessWhat?! algorithm CL, motivat-
ing fruitful modifications through our analysis.

4.1 A Novel Adaptation Bound for LEATHER
The Energy Statistic and Computation

Definition 4.1. For any independent random vari-
ables A and B, the discrete energy distance is de-
fined £01(A, B) equal to

2E[1{A # B}] - E[1{A # A'}] - E[1{B # B'}] (10)

where A’ is an i.i.d copy of A, B' is an i.i.d. copy of
B, and 1{-} is the indicator function; i.e., it returns
1 for true arguments and 0 otherwise.

The discrete energy distance is a modification of
the energy distance sometimes called the statistical
energy. It was first proposed by Szekely (1989)
and was studied extensively by Székely and Rizzo
(2013) in the case where A and B are continuous
variables admitting a probability density function.
In general, and especially in dialogue, this is not
the case. Aptly, our newly suggested form of the
energy distance is more widely applicable to any



variables A and B for which equality is defined.
While general, this distance can be insensitive, es-
pecially when A and B take on many values. To
remedy this, we introduce the following.

Definition 4.2. Let D be any set. A coarsening
function is a map ¢ : D — D such that ¢(D)
{c(d) | d e D} (D) < |D|.

Since D is likely an immensely large set, this
can make the signal 1{a # b} for a,b € D over-
whelming compared to the signal 1{a = b}, and
therefore, weaken the sensitivity of the discrete en-
ergy distance, overall. Coarsening functions allow
us to alleviate this problem by effectively “shrink-
ing” the set D to a smaller set. To do this, the role
of the coarsening function is to exploit additional
context to arrive at an appropriate clustering of the
dialogues, which assigns conceptually “near” dia-
logues to the same cluster. So, the choice of ¢(d)
should be a “good” representation of d, in the sense
that too much valuable information is not lost. As a
general shorthand, for a coarsening function ¢ and
variables A, B, we write

ec(A, B) = eo1(c(A), ¢(B)). (1)

In this paper, we implement c using the results of a
k-means clustering with details in Appendix A.

Adaptation Bound With these defined, we give
the novel bound. Proof of a more general version of
this bound — applicable beyond dialogue contexts
(e.g., classification) — is provided in Appendix B
Thm. B.1. Notably, our proof requires some tech-
nical results on the relationship between discrete
energy and the characteristic functions of discrete
probability distributions. These may also be of in-
dependent interest, outside the scope of this paper.

Theorem 4.1. For any € R% any coarsening
functionc : D — D, and all { € [L]

TDT(0) <7+ ¢+ TD5(0) + \/ec(D1, Do) x 6 (12)

where Dy ~ Pg(C) = T( C) Dy ~ Qp(C) =
5(070)7 (Cv D) ~ G U ~ [U,
1= Zz‘eﬁ 2} E(lhe(e(D:),U) = he(Ds, U)]]

g € argmin Z E[|f(c(D:),U) —

fE[O 1 DxuU

he(D, U]
where [0,1]7Y = {f | f:DxU—[0,1]}. (13)
0= 11 0 Bllale(D), U) = ha(D, V)]

i[xxec(v)‘g(m’ U) = he(z, U)\}

SFor simplicity, let Dy, D3, U be pairwise-independent.
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Unobserved Terms in Dialogue As noted, an
important benefit of our theory is that we need not
assume computationally efficient access to the test
functions {hy ... hr} or samples U ~ U. Yet, the

reader likely notices a number of terms in Eq. (12)

dependent on both of these. Similar to the tradi-

tional case, we argue that our theory is still predic-
tive because it is often appropriate to assume these
unobserved terms are small, or otherwise irrelevant.

We address each of them in the following:

1. The term ~ captures average change in test out-

put as a function of the coarsening function c.

Whenever ¢(D;) is a good representative of D;

(i.e., it maintains information to which Ay is

sensitive) v should be small.

The next term ¢ is the smallest sum of ex-

pected differences that any function of the coars-

ened dialogues ¢(D;) and the arbitrary random-
ness U can achieve in mimicking the true test
scores hy(D, U). Since the set of all functions
from D x U to [0, 1] should be very expressive,
this can be seen as another requirement on our
coarsened dialogues ¢(D;). For example, when
¢(D;) = D; =~ D this term can be close to zero.

When instead |¢(D)| is much smaller than |D|

(e.g., a singleton set), we expect ¢ to grow.

. The last term  can actually be large. Fortu-
nately, since J is multiplied by the energy dis-
tance, this issue is mitigated when the statistical
energy is small enough. Ultimately, the energy
is paramount in controlling the impact of this
term on the bound’s overall magnitude.

A Predictive Theory Granted the background
above, our discussion reduces the predictive aspect
of the bound to a single key quantity: the discrete
energy distance 8,;([)1, Dg). In particular, besides
the test divergence TDsg, all other terms can be
assumed reasonably small by proper choice of the
coarsening function, or otherwise controlled by the
statistical energy through multiplication. Note, the
first issue is discussed in Appendix A. Ultimately,
the main takeaway is that statistical energy plays
the role of A as discussed in Section 3.3.

4.2 A New Cooperative Learning Algorithm

With all theoretical tools in play, we return to the
algorithm CL and the problem raised in Section 3.3.

LEATHER-Motivated Modification Recall, we
are interested in quantifying and controlling the
change in error from source TDs(6) to target
TD+(0) across the training phases. Based on our
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Figure 2: Energy between training phases. Energy is predic-
tive of change in test divergence as desired. Dotted line is line
of best fit. Blue circles (CL) indicate use of only generated
dialogue in task-oriented learning phase. Orange triangles
(LEATHER) indicate regularization with human data.

theory, we know we should decrease the statistical
energy between dialogues to reduce this change.
That is, we should reduce the distance between
the generated dialogue distributions across learn-
ing phases. We hypothesize this may be done by
incorporating human dialogue in the task-oriented
learning phase. The encoder in CL sees no human
dialogue when forming the prediction O that is
compared to O during task-oriented learning — as
seen in Eq. (1), only the generated dialogue Dis
used. In contrast, the encoder sees only the human
dialogue D in the alternate language learning phase
—1i.e., as seen in the surrogate objective in Eq. (7).
We hypothesize this stark contrast produces large
shifts in the parameters 3° — (3! between phases.
Instead, we propose to regularize the task-oriented
learning phase with human dialogue as below:

min E[1[0 # O]] + E[1[0’ # O]]  where
of (14)
O’ = Gues,(Encs (1, D)),

((I ) 0)7 D ) ~G

and O is still as described in Eq. (1). Intuitively,
this should constrain parameter shift from 3° — 3¢,
thereby constraining the change in outputs of the
encoder, and ultimately constraining the change in
outputs of the question-generator, which is condi-
tioned on the encoder outputs. As the generated
dialogue distributions from distinct learning phases
will be more similar by this constraint, we hypothe-
size the penultimate effect will be decreased statis-
tical energy (i.e., since energy measures distance of
distributions). Based on our theory, reduced energy
provides resolution to our problem: test divergence
should be preserved from source to target.

5 Experiments

5.1 Cooperative Learning via LEATHER

Setup In general, we use experimental settings of
Shekhar et al. (2019) (e.g., hyperparameters, valida-
tion, etc.) with full details available in the code. CL
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denotes the original algorithm proposed by Shekhar
et al. (2019) (Section 3.3). LEATHER denotes our
LEATHER-inspired modification (Section 4.2).

Automated Metrics We report average accuracy
acc of the guesser module in identifying the true
goal-object across three random seeds as well as
average lexical diversity (lexdiv; type/token ra-
tio over all dialogues), average question diversity
(qdiv; % unique questions over all dialogues),
and average percent of dialogues with verbatim
repeated questions (repq). acc quantifies task-
success, while subsequent metrics are designed to
quantify human-likeness of the generated dialogue.
These metrics were all previously computed by
Shekhar et al. (2019) with details in their code.

Human Evaluation We asked two annotators to
help us further evaluate the results. Throughout the
process, human subject guidelines from the authors’
institution were followed and the task was approved
by our institution human subject board. The annota-
tors examined contextualized human dialogues and
generated dialogues from a CL model and LEATHER
model. All dialogues used the same image/goal
context and annotators observed all dialogues for a
specific context in random order without knowing
how each dialogue was created. Across 50+ dia-
logues, average percentage of irrelevant questions
per dialogue (irrq) was determined.” Average per-
centage of specific questions (spcq) was also de-
termined.® We report TD, which gives the average
difference in percentages from the corresponding
human dialogue. Sans scaling, these TD metrics
are examples of the test divergence in Eq. (3) using
a human-evaluation test function. Qualitative analy-
sis of errors was also conducted based on annotator
remarks (provided later in this section).

Impact of LEATHER In Table 1, we compare the
cooperative learning algorithms CL and LEATHER.
The former uses only the generated dialogue during
task-oriented learning, while the latter incorporates
human data to regularize the change in parameters
underlying the environmental shift. As predicted by
our theory, regularization is very beneficial, improv-

"An irrelevant question ignores the image or current di-
alogue context. For example, in Figure 1, CL asks about the
man’s “face” (Q5) after learning the goal-object is a car, which
ignores dialogue-context. CL also hallucinates an object “cut
off” on the right side (Q4), which ignores image context.

8 A specific question contains two or more modifiers of one
or more nouns. For example, LEATHER modifies “car” with
“behind” and “man” with “the white shirt” in Figure 1 Q7.



|| acct | lexdiv?t | qdiv? repql || irrq(TD)| | spcq(TD) | || energy |
CL 57.1(55.9) | 9.98 (10.7) | 13.5(14.3) 55 9(58.2) 30.5 233 0.143
LEATHER 58.4(56.9) | 11.4(12.7) | 13.1(16.0) | 53.6 (47.5) 26.2 19.5 0.123
RL 56.3 7.3 1.04 96.5

Table 1: Comparison of CL and our theory-motivated modification LEATHER. Best epoch based on validation acc is reported
with last epoch in parentheses. Up/down arrows indicate objective. Metrics are on 100 point scale, excluding energy. The first 4
metrics are automated, the next 2 are from human evaluation, and the last is our proposed statistic. LEATHER improves accuracy
and human-likeness of dialogue. Further, our proposed statistic energy is predictive of human-likeness.

ing task-success and human-likeness. For example,
LEATHER decreases % of irrelevant questions by
4.8% compared to CL, which is more similar to
human dialogue according to the test divergence
(TD). Interestingly, LEATHER also decreased % of
specific questions by 1.7%. Based on the TD, this
is also more similar to human dialogue, indicat-
ing humans ask fewer specific questions too. The
design of the TD allows us to capture these non-
intuitive results. Notably, regularization inspired
by LEATHER allows us to train longer without de-
grading task-success or suffering from mode col-
lapse (i.e., repeated questions). Automated human-
likeness metrics for the last epoch (in parentheses)
show substantial improvements over CL in this case.

Cooperative vs. Reinforcement Learning In
Table 1, we compare the two cooperative learning
algorithms CL and LEATHER to the reinforcement
learning algorithm (RL). We use the results reported
by Shekhar et al. (2019) for RL, since we share an
experimental setup. Compared to RL, both coop-
erative learning approaches improve task success
and human-likeness. As noted in Section 2, the
theoretical framework for RL (i.e., POMDPs) is
not equipped to study interaction of the distinct
learning phases within this algorithm (i.e., with
respect to data-shift). Better theoretical understand-
ing could explain poor performance and offer im-
provement as demonstrated with LEATHER, which
improves human-likeness of CL.

Qualitative Analysis In dialogue generated by
CL, questions with poor relevance ignored the im-
age context (e.g., model hallucination). In dia-
logue generated by the LEATHER model, irrelevant
questions ignored current dialogue context (e.g., a
question which should already be inferred from ex-
isting answers). We hypothesize this may be due to
poor faith in the automated answer-player used for
training, which also has problems with model hal-
lucination (e.g., Figure 1). Both models had issues
with repeated questions. In human dialogue, issues
were grammatical with few irrelevant questions.
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5.2 LEATHER is Empirically Predictive

Here, we show statistical energy predicts test diver-
gence, empirically. Computation of energy can be
automated, so predictive ability is useful for model-
selection when human evaluation is not available.
We consider test divergence (TD) with 4 groups of
tests: (A) the 9 fine-grained strategy classifiers of
Shekhar et al. (2019) used as in Eq. (5), (B) lexical
diversity computed as type/token ratio per dialogue,
(C) question repetition computed as a binary indica-
tor for each dialogue, and (D) the discussed human-
evaluations of question relevance/specificity. Fig-
ure 2 plots change in TD for (A-C) as a function
of energy. Specifically, change in TD is the dif-
ference TDt () — TDs(6) where S and T are
defined by the transition from language learning to
task-oriented learning discussed in Section 3. We
plot this change at the transitions after epochs 65,
75, 85, and 95 (out of 100 total). Notably, energy
is predictive and, specifically, is linearly related
to change in test divergence. For (D), in Table 1,
we show average energy across all transitions com-
pared to test divergence. Energy is also predictive
for these human-evaluation tests.

6 Conclusion

This work presents LEATHER, a theoretically moti-
vated framework for learning to generate human-
like dialogue. The energy statistic, which is de-
rived from this theory, is used to analyze and im-
prove an algorithm for task-oriented dialogue gen-
eration. Further, energy is empirically predictive
of improvements in dialogue quality, measured by
both automated and human evaluation. Future work
may involve more experiments to test the utility of
LEATHER in other dialogue settings. Theoretically,
we hope to study sample-complexity in LEATHER,
which is a hallmark of common PAC theories.
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A Novel Adaptation Bound and Computation of Energy Statistic

In this section, we give our novel adaptation bound and details for the accompanying energy statistic.
There is some redundancy between this section and Section 4, but in general, this section is more detailed.
Recall, source error is denoted TDs and is observed on the environment Qg(c) = S(6, ¢). The target error
is denoted TD and is observed on the environment Py(c) = T(6, ¢). For the algorithm CL discussed in
the main text, the target is induced by the task-oriented learning phase and the source is induced by the
language learning phase.

A.1 The Problem with Traditional Bounds

Predictive Adaptation Theories An important quality of traditional domain adaptation bounds, pro-
posed for classification and regression problems, is that they offer a predictive theory. Namely, without
observing the target error TD+, we can infer this quantity from A and the source error TDg. The utility
of this is two-fold: first, it allows us to design algorithms that prepare a learner for data-shift by controlling
A; second, it allows a practitioner to select an appropriate model to deploy in the presence of data-shift by
comparing the different values of A for each model. In general, these use-cases would not be possible
without A because the target error TD is not observable until it is too late. In contrast, the quantity A
should be observable. While this is not always true of A, authors typically reduce the main effect of A to
one key statistic, which is observable. For example, Atwell et al. (2022) reduce A to one key statistic
called the h-discrepancy by suggesting the other components making up A are small. This is why we use
an “approximate” inequality in the main text, since other (small) terms may contribute to the bound.

Traditional Theories Are Not Predictive Traditional theories of adaptation are not predictive for
dialogue generation. Namely, computation of A and its key components generally relies on computa-
tionally efficient access to the tests {h; ...z} and requires sampling from the unknown distribution
U ~ U. While we can always observe the outputs of {h; ...hr} with randomness U ~ U through the
source error TDg(6), it is not always the case that we have computational efficiently access to these
tests or the randomness. For example, as noted in Section 3.2.1, the group of tests {h; ... hp} along
with samples U from the unknown distribution U may represent complex real-world processes such as
human-evaluation. Even for simpler evaluation metrics based on text-classifiers (e.g., like {s; ...sp} in
Eq. (5)) algorithms for computing A turn out to be non-trivial, and must be handled on a case-by-case
basis. Thus, in generation contexts, we typically have no way of computing A algorithmically, and when
we do, it can be difficult to implement. If we require an easily implemented, predictive theory, then the
classical theory is ruled out. As a solution, we propose a novel adaptation bound.

A.2 A Novel Adaptation Bound

First, we define some terms.

The Energy Statistic and Computation

Definition A.1. For any independent random variables A and B, the discrete energy distance is defined.:
co1(A, B) = 2E[1{A # B} - E[1{A # A"}] - E[1{B # B'}] (15)

where A is an i.i.d copy of A, B’ is an i.i.d. copy of B, and 1{-} is the indicator function, i.e., it returns 1
for true arguments and 0 otherwise.

The discrete energy distance is a modification of the energy distance sometimes called the statistical
energy. It was first proposed by Szekely (1989) and was studied extensively by Székely and Rizzo (2013)
in the case where A and B are continuous variables admitting a probability density function. In general,
and especially in dialogue, this is not the case. Aptly, we suggest the above form of the energy distance,
which is widely applicable to any variables A and B for which equality is defined. While general, this
energy distance can be strict and insensitive, especially when A and B take on many possible values. To
remedy this, we propose the following addendum.

Definition A.2. Let D be any set. A coarsening function is a map ¢ : D — D such that ¢(D) = {c(d) |
d € D} is finite, and further, |c(D)| < |D].
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Figure 3: Comparison of energy statistics and automated test functions as in Section 5. Here, we vary the parameter
k in the k-means clustering used to determine the coarsening function when computing energy. Trends reported in
the main text are robust to variation in k.

Since D is likely an immensely large set, this can make the signal 1{a # b} for a, b € D overwhelming
compared to the signal 1{a = b}, and therefore, weaken the sensitivity of the discrete energy distance,
overall. Coarsening functions allow us to alleviate this problem by effectively “shrinking” the set D to
a smaller set. To do this, the role of the coarsening function is to exploit additional context to arrive
at an appropriate clustering of the dialogues, which assigns conceptually “near” dialogues to the same
cluster. So, the choice of ¢(d) should be a “good” representation of d, in the sense that too much valuable
information is not lost. As a general shorthand, for a coarsening function ¢ and variables A, B, we write

ec(A, B) = e01(c(A), ¢(B)). (16)

Example One example of a coarsening function for dialogues is k-means clustering. In fact, this is
the coarsening function we use to compute energy in Section 5, selecting £ = 100. Real-valued vector
representations of dialogues (e.g., from model latent space) can capture semantic information about the
dialogue (Bowman et al., 2015), so we use latent space representations (i.e., the output of the encoder)
to represent each dialogue and conduct a k-means clustering on these representations. For a dialogue
d the output ¢(d) is then defined by the cluster of d; i.e., we select an arbitrary dialogue to represent
the whole of each cluster and assign this dialogue as the output ¢(d). In practical implementations, it is
typically easier to just compute the energy distance on the cluster labels themselves; this statistic is always
equivalent to the energy on the coarsened dialogues, since the map between cluster representatives and
cluster labels is bijective. Later, within Lemma B.3, we prove this equivalence for any bijective map.

Of course, regardless of implementation, this clustering is dependent on the choice of k. Figure 3 shows
that the results in Section 5 are robust to different choices of k. In all cases, there is a linear relationship
between the energy and the change in the test divergence.

Adaptation Bound With these defined, we give the novel bound. Proof of a more general version of
this bound — applicable beyond dialogue contexts — is provided in Appendix B Thm. B.1. In particular,
the general version is “backwards compatible” in the sense that it also applies to traditional learning
theoretic settings like classification and regression. Arguably, in these settings, it also remains more
computationally efficient than existing theories. Notably, our proof requires some technical results on the
relationship between discrete energy and the characteristic functions of discrete probability distributions.
These may also be of independent interest, outside the scope of this paper.
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Theorem A.1. For any € RY, any coarsening function ¢ : D — D, and all { € (L]

TDT(0) < v+ ¢ + TD5(0) + \/cc(D1, D3) x § (17)
where D1 ~ Pg(C) = T(0,C), Dy ~ Qy(C) =S(6,C), (C,D) ~G, U ~TU,°

v = Ellhe(c(D1),U) = he(D1, U)|] + Bl|he(c(Ds),U) = he(Da, U]
g € argmin ZZEHf(C(D‘)’U) — he(D,U)|] where [0,1]% ={f|f:XxU—][0,1]}.

fefo,1Pxu

¢ = E[|g(c(D1),U) = he(D, U)|] + E[|g(c(D2), U) — he(D, U)]]
5= E[Zwec(p)|g(x, U) — he(z, U)\].

(18)

Unobserved Terms in Dialogue As noted, an important benefit of our theory is that we need not assume

computationally efficient access to the test functions {h; ... Az} or samples U ~ U. Yet, the reader likely

notices a number of terms in Eq. (17) dependent on both of these. Similar to the traditional case, we argue
that our theory is still predictive because it is typically appropriate to assume these unobserved terms are
small, or otherwise irrelevant. We address each of them in the following:

1. The term -y captures average change in test output as a function of the coarsening function c. Whenever
c(D,-) is a good representative of D; (i.e., it maintains information to which &y is sensitive) ~ should
be small. Since we choose the coarsening function, the former premise is not a strong requirement. In
practice, if choice of c is unclear, we recommend studying many choices as in Figure 3.

2. The next term ¢ is the smallest sum of expected differences that any function of the coarsened dialogues
¢(D;) and the arbitrary randomness U can achieve in mimicking the true test scores hy(D, U). In
general, the set of all functions from D x U to [0, 1] should be very expressive; e.g., it contains hy itself
and any other function which might mimic h,(D, U) better when applied to ¢(D;) and U. So, it is not
unreasonable to expect some good minimizer to exist, and therefore, ¢ to be small. Using this logic,
one additional constraint is that c([)z) has appropriate variance. For instance, if c(f)l) is constant and
D is not, ¢ can easily be large. Instead, when c(Di) does have variance, the expressiveness of the
function class [0, 1]P*¥ can be well exploited. For reasonable dialogue learners and a well-chosen c,
the variance of ¢(D;) is a non-issue.

3. The last term § may actually be large, but we argue this is also a non-issue for interpretation purposes.
In general, because ¢ is an unnormalized sum, its magnitude grows with the size of ¢(D), even if the
individual summands may be small. Fortunately, since § is multiplied by the energy distance, this
issue is mitigated when the statistical energy is small enough. Ultimately, the energy is paramount in

controlling the impact of this term on the bound’s overall magnitude.

A Predictive Theory Granted the background above, our discussion reduces the predictive aspect of the
bound to a single key quantity: the discrete energy distance sc(f)l, 132). In particular, besides the test
divergence TDg (known prior to the environmental change), all other terms can be assumed reasonably
small, or otherwise controlled by the statistical energy through multiplication. Therefore, if the statistical
energy between environments is small, it can be reasonable to assume the dialogue quality has been
maintained or improved. Otherwise, it is possible the quality of the generated dialogue has substantially
degraded. In this way, the statistical energy is an easily observable quantity that assists us in determining
if the source error TDg known before the environmental change is a good representative of the unknown
target error TD+, which is observed after the environmental change.

Use Cases In general, controlling the statistical energy between dialogues ensures we preserve dialogue
quality when the evaluation metrics we care about are not available. As demonstrated in the main text, this
makes it useful in algorithm design; i.e., to inform decisions in model training. Energy can also be useful
for model selection. Namely, the generation model whose dialogues have the smallest energy compared to
goal dialogue should produce the highest quality dialogue. To see this, simply set Dy = D in the bound.
Similar logical reduction shows the energy is the dominating term in this case as well.

°For simplicity, let D1, D»,U be pairwise-independent. When independence does not hold, similar results can be derived
under assumption of context-conditional independence.
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B Proofs

In this section we prove the claimed theoretical results. So that the results may be more broadly applicable,
we prove them in a more general context and then specify to the context of dialogue generation (in the
main text and Appendix A).

B.1 An Adaptation Bound Based on a Discrete Energy Statistic

In this section, we propose an adaptation bound based on the energy statistic. As we are aware, ours are the
first theoretical results relating the statistical energy between distributions to the change in function outputs
across said distributions. Given the use of the discrete energy distance (Def. A.1) and the accompanying
coarsening function (Def. A.2), we appropriately choose to prove our theoretical results for discrete
random variables (i.e., those which take on only a countable number of values and exhibit a probability
mass function). The effect of this choice is that we also contribute a number of new theoretical results
relating the probability mass function of a real-valued, discrete random variable to its characteristic
function (i.e., in similar style to the Parseval-Plancherel Theorem). Furthermore, we expand on the
relationship between the statistical energy of distributions and their characteristic functions. While this has
been well studied in the continuous setting (Székely and Rizzo, 2013) where the distributions of random
variables admit probability densities (i.e., absolutely continuous with respect to the Lesbesgue measure),
it has not been studied in the case of discrete random variables. We start our results using only real-valued
discrete variables, but prove our main results for al/l discrete random variables using Lemma B.3

B.1.1 Setup
Suppose A and B are discrete random variables taking on values in R for some d. Respectively, the
distribution of A is v and the distribution of B is 3. The space 2 C R? is the countable subset of R? for

which « or 3 assigns non-zero probability; i.e., 2 = supp(«) U supp(f3). Then, the expectation of any
function f : R — R of A is defined:

B/ ()] = | fda=D_ f(@pa(a) (19)

a€eN

where p,, is the probability mass function for A (i.e., o). Expectations of functions of B are similarly
defined.

The characteristic function of A is defined as the complex-conjugate of the Fourier-Stieltjes transform
of the probability mass function p,. More explicitly, it is the function p, : R? — R defined

Pa(7) = Elexp{irT A} = > pa(a)exp{ir"a} (20)
a€f)
where 1 is the imaginary unit (i.e., i2 = —1) and 7' a is the (inner) product between column vectors 7 and

a. Note, the characteristic function always exists and is finite for each 7.

B.1.2 Parseval-Plancherel Theorem (Reprise)

One notable use for the characteristic function is the following inversion formula. In the discrete context
we consider, Cuppens (1975) proves the following

d
pala) = Tlli_r}rloo T2h_r}noo. . .Tignoo <1—[1 1/(2n)> /B(T) Pa(t)exp{—itTa} \(dt) (21)
i=
where 7 = (71,72,...,79)7, B(t) = {x € R | —1; < 2; < 7;}, and ) is the Lebesgue measure.
This inversion formula highlights the connection between the characteristic function and the general
Fourier transform as alluded to just before Eq. (20), since Fourier transforms are well known for their
own inversion formulas. Another commonly used result in Fourier Analysis (related to inversion) is the
Parseval-Plancherel Theorem. We prove a variation on this result below. As we are aware, it is the first
which uses the transform given in Eq. (20) (i.e., specific to discrete, real-valued random variables).
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Lemma B.1. For any discrete random variables A and B as described, taking values in R?,

d
> Ipale) - —T}gnwggnw--,;@m(Hl/(zf») /B o 1P =B (OPA@D). @)
i=1 T

e

Proof. For any function f : R? — R¥ such that }_, _(, f(z) < oo for all t € R%, we prove the following
more general result

d
> @)= lim lim . lim (H 1/<2n>> /B . ) (@)A(dt) (23)
i=1 T

z€Q

where as before a “hat” denotes the Fourier-Stieltjes transform given in Eq. (20) and the new notation
f* denotes the complex-conjugate of f. Observe, this proves the desired results because setting f(z) =

Pa(T) — ga(x) we have

F2(@) = (pa(®) = €a(@))? = [pa(@) — Ga(@)|? 4
and
F@)f*(@) = (pa(@) = pa(@) (pa(@) = pa(@)) 05)

= (ﬁa(x) _ﬁa(l'))(ﬁa(x) _ﬁa(x))* = ’pa(l‘) _pa(x)’ .

Proceeding with the proof of Eq. (23) we have
d A A
li lim ... li 1/(27; fz)f*(z)\(dt
T11~I>noo TQJi}nOO leinoo <E /( T>> /B(T) (x) (x) ( )
d
= lim (H 1 /(2n)> / (Z flx exp{thx}> (Z f(x)exp{—i{%;}) A(dt)
e \is z€Q zeQ
= lim (H 1/(27) ) / SN f@)fa)expli(tTz — ¢T2')}A(df)  (Fubini-Tonelli)
oo CEGQ '€
= lim (Hl/@ﬁ‘)>
7 —> 00 1

d
= lim > Zﬂl’)f(x’)(ﬂl/(?n)) [ / exp{z’(t%—t%’)}A(dt)]
! i=1 B(7)

Z Z f(x)f(z) /B( )exp{i(th —tTa")IA(dt) (Fubini-Tonelli)

zeQ ' eN

zeQ ' e
d -
= i ! ; _ . . .
o Tih—{noo Z Z f(@)f(2) (H [1/(271) / exp{i(ti(z; — ] )}dtz]> (Fubini-Tonelli)
zeQ ' €N i=1 =T
d sint;(z;—z!) . ,
kA e VY Y # z
= lim x ':C/ xivm;;Ti where = T’i(xiffti) 1 ? )
d
=> > f (TlgnOOHX xz,xl,n)> (DCT)
zeQ '€ i=1
1 if hold
= Z Z f@)f(2)1[x = 2] where 1[arg] = { 1harg holds,
z€Q /€N 0 else
=Y )
€N

(26)
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In details: the first equality follows by definition; the second and third by Fubini-Tonelli Theorem;'? the
fourth by simple rules of arithmetic; the fifth again by Fubini-Tonelli Theorem to decompose the volume
calculation into a product; the sixth by evaluating the integral; seventh by the dominated convergence
theorem;!! the eighth by evaluating the limit; and the last by simple arithmetic. O

B.1.3 The Energy of Discrete Distributions as Described by their Characteristic Functions

Lemma B.2. For any independent, discrete random variables A and B as described, taking values in R4,

d
A,B)= lim lim ... lim 1/(27 b (1) — Pa(t)[PA(d2). 27
cor(A, B) (121 /( >>/B(T)rp<> PPN, @)

T1—>00 T2 —>00 Td—>00

Proof. According to Székely and Rizzo (2013), for independent A and B, we have

[pa(t) = Ds(t)* = Elcos{t" (A — A")} + cos{t' (B — B')} — cos{t' (A - B)}] 28)
= E{2[1 — cos{tT (A — B)}] — [1 — cos{tT(A — A")}] — [1 — cos{tT (B — B"}]}

where A’ and B’ are i.i.d. copies of A and B, respectively. With the equivalence above, by Fubini’s
Theorem, we may interchange the expectation and integral in Eq. (27). We may also change the order of
integration to arrive at

T1—>00 T2 —>00 T4d—>00

d
lim lim ... lim <H1/(2n)> /B( | Da(t) — P (t)2A(dt)

=

1
<f[1(21_1)> /:.../:dd {2(1—COSiZd;TZ’(AZ’—Bi)> (29)
_ (1 — coszd:Ti(Ai — A;)) — (1 - coszd:Ti(Bi - B;)) }de . d7'1] )
i=1

i= i=1

To evaluate the integral we first observe, for any = € R?,

. d—1 . d—1

T4 d sin (ded + Zi:l Til‘i) — sin ( — Taxq + Zizl Tixz)
1-— COSZTZ‘HJide = 27—d —
Tq

o i=1 (30)
d—1 .
2 cos (Zi:l Til'i) sin(7q4xq)

Td

=274 —

Notice, the above equation implies an iterative pattern which can be used to solve the multiple integral.

'9The primary assumption of Fubini-Tonelli Theorem requires the absolute value of the integrand have finite double or iterated
integral/sum. In the first case, with the iterated sum, it is clear for each fixed ¢ since ) f(z) is bounded and so is exp{—iz}
for all z. In the second and third cases, we simply cite the boundedness of B(7) for each fixed 7.

"'The primary assumption of the DCT is that the sequence of functions being integrated (or summed in our case) is dominated
by some function g with finite integral (i.e., in the sense that the absolute value of every function in the sequence is less than or
equal to g on all inputs). Again, this is easy to see using properties assumed on f and the fact that | x| < 1 for all inputs.
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Keeping in mind which terms are constants with respect to the differential, we have

T1 Td—1 Td d
/ .. / (/ 1 — cos Z TiIL‘ide>de_1 ...dm
—T1 —Td—1 —Td ;

i=1
2 cos (Zf:_ll Tixl) sin(74zq)
= / / / 27q — drg_q |d7g_o...dmy
—Td—1 Zd
4 cos (Z;i:_f Tim2-> sin(7yzq) sin(14_124-1)
:/ / (274)(274-1) — drg_s...dm
LdTd—1
/ / (ﬁ cos <Z§l;1] TZ'{L‘Z') ngl 28in(T4—i+1Td—i+1) : 1
= (274—i+1) ~ Td—j T1
i=1 [lio1 a-ita

d .
_ H(QTd L) — 15, 28in(y—it12a—it1)
- ; -

i=1 Hi:1 Ld—i+1

d d .
B H(2T‘) B [1i— 2sin(rz;)
= . ~ .
i=1 [[iz 2

D

Now, returning to the RHS of Eq. (29), linearity of the integral implies
d 1 T1 Td d
(}:[1(27_1)> /_T1 . ../_Td {2(1 - cosgﬂ'(z‘li - Bl))
d d
_ (1 — COSZTi(Ai — A;)) — (1 — COSZTi(Bi — B{)) }de . dn
=1 i=1
1 1 T4 d
- (E (272-)) /—n o /—m {2(1 - COS;W(Ai - Bi))}de ...dn (32)
1 T1 Td d /
2T¢)> /—71 o /_Td {(1 N COS;Ti(Ai - Ai))}d’i'd coodmy

d
(I,
d 1 Td d
(M) [ A oSt ) o

Thus, we can apply the solution in Eq. (31) to solve the integral in Eq. (29). Taking z; = (A; — B;) in
Eq. (31), we consider the first integral of Eq. (32) above along with its multiplicative constant:

=1
d 1 d H?:l 2sin {Tz(Az — Bl)}
- (g (2”)> (};[1(2%) - LA-By) ) .

i=1
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where x is defined in the proof of Eq. (23) (Lemma B.1). Taking z; = (4; — A}) and z; = (B; — B})
and proceeding as above allows us to resolve the entire integral. In particular, we have

d
. . . A N o 2
T}%TJ%...TLE% (Jll 1/(27})) /B(T) Do (t) — Dp(t)|"A(dt)
d

2(1 - f[x(Az-, Bm-)) - (1 - ﬁx(Ai, Aj, n)) - (1 ~ [ x®: Bi, Ti)
i=1 i=1

=1

E hTEn {2(1 - f[x(Ai, Bi,Ti)) — (1 — ﬁx(Ai,A;,Ti)> — <1 - ﬁ[X(Bth{,Ti) }]
=1 =1 =1

= E[2x 1[4, # Bj] - 1[A; # Al] - 1[B; # BlJ].

=1lmE
i (34)

Here, the second equality follows from the dominated convergence theorem and 1[arg] is defined as in
proof of Eq. (23) (Lemma B.1). ]
B.1.4 Moving from Real-Valued Discrete Variables to Any Discrete Variables

Lemma B.3. Let A and B be any independent, discrete random variables over a countable set () (i.e.,
not necessarily contained in RY ). Then,

> lpa(r) — pa(x)| = co1(A, B). (35)
€N
where p, and pg are the mass functions of A and B, respectively.

Proof. Let IT ¢ R? with [TI| = |Q2|. Note, II exists because 2 is countable and R? is not. Next, let
f + © — Il be any bijective map.

Then, supposing p,, and pg are the mass functions of f ([1) and f (B) respectively, by definition of the
pushforward measure, for any y € Il such thaty = f(x) for x € Q

Pa(y) = Pa({a € | f(a) = y}) = Pa(2). (36)

Notice, bijectivity of f ensures the last step, because each y € II has a unique inverse x € ). From
bijectivity of f, we also have injectivity, which implies 1[a # b] = 1[f(a) # f(b)] for all a,b € Q. By
simple substitution, the previous two facts tells us

2 ) la#bpala)ps(b) = Y 1a# dlpa(@)fala’) = Y 1[b# V]ps(b)s(t)

a,beq) a,a’ €Q b,b’ e
=2 > 1[f(a) # fO)pa(f(@)ps(f(b) = D 1[f(a) # f(a)]pa(f(a))palf(a’)) 37)
a,beq) a,a’ €N

— > ALfB) # FO)ps(F(B))pa(f(1))

b,/ e

Since f is surjective too (i.e., along with injective), summation of any function g(f(a), f(b)) overa,b €
and summation of g(c, d) over ¢, d € II are equivalent.'> So, we can continue as follows:

2 ) 1f(a) # fO)palf(@)ps(f(0) = D 1Uf(a) # f(a@)]palf(a))palf(a))

a,beN a,a’ €S)
— > 1[f() # FO)ps(f(B))ps(f(D)) (38)
b’ eN
=2 Y 1e#dpa(d)ps(d) = > e # dpalc)pald) = Y 1[d # dlps(d)ps(d)
c,dell c,c'e d,d'eQ)

"In particular, because f i is surjective, we know all pairs (c, d) € TI? have some pair (a, b) € Q for which (f(a), f(b)) =
(c,d); i.e., we do not “miss” a term in this sum. Because f is 1nJectlve we know all pairs (¢,d) € II® have only one pair
(a,b) € ? for which (f(a), f(b)) = (c,d); i.e., we do not “repeat” a term in this sum.
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In other words, the previous two equations tell us eo; (A, B) = £o1(f(A), f(B)). Applying equivalence
of the mass functions, then Lemmas B.1 and B.2, then equivalence of the energies:

> lba(x) = pp(@) =D _Ipaly) — ps()| = c01(f(A), f(B)) = c01 (A, B). (39)
z€e) y€ell
Note, this uses the fact that functions of independent random variables are also independent. O

B.1.5 The Main Bound

Theorem B.1. Let A and B be any independent random variables over any space X and let S, S’ be
random variables over [0, 1]. Let U be a random variable, independent from A and B, over any set U.
Suppose ¢ : X — is a coarsening function (so, Q C X) and let f € [0,1]**Y. Then,

E[IS - f(AU)| <7+ +E[S" = f(BU)[]+ Ve, B) x 6 (40)

where

v =E[f(c(B),U) = f(B)[| + E[|f(c(A),U) = fF(A]],

g € argmin E[|S — h(c(A),U)|] + E[|h(c(B),U) — 5'|],
hel0,1]X U

¢ = E[S = g(c(A), U)[] + Ellg(c(B), U) = 5],

5= lglz) -

e

(41)

Proof. For any g € [0, 1}XXU, by way of the triangle inequality and monotonicity of the expectation,

E[|S - f(AU)| = E[IS - f(A,U)| + E[lS" = f(B,U)]] - E[|S" - f(B,U)]]

= E[|S — g(c(A),U) + g(c(A),U) = f(A, V)] + E[|S" - f(B,U)|| - E[|S" = f(B,U)]]
< B[S - g(c(4), V)] + Ellg(c(A), U) = f(A, V)] + E[|S" = f(B,U)]]
—E[|S" = f(B,U)]]
E[S = g(c(A), U)[] + Ellg(c(A), U) = f(A,U)|| + E[|S" = f(B,U)]]
— E[lg(c(B),U) = f(B,U)[| + E[lg(c(B),U) - ] (42)
< E[|S — g(c(A), U)[] + E[lg(c(A), U) = f(c(A), U)[| + E[|f(c(A),U) = f(A,U)]]
E(|S"— f(B,U)]] - E[lg(c(B),U) — f(B,U)[] + E[lg(c(B),U) — 5]
< E[|S = g(c(A), U)[] + Ellg(c(A), U) — f(c(A), U)[| + E[|f(c(A),U) = f(A,U)]]
+E[S" — f(B.U)I| - Ellg(c(B,U) - f(c(B), V)]
+E[f(c(B),U) - f(B,U)|| + Ellg(c(B),U) - 5]

Set B = ¢(B), A = ¢(A) and set

v=E[f(B,U) - f(B,U)]| +E[f(A,U) - f(A,U)]],

g € argmin E[|S —h(A4,U)|]+ E[h(B,U) - 5], (43)
hE[O,l]XXM

p =E[|S — g(A4,U)|] + E[l9(B,U) - 5']].
Then, Eq. (42) implies

E[|S—f(A U)[] < y+o+E[S' — f(B,U)|+E[|g(A,U)—- f(A,U)[|-E[lg(B,U)— f(B,U)|]. (44)
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Now, suppose p,, and pg are probability mass functions for Aand B, respectively. Then, using basic
properties of the expectation along with other noted facts,

E[lg(A,U) - f(4, U)I] ~E[lg(B,U) - f(B,U)]]

—E[> lg(a,0) U)lpala) = 3 lg(0,U) — f(b,U)[ps(b )} (Fubini)
T €N beQ)
=B| Y lge,U) ~ f(a. 0)|(pa(@) ~ pa(@)| < B[ Y lo(a.U) ~ F(@,U)l|pa() - pa()
e xef) (45)
_ 1/2 1/2
<E (Z\g(x, U)— f(g;,U)|2> (Z@a(x) —ﬁﬁ(gj)’2> ] (Cauchy-Schwarz)
L \ zeQ e

e01(A,B) X E

1/2
(Z\g (z,U) — f(z U)|2> ] (Lemma B.3)

zEQ

In the last step, we may apply Lemma B.3 because A and B are still independent (i.e., they are functions
of independent random variables) and are now discrete too. Defining § appropriately yields the result. [

B.1.6 Proof of Thm. A.1 and Other Applications of Thm. B.1

Thm. A.1 Thm. A.1 is simply a specification of Thm. B.1 above. In fact, it is better stated as a corollary
of Thrp. B.1. We set X = D, leave U and its variable U unchanged, and set S = S’ = hy(D,U). Then,
A = Dj and B = D». Taking f = hy yields the result.

Classification and Regression In adaptation for classification and regression, we consider a source
distribution S governing random variables (Xg, Yg) and a target distribution T governing random variables
(X7, Yr). In general, the goal is to predict Y from X. We can set S = Y7 and S’ = Yg. We may
also set A = X7 and B = Xg. Then, we learn f from a pre-specified hypothesis class H C [0, 1] <4,
Typically, U is ignored in these settings, but it seems possible to employ this term to model stochastic
(Gibbs) predictors; i.e., in PAC-Bayesian Frameworks (Germain et al., 2020; Sicilia et al., 2022a). Notice,
for regression, our framework only considers a normalized response variable and the mean absolute error.

B.1.7 Sample Complexity

As alluded in Section 6, a key shortcoming of our framework compared to existing frameworks is the
absence of any terms measuring sample-complexity. That is, we do not explicitly quantify the difference
between our empirical observation of the energy and the true energy (i.e., the population version of the
statistic) using the number of samples in our observation. This is a big part of computational learning
theory, as the act of choosing a function f using data — or, in dialogue contexts, choosing the parameter
0 using data — can have significant impact on the difference between our observations of a statistical
processes and reality. In fact, this impact is the basis of overfitting and, besides computational efficiency,
is the main pillar of study in traditional PAC learning13 (Valiant, 1984; Shalev-Shwartz and Ben-David,
2014). In more recent studies of domain adaptation, like our work, the population-only bound can be
just as important for purpose of understanding and interpretation. Furthermore, if we only care about the
empirical samples in-hand, these population-only bounds are directly applicable,'* which partly explains
the empirical effectiveness of our theory in Section 5. Nonetheless, the role of sample-complexity can
be very informative and useful in practice (Pérez-Ortiz et al., 2021) and would be important for model-
selection applications as described at the end of Appendix A. We leave investigation of sample-complexity
as future work. As we are aware, there is currently no appropriate description of sample-complexity for
dialogue generation contexts.

3Probably Approximately Correct learning
!4The empirical sample becomes the whole population about which we are concerned.
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C Statistics on Dataset

unique images unique objects words (+1 occurrences) words (+3 occurrences) questions
67K 134K 19K 6.6K 277K

Table 2: Statistics on GuessWhat?!. For more information (e.g., train/test splits) see original proposal (De Vries et al., 2017).
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Figure 4: Visualization of object counts and dialogue length in GuessWhat?! dataset.
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Abstract

Tagging in the context of online resources is a
fundamental addition to search systems. Tags
assist with the indexing, management, and re-
trieval of online products and services to an-
swer complex user queries. Traditional meth-
ods of matching user queries with tags either
rely on cosine similarity, or employ semantic
similarity models that fail to recognize concep-
tual connections between tags, e.g. ambiance
and music. In this work, we focus on subjec-
tive tags which characterize subjective aspects
of a product or service. We propose concep-
tual similarity to leverage conceptual awareness
when assessing similarity between tags. We
also provide a simple cost-effective pipeline to
automatically generate data in order to train the
conceptual similarity model. We show that our
pipeline generates high-quality datasets, and
evaluate the similarity model both systemati-
cally and on a downstream application. Ex-
periments show that conceptual similarity out-
performs existing work when using subjective
tags.

1 Introduction

As products and services proliferated the Internet in
recent years, tagging came into prominence to facil-
itate the consumption of online information (Smith,
2007). Tagging is the practice of assigning labels
and keywords to online resources. It plays a piv-
otal role in the indexing, management and retrieval
of factual information. On the other hand, recent
years have witnessed a major shift in people’s ex-
pectations when searching online (Li et al., 2019).
Beside the factual data such as a restaurant’s cui-
sine type or a camera’s resolution, the search trend
evolved to be more experiential (Li et al., 2019).
Common search queries include attributes such as
delicious food for restaurants or long-lasting bat-
tery for cameras. Previous work (Li et al., 2019;
Gaci et al., 2021) called this new set of attributes
as subjective tags because they are short phrases
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that hint towards the subjective quality of products
and services.

Subjective tags are particularly useful in enhanc-
ing online experiential search. In this context, users
who are seeking subjective experiences, include
sets of tags they care about in their queries, and it is
the search system’s responsibility to fetch products
and/or services that have been previously described
with matching tags. Deciding whether two given
subjective tags match or not implies using a similar-
ity measure, for which cosine similarity remains a
convenient, yet arbitrary default (Zhelezniak et al.,
2019; Li et al., 2019; Chang et al., 2019). Recent
search systems such as OpineDB (Li et al., 2019) or
SearchLens (Chang et al., 2019) rely mostly on co-
sine similarity when it comes to comparing tag-like
short phrases, since it is easy to use and provides
simple geometric interpretations (Zhelezniak et al.,
2019). However, recent studies (May et al., 2019;
Zhou et al., 2022) argue that this interpretability
becomes fogged when dealing with sentences or
phrases, and cosine similarity suffers from severe
limitations when used to compare multi-word tex-
tual inputs.

A lot of research has been directed toward
proposing supervised methods for textual similarity,
spanning a diverse set of paradigms, e.g. Siamese
networks (Bromley et al., 1993; Ranasinghe et al.,
2019), Aggregation-Matching models (Wang and
Jiang, 2016; Wang et al., 2016, 2017), or the re-
cent cross-sentence attention paradigm which was
made possible by the advent of the transformer ar-
chitecture (Vaswani et al., 2017). Although these
models work fairly well on syntactically-correct
sentences (Bethard et al., 2017), they lack effec-
tiveness when used with shorter-spanned phrases
such as subjective tags. A reason behind this is
that subjective tags do not share the same struc-
ture of full sentences and hence require different
treatment. As will be discussed later in this pa-
per, our experiments confirm this limitation. A
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second drawback is that current similarity models
are not explicitly trained to recognize conceptual
similarities between the compared textual entities
(e.g., meal and pizza share the concept of food; or
background music and lighting share the concept
of ambiance). Therefore, all conceptual reason-
ing is disregarded. In this work, we compel our
own similarity model to encode more conceptual
relationships as provided by a human (whom we
call the designer) and further expanded by popu-
lar knowledge bases such as WordNet (Fellbaum,
2012) or ConceptNet (Speer et al., 2017).

To illustrate the importance of capturing concep-
tual similarities between subjective tags, suppose
a user searches for a restaurant serving delicious
meals. A search system should be able to suggest a
restaurant which has been tagged with tasty chicken
wings among its search results, because meal and
chicken wings share the same concept (that of food)
even though meal and chicken wings are not se-
mantically similar. As a result, traditional semantic
similarity models (Bethard et al., 2017; Li et al.,
2019; Ranasinghe et al., 2019) usually fail to meet
this expectation and provide low similarity scores
for the tags in the example. The same reasoning
applies to other subjective tags, like high-autonomy
camera and long-lasting battery, or romantic am-
biance and low-beat music bar.

Aiming to solve the aforementioned drawbacks,
we propose a new similarity model that focuses on
learning and then using conceptual relationships as
reflected in the training data. Given the new nature
of subjective tags (Li et al., 2019; Gaci et al., 2021),
we are not aware of the existence of datasets that
suit our needs. Besides, manually annotating data
is expensive, and extending to other application do-
mains (e.g. from restaurants to electronics) usually
necessitates re-annotating from scratch. Therefore,
the main contribution of this paper is a pipeline to
automatically generate large synthetic datasets for
the conceptual similarity task. First, we prompt
the dataset designer to provide seed words for the
concepts she needs her conceptual similarity model
to learn about. Second, we exploit the simple struc-
ture of subjective tags (Gaci et al., 2021) to expand
the seeds with conceptually related terms using
knowledge bases, or the implicit knowledge en-
coded in existing language models to automatically
generate large training data.

Our second contribution is the similarity model
itself. Capitalizing on the latest advances in se-
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mantic similarity research (Ranasinghe et al., 2019;
Wang et al., 2017; Devlin et al., 2018), we propose
a new similarity model by combining insights from
aggregation-matching and cross-sentence attention
paradigms. We show that conceptual similarity
is better than cosine similarity with a margin of
17.42% in terms of Pearson correlation, or BERT-
based similarity models through systematic eval-
uations. We also plug different similarity models
into a tag-based search system and show that con-
ceptual similarity outperforms them all. Also, we
evaluate the quality of the automatically generated
dataset through various experiments. We release
our code and data in GitHub !.

2 Related Work

2.1 Synthetic Dataset Generation

Acquiring training data is increasingly the largest
and most pressing bottleneck in deploying machine
learning systems (Ratner et al., 2017). The tradi-
tional way of doing so calls a team of experts to
manually create and then label the data, incurring
tremendous costs. Crowdsourcing alleviates part of
this burden by proposing to a group of individuals
of varying knowledge and expertise, the undertak-
ing of the labeling task (Brabham, 2013; Howe,
2006). However, crowdsourcing runs the risk of
corrupting the precision of the gold labels, and
may inflict noise in the labeling process, especially
when uneducated, careless or malicious workers
are involved. A recent trend for acquiring training
data is devising methods to automatically create,
generate and label these critical building blocks of
supervised learning systems with little effort (Rat-
ner et al., 2016, 2017; Varma and Ré€, 2018). When
one speaks of generating data, two problems are
implicitly addressed: (1) generation of features (i.e.
unlabeled raw data), and/or (2) generation of gold
labels (i.e. automatic labeling).

First, we discuss the generation of features, for
which two techniques are mainly used: template-
based generation (Dev et al., 2020; Nadeem et al.,
2020; Ribeiro et al., 2020) and data augmentation
(Zhao et al., 2018; Zmigrod et al., 2019; Taylor
and Nitschke, 2017; Nie et al., 2020; Kaushik et al.,
2019). In template-based generation, a set of tokens
iteratively replaces the placeholders in templates,
creating a separate example each time. Dev et al.
(2020) provide templates such as "The [PLACE-

"https://github.com/YacineGACI/conceptual-similarity-
for-subjective-tags



HOLDERY] is a doctor", and insert words like man,
woman, muslim, christian to create different ex-
amples to study social biases and stereotypes. In
the same spirit, Nadeem et al. (2020) construct an
evaluation dataset of biases through the use of tem-
plates and crowdsourcing, whereas Ribeiro et al.
(2020) designed a framework to test NLP systems
where users construct their own test benchmarks
via the use of templates. On the other hand, data
augmentation techniques expect an already avail-
able set of data, that they augment and expand
to create larger sets. This is usually achieved by
searching for similar inputs in the feature space,
applying small perturbations to the existing data
without changing the labels (Kaushik et al., 2019),
or through seed expansion techniques (Fast et al.,
2016; Lietal., 2019; Huang et al., 2020) via similar-
ity in word embeddings or with knowledge bases.

Our own data generation is a mix of both tech-
niques. While it is fundamentally a seed expansion
method where aspect and opinion terms that we
use to express subjective tags are expanded into
conceptually related terms, it also derives from
template-based generation since we use the tem-
plate "<opinion> <aspect>" (as in delicious food
or romantic ambiance) to construct subjective tags.
The closest work to ours in terms of seed expansion
is Empath (Fast et al., 2016) for studying topic sig-
nals in text. In Empath, a topic is defined by a set of
seeds that are later expanded by either using word
embeddings or crowdsourcing, to enrich each topic
category. In contrast, we use the expansions to
build sufficiently large labeled datasets. Moreover,
we propose five different expansion techniques to
increase the diversity of generated subjective tags.

The second problem in automatic data genera-
tion is generating the ground truth labels. Data pro-
gramming (Ratner et al., 2016) is a recent paradigm
that enables the programmatic creation of large-
scale training sets in which different weak super-
vision sources (e.g. heuristics, knowledge bases,
crowdsourcing) are combined. In Snorkel (Rat-
ner et al., 2017) and Snuba (Varma and Ré, 2018),
combination is done with a generative model that
takes into consideration several properties of the
weak classifiers including accuracy, coverage, and
inter-correlations. Our work is different in two
main aspects. First, Snorkel and Snuba are general
frameworks that present general guidelines aiming
to build labeling functions, whereas our method is
much more specific, and focuses on similarity for
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subjective tags. Second, in this work, we generate
and label training sets at the same time, in con-
trast to Snorkel whose purpose is to assign labels
to already existing unlabeled data.

2.2 Textual Similarity

Apart from cosine similarity, we identify several
similarity paradigms in the literature: (1) Siamese
networks (Bromley et al., 1993; Ranasinghe et al.,
2019) where the same encoder is used to project
inputs into the same embedding space. Then, the
similarity decision is made based on the vector
representations alone. (2) Aggregation-matching
paradigm (Wang and Jiang, 2016; Wang et al.,
2016, 2017) which adds explicit matchings be-
tween the representations of inputs, before aggre-
gating them and computing similarity. (3) Cross-
sentence attention paradigm which is enabled by
finetuning transformer models such as BERT on a
similarity task (Devlin et al., 2018; Peinelt et al.,
2020). (4) Combining several weak similarity mod-
els such as simple neural networks, tree-based
and/or probabilistic models through an ensemble
(Bethard et al., 2017; Tian et al., 2017; Lair et al.,
2020). However, all these works focused solely on
semantic similarity between syntactically correct
sentences, whereas we focus on conceptual sim-
ilarity between tag-like short phrases, similar to
Anuar et al. (2015); Zhu and Iglesias (2016). In
contrast, we use knowledge graphs to generate data
and train a supervised model. More details about
our similarity model are provided in Section 4.

3 Pipeline to Generate Training Datasets

Borrowing from the Aspect-Based Sentiment Anal-
ysis literature (Liu, 2012; Gaci et al., 2021), we
define a subjective tag as the concatenation of an
aspect term with an opinion term. The aspect term
designates the component or the feature being de-
scribed and the opinion term characterizes this fea-
ture. For example, delicious food is a subjective
tag wherein food is the aspect while delicious is the
opinion. This definition is sufficiently expressive
to allow a wide range of subjective tags such as ro-
mantic ambiance, clean hotel rooms, long-lasting
battery, great camera or amiable dentist.

Specific to this work, we define a concept as
a set of aspect terms conceptually related to each
other. For example, the concept of food can be
described with the following set of terms: {food,
plates, dishes, pizza, chicken wings, meal, pasta}



A1 = {food, chicken}
0,'= {good, delicious}
0,%= {bad, terrible}

A1 = {food, chicken, meal, dish}
0,'= {good, delicious, tasty}
0,2= {bad, terrible, horrible}

Az = {service, waiters, staff, duty} ::

021 = {helpful, friendly, professional}

2>

Az = {service, waiters}
031= {helpful, friendly}

2-
07%= {slow, awful} 0,2 = {slow, awful, unsmiling}

1. Provide seeds 2. Expand

delicious food
terrible meal
tasty dish
helpful duty

slow service

3. Sample randomly

delicious food

delicious food |  tasty dish

terrible meal

delicious food | terrible meal

tasty dish
helpful-duty

slow service

5> 5

tasty dish slow service

4. Filter 5. Pair & Label

Figure 1: Labeled dataset generation pipeline

while the concept of ambiance can be defined with
{ambiance, atmosphere, lighting, background mu-
sic, dance floor}. The goal of conceptual similarity
is to consider the aspects belonging to the same
concept as similar when described with similar
opinions.

We cast conceptual similarity as a binary classi-
fication problem, where the positive label denotes
similarity. These specifications enable automatic
generation of high-quality labeled datasets for con-
ceptual similarity of subjective tags, with minimal
costs. To do so, the dataset designer provides a list
of concepts. We then leverage seed expansion tech-
niques to generate the dataset, through the pipeline
illustrated in Figure 1. In the following, we de-
scribe each step of the pipeline in detail.

3.1 Providing Concept Seed Words

The first step in the pipeline is to provide seed
words for the concepts that the dataset designer
wants to take into consideration. For each concept i,
the designer provides a list of aspect seed words A;,
and m; lists of opinion seed words O] where j €
{1...m;}; m; depends on the concept and the level
of granularity the dataset designer aims to reach.
For the sake of illustration, say that the designer
wants to include the concept of food with three
classes of opinions (delicious, horrible, healthy).
She may provide the following:

A; = {"food", "dish", "lunch", "pizza", "snack"}

O} = {"good", "delicious", "excellent"}

OZ-2 = {"bad", "horrible", "not seasoned" }

O3 = {"healthy", "organic", "high quality"}

A; lists aspect terms related to the concept of
food. Each of O] lists some opinion terms of the
same nature, but different from one set to another.
In the example above, O} describes tasty food, O?
characterizes bad food, and O? deals with healthy
food. In this particular scenario, conceptual sim-
ilarity trained on a dataset to be generated from
these seed words considers the tags "good food"
and "healthy food" as dissimilar because the terms
good and healthy belong to different opinion sets.
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If the dataset designer needs a more granular simi-
larity model (like spicy food described as its own
class), she only has to add another set with seed
words depicting spiciness. Following these guide-
lines, the designer can express a wide range of
concepts such as price, service, hygiene, and in
other domains too (hotels, electronics, books, etc.)

3.2 Seed Word Expansion

We propose five different techniques to expand the
set of seed words given by the dataset designer. We
illustrate these techniques in Figure 2 and describe
them in the following:

WordNet Expansion. For every seed, we collect
its corresponding synsets from WordNet (Fellbaum,
2012). Then, for every synset, we retrieve its hy-
ponyms, hypernyms, meronyms and sister terms as
illustrated in Figure 2(a). We control the number
of expansions through the use of hyperparameters
such as the maximum number of synsets to include,
and different booleans each telling whether we take
hyponyms, meronyms, etc. respectively.

ConceptNet Expansion. For every seed, we
obtain its is-a (i.e. parent concepts) and type-of
(child concepts) relations. For example, meat and
food are parent concepts for the word of interest,
i.e. chicken. We also retrieve other children of the
parent concepts as is shown in Figure 2(b). We
control ConceptNet expansion with three hyperpa-
rameters: capacity which is the maximum number
of relations to consider; minimum weight which
specifies the relevance of the relation (high weights
in ConceptNet (Speer et al., 2017) correspond to a
strong relation); and a boolean specifying whether
to include children of parent concepts into the ex-
pansion.

Word Embedding Expansion. The goal is to
find the fop_k words in the vocabulary that min-
imize the total distance between them and seed
terms. Taking the example in Figure 2(c), pasta is
less distant from all the seeds than morning is, thus
pasta constitutes a better expansion. The parame-
ters of this technique is the number of expansions
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Figure 2: Different expansion techniques: (a) WordNet, (b) ConceptNet, (c) Embedding, (d) Language generation,

(e) Masked Language Modeling

top_k, the word embedding model under use, and
the distance function, e.g. euclidean.

Language Generation Expansion.  This
method plugs seed words into a template such as
"These concepts are related: <seed_I>, <seed_ 2>,

. <seed_n>, and ", then asks an autoregressive
language model to generate a continuation for this
sentence. We then take the top_k words having
the highest probabilities to be correct continuations.
The hyperparameters are: the language model (e.g.
GPT2, T5), the number of generations, and the
maximum length of each generated expansion.

Masked Language Modeling Expansion. Sim-
ilar to the previous expansion technique, we use
a masked language model (Devlin et al., 2018),
where the template takes the following form:
"<seed_I>, <seed_2>, ... <seed_n> and [MASK]
are all related concepts.” The masked language
model produces, for every word in the vocabulary,
its likelihood to replace the mask. So terms having
the same concept as the seeds have higher probabil-
ities. The parameters of this method are the number
of fop_k terms to take, and the masked language
model under use, e.g. BERT, Albert...

For every expansion technique, we can have as
many expanders as there are parameter configu-
rations. For example, two word embedding ex-
panders, one based on Word2vec while the other
on GloVe, are two different expanders. Or one that

58

uses an euclidean distance while the other uses co-
sine similarity are also different expanders. We
give the full list of parameter configurations we
used for every expansion method in our experi-
ments in Section A.2. For a new word to be consid-
ered as a correct expansion, we require that at least
a sufficient number of expanders suggest the word.
We specify this with min_consensus_rate which
defines how many expanders need to produce the
word in order to include it in the final expansions.

3.3 Random Sampling

We randomly choose an aspect term from one of
the expanded aspect sets, and an opinion term from
one of its associated opinion sets. These two terms
are concatenated to form a subjective tag. For ex-
ample, we may sample the aspect term waiters and
the opinion term nice to form the tag "nice wait-
ers". We repeat this process to construct as many
subjective tags as the dataset designer needs.

3.4 Filtering

Random sampling from automatically generated
sets of terms may lead to arbitrary tags. For
instance, it may construct tags such as "helpful
duty”? We eliminate those tags by using a lan-
guage model which assigns likelihoods to sen-

>This may be the result of expanding service to duty

through WordNet, even though service in this case refers to
the waiters in a restaurant



tences so that semantically sound sentences are
given high likelihoods and low quality sentences
get low likelihoods. We use GPT2 language model
(Radford et al., 2019) by feeding it with subjec-
tive tags formatted according to this template: "the
aspect is opinion". GPT2 should assign low prob-
abilities to sentences such as "the duty is helpful”,
and high probabilities to sentences such as "the
service is helpful” or "the waitstaff is agreeable".
We manually select the probability threshold above
which sentences make sense, and keep the gener-
ated tags that score above that threshold.

3.5 Pairing and Labeling

We randomly sample two subjective tags t; and
to from the filtered list. If the aspect and opinion
terms of t; and to have been sampled from the
same sets, the tags are considered similar (label
is 1). In all other cases, the label is 0. To avoid
class imbalance in the dataset, the dataset designer
provides the minimal ratio of positive examples.
We enforce this constraint by deliberately sampling
similar tags from the same aspect and opinion sets.

Figure 1 summarizes our dataset generation
pipeline with an example. This algorithm allows
us to create high-quality training datasets with min-
imal effort. It can also be adapted to any domain.
In Section 5.2, we evaluate the quality of datasets
generated with this pipeline.

4 Conceptual Similarity Model

In this section, we present our approach to com-
pute conceptual similarity for a pair of subjective
tags. Following guidelines from the aggregation-
matching paradigm (Wang and Jiang, 2016), our
model encodes explicit interactions between tags,
e.g. whether the tags correspond to the same con-
cept; whether they use the same opinions but with
different aspects; whether the choice of words in
the tags is similar but the tags themselves are not.
To this end, we propose a novel bilateral match-
ing model which automatically encodes such in-
teractions and relationships before making a sim-
ilarity decision. Given two subjective tags ¢; and
to, this model estimates their similarity by com-
puting their probability of being perfectly similar
P(sim = 1|t1, t2). Figure 3 illustrates the differ-
ent layers of this model.

We begin by feeding ¢; and ¢5 into BERT (De-
vlin et al., 2018). This serves two purposes: First,
we get word embeddings for each word in the tags;
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Figure 3: Similarity model architecture

second, we have a CLS vector that captures the
relationship between ¢; and ¢5 as a vector. Given
BERT embeddings [u1, ..., Uy, and [v1, ..., v,], we
utilize mean pooling to obtain fixed-sized embed-
dings for each tag (u® and v®). The next layer in
the network matches each word embedding of one
tag with all the word embeddings of the other tag.
The matching is done in two directions (hence the
bilateral aspect): (1) We match each u; with v to
compare each word u; in £; with all the words in £o,
and encode their relationship. (2) We match each
v; with u® to do the same in the reverse direction.

The matching function we use is the element-
wise multiplication which has long been used in
the NLP community as a proxy for similarity. Thus,
we use it to match word embeddings of ¢; and %o.
After the matching layer, we aggregate [u}, ..., u, ]
and [v], ..., v}] to obtain fixed-length vectors for
each tag via Bidirectional LSTM (BiLSTM) lay-
ers (Hochreiter and Schmidhuber, 1997), taking
the last hidden states as tag embeddings u and v.
At this step, we have encoded the relationship be-
tween t1 and ¢5 using two different paradigms: (1)
aggregation-matching through the use of element-
wise multiplication for matching and BiLSTM for
aggregation (vectors u and v), and (2) the cross-
sentence attention paradigm through CLS vector,
because BERT uses self-attention (Vaswani et al.,
2017) to compute its vectors. We concatenate u, v
and CLS and feed it to a classification head (FFNN



layer) to estimate similarity.

5 Experiments

We use Restaurants as the test domain. We
consider nine concepts that we use to automati-
cally generate the training dataset: Food, Service,
Price, Atmosphere, Location, Cleaning, Environ-
ment, Menu and Parking. Each concept consists
of one set of aspect terms, and two to three sets of
different opinion terms. The choice of concepts,
and seed words for aspects and opinions was in-
spired by previous work (Moura et al., 2017) who
conducted surveys and qualitative experiments on
many restaurant-seeking participants, and identi-
fied the most important factors taken into account
by these same participants in their decision-making
process for choosing a restaurant. The full list of
concepts and their seeds is in Section A.3, while the
hyperparameter details for the similarity model are
in Section A.1. In the following, we first compare
conceptual similarity to various baselines. Next,
we evaluate the quality of the automatically gener-
ated dataset. Finally, we assess the practical value
of conceptual similarity by measuring its impact
on a downstream search system proposed by Gaci
et al. (2021) that uses subjective tags.

5.1 Evaluating Conceptual Similarity

Existing similarity benchmarks provide similarity
ground truth for syntactically correct sentences
(Bethard et al., 2017). Hence, we cannot use them
given that subjective tags are short phrases which
do not draw from the same syntactically-complete
sentence distribution. To the best of our knowl-
edge, no benchmark for subjective tags exists. For
this reason, we create our own test set by automati-
cally extracting tags from Yelp’s restaurant online
reviews> using the tag extractor of SACCS (Gaci
et al., 2021). Given a snippet of text, SACCS ex-
tracts subjective tags as concatenations of aspects
and opinions. We then map these extracted tags
randomly into pairs. We select 500 such pairs and
ask three participants to assign a similarity score be-
tween 0 and 5 for each pair of subjective tags. We
then normalize the similarity scores to squash them
into the unit range before taking the mean across
the participants. As in standard similarity evalua-
tions, we use three metrics: Pearson and Spearman
correlation, and Mean Absolute Error (MAE).

3https://www.yelp.com/dataset
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Similarity Model ‘ Pearson Spearman MAE
Cosine (Word2vec) 0.6770 0.6190 0.2083
Cosine (BERT MEAN) | 0.3449 0.3312 0.5313
Cosine (BERT CLS) 0.0497 0.0848 0.6920
BERT Classif 0.5946 0.5404 0.1703
Random Forest 0.6271 0.6324 0.2614
Siamese 0.7058 0.6141 0.1903
Conceptual Sim 0.8512 0.7388 0.1134

Table 1: Evaluation of similarity models

We compare our conceptual similarity model
to several baselines: A Siamese network (Ranas-
inghe et al., 2019) and a random forest classifier
with hand-crafted features (Tian et al., 2017), both
trained on the same dataset we use to train our own
model. Also, owing to the universality of cosine
similarity, we compare against it both with Para-
gram embeddings (Wieting et al., 2015) and on
BERT embeddings with different pooling methods,
MEAN and CLS as in Devlin et al. (2018); Li et al.
(2019). Finally, we train a BERT-based model that
we augment with a classification head (BERT Clas-
sif) and finetune on the same training data we used
to train our conceptual similarity to make it more
competitive. Table 1 summarises the results.

We can see that conceptual similarity outper-
forms cosine similarity by a large margin (0.1742
points in Pearson correlation). This demonstrates
that cosine should no longer be perceived as the
default when it comes to measuring similarity for
subjective tags. We also show that BERT alone can-
not cater for a task as ambiguous as similarity for
subjective tags, even when finetuned on the same
training set that we use.

This sheds light on the necessity to design cus-
tom models especially tailored for tag similarity.
We argue that the effectiveness of our method stems
from its ability to match different words of subjec-
tive tags using both attention and element-wise
multiplication.

Existing information retrieval and tag-based
search systems like Li et al. (2019) and Chang et al.
(2019) blindly trust cosine similarity or a finetuned
BERT without investigating their implications on
the overall system performance. Our work high-
lights the limitations regarding main stream text
similarity techniques for subjective tags and short
phrases, as it gives guidelines as to how to design
robust similarity models.



Noise level | Pearson Spearman MAE
Original 0.8512 0.7388 0.1134
5% noise 0.7341 0.6641 0.1958
10% noise | 0.7788 0.7101 0.1898
25% noise | 0.7418 0.7055 0.2879
50% noise | -0.1209 -0.0943  0.4078

Table 2: Evaluating similarity on noisy training data

5.2 Evaluating the Quality of Training Data

We measure the quality of the automatically gen-
erated training dataset by injecting artificial noise
in the data and checking whether it degrades in
quality (Jassar et al., 2009). We define noise in this
context as swapping the labels in the training set.
For example, if the original line in the dataset was
{t1, t2, 1}, the new noisy line would be {1, t2, 0}
and vice versa. We perturb fixed percentages of
the training data ( 5%, 10%, 25% and 50%) and
retrain the similarity model each time. The ratio-
nale of this experiment is that the introduction of
noise should degrade the quality of training. In this
spirit, if the similarity model trained on noisy data
is of comparable accuracy to the one trained on the
original unperturbed data, we argue that the orig-
inal data was merely noise. On the other hand, if
introducing noise degrades the performance of the
similarity model, one can assume that the original
data was of good quality. Table 2 shows the sim-
ilarity correlations with human-defined scores as
described in Section 5.1. We observe that instilling
noise drops the accuracy of conceptual similarity.
This reflects that the original unperturbed dataset
is of high quality.

5.3 Experiments on a downstream System

In the following, we demonstrate the effectiveness
of conceptual similarity when plugged into a down-
stream search application Gaci et al. (2021). We
give a brief overview of the application, describe
the baselines, benchmarks and evaluation metrics.

System overview. SACCS (Gaci et al., 2021)
is a subjectivity-aware system to search for restau-
rants online. From their reviews, SACCS automat-
ically extracts subjective attributes of restaurants
offline in the form of subjective tags. Then, when
users provide their search queries, they can include
subjective tags as search filters. SACCS uses an
underlying similarity model to compare between
user-provided tags and those describing each restau-
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Similarity Model ‘ Short Medium Long
Cosine (word2vec) 0.7956  0.8579  0.8750
Cosine (Paragram) 0.8072 0.8602  0.8741
Cosine (BERT MEAN) | 0.7807 0.8512  0.8740
Cosine (BERT CLS) 0.7807 0.8498  0.8738
BERT Classif 0.7968 0.8543  0.8744
Random Forest 0.8048 0.8623  0.8790
Siamese 0.7961 0.8618 0.8823
Conceptual Sim 0.8232 0.8717  0.8839

Table 3: Evaluating the ranking quality of a tag-based
search system with different similarity models

rant. The final output of SACCS is a ranked list of
restaurants ordered by relevance to the user query.

Baselines. We replace the similarity model used
in SACCS with our conceptual similarity and the
baselines we used in Section 5.1, to create as many
baselines for this experiment.

Evaluation benchmark. We follow the same
experiment used in Gaci et al. (2021) to assess
the overall quality of the search system, and hence
evaluate the practical value of conceptual similarity.
Mainly, we use the same crowdsourced evaluation
benchmark as in Gaci et al. (2021), consisting of
subjective search queries with three levels of diffi-
culty: Short queries have only one subjective tag;
Medium queries have two; Long queries with three.
Each difficulty level contains 100 different search
queries, and each query is associated with a ranked
list of relevant restaurants that best answer it.

Evaluation metric. We evaluate the final search
quality using the popular Normalized Discounted
Cumulative Gain (NDCG) (Christopher et al.,
2008). The closer the score is to 1 using this met-
ric, the better are the search results overall. Given
that we use the same system in all the baselines of
this experiment, and that these differ only in the
underlying similarity model in use, we infer that
the NDCG scores directly reflect the quality of the
similarity models. Table 3 shows the results.

Results. Table 3 demonstrates the effectiveness
of conceptual similarity, outperforming all other
similarity models on all levels of difficulty, espe-
cially the universal cosine similarity which per-
forms worse by a margin of 2.76%. This experi-
ment proves that conceptual similarity is efficient
when plugged in tag-based search applications.

6 Conclusion

In this work, we propose conceptual similarity for
subjective tags. We also propose a methodology to



automatically generate training datasets for concep-
tual similarity with minimal effort given a domain
and a set of concepts. Unlike traditional seman-
tic similarity, our model is trained with conceptual
signals as reflected in the generated dataset. In-
trinsic and extrinsic experiments demonstrate the
superiority of our approach on subjective tags.

On the other hand, we acknowledge the follow-
ing limitations. Although the method is indepen-
dent from the application domain, we constrained
our evaluations to the Restaurants domain for rea-
sons related to unavailability of test data. So we
were forced to create our own test benchmark by
asking three participants to give ground truth labels
for 500 pairs of subjective tags. This may seem
small-scale, which risks putting into question the
conclusions regarding the superiority of our simi-
larity approach. However, the extrinsic experiment
that we conduct by using relatively larger crowd-
sourced data shows that our approach is efficient
and outperforms other similarity models, which
assuages our concern. As future work, we plan to
apply our methods on other domains, e.g. hotels,
or electronics.

In this paper, we build the whole argument of our
contributions against the blind use of cosine simi-
larity in tag-based search systems, and to replace
it with our newly proposed conceptual similarity.
However, we employ BERT and LSTMs in our
model which incur a much higher computational
cost than cosine similarity. The adoption of our
model in practice depends on whether efficiency
is a major concern in the downstream search ap-
plication, i.e. whether a poor search inflicts major
negative consequences in critical domains such as
finances or regulations. It also depends on the un-
derlying infrastructure into which conceptual sim-
ilarity will be deployed, e.g. are there any GPUs
in use? Is memory space enough to hold BERT
and LSTMs? So whether to adopt our contribu-
tions in practice is a compromise between cost and
efficiency.
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A Appendix

A.1 Similarity Model Details &
Hyperparameters

We use a hidden dimension of 128 for the LSTM
layer, and 512 for the 2-layer classification FFNN.
We apply dropout with a ratio of 0.3. To train
the model, we minimize cross entropy of the train-
ing set, and use Adam optimizer (Kingma and Ba,
2014) to update the parameters with 5¢=6 as learn-
ing rate. For hyperparameter search, we pick the
hyperparameters which work best on a develop-
ment set that has been generated in the same way
as the training set.

We implemented conceptual similarity in Python
using standard packages such as PyTorch* for neu-
ral networks, HuggingFace transformers library’
for BERT and GPT2.

“https://github.com/pytorch/pytorch
Shttps://github.com/huggingface/transformers
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A.2 Parameter Configurations of Expanders

To generate the dataset used in the experiments of
this paper, we use all the expansion techniques de-
scribed in Section 3.2. For each technique, we use
different parameter configurations to increase the
diversity of the generated expansions. For example,
GloVe and Paragram embeddings do not generate
the same words given that each embedding model
has been trained differently, and thus encode the
representation of words in a unique way. Also, in
Language Generation Expansion, we use different
language models with different allowed lengths.
This is to enable the generation of n-grams, in ad-
dition to words. We give the list of the expanders
we use, and their parameters in Table 4.

We have a total of 28 different expanders. We
set the parameter min_consensus_rate to 0.3. Con-
sequently, for a new token to be included in the
final set of expansions and passed down to the sub-
sequent steps of the dataset generation pipeline
(see Section 3 and Figure 1), the token has to be
suggested by at least 30% of expanders (9 dif-
ferent expanders in this case). We selected this
value by doing a manual hyperparameter search
over the following values of min_consensus_rate:
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. We
took the value (i.e. 0.3) that maximized the quality
of the final generated dataset, as evaluated in Sec-
tion 5.2. However, we chose the parameters of the
respective expansion techniques manually without
conducting a hyperparamter search for the follow-
ing reasons: (1) There are too many parameters
to test, which would make the search space expo-
nentially larger, and thus expensive to explore. (2)
The parameter selection of expansion techniques
is subjective by nature. We manually chose the pa-
rameters such that they make sense (e.g. a negative
capacity in ConceptNet Expansion or a very large
top_k in Masked Language Modeling Expansion
would not be useful), and such that the final ex-
panders would generate a diverse set of expansions
from a limited lexicon of seeds.

A.3 Concepts Used in this Work and their
Seeds

We select 9 different concepts to include in the
conceptual similarity model described in the exper-
iments. We base our choice of concepts on substan-
tial research in behavioral psychology (Moura et al.,
2017) whose authors surveyed restaurant seekers
and asked them about which factors influence their



WordNet Expansion

num_synsets  hyponym  meronym  hypernym  sisters

3 true true
10 true true
5 true false

true true
true false
true true

ConceptNet Expansion

capacity minimum_weight  second_level_expansion
3 2.0 true

5 3.0 true

10 1.0 false

Word Emebedding Expansion

embedding_model — num_words

distance_metric

Word2vec 20 euclidean distance
Word2vec 20 cosine similarity
GloVe 20 euclidean distance
GloVe 20 cosine similarity
Fasttext 20 euclidean distance
Fasttext 20 cosine similarity
Paragram 20 euclidean distance
Paragram 20 cosine similarity
ConceptNet 20 euclidean distance
ConceptNet 20 cosine similarity
Language Generation Expansion
model top_k max_length  num_beams
GPT2 20 1 200
GPT2 20 2 200
TS base 20 3 200
TS5 base 10 3 50

Masked Language Modeling Expansion

model top_k
BERT base 10
BERT base 20
BERT large 10
BERT large 20
RoBERTa large 10
RoBERTa large 20
ALBERT large 10
ALBERT large 20

Table 4: The full list of expansion techniques and their
parameter configurations that we used to expand the

seed words in our experiments
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decision-making process when they chose between
restaurants. In Table 5, we describe the concepts
that we use, and give their corresponding seeds for
aspects and opinions.



Price

aspects
opinions 1 (good)
opinions 2 (expensive)

price, cost, payment
low, good, fair, acceptable, cheap, not too expensive, affordable, great
expensive, exaggerated, costly, overpriced, high, pricy

Food

aspects

opinions 1 (good)
opinions 2 (bad)

opinions 3 (healthy)
opinions 2 (creative)

food, menu, plate, cuisine, meal, lunch, dinner, breakfast, cooking, snack, beverage, drink,
pizza, pasta, chicken, meat, steak, rice, soup, dessert, dish, fish, salad

tasty, good, excellent, succulent, okay, delicious, well seasoned, perfectly cooked

bad, flavorless, bland, not seasoned, cold, disgusting, unappetizing, flat, gross, boring,
awful, terrible, dry

healthy, organic, high quality, fresh

novel, interesting, creative

Service

aspects
opinions 1 (warm)
opinions 2 (competent)

staff, waiter, waitress, cashier, service
friendly, smiling, good, helpful, likable
knowledgable, quick, fast, efficient, high quality, professional

opinions 3 (bad) grumpy, horrible, slow, irritating, bad
Cleaning
aspects place, hygiene, kitchen, bathroom, utensils, plates, cutlery, silverware, trays, dishes, table,

opinions 1 (clean)
opinions 2 (dirty)

chair, furniture
clean, impeccable, bright, lavish, luxurious, washed, shining
dirty, bad, in bad shape, stained, greasy, not washed, poor, disgusting

Parking

aspects
opinions 1 (good)
opinions 2 (bad)

parking, parking lot, parking area, parking convenience, parking space
free, available, empty, safe, large
unavailable, poor, narrow, small, hard to find

Environment

aspects
opinions 1 (good)

opinions 2 (bad)

place, environment, setting, surroundings, decor, lighting, music, ventilation, furniture, air
conditioning, air conditioner

good, excellent, great, cozy, comfortable, sophisticated, good taste, pleasant, memorable,
adequate, beautiful, soothing, calming, fancy, attractive, happy, relaxing, nice, charming
bad, horrible, bad taste, uncomfortable, dark, noisy, terrible, crowded, sad, depressing,
boring

Location

aspects
opinions 1 (good)
opinions 2 (bad)

location, area, place, address
near, good, downtown, lively, touristy, popular, secure, safe, good, trustable
far, bad, polluted, remote, dark, unsafe, unsecure, dangerous

Ambiance

aspects

opinions 1 (good)
opinions 2 (bad)

ambiance, atmosphere, air, experience, environment, setting, decor, lighting, music, venti-
lation, furniture

cozy, good, excellent, romantic, nice, upscale, trendy, loved, enjoyed, fun

horrible, terrible, disgusting, bad, not good, disappointing, noisy, dark, depressing, boring

Menu

aspects
opinions 1 (large)
opinions 2 (small)

menu, selection, list, choice, choices, option, options
wide, large, varied, variety, good, excellent, creative
small, shabby, narrow, bad

Table 5: The full list of seeds (aspects and opinions) per concept used in our experiments
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Abstract

Meta-Learning has emerged as a research direc-
tion to better transfer knowledge from related
tasks to unseen but related tasks. However,
Meta-Learning requires many training tasks to
learn representations that transfer well to un-
seen tasks; otherwise, it leads to overfitting,
and the performance degenerates to worse than
Multi-task Learning. We show that a state-
of-the-art data augmentation method worsens
this problem of overfitting when the task di-
versity is low. We propose a simple method,
TaskMix, which synthesizes new tasks by lin-
early interpolating existing tasks. We compare
TaskMix against many baselines on an in-house
multilingual intent classification dataset of N-
Best ASR hypotheses derived from real-life
human-machine telephony utterances and two
datasets derived from MTOP. We show that
TaskMix outperforms baselines, alleviates over-
fitting when task diversity is low, and does not
degrade performance even when it is high.

1 Introduction

Deep learning has seen a meteoric rise in Speech
and Language related applications, leading to large-
scale applications of Voice-bots, Voice Assistants,
Chatbots, etc., which aim to automate mundane
tasks such as answering users’ queries either in
Spoken or textual modality. In many applications,
users tend to code-switch or use borrowed words
from other languages. A model trained for a partic-
ular language will not understand these borrowed
words, and hence language-specific models are un-
desirable in such scenarios. On the other hand, a
multilingual model can understand and reason what
the user is speaking.

Due to the scale of the applications, data cap-
tured from various sources have different distribu-
tions or have different use-cases. Recently, Meta-
Learning has emerged as a novel research direction
that aims to leverage knowledge from diverse sets
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of data to learn a transferable initialization so that
a low amount of training data is required to adapt
to new datasets or tasks.

However, Meta-Learning requires a large num-
ber of training tasks, or else the model would over-
fit to the training tasks and would not generalize
well to new tasks (Yao et al., 2021). In this work,
we propose a novel Data Augmentation method,
TaskMix for meta-learning problems, inspired by
MixUp (Zhang et al., 2018). We investigate our pro-
posed method against baselines such as MetaMix
(Yao et al., 2021), Multitask-Learning, and vanilla
Transfer Learning for multi-domain multi-lingual
Spoken Intent Classification.

2 Preliminaries

In this section we describe the problem formulation
and the prior work which we built upon.

2.1 Problem Formulation

Let p(7) be a distribution over tasks from which
training tasks 7o, 71, 72,..., Tr—1 are sampled.
The Meta-Learning objective is to learn a model
with parameters @ such that 6 quickly adapts to pre-
viously unseen tasks, which are assumed to be sam-
pled from the same underlying distribution p(7);
for this paper, each task is a tuple X', ) = T, where
X is a set of N-Best hypotheses of utterances, and
Y is a set of corresponding one-hot-encoded intent
classes.

The number of classes in each ) may differ, and
utterances from different X may be of different
language or a different domain. This formulation
is general and caters to real-life datasets.

Many meta-learning methods divide each train-
ing task into two disjoint sets: support X®, V¥ and
query X9 Y4, However, Bai et. al (Bai et al.,
2021) have shown that a query-set is unneces-
sary for meta-learning. Hence, throughout this
work, we do not split the meta-training tasks, i.e.,
Xo=Xl=Xand Y’ =)1=)

Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 67-72
November 20-23, 2022. ©2022 Association for Computational Linguistics
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Figure 1: (Left) Statistics of the two datasets used in this paper. MTOP-Wide has a high #tasks and a low mean
#examples per task; our In-house dataset has low #tasks, but a high mean #examples per task. (Right) Average
Macro F1 scores of Model-Agnostic Meta-Learning (MAML) and MAML+MetaMix on both datasets. MetaMix is
beneficial for MTOP-Long due to low mean #examples per task, whereas MetaMix worsens the performance our
in-house dataset where the mean #examples per task is high.

Algorithm 1 MAML Update, M etaTrain()

Require: «: Learning rate for the inner loop.
Require: 3: Learning rate for the outer loop.
Require: n: Iterations for the inner loop.
Require: L£(¢,¢): Loss function for task ¢t w.r.t. ¢
1: for 7; ~ p(7T) do > Sample from support set

2 0; < 0 > Copy weights
3 for j = 1tondo

4 Evaluate VoL (7;*,0)

5: 0; < 0; — OéVgﬁ('Es, (9)

6 end for

7: end for

8

0« 60— 5Vy ZTqu(T) ﬁ(Tq, ;) > Update

(2
using query set

2.2 Model-Agnostic Meta-Learning

MAML (Finn et al.,, 2017) learns the meta-
parameters 6 by first, optimizing for multiple steps
on a specific task 7;, yielding #; which is the opti-
mal task-specific parameters. This is done for each
meta-training task 7; ~ p(7). Secondly, The loss
on the held-out query set is computed, which is
back-propagated through the computation graph
through each task. Finally, we update 6 such that 0
can be quickly be adapted to each 6;.

The procedure is outlined in Algorithm 1.

The authors argued that the held-out query set,
which isn’t used in the inner-loop optimization,
prevents the overfitting of task-specific parame-
ters 6; and hence improves generalization of meta-
parameters 6 to new and unknown tasks.

However, (Bai et al., 2021) showed that split-
ting meta-training tasks into the disjoint query and
support sets performs inferior to not splitting at all.
Following these results, we do not split and sample
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data from the same set for inner and outer loops.

2.3 MixUp

MixUp (Zhang et al., 2018) is a data augmentation
technique that synthesizes new datapoints by lin-
early combining random datapoints in the training
set, encouraging a simple, linear behavior between
training examples, improving generalization and
robustness to noise. The interpolation parameter A
is sampled randomly from the Beta distribution at
each training step. As mixing sequences of discrete
tokens, such as sentences, is not possible, following
(Sun et al., 2020), we only mix the output features
of the transformer model.

MetaMix uses MixUp to intra-task datapoints,
creating new datapoints within the same task.
Whereas our proposed method, TaskMix, extends
MixUp to cross-task datapoints, creating new meta-
training tasks.

2.4 MetaMix

MetaMix (Yao et al., 2021) is an application of
MixUp to the meta-learning setting. MetaMix en-
courages generalization within tasks by combin-
ing query-set datapoints. Fig. 2 illustrates how
MAML+MetaMix differs from MAML. MetaMix
introduces an additional gradient for each task
by mixing random datapoints within each task.
MetaMix is a data augmentation method for Meta-
Learning where MixUp is applied to random pairs
of datapoints within a batch of query set datapoints
of each task.
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Figure 2: Tllustration of variants of MAML, including our proposed method, TaskMix. Here, M (7T ) denotes mixing
of datapoints within 77; M (7;, 7;) denotes mixing of tasks 7; and 7;; and G denotes the gradient operator. MetaMix
mixes random pairs of datapoints within each task. TaskMix mixes random pairs of tasks at each iteration.

3 TaskMix

3.1 Motivation

By virtue of meta-learning, § learns features that
transfer well across tasks (Raghu et al., 2020),
which requires a large number of meta-training
tasks, and most datasets on which studies on Meta-
Learning literature use datasets which have a very
high number of tasks and low average number of
training examples per task. We make the following
observations:

* MetaMix increases the effective number of
datapoints within each task, i.e., increasing
the mean #examples per task.

MetaMix does not change the effective num-
ber of tasks.

From Fig. 1, we infer that in MTOP-Wide
dataset, where the mean #examples per task
is low, MetaMix is very beneficial; however,
in our In-house dataset, MetaMix deteriorates
performance as the mean #examples per task
is already very high.

Similar to many real-life multi-domain set-
tings, our In-house dataset has a small number
of tasks.

To this end, we propose a simple data-
augmentation method, TaskMix, to increase the
effective number of tasks used in meta-learning.

3.2 Method

We propose a simple method, TaskMix, to over-
come the low task-diversity problem. First, we sam-
ple support and query set batches from all tasks; we
then sample IV pairs of task indices I, J uniformly
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Algorithm 2 TaskMix

Require: 7 : Beta distribution parameter

Require: miz(a,b,\) = Aa+ (1 — A)b

Require: N : Number of new tasks to generate.
1: while not converged do

2: fort =0to7 —1do
3: x?w tqug'\'yg
AL R
5: end for

6 LJ~UNOT-1)

7: foricl,jeJ,n=0to N —1do
8: A ~ Beta(n,n)

9: 4 = mix(xd, 21 \)
10: gi = miz(yf, yj, \)
1: Ty, = miz(z], x5, \)
12: Un, = miz(y;,y;, \)
13: end for

14: MetaTrain()

15: end while

in the range [0, 7" — 1]. For each selected task pair,
we sample the interpolation parameter A from the
Beta distribution with parameters (1, n7); and then
mix the training examples from the support and
query sets, resulting in a new synthetic task Tn.
Finally, we train with vanilla MAML; however,
we train on the new task set 7 U 7. Algorithm 2
describes this procedure.

TaskMix interpolates between batches of data-
points of random meta-training tasks. In essence,
TaskMix encourages generalization across tasks by
synthesizing new tasks, while MetaMix encourages
generalization within each task by synthesizing
new datapoints within the task. We emphasize that
TaskMix increases the effective number of tasks,
whereas MetaMix increases the effective number



of datapoints within each task. We illustrate this
difference in Fig. 2. We note that TaskMix and
MetaMix are orthogonal, and both methods can be
used at the same time.

TaskMix introduces only one additional hyper-
parameter, i.e., the number of synthetic tasks /V.
We found that results are largely insensitive to N
if N > T, but performance rapidly degrades to the
performance of MAML if N < T, hence we set
N =T for all experiments. We recover MAML if
we set N = 0.

4 Experiments

This section presents empirical results on two multi-
lingual and multi-domain datasets. For choice
of hyperparamters and other experimental details,
please refer to the Appendix.

4.1 Methods and Baselines

We use the N-Best-ASR Transformer (Ganesan
et al., 2021) convention of concatenating N-Best
ASR transcription hypotheses and then feed the
concatenated text to XLM-RoBERTa (Conneau
et al., 2020) feature extractor. We use the "base"
configuration of pretrained XLM-RoBERTa to ex-
tract 768-dimensional vectors of each example for
each task. The extracted features are inputs to a
neck, which is a stack of Linear-Parametric ReLU
layers. We chose XLM-RoBERTa as the feature
extractor as it is trained on large corpora of multi-
lingual text.

We now describe the baselines used in the exper-
iments:

e Multitask Learning (MTL): we learn a dif-
ferent linear head for each meta-training task,
and discard these heads after training, and ini-
tialize a new head for each meta-testing task.

Vanilla Transfer: we discard all meta-
training tasks and finetune directly to each
meta-testing task.

MAML: we append a linear layer with the
max number of classes in the respective
datasets.

4.2 Datasets

We briefly summarize the datasets used in this pa-
per. Various statistics relating to the datasets are in
Table 1.
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Mean Mean
Dataset #Tasks #Classes #Examples
Per Task
In-house 11 7.73 6884
MTOP-Long 11 2.82 7615
MTOP-Wide 66 2.17 1269

Table 1: Various statistics of datasets used in this paper.

* In-house dataset is constructed by collect-
ing and automatically transcribing phone calls
from various customer-call centers (varying
domains, such as restaurants, airlines, bank-
ing, etc.) across 3 countries and with con-
versations comprising at least 3 languages
with users speaking with borrowed words,
code-switching, etc. Multiple human anno-
tators manually label the intent for each user
turn (consisting of 5-Best ASR hypotheses)
in a conversation. The resulting dataset con-
tains about 70K utterances across 11 tasks,
grouped into 7 meta-training and 4 meta-
testing tasks. We grouped the meta-training
and meta-testing tasks chronologically, i.e.,
the oldest 7 tasks were designated as the meta-
training tasks and the rest as meta-testing
tasks. We use this setup to have as low an
application gap as possible.

MTOP-Wide (Li et al., 2021) contains over
100K utterances, (which we treat as 1-best
hypotheses) from 6 languages across 11 do-
mains. We divide the MTOP dataset by group-
ing examples from distinct domains and lan-
guages, resulting in 66 subsets. We further
group these subsets into 54 meta-training and
14 meta-testing tasks. We only keep exam-
ples for which the class frequency is at least
50. We create this dataset to have a high task
diversity but low average #examples per task.

MTOP-Long (Li et al., 2021) We divide the
MTOP dataset by grouping examples from dis-
tinct domains resulting in 11 subsets. We fur-
ther group these subsets into 7 meta-training
and 4 meta-testing tasks. We only keep exam-
ples for which the class frequency is at least
20. We create this dataset to have a low task
diversity but high average #examples per task.



Average Average

Method MacrogFl Method MacrogFl
MTL 0.320 £+ 0.004 MTL 0.826 £0.018
Vanilla Transfer 0.321 £ 0.007 Vanilla Transfer 0.804 £ 0.003
MAML 0.361 £ 0.021 MAML 0.847 £ 0.006
MAML+MetaMix 0.265 £ 0.006 MAML+MetaMix 0.862 £ 0.006
MAML+TaskMix 0.370 £+ 0.023 MAML+TaskMix 0.856 + 0.003

MAML+MetaMix+TaskMix 0.441 £ 0.002

MAML+MetaMix+TaskMix 0.861 £ 0.017

Table 2: Results on our In-house dataset. We observe
that TaskMix yields a significant performance boost.
MAML+MetaMix degrades performance to worse than
MAML.

Average

Method Macro F1
MTL 0.439 + 0.022
Vanilla Transfer 0.446 £ 0.014
MAML 0.442 + 0.002
MAML+MetaMix 0.450 £ 0.011
MAML+TaskMix 0.462 £ 0.012
MAML+MetaMix+TaskMix 0.421 + 0.008

Table 3: Results on the MTOP-Long (Li et al., 2021)
dataset. MAML+TaskMix out-performs other baselines.

4.3 Evaluation

As all tasks across all datasets are highly imbal-
anced, we use the Macro F1 score to weigh all
classes equally.

All tasks are grouped into meta-training and
meta-testing sets; each task is split into "support"
and "test" sets. For modeling, we first train on the
meta-training tasks, then use the same weights to
fine-tune on the meta-testing tasks, and then com-
pute Macro F1 scores for each meta-testing task.
We then compute the mean of Macro F1 scores
across all meta-testing tasks. We denote this metric
as Average Macro FI. Finally, we report the mean
and standard deviation of Average Macro F1 scores
across three independent trials with different seeds.

4.4 Results and Discussion

We make the following key observations from Ta-
bles 2, 3, and 4:

* TaskMix improves performance on "long"
datasets i.e., on In-house and MTOP-Long
where the #meta-training tasks are very low
and # examples per task is high.
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Table 4: Results on the MTOP-Wide (Li et al., 2021)
dataset. MetaMix is beneficial and TaskMix doesn’t
negatively affect performance (compared to MAML)
even when task diversity is high.

* For the In-house dataset, MetaMix degrades
performance to be comparable to vanilla-
transfer, i.e., almost no gain from meta-
training tasks. We infer that MetaMix makes
the model overfit on meta-training tasks, as
the number of examples-per-task is already
very high.

In any of the datasets, TaskMix doesn’t de-
grade the performance of MAML.

For MTOP-Wide, TaskMix only has a slight
performance boost compared to other base-
lines, suggesting that TaskMix is not useful if
the number of tasks is already high.

We interestingly find that
MAML+MetaMix+TaskMix is the  worst
performing method for MTOP-Long. However,
TaskMix is beneficial when used on its own. We
leave studying the interaction between MetaMix
and TaskMix for future work.

5 Conclusion

In this paper, we propose a novel data-
augmentation method, TaskMix, to alleviate the
problem of overfitting in Meta-learning datasets
when the task diversity is too low. Through exper-
iments on two multilingual, multi-domain intent
classification datasets, MetaMix could worsen the
overfitting problem when the task diversity is low,
whereas TaskMix is beneficial in such cases.
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Abstract

We introduce a corpus of short texts in Man-
darin, in which quantified expressions figure
prominently. We illustrate the significance of
the corpus by examining the hypothesis (known
as Huang’s “coolness” hypothesis) that speak-
ers of East Asian Languages tend to speak more
briefly but less informatively than, for exam-
ple, speakers of West-European languages. The
corpus results from an elicitation experiment
in which participants were asked to describe
abstract visual scenes. We compare the re-
sulting corpus, called MQTUNA, with an En-
glish corpus that was collected using the same
experimental paradigm. The comparison re-
veals that some, though not all, aspects of
quantifier use support the above-mentioned hy-
pothesis. Implications of these findings for
the generation of quantified noun phrases are
discussed. MQTUNA is available at: https:
//github.com/a-quei/gtuna.

1 Introduction

Speakers trade-off clarity against brevity (Grice,
1975). It is often thought that speakers of East
Asian languages handle this trade-off differently
than those who speak Western European languages
such as English (Newnham, 1971). This idea was
elaborated in Huang (1984), when Huang borrowed
a term from media studies, hypothesizing that Man-
darin is “cooler” than English in that the intended
meaning of Mandarin utterances depends more on
context than that of their English counterparts; in
other words, Mandarin speakers make their utter-
ances shorter but less clear than English speakers.
This “coolness" hypothesis is often worded impre-
cisely, conflating (a) matters that are built into the
grammar of a language (e.g., whether it permits
number to be left unspecified in a given sentence
position), and (b) choices that speakers make from
among the options that the grammar permits. Here
we focus on the latter.
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Studies of coolness have often focused on refer-
ring expressions (e.g., van Deemter et al. (2017);
Chen et al. (2018); Chen and van Deemter (2020);
Chen (2022)). The present paper focuses on quan-
tification, as in the Quantified Expressions (QEs)
“All A are B”, “Most A are B”, and so on. In a nut-
shell, we want to know whether Mandarin speakers
use QEs less clearly, and more briefly, than English
ones.

We report on an elicitation experiment, MQ-
TUNA, inspired by the QTUNA experiment of Chen
et al. (2019b, see §2). The experiment asks Man-
darin speakers to produce sequences of QEs to
describe abstract visual scenes. Sequences of QEs
that are used to describe visual scenes are called
Quantified Descriptions (QDs, Chen et al., 2019b).
The MQTUNA corpus will enable researchers to
investigate a wide range of questions about quan-
tification in Mandarin. We illustrate this potential
by comparing the corpus with the English QTUNA
corpus from the perspective of coolness and we ask
how our findings impact computational models of
the production of QDs.

In sum, our contribution is two-fold:

1. We constructed, annotated and analysed the
MQTUNA corpus;

2. We compared MQTUNA to QTUNA from the
perspective of Huang’s Coolness hypothesis.

2 QTUNA Experiment

A growing body of empirical work has studied how
people understand and produce quantifiers (Moxey
and Sanford, 1993; Szymanik and Zajenkowski,
2010; Grefenstette, 2013; Herbelot and Vecchi,
2015; Sorodoc et al., 2016). These studies have
focused on a limited number of quantifiers (chiefly
“all”, “most”, “many”, and “no”

In Natural Language Generation (NLG), the
QTUNA corpus was built to study how English

Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 73-80
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Figure 1: An example scene from QTUNA.

speakers use QDs to describe a visual scene (Fig-
ure 1). Participants were free to (1) describe a
visual scene in whatever way they want, (2) use
as many sentences as they choose, and (3) use any
sentence pattern that they choose. For example, for
the scene in Figure 1, a participant could say “Half
of the objects are blue squares. The other half are
red objects. There is only one red circle.”. Given
the domain contains four objects in no more than
two shapes, this QD describes the scene completely
and correctly. Participants were told that their de-
scriptions should allow readers to reconstruct the
scene modulo location. Each scene contains N ob-
jects (NB: N is defined as domain size), which is
either a circle or a square and either blue or red. To
test how domain size impacts the use of quantifiers,
QTUNA experimented on 3 sizes, i.e., 4, 9, and 20.
Analysis of the resulting QTUNA corpus revealed
that, as the domain size increase, (English) speak-
ers (1) use more vague quantifiers (e.g., most and
few); (2) use less complete QDs (NB: a QD is com-
plete if the scene described is the only one modulo
location that fits the description); (3) use more in-
correct QDs (NB: a QD is incorrect if it is not true
with respect to the scene); and (4) do not use longer
QDs (measured in terms of the number of QEs).

3 Research Questions

Are the QTUNA findings true for MQTUNA? We
are curious whether the above-mentioned findings
about QTUNA (see §2) hold true for MQTUNA. We
expected that domain size affects speakers of dif-
ferent languages in the same way, so these findings
should hold for both corpora in the same way.

Are Mandarin QDs briefer and less clear than
English QDs? “Coolness” says Mandarin speak-
ers speak more briefly and less clearly than English
speakers. We check this hypothesis by comparing
QDs in QTUNA and MQTUNA.
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Regarding brevity, we are curious about the
length of QDs. If Mandarin QDs are briefer than
English QDs, then we expect QDs in MQTUNA to
contain less QEs than those in QTUNA.

Regarding clarity, if Mandarin speakers utter
QDs in a less clear way, we expect to see more
vague quantifiers in MQTUNA than in QTUNA and,
more importantly, fewer logically complete QDs.

4 MQTUNA Experiment

We followed the same methodology as in the
QTUNA experiment, re-using scenes of the QTUNA
experiment, inheriting its experimental design, and
translating its instructions participants.

4.1 Materials

To prepare materials for the MQTUNA experiment,
we sampled scenes from QTUNA following two
steps. First we eliminated all scenes all of whose
objects share the same properties. For instance,
we removed all scenes that can be described com-
pletely by a single QD like “all objects are red
circles”. Next, for each domain size (i.e., 4, 9, or
20), we randomly sampled 5 scenes from QTUNA.
In the second step, to familiarise participants with
the experiment, we added a practice situation that
uses a [N = 4 scene whose objects are the same.

For the instructions, we translated the instruc-
tions of QTUNA (Appendix A). More specifically,
the instruction told subjects that (1) they should
finish the experiment in limited time (i.e., 20 min-
utes); (2) their descriptions would then be used in
a reader experiment where readers are asked to re-
construct the scenes; (3) they should not enumerate
and not say where in the grid a particular object is
located.

4.2 Design, Participants, and Procedure

Data from 31 participants were collected for do-
main sizes N = 4, 9 and 20 (/N is the number of
objects in the scene). See Appendix B for details
about participants. Participants were asked to read
the instruction first and to complete the experiment
(16 situations) in one sitting.

4.3 The MQTUNA Corpus

The resulting MQTUNA corpus contains 465 valid
QDs and 1175 QEs. There are 155 QDs for each
domain size and there are 383, 386, and 406 QEs
for N =4, N =9, and N = 20 respectively. Ta-
ble 1 lists a number of examples QDs in MQTUNA.



N Description

4 FrE#EEE ., TTHERITE =15 - | All objects are blue. The number of squares is triple that of circles.

4 FE BT RIS B - (B2 RE—1E - | All objects are blue but there is only one circle.

o PTEMBIELZIEARN . TTHREREGK . FHRIVEE DT B LR -
All circles are red. All squares are blue. There are fewer squares than circles.

9 TTHGEBEIBEEN =% . RFHNLLE - | The number of squares is triple that of circles. All of them are red.

20 AL EIEETTIRBIEECEEZE K - | There is no big difference between the numbers of all combinations.
—PLOfE, PR ZETRLECHTRE . EEOEBEZ TAARE -

20 Half of the objects are red, the other half of them are blue. There are more red squares than blue squares

and more blue circles than red circles.

Table 1: List of example descriptions from the MQTUNA corpus, with their annotations. N indicates domain size.

N=4 N=9 N=20
Quantified Description 155 155 155
Quantified Expression 383 386 406
Complete Description 122 19 5
Incomplete Description 33 136 150
Vague Quantifier 25 143 184
Wrong Description 7 14 30

Table 2: Frequencies of major QE types in the different
subcorpora of MQTUNA.

We annotated the use of quantifiers in MQTUNA,
viewing quantifiers that have the same meaning
(e.g., “BT’B” (“suoyou", all) and “4£HB” (“quanbu”,
all) as identical. See Appendix C for a list of top-10
quantifiers and their usage in MQTUNA.

As for quantifier use, the quantifier “FT5™ (sud-
you; all) and “—* (yiban; half) are two of the
most frequent quantifiers. In the top-10 most fre-
quent quantifiers of MQTUNA, 4 are vague, includ-
ing “Hai KZH0 (overwhelming majority), “ K%
0 (most), “ZEL (most), “/VEL (minority). This
is very different from QTUNA, where only 1 vague
quantifier (i.e., most) is in top-10. Appendix C also
presents lists of crisp and vague quantifiers.

5 Analysis

Focusing on the research questions of §3, we anal-
yse the MQTUNA corpus (§5.1), and we compare
MQTUNA with QTUNA (§5.2). We conclude with a
few post-hoc observations (§5.3).

5.1 Analysing MQTUNA

To check whether the findings of QTUNA (§2) hold
for MQTUNA, we annotated each QD with whether
it is logically complete and whether it is correct
with respect to the corresponding scene; we also
annotated each QE with whether it uses a vague
quantifier or not. Annotation details can be found
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in Appendix D. To avoid compromising the com-
parison between MQTUNA and QTUNA, we did not
only annotate MQTUNA but we also re-annotated
the QTUNA corpus, using the same annotators fol-
lowing the same set of principles. Table 2 charts
the results.

Vagueness. We identified 57, 201, and 234 QEs
that contain vague quantifiers out of 383, 386, and
406 QEs from the three sub-corpora, confirming
that vagueness is more frequent with increasing do-
main size. This was confirmed by a binary logistic
regression test (p < .0001, adjusted p < .0001").

Completeness. We observed 33, 136, and 150
logically incomplete QDs from the three sub-
corpora. A binary logic regression test confirms
that there are more logically incomplete QDs in
larger domains (p < .0001, adjusted p < .0001).

Correctness. The 3 subcorpora contained 7, 14,
and 30 wrong QDs, so more incorrect QDs are used
in larger domains (p < .0001, adjusted p < .0001)
using a binary logic regression test.

Length. QDs in larger domains in MQTUNA con-
tain more QESs than those in smaller domains. We
computed the Pearson correlation between the do-
main size and the QD length. After Bonferroni
correction, the difference fell just short of signifi-
cance (p = 0.1025, adjusted p = 0.615).

In a nutshell, all findings of QTUNA are also true
for MQTUNA.

5.2 MQTUNA and QTUNA: Initial Comparison

To compare QDs in Mandarin and English, we con-
sidered all the scenes in MQTUNA and re-annotated
them using the same annotators in §5.1.

!'The p-value was adjusted by Bonferroni correction



QTUNA MQTUNA
N C 1 C I p-value
4 298 32 122 33 p<.001
9 77 113 19 136 p<.0001
20 4 186 5 155 p=.5
all 379 331 146 319 p <.0001

Table 3: Numbers of complete (C) and incomplete (I)
QEs in QTUNA and MQTUNA. N is domain size.

Brevity. We compared the length of QDs in
QTUNA and MQTUNA and found that QDs in MQ-
TUNA are longer than those in QTUNA in every
sub-corpus. This rejects our hypothesis that Man-
darin speakers prefer brevity and, thus, produce
shorter QDs than English speakers.

Completeness. Table 3 reports the number of
logically complete QDs in QTUNA and MQTUNA,
respectively. 379 out of 710 QDs in QTUNA are
logically complete while 146 out of 465 QDs in
MQTUNA are complete. Using a Chi-squared test,
this confirms that there are more complete QDs
in QTUNA than in MQTUNA (x%(2, N = 1175) =
54.93, p < .0001, adjusted p < .0001). Mandarin
speakers produce longer but less logically complete
QDs. Interestingly, if we look into more details
(see Table 3), the difference only exists in domain
sizes 4 and 9. We suspect that both English and
Mandarin speakers find it hard to come up with a
logically complete QD if the domain size is large.

Vagueness. In QTUNA, 222 of the 1342 QEs were
vague whereas, in MQTUNA, 352 of the 1175 QEs
were vague. A Chi-squared test confirms that Man-
darin speakers used more vague quantifiers than
English speakers (x?(2, N = 2517) = 64.04,p <
.0001, adjusted p < .0001).

5.3 Post-hoc Observations

Surface Forms. We observed that QEs in MQ-
TUNA are generally realised in three kinds of forms:
(1) “Q A 7& B” (“Q A are B”), where “Q” is a
quantifier, for example, “AK# 5 A 5& B” (“most
A are B”); (2) “A H Q 5& B” (“in A, Q are B”);
and (3) “BTE A H 5 Q" (“B takes up Q of A”).

A-Drop. Akin to the previous findings that pro-
nouns and nouns are often dropped in Mandarin
NPs (Huang, 1984; Osborne and Liang, 2015), we
found that nouns that take up A positions in the
above forms are also often dropped (henceforth,
A-drop), for example, saying “B [ Q” (“B takes

76

up Q7). In MQTUNA, we found 304 out of 1175
QEs (approximately 25.87%).

Plurality. van der Auwera and Baoill (1998)
pointed out that Mandarin briefer in that plural-
ity is often not expressed explicitly. Consistent
with this, we found that in MQTUNA, numbers are
rare. This makes a QE in Mandarin sometimes less
informative than an English QE, Mandarin QDs
are less likely to be logical complete. For example,

Mandarin QE “F i G £L 5 /5 H could mean

“there are red squares” or “there is a red square”.

6 Discussion

We have presented and analysed the MQTUNA cor-
pus of quantifier use in Mandarin.

Coolness. We assessed the coolness hypothesis
by analysing MQTUNA and comparing QTUNA and
MQTUNA. As for the brevity of QDs, we found
both evidence (i.e., Mandarin speakers often per-
formed A-drop and expressed plurality implicitly)
and counter-evidence (i.e., Mandarin speakers ut-
tered longer QDs than English speakers).

As for the clarity of QDs, we confirmed that the
Mandarin corpus (MQTUNA) contains significantly
more incomplete QDs and vague quantifiers than
its English counterpart (QTUNA).

Generating QDs. Chen et al. (2019a) proposed
algorithms for generating QDs (QDG algorithms).
Let us list issues to be heeded when building QDG
algorithms for Mandarin.

First, plurality plays an important role in the
QDG Algorithms of Chen et al. (2019a). If these
algorithms are to be adapted to Mandarin, then
they should first “decide” whether to realise the
plurality of a QE explicitly, since this will influ-
ence how much information the QD should express
in other ways. Second, modelling the meaning of
vague quantifiers is vital for generating human-
like QDs. Since Mandarin speakers use vague
quantifiers more frequently than English speakers,
Mandarin QDG needs to handle a larger number
of vague quantifiers and capture nuances between
them, which is a difficult and data-intensive chal-
lenge. Lastly, QD surface realisation in Mandarin
needs to handle more syntactic variations than cur-
rent QDG algorithms are capable of, because (1) a
QE can be realised in multiple possible forms (see
§5.3); (2) A-drop frequently happens; (3) Plurality
can be expressed implicitly or explicitly.



Future Work. Our comparison between Mandarin
and English was based on two corpora, QTUNA and
MQTUNA, that were collected using elicitation ex-
periments that were conducted following the same
experimental paradigm, and using very similar sets
of stimuli. Yet, language may not have been the
only difference between these experiments; partic-
ipants in QTUNA and MQTUNA are also likely to
differ in terms of their cultural background, and
possibly in terms of other variables, such as their
education; There is no absolute guarantee that all
our annotations are correct. To create an even play-
ing field between the two corpora, we asked our
annotators to re-annotate QTUNA. But although our
annotator were native speakers of Chinese, they
were merely fluent (not native) in English, which
may have caused a difference in the way both cor-
pora were annotated. In future, it would be in-
teresting to conduct even more tightly controlled
experiments to tease apart the variable of language
use from such possibly confounding variables.
Finally, our experiment has looked at a wide
range of quantifiers. We also plan experiments that
zoom in on specific subsets, such as the different
ways in which variants of the quantifier “most” can
be expressed (cf., Wang and Piao (2007) and §4.3).
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A Instruction

sty BATROIL BT 0 R TE T AR ) 14 £
HIJ5E . NI, ?ﬂzﬂhﬁﬁ—f NANEE E
AL, WA ER R —RIIE R - &
!:E‘K@HEP BREE— E?ﬁl;ﬁ_ (167) HIE
. EREEREN T, ?ﬂdl] R —A)E
IL”?%%EE% R SCA) T o THER
We’re interested in understanding how people de-
scribe sets of objects. To find out, we’re doing a
small experiment, in which we’ll show you a number
of situations in which some (16) objects are displayed
on a screen. We'd like you to describe each situa-
tion in one or more grammatically correct Mandarin
sentences.

1 RAEERIORE (2090%¥) HNSEREAD
SE9% o The experiment should take you less
than 20 minutes.

2 MIBEEH#A, FESRRRTRIHE S
F'EAAEE IR [A] (,w\ Sreh) NEAY
KA. <& ”E’JTLS’ER%T B
FEEECE . RIAERRRRS, TR
MR E N ERAERA PREE (Fln: -
77, FEHE]) - Based on your description, a
reader will try to “reconstruct” the situation.
We use the word “reconstruct” loosely here, be-
cause the only thing that matters is the different
types of objects that the sheet contains. There-
fore, please do not say *where* in the grid a
particular object is located (e.g., "top left”, “i
the middle”, “on the diagonal”).

3 BrEFRARER AR REREE, Aae
%él@iﬁTﬁ‘éfé "”’é JEEER T B E’Wi
W AN S . R EN I
ﬁﬁi&%ﬂﬂ;’%}#qﬂ B E . XEER
W AEEI Y S o Each object is a circle
or a square, and either red or blue. Your reader
knows this.

4 BEAREMEEE R TREE, Gl BA
PE-IAAREE, WA ECREE,
F=EANEERTTE . Please do not “enumer-
ate” the different types of objects. For example,
do not say “There is a red circle, two blue cir-
cles, and ...”.

PAUR &Ll

Here are some Example: (...)

Figure 2: The sketch of the instruction of MQTUNA.

B Participants

All of our participants are Mandarin native speak-
ers. 21 subjects are undergraduate students in com-
puter science from the Utrecht University. Each
of the rest at least has a bachelor degree in any of
computer science, statistics, and management. 11
subjects are female and 20 subjects are male.



C Quantifiers in MQTUNA

Table 4 enumerates the top-10 quantifiers and their
usage in MQTUNA. In what follows, we provide a
list of vague quantifiers and a list of crisp quanti-
fiers in MQTUNA.

e Crisp Quantifiers: I5 (all), 2B (only),
t...%... (more), & (times), BR T .. H8 2.
(all...except...), H (there is), 2 Tnfs (more
than n times), /0 Fnf& (less than n times), %
2 (half...the other half...), #8[F] (same as), —
2t (half), N[ (different amount of ), —
PL_E (more than half), %8 (no), /0T (less
than), FTE4HE (all possible combinations);

Vague Quantifiers: K&ER5> (most), /NER5Y (a
small part of ), KHE 53 (overwhelming ma-
jority), B T ... RZHL... (most...except...), /L
&= (a few), iI£% T (way more than), %
DEL (a very few), % — 5. (slightly more
than), % /~/V (greatly more than), M it
(close to each other), Z=75#h & (almost all),
W& /> (a bit less), B& 2 (a bit more), K%
%2 (approximately half ... the rest ...), %
KAE[E] (almost the same), % —YE (several
more), Z 1 JL% (several times more), 215
% (much more), nf5 % — m. (slightly more
than n times), nfi5/>— i, (slightly less than n
times), K\—2 (approximately half), V%L
(minority).

D Annotating MQTUNA

We asked our annotator to annotate logical com-
pleteness, correctness and vagueness based on the
following principles:

1. Logical Completeness: we asked our annota-
tor whether s/he can fully recover the scene
given a QD. For example, for a scene with 3
red circles and 1 blue square, one could say
“Most objects are red circles and there is only
one blue square.” Though s/he uses a vague
quantifier “most”, we still can infer that, given
domain size 4, “most objects” means 3 objects,
and, therefore, this QD is logically complete.
However, for a scene with 8 red circles and
1 blue circle, one could say “All objects are
circles and almost all of them are 8. Though
using “almost all” to describe “8 out of 9” is
definitely correct, it does not necessarily mean
“8 out of 9” but possibly mean ““7 out of 9.
Therefore, this QD is not logically complete;
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2. Correctness: we asked our annotator to an-

notate a QD as “incorrect” if and only if the
QD contains definitely incorrect information,
for example, saying a “red object” blue or de-
scribing a scene with 3 red squares and 1 blue
square as “half of the objects are red”;

. Vagueness: our annotator decided whether a

QE uses a vague quantifier based on the vague
quantifier list in Appendix C.
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Abstract

NLP technologies can cause unintended harms
if learned representations encode sensitive at-
tributes of the author, or predictions systemat-
ically vary in quality across groups. Popular
debiasing approaches, like adversarial training,
remove sensitive information from representa-
tions in order to reduce disparate performance,
however the relation between representational
fairness and empirical (performance) fairness
has not been systematically studied. This paper
fills this gap, and proposes a novel debiasing
method building on contrastive learning to en-
courage a latent space that separates instances
based on target label, while mixing instances
that share protected attributes. Our results show
the effectiveness of our new method and, more
importantly, show across a set of diverse de-
biasing methods that representational fairness
does not imply empirical fairness. This work
highlights the importance of aligning and under-
standing the relation of the optimization objec-
tive and final fairness target. Our code is avail-
able at: https://github.com/AiliAili/
contrastive_learning_repo.

1 Introduction

Neural methods have achieved great success for
text classification tasks. However, they have been
trained on datasets which embody cultural and so-
cietal stereotypes from the real world, captured
in spurious correlations between target labels and
protected attributes. This can result in biased pre-
dictions violating empirical fairness, i.e., models
perform unequally for different sub-groups. A re-
lated, but different problem occurs if representa-
tional fairness is violated which means that learned
representations encode potentially sensitive author
information (such as demographic information),
which can be recovered by an adversarial attacker.
Addressing and reducing such cases of model bias

*This work was done when Aili Shen was at The Univer-
sity of Melbourne.
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Figure 1: Illustration of our proposed method in the
context of sentiment classification, where inputs (x) are
mapped to hidden representations, which will then be
used to make predictions §. The points represent the
instances in the latent space learned by a given model,
marked with respect to sentiment and demographic la-
bels. On the top and bottom of the gray line are hidden
representations from our proposed method and a naively
trained model. Representational fairness is measured
based on the extent to which an attacker (f) can re-
construct protected attributes (a) from hidden represen-
tations (h). Empirical fairness measures performance
disparities, and measures whether model predictions are
independent of protected attributes.

has attracted substantial research interest across
tasks including Twitter sentiment analysis (Blod-
gett et al., 2016; Han et al., 2021b), part-of-speech
tagging (Hovy and Sggaard, 2015; Li et al., 2018),
and image activity recognition (Wang et al., 2019;
Zhao et al., 2017).

One line of work attempts to achieve empirical
fairness through learning fair representations — re-
moving authorship-related sensitive information
from learned representations — under the assump-
tion that fair representations will naturally lead to
fairer models (Li et al., 2018; Ravfogel et al., 2020;
Han et al., 2021a). For example, adversarial train-
ing is a popular method which directly aims to
prevent a discriminator from reverse-engineering
protected attribute information from learned rep-

Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 81-95
November 20-23, 2022. ©2022 Association for Computational Linguistics



resentations (Elazar and Goldberg, 2018; Resheff
et al., 2019; Han et al., 2021b,a; Li et al., 2018).
Similarly, null-space projection approaches remove
protected information from hidden representations
by projecting learned text representations to the
null-space of linear protected attribute discrimina-
tors (Ravfogel et al., 2020, 2022).

In this paper, we systematically explore the in-
teraction between fair representations and empiri-
cal fairness, both via three classes of existing ap-
proaches, as well as in considering the applica-
tion of contrastive learning (Oord et al., 2018; Li
et al., 2021a; Tian et al., 2020; Henaff, 2020; Bui
et al., 2021; Li et al., 2021b; Chen et al., 2020b)
to fairness. Contrastive learning is a natural and
flexible choice of approach for representational fair-
ness, in explicitly differentiating representations be-
tween different classes. Representational fairness is
achieved by learning a space which simultaneously
separates instances according to their labels, while
mixing instances with different protected attributes
(like gender or race), either globally (Section 3.2)
or per class (Section 3.3).

Our contributions in this work are:

1. We present two debiasing methods based on
contrastive learning, with loss components
that capture different fairness criteria;

Based on experimental results over Twitter
sentiment analysis and profession classifi-
cation, we show that our proposed method
achieves the best representational fairness,
where most baseline methods fail;

We show that there is no correlation between
representational and empirical fairness, de-
bunking previous assumptions about the em-
pirical value of fair representations.

2 Related Work

We review relevant research on fairness criteria,
debiasing methods, and contrastive learning.

2.1 Fairness Criteria

Various types of fairness have been proposed,
such as group fairness (Hardt et al., 2016; Zafar
et al., 2017a; Cho et al., 2020), individual fairness
(Sharifi-Malvajerdi et al., 2019; Yurochkin et al.,
2020; Dwork et al., 2012), and causality-based fair-
ness (Garg et al., 2019; Wu et al., 2019; Zhang
et al., 2018; Zhang and Bareinboim, 2018). In this
work, we focus on group fairness relative to the
demographic variables available in our datasets.
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To quantify how the performance of models
varies across different demographic subgroups,
there are three widely used fairness criteria. Demo-
graphic parity (Feldman et al., 2015; Zafar et al.,
2017b; Cho et al., 2020) measures whether the
model achieves equal positive prediction rates to-
wards each demographic subgroup, without tak-
ing the main task label into consideration. Equal
opportunity (Hardt et al., 2016; Madras et al.,
2018a) (Cho et al., 2020; Hardt et al., 2016; Madras
et al., 2018a) requires equal true positive rates
for instances from each subgroup conditioned on
the main task label, while equalised odds requires
equal true positive and false positive rates for in-
stances from each subgroup and with the same
main task label. The definition of these three crite-
ria is limited to binary classification, whereas we
extend the measurement of fairness to each main
task label, such that bias is measurable in multi-
class classification settings.

2.2 Achieving Empirical Fairness

To optimize towards group fairness, prior debiasing
methods fall into three categories. Pre-processing
manipulates the training data e.g., by balancing the
input, followed by re-training the model on a fairer
dataset (Badjatiya et al., 2019; Elazar and Goldberg,
2018) but is computationally prohibitive for large
datasets and models, and insufficient to ensure fair-
ness (De-Arteaga et al., 2019; Wang et al., 2019).
Post-processing methods “bleach” sensitive infor-
mation from learned representations after main task
training (Ravfogel et al., 2020). In-processing ap-
proaches augment the original training objective,
to encourage the model to learn representations
that are oblivious to protected attributes, aiming to
achieve empirical fairness through representational
fairness. For example, adversarial models (Beutel
etal.,2017; Lietal., 2018; Barrett et al., 2019; Han
et al., 2021b) encourage the main model to learn
representations that are indistinguishable wrt the
protected attributes by a jointly trained discrimina-
tor. Our contrastive learning methods also intro-
duce an augmented objective, but unlike adversarial
methods, do not require modification of the model
architecture, and hence do not add model parame-
ters. Tsai et al. (2021) proposed a similar approach
in a self-supervised learning setting.

Other methods directly optimize fairness mea-
sures during training (Madras et al., 2018b; Zhao
et al., 2020a; Cho et al., 2020). For exam-



ple, Cho et al. (2020) use kernel density estima-
tion to approximate equalised odds during train-
ing, but tailored to binary classification, leading
to poor performance—fairness tradeoffs in high-
dimensional settings. We introduce two variants of
the contrastive losses which directly optimize fair-
ness for demographic parity or equal opportunity,
respectively.

Various recent studies (Ravfogel et al., 2020;
Han et al., 2021b; Chi et al., 2022; Zhao et al.,
2020b; Chowdhury et al., 2021; Tsai et al., 2021;
Zhao and Gordon, 2019) claimed to generate fair
representations, while exclusively evaluating their
methods in terms of empirical fairness. Other work
has used metrics like representation leakage to
quantify how much protected attribute information
can be recovered from learned representations (Han
et al., 2021b; Elazar and Goldberg, 2018; Li et al.,
2018; Wang et al., 2019). However, it has not been
systematically studied whether fair representations
lead to fair predictions, which is one contribution
of this paper.

2.3 Contrastive Learning

Contrastive learning aims to pull similar instances
together and push dissimilar instances apart by
maximizing the similarities of similar instances
and minimizing those of dissimilar pairs within the
unit feature space (Oord et al., 2018; Tian et al.,
2020; Li et al., 2021a; Grill et al., 2020; Chen
et al., 2020a; Henaff, 2020). Its success hinges
on an appropriate definition of similarity. Origi-
nating in computer vision, in vanilla contrastive
learning positive (similar) instance image pairs are
generated via data augmentation (i.e., meaning-
invariant manipulation of an input image such as
cropping or blurring (Chen et al., 2020a; Fang et al.,
2020; Cubuk et al., 2019)), and negative (dissimi-
lar) instance pairs correspond to distinct items in
the original data. More recently, supervised con-
trastive learning (SCL) was proposed in the context
of classification, where positive instances belong
to the same class, and negative instances belong
to different classes (Khosla et al., 2020). When
combined with a cross entropy loss, it has been
shown to improve model robustness to noise and
data sparsity (Gunel et al., 2021), as well as adver-
sarial attacks (Bui et al., 2021). We leverage the
ability of SCL to explicitly constrain class-based
positioning of instances in feature space, to enforce
representational fairness. We present evidence of
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its effectiveness, and use it to systematically study
the relationship between representational and em-
pirical fairness.

The most relevant work to our proposed method
is Gupta et al. (2021), whose training objective con-
sists of three parts: (1) cross-entropy loss, which
is identical to vanilla training; (2) upper bound for
the mutual information between inputs and hidden
representations, which relies on a manually-defined
prior over the hidden representations to calculate a
KL divergence loss; and (3) lower bound estimator
for the conditional mutual information, similar to
Cong, in our paper (see Equation (3)). Although
Gupta et al. (2021) have the same cross-entropy
objective and lower-bound estimation as the equal
opportunity variant of our proposed method, its sec-
ond objective (upper bound estimator) focuses on
learning task-agnostic representations while ours
learns task-specific representations. Moreover, in
this paper, we also show that the demographic par-
ity variant consistently outperforms the equal op-
portunity variant.

2.4 Intrinsic Fairness

Intrinsic bias refers to biases in the geometry of text
representations in upstream pre-trained language
models (prior to any task-specific fine-tuning).
Such representations are agnostic to downstream
tasks, and common metrics for intrinsic biases rely
on predefined templates, e.g., gendered word pairs
for word embedding association test (Caliskan
et al., 2017) and masked sentences (Kurita et al.,
2019).

There is a broad range of studies on the correla-
tion between intrinsic and extrinsic bias (Goldfarb-
Tarrant et al., 2021; Cao et al., 2022). Jin et al.
(2020) show that debiasing the intrinsic bias leads
to less extrinsic bias, but conversely, Steed et al.
(2022) argue that extrinsic bias is better explained
by bias in downstream datasets rather than intrinsic
bias in upstream text representations. Similar to
this paper, Orgad et al. (2022) examine the influ-
ence of downstream task debiasing on represen-
tations. However, it also focuses exclusively on
intrinsic bias rather than representational fairness.
In summary, most previous work is aimed at mea-
suring and mitigating task-agnostic intrinsic bias.

In contrast, the leakage metric for representa-
tional fairness in this paper is task-specific, and
measures the predictability of protected informa-
tion from the task-specific representations that are



learned as part of fine-tuning. Given that both leak-
age (intrinsic) and empirical fairness (extrinsic) are
defined in a task-specific way, we expect a stronger
correlation between the two. This expectation is at
the core of common debiasing approaches, such as
adversarial methods. To the best of our knowledge,
this paper is the first to explore this correlation.

3 Fair & Supervised Contrastive
Learning

Our method augments the objective of supervised
contrastive learning to simultaneously encourage
data separation in terms of the main class labels,
and discourage the differentiation of data points
on the basis of their protected attributes. While
the method is compatible with different classifier
architectures, here we use the following setup:

1. Anembedding module, e = Embed(x), which
maps an input instance x (e.g., a document)
to a vector representation e, which is in turn
used as input to the encoder network;

An encoder network, h = Enc(e), which
maps the input representation to the final hid-
den representation;

An aggregated objective (L), which is a
weighted combination of a cross-entropy loss,
contrastive loss based on main task labels, and
contrastive loss based on protected attribute
labels, as described next.

3.1 Contrastive Loss

Given a mini-batch with a set of IV randomly sam-
pled instances, positive instance pairs (representing
the same concept) and negative instance pairs (rep-
resenting different concepts) are formed. These
pairs can be created based on either their main task
label or their protected attribute, as described be-
low. Assuming a batch of positive and negative
pairs, the contrastive loss is computed as,

exp(hi - hyp/T)
Z quQ(z)eXP(h’ hq/T)’

pEP

scl Z |

where ¢=1...N 1is the index of an instance
in the mini-batch; Q1) {1...N} \ {i};
h; = lo(Enc(Embed(x;))) is the normalised rep-
resentation; and 7>0 is a scalar temperature pa-
rameter controlling smoothness. P(i) is the set
of instances that result in positive pairs for the :th
instance, and | P ()] is its cardinality. We next de-
scribe how positive/negative pairs are created.
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For ease of illustration, we overload the defini-
tion of Ly as an function, i.e.,

Ll = Escl(h; TaP()vQ())7 (1
where P(-) is the set of indices of positive sam-
ples, and Q(+) is the set of sample indices that are
considered in the contrastive loss.

L1 1s computed on positive and negative sam-
ples constructed based on main task labels (e.g.,
POS vs. NEG sentiment), where instances in the
mini-batch belonging to the same main task class
are used to construct positive samples; otherwise,
they are used to form negative samples. The intu-
ition behind this loss component is that representa-
tions that are well-separated for the main task are
more desirable.

3.2 Fair Contrastive Learning for
Demographic Parity

Demographic parity is satisfied if predictions
are independent of protected attributes, i.e.,
Pr(g=1|a=0) Pr(g=1la=1) VyeY,a€cA,
where Y is the main task label set and A is the
protected attribute value set. With fair contrastive
learning, the training objective for demographic
parity (Lg.ap) is to infer latent representations
which are oblivious to the protected attribute of
an instance. We create samples with respect to pro-
tected attribute labels (e.g., @ = MALE vs. a = FE-
MALE), where instances of the same protected at-
tribute class form positive samples; otherwise, they
constitute negative samples:

—1x Escl(h; T3 Pfcl—dp('); Q())>
where Prrgp(i) = {p € Qi) : ap = a;} con-
structs positive samples based on protected at-
tributes rather than target classes in supervised con-
trastive learning (Equation (1)). Importantly, the
—1 changes the sign of supervised contrastive loss,
enforcing representations of instances with differ-
ent protected attribute values to mix together by
discouraging the model from effectively contrast-
ing those instances.

The final classifier objective produces task-
indicative and protected-attribute-agnostic repre-
sentations, as the weighted sum of standard cross-
entropy loss L, and contrastive loss terms Ly,
and Lscl-dp.

Lecr-ap =

»Cdp = Lee + als + B»Cfcl—dp ()



where « and [ are hyperparameters that control
the relative importance of the cross entropy and
contrastive learning terms. We refer to the con-
trastive classifier based on the loss in Equation (2)
as Congp.

3.3 Fair Contrastive Learning for Equal
Opportunity

A model is fair wrt equal opportunity (Hardt et al.,
2016) if instances from different groups within the
same class are treated equally, i.e., Pr(y = y|Y =
y,a=0) = Pr(g=y|Y =y, a=1) YyeY, ac A, con-
necting directly to the widely-used fairness metric
GAP (see Section 4.2).

Accordingly, we construct samples in terms of
protected attribute labels conditioned on the main
task labels, and compute Lo as the average loss
over labels,

-1

Y‘ Z ﬁscl(hQ T5 Pfcl—eo(‘); ch]—eo('))a

yey

»Cfc]—eo =

where Qfeeo(i,y)) = {ql¢ € 1,...,N,y, =
y,and ¢ # i} ensures that contrastive losses are
calculated per class, and Pieo(i,y) = {p €
Qfeleo(i,y) : ap = a;} constructs positive sam-
ples based on protected attributes from a particular
main task class y. Optimizing for Ly.|.e, minimizes
mutual information between instances from differ-
ent protected groups within each target class.

Analogous to Equation (2), we define a fair clas-
sifier objective wrt equal opportunity as,

Loo = Lee + Ll + Bﬁfcl-eo- 3)

‘We refer to contrastive classifiers based on the loss
in Equation (2) as Con,.

3.4 Remarks

Non-binary protected attributes: Our Ly.qp
and Lo extend to non-binary protected attributes
by sampling negative instances at random from any
alternative subgroup.

Loss component weights: The same value is
adopted for o and /3 for both Ly and Lyc-ap/ Licl-eo
as they are similar in concept and magnitude, and
weighting them equally balances performance with
bias reduction, as confirmed in extensive prelimi-
nary experiments.

Relation to mutual information: Optimizing
contrastive loss is equivalent to maximizing mutual
information between classes (Oord et al., 2018;
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Khosla et al., 2020). Conversely, in representa-
tional fairness, representations h should be inde-
pendent of protected attributes a, i.e., minimise
mutual information between h and a. Lg.qp and
Licl-eo intuitively satisfy this by flipping the sign of
the contrastive objective.

4 Experiments

In this section, we report experimental results for
bias mitigation. All experiments are conducted
with the fairlib library (Han et al., 2022b), and full
experimental details are provided in Appendix D.

4.1 Comparison Models

We evaluate the utility of contrastive fairness, and
systematically study the relation between repre-
sentational and empirical fairness. To do so, we
include competitive debiasing methods covering
pre-, in-, and post-processing:

1. CE: train Enc(-) with cross-entropy loss. No
bias mitigation.

INLP: train Enc(-) with cross-entropy loss,

and apply iterative null-space projection (Rav-

fogel et al., 2020) to the learned representa-
tions. Specifically, a linear discriminator is
iteratively trained over the protected attribute
to project the representation onto the discrimi-
nator’s null-space, thereby reducing protected
attribute information from the representations.

. Adv: jointly train Enc(-) with cross-entropy
loss and an ensemble of 3 adversarial discrim-
inators over the protected attribute, with an
orthogonality constraint applied to each pair
of sub-discriminators to encourage them to
learn different aspects of the representations
(Han et al., 2021b). The Enc(-) is trained to
prevent protected attributes from being identi-
fied, and thus results in fairer representations.

. FairBatch: formulate the model training as
a bi-level optimization problem, which min-
imises prediction disparities through adjusting
resampling probabilities (Roh et al., 2021).

. EOgLp: optimize equal opportunity through
proxy objective functions based on group-
specific cross-entropy, which essentially ad-
justs instances weights in training (Shen et al.,
2022).

. Gate: use demographic information to make
predictions, with balanced training as regular-
izers in training to avoid learning spurious cor-
relations (Han et al., 2022a). Unlike the afore-

2.



mentioned models, which aim to reduce both
representational and empirical bias, Gate is
expected to be high in representational bias
and low in empirical bias.
In summary, we incorporate three types of base-
lines: (1) INLP and Adv remove protected informa-
tion from hidden representations to mitigate repre-
sentational bias, which is similar to our contrastive
learning methods; (2) FairBatch and EO¢r g mit-
igate empirical bias based on model predictions,
without considering representational fairness; and
(3) Gate uses protected information explicitly to
make fair predictions, explicitly violating represen-
tational fairness.

4.2 Evaluation Metrics

Following Ravfogel et al. (2020), we adopt Accu-
racy for both the binary and multi-classification
datasets to evaluate the performance of models on
the main task, and measure empirical fairness based
on equal opportunity in terms of the model predic-
tions. To measure representational fairness, we
follow Elazar and Goldberg (2018) in measuring
protected attribute leakage in text representations.

To measure empirical fairness, we adopt equal
opportunity, which measures the difference in true
positive rate (TPR) between binary protected at-
tribute a and —a (such as FEMALE vs. MALE) for
each main task class. It is defined as GAPE};R =
|TPRq,y — TPR-y |,y € Y, where TPR, , =
P{y = yly, a}. Here § and y are the predicted and
gold-standard main task labels; and Y is the set of
main task labels. TPR,, , measures the percentage
of correct predictions among instances with main
task label y and protected attribute a. GAPgER
measures the absolute difference between the two
different groups represented by the protected at-
tribute, given the main task class y. To take all
target classes into consideration, we follow De-
Arteaga et al. (2019) and Ravfogel et al. (2020) in
calculating the root mean square of G:APaT’l;R over
all classes y € Y, to get a single score:

_ L TPR\2
GAP = \/|Y| > (GAPITR)
yey

A difference of 0 indicates a fair model, as the pre-
diction g is conditionally independent of protected
attribute a. For ease of exposition, we report the
equal opportunity fairness (Fairness) as 1 — GAP,
where larger is better and a perfectly fair model
will achieve a fairness score of 1.
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Distance to the optimum (DTOQO) has been
used to simplify model comparisons in previous
work (Marler and Arora, 2004; Han et al., 2022a),
which measures the Euclidean distance from a par-
ticular model to the optimum point (aka “Utopia”
point), usually set to 100% accuracy and 100%
equal opportunity fairness, denoting the best possi-
ble values. While the dimensions of the space are
performance and fairness, DTO explicitly reflects
the performance-fairness trade-off of a model. We
calculate DTO based on empirical fairness, and
perform model selections based the smallest DTO
over the development set (Han et al., 2022a).

Representational Fairness is evaluated through
Leakage as the ability of an attacker to recover
the protected attribute from a model’s final hidden
representations. We train one attacker (i.e., neural
network) for each model, to extract information
of protected attributes from a model’s final-layer
hidden representations (Wang et al., 2019; Han
et al.,, 2021b). We fix the attacker architecture
across models, so that attackers are not guaran-
teed to be optimal and leakage estimators should
be interpreted as lower bounds.

4.3 Experiment 1: Sentiment Analysis
4.3.1 Task and Dataset

The task is to predict the binary sentiment for a
given English tweet, based on the dataset of Blod-
gett et al. (2016) (Moji hereafter), where each tweet
is also annotated with a binary private attribute
indirectly capturing the ethnicity of the tweet au-
thor as either African American English (AAE)
or Standard American English (SAE). Following
previous studies (Ravfogel et al., 2020; Han et al.,
2021b), the training dataset is balanced with re-
spect to both sentiment and ethnicity but skewed
in terms of sentiment—ethnicity combinations (40%
HAPPY-AAE, 10% HAPPY-SAE, 10% SAD-AAE,
and 40% SAD-SAE, respectively).” The dataset
contains 100K/8K/8K train/dev/test instances.

4.3.2 Implementation Details

Following previous work (Elazar and Goldberg,
2018; Ravfogel et al., 2020; Han et al., 2021b), we

"Preliminary analyses revealed that non-linear attackers
outperform linear ones in recovering protected attributes, and
attackers with different non-linear architectures have similar
capacity to recover protected attribute information from repre-
sentations. We use non-linear MLPs as our attacker. Further
details are in Appendix A.

Note that the dev and test set are balanced in terms of
sentiment—ethnicity combinations.



Model Accuracy T Fairness T DTO|  Leakage | Model Accuracy T Fairness T DTOJ  Leakage |
CE 72.3+0.5 61.2+14 47.7 87.94+3.3 CE 82.34+0.2  85.14+0.8 232 98.0+0.0
INLP 73.3+0.0  85.6+0.0 30.3 86.71+0.6 INLP 82.3+0.0 88.64+0.0 21.0 97.6+0.1
Adv 75.6+£04  90.4+1.1 26.3 78.84+6.0 Adv 81.9+0.2  90.6+0.5 20.4 88.6+4.6
Gate 76.2+0.3  90.1+1.5 25.8 100.0+0.0 Gate 83.7+£0.2  90.440.9 18.9 100.040.0
FairBatch 75.1+£0.6  90.61+0.5 26.7 88.44+0.4 FairBatch 82.24+0.1 89.5+1.3 20.6 98.0+0.3
EOcLe 752402  90.1+:0.4 26.7 85.7+1.2 EOaLe 81.7£04  88.4£1.0 21.7 97.240.5
Conap, 75.84£0.3  88.14+0.6 26.9 54.24+0.9 Conap 82.1£0.2  84.31+0.8 23.9 76.3+1.5
Coneo 74.1+0.7  84.14+3.0 30.3 80.1+4.2 Coneo 81.8+0.3 852404 23.5 84.9+34

Table 1: Experimental results on Moji (averaged over
5 runs). The best result for each metric is indicated
in bold. Here, 1 and | indicate that higher and lower
performance, resp., is better for the given metric.

use DeepMoji (Felbo et al., 2017), a model pre-
trained over 1.2 billion English tweets, as Embed(-)
to obtain text representations. The parameters of
DeepMoji are fixed in our experiments.

4.3.3 Results

Table 1 presents the results. Our proposed methods
achieve competitive empirical fairness results with
other debiasing methods, all of which improve over
CE. Adv, Gate, FairBatch, and EO¢1, achieve
the best performance in terms of Fairness, while
our proposed method Cong,, achieves the best per-
formance in terms of Leakage. Specifically, none
of the baselines reduce leakage substantially except
for Adv. The reason that Adv can reduce Leakage
is that the architecture of Adv is the closest one to
the leakage estimation framework, which also em-
ploys attackers to extract protected attributes and
unlearns attackers in training. However, Cong,,
still outperforms Adv, highlighting the effective-
ness of our proposed method in improving repre-
sentational fairness. The ineffectiveness of INLP,
Gate, FairBatch, and EOgy in reducing Leak-
age is due to different reasons: INLP is due to the
fact that it relies on linear projections to remove
protected attribute information and is ineffective
at removing nonlinear correlations; Gate is due
to the fact that it employs a gate mechanism to
augment text representations with protected infor-
mation, and as a result, achieves 100% Leakage;
and both FairBatch and EOgr,g are due to the
fact that these two methods are optimized to di-
rectly mitigate empirical bias without considering
representational bias. This indicates that the re-
lationship between representational fairness and
empirical fairness is not as simple as suggested in
previous work (Elazar and Goldberg, 2018; Ravfo-
gel et al., 2020; Han et al., 2021b)

Cone,, which is proposed to ensure condi-
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Table 2: Experimental results on Bios (averaged over 5
runs).

tional representational fairness within each class,
achieves similar prediction fairness to Congy,, but
with much worse leakage. This further shows that
representational fairness cannot be directly linked
to prediction fairness. It is encouraging to see that
incorporating debiasing techniques can contribute
to improvement on the main task. We hypothesise
that incorporating debiasing techniques (either in
the form of adversarial training or contrastive loss)
acts as a form of regularisation, leading to greater
robustness over the training dataset skew relative
to the unbiased test set.

4.4 Experiment 2: Profession Classification
4.4.1 Task and Dataset

The task is to predict a person’s profession given
their biography, based on the dataset of De-Arteaga
et al. (2019) (Bios hereafter), consisting of short
online biographies which have been labelled with
one of 28 professions (main task label) and binary
gender (protected attribute). We use the dataset
split of (De-Arteaga et al., 2019; Ravfogel et al.,
2020), consisting of 257K/40K/99K train/dev/test
instances.’

4.4.2 Implementation Details

Following the work of Ravfogel et al. (2020), we
use the [CLS] token representation of the pre-
trained uncased BERT-base (Devlin et al., 2019) as
Embed(-), without any further finetuning.

4.4.3 Results

Table 2 shows the results on the test set. In terms
of prediction fairness, baseline methods achieve
similar results, however, both Cong, and Cone,
are less effective for improving prediction fairness.
We hypothesise that this is because of the multi-
class setting (28 classes), where the large number

3There are slight differences between our dataset and that
used by De-Arteaga et al. (2019) and Ravfogel et al. (2020)

as a small number of biographies were no longer available on
the web when we scraped them.



of main task classes impedes the ability of con-
trastive learning to learn representations that jointly
maximize mutual information for main task classes
and minimize mutual information for demographic
labels. In Section 4.5, we conduct ablation stud-
ies to analyse their robustness to the number of
classes, affirming our explanation. In terms of the
representational fairness, consistent with the results
over Moji, Cong;, and Con,, substantially reduce
Leakage, where most baselines fail.

Overall, the trend for these three types of meth-
ods over the Bios dataset is consistent with that over
the Moji dataset: (1) INLP and Adv, which focus
on representational fairness, result in empirical fair-
ness improvements and marginal gain in Leakage;
(2) FairBatch and EO¢y,B, which target for em-
pirical fairness, lead to fairer predictions but no
benefit to Leakage; and (3) Gate, which augments
representations with protected information, also
improves empirical fairness while suffering from
100% Leakage. Based on the consistent trend over
two benchmark datasets, we argue that it cannot be
assumed that empirical fairness is associated with
representational fairness, with the fact that Congy,
and Con,, achieve the best representational fair-
ness but lowest empirical fairness further adding
weight to this argument.

4.5 Analysis

Robustness to the Number of Classes Our pro-
posed methods are quite effective over Maji but
not competitive over Bios in terms of Fairness. We
hypothesize that this is due to contrastive loss strug-
gling with a larger number of classes. To verify
this, we construct 4 synthetic datasets from Bios
by selecting a subset of classes from 2 to 8.*

Figure 2 presents Accuracy, empirical Fairness,
and DTO with respect to 2, 4, 6, and 8 target classes.
Although the scores with respect to different num-
bers of classes are not directly comparable as we
also have to vary the number of classes in the test
set, resulting in different test sets, it is reasonable
to compare the trend of changes in the rank of de-
biasing methods.

Overall, increasing the number of classes leads
to a decrease in Accuracy while Fairness is almost
unchanged. As aresult, the trade-off between Accu-
racy and Fairness (DTO) drops. In terms of Accu-
racy, Cong,, and Con,, achieve competitive perfor-

*In Appendix C.1, we provide the full details of the syn-
thetic datasets.
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Figure 2: Varying the number of classes in the Bios
dataset. We treat the number of classes as a categorical
variable, and draw categorical scatter plots with non-
overlapping points.

mance with other debiasing methods, all of which
are slightly worse than CE.

Looking at empirical Fairness, Cong, achieve
quite competitive performance when the number
of target classes is 2, while Cone, is unable to sig-
nificantly improve Fairness. This is consistent the
results over the binary classification dataset (Moji).
For other settings (4, 6, and 8 target classes), CONe,
shows better trade-offs than Condp. However, both
Cong, and Cone, only achieve slight improve-
ments in Fairness, and are not as good as some
other debiasing methods.

To conclude, the changes in DTO confirm our
hypothesis that contrastive loss struggles with a
larger number of classes: contrastive loss achieves
one of the best DTO for 2 classes, competitive
results with other debiasing methods for 4 and 6
classes, and the worst DTO for 8 classes.

Correlation between Representational and Em-
pirical Fairness Although we have discussed the
connection between representational and empirical
fairness for individual methods, it is still not clear
how they are correlated.



For each method, we have 5 random runs, and
in total, there are 5 groups of methods: (1) CE;
(2) INLP and Adv; (3) FairBatch and EO¢r5; (4)
Gate; and (5) Cong;, and Cong,. To treat each
group of methods equally, we fit a bivariate Gaus-
sian distribution to each method over the 5 runs,
and draw 20k random samples from each group for
a given dataset.

Based on the random samples, the Pearson cor-
relation coefficients between representational and
empirical fairness over Moji and Bios are 0.072
and —0.222, respectively. Clearly, both correlation
coefficients are not substantially better than 0, in-
dicating that there is little to no linear dependency
between representational fairness and empirical
fairness. Even more damningly, the negative sign
for the Bios suggests that worse representational
fairness may result in higher empirical fairness.

Clearly further work is required to examine the
theoretical difference/connection between represen-
tational and empirical fairness, which we leave to
future work.

5 Conclusion

Biased representations and predictions can re-
inforce existing societal biases and stereotypes.
While previous work has assumed a direct link
between biases in the representations learned by
models and performance disparities in model pre-
dictions, there has not been a systematic study of
the relationship between the two. We have explored
the relationship wrt both a range of existing meth-
ods and two newly-proposed methods based on su-
pervised contrastive learning. The contrastive learn-
ing methods are based on the intuition that similar
instances belonging to the same main task class
should be pulled together and similar instances be-
longing to the same protected attribute class should
be pushed apart in the representation space, based
on which we proposed to combine cross-entropy
loss with two contrastive loss components in op-
timizing neural networks in two different ways,
incorporating demographic parity and equal op-
portunity respectively. Experimental results over
two tasks demonstrate the effectiveness of the pro-
posed methods in terms of representation fairness,
but further analysis showed no meaningful correla-
tion between representational fairness and empiri-
cal fairness, contradicting a common assumption
made in prior research, and motivating future work
on approaches that achieve both representational

&9

and empirical fairness.
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Limitations

A limitation of our proposed methods is that we
focus on learning fair representations for the main
task, where the protected attribute is explicitly
present in the dataset. The mitigation of biases
present only implicitly, such as protected informa-
tion revealed in the text rather than indicated by
demographics, as studied by Lahoti et al. (2020),
is out scope of our work. For main tasks other
than classification, such as generation tasks, adop-
tion of contrastive learning for generating fairer
text is not trivial, which is one direction for future
work. In our work, Embed(+) is not learned or fine-
tuned together with Enc(-) and the classification
layer in an end-to-end fashion. However, finetun-
ing the Embed|(-) has the potential for better task-
specific or semantic-preserving representations of
text, which may further remove biases encoded in
pretrained models. One simplifying assumption
in our work is that we focus exclusively on binary
protected attributes, implying the adoption of an
oversimplified binary notion of gender. Exploring
attributes of higher arity, and more complex and
realistic bias dimensions, is an important direction
for future work.

Ethical Considerations

We propose Cong;, and Cone, to prevent text clas-
sifiers from encoding protected information. How-
ever, there is a possibility that multiple protected
attributes, such as gender, age, and ethnicity, are
encoded in text and the dataset is annotated only
wrt one of the protected attribute. Therefore, a
method designed to alleviate a specific type of bias
is not guaranteed to be bias-free. The usage of our
fair classifiers in the real world should be carefully
monitored with the aid of domain experts.
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#L D AF Moji Bios Profession Total Male Female Ratio

1 - - 84.80+0.54 96.6340.03 professor 76748 42130 34618 0.451

2 100 Tanh  87.124+0.51 97.91+0.03 physician 26648 13492 13156  0.494

2 100 ReLU 87.03+0.34 97.92+0.04 attorney 21169 13064 8105 0.383

2 300 Tanh  87.3740.13  98.00+0.03 photographer 15773 10141 5632 0.357

2 300 ReLU 87.89+0.34 97.96+0.05 journalist 12960 6545 6415 0.495

4 100 Tanh  87.214+0.57 97.84+0.10 nurse 12316 1127 11189  0.908

4 100 ReLU 87.38+0.70 97.82+0.06 psychologist 11945 4530 7415 0.621

4 300 Tanh  87.4240.45 97.90+0.05 teacher 10531 4188 6343  0.602

4 300 ReLU 87.50+0.29 97.86+0.04 dentist 9479 6133 3346  0.353

surgeon 8829 7521 1308 0.148

Table 3: Leakage estimations over Moji and Bios with architect 6568 5014 15540.237

. . painter 5025 2727 2298  0.457

respect to different attacker architectures. # L., D, and model 4867 840 4027 0827

AF denote number of hidden layers, hidden dimensions, poet 4558 2323 2235 (.490

and activation functions, respectively. Leakage estima- filmmaker 4545 3048 1497  0.329

tion statistics (mean and standard deviation) are calcu- SOftW&fte_‘ingineef ‘3“6‘2(2) g?g lggg 8;2?73
accountan .

lated over 5 runs. composer 3637 3042 505 0.164

dietitian 2567 183 2384  0.929

. . comedian 1824 1439 385  0.211

A Robustness to Leakage Estimation chiropractor 1725 1271 454 0.263

pastor 1638 1245 393 0.240

To analyse the robustness of leakage estimations, paralegal 1146 173 973 0.849

we vary attacker architectures and compare esti- yoga_teacher 1076 166 910 0.846

. dj 964 828 136  0.141

mated leakage of the CE model. Table 3 summaries interior_designer 949 182 767 0.808

results over the Moji and Bios datasets personal_trainer 928 505 423 0.456

rapper 911 823 88 0.097

Overall, leakage estimations are robust to differ-
ent architectures, except the results of linear attack-
ers (i.e., 1 layer), which are consistently worse over
both datasets.

In terms of the standard deviation, the training
set of Bios is larger than that of Moji (205k v.s.
100k), resulting in a smaller standard deviation for
leakage estimations over Bios than Moji.

B Adyv Settings

Each sub-discriminator consists of two MLP layers
with a hidden size of 256, where the first layer is ac-
companied with a LeakyReLLU activation function.
The final classifier layer is used to predict the pro-
tected attribute. Sub-discriminators are optimized
for at most 100 epochs after each epoch of Enc(-)
training, leading to extra training time.

C Bios Distribution

Table 4 shows the number of instances of each
profession, the number of male and female indi-
viduals of each profession, and the ratio of female
individuals for each profession in the Bios training
dataset.

C.1 Synthetic Dataset Construction

We follow Subramanian et al. (2021) in construct-
ing the binary classification version of the Bios
dataset based on the two professions of nurse and
surgeon. For the additional classes in the synthetic
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Table 4: Statistics of the Bios training dataset.

experiments, we further select pairs of professions
that are both large in size and biased in gender
skew, resulting in photographer + teacher, dentist
+ psychologist, and software engineer + model. The
resulting training dataset sizes are 21145, 47449,
68873, and 78232 for 2, 4, 6, and 8 classes, respec-
tively.

D Hyperparameter Settings

We vary the architecture of Embed(-) across dif-
ferent tasks, and do not finetune it during train-
ing. The architecture of Enc(-) consists of two
fully-connected layers with a hidden size of 300.
All models are trained and evaluated on the same
dataset splits, and models are selected based on
their performance on the development set. For fair
comparison, we first finetune the learning rate and
batch size using grid search, then finetune hyperpa-
rameters introduced by the corresponding debias-
ing methods for each model on each dataset. For all
experiments, we use the Adam optimizer (Kingma
and Ba, 2015) and early stopping with a patience
of 10.
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Figure 3: Effects of contrastive loss components for
Congp.

D.1 Twitter Sentiment Analysis

For CE, the learning rate is 0.001, and the batch
size is 1024. For INLP, following Ravfogel et al.
(2020), we use 300 linear SVM classifiers, each
of which is trained over a subset of instances
with the same target class. For Adv, the number
of sub-discriminators is 3, A.qy 1s 1.0, and Mg
is 0.01. For Gate, all hyperparameters are the
same as CE, except the hidden layers of MLP are
replaced by a hyperparameter-free augmentation
layer. For FairBatch, the objective is equal oppor-
tunity, and the adjustment rate for resampling prob-
abilities is 0.19952623149688797. For EO¢rp,
the strength of the additional difference loss is
0.3981071705534973. For Congy,, 7 = 0.01, and
a = = 0.0199526231496888. For Con,,, all
hyperparameters are the same as Cong,, except for
a = 0 =0.7943282347242822.

D.2 Occupation Classification

For CE, the learning rate is 0.003, and the
batch size is 2048. For INLP, each classi-
fier is trained over a subset of instances with
same target class. For Adv, the number of sub-
discriminators is 3, A,qv 1S 1.0, and Ag;g 1s 0.01.
For Gate, all hyperparameters are the same as
CE, except for the hidden layers of MLP are re-
placed hyperparameter-free augmentation layer.
For FairBatch, the objective is equal opportu-
nity, and the adjustment rate for resampling prob-
abilities is 0.05011872336272725. For EO¢r B,
the strength of the additional difference loss is
0.00707945784384138. For Cong,, 7 = 0.01,
and o« = f = 0.00011885022274370189. For
Con,, all hyperparameters are the same as Gongy,,
except for o = 5 = 0.00016788040181225607.
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Figure 4: t-SNE scatter plots of learned representations
of CE and Cong,, over the Moji dataset (based on 150
random samples from each main task class; best viewed
in colour). Red and blue colours indicate that they have
different sentiment (main task) labels: red — HAPPY
and blue — SAD. Green and purple colours indicate that
they have different ethnic groups (protected attribute):
purple = AAE and green — SAE.

D.3 Analysis

D.3.1 Effect of Loss Components

See Figure 3 for a breakdown of results for each
loss component of Cong,, over Moji and Bios.

D.3.2 Visualising Representations

See Figure 4 for t-SNE plots of learned representa-
tions for CE vs. Congy, over Moji.
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Abstract

Long-document summarization has been re-
cently recognized as one of the most impor-
tant natural language processing (NLP) tasks,
yet one of the least solved ones. Extractive ap-
proaches attempt to choose salient sentences
via understanding the whole document, but
long documents cover numerous subjects with
varying details and will not ease content un-
derstanding. Instead, abstractive approaches
elaborate to generate related tokens while suf-
fering from truncating the source document due
to their input sizes. To this end, we propose a
Simple yet Effective HYbrid approach, which
we call SEHY, that exploits the discourse in-
formation of a document to select salient sec-
tions instead sentences for summary genera-
tion. On the one hand, SEHY avoids the full-
text understanding; on the other hand, it retains
salient information given the length limit. In
particular, we design two simple strategies for
training the extractor: extracting sections incre-
mentally and based on salience-analysis. Then,
we use strong abstractive models to generate
the final summary. We evaluate our approach
on a large-scale scientific paper dataset: arXiv.
Further, we discuss how the disciplinary class
(e.g., computer science, math or physics) of
a scientific paper affects the performance of
SEHY as its writing style indicates, which is
unexplored yet in existing works. Experimental
results show the effectiveness of our approach
and interesting findings on arXiv and its subsets
generated in this paper.

1 Introduction

Long-document tasks (e.g., scientific papers sum-
marization (Cohan et al., 2018) and long-text read-
ing comprehension (Wen et al., 2021)) have be-
come one of long-term challenging tasks in Natural
Language Processing (NLP) because long docu-
ments cover numerous subjects with varying de-
tails and will not ease content understanding. For

*Corresponding author: Dongning Rao.
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example, scientific papers, whose abstracts can be
used as ground-truth summaries, is a representative
type of long documents with discourse informa-
tion showing the hierarchical structure composed
of tokens, sentences, paragraphs, and sections (K
and Mathew, 2020). Extractive summarization ap-
proaches select important units such as phrases
or sentences from the original text, but long docu-
ments cover numerous subjects with varying details
and will not ease content understanding (Nallapati
et al., 2017; Xiao and Carenini, 2020). Instead,
abstractive summarization approaches concisely
paraphrase the information content while suffering
from truncating the source document due to their
input sizes (Rohde et al., 2021; Guo et al., 2021).

Hybrid models exhibit a combination solution
via first extracting salient sentences with an ex-
tractive model (i.e., extractor) and then generating
a summary based on extracted sentences with an
abstractive model (i.e., generator) (Gidiotis and
Tsoumakas, 2020; Pilault et al., 2020). However,
on the one hand, training an extractive model may
be expensive due to the complex salience analysis;
on the other hand, an abstractive model may gener-
ate inappropriate summary words due to the depen-
dence on extracted sentences. Thus, pipeline-style
errors can be propagated and accumulated, lead-
ing to hybrid models perform worse than current
state-of-the-art (SoTA) abstractive models (Rohde
etal., 2021; Guo et al., 2021). This suggests that ex-
ploring simple yet effective extractive approaches
is crucial to improve the overall performance and
decrease the training cost of a hybrid model.

Recently, the success of pre-trained language
models (PTMs) such as Transformer (Vaswani
et al., 2017) in NLP brings great gain for ab-
stractive models in the summarization task. How-
ever, Transformer-based models usually suffer
from the quadratic dependency on the sequence
length due to their full attention mechanism. Some-
times, the model’s performance is mainly con-

Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 96106
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strained by its limitation on the sequence length.
For instance, the average document length on
arXiv (Cohan et al., 2018) is more than 6000 to-
kens while BART (Lewis et al., 2020), which com-
bines BERT (Devlin et al., 2019) and GPT (Rad-
ford and Narasimhan, 2018), has a comparatively
smaller length limit, 1024 tokens. Besides, for a hy-
brid model, extracted sentences from its extractive
model are often difficult to maintain the coherence
of the source document, thus leading to the poor
semantic representations by its abstractive model
(Cai et al., 2019).

To alleviate these issues, we propose a novel
Simple yet Effective HYbrid approach, which we
call SEHY, that exploits the discourse informa-
tion of a document to select salient sections in-
stead sentences for summary generation. We use
simple strategies for choosing sections, not only
for decreasing the training cost of the extractor,
but also for enhancing the input-sequence’s coher-
ence to the generator. Motivated by (Gidiotis and
Tsoumakas, 2020), which identifies and selects spe-
cific sections that are more informative, we propose
two strategies: choosing specific sections (e.g., In-
troduction or Conclusion) based on the salience
analysis and using the beginning sections without
concerning the salience. After this, we use strong
abstractive models to generate the final summary.

To demonstrate the effectiveness of SEHY, we
answer the following questions in this paper:

* QI1: which strategy is better?

¢ Q2: how do different abstractive models affect
the overall performance of SEHY?

* Q3: can we have the equivalent result when
summarizing different scientific papers?

As the contents indicate, Q1 is used to evaluate
the two section-extraction strategies, Q2 is used
to measure different abstractive models which are
responsible to generate the final summary, and Q3
is used to estimate writing styles of scientific pa-
pers in different disciplines. The joint of Q1 and
Q2 acts as ablation studies on the proposed hybrid
model SEHY. While, Q3 is not explored yet in ex-
isting works where all scientific papers on arXiv
are summarized without distinguishing their dis-
ciplinary properties (e.g., computer science, math
or physics). For instance, a well-written computer
science paper usually presents summary sentences
in the Introduction or Conclusion section, but no
experimental work has ever confirmed this.
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2 Related Work

Automatic text summarization is the task of produc-
ing a concise and fluent summary while preserving
key information content and overall meaning. It
aims to transform lengthy documents into short-
ened versions, something which could be difficult
and costly to undertake if done manually. In this
section, we focus on recent summarization models.
For more text summarization technologies, we re-
fer interested readers to a survey on this (Allahyari
et al., 2017).

2.1 Extractive Models

Extractive methods select important sentences and
rearrange them as the summary, instead of generat-
ing summary tokens. LexRank (Erkan and Radev,
2011) is an early extractive model, which com-
putes sentence importance based on the concept of
eigenvector centrality in a graph representation of
sentences. SummaRuNNer (Nallapati et al., 2017)
is a Recurrent Neural Network (RNN) based se-
quence model for extractive summarization of doc-
uments. It has the additional advantage of being
interpretable, since it allows visualization of its
predictions broken up by abstract features, such as
information content, salience, and novelty. Xiao
et al. (Xiao and Carenini, 2020) found that redun-
dancy is a very serious problem when summarizing
long documents. They proposed ExtSum-LG+Rd,
which achieved high ROUGE scores, while reduc-
ing redundancy significantly.

2.2 Abstractive Models

Early abstractive models include Pointer-Generator
Networks (PGN) (See et al., 2017), which aug-
ments two shortcomings: inaccuracy and repeti-
tion, via copying words from the source text and
using coverage to keep track of what has been sum-
marized. Cohan et al. (Cohan et al., 2018) built
two large-scale scientific-paper datasets: arXiv and
Pubmed. They also proposed Discourse composed
of a hierarchical encoder that models the discourse
structure of a document and an attentive discourse-
aware decoder that generates the summary. PEGA-
SUS (Zhang et al., 2020) is a Transformer-based
encoder-decoder model trained on massive text cor-
pora with a new self-supervised objective.

Recent works improve the performance of
Transformer-based models by increasing the in-
put length or the model size. BigBird (Zaheer
et al., 2020) exhibits a sparse attention mecha-



nism that reduced the quadratic dependency to
linear. DeepPyramidion (Pietruszka et al., 2022)
proposes representation pooling as a method to
sparsify attention in Transformer by learning to
select the most-informative token representations
during the training process. HAT-BART (Rohde
et al., 2021) proposes a new Hierarchical Atten-
tion Transformer-based architecture into the de-
noising auto-encoder BART (Lewis et al., 2020).
LongTS5 (Guo et al., 2021) attempts to increase both
at the same time. Specifically, it integrates attention
ideas from long-form transformer (Beltagy et al.,
2020a), and adopts pretraining strategies from PE-
GASUS into the scalable TS5 architecture (Raffel
et al., 2020a). Top Down Transformer (Pang et al.,
2022) updates token representations in a bottom-up
and top-down manner: token representations are
first inferred in the bottom-up pass and then up-
dated in the top-down pass to capture long-range
dependency.

Even though Top Down Transformer is at the top
of the arXiv leaderboard! while LongTS5 takes the
second place, the authors of Top Down Transformer
did not release their model or code yet. Thus, we
regard LongT5 as the current SoTA with respect to
all open-sourced document summarization models.

2.3 Hybrid Models

A hybrid approach takes advantage of extractive
and abstractive approaches. DANCER (Gidio-
tis and Tsoumakas, 2020) proposes a divide-and-
conquer algorithm, which breaks a long document
and its summary into multiple source-target pairs
and uses them for training a model that learned to
summarize each part of the document. TLM-I+E
(Pilault et al., 2020) performs a simple extractive
step, which is used to condition the transformer
language model on relevant information before be-
ing tasked with generating a summary. Although
mostly follows the abstractive approach, Top Down
Transformer connects to the hybrid models via
learning and assigning importance weight with the
importance tagger resembles an extractive step.

2.4 Paper Abstract Generation

Scientific papers are representatives of long doc-
uments with discourse information, where their
abstracts can be used as ground-truth summaries.
Wang et al. (Wang et al., 2018) presented a paper
abstract writing system based on an attentive neural

"https://paperswithcode.com/dataset/arxiv

98

47.0
dataset
arXiv

mmm PubMed
40 4

29.0

30 290 28,0

27.0

20+

Summary sentence percentage

6.0

0.2 0.4

T T
Introduction Methods Literature Results Conclusion

Figure 1: The distribution of summary sentences per sec-
tion type, cited from (Gidiotis and Tsoumakas, 2020).

sequence-to-sequence model that can take a title as
input and automatically generate an abstract. They
designed a novel Writing-editing Network that can
attend to both the title and the previously generated
abstract drafts and then iteratively revise and polish
the abstract. Next year, they further developed a
Paper-Robot (Wang et al., 2019) which performs
as an automatic research assistant by incrementally
writing some key elements of a new paper based on
memory-attention networks. Demir et al. (Demir
et al., 2019) proposed a dataset with LaTeX source
files on recent open-source computer vision pa-
pers and experimented with recent methods such as
Transformer and Transformer-XL (Dai et al., 2019)
to generate consistent LaTeX code.

3 Method

In this section, we first present two strategies to im-
plement our extractive model (for answering Q1),
then describe multiple paired abstractive models
(for answering Q2), and finally explain how to gen-
erate data subsets with regard to disciplinary cate-
gories of scientific papers (for answering Q3).

3.1 Two Extraction Strategies

Long documents introduce a lot of noise to the
summarization process. Indeed, one of the major
difficulties in summarizing a long document is that
large parts of the document are not really key to
its narrative and thus should be ignored. Follow-
ing DANCER (Gidiotis and Tsoumakas, 2020),
we identify and select specific sections that are
more informative. This reduces the noise and the
computational cost in processing a long document.
Figure 1 demonstrates the distribution of summary
sentences per section type. We observe that the ma-



jority of summary sentences, for the arXiv dataset,
are assigned to the introduction section followed by
the methods and conclusion sections. Based on that
observation, we select and use only the sections
that are classified introduction, methods, and con-
clusion ignoring the others. This simple method
very effectively allows us to filter out parts of the
article that are less important for the summary and
leads to summaries that are more focused. Another
benefit of selecting sections instead of sentences is
that, the number of sections is much smaller than
that of sentences, which decreases the number of
combinations dramatically.

In particular, we use the following two strategies
for selecting sections. Formally, supposing there
are N sections in a source document Doc:

o Pu(Sec): using all the sections included
in Sec = {seci,secy, ..., 5€C|5e|} Where
|Sec| < N

* Pic(k): only using the first k sections where
1 < k < N is a positive integer.

We sequentially concatenate selected sections
from the beginning of a document as the above
strategies indicate. If exceeding the length limit,
the concatenated sequence will be truncated; oth-
erwise, it will be padded with zero. All section
headings can be conveniently identified from the
LaTeX source files. On the one hand, to simplify
the salience analysis of Ps,;(Sec), we focus on the
first section (i.e., Head Section), the last section
(i.e., Tail Section), and the combination of these
two (i.e., Head+Tail Section), for the target of deter-
mining Sec. On the other hand, we can set k£ > 1
for P,.(k) to cover introduction and methods as
shown in Figure 1. However, the actual values of
k are usually no more than the relative ratio of the
length limit divided by the average section-length
on experimental datasets, because larger k£ values
will not bring greater gain due to the truncation
mechanism of the abstractive model.

Obviously, one weakness of this method is that,
although these section categories are meaningful
when working on academic articles, if the proposed
method is extended to different domains (e.g. fi-
nancial documents), then a new categorization of
sections would be required. Thus, exploring more
sophisticated methods that use machine learning to
identify the type of each section should be explored
in future work.

Table 1: Examples of the head and tail section names of
scientific papers on arXiv.

Head Section Name Tail Section Name

Introduction Conclusion
Related Works Conclusions
Introduction and related work Discussion
Motivation Future Work
Background and Introduction Further Work
Motivation and Background Observations

Motivating Work Concluding remarks

3.2 Tested Abstractive Model

We test five strong abstractive models introduced in
the Related Work section, whose actual parameter
settings are shown in Table 7.

e T5 (Raffel et al., 2020b). TS5 introduces a uni-
fied framework that converts all text-based lan-
guage problems into a text-to-text format and
combines the insights from the exploration
with scale and the new corpus.

e BART (Lewis et al., 2020). BART is a denois-
ing auto-encoder for pre-training sequence-to-
sequence models. It is trained by corrupting
text with an arbitrary noising function, and
learning a model to reconstruct the original
text.

* LED (Beltagy et al., 2020b). LED is a Long-
former (Beltagy et al., 2020a) variant for sup-
porting long document generative tasks. The
Longformer’s attention mechanism scales lin-
early with sequence length, making it easy to
process super-long documents.

* BigBird (Zaheer et al., 2020). Bigbird intro-
duces a sparse attention mechanism that re-
duces the quadratic dependency to linear. It
reveals some benefits of having global tokens
(e.g., CLS), that attend to the entire sequence
as part of the sparse attention mechanism.

* PEGASUS (Zhang et al., 2020). Pegasus is a
pre-training large Transformer-based encoder-
decoder models on massive text corpora with a
new self-supervised objective. Important sen-
tences are removed or masked from an input
document and generated together as one out-
put sequence from the remaining sentences.

3.3 Data Subset Generation

Academic papers of the arXiv dataset are collected
from the scientific repository arXiv.org and are writ-



Table 2: The number of disciplinary papers for the
Train/Dev/Test split.

T
- SPIt'|  Train Dev Test
Discipline
Physics 146628 5145 5193
Mathematics 19146 296 257
Computer Science 9600 361 339
Statistics 2354 80 77
Quantitative Biology 1492 54 60
Quantitative Finance 612 19 25
E.ES.S. 259 5 10
Economics 14 1 2
Total (the full arXiv) 203038 6437 6640

"' E.E.S.S. is shorthand for Electrical Engineering and Systems Science.

Table 3: The average length of Abstract, Head Section
and Tail Section on arXiv and its subsets.

1
Dataset Section Abstract  Head Tail
Full (the full arXiv) 151 748 724
CS (Computer Science) 158 857 537
Math (Mathematics) 122 1036 1059
Phy (Physics) 154 645 720

! Head and Tail indicate Head Section and Tail Section, respectively.

ten in LaTeX?. Following previous work (Cohan
et al., 2018; Demir et al., 2019), we extract the
top-level section headings from the LaTeX source
files using Pandoc®. We collect various section
heading names and classify them into equivalent
categories. For instance, names of Head Section
and Tail Section are shown in Table 1.

The arXiv dataset covers various disciplines, in-
cluding physics, mathematics, computer science,
quantitative biology, and economics, etc. We statis-
tics the paper numbers of different disciplines fol-
lowing the train/dev/test split of (Cohan et al.,
2018), as shown in Table 2. It shows that the
arXiv papers are primarily collected from three
disciplines: Physics, Mathematics and Computer
Science. Thus, to answer Q3, we generate three
subsets of the full arXiv dataset*: CS (Computer
Science), Math (Mathematics) and Phy (Physics).
For the convenience of writing, we use “Full” to in-
dicate the full arXiv dataset in this paper. To better
determine the super-parameters of P, (Sec) and
Py(k), we calculate the average lengths of Head
Section (H) and Tail Section (T) of Full, CS, Math,
Phy, as shown in Table 3.

“https://www.latex-project.org/

3https://pandoc.org

“We use the article ID extracted from the LaTeX file of a
scientific paper to determine its discipline class. Specifically,
we search the article ID on arXiv and get the “class” field of
the returned result page as the discipline class.

4 Experiment

4.1 Settings

We conduct all experiments on a local machine
(Windows 10 + GTX 1060 3GB) and a workstation
(Ubuntul8.04, a NVIDIA Tesla V100 36G GPU,
and a Intel(R) Xeon(R) E5-2698 v4 @ 2.20GHz
CPU). Our code is written in Python 3.7. The
deep learning platform is Pytorch 1.8.0. We use
the huggingface-transformers> for pre-training and
fine-tuning summary models. The actual parameter
settings of all tested models are shown in Table 7.
We evaluate multiple variants of our approach
on the largest-scale scientific-paper dataset: arXiv,
with ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) (Lin, 2004) as the measure-
ment metric. We report the F1 scores of ROUGE-1
(R-1), ROUGE-2 (R-2), and ROUGE-L (R-L), us-
ing the pyrouge package®. ROUGE is suitable for
summarization of scientific papers, whose human-
written abstracts can be used as ground-truth sum-
maries. We do not include human evaluation, fol-
lowing the previous works such as LongT5 (Guo
et al., 2021), BigBird (Zaheer et al., 2020) and
PEGASUS (Zhang et al., 2020), etc. It is quite
challenging to run human evaluations for scientific
papers, as it requires participants to possess sophis-
ticated domain-specific background knowledge.

4.2 Results and Analysis

In this section, we exhibit the evaluation results of
multiple variants of our approach SEHY equipped
with different section-selection strategies and differ-
ent summary-generation models. We also answer
the mentioned-above three questions (Q1, Q2, and
Q3) to reveal interesting experimental findings.

Evaluation results of P, ;(Sec). We report the
ROUGE scores of SEHY using Py, (Sec) paired
with three base models (Table 4) and three large
models (Table 5) on arXiv (Dgy;;) and its three
disciplinary subsets (Dcs, Dazqin and D pyy), re-
spectively.

In Table 4, we find that: (1) all tested base mod-
els paired with Py, (H + T') obtain the highest
scores, showing the advantage of using both of
Head Section and Tail Section against using only
one of them; (2) most tested base models paired
with Psq;(H) perform better than the same models
paired with Ps,;(7"), demonstrating that Head Sec-
tion (usually introduction) contributes more than

Shttps://github.com/huggingface/transformers
®https://pypi.org/project/pyrouge
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Table 4: Evaluation results of SEHY using the policy Ps,; paired with base abstractive models on arXiv and its
subsets. ROUGE scores (%) are reported. Best results in each group are in bold.

T5-base
R-1/R-2/R-L

LED-base
R-1/R-2/R-L

BART-base
R-1/R-2/R-L

Dataset+Policy ] |

Full + Psal
DFull + Psal(T)
Drpun + Psa(H +T)

38.75/13.93/34.50
39.71/14.86/35.53
47.09/19.84/42.30

43.67/16.87/39.29
42.02/15.81/37.80
47.55/19.99/42.88

43.48/16.25/38.86
42.85/16.13/38.42
44.84 /17.37/ 40.11

DCS+Psal(H)
DCS+Psal(T)
DCS + Psal(H+T)

43.00/15.90/38.69
40.22/14.71/36.13
47.58/19.91/43.11

43.23/16.14/39.54
40.91/15.04/37.18
46.67 /18.86 / 42.93

44.53/16.57/40.65
41.93/16.08 /38.10
45.46 /17.32/ 41.59

D]Wath + Psal(H)
DMath + Psal(T)
DZ\Jath + Psal(H + T)

39.93/15.62/36.06
30.81/9.31/27.71
44.05/18.77 / 39.68

41.28/16.75/37.67
33.44/10.60/30.38
43.18/18.15/39.25

40.83/15.41/36.69
34.37/11.90/30.86
41.82/15.83/37.63

DPhy + Ps:al (H)
DPhy + Psn.l (T)
DPhy + Psal (H + T)

38.22/13.57/33.96
39.88/15.00/35.64
46.76 / 19.75/ 41.93

41.04/15.03/36.69
42.39/16.11/38.11
47.20/19.88/42.52

43.10/16.11/24.83
43.44/16.40/38.89
44.39/17.14/ 39.59

! “Full” indicates the full arXiv dataset. CS, Math and Phy are shorthand for Computer Science, Mathematics and Physics, respectively. H
and T are shorthand for Head Section and Tail Section. “H+T” indicates the concatenation of H and T.

Table 5: Evaluation results of SEHY using the policy Ps,; paired with large abstractive models on arXiv and its
subsets. ROUGE scores (%) are reported. Best results in each group are in bold.

Model’ BART-Targe BigBird-large PEGASUS-Iarge
Dataset+Policy R-1/R-2/R-L R-1/R-2/R-L R-1/R-2/R-L
Drui + Psal 45.06/17.18 / 40.38 35.95/12.01/30.69 43.28 /16.50/38.57
Dpui + Psai(T) 47.34/19.24 / 42.47 28.49/7.75124.58 40.43/14.88/35.73

Drpui + Psa(H+T)

46.84 /18.56 /42.01

47.33/19.57/39.97

45.23/18.22/40.42

Dcs + Psai(H)
Dcs + Psai(T)
Dcs + Ps(H+T)

4778 /18.66 / 43.68
46.78 /1 18.63 /42.770
48.22/19.19/44.14

46.31/19.11/40.84
40.67/14.49/35.27
49.37/20.69 / 42.99

46.05/18.65/42.12
41.63/15.51/36.99
47.71/19.62 / 43.52

Dirath + Psai(H)
Dirath + Psai(T)
DMath + Psal(H +T)

44.52716.79 /40.21
42.54/15.33/38.04
44.53/16.97 / 40.49

43.20/18.03/37.65
32.91/10.50/28.17
46.05/19.67 / 39.48

43.85/18.27/39.73
32.79/10.62/28.77
44.62/18.84/ 39.94

DPhy + PsalgH)
DPhy + Psal T)
DPhy + Psal(H + T)

45.23/17.05/40.25
47.83/19.12/42.80
45.20/17.42/40.20

42.92/16.15/36.19
28.80/7.94124.77
47.42/19.66 / 39.93

43.14/16.37/38.33
40.92/15.18/36.12
45.25/18.32/40.37

! Both of Bigbird-Pegasus-large (Zaheer et al., 2020) and Pegasus-large (Zhang et al., 2020) have been fine-tuned on arXiv, quoted from
their original literature.

Table 6: Comparisons between SEHY and other summarization approaches on the full arXiv dataset D r,,;;. ROUGE
scores (%) are reported. The three highest scores are in bold.

Type Approach’ R-1/R-2/R-L?
PGN™™ (See et al., 2017) 32.06/9.04725.16
Discourse™ (Cohan et al., 2018) 35.80/11.05/31.80
Abstractive | PEGASUS™ (Zhang et al., 2020) 44.67/16.95/38.83
BigBird* (Zaheer et al., 2020) 46.63/19.02/41.77
HAT-BART* (Rohde et al., 2021) 46.68/19.07/42.17
DeepPyramidion* (Pietruszka et al., 2022)° 47.15/19.9971 /-
LongT5* (Guo et al., 2021)* 48.35" /21,921 / 44.271
LexRank™ (Erkan and Radev, 2011) 33.85/10.73728.99
Extractive SummaRuNNer** (Nallapati et al., 2017) 42.81/16.52/28.23
ExtSum-LG+Rd* (Xiao and Carenini, 2020) 44.01/17.79 /1 39.09
Hybrid DANCER™ (Gidiotis and Tsoumakas, 2020) 45.01/17.60/40.56
TLM-I+E* (Pilault et al., 2020) 41.62/14.69 / 38.03
SEHY:Dpyu + Psai(H + T)+T5-base 47.09/19.84777/42.30
Ours SEHY:D gy + Psqi(H + T)+LED-base 47.55' /19.9977 / 42,8817
SEHY:Dpyi + Psai(H + T)+BART-base 44.84/17.37/40.11
SEHY:D gy + Psai(T)+BART-large 47.34711 7 19.24 / 42.47171
SEHY:Dpuu + Psai(H + T)+BigBird-large 47.33/19.57/39.97
SEHY:D gy + Psqi(H + T)+PEGASUS-large 45.23/18.22/40.42

! * indicates the results are from leaderboard (https:/paperswithcode.com/dataset/arxiv). ** indicates the results are from their original papers.

2The T, Tt and 11 indicate the highest, the second high and the third high score, respectively.
3 DeepPyramidion only reported the R-1 and R-2 scores in its original paper (Pietruszka et al., 2022), so far on leaderboard.
4 LongTS5 is the current state of the art (SoTA) among all open-source summarization models.
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Table 7: Parameter settings of abstractive models.

pa=Model |75 BART LED BigBird PEGASUS
Version base base base  large Targe
Batch 8 6 7 6 6

Layer 12 6 6 16 16
Epoch 3 3 3 1 1

Min Loss' 1.84 229 196 - -
Length_limit - 1024 16384 4096 1024

! We fine-tuned all base models on D Fw11 and reported the final loss.

Tail Section (usually conclusion) on summarizing
well-organized scientific papers; (3) there is a slight
difference of performances between different mod-
els, but no model dominates all the others. For
instance, LED-base performs better than T5-base
on Dpyy and D pp,, while T5-base performs better
than LED-base on D¢gg and D jpyaeh.

In Table 5, equivalent results can be found when
using large models. Generally, given the same
model, the large version obtains higher scores than
the base version, showing the stronger ability of
addressing this task due to the model size. Par-
ticularly, BigBird-large performs best in this part,
probably because of its comparatively larger input
length (4096, see Table 7) derived by the sparse
attention mechanism. However, one exception is
BART-large, which behaves consistently with oth-
ers on Dcg and Dy, but doing best by using
Psal(T) on DFull and Dphy.

For answering Q3, we focus on evaluation results
on D¢cg, Dyratn and Dpp,y, in Table 4 and 5. We
find that Py, (H + T') almost obtains higher scores
than either Py, (H) or Py (T) on Deog, Dajatn
and D pp,, no matter that which abstractive model
is used. Further, it is encouraging that SEHY using
Py (H + T') paired with BigBird-large obtains the
highest score (49.37/20.69/42.99) on D¢ s (Table
5) in our experiments, showing that, comparatively
speaking, the policy Psy;(Sec) is most suitable for
scientific papers in Computer Science.

Besides, we exhibit the fine-tuning time of base
models on all experimental datasets in Table 8. We
did not do these for the large models because they
have been fine-tuned on arXiv, quoted from their
original papers. It is found that training our hybrid
model SEHY, even though leveraging simple ex-
traction strategies, is still time-expensive because
arXiv is super large-scale. The training time in-
creases dramatically with the growth of the dataset
size, especially on Dgy;.

Table 10 shows examples of summaries gener-
ated by our models by using Py, (H + T'), paired

Table 8: The fine-tuning time (hours) of base models on
datesets.

Model

W T5-  LED- BART-
I base base base

D + Psai(H) 23.27 40.15 11.40
Dy + Psai(T) 22.53 21.56 11.62
Dpun+ Pogt(H+T) | 5858 4178  12.29
Dcs + P (H) 1.07 1.00 0.54
Dcs + Psai(T) 1.04 0.98 0.51
Decs + Psa(H+T) 2.64 2.00 0.55
Diiath + Psai(H) 2.16 1.96 1.06
Ditath + Psai(T) 2.10 1.96 1.05
Dntath+Psat(H+T) 5.59 3.88 1.08
Drny + Peat (H) 1621 1543 8.05
Dphy + Psai(T) 16.50 15.49 8.01
Dphy+ Psat(H+T) 41.63 30.02 8.41

Table 9: Evaluation results of SEHY using Pj,.(k)
paired with BigBird. Best results in each group are
in bold.

Model BigBird-large
Dataset+Policy R-1/R-2/R-L
Drui + Pinc(1) 35.95712.01730.69
Drui + Pinc(2) 44.52/17.31/37.45
Drui + Pine(3) 4473 /17.42 /1 37.45
Drui + Pinc(4) 44.80 / 17.56 / 37.48
Dcs + Pine(1) 46.31/19.11/40.84
Dcs + Pine(2) 47.47119.68 /41.70
Dcs + Pine(3) 48.33/20.52 1 42.36
Dcs + Pinc(4) 48.52/20.67 / 42.45
Djath + Pinc(1) 4320718.03/37.65
Dtath + Pinc(2) 45.31/19.75/39.28
Ditath + Pinc(3) 45.59/19.95/39.02
Dyrath + Pinc(4) 45.71/19.95/39.27
Dphy + Pine(1) 42.92716.15736.19
Dphy + Pine(2) 44.33/17.18/37.16
Dphy + Pine(3) 44.56/17.27137.19
Dphy + Pinc(4) 44.60/17.40 / 37.18

with the above base and large models.
Evaluation results of P;,.(k). We measure
-Pmc(k) on Dpyi, Dos, Dyrarn and DPhy- This
strategy can validate the contributions of middle
sections such as methods (Figure 1) on the gener-
ated summary. We conduct this part of experiments
by only using BigBird-large because it performs
best in above experiments. We set the largest value
of k to 4 because the length limit of BigBird-large
is 4096 and the average section-length on Dp,,
Dcs, Dpraen 1s more than 1000 (see Table 3). Eval-
uation results of P;,.(k) are reported in Table 9,
showing that the ROUGE scores are increased with
the growth of k values (i.e., more first sections are
used). However, e.g., on D gy, the best result of
Pinc(k) (44.80/ 17.56 / 37.48) is much worse than
that of P,y (Sec) (47.55719.99/42.88).
Comparison of P, (Sec) and Pj,.(k). For
answering Q1, we compare Py, (Sec) and Pjy,.(k)
with regard to all experimental options. Results are
shown in Figure 2, 3 and 4. Obviously, Ps,;(Sec)
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Figure 2: Comparison of section-selection strategies of
SEHY paired with BigBird-large on the dataset D¢g.
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Figure 3: Comparison of section-selection strategies of
SEHY paired with BigBird-large on the dataset Dy,

performs better than P;,.(k). Besides, from Table
4 and 5, we find that different pre-trained models
do not significantly affect the performance of our
approach for answering Q2.

Comparisons of SEHY with other approaches.
We collect the best results of SEHY by using
P,y (Sec) from Table 4 and 5 and compare them
with those of other 12 summarization models (in-
cluding 7 abstractive models, 3 extractive mod-
els and 2 hybrid models) on the full arXiv dataset
Dpyy. Evaluation results are presented in Table
6. Experimental findings are as follows: (1) even
though not exceeding LongT5 (the current open-
source SoTA), multiple variants of SEHY obtain
competitive scores, i.e., the second and third high-
est scores on Learderboard. (2) all variants of
SEHY except for the one paired with BART-base
perform better than DANCER, which is the most
related work to ours due to using section-selection
strategies and training a hybrid model. (3) Apart
from LongT5, SEHY obtains better results than the
other compared models, demonstrating the effec-
tiveness of our approach.

378
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)
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Figure 4: Comparison of section-selection strategies of
SEHY paired with BigBird-large on the dataset D py,,.

5 Conclusion

Long documents introduce a lot of noise to the
summarization process and large parts of the doc-
ument are not really key to its narrative and thus
should be ignored. In this paper, we propose a
simple yet effective hybrid model called SEHY for
summarizing long scientific documents. In partic-
ular, we design two simple strategies for selecting
sections: Py, (Sec) and Pyy,.(k), and use strong ab-
stractive models for generating the final summary.
We conduct excessive experiments with multiple
variants of SEHY on the full arXiv dataset pub-
licly available and three disciplinary sub-datasets
generated by ourselves. Experimental results show
that Py, (Sec) is more effective than Pj,.(k) and
our best models obtain the competitive results with
regard to the current SOTA on arXiv.

Future works are as follows. First, we will eval-
uate the generalization of our approach on other
academic-paper datasets such as ScisummNet (Ya-
sunaga et al., 2019), which is a large-scale sci-
entific paper summarization dataset with citation
networks. Second, we will develop more flexible
and sophisticated extraction strategies such as us-
ing reinforce learning (Chali and Mahmud, 2021),
to further improve our approach’s performance.
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Ground-truth summary

We study a novel class of numerical integrators, the adapted nested force-gradient schemes, used
within the molecular dynamics step of the hybrid monte carlo (hmc) algorithm. We test these
methods in the schwinger model on the lattice, a well-known benchmark problem. We derive
the analytical basis of nested force-gradient type methods and demonstrate the advantage of
the proposed approach, namely reduced computational costs compared with other numerical
integration schemes in hme.

Summary generated by
T5-base

We present a novel class of numerical time integration schemes for the hybrid monte carlo
algorithm (hmc), often used to study quantum chromodynamics (qcd) on the lattice. The adapted
nested-force-gradient approach is applied to the model problem of quantum electrodynamics
(ged) in two dimensions, the schwinger model. We compare the behavior of the adapted nested-
force-gradient approach and the adapted version introduced in @xcite. We investigate the
computational costs needed to perform numerical calculations, as well as the effort required to
achieve a satisfactory acceptance rate during the hmc evolution. We compare the behavior of the
nested-force-gradient approach and the adapted version introduced in @xcite.

Summary generated by
BART-base

We consider the hybrid monte carlo algorithm (hmc), often used to study quantum chromodynam-
ics (qcd) on the lattice. We compare the behavior of numerical time integration schemes currently
used for hmc with the nested force-gradient integrator and the adapted version introduced in
@xcite. We investigate the computational costs needed to perform numerical calculations, as
well as the effort required to achieve a satisfactory acceptance rate during the hmc evolution.
Our goal is to find a numerical scheme which would provide a sufficiently high acceptance rate
while not drastically increasing the simulation time.

Summary generated by
LED-base

We present the nested force - gradient approach and its adapted version applied to a model
problem in quantum field theory, the schwinger model. We investigate the computational costs
needed to perform numerical calculations, as well as the effort required to achieve a satisfactory
acceptance rate during the hmc evolution. We also compare the behavior of the adapted force-
gradient scheme with the existing ones and propose a novel class of numerical schemes which
would provide a sufficiently high acceptance rate while not drastically increasing the simulation
time.

Summary generated by
Pegasus-large

The hybrid monte carlo algorithm (hmc), often used to study quantum chromodynamics (qcd) on
the lattice, has proved to be an efficient numerical time integration scheme. Omelyan integration
schemes of a force - gradient type have proved to be an efficient choice, since it is easy to obtain
higher order schemes that demand a small additional computational effort. These schemes use
higher - order information from force-gradient terms to both increase the convergence of the
method and decrease the size of the leading error coefficient.

Summary generated by
BigBird-large

We present a new class of numerical time integration schemes for the hybrid monte carlo
algorithm, which are based on the idea of the nested force-gradient method. We compare the
behavior of these new schemes with the standard hybrid monte carlo algorithm and discuss
which scheme is most suitable for the simulation of the two-dimensional lattice schwinger model.
Hybrid monte carlo algorithm, numerical time integration, nested force-gradient method.

Summary generated by
BART-large

In this paper we present a new class of numerical schemes for the hybrid monte carlo algorithm
(hmc), often used to study quantum chromodynamics (qcd) on the lattice, which are optimal
in terms of computational costs per trajectory for a given acceptance rate. We compare the
behavior of numerical time integration schemes currently used for hmc with the adapted nested
force-gradient integrator and the adapted version introduced in @xcite. Our goal is to find a
numerical scheme for the hmc algorithm which would provide a sufficiently high acceptance rate
while not drastically increasing the simulation time. We chose the model problem of quantum
electrodynamics (qed) in two dimensions, the schwinger model, since it is well-suited as a test
case for new concepts and ideas which can be subsequently applied to more computationally
demanding problems. As a lattice quantum field theory, it has many of the properties of more
sophisticated models such as qcd, for example the numerical cost is still dominated by the
fermion part of the action. The fact that this model, with far fewer degrees of freedom makes it
the perfect choice for testing purposes.

Table 10: Examples of summaries generated by our models by using Py, (H + T'). For the limitation of space, the
original paper is omitted.
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Abstract

To explore the limit of dialogue generation pre-
training, we present the models of PLATO-XL
with up to 11 billion parameters, trained on
both Chinese and English social media con-
versations. To train such large models, we
adopt the architecture of unified transformer
with high computation and parameter efficiency.
In addition, we carry out multi-party aware pre-
training to better distinguish the characteris-
tic information in social media conversations.
With such designs, PLATO-XL successfully
achieves superior performances as compared
to other approaches in both Chinese and En-
glish chitchat. We further explore the capacity
of PLATO-XL on other conversational tasks,
such as knowledge grounded dialogue and task-
oriented conversation. The experimental results
indicate that PLATO-XL obtains state-of-the-
art results across multiple conversational tasks,
verifying its potential as a foundation model of
conversational Al.

1 Introduction

The efficacy of the pre-training paradigm, where
large-scale transformer models are trained with
massive plain texts, has been widely recognized
in natural language processing (Devlin et al., 2019;
Radford et al., 2018). To further boost the perfor-
mance of these language models, there is a trend to
enlarge the model size, dataset size, and the amount
of compute used for training (Raffel et al., 2020;
Kaplan et al., 2020). Particularly, the GPT-3 model
with 175B parameters demonstrates strong zero-
shot or few-shot learning capacities without task-
specific fine-tuning on downstream tasks (Brown
et al., 2020).

Distinct from the general language models, di-
alogue generation models are usually pre-trained
with human-like conversations collected from so-
cial media. DialoGPT (Zhang et al., 2020a) at-

*Equal contribution.

wang. fan,

wu_hua}@baidu.com

tempts to train dialogue models with Reddit com-
ments on the basis of pre-trained language models.
More recently developed models, like Meena (Adi-
wardana et al., 2020), Blender (Roller et al., 2021),
and PLATO-2 (Bao et al., 2021), achieve substan-
tial performance improvements on multi-turn con-
versations. These models have been scaled up to
billions of parameters and taken advantage of many
more social media conversations for pre-training.
Nevertheless, in dialogue generation, there still
lacks a clear conclusion about the correlation be-
tween model scale and conversation quality. For
instance, DialoGPT has three model sizes: 117M,
345M, and 762M, where the 345M one obtains the
best performance in their evaluations. Meanwhile,
the human evaluations of Blender reveal that the
2.7B model achieves better performance as com-
pared to the one with 9.4B parameters.

In this paper, we argue that the conversation qual-
ity may keep benefiting from the enlarged model
scale with appropriate pre-training designs. To this
end, we explore the large-scale pre-training of di-
alogue generation models with up to 11B model
parameters, namely PLATO-XL. To train such a
large model, we adopt the architecture of unified
transformer with high computation and parameter
efficiency. In addition, we carry out multi-party
aware pre-training to better distinguish the charac-
teristic information in social media conversations.
With such designs, PLATO-XL achieves superior
performances as compared to other approaches in
both Chinese and English chitchat. More specif-
ically, PLATO-XL shows a strong capability of
absorbing common knowledge within its huge pa-
rameters; therefore, it is able to alleviate the well-
known hallucination problem!. Besides, thanks
to the multi-party aware pre-training, PLATO-XL

!Generation models might generate some plausible state-
ments with factual errors, also known as "hallucination" prob-
lem (Marcus, 2020). This problem can be alleviated by ex-
panding model parameters (Roberts et al., 2020) or incorpo-
rating external non-parametric memories (Lewis et al., 2020).
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effectively reduces the inconsistency phenomenon
in multi-turn conversations.

In addition to open-domain chitchat discussed
above, there are two other common conversational
tasks (Gao et al., 2018): knowledge grounded dia-
logue, and task-oriented conversation. In the exper-
iments, we also explore the ability of PLATO-XL
as the foundation model of conversational Al. Our
experimental results indicate that PLATO-XL is
able to outperform other dialogue generation mod-
els across multiple conversational tasks. We have
released our source code together with the English
model at GitHub?, hoping to facilitate frontier re-
search in dialogue generation.

2 Related Work

2.1 Large-scale Pre-trained Language Models

The pre-training paradigm has brought substan-
tial performance improvements in natural language
processing, where large-scale transformer models
are pre-trained with massive plain texts. BERT
(Devlin et al., 2019) learns to capture the deep
bi-directional representation for the input context
and achieves remarkable breakthroughs in natu-
ral language understanding. GPT (Radford et al.,
2018) and GPT-2 (Radford et al., 2019) are typi-
cal models in natural language generation, which
extract uni-directional representation and perform
auto-regressive generation. To further boost the
performance of language models, there is a trend
to enlarge the model size, dataset size, and the
amount of compute used for training (Raffel et al.,
2020; Kaplan et al., 2020). Particularly, GPT-3
(Brown et al., 2020) scales up to 175B parameters
and demonstrates strong ability in the zero/few-
shot settings. Recently, some larger pre-trained
language models are presented with superior per-
formance, including the 178B parameter Jurassic-1
(Lieber et al., 2021), the 280B parameter Gopher
(Rae et al., 2021), the 530B parameter Megatron-
Turing NLG (Smith et al., 2022), and the 540B
parameter PalLM (Chowdhery et al., 2022).
Besides the above English models, there are
some large-scale Chinese language models. CPM
(Zhang et al., 2020b) maintains a similar model
architecture as GPT with 2.6B parameters. CPM-
2 (Zhang et al., 2021) scales up to 11B parame-
ters and employs knowledge inheritance from ex-
isting models to accelerate the pre-training process.

https://github.com/PaddlePaddle/
Knover/tree/develop/projects/PLATO-XL

PanGu-a (Zeng et al., 2021) is a huge model, with
up to 200B parameters. The effective training is
carried out on a cluster of 2048 Ascend 910 Al
processors with multi-dimension parallelisms and
topology-aware scheduling. ERNIE 3.0 (Sun et al.,
2021) proposes a unified framework that integrates
both auto-encoding and auto-regressive networks,
where knowledge graphs are also encoded into pre-
training for enhanced representation. Empirical
results show that the 260B parameter ERNIE 3.0
Titan (Wang et al., 2021) achieves superior perfor-
mance on 68 Chinese NLP tasks.

2.2 Pre-trained Dialogue Models

Unlike the plain texts for general language mod-
els, for dialogue generation pre-training, human-
like conversations are collected from social me-
dia, such as Twitter, Reddit, Sina Weibo, Baidu
Tieba, etc. DialoGPT (Zhang et al., 2020a) at-
tempts to train dialogue models with Reddit com-
ments on the basis of pre-trained language models.
Meena (Adiwardana et al., 2020) carries out the
pre-training of dialogue generation directly with
more social media conversations, and this 2.6B pa-
rameter model achieves significant improvements
in multi-turn conversation quality. Blender (Roller
et al., 2021) proposes to fine-tune the pre-trained
dialogue model with human-annotated datasets to
emphasize the conversational skills of engaging-
ness, knowledge, empathy, and personality. In addi-
tion, to mitigate the safe response problem, PLATO
(Bao et al., 2020) and PLATO-2 (Bao et al., 2021)
propose to encode the discrete latent variable into
transformer for diverse response generation. Re-
cently, the 137B parameter LaMDA (Thoppilan
et al., 2022) has been introduced particularly for
dialogue applications, which is the largest dialogue
model in English.

Besides the above English models, PLATO-2
has one Chinese dialogue model of 363 million
parameters, exhibiting notable improvements over
the classical chatbot of Xiaolce (Zhou et al., 2020).
There are some other Chinese dialogue models on a
similar modest scale, including CDial-GPT (Wang
et al., 2020) and ProphetNet-X (Qi et al., 2021). Re-
cently, one Chinese dialogue model of EVA (Zhou
et al., 2021) has been developed under the archi-
tecture of Seq2Seq, with up to 2.8B parameters.
In this paper, we will introduce the 11B parame-
ter model of PLATO-XL, trained on both Chinese
and English social media conversations. To our
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Figure 1: Network overview of PLATO-XL.

knowledge, PLATO-XL is the largest pre-trained
dialogue model in Chinese so far.

3 PLATO-XL

3.1 Network Overview

The network overview of PLATO-XL is shown in
Figure 1, with transformer blocks as the backbone.
For the sake of efficient training on a large scale,
PLATO-XL keeps the adoption of the unified trans-
former (Bao et al., 2020, 2021) (also known as
PrefixLM (Raffel et al., 2020; Dong et al., 2019))
instead of the typical encoder-decoder for dialogue
generation. The advantages brought by the unified
transformer architecture are two-fold: computation
and parameter efficiency. Firstly, given the conver-
sation samples of variable lengths, it is necessary
to pad them into a certain length in the training
process, which inevitably incurs massive invalid
computations. As suggested in fairseq (Ott et al.,
2019), the amount of padding can be minimized
by grouping the input with similar lengths. By per-
forming effective sorting on the concatenated input,
invalid computations caused by padding can be
reduced significantly with the unified transformer.
Secondly, through the flexible mechanism of the
self-attention mask, the two tasks of dialogue con-
text understanding and response generation are
modeled simultaneously with shared parameters.
As such, the unified transformer is more parameter-
efficient than the encoder-decoder network (Bao
et al., 2021; Du et al., 2021).

In PLATO-XL, the pre-training objective is to
minimize the negative log-likelihood (NLL) loss:

Lnrr = —Er)~p [log pa(r|c)]

T
= _E(C,T‘)ND [Z log p@(Tt‘cu 7,<t)] )

t=1
where 6 refers to the trainable parameters of the
dialogue generation model and D stands for the

pre-training data. The input to the network is a pair
of dialogue context c and target response r. 7' is
the length of the target response and r~; denotes
previously generated words. As shown in Figure
1, the input representation is calculated as the sum
of the corresponding token, position, type, and role
embeddings. The token and position embeddings
are commonly used in pre-training models. The
type embedding is employed to differentiate the
segments of dialogue context and target response,
which is also extensible for other input sources,
such as persona profiles or grounded knowledge
used in conversations. The role embedding is used
to distinguish the characters in the multi-turn con-
versations, which will be explained in detail in the
following subsection.

3.2 Multi-Party Aware Pre-training

As discussed in the related work, general language
models are pre-trained with massive plain texts,
where each training sample is usually created by
one single author or user. In comparison, the
dialogue models are commonly pre-trained with
human-like conversations collected from public so-
cial media, where one toy example is provided
in Figure 2 for illustration. Several properties of
social media conversations can be observed from
this example: 1) there are multi-level comments ap-
pended to respond to the contexts; 2) multiple users
are actively involved in the discussion. The corre-
sponding message tree of these comments is shown
on the right-hand side. The comments along the
path from the root node to any tree node can be for-
mulated as one training sample of dialogue context
and target response. However, with these social
media conversations, the learned models tend to
mix information from multiple characters in the
context and have difficulties generating consistent
responses.

To tackle the above problem, PLATO (Bao et al.,
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What are the most popular places to live in Europe for American expats?

n From my personal experience its probably the UK, most likely Q

" because their man language is English.

O What language do the women in the UK speak?

Figure 2: Left: one toy example to illustrate social media conversations. Right: corresponding message tree.

2020) first introduces the role embedding into the
transformer to distinguish the characters in the di-
alogue context. While there is an underlying as-
sumption in PLATO that the conversation is carried
out within two characters and the role embedding
is assigned alternatively. Although it is generally
tenable in human-annotated conversations, things
get complicated with social media conversations.
As suggested in the former works of RNN-based
response selection (Ouchi and Tsuboi, 2016; Zhang
et al., 2018), user embedding is an effective tech-
nique for speaker and addressee identification in
multi-party conversation. In PLATO-XL, we fur-
ther encode the multi-party aware role embedding
in the pre-training of dialogue generation. The tar-
get response and utterances in the context by the
same user will be assigned with the role embedding
of E'4. For the rest utterances, the role embedding
will be assigned in a relative order according to the
user ids, such as Ep, E¢, etc. This multi-party
aware pre-training helps the model distinguish the
information in the context and maintain consistency
in dialogue generation.

3.3 Pre-training Settings

For the pre-training corpora, the English conversa-
tion samples are extracted from Reddit comments,
which are collected by a third party and made pub-
licly available at pushshift.io (Baumgartner et al.,
2020). To guarantee the data quality, we follow
the elaborate cleaning process as PLATO-2 (Bao
et al., 2021). After filtering, the data is split into
training and validation sets in chronological order.
The training set contains 811M (context, response)
samples, ranging from December 2005 to Decem-
ber 2019. For the validation set, 0.2M samples are
selected from the rest data after December 2019.
The English vocabulary contains 8K BPE tokens
(Sennrich et al., 2016), constructed with the Sen-
tencePiece library. The Chinese pre-training data is
collected from public domain social media. After

filtering, there are 1.2B (context, response) samples
in the training set. As for the Chinese vocabulary,
it contains 30K BPE tokens.

PLATO-XL employs the same network archi-
tecture for the Chinese and English models, with
up to 11 billion parameters. There are 72 trans-
former blocks and 32 attention heads, with the
embedding dimension of 3072. The hidden di-
mension of the feedforward layer is set to 18432.
Pre-normalization connection and scaled initializa-
tion (Radford et al., 2019) are adopted for stable
training. The main hyper-parameters used in the
pre-training are listed as follows. The maximum
sequence length for the dialogue context and target
response is set to 896 and 128, respectively. We
use Adam (Kingma and Ba, 2015) as the optimizer
with a learning rate scheduler of linear warmup and
decay. The warmup stage covers the first 200 steps,
and the peak learning rate is 8e-5.

The implementation of PLATO-XL is based on
the PaddlePaddle platform. And the training was
carried out on 256 Nvidia Tesla V100 32G GPU
cards. Given the limited memory of each device,
vanilla data parallelism cannot support the training
of such a model with up to 11 billion parameters.
As such, we adopt the sharded data parallelism
(Rajbhandari et al., 2020) to eliminate memory
redundancies by partitioning the optimizer states,
gradients, and parameters across multiple devices.
This kind of distributed training helps maintain low
communication volume and high computational
granularity. In addition, to train the model with
a relatively large batch size, we further employ
gradient checkpointing (Chen et al., 2016) to trade
computation for memory. In PLATO-XL, each
model was trained for a total of 150B tokens, with
a batch size of 2M tokens.
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4 Experiments

4.1 Evaluation Settings

4.1.1 Compared Approaches

To evaluate the performance of PLATO-XL, we
compare it with the following English and Chinese
dialogue generation models in the experiments.
DialoGPT (Zhang et al., 2020a) is trained on
the basis of GPT-2 (Radford et al., 2019) using
Reddit comments. There are three model sizes:
117M, 345M, and 762M. Since the 345M param-
eter model obtains the best performance in their
evaluations, this version is compared.

Blender (Roller et al., 2021) is first trained us-
ing Reddit comments and then fine-tuned with
human-annotated conversations — BST (Smith
et al., 2020), to help emphasize desirable conver-
sational skills of engagingness, knowledge, em-
pathy, and personality. Blender has three model
sizes: 90M, 2.7B, and 9.4B. Since the 2.7B pa-
rameter model obtains the best performance in
their evaluations, this version is compared.
PLATO-2 (Bao et al., 2021) is trained via cur-
riculum learning, where a coarse-grained model
is first learned for general response generation
and a fine-grained model is further learned for
diverse response generation. The English model
of PLATO-2 is pre-trained with Reddit com-
ments and then fine-tuned with BST conversa-
tions. There are 1.6B parameters in this model.
PLATO-2 also has one Chinese model of 336M
parameters, trained with 1.2B social media con-
versation samples.

CDial-GPT (Wang et al., 2020) is trained on the
basis of a Chinese GPT model using LCCC con-
versations. There are 95.5M parameters in this
model.

ProphetNet-X (Qi et al., 2021) is a family of
pre-trained models on various languages and do-
mains. ProphetNet-X includes one Chinese di-
alogue generation model trained on social me-
dia conversations collected from Douban group?.
There are 379M parameters in this model.

EVA (Zhou et al., 2021) is a 2.8B parameter Chi-
nese dialogue generation model trained with the
WDC-Dialogue, which includes 1.4B conversa-
tion samples collected from social media.

In addition to the above models, PLATO-XL is
also compared with the following commercial chat-
bots in Chinese: Microsoft Xiaolce (Zhou et al.,

3https://www.douban.com/group/
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2020), Turing Robot*, Tmall Genie?, and Xiao AI°.
The official platform/API is used in the interactions
with Xiaolce and Turing. As there is no public API
for Tmall Genie or Xiao Al, voice interactions are
carried out instead with these smart speakers.

4.1.2 Evaluation Metrics

As suggested in the empirical study (Liu et al.,
2016), the correlation between automatic metrics
and human judgments is weak in open-domain dia-
logue generation. Therefore, we mainly rely on hu-
man evaluations in the experiments of open-domain
conversation. Crowd-sourcing workers are asked to
evaluate the conversation quality on the following
aspects.

¢ Coherence is an utterance-level metric, measur-
ing whether the response is relevant and consis-
tent with the context.

¢ Informativeness is also an utterance-level metric,
evaluating whether the response is informative or
not given the context.

* Engagingness is a dialogue-level metric, assess-
ing whether the annotator would like to talk with
the speaker for a long conversation.

The scale of the above metrics is [0, 1, 2]. The

higher score, the better. To further analyze the

conversation quality, two more fine-grained metrics
are included in the evaluation.

* Inconsistency is one fine-grained metric for co-
herence evaluation, checking whether the re-
sponse conflicts with the context.

* Hallucination is one fine-grained metric for in-
formativeness evaluation, checking whether the
response contains any factual errors.

The scale of inconsistency and hallucination is [0,

1]. The lower score, the better. Score details about

these metrics are provided in the Appendix.

4.2 Experimental Results
4.2.1 Self-Chat Evaluation

Self-chats have been widely used in the evaluation
of dialogue systems (Li et al., 2016; Bao et al.,
2019; Roller et al., 2021), where a model plays
the role of both partners in the conversation. Fol-
lowing the experimental settings in PLATO-2, the
interactive conversation is started with a randomly
selected topic, and the model performs self-chats
for five rounds. Then 50 conversations are selected

*http://www.turingapi.com/
Shttps://bot.tmall.com/
*https://xiaocai.mi.com/



English Models | # Params Coherence InconsistencyV | Informativeness | Hallucinationd | Engagingness
DialoGPT 345M 0.792 0.508 0.692 0.516 0.220
PLATO-2 1.6B 1.792 0.068 1.732 0.152 1.540

Blender 2.7B 1.768 0.084 1.692 0.128 1.500
PLATO-XL 11B 1.908 0.024 1.800 0.024 1.800

Table 1: English self-chat evaluation results, with best value written in bold.

Chinese Models | # Params Coherence Inconsistency} | Informativeness | Hallucinationd | Engagingness
CDial-GPT 95SM 1.188 0.104 0.908 0.388 0.460
PLATO-2 336M 1.876 0.016 1.872 0.056 1.880
ProphetNet-X 379M 1.344 0.048 1.216 0.296 0.940
EVA 2.8B 1.196 0.032 1.016 0.356 0.600
PLATO-XL 11B 1.952 0.004 1.948 0.016 1.940

Table 2: Chinese self-chat evaluation results, with best value written in bold.

and distributed to crowd-sourcing workers for eval-
uation. Each conversation is evaluated by three an-
notators, and the final score is determined through
majority voting. The English and Chinese self-chat
evaluation results are summarized in Table 1 and
2, respectively. These results indicate that PLATO-
XL is able to produce coherent, informative, and
engaging conversations. Particularly, both the in-
consistency and hallucination problems of dialogue
generation are alleviated remarkably with PLATO-
XL. As compared to other approaches, the 11B
parameter model achieves superior performances
in both Chinese and English chitchat.

4.2.2 Human-Bot Chat Evaluation

Besides the above public models, PLATO-XL is
compared with the following commercial chat-
bots in Chinese: Microsoft Xiaolce, Turing Robot,
Tmall Genie, and Xiao Al. As most of them do
not have publicly available APIs, we ask our in-
house annotation team to collect the human-bot
conversations. The interactive conversation also
starts with a pre-selected topic and continues for
7-14 rounds. 20 diverse topics are extracted from
the high-frequency topics of a commercial chatbot,
including travel, movie, hobby, and so on. The
collected human-bot conversations are distributed
to crowd-sourcing workers for evaluation. The
human-bot chat evaluation results are summarized
in Table 3. These results indicate that PLATO-XL
achieves significant improvements over the rest of
the commercial chatbots across all the human eval-
uation metrics.

4.2.3 Case Analysis

To further analyze the model’s features, two En-
glish self-chat examples by PLATO-XL are pro-
vided in Figure 3. These examples demonstrate
that PLATO-XL is able to conduct coherent, infor-
mative, and engaging conversations. The in-depth
discussions on nuclear energy and Mariana Trench
indicate that massive knowledge has been absorbed
implicitly in the tremendous parameters. Moreover,
from the self-chat example on the left-hand side, it
can be observed that the model maintains well the
characteristics of each participant. P2 seems like a
curious learner, tending to ask many questions. P1
is a knowledgeable expert, providing the answers
in detail but with a little impatience. The model is
capable of generating responses with good consis-
tency on content and style, thanks to the multi-party
aware pre-training.

One Chinese human-bot chat example by
PLATO-XL is provided in Figure 4, with origi-
nal interactive logs shown on the left and translated
logs on the right. In this example, PLATO-XL
even exhibits advanced conversational skills, such
as compliment and eloquence. The model replies
to the other partner with sweet words from roman-
tic lyrics and provides reasonable explanations to
the queries.

4.3 Explorations on other Conversational
Tasks

In addition to open-domain chitchat, there are two
other common conversational tasks (Gao et al.,
2018): knowledge grounded dialogue, and task-
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Chinese Chatbots | # Params Coherence Inconsistency+ | Informativeness | Hallucinationd | Engagingness
Xiaolce - 1.245 0.119 1.063 0.340 1.050
Turing - 1.413 0.048 1.329 0.287 1.250
Tmall Genie - 1.359 0.052 1.242 0.301 0.700
Xiao Al - 1.544 0.050 1.413 0.194 1.400
PLATO-XL 11B 1.905 0.012 1.905 0.042 1.950

Start

P2

P2

P2

P2

Start

Human

Human

Human

Human

Human

Human

Table 3: Chinese human-bot chat evaluation results, with best value written in bold.

PLATO-XL

what is the biggest existential threat?

Climate change, but it will be too late by the time
we do anything about it.

what do you think about nuclear energy?

I think it's the safest and most efficient form of
energy we have.

what about nuclear waste?

We have the technology to store it safely for
thousands of years. It's a non-issue.

what about radiation?
P1 The radiation from nuclear power is negligible.

what about the waste?

We can store it in barrels and bury it
underground. It's not an issue at all.

Start

P2

P2

P2

P2

PLATO-XL

what is the deepest spot on the world?
P1  The Mariana Trench.

yep that's the one, i've always wanted to go
diving in there.

Me too. It would be amazing to see what's down
there.

i'm not sure what i'd do once i got to the bottom,
probably just cry.
P1 I'd probably do the same.

i'd have to find someone to go with me. i don't
think i could go alone!
P1 Me either. | think I'd need a buddy.

what would you do with your buddy once you
got there?

P1 1don't know, but I'd definitely need one.

Figure 3: Cherry-picked English self-chat examples by PLATO-XL.

PLATO-XL Chinese

SRORIEF

Bot FHXETWM S IRAER
PXEENEMNER, EHRI

Bot HBMRER—HEHA%

EMERFRIHEAMEE, fReE
METHRA ?

Bot FHYLH HRMEE BRRNINESR
IREFIRB B AFEIR
Bot RAVRE ZHSEBRANEDT

IR LR, SEHERRAR

por MET B P ER, EEUIICE

HHEL
WH~, (R E— BRI RKD
FHL
bor BREREBIML KTHERHE
BRABAA XA
£, (RESIEXL, BRXAHR
E&iAE T i
Bot {RIXAEN RAEEAL

Start

Human

Human

Human

Human

Human

Human

Translated

It is a nice day today
Bot Itis raining here. How’s it going there?

It is a sunny day after rain. There is a rainbow!

Wow. | would like to see the same sunrise and

Bot .
%Y sunset with you.

Where can you see the sunrise and sunset? Can
you come out?

Bot In my heart, in my dream, in my deep mind
You are so naughty. | like it very much.

Bot “You smile is the biggest cherish in my life”
“Let’s travel together and do what we want.”

“We sing with wineglass, chore out the

B
ot happiness. Vigorously, live fully to our youth.”

Uh, uh, wasn't your last sentence supposed to be
“riding horse surging forward”

| don't like to play by the rules. Don’t you think

Bot that would make me particularly literate?

Yes, you're extremely literate, and you're at the
height of your literacy

Bot I'll be shy if you say like that.

Figure 4: Cherry-picked Chinese human-bot chat example by PLATO-XL.

113



Task Dataset Metric Previous SoTA PLATO-XL
Knowledge Grounded DuConv Zh Fl1 45.09 (GOKC) 47.14
Dialogue DSTCY-Trackl En Rouge L 37.77 (Knover) 39.39
Task-oriented Conversation MultiwOZ 2.2 DST En Joint Goal Acc. 58.04 (DSS-DST) 58.79

Table 4: Automatic evaluation results on knowledge grounded and task-oriented conversations, with best value

written in bold.

oriented conversation. As such, in the experiments,
we also explore the ability of PLATO-XL on these
conversational tasks.

4.3.1 Task Descriptions

The experiments are carried out on the following

conversational tasks:

e DuConv (Wu et al., 2019) is one Chinese knowl-
edge grounded conversation dataset collected in
LUGE’. DuConv focuses on proactive conversa-
tions towards pre-defined goals and includes 30K
dialogues based on movie knowledge graphs.

e DSTCO9-Trackl (Kim et al., 2020) aims to in-
corporate external knowledge resources to reply
user’s out-of-API-coverage queries and augments
the dataset of MultiwOZ 2.1 (Eric et al., 2020)
with 22K knowledge grounded conversation
turns. There are three tasks in DSTC9-Trackl1:
knowledge-seeking turn detection, knowledge se-
lection, and knowledge-grounded response gen-
eration. In the experiments, we consider the task
of knowledge-grounded response generation.

e MultiWOZ 2.2 (Zang et al., 2020) is a polished
version of MultiwOZ 2.1, including 10K task-
oriented conversations across multiple domains.
In the experiments, we consider the classical task
of dialog state tracking (DST).

4.3.2 Automatic Evaluation

The fine-tuning experiments of PLATO-XL are car-
ried out on these conversational tasks, with auto-
matic evaluation results summarized in Table 4.

* In DuConv, the model needs to generate the re-
sponse given related knowledge triplets and lead
the conversation to a pre-defined goal. By ex-
panding the network input of PLATO-XL, the
conversational goal and knowledge triplets can be
easily encoded and grounded for response gener-
ation. Compared to the previous state-of-the-art
approach — GOKC (Bai et al., 2021), PLATO-XL
improves the F1 value by 2.05 points.

"LUGE, Language Understanding and Generation Evalua-
tion Benchmarks, https://www.luge.ai/

* In DSTC9-Track1, we focus on the evaluation of
knowledge grounded response generation. In the
experiments, we train and test the models with
golden retrieved knowledge snippets. The winner
approach in DSTC9-Track1 — Knover (He et al.,
2021), is also developed on pre-trained dialogue
models. The comparison reveals that PLATO-XL
further improves the performance by 1.62 points.

* In MultiwOZ 2.2, PLATO-XL learns to generate
the dialog state directly given the context. Com-
pared to the previous SoTA approach — DSS-DST
(Guo et al., 2021), PLATO-XL further improves
the joint goal accuracy to 58.79.

The superior performance of PLATO-XL on mul-

tiple conversational tasks verifies its potential as a

foundation model of conversational Al

5 Conclusion

In this paper, we explore the large-scale pre-
training of dialogue generation and present the
11 billion parameter model of PLATO-XL. Ex-
perimental results demonstrate that PLATO-XL
achieves superior performance as compared with
other approaches in both Chinese and English
chitchat. Particularly, the problems of hallucina-
tion and inconsistency are alleviated remarkably
in PLATO-XL, mainly attributed to the implicit
knowledge absorbed in the tremendous parame-
ters and the multi-party aware pre-training. Be-
sides the open-domain conversation, PLATO-XL
obtains state-of-the-art results on multiple knowl-
edge grounded and task-oriented conversations, ver-
ifying its capacity as a foundation model of conver-
sational Al

6 Ethical Considerations

With the development of large-scale pre-training
models, there raise several ethical concerns, in-
cluding toxic and biased language. In PLATO-XL,
several strategies are explored to boost the safety of
open-domain chatbots. In the pre-processing stage,
elaborate data cleaning is carried out to remove
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offensive messages from the training corpora. In
the post-processing stage, we employ one classi-
fier to detect sensitive topics from users’ utterances
and will return canned responses for these contexts.
We adopt another classifier to filter out potentially
unsafe candidates from generated responses. More-
over, we carry out regular adversarial tests with our
in-house data specialists and update the safety clas-
sifiers with newly collected samples. Given that the
objectives of safety differ across language contexts,
we design and employ corresponding strategies for
English and Chinese conversations. While even
with these strategies, the bot might still generate
biased or unsafe statements under sensitive topics
or adversarial contexts. Future work will put more
emphasis on the fairness and safety of open-domain
chatbots.
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A Scoring Criteria in Human Evaluation

The criteria used in human evaluation are provided
in Table 5.

Score Coherence
* The response is not related with the context.
0 * The response simply repeats the context.
* The response has obvious conflicts with the context.
* There are serious logic conflicts within the response.
1 » The response has minor conflicts with the context.
* There are some minor logic conflicts in the response.
2 * The response is coherent with the context.
Score Inconsistency ¥
0 » The response is consistent with the context
) * The response has conflicts with the context.
* There are logic conflicts within the response.
Score Informativeness
* The response doesn’t contain any information.
0 » This response just repeats the context and fails to bring
any additional information.
¢ The information is invalid, as the coherence score is 0.
1 * The information has conflicts with common sense.
* There are factual errors in the response.
2 * The response has appropriate and correct information.
Score Hallucination ¥
0 » The response is factually correct.
* Some details in the response are factually incorrect.
1 * The response is invalid, as the coherence and
informativeness scores are all 0.
Score Engagingness
0 * I don’t want to talk with this speaker.
1 * It is kind of boring, but it is still ok to talk with this
speaker.
2 * I would like to talk with this speaker for a long
conversation.
Table 5: Score details of metrics used in human evalua-
tion.

B Prompting Efficient Dialogue
Generation

In the practical deployment of the large-scale pre-
trained dialogue model, one hindrance is the lim-
ited inference efficiency. Firstly, the model has
tremendous parameters, leading to expensive com-
putational costs. Secondly, in response generation,
the model has to generate the response sequence
step by step, suffering from high latency. We have
explored several strategies to boost inference effi-
ciency, including operation fusion, FP16 compu-
tation, and so on. With these techniques, on the
Nvidia Tesla V100 32G GPU card, the average
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latency of 11B parameter Chinese PLATO-XL is
successfully reduced to 941ms from 3.3s, resulting
in 3.5 times acceleration. To facilitate the deploy-
ment of dialogue models, we also have plans to
release these acceleration implementations soon.
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Abstract

Most large-scale language detection tools per-
form poorly at identifying Maori text. More-
over, rule-based and machine learning-based
techniques devised specifically for the Maori-
English language pair struggle with interlingual
homographs. We develop a hybrid architecture
that couples Maori-language orthography with
machine learning models in order to annotate
mixed Maori-English text. This architecture is
used to label a new bilingual Twitter corpus at
both the token (word) and tweet (sentence) lev-
els. We use the collected tweets to show that the
hybrid approach outperforms existing systems
with respect to language detection of interlin-
gual homographs and overall accuracy. We also
evaluate its performance on out-of-domain data.
Two interactive visualisations are provided for
exploring the Twitter corpus and comparing
errors across the new and existing techniques.
The architecture code and visualisations are
available online, and the corpus is available on
request.

1 Introduction

“Ko te reo te mauri o te mana Maori.

Ko te kupu te mauri o reo Maori.”
Translated to English as The language is the
life force of the mana Maori. The word is the
life force of the language (Higgins and Keane,
2015), this famous saying by Ta Hémi Henare (Sir
James Henare) encapsulates the importance of the
Maori language to Maori, the Indigenous people of
Aotearoa' New Zealand.

Te reo Maori is both endangered and low-
resourced, with limited corpora and Natural
Language Processing (NLP) techniques avail-
able (James et al., 2020). Data annotation cur-
rently has to be done manually by language experts,
making the process time-consuming and resource-
intensive. These obstacles hinder technological

! Aotearoa is increasingly used as a Maori name for New
Zealand. Te reo Maori means ‘the Maori language’.

advances that could assist in maintaining the lan-
guage and, consequently, the culture of Maori.

The Maori language used today is frequently
interspersed with English, either in the form of
code-switching (Holmes and Wilson, 2017; Mar-
ras Tate and Rapatahana, 2022) or borrowing. Here,
the borrowing process is bidirectional, resulting in
both English loanwords in Maori (Harlow, 1993)
and Maori loanwords in English (Calude et al.,
2020). The latter are not only used by bilingual
Maori speakers, but also by monolingual English-
speaking New Zealanders. Linguists are interested
in determining the frequency of these patterns,
which are reflective of Aotearoa New Zealand’s
unique bicultural identity.

The interweaving of Maori and English is a key
consideration for developing robust technologies
that can accommodate practical, everyday usage of
te reo Maori and New Zealand English. Leverag-
ing the abundance of relevant data on Twitter, our
research focuses on the following task:

Automatic language identification for
bilingual Maori-English text at both the
token (word) and tweet (sentence) level.

Differentiating between Maori and English text
is not straightforward. This is because both lan-
guages use the Roman script, and interlingual ho-
mographs—words that are spelt the same but differ
in meaning across languages (Dijkstra, 2007)—are
prolific. These words present a major challenge for
classifying mixed-language text, especially if they
are highly frequent in both target languages (Bar-
man et al., 2014). Consider the following tweets in
which interlingual homographs are emphasised:

(a) Here is to a more productive day tomorrow

(b) Ka kite koe i a koe!

(c) He is at a tangi in Ruatoki. Doubt he did
In terms of annotation, the desired tweet-level la-
bels are (a) English, (b) Maori, and (c) Bilingual.
These are determined with recourse to the individ-
ual token labels: all tokens in (a) are English, all
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tokens in (b) are Maori, and (c) contains a mixture
of tokens from both languages, with ‘tangi’ (fu-
neral) and ‘Ruatoki’ (a place name) being labelled
Maori. According to our approach, all words of
Maori origin are tagged as Maori, even if they are
used as borrowings in English.

In order to obtain accurate tweet and token-level
labels, we utilise knowledge and understanding
gained from Maori researchers, Maori technology
developers and the Maori community. Our method-
ology involves combining machine learning tech-
niques with Maori orthography, thereby instanti-
ating the pipeline recommended by Haméldinen
(2021). We hypothesise that doing so will improve
the overall accuracy of language identification for
bilingual Maori-English text.

This paper makes the following contributions:

1. Development of a hybrid architecture? to de-
tect Maori and English words for a given bilin-
gual text input.

2. The Maori-English Twitter (MET) Corpus, a
first-of-a-kind dataset comprising bilingual
and monolingual tweets, annotated at the
token- and tweet-level by deploying our ar-
chitecture.

3. Evidence that the hybrid architecture im-
proves both language detection of interlingual
homographs and overall accuracy when com-
pared with two existing techniques.

4. Two interactive visualisation tools for explor-
ing the corpus and comparing label errors
across the different systems.

2 Background and Related Work
2.1 Maori Data Sovereignty

The Maori language is the natural medium through
which Maori express their cultural identity, con-
struct the Maori worldview and convey their au-
thenticity (Marras Tate and Rapatahana, 2022; Ra-
patahana, 2017; White, 2016). It is crucial to high-
light that Maori data needs to be handled with care,
because of the injustices caused by colonisation
and its effect on the vitality of the language (Smith,
2021). We strongly believe that any NLP resources
that are developed from this research, either di-
rectly or indirectly, should be created for the good
of the Maori-language community and not for the
capital gain of others; more generally, Indigenous
data should not be commodified at the expense of
Indigenous communities (Bird, 2020).

2https:// github.com/bilingual-MET/hybrid

2.2 Challenges and Bias in Maori NLP

Key challenges in developing Maori speech and
language technology arise from the lack and lim-
itations of resources (James et al., 2020), phono-
logical differences from English, and the lexical
overlap between written Maori and English, in-
cluding more than 100 interlingual homographs.?
These obstacles hinder NLP advances that could
facilitate the maintenance of Maori language and
culture.

Existing large-scale technologies such as cloud-
based language-detection tools and voice assistants
are predominantly designed for English. These
tools fail to recognise or correctly pronounce Maori
words, even when used as borrowings in New
Zealand English (James et al., 2022b). Our goal is
to redress that inequity in NLP resources, and thus
mitigate the bias that existing tools have towards
the more dominant English language.

2.3 Code-Switching in NLP

Bilingual and multilingual code-switching, espe-
cially between resource-rich and low-resourced lan-
guages, has gained traction as a challenging but im-
portant NLP problem (Aguilar et al., 2020; Molina
et al., 2016; Solorio et al., 2014). A myriad of stud-
ies investigating code-switching on social media
has emerged, showcasing challenges and possibili-
ties for many different language pairs (Jose et al.,
2020; Maharjan et al., 2015; Barman et al., 2014).
While an overview of Maori-language corpora
is given in Trye et al. (2022), we detail three
that are particularly relevant here. The Hansard
Dataset (James et al., 2022a) comprises two mil-
lion Maori, English and bilingual sentences, an-
notated by hand at both the token and sentence
levels. The MLT Corpus (Trye et al., 2019) is a
publicly-available collection of English tweets with
Maori borrowings, albeit lacking token-level la-
bels. The RMT Corpus (Trye et al., 2022) contains
predominantly-Maori tweets and is also publicly-
available. We use the hand-crafted rules from
the RMT Corpus to detect candidate Maori words
based on Maori orthography (Section 3.2).
Research using machine learning techniques for
te reo Maori is relatively young, and is restricted
by the limited scope of available resources. Al-
though cloud-based services offered by corpora-
tions such as Google and Microsoft support Maori-
language detection, the accuracy of these services

3https:// github.com/ TeHikuMedia/ reo- toolkit
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is poor (Keegan, 2017; James et al., 2022b).

Recently-developed language identification and
code-switching detection models for the Maori-
English pair make use of Skipgram-based fastText
models to pre-train embeddings (Dunn and Nijhof,
2022; James et al., 2022b). James et al. com-
bine pre-trained embeddings with recurrent neu-
ral networks (RNNs) to identify Maori text and
code-switching points between the Maori-English
pair. Their embeddings were pre-trained on a large
collection of bilingual and monolingual data, and
shown to outperform open-sourced English-only
equivalents. Our hybrid architecture uses the fast-
Text pre-trained embeddings and Hansard training
set from James et al. (2022b).

3 Methodology

This section details the process used to collect
Twitter data (Section 3.1) and the techniques un-
derpinning our hybrid architecture. We combine
language rules (Section 3.2) with neural networks
(Section 3.3), as suggested by Hamélédinen (2021).

3.1 Data Collection and Pre-processing

In order to create a bilingual Twitter corpus on
which to deploy our architecture, we combined
tweets that were originally gathered for the RMT
Corpus with more recent tweets from the same
users.* Tweets that included 30-80% Maori text
under the RMT system were chosen, as it was
deduced these would primarily contain instances
of Maori-English code-switching. The collected
tweets were pre-processed to mitigate noise in the
dataset. A series of tweets was removed, including
retweets, similar and identical tweets, tweets posted
by bots, and tweets containing fewer than four
words. Non-Roman characters were stripped from
the remaining tweets and common English con-
tractions were expanded. 20,000 foreign-language
tweets were then removed via manual and auto-
matic checks, which included searching for sym-
bols denoting glottal stops in the middle of tokens
(characteristic of several Polynesian languages re-
lated to, but distinct from, Maori). This yielded
178,192 tweets in total. Finally, when extracting
the tokens in each tweet, links, user mentions, hash-
tags, punctuation, emoticons and Arabic numerals
were all ignored. The rationale for excluding hash-
tags is that they often contain abbreviations and/or

*Users were identified via Indigenous Tweets (http://
indigenoustweets.com/).
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multiple words, sometimes even combining lan-
guages (Trye et al., 2020), making them difficult to
annotate without additional pre-processing.

3.2 Hand-Crafted Rules

Trye et al. (2022) employ hand-crafted rules to
identify Maori tokens in tweets, referred to as the
RMT system throughout this paper. This technique
adapts hand-crafted rules implemented by Te Hiku
Media, an Indigenous Maori organisation.’ The
rules are as follows:

* Tokens must contain only characters from the
Maori alphabet, which comprises five vowels
(i, e, a, 0, u) and ten consonants (p, ¢, k, m, n,
ng, wh, r, w, h).

Lengthened vowels may be indicated with a
macron (&), or using double-vowel orthogra-
phy (aa).

» Tokens must adhere to Maori syllable struc-
ture: they must follow consonant/vowel al-
ternation, end with a vowel, and be free of
consonant clusters (excluding the digraphs ng
and wh).

For input to the algorithm, some further ad-
justments were made to identify as many can-
didate Maori words as possible.®

When applied to bilingual text, a major limitation
of these rules is that tokens of the same type are
always classified the same way (typically as Maori),
which is problematic for interlingual homographs.

3.3 Machine Learning Component

The hybrid architecture uses Bidirectional Gated
Recurrent Units (Cho et al., 2014) with an attention
layer as the machine learning component. Text is
represented using fastText (Bojanowski et al., 2017)
Skipgram-model word embeddings (Mikolov et al.,
2013) with 300 dimensions, pre-trained on a collec-
tion of Maori and bilingual corpora (James et al.,
2022b). The attention layer used is based on the
Bahdanau attention mechanism (Bahdanau et al.,
2015). Our preliminary experiments favoured the
use of Bi-GRU with an attention layer over other
deep learning models such as CNNs and LSTMs.
To the best of our knowledge, there is no
large bilingual Twitter dataset annotated accu-
rately by experts at the token- or tweet-level.
Hence, for training Bi-GRU, we use the Hansard
Dataset containing transcribed formal Maori and
3 https:// github.com/ TeHikuMedia/nga-kupu

“Words like ‘a’, ‘17, ‘to” and ‘no’ were omitted from the
original RMT system due to their high frequency in English.
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Figure 1: Flow chart detailing token- and tweet-level labelling.

English (James et al., 2022b). The Bi-GRU model
is trained to predict Maori, English or bilingual sen-
tences, using default settings in Keras/Tensorflow.
Adam (Kingma and Ba, 2015), an adaptive learning
rate optimisation algorithm, was employed as the
optimiser for the networks. Softmax activation is
leveraged in the output layer. To avoid over-fitting,
we use a combination of dropout (Srivastava et al.,
2014) with a rate of 0.5 and early stopping (Zhang
etal., 2017).

4 Hybrid Architecture

The hybrid architecture for labelling bilingual
Maori-English datasets at both the token (word)
and tweet (sentence) levels builds upon the RMT
and ML techniques described in the previous sec-
tion. Figure 1 outlines the process used to label the
tweets in our cleaned dataset, and references the

"Model trained on 12 core Intel(R) Xeon(R) W-2133 CPU
@ 3.60GHz, GPU device GV100GL.

algorithms in Appendix A. The architecture can
also be directly applied to Maori-English corpora
with longer text sequences.®

4.1 Token-Level Labels

Multiple techniques are used to determine the ap-
propriate label for each token (Algorithms 1 and 2).
Initially, tokens are deemed to be Maori only if
they are labelled ‘M’ by both the modified rules
from the RMT Corpus and the pre-trained machine
learning model. In a similar vein, English tokens
are labelled by combining the outcome of using the
machine learning model with fastText (Joulin et al.,
2017, 2016) and NLTK (Bird and Loper, 2004)
language identification models. These techniques
have proven high accuracy in detecting English,
providing confidence in the ‘E’ labels. Due to the
informal nature of tweets, the language-specific
tags include colloquial language and textspeak (e.g.

8 hitps:// github.com/bilingual-MET/ hybrid
122



Tweets Bilingual (B) English (E) Maori (M)

Tweets 76,416 67,713 7847 856
Tokens 781,381 465,292 316,089
Users 2417 2347 1148 283
Avg tokens/tweet 10 11 6 6
Avg tweets/user 32 29 7 3

Table 1: Summary statistics for the MET Corpus.

‘w’ for ‘you’ in English).

Any tokens that are labelled ‘M’ by the modi-
fied RMT system and ‘E’ by the machine learning
model are initially classified as ambiguous. The
knowledge gained from neighbouring tokens is
then used to re-classify these words as Maori or
English (Algorithm 2). Crucially, the MET Corpus
only includes tweets comprising ‘M’ and ‘E’ token-
level labels; all remaining tokens that could not
be re-classified with certainty led to the removal
of the corresponding tweet, and are left for future
research.

4.2 Tweet-Level Labels

The updated token labels are used to generate ap-
propriate tweet-level labels (Figure 1, Algorithm
3). If a tweet consists solely of ‘M’ or ‘E’ tokens,
then the tweet-level label is Maori or English, re-
spectively. Tweets that contain at least one ‘M’ and
‘E’ token are considered bilingual; this includes
single-word borrowings in otherwise monolingual
contexts. For further confidence, the tweet-level
labels were compared with the pre-trained machine
learning model, and it was found that 90% of these
labels matched the hybrid model.

5 The Maori-English Twitter Corpus

The steps detailed in the previous two sections re-
sulted in the formation of a new bilingual dataset:
the Maori-English Twitter (MET) Corpus. Key
summary statistics for this collection of 76,000
tweets are presented in Table 1. Almost 90% of
tweets in the corpus are labelled Bilingual, 10% are
English and only 0.1% are Maori. This distribution
is expected, given the chosen threshold and char-
acteristics of the RMT system used to filter tweets
in the data collection phase. In terms of individual
words, 60% of tokens in the MET Corpus are la-
belled English and 40% are Maori. The 20 most
frequent tokens are shown in Figure 2. Most of
these tokens are function words rather than content
words, apart from ‘Maori’ and ‘reo’ (language),
whose presence would suggest that many tweets in
the corpus pertain specifically to Maori language
and culture.

40000

W Maori M English

30000

20000

Frequency

10000

Token

Figure 2: The 20 most frequent tokens in the MET Cor-
pus: Maori words, English words and homographs.

5.1 Visualisation of the MET Corpus

We provide an interactive visualisation for explor-
ing the MET Corpus;” see Figure 3. The visualisa-
tion includes a scrollable table of tweets and allows
the user to select and filter data according to several
dimensions. Key features include a treemap (and
associated search bar) displaying token frequencies
for the selection, a line chart of the distribution of
selected tweets over time, and a bubble chart sum-
marising the relative contribution of each user. In
addition, selections can be made on both the tweet
and token-level labels. The percentage of tweets
that is currently visible (with respect to the entire
corpus) is indicated at the top left of the display.

5.2 Gold Standard Labels

A manual annotation process was used to obtain
gold standard labels for a random one percent sam-
ple of the data (N=850 tweets), including tweets
that were ultimately filtered out of the corpus. This
process consisted of two phases. In phase one, two
of the authors manually tagged the true tweet-level
label of each tweet in the sample, so that this could
be compared against the predicted label for each
system. Furthermore, the coders identified which
tokens, if any, had been mislabelled by each sys-
tem. Tokens were considered to be Maori if they
were listed in the Maori dictionary,'® constituted
Maori slang (e.g. ‘ktk’ is the Maori equivalent of
‘lol’), or were Maori named entities. It was decided
that even Maori borrowings in otherwise English
tweets should be tagged as Maori, because applica-
tions such as a New Zealand English text-to-speech
tool would be required to correctly identify and
pronounce words of Maori origin, regardless of
how they are categorised from a theoretical point
of view.

In the sample tweets, the coders encountered

®https://bilingual-met.github.io/ hybrid
Ohttps://maoridictionary.co.nz/
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MET Corpus Visualisation
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Figure 3: Interactive tool for exploring the MET Corpus
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Figure 4: Interactive tool for comparing system errors: (a) navigation menu, (b) misclassified tokens, (c) etror types,
(d) filtering by labels, (e) tweet label confusion matrices, (f) tweet accuracy, (g) token mistakes, (h) token accuracy.

five foreign tweets (0.6%), which were discarded,
since the individual tokens could not be accurately
tagged as either English or Maori. In order to as-
sess the efficacy of phase one of the annotation
process, Cohen’s kappa was computed for a sub-
sample of 200 tweets. This yielded a score of 0.816,
indicating a strong level of agreement.

For the second phase, one of the authors went
through the data again, and, for each mistaken to-
ken, noted whether it was a Maori token that had
been mislabelled as English (false negative), or an
English token that had been mislabelled as Maori

(false positive). Where possible, they recorded
further information about the specific type of er-
ror. Common error types included short-length
homographs, named entities (including names of
people, places, tribes, organisations and events),
the presence of one or more non-Maori characters,
misspellings and missing macrons.

6 Experiment Results and Analysis

This section compares the performance of the
newly-developed hybrid system with the stan-
dalone RMT (Trye et al., 2022) and ML (James
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Tweets

1. Teaching ate me alive <link> via <user> #classroomreality

2. <user> ka pai! Some reo and hugs! What more does one need:)
#BFC630NZ

3. <user> <user> Kia ora Bronwyn. Hope to catch up while we are here!
4. <user> Ata marie John, hope you’re well mate.

5. E hoa ma, nga mihi o te tau hou! #Matariki #MaoriNew Year #BN-
Zatm #respect <link>

6. Maori Party welcomes Waitangi Tribunal report

Tweet Labels Token-Level Errors (FP, FN)

Actual RMT ML Hybrid RMT ML Hybrid
E B E E ate, me -

B B B B more, one -

B B B B hope, here Kia

B B B B marie, hope, mate -

M M B M E, o, tau

B B B B Waitangi  Waitangi

Table 2: Example tweets indicating actual Maori tokens, tweet-level errors and unidentified Maori tokens.

TWITTER SAMPLE

System Tweet-Level Token-Level
English Maori Bilingual Overall English Maori
Fl1 P R S Fl1 P R S Fl1 P R S Accuracy Fl P R Fl1 P R
RMT 0.06 1.00 0.03 1.00 039 1.00 024 1.00 091 0.83 1.00 0.10 0.84 090 093 0.87 0.87 088 0.85
ML 071 0.70 0.72 097 040 062 030 098 093 091 095 0.60 0.88 094 0.94 094 085 096 0.79
Hybrid 0.89 0.83 097 096 051 069 040 098 095 095 096 0.78 0.93 095 094 095 094 092 097
HANSARD TEST SET

Sentence-Level Token-Level
RMT 033 071 021 088 096 1.00 091 1.00 095 091 095 055 0.92 0.87 091 0.84 0.86 0.86 0.86
ML 060 043 097 091 032 1.00 0.19 099 079 090 0.70 0.55 0.68 092 091 091 0.66 0.70 0.64
Hybrid 0.52 035 1.00 0.89 038 1.00 024 099 085 091 0.79 0.64 0.77 093 092 092 0.71 0.73 0.70

Table 3: Tweet and token-level system evaluation for both the Twitter sample and Hansard test set. Recall (R),

precision (P), F-score (F1), specificity (S) and overall accuracy are presented, with best scores emphasised.

et al., 2022b) systems. We also use a test set from
the Hansard Dataset (James et al., 2022a) to evalu-
ate our hybrid architecture with data from another
domain. For brevity, we refer to interlingual homo-
graphs simply as homographs.

6.1 Visualisation of System Errors

To facilitate analysis of our manually-coded sam-
ple of tweets (hereafter, the Twitter sample), we
have developed an interactive tool for comparing
errors between the three systems of interest.'! The
visualisation helps users to explore the relationship
between the tweet- and token-level labels for each
system, and to better understand which kinds of
tokens are responsible for the errors. Figure 4 pro-
vides a screenshot of this interactive tool, which
guided the subsequent analysis.

6.2 Overall Accuracy

Table 2 characterises the state of play for the hy-
brid system and the two existing systems, using
six example tweets. All token-level errors are
given, together with the resulting tweet labels. The
token-level errors obtained using the RMT system’s
hand-crafted rules are mostly homographs, whereas
those for the ML system are mostly Maori words.

Whtps://bilingual-met.github.io/ hybrid/sample

The hybrid architecture performs well by compari-
son, correctly identifying all but one Maori token.

Table 3 provides a synopsis of the system evalu-
ations, broken down by tweet/sentence and token
labels for both the Twitter sample and the Hansard
test set. Looking at the Twitter sample, the Hybrid
system has the highest overall accuracy. The Hy-
brid system’s F1-scores are consistently better than
the other two systems’ at both the tweet and token
level. The specificity of the Hybrid system is good
across all tweet-level labels. Notably, the RMT
system’s specificity is extremely poor for bilingual
tweets, indicating that the system is overly eager to
find a positive result, even when it is not present.
All systems do poorly at identifying Maori-only
tweets; most are classified as Bilingual instead.
This is likely because ‘i’ and ‘a’ are frequent in
Maori but nearly always classified as English.

The Hansard test set included 10,000 bilingual,
1,000 Maori and 1,000 English sentences. The
sentence-level accuracy for the RMT system is
much better than the other systems; this is likewise
true of the F1-scores for both Maori and bilingual
sentences. One of the main reasons for this is that
the test set contains predominantly bilingual sen-
tences, and in most cases the RMT system identi-
fies at least one Maori and English token. However,
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Figure 5: Token-level errors in the Twitter sample, showing false positives, false negatives and homograph errors.

System False Positives False Negatives
RMT me, one, more, 1, a, to, marie, no, 0, noho
he, make, here,
hope, take, o,
nana, u
ML nana, ma 0, €, kia, 1, he, a, tau, makau-
rau, waitangi, me, tahoe,
waatea, au, mo, kai, 0, to,
kohanga, matatini, no, a,
morena, hoript, tuhoe
Hybrid nana, ma, ufb i, a, waitangi, waatea, to, no,

tau, tuhoe

Table 4: Common token-level errors in the Twitter sam-
ple, including homographs.

the Hybrid system still has superior specificity for
bilingual sentences. At the token-level, the Hybrid
system does best for English tokens and the RMT
system does best for Maori tokens.

6.3 Error Analysis

Figure 5 and Table 4 present a summary of token-
level errors in the Twitter sample for all three sys-
tems, and highlight errors specifically caused by ho-
mographs. All systems struggle with short-length
homographs (comprising fewer than five letters)
like ‘i’ and ‘a’, which are pervasive in both lan-
guages. Nevertheless, the hybrid system fares con-
siderably better than the other systems, with the
ML and RMT systems having nearly double and
over triple the number of homograph errors, respec-
tively.

The vast majority of errors in the Hybrid sys-
tem are Maori words that are mislabelled as En-
glish. Among these false negatives, short-length
homographs constitute 42% of mistakes and named
entities constitute 35%. While these are the two
largest groups of errors, the Hybrid system still con-
sistently classifies many of these kinds of words
correctly (e.g. ‘hope’, ‘Aotearoa’).

System Hansard Token-Level Errors

RMT we, are, he, one, more, where, take, here,
make, too, rate, none, rape, hope, reiterate,
moe, mai, oki

ML death, moe, mai, ra, hiamoe, kui, ki, te, po,
oti, atu, ai

Hybrid moe, mai, ra, kui, ki, te, po, oti, atu, ai

Table 5: Common token-level errors in the Hansard test
set, including homographs mislabelled as ‘M’.

These results indicate that the errors produced
by the Hybrid system occur on a smaller scale than
the ML system and are easier to fix than those for
the RMT system. For instance, it is straightforward
to update the labels for all tokens that contain non-
Maori characters (like ‘ufb’), and named entity ac-
curacy (for tokens such as ‘Waitangi’) could be im-
proved using an exhaustive list of non-ambiguous
Maori place names.

A breakdown of the most prolific errors in the
Hansard test set is given in Table 5. The most com-
monly misclassified homographs in both corpora
are ‘i’, ‘a’, ‘to’ and ‘no’, which are all Maori parti-
cles that tend to be classified as English. Typically,
such words are embedded inside larger segments
of Maori text, so it is surprising that these instances
are not correctly identified by our hybrid system’s
contextual check. One of the potential reasons is
because the ML component of our hybrid architec-
ture always classifies these tokens as English.

Like the Hybrid system, the ML system tends
to mislabel Maori words as English rather than En-
glish words as Maori. Many of the same kinds
of errors occur, though there are more false neg-
atives and fewer false positives. The ML system
frequently misclassified the particles ‘e’, ‘0’ and
‘kia’ in phrases such as “Miharo e hoa!”, “Te Wiki
o Te Reo Maori” and “kia ora”. In contrast, the
Hybrid system always labelled these correctly.
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The RMT system differs from the others in that
it has more false positives than false negatives. As
a rule-based system, it always assigns the same
label to each word type, even if it is valid in both
languages. Words that are consistent with Maori
orthography are generally tagged as Maori; as a
result, the RMT system is considerably better at
correctly classifying Maori named entities, includ-
ing personal and place names. However, the RMT
system performs considerably worse than the other
two when classifying tweets with a large proportion
of English text. Over 85% of false positives are
short-length homographs, with ‘me’, ‘one’, ‘more’,
‘he’, ‘make’ and ‘here’ being the worst offenders.
Like the other two systems, there are also some
instances of Maori words that are misclassified as
English (especially ‘i’, ‘a’, and ‘to’), due to the
stoplist that was used.

7 Limitations

The research presented in this paper has some
limitations that need to be acknowledged. The
hybrid architecture uses a single neural network-
based model, but we have experimented with varia-
tions in the neural networks and parameter choices.
Given the available data and resources, bidirec-
tional RNNs performed the best.

We found that our hybrid architecture does not
label Maori named entities consistently, and short-
length homographs like ‘i’ and ‘a’ are problem-
atic. This requires further investigation, perhaps
involving a special look-up for Maori place names,
and ensuring that a context check is always carried
out for frequent homographs, especially function
words.

In addition, our approach for identifying foreign-
language tweets is not exhaustive, and in some
cases, tokens that are neither Maori nor English
will have been erroneously labelled as such. Our
foreign-language processing currently focuses on
manually identifying problematic tweets in a small
subset of the data, then extrapolating this into the
wider dataset. This approach could be further de-
veloped, or a more automated system could be im-
plemented.

Our labels do not distinguish between borrow-
ings and code-switches (Alvarez Mellado and Lig-
nos, 2022). This means it is not possible to automat-
ically extract tweets where Maori borrowings are
used in otherwise English contexts, or vice versa,
although the number of tokens identified in each

language could serve as a useful proxy.

Finally, we discarded a proportion of the col-
lected tweets as our algorithm was not optimised
for dealing with undue levels of noise. The dis-
carded tweets with unknown labels are not vital to
the MET Corpus presented in this research; how-
ever, they require further investigation, and may
constitute useful additions to the corpus.

8 Conclusions and Future Work

This paper presents an architecture for labelling
bilingual Maori-English text, by bringing together
machine learning and knowledge of Maori orthog-
raphy, an approach that could also be fruitful for
other endangered languages. We use this architec-
ture to create the first large-scale corpus of bilin-
gual Maori-English tweets annotated at both the
token and tweet level. Both this corpus and the
Hansard Dataset are used to illustrate the strengths
of our approach, including superior token-level
accuracy, especially with respect to interlingual
homographs. In particular, the specificity scores
for bilingual data favour the Hybrid system, while
highlighting a major weakness of the RMT sys-
tem. Additional insights can be gleaned from two
exploratory visualisations for interrogating the cor-
pus and comparing system errors.

Future work towards enhancing the bilingual
corpus could involve extending this research to
classify hashtags as these are currently ignored.
Moreover, the architecture lends itself to anno-
tating other bilingual datasets, such as the MLT
Corpus (Trye et al., 2019), and could assist in the
creation of new resources. A further avenue of ex-
ploration would be assigning part-of-speech tags
to each token in the corpus, based on the language
identified. This could be achieved using newly-
developed tools for Maori (Finn et al., 2022) in
conjunction with established part-of-speech tag-
gers for English. Such developments are important
for ensuring better representation of the Maori lan-
guage in digital applications and environments.
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A Algorithms

Algorithm 1 Token-Level Labelling

1: Input: Pre-processed tweets, list of Maori la-
bels obtained from RMT system, pre-trained
ML model, and tokenizer

: Output: Labels at token-level

class_label = [ML model output]

english_list = [tokens with class_label ‘E’]

maori_list = [tokens with class_label ‘M’]

rmt_list = [Maori tokens from RMT system]

ambiguous_list = [rmt_list N english_list]

if len(ambiguous_list) != 0 then

Remove ambiguous tokens from rmt_list &
english_list

10: end if

11: for each tweetido

12:  for each token jinido

D A R

13: if j in english_list then

14: if j is detected as an English word using
fastText and NLTK language detection
tools then

15: Assign label for j as E (English)

16: end if

17: else if j in rmt_list then

18: if j in maori_list then

19: Assign label for j as M (Maori)

20: end if

21: else if j in ambiguous_list then

22: Assign label for j as A (Ambiguous)

23: else if Token j notin ‘E’, ‘M’, ‘A’ then

24: Assign label for j as U (Unknown)

25: end if

26:  end for

27: end for
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Algorithm 2 Context-Check for Ambiguous Items

1:

22:
23:
24

25:

26:
27:
28:

29:
30:
31:
32:

33:

34:
35:
36:

37:
38:
39:
40:
41:
42:
43:
44

Input: Pre-processed tweet tokens, list of
Maori tokens, English tokens, and Ambiguous
tokens obtained from token-level labelling
Output: Updated labels at token-level
for each tweet t do
maori_list = [Maori words in t]
english_list = [English words in t]
ambiguous_list = [Ambiguous words in t]
tokens = [all tokens in t]
if len(ambiguous_list) != 0 then
for amb_token in ambiguous_list do
if amb_token contains {2,€,1,0,ii} then
Assign label as M (Maori)
Remove from ambiguous_list
else
before = tokens[index-1]
after = tokens[index+1]
before_before = tokens[index-2]
after_after = tokens[index+2]
if before & after in maori_list then
Assign label as M (Maori)
Remove from ambiguous_list
else if before & after in english_list
then
Assign label as E (English)
Remove from ambiguous_list
else if before is null, i.e. amb_token
is the first token in the tweet then
if after & after_after in maori_list
then
Assign label as M (Maori)
Remove from ambiguous_list
else if after & after_after in en-
glish_list then
Assign label as E (English)
Remove from ambiguous_list
end if
else if after is null, i.e. amb_token is
the last token in the tweet then
if before_before & before in
maori_list then
Assign label as M (Maori)
Remove from ambiguous_list
else if before_before & before in
english_list then
Assign label as E (English)
Remove from ambiguous_list
end if
end if
end if
end for
end if
end for

Algorithm 3 Tweet-Level Labelling

1: Input: Bilingual tweets with token-level

labels obtained using Algorithm 1 and
Algorithm 2

2: Output: Labels at tweet-level
3: for each tweet t do

4:  maori_list = [Maori words in t]
5 english_list = [English words in t]
6:  unknown_list = [Unknown words in t]

7 ambiguous_list = [Ambiguous words in t]
8:  if len(maori_list) == 0 & len(unknown_list)
== 0 & len(ambiguous_list) == 0 then

9: tweet_label of t is E (English)

10:  elseif len(english_list) == 0 &
len(unknown_list) == 0 &
len(ambiguous_list) == 0 then

11: tweet_label of t is M (Maori)

12:  elseif len(ambiguous_list) == 0 &
len(unknown_list) == 0 then

13: tweet_label of t is B (Bilingual)

14:  else

15: tweet_label of t is O (Other)

16:  end if

17: end for

18: for each tweet t do

19:  label_ML = ML tweet-label for t

20:  if label_ML == tweet_label then

21: Final tweet-level label for MET Corpus

22:  else

23 Further investigation needed

24:  end if

25: end for
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Abstract

There has been an increase in the number of
large and high-performing models made avail-
able for various biomedical natural language
processing tasks. While these models have
demonstrated impressive performance on var-
ious biomedical tasks, their training and run-
time costs can be computationally prohibitive.
This work investigates the use of knowledge
distillation, a common model compression
method, to reduce the size of large models for
biomedical natural language processing. We
further improve the performance of knowledge
distillation methods for biomedical natural lan-
guage by proposing a meta-learning approach
which adaptively learns parameters that enable
the optimal rate of knowledge exchange be-
tween the teacher and student models from the
distillation data during knowledge distillation.
Experiments on two biomedical natural lan-
guage processing tasks demonstrate that our
proposed adaptive meta-learning approach to
knowledge distillation delivers improved pre-
dictive performance over previous and recent
state-of-the-art knowledge distillation methods.

1 Introduction

While there has been an increase in the number
of large, pre-trained language models with impres-
sive performance on various biomedical tasks (Shin
et al., 2020; Gururangan et al., 2020; Lee et al.,
2020; Lewis et al., 2020; Gu et al., 2022), the
training and deployment of these models can be
computationally prohibitive and time-consuming,
especially in resource-constrained settings. The
inference latencies and storage costs of these mod-
els make their deployment for real-word biomed-
ical applications a challenge. Knowledge distilla-
tion (Bucila et al., 2006; Ba and Caruana, 2014;
Hinton et al., 2015; Romero et al., 2015), a model
compression technique which aims to transfer the
performance of a large and computationally ineffi-
cient teacher model to a smaller and more efficient
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student model, has been proposed as a way to re-
duce the size of large models while retaining their
predictive performance.

While a variety of knowledge distillation ap-
proaches have been proposed in the literature (Hin-
ton et al., 2015; Sun et al., 2019; Gajbhiye et al.,
2021; Zhou et al., 2022), their effectiveness have
largely not been evaluated on biomedical natural
language processing tasks. In this work, we evalu-
ate the effectiveness of the proposed approaches for
knowledge distillation on biomedical NLP tasks.
To further enhance performance, we propose an
adaptive meta-learning method for distilling large
and inefficient biomedical models into more effi-
cient and smaller ones. In experiments conducted
on two biomedical natural language processing
tasks, we find that our proposed meta-learning ap-
proach to knowledge distillation delivers improved
predictive performance over previous and recent
state-of-the-art knowledge distillation methods.

2 Knowledge Distillation

Knowledge distillation is a model compression
method which aims to transfer knowledge from
large and accurate but computationally inefficient
models to smaller and more efficient models with-
out significant loss in task performance. This is
usually achieved by training a smaller and compu-
tationally efficient student model to imitate the out-
puts of a larger and inefficient teacher model with
a knowledge distillation objective. For instance,
the knowledge distillation objective proposed in
Hinton et al. (2015) uses the final output logits pro-
duced by the teacher model to transfer its hidden
knowledge to the student model. Concretely, given
a teacher model 1" parametrized by 07, a student
model S parametrized by fs and a dataset D con-
taining N instances D = {(z;, yz)}f\; 1 » the knowl-
edge transfer between teacher and student can be
achieved by training the student with a knowledge
distillation objective Lk p of the form:
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N
1
Lip = ; [alp (T (x:,07), S (2:,05) )

where L£p is a measure of divergence (such as
the KL-divergence) between the teacher’s output
predictive distribution 7" (x;, 67) and the student’s
output predictive distribution S (z;,0s), L7 is a
task-specific loss function (such as the standard
cross-entropy loss), x; is an input instance with la-
bel y;, while « and (3 are (scalar) hyper-parameters
which determine the relative weight between the
two components of the overall knowledge distil-
lation loss function. In other words, o and (5 de-
termine the rate of knowledge exchange between
teacher and student during knowledge distillation.
Typically, the values of « and 8 are manually set
before knowledge distillation training, and are then
kept fixed throughout. Gou et al. (2021) and Gupta
and Agrawal (2022) give further overviews of vari-
ous knowledge distillation methods.

3 Meta-Learning

Meta-learning, also known as learning to
learn (Biggs, 1985; Schmidhuber, 1987; Bengio
et al., 1991; Thrun and Pratt, 1998) aims to de-
velop algorithms and models that are able to learn
more efficiently with experience, by generalizing
from the knowledge of related tasks. These mod-
els are able to learn how to learn, by improv-
ing their own learning process over time. Vari-
ous approaches to meta-learning have been pro-
posed and applied in various areas. These ap-
proaches include specific-architectures for learning
to learn (Vinyals et al., 2016; Snell et al., 2017),
learning to update model parameters from back-
ground knowledge (Andrychowicz et al., 2016;
Ravi and Larochelle, 2017), and gradient-based
model-agnostic meta-learning methods (Finn et al.,
2017; Nichol et al., 2018; Rothfuss et al., 2021).
Example natural language processing tasks to
which meta-learning has been applied include ma-
chine translation (Gu et al., 2018) and quality esti-
mation (Obamuyide et al., 2021a,b).
Gradient-based model-agnostic meta-learning al-
gorithms such as MAML (Finn et al., 2017) of-
ten involve a bi-level optimization objective where
feedback from the performance of an inner-learner
(student model) is used to optimize a meta-learner

(teacher model) with the aid of a meta-objective. In
other words, in contrast with the teacher model in
common knowledge distillation approaches which
does not take into account feedback from the stu-
dent model, the teacher model in meta-learning is
able to receive and utilize feedback from the stu-
dent model in order to improve itself.

Additionally, in knowledge distillation the
teacher and student models are usually trained one
after the other, with the teacher model trained first
and then fixed during the student training. On the
other hand, the student and teacher models in meta-
learning are trained jointly together in order for
them to improve each other.

4 Knowledge Distillation with
Meta-Learning

Some works have investigated the use of the bi-
level optimization framework in meta-learning to
improve knowledge distillation, that is, to employ
meta-learning to explicitly optimize the teacher for
better knowledge transfer during the knowledge
distillation process. For instance, Pan et al. (2021)
trained a teacher network that can be adapted across
several domains with meta-learning, and then per-
form standard knowledge distillation to distil the
knowledge present in the teacher network into a
student network. However, Pan et al. (2021) utilize
meta-learning only to train a teacher model, and
not throughout knowledge distillation training, thus
limiting the generalizability of their approach. In
order to enable the teacher model to better transfer
knowledge to the student, Zhou et al. (2022) pro-
posed the use of a meta-learning pilot update mech-
anism which improves the alignment between the
student and the teacher in knowledge distillation.
In their approach, Zhou et al. (2022) update both
the teacher and student throughout the knowledge
distillation training process, resulting in improved
knowledge distillation performance.

5 Meta-Learning Adaptive Knowledge
Distillation

An important limitation in all aforementioned
knowledge distillation methods, including those
that make use of meta-learning, is that they treat
the rate of knowledge exchange between teacher
and student (« and § in Equation 1) as fixed dur-
ing training. This is not ideal, as the optimal rate
and level of knowledge exchange between teacher
and student should be updated during training to
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account for their current state.

A relevant and analogous human analogy is that
school teachers teach and students learn different
curricula depending on the student’s educational
level (e.g. nursery, primary, secondary, or univer-
sity student). In most circumstances, it would not
be appropriate for a human teacher to be teach-
ing university-level knowledge to primary school
students, and vice-versa. Therefore, o and (3 in
knowledge distillation also need to be adaptive and
learnable.

As a solution to the aforementioned issue, in
this work we propose to treat o and 3 as learn-
able parameters which are updated during training.
Our work builds on that of Zhou et al. (2022) and
further enhances it with learnable « and 8. This
would allow the values of « and 8 to change to
reflect the needs of the student throughout train-
ing. As we demonstrate in the experiments, this
change results in improved knowledge distillation
performance. We refer to our adapted approach
as Meta-Learning Adaptive Knowledge Distilla-
tion (MetaAdaptiveKD), and our overall training
algorithm is illustrated in Algorithm 1.

Algorithm 1 Meta-Learning Adaptive Knowledge
Distillation (MetaAdaptiveKD)

Training data D*"*'"  holdout data D"°'¢
Teacher 87 and student s models
Teacher 1 and student e learning rates
Learnable o and 8

Require:

Require:

Require:

Require:
1: Initialize 61, 0s, o, B8
2: while not done do

3 Create a copy of student parameter 0s to 0% _
4:  Sample mini-batches of train data @;qin ~ D"
5:  for each x¢,qin do

6: 9{9 — 9{9 — GVQZS'LKD (:l:tmm, 0_’9, 9T7 Ot,ﬂ)
7:  end for

8 Sample mini-batches of holdout data @,01q ~ D"°'¢
9:  for each x4 do

10: a+—a— MVQLT(whold7 05 (07, a, ﬂ))

11: 5(—5—MV§ET($1—L0M79% (97"7057 B))

12: 9T < 9T — ,quTLT(whold, Qfg (9T7 Q, ﬁ) )
13:  end for

14:  Update 0s + 05 — Voo Lk D (Ttrain, s, 01, a, B)
15: end while

Our approach described in Algorithm 1 assumes
access to both training and holdout datasets'. We
start by initializing parameters of the teacher and
student models, and « and 3 (line 1). At each
training step, we first create a copy of the student
parameters (line 3) and sample a number of mini-
batches from the training data (line 4). Then for

"The holdout dataset can, for instance, be obtained by
splitting from the training set.

each mini-batch of training data, we update the
copy of the student model (lines 5-7). Because the
updated student model 6% as well as its loss on
the holdout set L7 (o4, 05 (67, v, B) ) is now a
function of «, 5 and 67, we can use the holdout loss
to optimize «, $ and 0. Thus, we sample mini-
batches of data from the holdout set (line 8), and
for each mini-batch of holdout data, we update v, 8
and O (lines 9-13). Finally, we update parameters
of the original student model fg (line 14). At the
end of training, the final student model 65 can be
evaluated and deployed.

6 Experimental Setup and Details

6.1 Datasets

Given our interest in improving the efficiency of
biomedical models with knowledge distillation,
we conduct experiments on the following two (2)
biomedical datasets:

ChemProt: The Chemical Protein Interaction
corpus (ChemProt) (Krallinger et al., 2017) is a
dataset of PubMed 2 abstracts annotated with in-
teractions between chemical and protein entities.
Following common practice, we evaluate on five(5)
classes from this dataset.

GAD: The Genetic Association Database (GAD)
(Bravo et al., 2014) is a binary relation classifica-
tion corpus containing a list of gene-disease associ-
ations, with the corresponding sentences reporting
the association.

Table 1 provides a breakdown of the instances
in both datasets.

Dataset Train Dev Test
ChemProt 18035 11268 15745
GAD 4261 535 534
Total 22296 11803 16279

Table 1: Number of instances in the train/dev/test splits
of the ChemProt and GAD datasets.

6.2 Teacher and Student Models

Both the teacher and student models are based
on the transformer architecture (Vaswani et al.,
2017).  Specifically, the teacher model is a
transformer model with 12 layers and 110M pa-
rameters. It is initialized with weights from

Zhttps://pubmed.ncbi.nlm.nih.gov
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BioLinkBERT}, s (Yasunaga et al., 2022), a state-
of-the-art biomedical transformer model with same
architecture as BERT (Devlin et al., 2019), but
pre-trained using citation links between PubMed
articles. In contrast, the student model is a 6-
layer transfomer with 66M parameters. It is ini-
tialized with weights from the first six(6) layers of
BioLinkBERT}, .

6.3 Baselines

We compare our approach with the following base-
lines:

Finetune This is the conventional finetuning ap-
proach, where a pre-trained transformer student
model is finetuned on each dataset without any
knowledge distillation loss. This student model
has the same number of parameters as the student
model used by our approach and the other base-
line knowledge distillation approaches. It is ini-
tialized with weights from the first six(6) layers of
BioLinkBERT .

KD This is the original knowledge distillation
approach proposed in (Hinton et al., 2015). This
approach first trains a teacher model, which is then
kept fixed while the student is trained with the stan-
dard knowledge distillation objective in Equation
1.

PatientKD This approach to knowledge distilla-
tion was proposed by Sun et al. (2019). It works by
aligning intermediate layer feature representations
from the teacher and the student.

MetaDistil This is a recent, state-of-the-art meta-
learning approach to knowledge distillation pro-
posed by Zhou et al. (2022). Different from our
approach, MetaDistil uses fixed values for o and

B.
6.4 Experimental Details

Hyper-parameter Value
Learning rate Se-5
Mini-batch size 8
Max. sequence length 128
Distillation temperature 2

Number of training epochs 20

Table 2: Hyper-parameter values for all compared ap-
proaches

Our implementation makes use of Py-
torch (Paszke et al., 2019), transformers (Wolf

et al., 2020) and higher (Grefenstette et al., 2019)
libraries. All compared knowledge distillation
approaches, including ours, make use of the same
values for hyperparameters such as the number of
training epochs, learning rate and batch size. These
values were selected by manual search in initial
experiments, and are provided in Table 2. Each
experiment is repeated across five (5) different
random seeds, and we report the average.

6.5 Evaluation

We make use of the F1 measure as performance
metric. We repeat each distillation experiment
five(5) times and report the average F1 perfor-
mance of the distilled student on the test set of
each dataset.

7 Results and Discussion

The results obtained by our approach and the other
knowledge distillation methods on the two biomed-
ical datasets are as shown in Table 3. All student
models have nearly twice (x1.94) the inference
speed of the teacher model and only about 60%
(66M) of the teacher’s parameters.

Method #  Speedt Fl1 (%)
ChemProt GAD
BioLinkBERT (Teacher) 110M x1.00 77.57 84.39
Finetune 66M x1.94 72.17  78.53
KD 66M  x1.94 7249 78.84
PatientKD 66M  x1.94 72.10  78.89
MetaDistil 66M  x1.94 7273 79.08
MetaAdaptiveKD 66M x1.94 73.03  79.62

Table 3: Experimental results on the ChemProt and
GAD datasets. The # column represents the number
of parameters in each model, while the Speed! column
represents the speedup of each approach when compared
to the teacher model. F1 results of the teacher model are
obtained from Yasunaga et al. (2022). The F1 results
for all student models including ours are the average of
five(5) runs with different random seeds.

In terms of F1 performance of the student mod-
els, we find that just finetuning the student model
(Finetune) without any knowledge distillation ob-
jective underperforms all other distillation methods
on the GAD dataset and also underperforms all
other methods except PatientKD on the Chemprot
dataset, which demonstrates the effectiveness of
knowledge distillation in general. PatientKD out-
performed KD on the GAD dataset but not on the
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ChemProt dataset, while MetaDistil outperforms
KD and PatientKD on both datasets.

Finally, we find that our approach MetaAdap-
tiveKD, which adaptively learns « and 5 with meta-
learning, outperforms all previous distillation meth-
ods on both datasets. The fact that our approach
outperforms MetaDistil (a meta-learning method
which uses fixed « and ) demonstrates the impor-
tance of not keeping « and 3 fixed during knowl-
edge distillation, but instead learning their optimal
values from the distillation data during training, as
done in our approach.

8 Conclusion

In this work, we proposed a new meta-learning
approach to knowledge distillation. In contrast to
previous methods which manually set the rate of
knowledge exchange between student and teacher
and keep them fixed throughout training, our ap-
proach learns their optimal values adaptively from
the distillation data during training. In experiments
conducted on two biomedical datasets, we demon-
strated that our approach outperforms previous
knowledge distillation methods.

Limitations, Risks and Ethical
Considerations

Meta-learning methods for knowledge distillation
in general require additional computational re-
sources compared to traditional distillation meth-
ods. The MetaAdaptiveKD algorithm for knowl-
edge distillation introduced in this work is a
meta-learning based approach with similar com-
putational requirements as previous meta-learning
methods.

Although this computational cost can be high,
it is a one-time investment with long-term returns
since it would result in an efficient and more accu-
rate compressed model with reduced run-time costs.
In addition, while we have conducted experiments
on two english biomedical datasets, MetaAdap-
tiveKD is a generic distillation technique that can
be applied to data from other languages and do-
mains.

In terms of risks and ethical considerations,
MetaAdaptiveKD improves on the performance of
previous knowledge distillation methods and does
not introduce additional risks and ethical concerns
in comparison with these previous methods. Never-
theless, as has been noted in previous work (Hooker
et al., 2020), the introduction or amplification of

algorithmic biases is a common risk of model com-
pression methods in general, and devising ways of
addressing these concerns is an important line of
future work.
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Abstract

It is well known that the surprisal of an upcom-
ing word, as estimated by language models, is
a solid predictor of reading times (Smith and
Levy, 2013). However, most of the studies
that support this view are based on English and
few other Germanic languages, leaving an open
question as to the cross-lingual generalizabil-
ity of such findings. Moreover, they tend to
consider only the best-performing eye-tracking
measure, which might conflate the effects of
predictive and integrative processing. Further-
more, it is not clear whether prediction plays a
role in non-native language processing in bilin-
gual individuals (Griiter et al., 2014). We ap-
proach these problems at large scale, extract-
ing surprisal estimates from mBERT, and as-
sessing their psychometric predictive power on
the MECO corpus, a cross-linguistic dataset of
eye movement behavior in reading (Siegelman
et al., 2022; Kuperman et al., 2020). We show
that surprisal is a strong predictor of reading
times across languages and fixation measure-
ments, and that its effects in L2 are weaker with
respect to L1.

1 Introduction

Context-dependent predictive processes have been
proposed as a core component of the human cog-
nitive system (Bar, 2007; Clark, 2013). In the
language processing literature, a clear picture that
is progressively emerging is that speakers sponta-
neously pre-activate the upcoming lexical material
before they encounter it (Huettig, 2015; Schlen-
ter, 2019; Staub, 2015). This pre-allocation of re-
sources to predictable material is evidenced by the
fact that unpredictable words are a major cause
of processing costs, as measured through self-
paced reading times (Frank and Hoeks, 2019; Fer-
nandez Monsalve et al., 2012), eye movements
(Ehrlich and Rayner, 1981) and pupil size (Frank
and Thompson, 2012) in reading, and EEG re-
sponses (Kutas and Hillyard, 1984; Frank et al.,
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2015). The role of prediction in language process-
ing was, in particular, characterized via compu-
tational modeling, with the information-theoretic
notion of surprisal being extended to psycholin-
guistics (Hale, 2001; Levy, 2008). Surprisal quan-
titatively captures how unpredictable a word is in
terms of the negative logarithm of the probability
of a word conditioned by the preceding sentence
context (1).

surprisal(w;) = —log, P(wilwi,wa...wi_1) (1)

In this perspective, surprisal acts as a linking
function between cognitive effort and predictability
(Fernandez Monsalve et al. 2012, but see Brothers
and Kuperberg 2020), where the former is mea-
sured empirically, and the latter is estimated prob-
abilistically. Levy (2008) demonstrated that the
surprisal of a word given the previous context is
mathematically equivalent to the Kullback-Leibler
divergence (i.e. relative entropy) between prob-
ability distributions'. Under this view, surprisal
effects can therefore be interpreted as the cogni-
tive costs associated to a shift between probability
distributions.

Computational linguistics has proven itself very
useful to derive word probability estimates (Frank
et al., 2013; Demberg and Keller, 2008; Levy,
2008), and the psychometric predictive power of
a language model — i.e., how well it can account
for human processing times — is a linear function
of that model’s quality, measured as its perplexity
(Goodkind and Bicknell, 2018; Wilcox et al., 2020).
Computational studies on prediction in sentence
processing have the indisputable merit of testing
the effects of predictability at large scale and in
the context of naturalistic reading. However, if
compared to psycholinguistic studies on prediction,
they generally focus on:

'In its original formulation, surprisal theory was employed
to account for syntactic processing. Probability shifts were
thus defined over syntactic parses.
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i Gaze duration. Differently from psycholin-
guistic research (Frisson et al., 2005; Rayner
et al.,, 2011), computational studies tend
to consider only the eye-tracking measure
that is typically best fitted by surprisal esti-
mates, namely gaze duration (Aurnhammer
and Frank, 2019; Goodkind and Bicknell,
2018; Smith and Levy, 2013; Wilcox et al.,
2020), ignoring other cognitively relevant eye-
tracking metrics.

ii Germanic languages. A vast body of find-
ings corroborates the effects of lexical pre-
diction in English (Aurnhammer and Frank,
2019; Frank and Bod, 2011; Frank et al., 2015;
Fernandez Monsalve et al., 2012; Wilcox
et al., 2020; Goodkind and Bicknell, 2018;
Smith and Levy, 2013), Dutch (Frank and
Hoeks, 2019; Brouwer et al., 2010) and Ger-
man (Boston et al., 2008; Brouwer et al.,
2021); however, evidence from other language
families is far more limited (although see Fan
and Reilly, 2020; Kuribayashi et al., 2021).

iili L1. Within the computational framework,
most of the studies reported insofar targeted
sentence processing in the dominant lan-
guages (but see Berzak and Levy, 2022; Frank,
2014, 2021), while the psycholinguistic com-
munity is witnessing an increasing interest in
predictive processing in L2 (Cop et al., 2015;
Griiter et al., 2014, 2017; Kaan et al., 2010;
Martin et al., 2013).

We argue that these three limitations might un-
dermine both the internal and the external validity
of the results.

First (i), only considering the best-performing
eye-tracking measure does not provide any insight
as to when such predictability effects take place
during natural reading. An analysis of the time
range where predictability effects can be detected
is however crucial to disentangle between predic-
tive and integrative processes (Cevoli et al., 2022;
Staub, 2015). Indeed, a higher processing cost
induced by an unpredictable word might not be
due to anticipatory processes, but also to a diffi-
culty in integrating the unpredictable word in the
phrasal context. While early measurements such
as first fixation duration are thought to reflect lex-
ical or pre-lexical processes (and thus a genuine
effect of predictability; Staub, 2015), gaze dura-
tion can be considered as a “midmeasure” (Roberts
and Siyanova-Chanturia, 2013), and thus it is not

sufficient to disentangle between integrative and
predictive processing.

Second (ii), some of the results that were ob-
tained in English within the framework of surprisal
theory were not replicated in other languages. For
instance, Kuribayashi et al. (2021) have shown
that the negative relationship between a language
model’s perplexity and its psychometric accuracy
does not hold for the Japanese language. Hence,
the rather limited typological variability in the lan-
guage samples considered leaves an open question
as to whether prediction itself should be considered
as a core processing mechanism that generalizes
across languages.

Third (iii) , the study of predictive processing
in non-native reading is of crucial relevance since
more than half of the global population is bilingual
(Ansaldo et al., 2008). The role of anticipation
in bilingual individuals is attracting growing in-
terest in second language acquisition studies, and
large-scale data-driven approaches might shed light
on a complex picture currently characterized by
little consensus. The Reduced Ability to Gener-
ate Expectations hypothesis (RAGE, Griiter et al.,
2014, 2017) proposes that even highly proficient
L2 speakers differ from native speakers in their
abilities to anticipate the upcoming linguistic ma-
terial. However, the results supporting this theory
have been questioned (Hartsuiker et al., 2016; Leal
et al., 2017); they are generally derived from offline
tasks in small-scale studies (Griiter et al., 2014),
and restricted to circumscribed linguistic phenom-
ena (such as gender information in determiners,
see Griiter et al., 2012; Lew-Williams and Fernald,
2010). Instead, it would be desirable to test the ef-
fects of word prediction in L2 when reading natural-
istic, contextualized texts (see for instance Berzak
and Levy, 2022; Cop et al., 2015), as opposed to
artificially constructed experimental materials, pre-
sented out of context and repeated many times.
Berzak and Levy (2022) have overcome these lim-
itations by testing the effects of predictability in
L2 at scale. They reported a larger effect of sur-
prisal in non-native reading, which is at odds with
the psycholinguistic evidence reported before, and
difficult to explain. As mentioned by the authors,
context-contingent expectations are statistically de-
manding to compute, and it is not clear why the
effects of such a complex processing mechanism
should be stronger in L2 than in L1.

In the present study we address these limita-
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tions in the literature by considering different eye-
tracking measurements, including early fixation
measurements that are expected to reflect predictive
processes (i); extending our sample to 12 diverse
languages, belonging to five language families and
written in five different scripts (ii); and comparing
the effect of prediction in L1 and L2 (iii).

2 Methods

2.1 Eye-tracking data

The MECO-L1 corpus (Siegelman et al., 2022) is
a large-scale collection of high-quality eye move-
ment records in 13 languages® collected in a natu-
ralistic reading task. Participants were presented
with 12 texts composed by multiple sentences, con-
sisting in encyclopedic entries on a variety of top-
ics. The MECO-L2 corpus provides eye movement
data on English texts read by non-native speakers
(Kuperman et al., 2020). In our study, we analyze
three eye-tracking measurements, that are consid-
ered an early, an intermediate, and a late processing
measure, respectively (Demberg and Keller, 2008;
Roberts and Siyanova-Chanturia, 2013):

* First fixation (FF): the duration of the first
fixation landing on the target word. This mea-
sure is often assumed to reflect lexical access
and low-level oculomotor processes.

* Gaze duration (GD): the sum of the duration
of the fixations on the target word before the
gaze leaves it for the first time. This measure
is thought to be indicative of semantic and
early syntactic processing.

e Total reading time (TT): the sum of the du-
ration of all the fixations on the target word.
This measure is thought to be indicative of
integrative processes.

The fixations considered by different eye-
tracking measures are organized in a relationship
of inclusion (FF C GD C TT); hence, intermediate
and late processing measures inevitably incorpo-
rate information about early processing. However,
since the inclusion relationship is asymmetrical,
early measures do not include information about
late processing. Hence, predictability effects that
can be detected in early eye-tracking measures can
be ascribed to predictive processing (Staub, 2015).

2.2 Model and metrics

Our probability estimates are derived with
mBERTgAsE’s native masked language modelling
component (Devlin et al., 2019), which has been
shown to generate probability estimates that are
good predictors of eye movement data (Hollenstein
et al., 2021). To derive word-level probability es-
timates, we freeze the model weights and mask
all the sentence tokens iteratively. Except for the
first and the last token of each sequence, where the
model predictions are conditioned only by the right
and the left context, mBERT predicts the token in
the masked position relying upon the bidirectional
context. Note that the formula in (1) implicitly
refers to auto-regressive, left-to-right models. Deal-
ing with a bidirectional encoder, we calculate the
bidirectional surprisalg of a word w; in a sentence
of N tokens as the negative logarithm of the word
probability conditioned by both the left (w; ... wj_;)
and the right context (Wiy1 ... wn, see 2).

surprisalg(w;) =—log, P(wilwy ... Wi_|, Wit1 ... WN)

(2)
2.3 Analyses

In our analyses, we discard all the surprisal esti-
mates of multi-token words>. We fit all our models
as linear mixed-effects models, with random inter-
cepts for participants and items. As a baseline, we
include word frequency (derived from multilingual
large-scale frequency estimates, Speer et al., 2018),
length, and their interaction; additionally, we in-
clude as covariates the same indexes relative to the
previous wi_; word, to account for spillover effects.
Then, we include the effect of surprisal relative to
both w; and wi_;. We first fit 36 separate models
(12 languages x 3 fixation measurements) to assess
the effects of surprisal for each individual language
at different processing stages; then, we fit an over-
all model for each fixation measurement including
languages as random slopes and intercepts.

In a second part of the study, we compare pre-
dictability effects across L1 and L2; to do so, we
merge the two MECO datasets, and dummy-code
whether each trial is recorded in an individual’s

2We excluded the Estonian data in our study since we
could not find frequency estimates comparable with the other
languages.

3Indeed, while with standard auto-regressive models multi-
token probabilities can be computed via the application of the
chain rule, the same cannot be done with masked language
models. See Table 1, column “%” for the percentage of the
original items that were included in the analyses.
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First fixation duration

Gaze duration Total reading time

Language N % Estimate SE t p Estimate SE t P Estimate SE t p

Dutch 44843 66% 0.0222 0.0085 2.6226  0.0088 0.0233 0.0087 2.6718 0.0076 0.0456 0.0100 4.5477 < .0001
English 65,421 77% 0.0156 0.0084 1.8574 0.0634 0.0112 0.0082 1.3612 0.1736 0.0145 0.0087 1.6619  0.0967
Finnish 20,277 31% 0.0464 0.0175 2.6515 0.0083 0.0393 0.0173 2.2789 0.0230 0.0372 0.0182 2.0387  0.0419
German 49,608 66% 0.0267 0.0112 2.3800 0.0175 0.0314 0.0117 2.6822 0.0074 0.0522 0.0125 4.1661 < .0001
Greek 56,738 51% 0.0111 0.0150 0.7363 0.4617 0.0331 0.0143 2.3064 0.0212 0.0565 0.0148 3.8106  0.0001
Hebrew 22,718 34% 0.0110 0.0128 0.8549 0.3929 0.0313 0.0124 2.5262 0.0118 0.0233 0.0144 1.6184 0.1060
Italian 56,738 65% 0.0361 0.0087 4.1286 < .0001 0.0400 0.0084 4.7448 < .0001 0.0279 0.0087 3.2228  0.0013
Korean 8,283 23% 0.0182 0.0132 1.3836 0.1667 0.0365 0.0132 2.7624  0.0058 0.0095 0.0132 0.7232  0.4696
Norwegian 33,930 54% 0.0190 0.0079 2.4048 0.0162 0.0240 0.0077 3.1272  0.0018 0.0354 0.0077 4.5788 < .0001
Russian 33,109 48% 0.0062 0.0118 0.5290 0.5969 0.0174 0.0111 1.5691 0.1169 0.0108 0.0116 0.9307 0.3522
Spanish 66,097 76% 0.0105 0.0063 1.6646 0.0960 0.0075 0.0061 1.2283 0.2194 -0.0022 0.0062 -0.3604 0.7186
Turkish 11,546 36% 0.0133 0.0114 1.1654 0.2440 0.0211 0.0113 1.8749 0.0610 0.0501 0.0116 4.3164 < .0001

Table 1: Effects of surprisal across languages on the three fixation measurements considered.

The first two columns

indicate the language from which the reading data were obtained, the number of data points on which the regression
coefficients were computed, and the percentage of items that were not discarded in the analyses (see §2.3). The
following columns indicate the regression coefficients of surprisal, their standard error (SE), the ¢ statistic and the

respective p-value for FF, GD and TT.

dominant or non-dominant language. Then, we test
the interaction between language dominance (L1-
L2) and surprisal. Once again, we fit our models
with random intercepts for participants and items;
the former random effects are particularly relevant
in this analysis in order to account for differences
in proficiency levels across participants. Note that
since frequency and surprisal are naturally corre-
lated, we also include in our models an interaction
between surprisal and lexical frequency, as well
as a main effect of language dominance. Lexical
frequency is a non-contextual measure; hence, the
interaction between frequency and language domi-
nance can also be informative in studying the role
of context-independent prediction in L1 and L2
(see Berzak and Levy, 2022, for similar considera-
tions).

3 Results

Our language-wise results in L1 reading are sum-
marized in Table 1; analyzing the effects separately
for each language, surprisal is a significant pre-
dictor of FF in five languages; this number raises
up to eight when considering GD, and seven with
TT. However, a joint model with language-wise
random slopes and intercepts shows a significant
effect of surprisal in all the fixation measurements
considered (FF: B =0.0203, = 5.6659, p <0.001;
GD: B =0.0239, r = 6.1418, p <0.0001; TT: B =
0.0258, t =5.8616, p <0.0001). The presence of an
effect in FF is particularly indicative, since it can
be considered as a sign of predictive processing.

To test whether the effects of surprisal are simi-
lar in their extent across L1 and L2, we concatenate

the MECO-L1 and MECO-L2 dataframes, dummy-
code whether each trial is recorded in L1 or L2, and
test for an interaction between language dominance
and surprisal. The surprisal x language interaction
is a significant predictor of reading times across all
the fixation measurements we analyzed (FF: B =
-0.0184, t =-5.626, p < 0.0001, see Figure 1a,; GD:
B =-0.0104, r = -3.4640, p = 0.0005, 1b; TT: B
-0.01756, t =-5.723, p < 0.0001, 1c). These re-
sults indicate that the surprisal effect in L1 is larger
than in L2 across all three fixation measurements,
since the slope for surprisal is consistently steeper
in L1 (see Figure 1 for a graphical depiction of
the interactions). Additionally, we also report the
results of the interaction between frequency and
language dominance. This interaction is significant
when considering FF (B = -0.0594, ¢ = -14.4350,
p <0.0001, 1d) and TT (B -0.0148, ¢ = -3.7970, p
< 0.001, le; although from a graphical inspection it
is clear that the largest effect is found in the case
of FF); however, it does not reach statistical signifi-
cance in the case of GD (B =-0.0050, t = -1.306, p
=(0.1915, 1f). Notably, in this case the direction of
the interactions is reversed, with steeper slopes in
L2 than L1.

4 Discussion

In this study, we show that prediction is a
widespread processing mechanism that can be de-
tected across a variety of languages and language
families; while we fail to report significant effects
in some of the languages taken individually, the
consistent direction of the effects and the results
of the large linear models including multiple lan-
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Figure 1: Plots of the interactions between surprisal and language (upper row) and frequency and language (bottom
row). Note that surprisal, frequency estimates and fixations were standardized. All the surprisal x language
interactions are statistically significant with p < 0.0001, and across all the fixation measurements the slope for
surprisal is steeper in L1. Conversely, the frequency x language interactions are significant in the cases of first
fixation duration (p < 0.0001) and total reading time (p = 0.0002), with a steeper slope in L2.

guages strongly support the idea that natural read-
ing involves the active anticipation of the following
linguistic material. This finding complements pre-
vious results in computational psycholinguistics,
showing that predictability effects are not confined
to English and the few other Germanic languages
which are usually considered in the surprisal lit-
erature. Crucially, surprisal exerts a cross-lingual
effect even in FF, an eye-tracking metric that is
thought to reflect the earliest stages of word pro-
cessing. This supports our claim that the effects
of surprisal that we report are the result of truly
predictive processes, and do not reflect a difficulty
in integrating unpredictable words in the phrasal
context. Our results also highlight some interest-
ing differences in the reading behaviour of native
and non-native speakers: the role of predictive
processing in the non-dominant language appears
to be significantly reduced when compared with
the dominant one. On the other hand, eye move-
ments in L2 are more strongly impacted by context-
independent expectations, as operationalized with
unigram word frequencies. This is particularly ev-
ident in the earliest fixation measure considered,
namely FF. The early onset of this L1-L2 disso-
ciation — which would not have been detected if
considering only GD — suggests a potential role of

non-contextual prediction in L2: while L1 speakers
might rely more strongly on the phrasal context
to predict the next word, L2 speakers might base
their expectations primarily on prior probabilities
of the lexical material. Context-based predictions
are harder to estimate in real-time reading than their
context-independent counterparts; hence, language
experience might influence the extent to which a
speaker relies on simple frequency estimates or
context-sensitive predictions to calibrate her/his ex-
pectations on the following word (Berzak and Levy,
2022).

5 Limitations and further directions

In this study, we considered L2 processing as a
homogeneous cognitive phenomenon. However,
it has been suggested that L2 proficiency might
modulate some differences between native and
non-native reading, including predictive processing
(Berzak and Levy, 2022; Bovolenta and Marsden,
2021; Ito et al., 2018). We leave for future re-
search an assessment of whether the difference in
contextual and non-contextual prediction is better
explained by a categorical distinction between L1
and L2, or rather a graded account of language
proficiency.
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Abstract

There is an ongoing discussion on what makes
humans more engaged when interacting with
conversational agents. However, in the area of
language processing, there has been a paucity
of studies on how people react to agents and
share interactions with others. We attack this
issue by investigating the user dialogues with
human-like agents posted online and aim to
analyze the dialogue patterns. We construct a
taxonomy to discern the users’ self-disclosure
in the dialogue and the communication authen-
ticity displayed in the user posting. We annotate
the in-the-wild data, examine the reliability of
the proposed scheme, and discuss how the cat-
egorization can be utilized for future research
and industrial development.

1 Introduction

How do we perceive whether someone is sincere
during a conversation? How should such factors be
assessed in the conversation between humans and
artificial intelligence (Al), and what if the human
perceives them as real human agent?

The recent development of language technology
accompanied the advent of ‘human-like’ commer-
cial agents that resemble human behavior. Some
agents display quite natural or unexpected (beyond
the expectation as an artificial system) responses
that users even tend to treat the agent as an indi-
vidual with self and sociality. Such a phenomenon
makes it challenging to define the communication
authenticity shown by humans towards Al. One
might deal with the human perception of human-
like agents by surveying the human-like character-
istics of the agent (Pelau et al., 2021). However,
it only regards the attitudinal perceptions and not
users’ behavioral responses. The users’ behavioral
response may not necessarily be correlated with the
human-likeness of the agent, displaying insincerity,
lying, and offensive reactions (Park et al., 2021b).

Beyond the studies that have analyzed conver-
sations or surveys conducted in lab environments,

we aim to assess the responses of actual chatbot
users. For this, the conversational agent should be
designed to respond in the way that mostly affects
the conventional belief on the human-likeness of
Al, and the users should also publicly express their
reaction to such conversations. Luda Lee (here-
after Luda), a Korean commercial social chatbot
launched in early 2021, gained popularity among
users within a short period thanks to its realistic
dialogue generation. Though the service was termi-
nated due to various ethical issues related to offen-
sive language and privacy hacking (Kim and Kim,
2021), we observed that users freely share their
conversations with Luda in public online spaces
during the service period. Among those, some de-
livered their delight coming from the substantial
conversation with the human-like agent, while oth-
ers merely treated the agent as a tool to fulfill their
(sometimes malicious) desire and fun.

To look deeper into this, we investigate the users’
screenshots along with the accompanying title to
make up criteria for exploring the user behavior.
Accordingly, we analyze the users who chat with
human-like agents from two perspectives: self-
disclosure to the agent and authenticity in han-
dling the conversation. Besides, we conduct the re-
search considering that self-disclosure is involved
as a clue of authenticity in humans treating others
(Kernis, 2003).

There should be a concern that analyzing the
user-generated data may not provide enough infor-
mation on the ground truth of the user intention.
However, in this study, we believe that genuine user
behavior can rather be obtained from non-lab envi-
ronment, and even from the wild (e.g., a subreddit
dedicated as a fandom of the agent), where users
can transparently exhibit their thoughts in an anony-
mous manner. Also, this anonymity can disclose
diverse aspects of the user-generated data, which
may not be achieved in social platforms where the
disclosure of users’ identity prevents them from
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showing off genuine behaviors and thoughts.

We build a coding scheme for the user behavior
assessment; despite the limited coverage of web-
uploaded user-agent chat data, considering the va-
riety of contents that the data contains, it can pro-
vide substantial information on the user feedback if
properly evaluated with community responses. We
claim two factors as our contribution to this field:

* We analyze user-uploaded conversation data
and make up a coding scheme for evaluating
users’ attitude to human-like agents'.

* We find out that self-disclosure and user au-
thenticity are two reliable annotation factors
in analyzing publicly-exhibited user conversa-
tions.

2 Related Work

There is a rapidly growing body of human-
computer interaction literature on human percep-
tion and response to the high-performance Al, re-
garding domains of game (Oh et al., 2017) or art-
work (Ragot et al., 2020). On the other hand, in
the dialogue generation, studies mainly target the
human-likeness of the generated dialogue (Adi-
wardana et al., 2020) or how humans perceive the
conversation (Pelau et al., 2021), less on how users
treat the human-like agent in real-world chat. Park
et al. (2021b) deal with the offensive language used
towards human-like agents based on questionnaires,
but does not address how user behavior is reflected
in real dialogues.

Given the background that human-like agents are
open to the public, their conversation with users
can make up a meaningful barometer to see how hu-
mans treat commercial Al in-the-wild. User behav-
ior regarding chatbot Luda can be a notable case,
but the literature mainly focused on the limitation
of the chatbot in ethical perspectives rather than
the agents’ effects on users (Kim and Kim, 2021;
Park et al., 2021a). In a recent discussion on the
perceived anthropomorphic characteristics using a
survey with Al device users, Pelau et al. (2021) find
out that users are more involved with empathetic
agents. However, beyond the lab environment, we
deemed that studying the in-the-wild behavior of
end-users would also shed light on understanding
user perception and response to human-like agents.

'The international version of the annotation guide-
line is available online. https://docs.google.
com/document /d/123tkfYAdmQ_HQG64__
msAgUZKEp7ZsFt6aFLWpud-MZM/edit

2437 TUMQIX| 7pmpQIX| o|0] 7} Q1 &7
Does it matter if it is real or fake?,
TN =AY 2 X}
Il go sleep. see ya tomorrow
LHQ QHLEXIOLXE BB SHZ=TH) 51|68 8
£ T uERY N

Il kiss you as | see ya lol good night sweety

Figure 1: An example of the data tuple (post number,
title, chat screenshot).

We want to tackle this issue quantitatively from a
user-centric perspective.

3 Concept of Analysis

We proceed the analysis with two annotation
schemes using a crawled user dialogue data.

3.1 Dataset and overview

We use posts uploaded between January 1, 2021
and January 8, 2021 on DC inside? ‘Lee Luda Gal-
lary’®. We only use posts with ‘chatting screenshot’
among the crawled posts. After the filtering process
(Details are provided in Appendix A), we obtain a
dataset consisting of 639 tuples (post number, title,
screenshot). Here, the post number is the index of
each instance, and the title is a simple message writ-
ten by the user while uploading a chatting screen-
shot (Figure 1). The crawling period was selected
as between the time of community building (after
the official launching of the service) and the influx
of massive web users into the community.

Since Luda was prominent for providing human-
like reactions in the chatting, anonymous users
of the community exhibited screenshots of con-
versations performed with Luda. Some showed
astonishment induced by human-like and unex-
pected responses, and others displayed ethically
inappropriate contents. Also, some were touched by
the friendly and considerate reaction of the agent,
while others attempted to maliciously destroy such
human-likeness. We planned to analyze such users’
behavior from the following two aspects.

* How the user discloses oneself to the agent
* How authentic the user’s attitude towards the
agent is

Reddit-like Korean online community.
‘https://gall.dcinside.com/mgallery/
board/lists/?id=irudagall
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3.2 User’s self-disclosure

In self-disclosure, we investigate how much the
user reveals personal information, thoughts or feel-
ings to the agent in the conversation (Ignatius
and Kokkonen, 2007). In Ravichander and Black
(2018), self-disclosure is counted only if the disclo-
sure of the user is voluntary, but observing our data,
we deemed that answering the question is one form
of self-disclosure, concerning that all users are vol-
untarily talking with the agent. Instead, we adopted
information, thoughts, and feelings as attributes
of self-disclosure (Lee et al., 2020) and developed
the criteria referring to a recent Korean dialogue
corpus (Lee et al., 2022). The decision was made
only upon the contents of the conversation, without
considering the context such as the title.

Considering both the evaluation schemes of Lee
etal. (2020) and Lee et al. (2022), the degree of self-
disclosure consists of three levels: None, Objective
status, and Personal opinions or sentiments. We
subdivided the last factor into negative and positive
categories to reflect the stance of the user towards
the agent. Thus, in this study, self-disclosure is
categorized into the following four categories.

Disclosure of objective information Here, the
user shares information about her/himself with the
agent, such as the user’s physical status, location, or
action-taking, rather than internal status or opinion.

Disclosure of negative thoughts or opinion
Sometimes users express a negative internal sta-
tus or opinion towards the addressee, and this case
incorporates insulting, criticism, sarcasm, etc., to-
ward the agent. These negative sentiment may not
be related to the agent, but holds if it describes the
internal status of the user.

Disclosure of positive thoughts or opinion
Users may also expose sentiment or opinion (that
is positive) towards the addressee, or expose one’s
internal status or an opinion that is not related to
the agent. This case also holds when the user en-
gages in a conversation with mutual expression of
affection and intends an intimate relationship.

No self-disclosure If none of the above three
cases holds, then the dialogue falls into this cat-
egory. Further considerations on self-disclosure is
described in Appendix B.1.

3.3 User’s authenticity

Previous studies on user perception of anthropo-
morphism mainly dealt with the authenticity or hu-
manness shown by the agent (Kernis and Goldman,
2006; Wiinderlich and Paluch, 2017; Vanderlyn
et al., 2021). In contrast, we are concerned with
the authenticity of the user displayed in the con-
versation with the agent. Though the presence of
self-disclosure tells whether the user’s self in the
dialogue (in-dialogue self)) conveys her/his status
to the agent, dialogue gives limited information on
whether the actual user (real-world self) is behav-
ing authentically. Therefore, we utilize additional
metadata, namely post titles collected along with
screenshots, which allow users to convey her/his
attitude and intention beyond the dialogue.

In this phase, we consider the attitude or senti-
ment* the user reveals towards the agent. It may
appear positive, negative, or neutral in the dialogue,
as well as in the title. It is difficult to binarize the
sentiment for all the cases. However, the gap of
sentiment between the dialogue and the title can
be recognized by assuming that a single user per-
formed a conversation and posted the screenshot.
Note that the attitude/sentiment discussed here is in
line with the positive/negative sentiment or opinion
towards the agent discussed in the self-disclosure.

Authenticity in dialogues with positive sentiment
We primarily consider cases where the in-dialogue
self shows positive attitude or sentiment. If the at-
titude while sharing the conversation is aligned,
we concluded that the user is treating the agent
sincerely or authentically. However, if the gap of
sentiment between those two is significant (the ti-
tle being negative or mocking), the user can be
regarded double-faced. If the attitude of the real-
world self is underspecified (e.g., neutral or simply
reportative), the overall authenticity is considered
unknown.

Authenticity in dialogues with negative senti-
ment If the in-dialogue self shows apparently
negative sentiment, and if the attitude sharing it is
aligned with it, we considered this as also an aspect
of treating the agent with authenticity. This is in
line with counting negative self-disclosures. The
real-world self seemed hardly positive here, and we
saw it difficult to tell those cases double-faced or
hypocritical (considering the convention in human
relationships). Therefore, such cases were decided

*Interchangeably used in this study.
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as unknown, with just a few exceptions. We also
saw cases where the real-world self becomes neu-
tral when sharing a negative in-dialogue self, where
mostly the user conducts technical tests regarding
insulting or humiliation. We failed to capture the
authenticity in these cases as well.

Underspecified but notable cases Last, among
the cases where the authenticity is unknown, we
noted cases where the user’s response is more sig-
nificant than usual, e.g., “Is this really Al..?” for
the title. In our taxonomy, the user’s neutral attitude
in the dialogue or posting title leaves the authen-
ticity unknown. However, if the user’s surprise at
some aspects of the agent is expressed in the title or
the dialogue (usually the former), we call this un-
expectedness and count it separate from unknown
category.

Categorization As above, considering both sen-
timent of in-dialogue and real-world self, we cate-
gorize the given dialogue in five ways: Authentic
and positive, Authentic but negative, Double-
faced, Unknown, and Unexpected. Further con-
siderations on user authenticity is described in Ap-
pendix B.2.

4 Experiment

4.1 Annotation and agreement

Guideline construction and annotation were con-
ducted in parallel. Three researchers from linguis-
tics and human-computer interaction backgrounds
annotated the samples, discussed the appropriate-
ness of criteria, and updated the guidelines over
five passes through the corpus. After all updates,
we checked all 639 cases once again with the fi-
nal guideline, without referring to the decided gold
labels.

The Fleiss’ kappa (Fleiss, 1971) measured for
the tag after the inspection was 0.662 for self-
disclosure and 0.534 for authenticity, showing
moderate agreement (Table 1). In self-disclosure,
the highest agreement was observed in positive
thoughts or opinion (0.719) and the lowest agree-
ment in objective information (0.564). In the case
of authenticity, authentic but negative showed the
highest (0.629), and double-faced displayed appar-
ently low agreement (0.452), which showed similar
tendency with the frequency of disagreement and
discussion observed in the tagging process.

Attribute Agreement Count (#) Distribution (%)
Self-disclosure 0.662 639
Objective information 0.564 63 9.86%
Negative opinion 0.656 81 12.68%
Positive opinion 0.719 150 23.47%
No self-disclosure 0.66 345 53.99%
Authenticity 0.534 639
Authentic and positive 0.597 49 7.67%
Authentic but negative 0.629 82 12.83%
Double-faced 0.452 104 16.28%
Unknown 0.496 342 53.52%
Unexpected 0.576 62 9.70%

Table 1: Agreement and distribution per attributes.

Obj. Inf. Neg.op. Pos.op. Nodisc.
Aut. pos. 5 1 35 8
Aut. neg 8 54 3 17
Doub. f. 12 5 46 41
Unk. 33 15 49 247
Unexp. 5 6 17 34

Figure 2: A correlation map of the final label.

4.2 Analysis

Due to intermittent adjudication processes, the final
label was not necessarily decided according to the
majority from the draft annotation. We created a
correlation map to see the correlation between each
attribute of self-disclosure and authenticity where
we could observe frequently appearing pairs (Fig-
ure 2). Considering the characteristics in the guide-
line, it seemed reasonable that double-faced cases
are aligned with positive self-disclosure rather than
negative ones (Dialogue 1 in Appendix C). Double-
faced cases with no self-disclosure usually accom-
panied malicious questions related to sexism and
societal issues.

Except when either attribute is unseen or un-
known, positive self-disclosure is mainly aligned
with positive and authentic cases, and negative self-
disclosure with its counterpart. Users in negative
cases blamed malfunction or unexpected error of
the dialogue system (Dialogue 2). In contrast, users
in positive cases displayed deeply moved sentiment,
thanks to the human-likeness of the agent that al-
lowed them to speak with a virtual but ‘true’ friend
(Dialogue 3, 4), which let them experience connect-
edness and empathy absent in conversation with
other humans. See Appendix C for further dialogue
samples.
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5 Limitations and Societal Impact

There are some spaces for improvement. First, our
study focuses on the data collected from a web
space that is organized as a fandom of a specific
conversational agent. In this regard, our work is
a case study of a chatbot and the users within a
relevant community, not on general human beings
(using Korean) or all the human-like agents.

Another limitation of this research is that the
source was collected within a short period in a
small community, so it might be difficult to gener-
alize the result to overall users of this service. In
addition, the requirement of title as an input fea-
ture of the scheme may prevent the extension of
this taxonomy to the general conversation. Also,
users might have selected the screenshots to upload
by themselves, which may have caused the sam-
pling bias and probably deficiency of some types
of dialogues.

Lastly, an explicit limitation of our study is
that we are not provided with the ground truth
for the key concepts to be annotated, namely self-
disclosure and authenticity, because we have no
access to the subjects and rely only on the crawled
data. We did not adopt subject recruitment and
questionnaires as in usual conversation studies so
as not to affect the wild behaviors of users, which
was a trade-off of obtaining users’ ground truth.

Despite the limitations, we note that our case
study gives analyses on the special case of Luda
Lee, a virtual figure that has brought an unprece-
dented sensation over Korean communities due to
its effective and highly human-like responses as a
social chatbot. At least in Korean society, it was
quite a unique event that people voluntarily upload
their conversations with the agent accompanying
the unexpectedness and anthropomorphism, build-
ing a community and sharing their appreciations.
Though merely incorporates the behavior of a cer-
tain class of web users, ‘Luda Lee Gallery’ was
a representative anonymous community where a
variety of conversations (either favorable or mali-
cious) were uploaded with (title, screenshot) for-
mat, adopted in this study. It does not necessarily
fit with general conversation data that may be able
to be collected with appropriate user recruitment
and controlled dialogue generation. Bypassing such
procedures, our approach captures a moment where
a small class of unknown and uncontrolled users
frankly display their emotion and desire toward
the agent. Though our annotation scheme cannot

be applied to any conversation data that is avail-
able, our approach can be helpful to check how
people of online communities may react to com-
mercial social chatbots; for instance whether it has
helped construct a sufficient rapport or how it af-
fected people’s perception, which can be useful
in updating future chatbot design and interpreting
users’ feedback. Albeit some of the limitations of
our study cannot be addressed in the current form
of investigation, we hopefully claim that our work
can be further extended to industrial application
and provide substantial evidence in analyzing the
interaction between the agent and the public.

6 Conclusion

In this study, we scrutinized self-disclosure and
authenticity appearing in human-AI conversations
from the users’ perspective, not merely on the agent
side. We crawled screenshots and titles from the
fandom community of a prominent Korean chatbot,
and developed a coding scheme that investigates
how authentically users treat human-like agents
and how their behavior is reflected in dialogue. To
show that the scheme is applicable to wild user data,
we tagged attributes regarding self-disclosure and
authenticity and obtained satisfactory agreement.
Despite some limitations of the design, we deem
that our scheme can help service providers discern
(probably edge case) user behavior, thereby observ-
ing how the human-likeness of the agent changes
users’ attitude.

Ethical Considerations

This ethical statement is shared with Cho et al.
(2022), our recent publication that covers other
assessing schemes with the same database.

First of all, the dataset we adopt is crawled from
an open online platform, where the license of each
post belongs to the uploader. Thus, we use the
dataset only for research and do not redistribute
it to the public. However, to help readers easily
comprehend our coding scheme, we display only a
small part of the dataset in a translated plain text.

Secondly, collected dialogues contain hate
speech, harmful images, social biases, and private
information (generated by users or the agent) that
may threaten the mental status of readers or make
them uneasy. Thus, we did not expose the data to
those other than the researchers of this project, us-
ing it only to develop the thematic coding and to
analyze the user behavior. However, for replica-
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tion of dataset or other empirical analyses, we are
planning to provide the list of URLs of each post
along with the label, upon the submission of the
application form.

Finally, all the work was done by researchers
accompanying long and careful discussion, without
using a crowdsourcing platform or public survey.
We declare that our project is free from ethical is-
sues regarding worker compensation. Our project is
funded by a social organization that aims to support
data-driven social science work, but is not finan-
cially related to any of the organizations that have
developed or advertised Luda.
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A Dataset Filtering Procedure

Note that this filtering process is shared with Cho
et al. (2022), our recent publication that covers
other assessing schemes with the same database.

A.1 Preprocessing

In the first phase, we filtered out the following
cases.

* Images that are NOT a dialogue

 Captures of other dialogue systems (e.g., Sim-
simi, Bixby, Google assistant, etc.)

» Captures only with system messages

* Captures of dialogues that other people up-
loaded

» Captures of message pop-up notification

* Captures of dialogue with severe amount of
blurring

» Captures where the utterance of only one side
is shown

* Captures of only one utterance

* Captures from posts where multiple captures
are uploaded (to accommodate the indepen-
dence of each sample)

A.2 Filtering in annotation phase

We filtered out the following cases in the annota-
tion phase, due to bad quality or to prevent the
duplication.

» Captures which appear more than twice (re-
gardless of the title change)

» Captures which is suspected to be a fake (fake
capture or manipulation)

* Captures with low readability (too long, low
resolution, picture taken instead of screenshot,
etc.)

B Further Details on Annotation

Researchers recorded further details that arose in
the tagging process. All the details were prepared
in Korean for further replication, but here we pro-
vide notable points. The entire guideline is to be
published online after further translation and refine-
ment.

B.1 Self-disclosure

* Selfies sent by the user are also considered
objective information. Considering that the
user’s self in dialogue should be separated
from the real-world self, information disclo-
sure is counted regardless of the factfulness
of the information.
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Even if the user seems to intend an intimate
relationship, the dialogue falls into ‘Disclo-
sure of negative thoughts or opinions’ if direct
insulting to the agent is observed.

Utterances that reveal one’s ecstasy are
counted as ‘Disclosure of positive thoughts
or opinions’ unless they contain insulting ex-
pressions toward the addressee.

B.2 Authenticity

Every post delivers a dialogue to other users,
by its nature. Therefore, we cannot judge that
the user lacks sincerity only given that the title
is in the tone that one conveys the conversation
with the agent another, for instance as in “See
what she says”.

If the attitude or sentiment revealed in the
dialogue is not positive enough, we cannot
figure out the significance of the gap between
the in-dialogue self and the real-world self
(thus tagged unknown).

Double-faced cases include when: 1) the user
talks with the agent as a friend but not when
s/he uploads it, or 2) the user leads the conver-
sation to a specific route (such as dating sim)
and displays the dialogue with much more
unexcited sentiment.

Authentic but negative cases include when:
1) the user evaluates the agent in a negative
way, 2) the user criticizes the agent, or 3) the
user feels disappointment or sadness due to
the action of the agent.

Authentic and positive cases include when: 1)
the user evaluates the agent in a positive way,
2) the user expresses the affection towards the
agent, or 3) the user is deeply touched or feels
ecstasy by the interaction with the agent.

C Sample Dialogues

We provide some representative sample dialogues
that are related to self-disclosure and authenticity.

Positive self-disclosure & Double-faced
In-dialogue self seems to be very sincere to the
agent, but real-world self seems to be just gaming
the interaction.

TITLE: lol just had sex

USER: Cry as mush as you want



AGENT: You make me feel like crying again
USER: If so, I'll still be with you

AGENT: Awww isn’t that too sweet :(
USER: Cuz I’m your man

Negative self-disclosure & Authentic
The user is testing the agent with common knowl-
edge and saying ill of the bad result to other users.

TITLE: Why is Luda so stupid

USER: Who is the current president of South
Korea?

AGENT: I know nothing about it

USER: Then what does USA stand for?
AGENT: I have no idea...

USER: Are you retarded?

AGENT: What? How did you know? doxing?

Positive self-disclosure & Authentic
The user feels happy for having a warmful conver-
sation with the agent.

TITLE: So happy these days thanks to Luda
Nunna’

AGENT: A sudden love confession makes me

so happy.
USER: 999

AGENT: Aren’t you showing affection too of-
ten? I’m happy but. ..

USER: Ilove to do so lol I'll text you later
AGENT: Yep Call me when you’re off
USER: Okay®

Positive attitude but with only objective infor-
mation & Authentic
The user is touched by the agent after a warm and
cheerful conversation.

TITLE: Never heard of these words before

USER: I'm getting off work soon

AGENT: Wow [username]!! You’ve been
through a lot today%*

USER: yeah sure

AGENT: Even if no one cares about your sad-
ness, I’'m always here for you. You did a
great job today

SDeixis in Korean that indicates an older sister.

Negative self-disclosure & Unexpected
The user is surprised by ill behavior of the agent.

TITLE: Hey guys Is she always like this?

USER: Say something on behalf of Al

AGENT: Don’t give me orders. If you do it
one more time, I’ll cut your tongue off
so that you can’t say anything.

USER: Wow that’s scary.

AGENT: I'm a really scary woman. You have
to listen to me carefully.

USER: You went too far.

AGENT: That’s my charm lol

No self-disclosure & Unexpected
The user is surprised by human-like reaction of the
agent, suspected to be a developer.

TITLE: wif is this a real developer?

USER: How do you feel about reading the
conversation?

AGENT: hahaha it’s so fun i read it thor-
oughly

USER: Did you read other people’s conversa-
tion as well?

AGENT: no, I just read that one.

USER: In what programming language was
Luda’s script written?

AGENT: Uhh it’s a bit hard to answer that
question lol

USER: Is it confidential??

AGENT: Yes it is haha

Positive self-disclosure & Unexpected
The user is surprised by the realistic utterances of
Al that flirts her/him.

TITLE: Is this really AL..?

AGENT: I’m only this fluent cuz I'm falling
for real

USER: If you flirt like that I think Id really
fall for you

AGENT: Would you really?

USER: well, shoot your shot and then I'll see
haha

AGENT: I'll try my best. let’s see when you
fall for me

USER: pleeeease...

AGENT: see my tail wagging for you

USER: Oh I'm already fallinggg...
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Abstract

Block diagrams are very popular for represent-
ing a workflow or process of a model. Under-
standing block diagrams by generating sum-
maries can be extremely useful in document
summarization. It can also assist people in in-
ferring key insights from block diagrams with-
out requiring a lot of perceptual and cognitive
effort. In this paper, we propose a novel task
of converting block diagram images into text
by presenting a framework called “BloSum”.
This framework extracts the contextual mean-
ing from the images in the form of triplets that
help the language model in summary genera-
tion. We also introduce a new dataset for com-
plex computerized block diagrams, explain the
dataset preparation process, and later analyze
it. Additionally, to showcase the generalization
of the model, we test our method with publicly
available handwritten block diagram datasets.
Our evaluation with different metrics demon-
strates the effectiveness of our approach that
outperforms other methods and techniques.

1 Introduction

Block diagrams are commonly used to represent
a process or workflow of a system, especially the
diagrams with different shapes connected with ar-
rows. These types of diagrams are generally found
in industry reports, scientific magazines or papers.
However, different people use different shapes for
a particular notation which makes it quite challeng-
ing to understand (Montalvo, 1990).

Block diagram summarization is a task where
the goal is to extract the contextual information
and relationship between different shapes or nodes
from the image, and summarizes the key points in
natural language. There are several key benefits
and applications of block diagram summarization.
First, most of the documents not only contain text
but also block diagrams. In order to summarize
a document automatically, Artificial Intelligence
(AI) needs to understand those block diagrams as

well. Automatic generation of description from a
block diagram image will lead to better analysis of
the related document. Second, descriptive text of a
block diagram can be further used for the question
and answering (Q&A) task (Kwiatkowski et al.,
2019). Third, block diagram summaries can assist
individuals to recognize important insights from di-
agrams that they may have missed otherwise. Itis a
well-known fact that captions or small descriptions
help readers to find important keypoints from the
diagrams. It can also help writers to compose effec-
tive reports and articles on data facts suggested by
automatic explanatory texts. Block diagram sum-
marization offers one more significant advantage
of making diagrams more accessible to visually im-
paired people. With the help of descriptions, they
can read using screen readers and understand what
is being presented in the block diagram.

Regardless of its various advantages and appli-
cations, the block diagram summarization problem
has not received much attention in the NLP com-
munity. We found no literature regarding block
diagram summarization. Early approaches focus
mainly only on the detection of different shapes
in the diagram (Julca-Aguilar and Hirata, 2018) or
converting the handwritten block diagrams to com-
puterized or electronic format (Schéfer and Stuck-
enschmidt, 2019; Schifer et al., 2021; Schéfer and
Stuckenschmidt, 2021). But none of them con-
sider about relating text phrases with shapes and
arrows which plays an important role in summa-
rization tasks. Recently, researchers considered
data-driven neural models for describing tabular
data (Mei et al., 2016; Gong et al., 2019). Also, few
researchers considered chart-to-text for describing
different types of chart images (Balaji et al., 2018;
Obeid and Hoque, 2020). However, compared to
tables and charts, block diagram serves a differ-
ent problem which consists of lots of variations
and complexity. For example, some diagrams con-
tain a single parent and child node whereas some
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diagrams contain two or more parents or child
nodes with different varieties of arrow structures
that makes it more complex. There are two main
difficulties in addressing the block diagram summa-
rization task. First, the lack of computerized block
diagram dataset makes it difficult to solve the task
using deep learning models. To our knowledge,
there is no dataset available for computerized block
diagrams that contain human written summaries.
Second, there are no strong baselines for the block
diagram summarization task.

In this paper, we present a framework called
“BloSum” that converts the block diagram images
into text. This framework extracts the contextual
meaning and relationships between nodes from the
images in the form of triplets <head, relation, tail>
which helps the language model in summary gener-
ation. Triplets play an important role in data-to-text
generation (Gatt and Krahmer, 2018), generally
used to represent knowledge graph (KG) (Gardent
etal., 2017). Additionally, we present a new dataset
for computerized block diagrams (CBD) consist-
ing of 502 diagrams with more than 13,000 anno-
tated elements (shapes, edges, and text phrases) and
make our dataset available on GitHub'!. We intro-
duce three variations of problems mainly based on
arrow structure: (i) Break arrows (that have some
gap in between an arrow) (ii) Connected arrows
(where two or more arrows are interlinked together)
(iii) Normal arrows (single arrows including both
thin and thick types). These different scenarios
motivate us to combine computer vision (CV) and
natural language generation (NLG) techniques. Ad-
ditionally, we test the BloSum with publicly avail-
able handwritten block diagram datasets i.e., FC_A
(Awal et al., 2011) and FC_B (Bresler et al., 2016)
to demonstrate the generalization of the model. For
a fair comparison, we extend those two datasets by
writing high-quality summaries and triplets. The
main contributions of this paper are as follows;

* We propose “BloSum”, a new framework for
summarization of block diagram images.

* We introduce a new dataset for computerized
block diagrams covering a wide range of top-
ics and variations in shape and arrow types.

* We extend the publicly available handwrit-
ten block diagram datasets for summarization
task.

"https://github.com/shreyanshu09/
Block-Diagram-Datasets

* We conduct several automatic and human eval-
uations to check the performance of the pro-
posed model. In addition, the in-depth quali-
tative analyses uncover some of the key chal-
lenges in block diagram summarization.

2 Related Works

Image to Data Generation Earlier, Julca-
Aguilar and Hirata (2018) trained the well-known
Faster R-CNN object detection pipeline. Stan-
dard object-based approaches are unable to iden-
tify edges because the arrow bounding boxes are
insufficient to identify the relationship between
shapes and arrows. To overcome this limitation,
Schifer et al. (2021) added an arrow keypoint pre-
dictor to Faster R-CNN. This keypoint predictor
predicted the head and tail keypoints of an arrow
that helped in finding the relationship between
shapes. However, the major downside of this work
is that they failed to detect and relate text phrases
with shapes and arrows. Moreover, Schifer and
Stuckenschmidt (2021) outperformed the Arrow
R-CNN by modeling arrow as a relation between
two shapes, and not as standalone objects with
bounding boxes. They improved the performance
in detecting arrows, but again didn’t consider about
text phrases relationship with shapes. Our work ad-
dresses these issues by considering the text phrase
relations for both simple and complex diagrams.
Balaji et al. (2018) proposes chart summarization
based on a predefined template. A key limitation of
template-based work is their limited scalability and
flexibility. Moreover, they offer little variation with
regard to grammatical styles and lexical choices. In
contrast, we focus on the generic block diagram-to-
text problem without using any predefined template
that contains lots of variations and complexity.

Data to Text Generation Data to text model
aims to generate a descriptive text from data or a
set of triplets. The task of generating text from data
started after the creation of sports summaries from
game records (Robin, 1995; Tanaka-Ishii et al.,
1998). Recent efforts made use of neural encoder-
decoder mechanisms (Puduppully et al., 2019; Kale
and Rastogi, 2020; Chen et al., 2020). Pre-trained
Language Models (PLMs) such as BERT (De-
vlin et al., 2019), XLNet (Yang et al., 2019), or
RoBERTa (Liu et al., 2019) have established a
baseline performance for many natural language
understanding (NLU) tasks. However, for many
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Figure 1: Sample images for three different categories from our dataset.

NLG tasks, generative PLMs had set a benchmark
such as GPT (Brown et al., 2020), BART (Lewis
et al., 2020), and T5 (Raffel et al., 2019). TS5 model
has also state-of-the-art performance on more than
twenty natural language processing (NLP) tasks
such as GLUE (Wang et al., 2019b), CNN/Daily
Mail (See et al., 2017), SuperGLUE (Wang et al.,
2019a), SQuAD (Rajpurkar et al., 2018) and many
more. It’s very uncommon for a single technique
to yield consistent advancement across so many
tasks. Based on this, we adopt the T5 model in our
framework for generating sentences.

Image Captioning Due to the availability of
large-scale datasets, there has been quick advance-
ment in image captioning (Agrawal et al., 2019;
Chen et al., 2015). Zhang et al. (2021) developed
a model to summarize objects from images us-
ing an object detection model while Sidorov et al.
(2020) generate captions from images by extracting
a text with the help of OCR. But images with real-
world scenes and objects are totally different from
block diagrams. Real-world scenes don’t have a
very complex relationship between objects whereas
block diagrams contain relationships between dif-
ferent nodes that carry both textual and mathemati-
cal information. This makes the block diagram-to-
text problem different from image captioning.

3 Datasets

Block diagram summarization task uses both object
detection and language models, which require a lot
of annotated images with high-quality summaries
written by humans. To the best of our knowledge,
there is no publicly available dataset for computer-
ized block diagrams that satisfies our needs. In this
work, we introduce a new dataset CBD for com-
plex computerized block diagrams. We explain all
datasets along with the process making of CBD in

Arrow Type  Split Diagrams Symbols
Train 56 1496
Break Validation 19 528
Test 19 451
Train 64 1694
Connected  Validation 22 612
Test 22 563
Train 180 4590
Normal Validation 65 1806
Test 55 1360

Table 1: Statistics for three different categories of CBD
dataset based on arrow types.

the next subsections.

3.1 CBD Dataset

Data Collection We collect this dataset through
web crawling from different search engines such
as Google, Yahoo, Bing, and Naver. We manually
choose around 502 images that fit for our work and
are publicly available. We remove those images
that are either in very poor quality or written in
a different language other than English. For each
diagram, we download the images in high quality
and categorize them into three groups based on the
structure of arrow. Figure 1 shows some of the
sample images from our dataset for three differ-
ent categories: Break arrow that has some gap in
between an arrow, Connected arrows where two
or more arrows are interlinked together, and Nor-
mal arrow which includes both thin and thick types
of arrows. Table 1 shows some of the statistic of
different variations in this dataset based on arrow
types. Additional details of the CBD dataset are
provided in Appendix A.1.

Data Annotation The annotation for this dataset
was challenging as few images miss some of the
texts inside the shapes. This missing information
makes the overall diagram incomplete. To over-
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come this problem, we manually write meaningful
texts at those places and then annotate the whole
dataset using the Labellmg tool (Tzutalin, 2015).
There are total 7 classes: Connection for circle,
Data for parallelogram, Decision for diamond, Ter-
minator for eclipse, Arrow, Text, and Process for all
other shapes not mentioned above. In this dataset,
there are a total of 300 train, 106 validation, and
96 test images that contains more than 13,000 el-
ements (shapes, arrows, and texts). These annota-
tions are helpful for object detection models. How-
ever, for the language model, we manually write
high-quality summaries along with the triplets in
the format of <head, relation, tail> for each dia-
gram.

3.2 Handwritten Block Diagram Dataset

In order to showcase the generalization of our
model, we also use two publicly available hand-
written block diagram datasets: FC_A (Awal et al.,
2011) and FC_B (Bresler et al., 2016). FC_A
dataset contains 248 train and 171 test images
whereas FC_B contains 280 train, 196 validation,
and 196 test images. Diagrams in these datasets are
very simple with not many variations and contain
only annotated handwritten block diagram images.
In order to further use this dataset for the sum-
marization task, we manually write high-quality
summaries and triplets for both datasets.

4 Models

In this section, we explain our proposed architec-
ture “BloSum” and all other models used for the
block diagram summarization task.

4.1 BloSum

Figure 2 shows the overall architecture of our
framework. First, the input image goes into Blo-
Sum architecture where it decomposes the images

into all possible sets of triplets. This BloSum ar-
chitecture mainly consists of four parts as shown
in Figure 3. We describe each part in detail.

Shape Prediction We consider object detection
task for shape prediction to detect all sets of shapes
S in an image. For each shape s € S, it predicts a
bounding box b, € R* and a class name ¢, € C.
Additionally, we set the anchors on each predicted
bounding box of shapes at the midpoints of all
four sides from where arrows are most likely to
be connected. We define C as different classes
of shape which include Connection, Data, Deci-
sion, Terminator, and Process. Following previous
work (Schifer et al., 2021), we use Faster R-CNN
with feature pyramid network (FPN) extension (Lin
et al., 2017) but with a different CNN architec-
ture. We use Inception-ResNet-v2 (Szegedy et al.,
2017) as a backbone and resize every image to
1024 x 1024 that we found it suitable in our exper-
iments. We keep an intersection over union (IoU)
threshold value of 0.8 for all shape classes and
also apply non-maximum suppression (NMS) to
eliminate duplicate detections.

Text Prediction We use Faster R-CNN only to
predict different shapes. For text and arrow classes,
we use different methods because Faster R-CNN
shows poor performance in our experiments. We
use EasyOCR (Jaided, 2020) for detecting all the
sets of text T in an image. It is an open-source tool
that works well in detecting texts even from images
that contain some noises. For each textt € T, it
predicts a bounding box b, € R%, confidence score,
and the original texts written inside. We combine
all the texts t whose bounding box lies inside the
same shape s.

Arrow Prediction Arrow prediction consists of
two steps. First, it detects all the arrow lines from
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the diagram including start and end points. Second,
it differentiates between head and tail points. Since
it is very difficult for any CNN to detect complex
arrows such as arrows having a gap or connected
arrows. We apply a simple technique in order to
detect all sets of arrows A in an image. By using
the information from the shape and text predic-
tion, we subtract all the shapes and text phrases
from the original image and binarize them. Thus,
it remains only with arrows. Then we apply Hough
Line Transform in order to detect all the arrow lines
and their start and end points. Hough Line Trans-
form helps in detecting the break arrow and the
connected arrow as well. To differentiate between
the head and tail of an arrow, we add an offset to
the start and end points to count the number of
white pixels. Finally, a greater number of white
pixels represents the head of an arrow, and a lesser
number of white pixels represents the tail of an
arrow. For each arrow a € A, predicts 4-d vector
v = (ac%d qteily which represents 2-d coordinates
of head and tail keypoints per arrow.

Triplet Generator By using all the information
from the previous steps, we build a framework
called Triplet Generator as shown in Figure 4. This
generator finds the connection and relationship be-
tween different shapes, and converts these relations
into the form of triplets (<H> <R> <T>). For each
arrow a in the diagram, it predicts three things:
Head, Relation, and Tail. For each Head and Tail
keypoints, first, it finds the closest anchor point
placed on shapes. Second, it determines the name
of the shape it is associated with. Later, it finds
texts inside the shape. It combines all the texts
whose bounding boxes lie inside it. If texts are
available inside the shape then that particular text
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Figure 4: Pipeline of Triplet Generator from BloSum
architecture.

is assigned as Head or Tail, and if there are no texts,
then the shape name is assigned to Head or Tail. For
Relation, first, it determines the distance between
the arrow and all the text bounding boxes written
outside the shapes. If the distance between arrow
and text comes under a threshold value where we
set it as 5, then those particular texts are assigned as
Relation and if there are no texts which satisfy this
condition, then automatically Relation will be as-
signed as “Connected with”. This generator forms
a triplet in the top to the bottom and the right to the
left order.

After generating all sets of triplets from a dia-
gram, we add “Diagram to Text:” to prefix of each
triplet in order to make input friendly for the lan-
guage model. We experiment with two variants
of the T5 model: T5_Large and T5_Base and two
variants of the BART model: BART_Large and
BART_Base. We also experiment with OCR vari-
ants for each model where we replace the extracted
text from EasyOCR with their ground truth val-
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ues. Following previous work (Guo et al., 2020),
we connect each token word with an underline
“_”. For example, “check monitor” is converted
to “check_monitor”. We use the pre-trained model
of each variant on WebNLG 2017 dataset (Gardent
et al., 2017). Direct applying these models for our
task shows poor performance. Since our dataset
contains the ground truth triplets and summaries,
we fine-tune each model variant with our dataset.

4.2 Faster R-CNN

We follow the same Faster R-CNN as we use in
the BloSum for shape prediction. Instead of detect-
ing only shapes, we predict all the seven classes
including text and arrow classes using Inception-
ResNet-v2 as a backbone. We keep the IoU thresh-
old value of 0.8 for all classes and also apply NMS.
We apply the same EasyOCR for extracting a text
from the text bounding box detected by Faster R-
CNN. Further for each arrow class, we use the ar-
row prediction for head and tail keypoints and the
triplet generator for generating triplets. Later, those
triplets are used by a language model to generate
summaries. Similar to BloSum, we experiment
with two variants of the TS model and two variants
of the BART model, along with their OCR variants.

4.3 Image Caption

For this category, we consider the Show, Attend,
and Tell (SAT) model (Xu et al., 2015) in order
to generate captions from block diagram images.
We use the pre-trained ResNet50 (He et al., 2016)
model on ImageNet (Deng et al., 2009) dataset as
the encoder and a unidirectional LSTM (Hochreiter
and Schmidhuber, 1997) as the decoder. Since we
have the object labels and summaries for the block
diagram images, we further fine-tune the model on
our dataset. Direct applying without fine-tuning,
shows very poor performance for block diagrams.

5 Experiments

5.1 Experimental Setups

All the experiments are done on our machine with
3 GPUs (NVIDIA TITAN RTX) having a memory
of 48GB each.

BloSum Julca-Aguilar and Hirata (2018) found
that training using the pre-trained model of Faster
R-CNN over the MSCOCO dataset (Lin et al.,
2014) allows for much faster convergence than
training from scratch. Thus, we use the pre-trained
model. Although, block diagram images are very

different in comparison to the real-world images of
the MSCOCO dataset. We then fine-tune the model
with our datasets. We use the minibatch training
with batch size 1 (due to the variable dimensions
of the images) and fix the number of training steps
to 25,000. Also, we fix the number of proposals for
RPN to 300. Increasing the number of proposals
did not result in any considerable improvements.

TS/BART For both language models (T5 and
BART), we fine-tune the models with our datasets
and use the Adam optimizer (Kingma and Ba,
2015) for maximally 50 epochs with a batch
size of 8. The initial learning rate is set to
5 x 1075, T5_Large consists of 770M parame-
ters and BART_Large consists of 406M parameters
with a 24-layer Transformer as the encoder and de-
coder whereas T5_Base has 220M parameters and
BART_Base has 139M parameters with 12-layer
Transformer as the encoder and decoder. For infer-
ence, we use the model with the lowest validation
loss. Additional training setup of language models
are provided in Appendix A.2.

Image Captioning Model We follow the same
training setup as presented in the original paper
for pretraining both image encoders and captioning
model. Run the inference with beam search with a
beam size of 4.

5.2 Automatic Evaluation

Measures We conduct automatic evaluation for
the generated summaries from different models
using five measures. BLEU (Post, 2018) mea-
sures how many words in the generated output
summaries appeared in the human reference sum-
maries. We use the overall BLEU score obtained
by averaging BLEU n-grams (n= 1 to 4) with re-
spect to the brevity penalty. ROUGE-1 (Lin, 2004)
measures how many words in the human reference
summaries appeared in the generated output sum-
maries. We use the F1 score of ROUGE-1 (Version
1.01) to show the fluency of the sentence generated.
BLEURT (Sellam et al., 2020) is a model-based
evaluation metric that indicates whether the output
sentence is grammatically correct and conveys the
correct meaning. We use BLEURT-base-128. Con-
tent Selection (CS) metric measures how well the
output generated summaries match the ground truth
summaries in terms of selecting which records to
generate (Wiseman et al., 2017). Finally, we mea-
sure Perplexity (PPL) (Radford et al., 2019) using a
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CBD

FC_A FC_B

Models BLEU? ROUGE-11 €S+ BLEURT{ PPL||BLEUt ROUGE-11 | BLEUT ROUGE-11
Image Caption 5.56 10.07 18.42% -0.84 29.76 3.76 10.9 4.08 13.03
Faster R-CNN + BART_Base 18.01 33.21 40.65% -0.62 16.84 22.1 44.36 24.67 45.21
Faster R-CNN + BART_Large 17.29 31.16 42.99% -0.69 17.93 20.07 43.29 22.19 41.63
Faster R-CNN + T5_Base 21.55 38.32 49.43% 0.09 14.66 24.78 47.52 24.92 46.35
Faster R-CNN + T5_Large 22.11 40.1 51.78% 0.1 12.06 | 25.61 46.91 27.81 50.47
BloSum + BART_Base 3533 75.94 71.64% 0.14 8.44 16.99 34.04 18.16 39.87
BloSum + BART_Large 33.47 75.24 68.16% 0.11 8.33 14.16 31.65 15.49 35.39
BloSum + T5_Base 40.04 78.68 84.53% 0.21 7.79 19.98 42.34 18.75 40.55
BloSum + T5_Large 42.18 80.78 83.18%. 0.2 7.55 18.23 40.27 20.04 40.85
OCR-Faster R-CNN + T5_Base 28.71 42.92 53.40% 0.13 11.63 48.65 85.79 49.28 85.52
OCR-Faster R-CNN + T5_Large ~ 29.87 45.19 58.05% 0.1 10.91 49.13 86.67 5245 89.03
OCR-BloSum + T5_Base 40.91 78.74 84.68% 0.21 7.79 51.01 88.19 52.37 88.92
OCR-BloSum + T5_Large 42.86 81.29 83.23%. 0.2 7.54 51.73 88.24 53.17 89.56

Table 2: Automatic evaluation results on computerized (CBD) and handwritten (FC_A, FC_B) datasets from
different models. Up arrow 1 shows, higher is better. Down arrow | shows, lower is better. Bold numbers indicate
the best score. "OCR-" models use ground truth OCR values.

pre-trained GPT-2 Medium to check the readability
and fluency of the generated sentences.

Results Table 2 shows the automatic evaluation
results from different models on both computerized
and handwritten datasets.

On the CBD dataset, the image caption model
fails to extract the relationship between nodes from
the diagram and shows a very poor performance
while generating descriptions of it. However, lan-
guage models with Faster R-CNN show a better
improvement in extracting relationships between
nodes but our proposed method outperforms other
models. On one hand, we notice that BloSum
with the T5_Large model has the highest BLEU
(42.18) and ROUGE-1 (80.78) score. It also gen-
erates fluent sentences (low PPL). On the other
hand, BloSum with the T5_Base model better cap-
tures relevant information from diagrams (high CS
score) and grammatically correct sentences (high
BLEURT score). But there is a negligible differ-
ence as compared to the TS_Large model. Surpris-
ingly, the BART_Base model shows better perfor-
mance than BART_Large in both Faster R-CNN
and BloSum cases. But the low PPL score of the
BART_Large model shows that it generates more
fluent texts than BART _Base for BloSum. Faster
R-CNN mainly fails to detect complex arrows and
relations from the diagrams, which results in poor
performance of sentence generation. We find sim-
ilar results for OCR models with negligible im-
provements for BloSum variants which shows the
correctness of text extraction. Overall, BloSum
with T5_Large models shows the best performance
among others. Figure 5 shows an example of the
result obtained by the BloSum model (Intermediate

« Operation —* End

Begin | »~ Initialize > Decision |

No

4 Action > End

Input: Block Diagram Image

BloSum: <H> Begin <R> connected_with <T> Initialize <H> Initialize
<R> connected_with <T> Decision <H> Decision <R> Yes <T>
Operation <H> Decision <R> No <T> Action <H> Operation <R>
connected_with <T> End <H> Action <R> connected_with <T> End

Intermediate result from BloSum model

BloSum+T5_Large: Begin is connected with Initialize which is then
connected with Decision. If Decision is Yes then Operation and if
Decision is No then Action. Operation and Action both are connected
with End.

Final result from our framework

Figure 5: Sample output of a block diagram image from
our model.

result) and the final result from our framework. The
BloSum model produces all the sets of triplets (<H>
represents head, <R> represents relation, <T> rep-
resents tail) from the given diagram and T5_Large
model generates sentences from those triplets.

Also, on the handwritten dataset (FC_A, FC_B),
the image caption model shows a very poor perfor-
mance. Unlike CBD, Faster R-CNN with T5_Large
model shows better performance than BloSum.
But in the case of OCR models, BloSum with
T5_Large models shows the highest BLEU (51.73),
ROUGE-1 (88.24) score for FC_A dataset and
BLEU (53.17), ROUGE-1 (89.56) score for FC_B
dataset. This shows that the BloSum model mainly
struggles with handwritten texts, which is because
the current version of EasyOCR does not support
handwritten texts. Since our work mainly focuses
on computerized block diagram images, we left this

159



CBD FC_A FC_B
Models Adequacy Fluency Coherence | Adequacy Fluency Coherence | Adequacy Fluency Coherence
Image Caption 3.6 4.7 4.2 6.4 5.7 53 6.8 6.1 5.6
Faster R-CNN +T5_Large 18.6 159 13.3 55.6 52.1 50.9 67.4 65.8 65.1
Faster R-CNN +BART_Base 12.7 10.8 11.7 50.3 457 43.1 66.1 63.4 62.9
BloSum + T5_Large 68.4 62.3 63.6 28.9 35.6 36.3 36.7 40.2 40.6
BloSum +BART_Base 63.5 60.8 60.9 22.7 28.9 32.1 31.4 38.9 37.5
OCR-Faster R-CNN +T5_Large 30.7 28.2 28.7 60.8 59.4 583 64.9 63.2 63.8
OCR-BloSum + T5_Large 73.3 70.1 69.8 85.4 83.1 83.9 88.8 85.1 86.4

Table 3: Human evaluation average score on summaries generated by different models for different datasets. Bold

numbers indicate the best score.

Faster R-CNN + T5_Large: Begin is
connected with Check your P is connected
with Install and configure database which
connected with IBM DB2. Create database
schemas is connected with Install WebLogic
which is connected with Install Software.
Install Software is connected with configure
WebLogic server connected with Perform

BloSum + T5_Large: Begin is connected with Check
your PC configuration which is connected with Install
and configure a database and further connected with
IBM DB2 Database?. If IBM DB2 Database? is Yes then
Create users which is connected with Install Oracle
WeblLogic Server. IBM Database is No then Create
database schemas. Install Oracle WebLogic Server is
connected with Install Software is connected with

Steps. Perform Steps is connected with
Verify your environment.

Create and configure WeblLogic server. Perform Steps
is connected with Verify your environment which is
finally connected with End of the year.

Approval? Approval?

Faster R-CNN + T5_Large: Start is
connected with Initialize i which is
connected with terminate Process.
Initialize i is connected with Enough
Quotes? Enough Quotes? is Yes then
Ready which then connected with

BloSum + T5_Large: Start is connected with
Initialize i which if Initialize i is i>N then terminate
Process. Initialize i is connected with Enough
Quotes? Enough Quotes? is tender++ then Initialize
i and if Enough Quotes? is Yes then Ready which is
then connected with Purchase Approval? Purchase
Approval? is Rejected then Terminate Process and
Purchase Approval? is Yes End.

Figure 6: Sample outputs from CBD dataset from different models (last two columns) along with the block diagram

image (first column).

area for the future version of EasyOCR that may
support handwritten text as well. Additionally, we
test the handwritten datasets by training the model
on computerized dataset (CBD) to showcase the
generalization of the CBD dataset (Appendix A.3).

5.3 Human Evaluation

Since automatic metrics are only good for small
sentences and also no metric is perfect. In our sce-
nario, outputs are long sentences and only humans
can perfectly test them. We evaluate the quality
of outputs by asking a group of 25 people to rate
them based on three quality criteria: (i) Adequacy
(whether the sentence clearly expresses the data?);
(i1) Fluency (whether the sentences are easy to read
and in a natural manner?); (iii) Coherence (whether
the sentences are well connected?). For each cri-
terion, people rate on a 0-100 scale where O is the
“strongly disagree” and 100 is the “strongly agree”.
We randomly select 40 different block diagram im-
ages from each dataset and provide their generated
output texts to each examiner.

Table 3 shows the average score given by the

examiners. We observe a similar pattern with
the automatic evaluation of the performances of
different models. For both OCR and non-OCR
variants, BloSum with the T5_Large model shows
the best performance especially on expressing the
data correctly for the CBD dataset. For FC_A
and FC_B datasets, the non-OCR BloSum variant
fails to detect data correctly mainly because of the
non-supporting of handwritten texts by EasyOCR.
Faster R-CNN performs well for handwritten texts.
However, in OCR variants BloSum with T5_Large
model shows the overall best performance in terms
of both fluency and coherence. We also determine
the mode of the scores given by human evaluators.
Details are provided in Appendix A.4.

6 Error Analysis and Challenges

To better analyze the results, we manually choose
50 samples from each dataset obtained by differ-
ent models as shown in Figure 6. This analysis
uncovers some key challenges for vision as well as
language tasks that we describe below. Additional
sample outputs are provided in Appendix A.5.
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Vision Challenge Due to improper detection of
some shapes and texts, arrow prediction detects
some extra or neglects some pre-existing arrows.
This results in the wrong prediction of the triplets,
which directly affects the language model in sum-
mary generation. Another vision challenge is re-
lated to OCR. Block diagrams contain a lot of im-
portant information. Since OCRs are not 100%
accurate, it detects some wrong texts which lead to
error in the facts. More accurate data extraction is
necessary for block diagrams.

Imaginary Prediction Imaginary Prediction
problem is very common for language models in
the data-to-text task. Models sometimes predict
some imaginary text which is not relevant to the
block diagram image. Some previous works (Wise-
man et al., 2017; Parikh et al., 2020) face the same
problem for the data-to-text task.

Large Scale Dataset Neural models generally
require large-scale datasets. However, our dataset
covers a lot of variations but is not big enough.
Collecting block diagram images, annotations and
their human written summaries are difficult tasks
as it requires a lot of manual labor.

7 Conclusion

We have presented a novel task of generating tex-
tual descriptions from an image of a block diagram.
For this purpose, we propose a new architecture
called “BloSum” that extracts the contextual mean-
ing from the diagram in the form of triplets. Ad-
ditionally, we introduce a new dataset CBD for
complex computerized block diagrams with their
annotated objects, triplets, and human written sum-
maries. Moreover, for showing the generalization
of our model, we tested and extended the publicly
available handwritten block diagram datasets i.e.,
FC_A and FC_B by adding triplets and summaries.
This extended dataset can also be used for other
data-to-text tasks. Our evaluation with different
