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Abstract
We propose an approach for comparing cur-
ricula of study programs in higher education.
Pre-trained word embeddings are fine-tuned
in a study program classification task, where
each curriculum is represented by the names
and content of its courses. By combining met-
ric learning with a novel course-guided atten-
tion mechanism, our method obtains more ac-
curate curriculum representations than strong
baselines. Experiments on a new dataset with
curricula of computing programs demonstrate
the intuitive power of our approach via atten-
tion weights, topic modeling, and embeddings
visualizations. We also present a use case
comparing computing curricula from USA and
Latin America to showcase the capabilities
of our improved embeddings representations.
Our code and data are available in https://
github.com/Artcs1/DL_curriculas.

1 Introduction

Several stakeholders in Education compare and as-
sess curricula, such as Governments aiming to im-
prove the competitiveness of their local programs
(Adamson and Morris, 2007), or academics looking
to analyze market offer and suggest new courses
and innovations (Prietch, 2010; de Alburquerque
et al., 2010; Macêdo, 2016). Despite their benefits,
manual comparisons can be time-consuming, and
are prone to biases from human assessors due to
their personal beliefs and perspectives (Kawinti-
ranon et al., 2016). This situation becomes more
challenging when studying curricula related to pro-
grams in computing due to their fast-paced evolu-
tion, which may prevent suitable analysis and eval-
uation by human intervention (Föll and Thiesse,
2021). To aid higher education stakeholders, we
propose a method to automatically compare curric-
ula based on the names and content of their courses,
and test it on study programs in computing.

Previous work has represented curricula using
bag-of-words, and relied on clustering algorithms

to identify groups of commonly-studied topics in
data science (West, 2017), or to find links between
study programs in different countries and across
computing disciplines (Murrugarra-Llerena et al.,
2011). Others have attempted to associate curric-
ula to knowledge areas defined by international
associations, such as ACM or IEEE (Shackelford
et al., 2005), using standard TF-IDF representa-
tions (Kawintiranon et al., 2016) or topic modelling
(Matsuda et al., 2018; Föll and Thiesse, 2021).

In this work, we follow the current trend in NLP
applications and use pre-trained word embeddings,
such as BERT (Devlin et al., 2019), to obtain better
representations of textual curricula. We fine-tune
these embeddings on a computing discipline classi-
fication task, using a newly-collected dataset that
includes study programs from accredited universi-
ties in the USA and Latin America. We introduce
a course-guided attention mechanism that allows
the model to identify which courses are more rele-
vant for each computing discipline, and pair it with
metric learning (Xing et al., 2002) to learn well-
defined groups. Experiments with different types
of pre-trained word embeddings and classification
algorithms, show that our proposed approach gen-
erates an accurate representation of computing cur-
ricula that allows human understanding. We also
show qualitative results via attention weights, topic
modeling, and embedding visualizations. These
results highlight the benefits of our approach for
identifying relevant words for each computing cur-
riculum. Finally, we exploit these embeddings to
visualize how Latin America computing programs
relate to recognized ABET disciplines.

In summary, our main contributions are:
• A novel dataset of US computing curricula

and relevant programs from Latin America .
• An examination of attention, metric learning,

and BERT modules to generate more intuitive
embedding representations.

• An application that compares a computing
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curriculum to international standards.

2 Computing Curricula Dataset

We collected curricula from university study pro-
grams from different countries and categorized
them into five computing disciplines: Computer
Science (CS), Computer Engineering (CE), Infor-
mation Technology (IT), Information Science (IS),
and Software Engineering (SE).

Each curriculum consists of a set of courses in-
cluding their title and course description, as de-
picted in Table 4 in Appendix A.1. The dataset
consists of two sections:

• USA. Contains 296 curricula from US univer-
sities in the top 1000 of the QS rankings from
2021,1which were also accredited by ABET.2

• LATAM. Contains 18 curricula from highly-
ranked universities in Brazil, Colombia, Mex-
ico, and Peru.3 These study programs claim
to correspond to the Computer Science disci-
pline. These curricula were first translated using
Google Translate, and then manually revised by
an author that is fluent in English and Spanish
to resolve inconsistency issues such as mistrans-
lated words, wrong word order, etc.

The USA portion of the dataset is used to train
and evaluate embeddings representation in a com-
puting discipline classification task (Sec. 5), while
the LATAM portion is exploited to analyse the
degree of internationalization of Latin American
study programs in computing (Sec. 7).

2.1 Dataset Statistics

We compute statistics of our dataset such as num-
ber of curricula, and average number of courses
per curriculum category with their standard devi-
ations in Table 1. Also, as a way of visualization,
we create a word cloud of all our dataset using
course titles and their descriptions in Figure 1. We
observe that many courses are introductory and
applied since words such as introduction and appli-
cation are more frequent. On the other hand, core
courses of computing categories cannot be easily
found, which ensures that our dataset is not biased
to a specific class regardless of it being imbalanced.

1https://www.topuniversities.com/
university-rankings/world-university-rankings/
2022

2https://www.abet.org/
3Scored by Google search.

USA LATAM

Career #Curr. Avg. #courses #Curr. Avg. #courses

CS 100 48.38±25.82 18 69.00 ± 18.90
CE 98 53.71±22.10 - -
IT 37 43.10±16.91 - -
IS 34 40.38±15.60 - -
SE 27 46.25±13.62 - -

Total 296 49.67±33.69 18 69.00 ± 18.90

Table 1: Statistics of our dataset. We present number
of curricula and average number of courses per curricu-
lum category and their associated standard deviations.

Figure 1: Word cloud of our dataset.

3 Approach
In order to obtain better representations of textual
curricula, we propose to use pre-trained BERT (De-
vlin et al., 2019) embeddings that have been fine-
tuned in a computing discipline classification task,
using an approach that combines a novel course-
based attention mechanism and metric learning.
Figure 2 shows an overview of our method. Course-
based attention identifies the most and the least
important courses following the intuition of core
and elective courses, while metric learning learns
boundaries to form well-defined groups.

Course-Based Attention. Our course-based at-
tention approach aims to learn the relevance of
each course associated with computing curric-
ula. As shown in Figure 2, it receives a com-
puting curriculum composed of courses and their
Bert embeddings curriculumemb. Then, we
compute attweights for each course. Using these
weights, we calculate a weighted average over the
courses and generate a new curriculum embedding
curriculumemb_avg. Finally, we collapse the gen-
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Figure 2: Our course-based attention approach. It gen-
erates an intuitive representation of curriculums via at-
tention weights and metric learning. Attention high-
lights core courses, while metric learning learns bound-
aries to form well-defined groups. Both components
are crucial to find accurate representations.

erated embedding into 128 features.

Metric Learning. Using these features, we learn
well-defined groups among computing curricula.
We employ metric learning with the following
triplet loss (Schroff et al., 2015), where N is the
number of instances in a batch, α is the triplet
margin with value 0.3,4 and θ denotes the learnt
parameters.

L(c;θ) =
N∑

i=1

[ (cai .c
p
i )

||cai || × ||cpi ||
− (cai .c

n
i )

||cai || × ||cni ||
+α

]
+

Given an anchor curriculum (cai ) and using in-
stances in the same batch, we select curriculums
with the same category as positive annotations (cpi ),
and curricula from different categories as negative
annotations (cni ). Data points were randomly sam-
pled with a batch size of 64 to ensure that every
category is present in each iteration.

3.1 Implementation Details
We implemented the networks using Py-
torch (Paszke et al., 2019) and the metric learning
library (Musgrave et al., 2020) on a RTX 3060
GPU. We ran each experiment ten times with
different seeds using SGD. From preliminary
experiments, we vary the batch size in the
range [32, 64, 128] and the embedding output
in the range [128, 256, 512]. Then, we select
the best configuration (batch size = 64 and
embedding size = 128) in our validation set.

4 Experimental Setting

4.1 Baselines
We compare two traditional baselines: Majority
and Random; and five traditional methods for ob-

4Default parameter suggested by the metric learning li-
brary.

taining text representations: Topic Modeling using
BERT topic (Grootendorst, 2022), TF-IDF (Sam-
mut and Webb, 2010), Word2vec (Mikolov et al.,
2013), Glove (Pennington et al., 2014), and
BERT (Devlin et al., 2019)5. For Topic Mod-
eling, we select five topics and match them with
our computing careers. Additionally, we fine-tuned
BERT embeddings with our training data in two
ways:

• Bertunsup, unsupervised finetuning using lan-
guage modeling.

• Bertsup, supervised finetuning using labels.

We also consider metric learning competitors:

• Bertmet, supervised metric learning using
BERT .

• Fusionmet+att, supervised metric learning with
attention over Glove, Word2vec and BERT .

4.2 Evaluation Protocol
From the USA dataset, we split the data into train
(60%), validation (20%), and test (20%) in a strati-
fied fashion. We use the train set to learn embed-
ding representations using our proposed approach.
Then, we use those embeddings to train several
machine learning classifiers. To select the best
parameter configuration, each classifier was evalu-
ated on a validation set and the configuration with
the highest F1 was selected for testing. For all
non-pretrained models, we trained them with ten
different seeds and report their average F1.

5 Quantitative Experiments

We aim to validate which approach generates a
more precise representation for classification and
human intuition. Using the newly-computed em-
beddings, we trained four classifiers: K-nearest
neighbour (KNN), Logistic Regression (LR), Lin-
ear Support Vector Machine (LSVM), and Radial
Support Vector Machine (RSVM) with a proper
search range of parameters (detailed in Appendix
A.2.1).

Table 2 shows F1-scores for all classifiers trained
with different types of curricula representations,
with exception of the first three lines. For each ap-
proach, embedding sizes are reported. We observe
thatBertmet+att outperforms, on average, all other
competitors and boosts the RSVM classifier. This

5Course number of words do not exceed the maximum
length token of BERT
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Embedding Type KNN LR LSVM RSVM Avg Emb.size

Majority - - - - 10.00 -
Random - - - - 18.38 -
Topic_Modeling - - - - 39.80 -

TF − IDF 63.10 67.70 63.40 58.00 63.05 20k
Word2vec 55.10 71.00 57.10 55.90 59.77 200
Glove 54.90 73.10 64.80 64.80 64.40 200
Bert 48.50 80.30 75.90 65.90 67.65 768

Bertsup 55.00 78.10 71.40 68.20 68.17 768
Bertunsup 64.20 73.00 69.50 70.10 69.20 768

Bertmet 73.40 72.60 72.10 72.80 72.72 128
Bertmet+att 71.60 75.60 75.70 75.60 74.82 128
Fusionmet+att 72.40 69.60 74.00 75.40 72.85 128

Table 2: F1-score results on the test set of our embed-
dings with KNN, LR, LSVM and RSVM classifiers.
First seven baselines are traditional methods, interme-
diate two baselines are finetuned BERTs, and last three
baselines used metric learning.

suggests that the generated embeddings better dif-
ferentiate computing curricula, and can be helpful
for visualization tasks (See Sec. 6.1). On the other
hand, Fusionmet+att is the second-best performer
and reports competitive results with the KNN and
RSVM classifiers. From pre-trained embeddings,
the best baseline is Bert and presents the best re-
sult in LR and LSVM. The weakest baselines are
Majority,Random and Topic_modeling which
highlight that these approaches are not appropriate
for this task.To conclude, we believe our improved
performance is due to our intuitive embedding via
attention weights and metric learning modules.

6 Qualitative Experiments

6.1 Embedding Visualizations

To understand how meaningful the generated em-
beddings are , we visualize Bert and Bertmet+att

through Umap (McInnes et al., 2018) in Fig. 3.

Bertmet+att separates computing programs
more clearly than Bert. CE and CS show more
well-defined boundaries than in Bert’s Umap, and
overlap is minimized among all categories. We
also observe that IT and IS are close to each other.
A possible explanation is through their shared fi-
nancial and administration courses. On the other
hand, SE seems to be unable to form its own group.
Apparently, it has pieces of all disciplines. We
attribute this finding to the fact that SE is a new
career, less well-established. Finally, we also an-
alyze the attention weights of our best competi-
tor Fusionmet+att in Appendix A.3.4.Bert is the
most important representation, which confirms our
choice of Bert embedding.

6.2 Attention Weights

To verify that our model identifies core courses
per discipline, we extract the attention weights
of each computing course from the Bertmet+att

model. Then, we rank them in decreasing order
and select the top five. We group these selected
courses per computing program and create a word
cloud visualization using course titles.

Figure 4 shows these computed word clouds for
each computing program. We find that words with
a higher number of occurrences are relevant to their
respective category name. We observe that “com-
puter” is common among all computing careers,
but it is more relevant for CS, CE, and SE; while it
has less importance for IT and IS.

CS suggests a strong association to algorithms
and computer; CE to design and computer. IT to
Information Management and System; IS to Princi-
ples and Information Database and SE to Systems
and Programming. All these associations confirm
the identity of each career, and we observe that IT
and IS highlight information-related courses, while
CS, CE, and SE are more technical. For example,
CS focuses on algorithm efficiency, CE specializes
in hardware design, and SE promotes programming
skills in general. The frequencies of each word by
category are in Appendix A.3.2, while a compar-
ative analysis of word frequency with TF-IDF is
shown in Appendix A.3.3. In addition, we selected
the most frequent course titles, and identified top-
ics using (Popa and Rebedea, 2021)6 in Appendix
A.3.1.

7 Application: Internationalization

As a use case, we investigated how LATAM com-
puting careers relate to international standards. We
used Bertmet+att to project unseen CS LATAM
computing curricula and try to relate them to USA
standards in Figure 3 (c) using Umap.

LATAM curricula (in triangles) form two groups:
one near CS, and one surrounding IS and SE. Also,
no LATAM curriculum is close to the CE profile.
From this visualization, we infer that LATAM cur-
ricula are different from the US because none of
them lay inside US groups. Then, we perform
a closer study on individual LATAM countries.
Brazil and Mexico have a clear CS profile. Also,
Mexico seems much more integrated with the US

6https://huggingface.co/cristian-popa/
bart-tl-all
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(a) Bert (b) Bertmet+att (c) Bertmet+att with LATAM countries

Figure 3: Umap visualizations for (a)Bert and (b)Bertmet+att. Bertmet+att embeddings better distinguish each
computing category, while Bert presents some overlaps. (c) Umap visualizations for Bertmet+att with LATAM
countries. Triangles represent LATAM countries. These countries form two groups: one near CS and other near
IT, IS, and SE.

(a) CS (b) CE (c) IT (d) IS (e) SE

Figure 4: Word Clouds from courses of top 5 attention weights obtained with Bertmet+att model on the test set
with (a) Computer Science (CS), (b) Computer Engineering (CE), (c) Information Technology (IT), (d) Information
System (IS), and (e) Software Engineering (SE).

profile. On the other hand, Peru has a mixed pro-
file between CS, SE, and IS; which may suggest
a better definition of courses per career. Finally,
Colombia belongs to SE.

8 Discussion

External validation: LATAM careers are differ-
ent from US ones. To increase reliability of our
results, we could ask career directors from LATAM
Universities for external validation. However, most
of them are busy professionals who may not be
available. As an alternative, we support our results
on previous work. Araujo et al. (2020); Takada et al.
(2020); Sabin et al. (2016); Cuadros-Vargas et al.
(2013) show that most LATAM universities are
different between them (even with similar goals).
They do not follow common standards, with dis-
crepancies in multiple curricula. These differences
do not tend to occur on USA curricula, which ap-
pears to follow international standards.

Reducing subjectivity in curricula comparison.
Our approach helps reduce human bias by allowing
an automatic comparison of a curriculum to interna-
tional standards. Discovering relevant courses via
attention weights is particularly useful. For exam-
ple, Table 3 shows the top-5 most relevant courses,
according to our attention module, from three pro-
grams (two from CS and one from SE). For CS,
we observe overlaps for design of algorithms, data
structures, and computer systems (highlighted in
light gray). In contrast, the overlap with the SE
program is limited to analysis of algorithms.

CS01 CS02 SE01
Algorithms and Complexity

Design and analysis
Design and Analysis of

Algorithms
Design and Analysis of

Algorithms
Data Structures and

Object-Oriented Design
Data Structures Database Modeling

Systems Programming Computer Systems and
Networks

Personal Software Process
Principles and practices

Parallel Systems Introduction
to parallel systems

Computer Network
Security

Individual Software
Design and Development

Introduction to Machine
Learning

Computing Theory Introduction to Database
Systems

Table 3: Top-5 courses from two CS curricula and one
SE curriculum.

Social Implications. Our approach is intended to
serve as a tool that supports stakeholders in Educa-
tion during curriculum design. Completely remov-
ing manual inspection and treating our automatic
comparisons as ground truths could result in cur-
ricula that disregards specific institutional needs.
Instead, we recommend stakeholders to use our al-
gorithm together with other specific components
(e.g. specialization areas, soft skills, culture, etc).
Hence, international standards and regional needs
can be combined, supervised by a human expert.

9 Conclusion
In this paper, we explored an intuitive way to gen-
erate accurate representations for understanding
computing curricula, by combining course-guided
attention and metric learning. Our approach finds
more cohesive groups with clear separations among
them. These groupings are helpful for different ma-
chine learning models. We also analyzed what our
approach learns via attention weights, topic model-
ing, and visualization techniques.
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10 Limitations

Some limitations of our approach include:

Computational power. Due to using BERT (De-
vlin et al., 2019), our model requires a forward
pass of this deep model and GPU infrastructure for
faster prediction.

Inability to associate a core course to a specific
computing career. Our model can identify core
courses in general, however it cannot identify im-
portance per computing career. For example, “Ad-
vanced Algorithms” is more important to a Com-
puter Science curriculum than to Information Sys-
tem. Unfortunately, our model is not able to dis-
tinguish it. In future work, we plan to develop an
attention module per computing career.
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A Appendix

We provide curriculum samples, and additional de-
tails for quantitative and qualitative experiments.
For quantitative, we provide details about param-
eter ranges for model selection. For qualitative
experiments, we provide results on topic modeling,
show counts for attended courses from our atten-
tion module, comparative word cloud analysis with
TF-IDF, and attention weights for the best baseline
competitor.

A.1 Curriculum Sample
Each collected curriculum in our dataset consists of
a set of courses, and each course has an associated
title and description. We depicted an example from
each computing program in Table 4.

A.2 Quantitative experiments
A.2.1 Range parameters for experiments
We mention the employed machine learning models
with their associated parameter selection ranges

below:

• For k-nearest neighbour (KNN), we evaluate
k with values [3,5,7].

• For Logistic Regression (LR),
we evaluate cost C with values
[2−5, 2−3, 2−1, 21, ...., 215].

• For Linear SVM (LSVM), we evaluate cost C
with values [2−5, 2−3, 2−1, 21, ...., 215].

• For Radial SVM (RSVM), we
evaluate cost C with values
[2−5, 2−3, 2−1, 21, ...., 215], and gamma
with values [2−15, 2−13, 2−11, ..., 21, 23].

A.3 Qualitative experiments
A.3.1 Topic modeling
As a complementary way to understand our se-
lected courses, we selected the ten course titles
with highest attention, and input them to BART
topic model (Popa and Rebedea, 2021)7 to name
them.

The named topics are shown in Table 5. CS,
CE, and IT share the word computer highlighting
the importance of computing fundamentals, while
IT and IS share the topics management and in-
formation relating to business knowledge. Also,
programming skills are shared among CS and SE
curriculums.

A.3.2 Counts for attended courses
Figure 6 shows the frequency of the top fifteen
courses per category in decreasing order. We find
the following associations per each computing ca-
reer:

• CS highlights computer, introduction, system,
design, algorithm, programming, and data
courses.

• CE focuses on systems, design, computer, dig-
ital, and embedded.

• IT has relevant terms such as system, manage-
ment, information, web, and programming.

• IS focuses on systems, principles, information,
database, and management.

• SE highlights programming, systems, data,
introduction, C, and software.

7https://huggingface.co/cristian-popa/
bart-tl-all
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Career Course title Description
CS Algorithms and Data Structures Study of data structures and algorithms ...
CE Computer Architecture and Design Principles of RISC-type CPU instruction set and ...
IT Information Technology Security Information technology security from a manager ...
IS Information Systems Applications Concepts and production skills ...
SE Software Engineering Design Techniques and methodologies ...

Table 4: Sample curriculum showing course titles and their description per computing career.

Career Topic
CS computer programming data
CE computer design system
IT management information computer
IS system management information data
SE software programming language

Table 5: Topic identified with each computing cur-
riculm using BART (Popa and Rebedea, 2021) model.

In summary, IT and IS are related to manage-
ment and information knowledge. CE focuses on
hardware concepts such as systems, design, and
digital. Finally, CS and SE focus on software de-
velopment related to programming, data, and algo-
rithm courses.

A.3.3 Word cloud TF-IDF vs Course-guided
attention

We compare word clouds from TF − IDF with
our approach Bertmet+att in Figure 5. We ob-
serve that TF-IDF word clouds are more pollute
with non-related words as opposite to our approach.
Also, some important words such as: programming,
analysis, structure are less predominant for CS in
the TF-IDF word cloud. A extreme case can be
seen in SE, where is hard to identify predominant
words for TF-IDF. In contrast, our approach iden-
tifies important words: Software, programming,
systems, data, etc. For CE, our approach shows
a strong relationship between digital, computer,
design among others than TF-IDF. For IT and IS,
TF-IDF does not show all important words such as:
management, information, and web. Finally, for
all categories, TF-IDF can identify relevant words,
but also present meaningless ones such as course,
student, including, among others.

A.3.4 Attention weights best competitor
We analyze our best competitor Fusionmet+att to
discover interesting knowledge. We extract atten-
tion weights for each embedding representation.
On average, we obtained 0.2149 weight for Glove,
0.0621 for Word2vec, and 0.7230 for Bert. This

finding confirms our election to select Bert em-
bedding in our approach. Also, it is interesting
to see that Glove and Word2vec also have com-
plementary and meaningful knowledge for better
representation. Probably Word2vec and Glove
provide local information to the Bert embedding.
Note, that their attention scores have the same or-
der as their correspondent F1-score (see rows 5 to
7 in Table 2).
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(a) CSBertmet+att (b) CEBertmet+att (c) ITBertmet+att (d) ISBertmet+att (e) SEBertmet+att

(f) CSTF−IDF (g) CETF−IDF (h) ITTF−IDF (i) ISTF−IDF (j) SETF−IDF

Figure 5: Word cloud comparison of Bertmet+att and TF − IDF among five computing careers.

(a) CS (b) CE

(c) IT (d) IS

(e) SE

Figure 6: Top fifteen frequency terms of each category. The X-axis shows the word term from course titles, while
Y-axis shows their frequency. The categories are (a) Computer Science (CS), (b) Computer Engineering (CE), (c)
Information Technology (IT), (d) Information System (IS), and (e) Software Engineering (SE).
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