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Abstract
Previous works show that Pre-trained Language
Models (PLMs) can capture factual knowledge.
However, some analyses reveal that PLMs fail
to perform it robustly, e.g., being sensitive to
the changes of prompts when extracting factual
knowledge. To mitigate this issue, we propose
to let PLMs learn the deterministic relationship
between the remaining context and the masked
content. The deterministic relationship ensures
that the masked factual content can be determin-
istically inferable based on the existing clues
in the context. That would provide more stable
patterns for PLMs to capture factual knowledge
than randomly masking. Two pre-training tasks
are further introduced to motivate PLMs to rely
on the deterministic relationship when filling
masks. Specifically, we use an external Knowl-
edge Base (KB) to identify deterministic rela-
tionships and continuously pre-train PLMs with
the proposed methods. The factual knowledge
probing experiments indicate that the continu-
ously pre-trained PLMs achieve better robust-
ness in factual knowledge capturing. Further
experiments on question-answering datasets
show that trying to learn a deterministic rela-
tionship with the proposed methods can also
help other knowledge-intensive tasks.

1 Introduction

Petroni et al. (2019); Jiang et al. (2020); Shin
et al. (2020); Zhong et al. (2021) show that we can
successfully extract factual knowledge from Pre-
trained Language Models (PLMs) using cloze-style
prompts such as “The director of the film Saving
Private Ryan is [MASK].” Some recent works (Cao
et al., 2021; Pörner et al., 2020) find that the PLMs
may rely on superficial cues to achieve that and can
not respond robustly. Table 1 gives examples of
inconsistent predictions exposed by changing the
surface forms of prompts on the same fact.

This phenomenon questions whether PLMs
can robustly capture factual knowledge through
Masked Language Modeling (MLM) (Devlin et al.,

Cloze-style Prompt and Prediction Is Correct?

War Horse is an American war film di-
rected by Steven Spielberg. ✓

The director of the American war film War
Horse is Keanu Reeves. ✗

Christopher Nolan is the director of the
American war film War Horse. ✗

Table 1: A PLM could gives inconsistent results when
probing the same fact with different prompts. The un-
derlined words are the predictions.

2018) and further intensify us to inspect the masked
contents in the pre-training samples. After review-
ing several masking methods, we find that they fo-
cus on limiting the granularity of masked contents,
e.g., restricting the masked content to be entities
and then randomly masking the entities (Guu et al.,
2020), and pay less attention to checking whether
the obtained MLM samples are appropriate for fac-
tual knowledge capturing. For instance, when we
want PLMs to capture the corresponding factual
knowledge as recovering the masked entities, we
should check whether the remaining context pro-
vides sufficient clues to recover the missing entity.

Inspired by the above analysis, we can categorize
MLM samples based on the relationship between
the remaining context and masked content:

• Non-deterministic samples The clues in the
remaining context are insufficient to constrain
the value of the masked content. Multiple
values are valid to fill in the masks.

• Deterministic samples The remaining con-
text holds deterministic clues for the masked
content. We can get one and only one valid
value for the masked content.

For example, the first cloze in Table 1 masks the
director of the film “War Horse.” Since the film
has only one director in the real world, we can get
a unique answer deterministically. So it is a de-
terministic MLM sample. The crucial clues “War
Horse” and “directed by” have a deterministic rela-
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tionship with the missing entity “Steven Spielberg.”
For brevity, we refer to these clues as determin-
istic clues and the outcome “Steven Spielberg" as
deterministic span. In contrast, if the sample be-
comes “[MASK]s is an American war film directed
by Steven Spielberg,” multiple names can fill the
masks because Steven Spielberg produced more
than one American war film. We cannot tell which
one is better based on the existing clues, so it is a
non-deterministic sample.

The non-deterministic samples establish a multi-
label problem (Zhang and Zhou, 2006) for MLM,
where more than one ground-truth value for out-
puts is associated with a single input. If we enforce
the PLMs to promote one specified ground truth
over others, the other ground truths become false
negatives that could plague the training or cause a
performance downgrade (Durand et al., 2019; Cole
et al., 2021). The non-deterministic samples are
competent for obtaining contextualized representa-
tions but become questionable for understanding
the intrinsic relationship between factual entities.
In contrast, the deterministic samples are less con-
fusing since the answer is always unique, providing
a stable relationship for PLMs to learn.

Therefore, we propose deterministic masking
that always masks and predicts the deterministic
spans in MLM pre-training to improve PLMs’ abil-
ity to capture factual knowledge. The deterministic
clues and spans are identified based on a KB. Two
pre-training tasks, clue contrastive learning and
clue classification, are introduced to make PLMs
more aware of the deterministic clues when pre-
dicting the missing entities. The clue contrastive
learning encourages PLMs to be more confident
in prediction (Vu et al., 2019; Luo et al., 2021)
when the deterministic clues are unmasked. The
clue classification is to detect whether the remain-
ing context contains deterministic clues. The ex-
periments on the factual knowledge probing and
question-answering tasks show the effectiveness of
the proposed methods.

The contributions of this paper are: (1) We pro-
pose to model the deterministic relationship in
MLM samples to improve the robustness (i.e., both
consistency and accuracy) of factual knowledge
capturing. (2) We design two pre-training tasks
to enhance the deterministic relationship between
entities to earn further improvement on robustness.
(3) The experiment results show that learning the
deterministic relationship is also helpful for other

knowledge-intensive tasks, such as question an-
swering.

2 Methods

Section 2.1 expatiates the deterministic masking,
which includes how we align texts with triplets and
identify deterministic clues and spans in texts. The
clue contrastive learning and clue classification are
described in Sections 2.2 and 2.3, respectively.

2.1 Deterministic Masking

In addition to masking only factual content, the de-
terministic masking also constrains the remaining
context and the masked content to have a determin-
istic relationship: the remaining context should pro-
vide conclusive clues to predict the masked content,
and the valid value to fill in the mask is unique.

To this end, we align each text with a KB triplet
and match the spans in the text with (subject, pred-
icate, object) respectively. We select the spans
aligned with objects as the candidates to be masked
for pre-training. To further make the masked object
deterministic, we query the KB with the aligned
(subject, predicate) and check whether the valid
object that exists in KB is unique.

If the KB emits this object exclusively, e.g., only
the aligned object can compose a valid triplet with
the aligned subject and predicate, the object is de-
terministic. The object is non-deterministic if mul-
tiple objects suit the aligned subject and predicate
in the KB. The span aligned with the determin-
istic object is a deterministic span, and it would
be masked to construct a deterministic MLM sam-
ple1. We pre-train PLMs on only the deterministic
samples.

Figure 1 shows a deterministic sample aligned
with the triplet (“War Horse,” “directed by,”
“Steven Spielberg”). When querying KB with “War
Horse” as the subject and “directed by” as the pred-
icate, the result object “Steven Spielberg” is unique
because there is only one director who produced
this film, so the first sample is deterministic. In
contrast, when using “Steven Spielberg” and “di-
recter of ” as the subject and the predicate, multiple
valid objects exist in KB, so the second sample is
non-deterministic and is filtered out.

By dropping the non-deterministic samples, we
prevent PLMs from having a crush on one object
but ignoring others that are also valid based on the

1We put the detailed procedure (includes entity linking and
predicate string matching) in Appendix B.
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Align

Select

Saving Private Ryan

War Horse

 

directed by Steven Spielberg

    Non-deterministic inference

  Deterministic inference  

Knowledge Base

Triplet (subject  , predicate  ,  object) subject predicate object

1. War Horse is an American war film directed by [MASK]s.

2. [MASK]s is an American war film directed by Steven Spielberg.

R 
S  

Pre-training samples:

War Horse is an American war film directed by Steven Spielberg.

Text

Figure 1: Construct a deterministic sample. The spans
with blue background correspond to entities (subject or
object), and the spans with yellow describe relations
(predicate).

existing clues. While in the deterministic samples,
the relationship between the remaining clues and
the missing span is more stable and unambiguous.
Training on the deterministic samples encourages
PLM to infer the missing object based on its deter-
ministic factual clues. It helps PLMs grasp a more
substantial relationship between entities to model
the factual contents and could aid in accomplishing
some knowledge-intensive tasks.

2.2 Clue Contrastive Learning

To stimulate PLMs to catch the deterministic re-
lationship between entities, we design the pre-
training task clue contrastive learning following
this intuition: PLMs should have more confidence
to generate a masked span when its determinis-
tic clues exist in the context, and introduce a con-
trastive objective accordingly. We explain it with a
pair of samples in Figure 2. Figure 2a shows a deter-
ministic MLM sample that masks the span “Steven
Spielberg” and keeps its deterministic clues. Fig-
ure 2b masks both the deterministic clues and the
deterministic span. The remaining context in Fig-
ure 2a contains fewer [MASK]s and provides more
information, naturally reducing the uncertainty in
prediction. So PLMs should assign a higher proba-
bility for the ground truth when giving the context
in Figure 2a than Figure 2b.

Formally, we use S and P to denote the deter-
ministic clues (subject and predicate) and O to
denote the masked deterministic span (object). R
represents the random spans in the context other
than S, P , and O. The objective function that needs

... War Horse is an American war film directed by [MASK]s ...

PLM

: subjectS : predicateP : objectO: random contentR

LM Head Embedding Vectors

ˆ ˆ ˆ ˆ( | , , )P O o S s P p R r   

(a) Deterministic sample: masks the deterministic span (ob-
ject) and keeps the deterministic clues (object and predicate).

... [MASK]s is an American war film  [MASK]s [MASK]s  ...

PLM

LM Head Embedding Vectors

[MASK] [MASK]ˆ ˆ( | , , )P O o S P R r   

(b) Contrastive sample without deterministic clues: masks
both the deterministic clues and the deterministic span.

Figure 2: The two samples in clue contrastive learning.
The first sample (a) has a more informative context,
so PLM should be more confident when predicting the
masked object O. The texts with purple background
denote the spans other than entities and relations.

to be maximized is:

P (O = ô | S = ŝ, P = p̂, R = r̂)

−P (O = ô | S = [MASK], P = [MASK], R = r̂),
(1)

S = [MASK] and P = [MASK] denote replacing
the deterministic clues with [MASK]s. ŝ, p̂, ô and r̂
are the ground-truth values of the S, P , O and R,
respectively. P (O = ô | ·) denotes the probability
that the PLM correctly predicts the masked span O,
i.e., the average probability that the PLM assigns
to the ground-truth tokens. It is calculated by a
Language Model Head (LM Head) based on the
embedding of O from the PLMs.

This task encourages PLMs to give the ground
truth ô a higher probability when the determinis-
tic clues exist in the context. It is somewhat con-
servative since we consider the noise in the data
construction. The objective is still reasonable even
when the S, P , and R are randomly labeled. Raw
words are always more informative than the ordi-
nary [MASK]s and can reduce the uncertainty of
the context (Cover, 1999), so the uncertainty of
prediction degrades accordingly (Vu et al., 2019;
Luo et al., 2021). On the other hand, this objective
trains PLMs to react to the changes in the con-
text, i.e., learning how to tune the output as the
input changes. We employ a large-scale KB as the
approximation of real-world knowledge (Reiter,
1981) to get the pre-training samples.
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2.3 Clue Classification
The clue classification asks PLMs to classify what
kinds of clues exist in the remaining context. After
masking the deterministic span O, we manipulate
the remaining context to generate three samples
that contain different kinds of contexts:
(a) Keep deterministic clues: we only mask the

deterministic span O and leave its determin-
istic clues untorched. It is the same as the
original deterministic MLM sample shown in
Figure 2a.

(b) Mask deterministic clues: we mask O and
its deterministic clues (S and P ). It is the
same as the constructive sample in Figure 2b.

(c) Mask random spans: we mask O and some
random spans R other than the deterministic
clues. An example is shown in Figure 3. The
number of tokens in R is the same as the num-
ber of tokens in the deterministic clues.

PLM

... War Horse [MASK] an [MASK]s directed by [MASK]s ...

Embedding Vectors

[ ][MASK]ˆ ˆPLM( , , )
O

S s P p R  

Figure 3: A sample that masks some random spans R
(with purple background) in the context.

The PLMs that use the Transformer encoder
(Vaswani et al., 2017) as the backbone emit a con-
textualized embedding for each input token. Every
contextualized embedding can encode all the in-
formation in context since all the input tokens are
involved when computing the embedding. So we
encode the clues in the remaining context using the
contextualized embedding of O. Formally, the clue
representations for the above three samples are:

E(a) = PLM(S = ŝ, P = p̂, R = r̂)[O],

E(b) = PLM(S = [MASK], P = [MASK], R = r̂)[O],

E(c) = PLM(S = ŝ, P = p̂, R = [MASK])[O],

E(a), E(b), E(c) ∈ R|O|×d.

(2)

E(a), E(b), and E(c) represent the inputs that (a)
keep deterministic clues S and P , (b) mask de-
terministic clues, and (c) mask random spans R,
respectively. PLM(·) denotes the PLM that can
output the contextualized embedding for each input
token. PLM(·)[O] denotes grabbing the embedding
vectors corresponding to O from the PLM’s output.
Since the three input samples have the same O, the

number of token-level embedding vectors is the
same in E(a), E(b), and E(c).

Each token-level embedding vector e in E(a),
E(b), and E(c) is fed into a three-way classifier:

y = softmax(W⊤e), e ∈ Rd,W ∈ Rd×3. (3)

y is a three-element vector and shows the probabil-
ities that e comes from E(a), E(b) and E(c). W⊤

is the three-way classifier.
The number of masked tokens in samples (a) and

(b) is different since the latter masks the clues addi-
tionally. It may become a shortcut for the proposed
contrastive or classification tasks. So we introduce
sample (c), which has the same number of masks as
sample (b), to eliminate this shortcut. Some exist-
ing pre-training methods (Clark et al., 2019; Xiong
et al., 2019; He et al., 2020) replace original tokens
with fake tokens to build the pseudo samples and
then classify between original and pseudo samples,
while clue classification employs [MASK]s in the re-
placement. We wonder that fake tokens may make
the intervened input tell fake facts conflict with
the real world, leading the PLMs to capture wrong
knowledge from the pseudo samples. [MASK] is a
safer choice here.

3 Experiments

3.1 Pre-training Data
We use Wikipedia2 as the source of texts and
Wikidata3 as the knowledge base. We split the
Wikipedia texts into natural paragraphs and then
align each paragraph with subject-predicate-object
triplets in WikiData. Each aligned object that is de-
terministic based on WikiData is the deterministic
span, and all the subjects and predicates that cor-
respond to the deterministic span are deterministic
clues. The paragraphs with identified deterministic
spans and clues are then used for pre-training.

We first employ the TREX (Elsahar et al., 2018)
that provides the alignments between texts and
triplets to construct a preliminary dataset named
Partial data. About 46.1% of triplets are non-
deterministic and ignored in the partial data. TERX
provides aligned triplets for only the abstract para-
graphs (first paragraph) in Wikipedia. We enlarge
the data size by processing all the paragraphs in
Wikipedia. The detailed process is in Appendix B.
The dataset that involves all the paragraphs is re-
ferred to as Full data. Table 2 shows the statistics

2https://www.wikipedia.org/
3https://www.wikidata.org/
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of the two pre-training datasets. For efficiency rea-
sons, we use the partial data to train the baselines
in the ablation study. The full data is for our final
model.

Partial data Full data

# Paragraphs 3,726,205 17,373,859
# Samples 12,134,717 39,289,518
Avg. tokens per paragraph 166.93 134.61
Avg. # tokens in per S ∪ P 8.53 7.52
Avg. # tokens in per O 3.19 2.99

Table 2: Statistics of the pre-training data.

3.2 Evaluation Tasks and Datasets

We first evaluate the proposed method with cloze-
style QA. Then We adopt two other knowledge-
intensive tasks, closed-book QA and extractive QA,
to evaluate the PLMs’ ability to capture and under-
stand factual knowledge.

3.2.1 Cloze-style QA
Following Elazar et al. (2021); Cao et al. (2021);
Petroni et al. (2019), we use cloze-style questions
to probe the factual knowledge in PLMs. The
PLMs need to recall the captured factual knowl-
edge to fill in the masks. Cloze-style QA uses the
same input-output format as MLM. So we do not
need to fine-tune the PLMs and evaluate the factual
knowledge capture performance directly.

Every cloze-style question is obtained by instan-
tiating a artificial template on a fact. For example,
the question “Keanu Reeves is a citizen of [MASK]”
is constructed based on the template “[X] is a citi-
zen of [Y]” and the triplet (Keanu Reeves, citizen
of, Canada). Filling the mask with the correct to-
ken “Canada” is regarded as successfully capturing
the corresponding fact.

We use the cloze-style questions and evalua-
tion metrics from PARAREL (Elazar et al., 2021).
PARAREL queries every fact with 8.64 different
prompts on average. The prediction consistency is
calculated by putting two different prompts into a
prompt pair first (e.g., n(n− 1)/2 pairs can be ob-
tained from n different prompts). Then the percent-
age of the prompt pairs that can obtain the same
result is used to indicate the consistency quanti-
tatively. The overall factual knowledge capture
performance is measured by jointly considering the
prediction accuracy and consistency. Table 3 shows
the statistics of the data from PARAREL.

We also employ four cloze-style datasets from

Value

# Cloze-style questions 199,446
# Facts (Triplets) 23,097
Avg. # questions per fact 8.64

Table 3: Statistics of the cloze-style QA dataset in
PARAREL (Elazar et al., 2021).

Dataset # Facts

LAMA 29,522
LAMA w/o leakage 25,698

WIKI-UNI 69,761
WIKI-UNI w/o leakage 63,772

Table 4: Statistics of the four cloze-style QA datasets
from (Cao et al., 2021).

(Cao et al., 2021). Table 4 shows the correspond-
ing statistics. LAMA represents the cloze-style
datasets that are similar to (Petroni et al., 2019) in
(Cao et al., 2021). The distribution of the ground-
truth answers in LAMA is imbalanced, provid-
ing a shortcut for PLMs to achieve good perfor-
mance by selecting high-frequency entities as out-
put. Therefore, Cao et al. (2021) proposes the
WIKI-UNI dataset, where the distribution of the
ground-truth answers follows a uniform distribu-
tion. The ground-truth answer has literal overlaps
with the question sometimes. For example, in “New
York University is located in [MASK] city,” the right
answer “New York” exactly leaked in the question.
So Cao et al. (2021) filter out the questions that
overlap with answers and obtain two more datasets
based on LAMA and WIKI-UNI, which are indi-
cated with the suffix “w/o leakage”.

3.2.2 Closed-book QA
We also use the closed-book QA to test the ability
of PLMs to capture factual knowledge. As pro-
posed in (Wang et al., 2021; Roberts et al., 2020;
Lewis et al., 2021), closed-book QA is similar to
the way in which a student is taking a closed-book
exam. The input of the model is the question only,
and the model needs to generate the answer di-
rectly without seeing any other evidence. This task
needs the model to generate arbitrary strings as
answers, so we employ the BART, which has a de-
coder that can generate texts, as the base model
for this task. We use the closed-book QA datasets
from (Karpukhin et al., 2020), as shown in Table 5.

4The WebQuestions in (Karpukhin et al., 2020) does not
have a development set, so we use the test set for both test and
development.
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Dataset Train Set Dev Set Test Set

NaturalQuestions 79,168 8,757 3,610
TriviaQA 78,785 8,837 11,313
WebQuestions 3,778 -4 2,032

Table 5: Statistics of the closed-book QA datasets.

3.2.3 Extractive QA
The extractive QA is also known as machine read-
ing comprehension (Liu et al., 2019a). The task is
to search and extract the answer span from the in-
put passage for the input question. It evaluates the
ability of PLMs to understand the facts provided in
passages. We employ the six extractive QA datasets
from MRQA (Fisch et al., 2019), Table 6 presents
the summary of the datasets. Following the setting
in (Ram et al., 2021a), we use the development sets
for testing.

Dataset Train Set Test Set

SQuAD 86,588 10,507
NewsQA 74,160 4,212
TriviaQA 61,688 7,785
SearchQA 117,384 16,980
HotpotQA 72,928 5,904
NatrualQuestions 104,071 12,836

Total 620,890 71,060

Table 6: Summary of the extractive QA datasets.

3.3 Results

3.3.1 Baselines
We continuously pre-train RoBERTa-base (Liu
et al., 2019b) and BART-base (Lewis et al., 2020)
from their official checkpoints with different mask-
ing methods:

• Random token: Mask random tokens in the
tokenized text (Devlin et al., 2018).

• Whole word: Mask random words. All the
tokens in the randomly selected words are
masked at once (Cui et al., 2019).

• Salient span: Mask a span aligned with the
subject or object, both deterministic and non-
deterministic samples are included. (Guu
et al., 2020).

• Deterministic: The proposed deterministic
masking that masks a deterministic object, in-
cluding only deterministic samples.

The above four models are trained with the mask-
filling task only. The models pre-trained with clue
contrastive learning and clue classification in com-

pany with deterministic masking are denoted as “+
Con & Cls.” To further explore the potential of the
proposed methods, we train the model on the full
data with all the proposed methods, denoted as “+
Full data”. We also introduce KEPLER-base as
KB-enhanced baseline for comparison.

3.3.2 Cloze-style QA
Masking strategies Tables 7 and 8 present the
results on cloze-style QA. We can see that random
token masking can gain some improvements in
performance, as well as the whole word masking.
We think this is because the input texts, which come
from Wikipedia, are formal descriptions of facts.
Training on such texts helps shift the domain of
PLMs for better generating factual words. The
random token and whole word masking serve as
solid baselines to focus the comparison between
masking strategies, eliminating the confounders
brought by extra pre-training on Wikipedia.

The salient span masking and deterministic
masking both mask entity spans. The difference
is that deterministic masking further limits the re-
lationship between the remaining context and the
masked span to be deterministic, driving PLMs to
learn to infer based on the deterministic clues. The
results show that the PLMs can achieve much bet-
ter results with deterministic masking, indicating
that the deterministic relationship is valuable for
recovering factual spans robustly.
The proposed pre-training tasks The clue con-
trastive learning and the clue classification, which
aim to strengthen the deterministic relationship,
also provide further performance improvements
(denoted as + Con & Cls). Finally, the full data
with all the proposed methods brings the most sig-
nificant improvement. The proposed pre-training
models also outperform the KEPLER-base.
Out-of-domain evaluation To analyze the im-
provement in-depth, we split the probing ques-
tions into in-domain and out-of-domain accord-
ing to whether the pre-training corpus covers the
corresponding triplets in questions. As Table 7
shows, the three random-based masking methods
(Random token, Whole word, and Salient Span)
boost performance on in-domain questions but get
stuck on the out-of-domain questions. It is natu-
ral that the PLMs can answer the questions that
are involved in pre-training. Surprisingly, although
the out-of-domain questions are inaccessible in the
pre-training corpus, the deterministic masking also
gains performance improvement (3-4%), indicating
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Total Out-of-domain In-domain
Acc. Consis. Joint Acc. Consis. Joint Acc. Consis. Joint

RoBERTa-base 39.48 52.05 16.40 33.09 55.06 15.60 42.97 54.19 18.55
Random token 43.44 58.76 24.72 35.47 59.57 22.64 47.38 61.04 27.57
Whole word 44.04 58.96 25.88 36.67 60.48 23.01 47.91 61.57 29.40
Salient span 43.87 60.48 26.53 37.48 61.19 22.90 47.72 63.08 29.93

KEPLER-base 39.63 50.96 17.81 - - - - - -

Deterministic 45.29 64.65 29.37 38.59 65.39 25.88 49.13 66.42 32.17
+ Con & Cls 46.01 64.53 29.62 38.05 65.35 26.24 50.26 65.71 32.32
+ Full data 49.40 67.09 33.44 40.35 67.69 30.30 54.20 69.24 37.17

BART-base 40.43 52.60 17.83 34.26 55.88 15.86 44.10 54.85 20.42
Random token 42.53 57.03 23.34 34.98 59.59 21.15 46.75 59.02 25.78
Whole word 41.68 58.96 24.38 34.53 61.24 21.32 45.11 60.94 26.42
Salient span 43.16 60.09 25.30 35.78 60.68 20.83 47.33 61.78 27.66

Deterministic 44.13 64.67 28.77 36.70 65.15 24.45 48.58 66.25 31.98
+ Con & Cls 46.65 65.64 28.89 39.51 66.31 25.53 50.72 67.86 32.45
+ Full data 49.21 68.41 33.11 41.02 69.51 29.33 52.95 69.70 35.84

Table 7: The factual knowledge capturing performance, evaluated by the cloze-style QA dataset PARAREL. Acc. is
the accuracy, Consis. denotes the prediction consistency when changing the prompts, and Joint denotes the metric
that jointly measures accuracy and consistency. Out-of-domain represent the set of questions whose triplets do not
appear in the pre-training.

Dataset LAMA w/o WIKI- w/o
Leakage UNI Leakage

RoBERTa-base 19.94 15.10 10.48 07.11
Random token 25.01 18.18 14.18 09.00
Whole word 25.66 18.94 14.42 09.27
Salient span 29.13 21.43 14.99 09.09

KEPLER-base 15.04 10.66 8.44 05.89

Deterministic 32.96 25.46 16.28 10.33
+ Con & Cls 32.16 24.88 16.24 11.03
+ Full data 35.35 28.86 19.36 14.23

BART-base 11.77 07.08 06.03 03.47
Random token 25.39 17.75 14.01 08.24
Whole word 25.06 17.21 14.21 08.75
Salient span 30.07 22.20 15.56 09.60

Deterministic 31.26 23.69 15.81 10.22
+ Con & Cls 32.03 24.57 15.58 10.23
+ Full data 35.49 28.98 18.64 13.21

Table 8: The results on cloze-style QA datasets from
(Cao et al., 2021). The performance is measured by
accuracy5.

that the deterministic relationship could help PLMs
to better recollect the facts learned implicitly.

3.3.3 Closed-book QA
We fine-tune the continuously pre-trained BART-
base on the Closed-book QA task. The metrics are
EM(Exact Match) and F1 from (Rajpurkar et al.,
2016). Table 9 shows the comparison results of
different strategies.

5The detailed metrics grouped by the relation types (N-
1,N-M relations) are in Appendix A.

Closed-book QA is more difficult than cloze-
style QA since the models need to generate answers
without any extra hints, e.g., the answer length is
indicated by the number of [MASK]s in the cloze-
style QA, while the models need to predict the an-
swer length in closed-book QA. The input-output
format of closed-book QA differs from per-training,
so we need to fine-tune PLMs to recall facts based
on natural questions to fit this format. Table 9
shows the evaluation results. Generally, the pro-
posed methods outperform the baselines, demon-
strating that the proposed methods can help the
PLM that uses encoder-decoder architecture to cap-
ture and recall factual knowledge.

3.3.4 Extractive QA
We fine-tune the models that based on RoBERTa-
base for extractive QA. Following (He et al., 2020;
Joshi et al., 2020), we employ the MRQA data with
two different settings: (a) Separate: the models are
trained and tested on every QA dataset separately,
(b) Combine: all the training samples from the six
datasets are merged in training. Then the fine-tuned
models are evaluated on each dataset respectively.
Table 10 shows the evaluation results, the metrics
are averaged over the six development sets.

In extractive QA, the input includes a question
and the supporting evidence to answer it. So the
models do not have to recollect the essential evi-
dence but should put more effort into understanding
the evidence. Table 10 shows the evaluation results.
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Dataset Model F1 EM

TriviaQA

BART-base 23.91 17.52
Random token 23.67 18.04
Whole word 24.64 18.88
Salient span 24.98 19.21

Deterministic 24.94 19.22
+ Con & Cls 25.28 19.58
+ Full Data 26.35 20.57

NaturalQuestions

BART-base 26.89 21.27
Random token 27.34 21.55
Whole word 27.53 22.13
Salient span 27.31 22.07

Deterministic 27.83 22.60
+ Con & Cls 28.14 22.69
+ Full Data 29.17 23.91

WebQuestions

BART-base 33.62 26.62
Random token 32.58 26.38
Whole word 32.45 26.03
Salient span 32.70 26.08

Deterministic 32.73 26.38
+ Con & Cls 32.63 25.59
+ Full Data 33.91 27.26

Table 9: The performance on the closed-book QA
datasets.

Model Separate Combine
F1 EM F1 EM

RoBERTa-base 80.78 69.51 81.78 70.57
Random token 80.53 69.22 81.79 70.52
Whole word 80.86 69.71 81.77 70.60
Salient span 80.85 69.61 81.72 70.50

KEPLER-base 80.28 69.02 81.41 70.32

Deterministic 80.83 69.63 81.78 70.59
+ Con & Cls 80.94 69.75 81.79 70.67
+ Full data 80.96 69.67 81.86 70.71

Table 10: The performance on the extractive QA task.

Due to the difference in the input-output format
between the MLM and span extraction task, the
change in the masking methods has somewhat lim-
ited effects on the performance here. The averaging
on six different MRC datasets and the hyperparam-
eter search (in Appendix C) could further diminish
the performance difference between the models.
However, the proposed methods still show slight
advantages in the comparison, demonstrating that
learning the deterministic relationship could also
help to comprehend factual knowledge.

4 Related Work

Pre-training on large-scale unlabeled text can help
PLMs capture meaningful knowledge and benefits
the downstream tasks accordingly (Brown et al.,
2020; Radford et al., 2018). BERT (Devlin et al.,

2018) proposes a Mask Language Model (MLM)
in which the model needs to recover some masked
tokens based on the remaining context. The ef-
fectiveness of the MLM makes BERT become the
starting point for fitting many downstream tasks
(Chen et al., 2020). Afterward, several different
masking methods (Cui et al., 2019; Joshi et al.,
2020; Levine et al., 2020; Sun et al., 2019) have
explored how masking methods affect performance
and have obtained further performance improve-
ment. These works push the limit of MLM and
show the importance of designing better masking
strategies.

On the other hand, some pre-training tasks other
than MLM have been proposed. Clark et al. (2019)
trains the model to distinguish the replaced words
from the original words in the context. (Xiong
et al., 2019; He et al., 2020) let factual spans be
the replacement candidates. Qin et al. (2020) con-
trasts the representations between different entities
and relations. This paper views another perspective
of the masking methods: whether the remaining
context can uniquely determine the masked span.
Accordingly, we propose a deterministic masking
strategy that masks deterministic spans in MLM
samples. Moreover, we design clue contrastive
learning and clue classification as pre-training tasks
to help PLMs identify the deterministic clues for
the masked span and contrast them with the non-
deterministic ones. Moreover, we evaluate the per-
formance of the proposed model with various down-
stream tasks.

5 Conclusion

This paper proposes to train PLMs to learn a de-
terministic input-output relationship in MLM to
improve PLMs on capturing factual knowledge.
The deterministic relationship ensures the masked
content in MLM samples is deterministically pre-
dictable based on the remaining context. To fur-
ther enhance the deterministic relationship, we de-
sign a pre-training task clue contrastive learning
that encourages PLMs to give more confident pre-
dictions when the input keeps deterministic clues,
and the clue classification to train PLMs to predict
whether the deterministic clues exist. Extensive
experiments show that the proposed methods can
improve the accuracy and consistency of factual
knowledge capturing and boost the performance of
the other two knowledge-intensive tasks.

11125



6 Limitations

We summarize this paper’s main limitations as fol-
lows: First, this study focuses on enhancing the
deterministic relationship but does not explore the
non-deterministic relationships. The other non-
deterministic relationships also play essential roles
in tasks such as semantic role labeling and emo-
tion recognition, where the proposed methods may
not be helpful. Second, due to the diversity and
richness of natural language, we cannot perfectly
recognize the deterministic clues and spans from
texts. We have to consider the noises in recog-
nization when designing the pre-training tasks. Fi-
nally, we continuously pre-train PLMs on only
Wikipedia text, somewhat narrowing down their
domain. Constructing more pre-training samples
by the proposed procedure (Procedure 1 in the Ap-
pendix) could be better. Moreover, we can use the
current pre-training samples (based on Wikipedia)
to train an “interpolation model” that can tag the
deterministic clues and spans in the input texts. The
interpolation model can also be used to enlarge the
pre-training data.
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Total Out-of-domain In-domain
Acc. Consis. Joint Acc. Consis. Joint Acc. Consis. Joint

RoBERTa-base

Salient span 43.87 60.48 26.53 37.48 61.19 22.90 47.72 63.08 29.93
Object 44.41 63.68 28.00 38.48 64.40 24.94 47.82 65.25 31.27
Deterministic 45.29 64.65 29.37 38.59 65.39 25.88 49.13 66.42 32.17
+ Con 45.93 65.50 29.52 39.33 66.34 26.26 49.50 67.26 32.58
+ Con & Cls 46.01 64.53 29.62 38.05 65.35 26.24 50.26 65.71 32.32

BART-base

Salient span 43.16 60.09 25.30 35.78 60.68 20.83 47.33 61.78 27.66
Object 42.61 62.67 27.24 35.76 62.22 22.39 46.91 64.89 30.73
Deterministic 44.13 64.67 28.77 36.70 65.15 24.45 48.58 66.25 31.98
+ Con 44.96 64.11 28.17 37.66 64.50 24.51 48.97 66.16 31.71
+ Con & Cls 46.65 65.64 28.89 39.51 66.31 25.53 50.72 67.86 32.45

Table 11: The evaluation results on PARAREL. “Object” denotes the baseline that masks and predicts the objects.
“Deterministic” denotes the MLM baseline that uses deterministic masking. “+ Con” is the baseline that uses the
clue contrastive learning with deterministic masking.

Appendix

A Ablation Study

How does masking objects help in factual knowl-
edge capturing? As described in Section 3.2.1,
the cloze-style questions that we use to probe the
factual knowledge in PLMs, are constructed by
integrating subject-predicate-object triples with ar-
tificial templates. Due to the conventions in the
template construction, the objects could have more
opportunities to be the answer than the predicates
and subjects. So focusing on recovering objects in
pre-training may also benefit cloze-style QA. The
proposed deterministic masking naturally masks
more objects in pre-training because of the rules
we designed to identify the deterministic span.
Both masking objects and the deterministic rela-
tionship could bring improvements in the determin-
istic masking.

To investigate and clarify their contributions, we
introduce a baseline “Object” that masks and pre-
dicts only object spans in pre-training. Table 11
shows the evaluation result. We can see that the
Object baseline performs better than the Salient
span baseline on factual knowledge capture. It
reveals that masking objects indeed improve per-
formance. Nevertheless, the deterministic masking
(denoted as “Deterministic”) achieves better results,
denoting that both masking objects and learning
the deterministic relationship contribute positively
to factual knowledge capture.
The effectiveness of the clue contrastive learning
and clue classification To reveal the contribution
of the proposed pre-training tasks separately, we
introduce a baseline that only uses the clue con-
trastive learning. We refer to it as “+ Con” in

Table 11. “+ Con & Cls” denotes the PLM that
uses the clue classification in addition to the clue
contrastive learning. We can see that the perfor-
mance increases as we apply the proposed methods
incrementally.
The improvements on deterministic and non-
deterministic cloze-style questions The dataset
from PARAREL includes only the N-1 relations6.
While the LAMA dataset from (Petroni et al., 2019)
(Tables 4 and 8) includes both the N-1/1-1 and N-M
relations. To reveal the improvements in terms of
relation types, we separate the samples into N-1/1-1
and N-M based on the relation types and report the
results separately, as shown in Table 12. Similar to
the deterministic relationship we used, the ground-
truth object is unique when the relation type is N-1
or 1-1. The results show that the improvement for
the N-1/1-1 relations is more significant than the
N-M relations when using the proposed methods.

B Pre-training Data Construction

Procedure 1 shows how we construct the pre-
training data, including entity linking, predicate
matching, triplet aligning, and deterministic rela-
tionship checking. Each text piece t is a paragraph
in Wikipedia. We use the entity linker provided
in (van Hulst et al., 2020), represented as EN-
TITYLINKER, to identify all the entities in the para-
graph7. The WikiData defines 12,043 aliases for
8,529 predicates. Function PREDICATEMATCHER

searches the substring corresponding to a predicate
by comparing the predicate’s aliases with all the
substrings in the text. The identified predicate span
is the nearest match whose edit distance is less than

6Defined in https://github.com/yanaiela/pararel/wiki/31-
N1-Relations
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Procedure 1 Deterministic Sample Construction

Require: Text collection T , Knowledge base K, ENTITYLINKER

Output: Deterministic sample collection Dd

Output: Salient span masking sample collection Dssm

1: Dd ← {}, Dssm ← {}
2: for all text piece t in T do
3: E ← ENTITYLINKER(t) ▷ Identify all the entities in t
4: Dssm = Dssm ∪ {(t, E)} ▷ Save the entities for the salient span masking
5: for all entity pair (ei, ej) in E × E do
6: for all predicate r that can connects (ei, ej) do ▷ Triplet (ei, r, ej) exists in K
7: if ej has only one match when querying K with ei and r as the subject and predicate then
8: p← PREDICATEMATCHER(t, r) ▷ Find the spans in t that correspond to r
9: s← ei ▷ Use ei as subject s

10: o← ej ▷ Use ej as object o
11: d← (s, p, o, E, t) ▷ Group the alignments into d
12: D = D ∪ {d} ▷ Record the sample d

return Dd, Dssm

13: function PREDICATEMATCHER(t, r)
14: for all alias string a for r in K do ▷ WikiData holds a alias string collection for every predicate
15: for all substring s in t do
16: if edit distance between a and s < 2 then
17: Return s

Model Total N-1/1-1 N-M

RoBERTa-base 19.94 22.18 16.46
Random token 25.01 28.98 18.81
Whole word 25.66 29.26 20.05
Salient span 29.13 30.89 26.38

Deterministic 32.96 37.84 25.35
+ Con & Cls 32.16 36.62 25.19
+ Full data 35.35 41.86 25.18

BART-base 11.77 13.96 08.35
Random token 25.39 27.66 21.84
Whole word 25.06 28.69 19.39
Salient span 30.07 31.83 27.31

Deterministic 31.26 35.77 24.21
+ Con & Cls 32.03 36.38 25.25
+ Full data 35.49 41.99 25.33

Table 12: The detailed results on the LAMA dataset in
(Cao et al., 2021), reported separately with respect to
relation types: N-1/1-1 or N-M.

two.
After recognizing the entities and predicates, we

combine every entity pair with every predicate as
a triplet (entity, predicate, entity), enumerate all
the possible combinations, and keep the ones that
existed in KB as the triplets aligned with the para-
graph. Line 7 checks if the object is deterministic
by querying KB. We record the obtained determin-
istic sample in the format of (subject s, predicate p,
object o, text t, and entities E).

The baselines use the pre-training sample as the
following:

• Deterministic (mask deterministic object to
train MLM): Get a sample (s, p, o, E, t) from
Dd, mask the span corresponding to o and
train PLMs to predict o based on the remain-
ing context.

• Random (mask tokens randomly): Get
a sample from Dd, tokenize t and cal-
culate the number of tokens in o, de-
noted as TOKENCOUNT(o), randomly sam-
ple TOKENCOUNT(o) tokens to be masked in
the MLM training.

• Whole word (mask whole words randomly):
Get a sample from Dd, calculate the num-

7https://github.com/informagi/REL
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ber of words in o (separated by space), de-
noted as WORDCOUNT(o), randomly mask
WORDCOUNT(o) words in t.

• Salient Span (mask entities randomly): Get
a sample (s, p, o, E, t) from Dssm, randomly
mask an aligned entity in E.

Although the masking granularity is different in the
baslines, we keep the length of the masked content
as similar as possible for a fair comparison.

Then we introduce how the two proposed pre-
training tasks use the data. In the clue contrastive
learning, the s and p are the deterministic clues and
masked in the contrastive sample. If the same o
have more than one deterministic clue in t, e.g.,
multiple deterministic clues for the same o are
given by different triplets, all the deterministic
s and p are considered as determined clues and
masked in the contrastive sample (b). In the clue
classification, the number of the randomly masked
token in the sample (c) is the same as the con-
strastive sample.

Procedure 1 is used to generate the full data
(summarized in Table 2). We obtain the partial
data similarly, except that we do not need the EN-
TITYLINKER (at Line 3 in Procedure 1) and directly
use the entity-text alignments provided in TREX.

C Hyperparameters

Pre-training For the baselines trained on the par-
tial data, the batch size is set to 512, the learning
rate is 3× 10−5, and the number of total training
steps is 50,000. There are 200,000 training steps
for the final model on the full data.
Extractive QA In the experiments on extractive
QA, we find that the model’s performance is sensi-
tive to hyperparameters. We conduct a grid search
over the learning rate and batch size. In the sep-
arate setting, the learning rate is searched over{
1× 10−5, 2× 10−5, 3× 10−5

}
, the batch size is

searched over {16, 32, 64} when fine-tuning ev-
ery PLM on every dataset, and the epoch is set
to 4. In the combine setting, the learning rate ∈{
2× 10−5, 3× 10−5

}
, the batch size ∈ {32, 64},

and the epoch is set to 2. We save the model check-
point per 5,000 steps. The best model is selected
from evaluating all the checkpoints. We use the
code released by (Ram et al., 2021b)8.
Closed-book QA The learning rate is set to 5 ×
10−5. The training steps is set to 100,000 for Natu-
ralQuestions and TriviaQA, 40,000 for WebQues-

8https://github.com/oriram/splinter

tions. The model is evaluated per 10,000 training
steps to select the best checkpoint.
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