
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 1157–1169
December 7-11, 2022 ©2022 Association for Computational Linguistics

MetaASSIST: Robust Dialogue State Tracking with Meta Learning
Fanghua Ye† Xi Wang† Jie Huang‡ Shenghui Li§ Samuel Stern¶ Emine Yilmaz†

†University College London, UK
‡University of Illinois at Urbana-Champaign, USA

§Uppsala University, Sweden
¶Affiniti AI, London, UK

{fanghua.ye.19, xi-wang, emine.yilmaz}@ucl.ac.uk
jeffhj@illinois.edu, shenghui.li@it.uu.se, samuel.stern@affiniti.ai

Abstract

Existing dialogue datasets contain lots of noise
in their state annotations. Such noise can hurt
model training and ultimately lead to poor gen-
eralization performance. A general framework
named ASSIST has recently been proposed to
train robust dialogue state tracking (DST) mod-
els. It introduces an auxiliary model to generate
pseudo labels for the noisy training set. These
pseudo labels are combined with vanilla labels
by a common fixed weighting parameter to train
the primary DST model. Notwithstanding the
improvements of ASSIST on DST, tuning the
weighting parameter is challenging. Moreover,
a single parameter shared by all slots and all in-
stances may be suboptimal. To overcome these
limitations, we propose a meta learning-based
framework MetaASSIST to adaptively learn the
weighting parameter. Specifically, we propose
three schemes with varying degrees of flexibil-
ity, ranging from slot-wise to both slot-wise and
instance-wise, to convert the weighting param-
eter into learnable functions. These functions
are trained in a meta-learning manner by taking
the validation set as meta data. Experimental
results demonstrate that all three schemes can
achieve competitive performance. Most impres-
sively, we achieve a state-of-the-art joint goal
accuracy of 80.10% on MultiWOZ 2.4.

1 Introduction

Task-oriented dialogue systems have recently be-
come a hot research topic. They act as digital per-
sonal assistants, helping users with various tasks
such as hotel bookings, restaurant reservations, and
weather checks. Dialogue state tracking (DST) is
recognized as a core task of the dialogue manager.
Its goal is to keep track of users’ intentions at each
turn of the dialogue (Mrkšić et al., 2017; Rastogi
et al., 2020). Tracking the dialogue state accurately
is of significant importance, as the state informa-
tion will be fed into the dialogue policy learning
module to determine the next system action to per-
form (Manotumruksa et al., 2021). In general, the

Auxiliary DST Model Primary DST Model

User: “Hello, could you please find a hotel in the downtown for me?”

+ =
Pseudo Label

hotel-area: center
0 0 0 0 1

Vanilla Label
hotel-area: east

1 0 0 0 0

Combined Label
hotel-area

.5 0 0 0 .5

standard augmented
E W S N C E W S N C E W S N C

1 −

trained on a small clean dataset

= 0.5

Figure 1: The structure of ASSIST and MetaASSIST.
Both frameworks utilize soft labels obtained by linearly
combining pseudo labels (one-hot) and vanilla labels
(one-hot) using a weighting parameter α to enhance the
training process compared to standard training that only
relies on vanilla noisy labels. ASSIST adopts a single α
that is shared by all slots and all training samples, while
MetaASSIST uses slot-wise (and instance-wise) αs.

dialogue state is represented as a set of (slot, value)
pairs (Henderson et al., 2014; Budzianowski et al.,
2018). The slots for a particular task or domain are
predefined (e.g., “hotel-name”). Their values are
extracted from the dialogue context.

So far, a great variety of DST models have been
proposed (Wu et al., 2019; Campagna et al., 2020;
Balaraman et al., 2021; Lee et al., 2021; Guo et al.,
2022; Shin et al., 2022; Wang et al., 2022). These
models assume that all state labels provided in the
dataset are correct, without considering the effect
of label noise. However, dialogue state annotations
are error-prone, especially considering that most
dialogue datasets (e.g., MultiWOZ Budzianowski
et al., 2018) are collected through crowdsourcing.
The presence of label noise may impair model train-
ing and lead to poor generalization performance of
the trained model, as deep neural models can easily
overfit noisy training data (Zhang et al., 2021).

In order to robustly train DST models from noisy
labels, Ye et al. (2022) proposed a general frame-
work dubbed ASSIST, which augments the stan-
dard model training procedure with a small clean
dataset. As shown in Figure 1, ASSIST first trains

1157

an auxiliary model on the small clean dataset and
applies this model to generate pseudo labels for
each sample in the noisy training set. Then, it lin-
early combines the pseudo labels and vanilla labels
to train the primary model. Both theoretically and
empirically, ASSIST has been shown to be effec-
tive in reducing the impact of label noise.

However, ASSIST adopts a common weighting
parameter to combine the pseudo labels and vanilla
labels for all slots and all training samples, which
is suboptimal. In reality, different slots tend to have
different noise rates (Eric et al., 2020), indicating
that the weighting parameter should be slot-wise.
On the other hand, different training samples may
also require different weighting parameters, since
whether pseudo labels or vanilla labels should be
preferred is highly dependent on specific training
instances. Furthermore, the weighting parameter is
considered a hyperparameter and thus needs to be
carefully tuned on each dataset.

To address the aforementioned limitations of AS-
SIST, we propose MetaASSIST, a meta learning-
based general framework that supports automati-
cally learning slot-wise (and instance-wise) weight-
ing parameters. Specifically, our contributions are:

• We propose three different schemes for trans-
forming the weighting parameters into learn-
able functions. These schemes have varying
degrees of flexibility, ranging from slot-wise
to both slot-wise and instance-wise.

• We propose to train these learnable functions
through a meta-learning paradigm that takes
the validation set as meta data and adaptively
adjusts the parameters of each learnable func-
tion (as a result, the weighting parameters) by
reducing the validation loss.

• We conduct extensive experiments to test the
effectiveness of the proposed three schemes.
All of them achieve superior performance. For
the first time, we achieve over 80% joint goal
accuracy on MultiWOZ 2.4 (Ye et al., 2021a).

2 Preliminaries

In task-oriented dialogue systems, the DST module
transforms users’ goals or intentions expressed in
unstructured natural languages into structured state
representations (e.g., a series of slot-value pairs).
The state representations are continually updated
in each round of the user-system interactions.

2.1 Problem Statement

More formally, we symbolize a dialogue of T turns
as X = {(R1, U1), . . . , (RT , UT)}, where Rt and
Ut denote the system response and user utterance
at turn t (1 ≤ t ≤ T), respectively. We adopt Xt to
represent the dialogue context from the first turn to
the t-th turn, i.e., Xt = {(R1, U1), . . . , (Rt, Ut)}.
Further, let S denote the set of all the predefined
slots and Bt = {(s, vt)|s ∈ S} the dialogue state
at turn t. Here, vt is the corresponding value of slot
s at turn t. Then, the DST problem is defined as
learning a dialogue state tracker F : Xt → Bt.

As discussed earlier, annotating dialogue states
via crowdsourcing is prone to incorrect and incon-
sistent labels. These noisy annotations are likely
to adversely affect model training. We denote the
noisy state annotations as B̃t = {(s, ṽt)|s ∈ S},
where ṽt is the noisy label of slot s at turn t. In this
work, B̃t refers to the labels provided in the dataset
and Bt refers to the unknown true state annotations.
As pointed out by Ye et al. (2022), existing DST
approaches are only able to learn a suboptimal di-
alogue state tracker F̃ : Xt → B̃t rather than the
optimal dialogue state tracker F : Xt → Bt. Aim-
ing at learning a strong dialogue state tracker F∗ to
better approximate F , Ye et al. (2022) proposed a
general framework ASSIST that supports training
DST models robustly from noisy labels.

2.2 Overview of ASSIST

ASSIST assumes that a small clean dataset is avail-
able. Based on this assumption, it firstly trains an
auxiliary model on the clean dataset. Then, it lever-
ages the trained model to generate pseudo labels
for each sample in the large noisy training set. The
generated pseudo labels are expected to be a good
complement to the vanilla noisy labels. Therefore,
combining the two types of labels has the poten-
tial to reduce the influence of noisy labels when
training the primary model.

Denote the generated pseudo state annotations
as B̆t = {(s, v̆t)|s ∈ S}, where v̆t represents the
pseudo label of slot s at turn t. Within the frame-
work of ASSIST, the primary model is required
to predict B̆t and B̃t concurrently during the train-
ing process. In other words, the target of model
training turns into learning a dialogue state tracker
F∗ : Xt → C(B̆t, B̃t), where C(B̆t, B̃t) denotes a
combination of B̆t and B̃t. There can be different
methods to combine the generated pseudo labels
and vanilla noisy labels. The most straightforward

1158

way is to combine them linearly, which is also the
strategy adopted in ASSIST. The linearly combined
label of slot s at turn t is formulated as:

vc
t = αv̆t + (1− α)ṽt, (1)

where v̆t and ṽt are the one-hot vector representa-
tion of the pseudo label v̆t and vanilla noisy label
ṽt, respectively. The parameter α (0 ≤ α ≤ 1) is
employed to control the weights of v̆t and ṽt.

Let p(v̆t|Xt, s) denote the likelihood of v̆t and
p(ṽt|Xt, s) the likelihood of ṽt. Then, the likeli-
hood of the combined label vc

t is calculated as:

p(vc
t |Xt, s) = p(v̆t|Xt, s)

αp(ṽt|Xt, s)
(1−α). (2)

Based on this formula, the training objective of the
primary model can be derived as follows:

L =
1

|Dn||S|
∑

Xt∈Dn

∑

s∈S
− log p(vc

t |Xt, s)

=
α

|Dn||S|
∑

Xt∈Dn

∑

s∈S
− log p(v̆t|Xt, s)+

(1− α)

|Dn||S|
∑

Xt∈Dn

∑

s∈S
− log p(ṽt|Xt, s),

(3)

where Dn represents the noisy training set.

3 MetaASSIST: A Meta Learning-Based
Version of ASSIST

Equations (1) and (3) show that a single α is shared
by all slots when combining the pseudo labels and
vanilla labels. This is suboptimal, as the ratio of the
noise rate of pseudo labels to that of vanilla labels
tends to be different for different slots. When the
vanilla labels have higher quality than the gener-
ated pseudo labels, α should be set to a small value;
otherwise, a large α should be used. This implies
that setting α to different values for different slots
can help train the primary model more robustly. In
the following, we first theoretically show that the
combined labels obtained via slot-wise weighting
parameters instead of a common one can better ap-
proximate the unknown true labels. Then, we elab-
orate on the proposed framework MetaASSIST.

3.1 Theoretical Justification
Following (Ye et al., 2022), we employ the mean
squared loss to define the mean approximation error
of any corrupted labels v̈t to their corresponding
unknown true labels vt, as formularized below:

Yv̈ =
1

|Dn||S|
∑

Xt∈Dn

∑

s∈S
EDc [∥v̈t − vt∥22]. (4)

Here, Dc refers to the small clean dataset. Both v̈t
and vt are the vector representations of labels.

Let αs be the slot-wise weighting parameter for
slot s. We utilize vs

t to denote the combined label
obtained by replacing α with αs in Eq. (1). Thus,

vs
t = αsv̆t + (1− αs)ṽt. (5)

Same as α, αs is also bounded between 0 and 1.
Substituting the corrupted labels v̈t in Eq. (4)

with vs
t and vc

t , we have the following theorem:
Theorem 1. The optimal mean approximation er-
ror with respect to the combined labels vs

t derived
from slot-wise weighting parameters αs is smaller
than or equal to that of the combined labels vc

t

derived from a shared weighting parameter α, i.e.,

min
αs

Yvs ≤ min
α

Yvc .

Proof. The conclusion is obvious as we can replace
αs with α if Yvc < Yvs , but not vice versa.

3.2 Slot-Wise Weighting Parameters as Meta
Learnable Functions

In the framework of ASSIST, α is treated as a hy-
perparameter. It needs to be meticulously tuned in
the training phase so as to help the primary model
achieve the best performance. Although it is feasi-
ble to tune a single parameter α, it would become
extremely painful to tune all the slot-wise parame-
ters. This is because multi-domain dialogues can
have dozens of or even hundreds of slots (e.g., there
are 37 slots in the MultiWOZ dataset Eric et al.,
2020). To circumvent the troublesome step of tun-
ing each slot-wise parameter αs of slot s, we pro-
pose to learn all these parameters automatically via
meta learning (Hospedales et al., 2021).

Specifically, we propose three different schemes
to cast the slot-wise weighting parameters as learn-
able functions, which are described in detail below:

Scheme One (S1): The first scheme assumes that
the parameter αs is fully independent of the dia-
logue context Xt. As a consequence of this assump-
tion, all the training samples will share the same αs

for slot s. Given that the parameter αs is restricted
to fall in the range of 0 to 1, it is tricky to learn it by
gradient-based optimizers. In our implementation,
we introduce an unconstrained learnable parameter
ws and regard αs as a Sigmoid function of ws:

αs = f1(ws) = Sigmoid(ws). (6)

As thus, the parameter ws rather than αs will be
directly optimized during the training process.

1159

Scheme Two (S2): Apart from being slot-wise,
the second scheme assumes that the parameter αs

should also be relevant to the dialogue context Xt

(i.e., instance-wise). This assumption is of practi-
cal significance, as whether the vanilla labels or the
pseudo labels should be preferred may vary across
the training samples. In order to make αs instance-
wise, we first construct a five-dimensional feature
vector based on the loss values of both vanilla la-
bels and pseudo labels, as shown below:

hs = [l̃s, l̆s, l̃s − l̆s, l̆s − l̃s, l̃s + l̆s], (7)

where l̃s and l̆s correspond to the loss value of the
vanilla label ṽt and pseudo label v̆t of slot s associ-
ated with the dialogue context Xt, respectively. To
be more specific, l̃s and l̆s are calculated as follows:

l̃s = − log p(ṽt|Xt, s), (8)

l̆s = − log p(v̆t|Xt, s). (9)

We then utilize an MLP network (Rumelhart et al.,
1986) with a single hidden layer followed by the
Sigmoid activation function to learn αs:

αs = f2(hs) = Sigmoid(MLP(hs)). (10)

Scheme Three (S3): The first and second schemes
require that the weights of the pseudo label v̆t and
vanilla label ṽt of each slot in each training sample
must add up to 1. In reality, however, both v̆t and
ṽt can be incorrect for some training samples, in
which case, it is beneficial to assign small weights
to both labels. In the third scheme, we remove the
constraint on the sum and adopt two weighting pa-
rameters to combine the pseudo labels and vanilla
labels. The combined label vs

t is given by:

vs
t = ᾰsv̆t + α̃sṽt. (11)

We learn ᾰs and α̃s (0 ≤ ᾰs, α̃s ≤ 1) in the same
way as how αs is learned in the second scheme1:

ᾰs = f3(hs) = Sigmoid(MLP(hs)), (12)

α̃s = f ′
3(hs) = Sigmoid(MLP(hs)). (13)

It is noted that Eq. (11) can be rewritten as:

vs
t = (ᾰs + α̃s)

(
βsv̆t + (1− βs)ṽt

)
, (14)

1With no constraint on the sum, ᾰs and α̃s are decoupled.
One may argue that both parameters should be relevant to only
the loss value of their corresponding label. In view of this, we
also evaluated ᾰs = f3(l̆s) and α̃s = f ′

3(l̃s). However, we
found that the performance is much worse than using the loss
value of the pseudo label and that of the vanilla label together.

where βs = ᾰs/(ᾰs + α̃s). Comparing Eq. (14)
to Eq. (5), it can be seen that the main difference
is that the combined label is further weighted by
ᾰs+ α̃s. This reweighting is expected to be able to
discard the training samples whose pseudo labels
and vanilla labels are both incorrect by adjusting
ᾰs + α̃s to be a small value.

In schemes S2 and S3, the weighting parameters
are both slot-wise and instance-wise. Compared to
scheme S1 in which the weighting parameters are
only slot-wise, adding the instance-wise flexibility
can make the combined labels even more accurate
in the optimal case. For example, when the pseudo
label of slot s in a training sample is correct while
its vanilla label is wrong, the best αs in scheme S2
will be 1.0, which leads to 0 approximation error.

3.3 Learning Algorithm
When training the primary model, besides its own
parameters, the parameters of the learnable func-
tions that are used to predict the weights also need
to be optimized. Inspired by the common practice
that the best model checkpoint is chosen according
to the performance on the validation set, we decide
to employ the validation set as meta data and then
train the involved functions (i.e., f1, f2, f3 and f ′

3)
in a meta-learning manner.

For the sake of uniformly describing the learning
processes of the three proposed schemes, we unify
the combined label vs

t as:

vs
t = f(w1)v̆t + f ′(w2)ṽt, (15)

where w1 and w2 are the parameters of the learn-
able functions. Note that for schemes S1 ans S2,
f ′(w2) = 1−f(w1)

2. Then, the training objective
of the primary model is derived as:

L(Θ) =
1

|Dn||S|
∑

Xt∈Dn

∑

s∈S
− log p(vs

t |Xt, s)

=
1

|Dn||S|
∑

Xt∈Dn

∑

s∈S

(
f(w1)l̆s + f ′(w2)l̃s

)
.

(16)
Here, Θ represents the parameters of the primary
model and is optimized by minimizing L(Θ), i.e.,

Θ∗(w1,w2) = argmin
Θ

L(Θ). (17)

The optimal parameters Θ∗(w1,w2) are expected
to achieve the best performance on the validation

2In this case, only w1 needs to be optimized. We keep w2

for ease of exposition, because it is required by scheme S3.

1160

set Dv. Hence, we can optimize w1 and w2 in the
following way:

w∗
1,w

∗
2 = argmin

w1,w2

∑
Xt∈Dv

∑
s∈S

lvs(Θ
∗(w1,w2))

|Dv||S|
,

(18)
where lvs(Θ

∗(w1,w2)) = − log p(vt|Xt, s) repre-
sents the loss of slot s corresponding to the valida-
tion sample Xt, calculated from the predictions of
the primary model with parameters Θ∗(w1,w2).

Batch-Based Online Approximation
As shown in Eqs. (17) and (18), two nested loops
of optimization are required for calculating the op-
timal parameters Θ∗, w∗

1 and w∗
2. Each single loop

on the whole dataset can be fairly expensive. Fol-
lowing (Ren et al., 2018), we adopt an online strat-
egy to update Θ, w1 and w2 alternately through a
single optimization loop based on mini-batch data.
Algorithm 1 summarizes the overall training proce-
dure (including auxiliary model training).

Algorithm 1 Learning algorithm of MetaASSIST
Input: The small clean datasetDc, noisy training datasetDn,

validation dataset Dv , batch size n, m, k, and number of
training steps for auxiliary and primary model JA, JP ;

Output: The parameters of the learnable functions w
(JP)
1 ,

w
(JP)
2 and the parameters of the primary model Θ(JP);

1: � Auxiliary model training
2: for j = 1, 2, . . . , JA do
3: Mc ← SampleMiniBatch(Dc, n);
4: Update the auxiliary model onMc;
5: end for
6: Apply the trained auxiliary model to generate pseudo state

annotations B̆t for each Xt ∈ Dn;
7: � Primary model training
8: Initialize parameters Θ(0), w(0)

1 and w
(0)
2 ;

9: for j = 1, 2, . . . , JP do
10: Mn ← SampleMiniBatch(Dn, m);
11: Mv ← SampleMiniBatch(Dv , k);
12: Θ̂(j)(w

(j−1)
1 ,w

(j−1)
2)← Update Θ(j−1) onMn us-

ing vs
t = f(w

(j−1)
1)v̆t + f ′(w(j−1)

2)ṽt as the label;
13: w

(j)
1 ,w

(j)
2 ← Update w

(j−1)
1 and w

(j−1)
2 on Mv

with loss values derived from Θ̂(j)(w
(j−1)
1 ,w

(j−1)
2);

14: Θ(j) ← Update Θ(j−1) onMn again using the new
label vs

t = f(w
(j)
1)v̆t + f ′(w(j)

2)ṽt;
15: end for

The procedure of training the primary model in
MetaASSIST is similar to that of standard model
training, except that three extra steps (lines 11-13)
are added. This is because the optimal combined la-
bel vs

t is unknown upon beginning. In Algorithm 1,
we choose to dynamically update vs

t by adapting
w1 and w2. At first, we use w

(j−1)
1 and w

(j−1)
2 to

derive vs
t and train the primary model on batch Mn

for one step, which results in an interim model with
parameters Θ̂(j)(w

(j−1)
1 ,w

(j−1)
2) (line 12). Then,

we apply this interim model to the validation batch
Mv and compute the validation loss. By lowering
this loss (e.g., one-step optimization by SGD), we
obtain the updated w

(j)
1 and w

(j)
2 (line 13). After

that, we use w
(j)
1 and w

(j)
2 to update vs

t and apply
this new combined label to train the (j − 1)-th step
primary model on batch Mn again, which eventu-
ally leads to the updated primary model (line 14).

4 Experimental Setup

4.1 Datasets
We conduct experiments mainly on MultiWOZ 2.4
(Ye et al., 2021a). It is the latest refined version of
MultiWOZ 2.0 (Budzianowski et al., 2018), a large-
scale multi-domain task-oriented dialogue dataset
consisting of over 10,000 dialogues spanning seven
domains. The validation set and test set of Multi-
WOZ 2.4 have been carefully reannotated, while
its training set remains the same as that of Multi-
WOZ 2.1 (Eric et al., 2020) and is therefore noisy.
Following (Ye et al., 2022), we adopt the validation
set as the small clean dataset. Thus, the validation
set is used to train both the auxiliary model and the
learnable functions. We also conduct experiments
on MultiWOZ 2.0, whose validation set and test set
have been replaced with the counterparts of Multi-
WOZ 2.4. Due to this change, we name the dataset
MultiWOZ 2.0* in the following. The only differ-
ence between MultiWOZ 2.0* and MultiWOZ 2.4
is that the training set of the former is much noisier.

4.2 Evaluation Metrics
We adopt Joint Goal Accuracy (JGA), Joint Turn
Accuracy (JTA) and Slot Accuracy (SA) as evalu-
ation metrics. JGA is the primary metric for DST.
It refers to the ratio of dialogue turns of which the
entire state is correctly predicted. JTA is defined as
the ratio of dialogue turns in which the values of all
active slots are correctly predicted. A slot is said to
be active if its value needs to be updated. SA con-
siders only slot-level information and is calculated
as the average of all individual slot accuracies.

4.3 Auxiliary and Primary Models
We use the same auxiliary and primary models as
ASSIST to assess the effectiveness of MetaASSIST.
Since the clean dataset is small, a simple auxiliary
model AUX-DST was specially designed to avoid
overfitting (Ye et al., 2022). AUX-DST leverages

1161

Primary
Model Framework Scheme Validation Test

JGA(%) JTA(%) SA(%) JGA(%) JTA(%) SA(%)

SOM-DST

ASSIST
α = 0.0 68.77 87.85 98.45 66.78 87.81 98.38
α = 1.0 77.35 91.05 98.98 68.69 88.41 98.55
α = 0.4 78.59 91.74 99.02 75.19 91.02 98.84

MetaASSIST
S1 80.95 92.64 99.16 75.12 90.88 98.87
S2 78.87 92.01 99.07 76.74 91.65 98.95
S3 80.02 92.05 99.12 75.20 91.07 98.90

STAR

ASSIST
α = 0.0 74.33 90.26 98.86 74.84 90.77 98.92
α = 1.0 80.27 90.29 99.17 71.01 86.31 98.69
α = 0.4 82.68 92.93 99.26 79.41 91.86 99.14

MetaASSIST
S1 83.40 93.03 99.32 77.80 90.85 99.05
S2 83.03 93.19 99.30 80.10 92.02 99.16
S3 83.13 93.45 99.30 79.37 91.84 99.12

AUX-DST

ASSIST
α = 0.0 72.47 89.57 98.78 70.37 89.31 98.67
α = 1.0 81.30 90.68 99.22 70.68 86.82 98.68
α = 0.4 83.97 93.49 99.33 78.14 91.03 99.07

MetaASSIST
S1 83.89 93.41 99.33 77.25 91.16 99.04
S2 80.97 92.18 99.21 78.38 91.57 99.06
S3 81.99 92.88 99.24 78.57 92.09 99.08

Table 1: Performance comparison on MultiWOZ 2.4. For ASSIST, α = 0.0 means that only the vanilla labels are
used to train the primary model. α = 1.0 means that only the generated pseudo labels are used. α = 0.4 is the best
common weighting parameter found in (Ye et al., 2022). All three schemes in MetaASSIST use both types of labels.

slot-token attention to extract slot-specific infor-
mation and selects the value that best matches this
information as prediction. It is also adopted as one
primary model. The other primary models consid-
ered are: 1) SOM-DST (Kim et al., 2020), an open
vocabulary method that regards the dialogue state
as a fixed-sized memory and selectively overwrites
this memory with new values; and 2) STAR (Ye
et al., 2021b), an ontology-based method that uses
a stacked slot self-attention mechanism to learn the
correlations amongst slots automatically.3

5 Results and Discussion

5.1 Main Results

Table 1 shows the performance of the three primary
models on MultiWOZ 2.4 trained using ASSIST
and our proposed framework MetaASSIST. We
observe that all three schemes in MetaASSIST sub-
stantially improve the performance of the primary
models on the test set compared to training with
only vanilla labels (α = 0.0) or only pseudo la-
bels (α = 1.0). This observation indicates that the
proposed schemes are effective in learning appro-

3Code is available at https://github.com/smartyfh/
DST-MetaASSIST

Frame Scheme JGA(%) JTA(%) SA(%)

ASSIST
α = 0.0 45.14 77.86 96.71
α = 1.0 67.06 87.95 98.47
α = 0.6 70.83 89.14 98.61

Meta
ASSIST

S1 70.18 88.69 98.60
S2 71.46 89.35 98.65
S3 70.48 88.84 98.60

Table 2: Performance comparison on MultiWOZ 2.0*’s
test set by taking SOM-DST as the primary model. On
this dataset, the best value of α for ASSIST is 0.6.

priate weighting parameters for combining pseudo
labels and vanilla labels. Further, we observe that
scheme S2 consistently outperforms ASSIST with
the best common weighting parameter (α = 0.4),
except the slot accuracy of AUX-DST. For example,
STAR achieves 80.10% joint goal accuracy when
using scheme S2 to learn the weighting parame-
ters. Table 2 presents the performance of SOM-
DST trained on MultiWOZ 2.0*. It also shows that
scheme S2 achieves better results.

On both MultiWOZ 2.4 and MultiWOZ 2.0*, we
find that the performance of scheme S1 slightly lags
behind ASSIST (with the best value of α) in terms
of joint goal accuracy, even though the weighting

1162

https://github.com/smartyfh/DST-MetaASSIST
https://github.com/smartyfh/DST-MetaASSIST

0 5 10 15 20 25 30
Slots

0.42

0.44

0.46

0.48

0.50
W

ei
gh

ts
S1 S2(avg)

(a) Schemes S1 and S2

0.0 0.2 0.4 0.6 0.8 1.0
Weights

100

101

102

103

104

Fr
eq

ue
nc

y

(b) Scheme S2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Weights

101

102

103

104

Fr
eq

ue
nc

y

(c) Scheme S3

Figure 2: The distribution of learned weights in the three schemes. For scheme S2, we include the average weight of
each slot in (a). For scheme S3, we illustrate the distribution of the sum of the two weighting parameters it involves.

Domain ASSIST MetaASSIST
α = 0.0 α = 0.4 S2

Attraction 83.22 86.56 88.62
Hotel 64.52 73.52 75.93
Restaurant 77.67 83.57 85.60
Taxi 54.76 63.65 67.71
Train 82.73 88.73 88.19

Table 3: Domain-specific JGA (%) of SOM-DST on the
test set of MultiWOZ 2.4.

parameters learned in scheme S1 are slot-wise. The
reason we speculate is that the learning algorithm
fails to find the optimal slot-wise weighting param-
eters, but only the suboptimal ones. In §5.4, we
show that scheme S1 can actually outperform AS-
SIST when the weighting parameters are initialized
with the best value of α used in ASSIST.

As for scheme S3, Table 1 shows that it achieves
the best performance when AUX-DST is adopted
as the primary model. For SOM-DST and STAR,
its performance is comparable to the best results of
ASSIST. Table 1 also demonstrates that scheme S3
consistently outperforms scheme S1. However, it is
inferior to scheme S2 when taking SOM-DST and
STAR as the primary model. Recall that scheme S3
has the highest degree of flexibility in weighting
parameters. These results suggest that while higher
flexibility can in principle yield better results, the
practical performance may not be particularly good
due to the difficulty of learning optimal values for
the weighting parameters.

From Table 1, it can be further seen that scheme
S1 consistently achieves higher validation perfor-
mance than schemes S2 and S3 (except the joint
turn accuracy of STAR). This might be confusing
because scheme S1 underperforms schemes S2 and
S3 on the test set. Moreover, the validation set is
utilized to train the learnable functions in the three

schemes. Hence, high validation performance is
expected. However, we found that the distributions
of the validation and test sets are not exactly the
same (e.g., some slot values only appear in the test
set). This implies that scheme S1 tends to overfit
the validation data. While scheme S2 and scheme
S3 suffer less from this issue, because the weight-
ing parameters in them are not only related to state
labels but also to the dialogue context.

5.2 Domain-Specific Accuracy

Apart from the overall performance comparison,
we also investigate the performance improvements
in each domain. For this purpose, we report the
domain-specific joint goal accuracy of SOM-DST
on MultiWOZ 2.4 in Table 34. As can be observed,
MetaASSIST achieves the best performance in four
domains. In particular, MetaASSIST outperforms
ASSIST (α = 0.4) by 4.06 absolute points in the
taxi domain. It can also be observed that MetaAS-
SIST consistently outperforms ASSIST across all
domains when ASSIST only considers vanilla la-
bels (α = 0.0).

5.3 Distribution of Learned Weights

Figure 2 illustrates the distribution of the learned
weights in each scheme. We conduct this study on
MultiWOZ 2.4 and use STAR as the primary model.
As shown in Figure 2 (a), the learned weights in
scheme S1 indeed vary across slots. For most slots,
the weights are less than 0.5, indicating that their
vanilla labels are of higher quality than pseudo la-
bels. We also observe that the average weight of
each slot in scheme S2 is smaller than the corre-
sponding weight in scheme S1. In fact, the learned
weights in scheme S2 are more consistent with the
optimal value used in ASSIST (i.e., 0.4).

4After preprocessing, there are five domains left. Please
refer to Appendix A for more details.

1163

Vanilla Loss

0 2 4 6 8 10121416 Pse
ud

o L
oss

0
3

6
9121518

W
ei

gh
ts

0.0
0.2
0.4
0.6
0.8
1.0

Figure 3: The distribution of
weights relative to loss values.

SOM-DST STAR AUX-DST72
74
76
78
80
82
84

JG
A

(%
)

75.96

79.42 79.06

75.12

77.8 77.25
75.19

79.41
78.14

MetaASSIST(S1 with priori)
MetaASSIST(S1)
ASSIST(= 0.4)

Figure 4: Performance of scheme S1
with prior knowledge.

0 5 10 15 20 25 30
Epochs

0
10
20
30
40
50
60
70
80

JG
A

(%
)

MetaASSIST(val)
MetaASSIST(test)
ASSIST(val)
ASSIST(test)

Figure 5: The validation and test ac-
curacy changing curves.

Since schemes S2 and S3 are instance-wise, we
randomly select a slot and plot the distribution of
weights of this slot over all training samples. The
results are shown in Figures 2 (b) and (c). As can be
seen, the learned weights vary across training sam-
ples. In scheme S2, although the learned weights
for most training samples fall between 0.4 and 0.5,
there are also many samples whose weights can be
as small as 0 or as large as 1. Note that scheme
S3 has two weighting parameters. We plot the dis-
tribution of their sums. It is interesting to observe
that the sums of most training samples are around
1, even though we have removed the summation
constraint in scheme S3. Nonetheless, we also ob-
serve that the sums of many training samples are
less than 1, meaning that small weights have been
assigned to both pseudo labels and vanilla labels.

Figure 3 illustrates the distribution of weights in
scheme S2 relative to loss values of pseudo labels
and vanilla labels. We see that when both vanilla
loss and pseudo loss are very small, the weights are
around 0.5. When the vanilla loss is much smaller
than the pseudo loss, the weights tend to be small.
And when the pseudo loss is much smaller than the
vanilla loss, the weights tend to be large.

The observations above confirm the strong capa-
bility of MetaASSIST in learning proper slot-wise
(and instance-wise) weights based on loss values.

5.4 Scheme S1 with Prior Knowledge

Given that the weighting parameters in scheme S1
are only slot-wise, we can readily initialize these
parameters with any specified value. This implies
that we can integrate prior knowledge into scheme
S1. Specifically, we study using the optimal value
of α found in ASSIST to initialize its weighting pa-
rameters. The results on MultiWOZ 2.4 are shown
in Figure 4. We observe that the prior knowledge
can effectively improve the performance of scheme
S1 for all three primary models. Furthermore, the

results demonstrate that scheme S1 can outperform
ASSIST when they use the same prior knowledge.

5.5 Performance over Training Epochs
Figure 5 depicts the changing curves of validation
accuracy and test accuracy over training epochs.
We utilize SOM-DST as the primary model and
conduct this experiment on MultiWOZ 2.4. For
MetaASSIST, scheme S2 is applied. It is shown
that the validation and test accuracy using MetaAS-
SIST improves much faster than using ASSIST
during early training epochs. In subsequent epochs,
the validation accuracy with MetaASSIST is also
higher and changes more smoothly.

6 Related Work

DST has been studied for more than one decade.
Traditional DST models rely on a separate language
understanding module to extract relevant informa-
tion (Wang and Lemon, 2013; Williams, 2014). In
recent years, designing DST models based on neu-
ral networks, especially pretrained language mod-
els, has become the mainstream and a large number
of neural DST models have been proposed (Mrkšić
et al., 2017; Wu et al., 2019; Hosseini-Asl et al.,
2020; Zhu et al., 2020; Lin et al., 2021; Lee et al.,
2021; Zhao et al., 2021; Feng et al., 2022; Hu et al.,
2022; Guo et al., 2022; Heck et al., 2022; Man-
otumruksa et al., 2022; Sun et al., 2022).

Although these neural DST models have demon-
strated good performance, they fail to consider the
effect of label noise. It has been shown that no mat-
ter how noisy the training data are, neural models
can easily overfit the training data (Zhang et al.,
2021). As a result, the generalization performance
of models trained on noisy data is usually unsat-
isfactory. Recently, Ye et al. (2022) proposed a
general framework, ASSIST, to robustly train DST
models on noisy data. Their experimental results
show that several existing DST models can achieve

1164

much higher performance when trained under this
framework. However, as discussed earlier, ASSIST
contains a parameter that needs to be tuned on each
dataset. Besides, the parameter is shared among
all slots and all training samples, which we have
shown to be suboptimal. Our proposed framework
leverages meta learning to automatically learn slot-
wise (and instance-wise) parameters, overcoming
the limitations of ASSIST.

The essence of meta learning is learning to learn
(Hospedales et al., 2021; Zhu et al., 2022), which
makes it a natural fit for our task of automatically
learning parameters. We found that several exist-
ing works (Huang et al., 2020; Zeng et al., 2021;
Dingliwal et al., 2021) have already applied meta
learning to DST. These works directly adopt the
MAML (Finn et al., 2017) algorithm or its variants
and focus on improving the few-shot learning abil-
ity of DST models. While our focus is to improve
the robustness of DST models.

7 Conclusion

In this work, we proposed a meta learning-based
general framework MetaASSIST to robustly train
DST models on noisy data. MetaASSIST improves
ASSIST by automatically learning slot-wise (and
instance-wise) weighting parameters that are used
to combine pseudo labels and vanilla labels. Our
comprehensive experiments demonstrate the effec-
tiveness of MetaASSIST. For future work, we plan
to extend the current framework to utilize pseudo
labels generated by multiple auxiliary models.

Limitations

Our proposed framework MetaASSIST learns to
weight pseudo labels and vanilla labels by mini-
mizing the validation loss. Although it reduces the
impact of label noise on model training, it runs the
risk of biasing the trained model towards overfitting
the validation data. One may argue that selecting
the best model checkpoint based on validation per-
formance is a standard strategy in machine learning.
However, our empirical study shows that high per-
formance on the validation set does not necessarily
lead to high performance on the test set. This is
because the validation set and test set are usually
small, and their empirical data distributions can dif-
fer a lot. For a model trained with our framework
to have high generalization performance, the vali-
dation set should be unbiased, but this requirement
seems to be very demanding. In practice, we can

augment the validation set to alleviate this problem.
Another limitation is that our proposed learn-

ing algorithm is more time-consuming than regular
model training. As described in Algorithm 1, for
each training batch, the model needs to perform
two forward and backward passes (the first pass to
obtain the interim model, the second pass to ob-
tain the updated model). For each validation (meta)
batch, the model also needs to perform one forward
and backwad pass. Therefore, the learning algo-
rithm needs 3× training time compared to regular
training. Nonetheless, compared to ASSIST, the
proposed framework MetaASSIST is more time-
efficient. For ASSIST, we need to try a large num-
ber of values for α to find the best one.

Ethics Statement

The DST module is an essential component in many
industrial and commercial dialogue systems. Per-
formance improvements on DST can help these sys-
tems better understand users’ requirements, thereby
improving user satisfaction. Our proposed frame-
work could be applied to these systems and improve
their DST performance. The proposed framework
can also be applied to other NLP and machine learn-
ing applications.

Acknowledgements

This work was funded by the Alan Turing Institute
under the EPSRC grant EP/N510129/1 and the EP-
SRC Fellowship titled “Task Based Information Re-
trieval” and grant reference number EP/P024289/1.

References
Vevake Balaraman, Seyedmostafa Sheikhalishahi, and

Bernardo Magnini. 2021. Recent neural methods on
dialogue state tracking for task-oriented dialogue sys-
tems: A survey. In Proceedings of the 22nd Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 239–251, Singapore and Online.
Association for Computational Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026, Brussels,
Belgium. Association for Computational Linguistics.

Giovanni Campagna, Agata Foryciarz, Mehrad Morad-
shahi, and Monica Lam. 2020. Zero-shot transfer

1165

https://aclanthology.org/2021.sigdial-1.25
https://aclanthology.org/2021.sigdial-1.25
https://aclanthology.org/2021.sigdial-1.25
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/2020.acl-main.12

learning with synthesized data for multi-domain dia-
logue state tracking. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 122–132, Online. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Saket Dingliwal, Shuyang Gao, Sanchit Agarwal, Chien-
Wei Lin, Tagyoung Chung, and Dilek Hakkani-Tur.
2021. Few shot dialogue state tracking using meta-
learning. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 1730–1739,
Online. Association for Computational Linguistics.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar, Anuj
Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. Mul-
tiWOZ 2.1: A consolidated multi-domain dialogue
dataset with state corrections and state tracking base-
lines. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 422–428,
Marseille, France. European Language Resources
Association.

Yue Feng, Aldo Lipani, Fanghua Ye, Qiang Zhang, and
Emine Yilmaz. 2022. Dynamic schema graph fusion
network for multi-domain dialogue state tracking.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 115–126, Dublin, Ireland.
Association for Computational Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126–1135. PMLR.

Jinyu Guo, Kai Shuang, Jijie Li, Zihan Wang, and
Yixuan Liu. 2022. Beyond the granularity: Multi-
perspective dialogue collaborative selection for dia-
logue state tracking. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2320–
2332, Dublin, Ireland. Association for Computational
Linguistics.

Michael Heck, Nurul Lubis, Carel van Niekerk, Shutong
Feng, Christian Geishauser, Hsien-Chin Lin, and Mil-
ica Gašić. 2022. Robust dialogue state tracking with
weak supervision and sparse data. arXiv preprint
arXiv:2202.03354.

Matthew Henderson, Blaise Thomson, and Jason D.
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the 15th Annual Meet-
ing of the Special Interest Group on Discourse and

Dialogue (SIGDIAL), pages 263–272, Philadelphia,
PA, U.S.A. Association for Computational Linguis-
tics.

Timothy M Hospedales, Antreas Antoniou, Paul Mi-
caelli, and Amos J Storkey. 2021. Meta-learning in
neural networks: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. Advances
in Neural Information Processing Systems, 33:20179–
20191.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu,
Noah A Smith, and Mari Ostendorf. 2022. In-context
learning for few-shot dialogue state tracking. arXiv
preprint arXiv:2203.08568.

Yi Huang, Junlan Feng, Min Hu, Xiaoting Wu, Xiaoyu
Du, and Shuo Ma. 2020. Meta-reinforced multi-
domain state generator for dialogue systems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7109–
7118, Online. Association for Computational Lin-
guistics.

Sungdong Kim, Sohee Yang, Gyuwan Kim, and Sang-
Woo Lee. 2020. Efficient dialogue state tracking
by selectively overwriting memory. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 567–582, Online.
Association for Computational Linguistics.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. 2021.
Dialogue state tracking with a language model using
schema-driven prompting. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4937–4949, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul
Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu,
Andrea Madotto, Eunjoon Cho, and Rajen Subba.
2021. Leveraging slot descriptions for zero-shot
cross-domain dialogue StateTracking. In Proceed-
ings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5640–5648, Online. Association for Computational
Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Jarana Manotumruksa, Jeff Dalton, Edgar Meij, and Em-
ine Yilmaz. 2021. Improving dialogue state tracking
with turn-based loss function and sequential data aug-
mentation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 1674–
1683, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

1166

https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.eacl-main.148
https://doi.org/10.18653/v1/2021.eacl-main.148
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://doi.org/10.18653/v1/2022.acl-long.10
https://doi.org/10.18653/v1/2022.acl-long.10
https://doi.org/10.18653/v1/2022.acl-long.165
https://doi.org/10.18653/v1/2022.acl-long.165
https://doi.org/10.18653/v1/2022.acl-long.165
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.18653/v1/2020.acl-main.636
https://doi.org/10.18653/v1/2020.acl-main.636
https://doi.org/10.18653/v1/2020.acl-main.53
https://doi.org/10.18653/v1/2020.acl-main.53
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.18653/v1/2021.naacl-main.448
https://doi.org/10.18653/v1/2021.findings-emnlp.144
https://doi.org/10.18653/v1/2021.findings-emnlp.144
https://doi.org/10.18653/v1/2021.findings-emnlp.144

Jarana Manotumruksa, Jeffrey Dalton, Edgar Meij, and
Emine Yilmaz. 2022. Similarity-based multi-domain
dialogue state tracking with copy mechanisms for
task-based virtual personal assistants. In Proceedings
of the ACM Web Conference 2022, pages 2006–2014.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017. Neu-
ral belief tracker: Data-driven dialogue state tracking.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1777–1788, Vancouver, Canada.
Association for Computational Linguistics.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8689–8696.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2018. Learning to reweight examples for
robust deep learning. In International conference on
machine learning, pages 4334–4343. PMLR.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. nature, 323(6088):533–536.

Jamin Shin, Hangyeol Yu, Hyeongdon Moon, Andrea
Madotto, and Juneyoung Park. 2022. Dialogue sum-
maries as dialogue states (DS2), template-guided
summarization for few-shot dialogue state tracking.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 3824–3846, Dublin,
Ireland. Association for Computational Linguistics.

Zhoujian Sun, Zhengxing Huang, and Nai Ding.
2022. On tracking dialogue state by inheriting
slot values in mentioned slot pools. arXiv preprint
arXiv:2202.07156.

Yifan Wang, Jing Zhao, Junwei Bao, Chaoqun Duan,
Youzheng Wu, and Xiaodong He. 2022. Luna: Learn-
ing slot-turn alignment for dialogue state tracking.
arXiv preprint arXiv:2205.02550.

Zhuoran Wang and Oliver Lemon. 2013. A simple and
generic belief tracking mechanism for the dialog state
tracking challenge: On the believability of observed
information. In Proceedings of the SIGDIAL 2013
Conference, pages 423–432, Metz, France. Associa-
tion for Computational Linguistics.

Jason D. Williams. 2014. Web-style ranking and SLU
combination for dialog state tracking. In Proceedings
of the 15th Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL), pages
282–291, Philadelphia, PA, U.S.A. Association for
Computational Linguistics.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl,
Caiming Xiong, Richard Socher, and Pascale Fung.
2019. Transferable multi-domain state generator for

task-oriented dialogue systems. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 808–819, Florence, Italy.
Association for Computational Linguistics.

Fanghua Ye, Yue Feng, and Emine Yilmaz. 2022. AS-
SIST: Towards label noise-robust dialogue state track-
ing. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 2719–2731,
Dublin, Ireland. Association for Computational Lin-
guistics.

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz.
2021a. Multiwoz 2.4: A multi-domain task-oriented
dialogue dataset with essential annotation corrections
to improve state tracking evaluation. arXiv preprint
arXiv:2104.00773.

Fanghua Ye, Jarana Manotumruksa, Qiang Zhang,
Shenghui Li, and Emine Yilmaz. 2021b. Slot self-
attentive dialogue state tracking. In Proceedings of
the Web Conference 2021, pages 1598–1608.

Jiali Zeng, Yongjing Yin, Yang Liu, Yubin Ge, and
Jinsong Su. 2021. Domain adaptive meta-learning for
dialogue state tracking. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:2493–
2501.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2021. Understanding
deep learning (still) requires rethinking generaliza-
tion. Communications of the ACM, 64(3):107–115.

Jeffrey Zhao, Mahdis Mahdieh, Ye Zhang, Yuan Cao,
and Yonghui Wu. 2021. Effective sequence-to-
sequence dialogue state tracking. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 7486–7493, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Dawei Zhu, Xiaoyu Shen, Michael A Hedderich, and
Dietrich Klakow. 2022. Meta self-refinement for ro-
bust learning with weak supervision. arXiv preprint
arXiv:2205.07290.

Su Zhu, Jieyu Li, Lu Chen, and Kai Yu. 2020. Effi-
cient context and schema fusion networks for multi-
domain dialogue state tracking. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 766–781, Online. Association for Com-
putational Linguistics.

1167

https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/2022.findings-acl.302
https://doi.org/10.18653/v1/2022.findings-acl.302
https://doi.org/10.18653/v1/2022.findings-acl.302
https://aclanthology.org/W13-4067
https://aclanthology.org/W13-4067
https://aclanthology.org/W13-4067
https://aclanthology.org/W13-4067
https://doi.org/10.3115/v1/W14-4339
https://doi.org/10.3115/v1/W14-4339
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/2022.findings-acl.214
https://doi.org/10.18653/v1/2022.findings-acl.214
https://doi.org/10.18653/v1/2022.findings-acl.214
https://doi.org/10.18653/v1/2021.emnlp-main.593
https://doi.org/10.18653/v1/2021.emnlp-main.593
https://doi.org/10.18653/v1/2020.findings-emnlp.68
https://doi.org/10.18653/v1/2020.findings-emnlp.68
https://doi.org/10.18653/v1/2020.findings-emnlp.68

Model Scheme Epochs Learning Rate

SOM-DST
S1 30 4e-5
S2 25 2e-5
S3 25 1e-5

STAR
S1 15 5e-5
S2 15 1e-5
S3 12 3e-5

AUX-DST
S1 12 1e-4
S2 15 2.5e-5
S3 12 2e-5

Table 4: Number of maximum training epochs and peak
validation (meta) learning rate on MultiWOZ 2.4.

A Implementation Details

The MultiWOZ dataset contains seven domains: at-
traction, hotel, restaurant, taxi, train, hospital and
police. However, the hospital domain and police
domain only occur in the training set. Following
previous works (Wu et al., 2019; Kim et al., 2020),
we remove the two domains. This results in five
domains with 30 slots in total.

For a fair comparison with ASSIST, we directly
employ the pseudo labels published by the authors
instead of training a new auxiliary model ourselves
to generate pseudo labels. For all primary models,
we modify their released code to implement our
learning algorithm. All the primary models adopt
BERT (Devlin et al., 2019) as the dialogue con-
text encoder and are initialized using the pretrained
BERT-base-uncased model. As for the MLP net-
work in schemes S2 and S3, we set the hidden layer
dimension to 768. The output layer dimension is
fixed at 1. The MLP network is randomly initial-
ized. For scheme S1, we initialize the weighting
parameters to be 0.5. For all primary models, we
adopt their default hyperparameter settings, except
the training epochs. For SOM-DST, we halve the
batch size due to its high GPU memory require-
ment. We fix the validation (meta) batch size at 8
for all three primary models. AdamW (Loshchilov
and Hutter, 2017) is employed as the optimizer and
a linear scheduler with warmup is created to adjust
the learning rate dynamically. The warmup propor-
tion is fixed at 0.1. Tables 4 and 5 summarize the
training epochs and peak validation (meta) learning
rate in each scheme for each model.

B Convergence Analysis

Considering that our proposed learning algorithm
optimizes the primary model and the learnable func-

Model Scheme Epochs Learning Rate

SOM-DST
S1 25 3e-5
S2 25 1e-5
S3 25 8e-6

Table 5: Number of maximum training epochs and peak
validation (meta) learning rate on MultiWOZ 2.0*.

0 20000 40000 60000 80000
Training Steps

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Lo
ss

 V
al

ue
s

Training Loss
Validation (meta) Loss

Figure 6: Training and validation (meta) loss curves
over training steps.

tion alternately, it is meaningful to study its conver-
gence. To this end, we plot the loss value curves
of training batch and validation (meta) batch over
training steps. We adopt AUX-DST as the primary
model and apply scheme S1 to learn the weighting
parameters. We conduct this experiment on Mul-
tiWOZ 2.4. The results are illustrated in Figure 6.
As can be observed, the training loss and validation
(meta) loss both converge to relatively small values
after sufficient training steps.

C Error Analysis

We further investigate the error rate with respect
to each slot. We adopt SOM-DST as the primary
model and compare scheme S2 to ASSIST with
the best value of α (α = 0.4) and ASSIST without
using the pseudo labels (α = 0.0). We conduct
the experiment on MultiWOZ 2.4 as well and the
results are illustrated in Figure 7. It is shown that
MetaASSIST achieves lower error rates for 28 slots
when compared to ASSIST (α = 0.0). MetaAS-
SIST also outperforms ASSIST (α = 0.4) on 18 of
the 30 slots. These results verify again the superi-
ority of our proposed framework MetaASSIST.

1168

hotel-type
restaurant-nam

e
attraction-nam

e
hotel-nam

e
train-leaveat
taxi-destination
taxi-departure
hotel-pricerange
hotel-area
attraction-type
restaurant-pricerange
hotel-parking
restaurant-book tim

e
train-book people
restaurant-area
attraction-area
restaurant-food
hotel-internet
train-arriveby
hotel-book people
train-departure
hotel-stars
restaurant-book day
train-destination
train-day
hotel-book stay
hotel-book day
restaurant-book people
taxi-leaveat
taxi-arriveby

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Er
ro

r R
at

e
(%

)

ASSIST(= 0.0)
ASSIST(= 0.4)
MetaASSIST(S2)

Figure 7: The error rate of each slot on MultiWOZ 2.4. SOM-DST is employed as the primary model.

1169

