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Abstract

We introduce EDGEFORMER – a parameter-
efficient Transformer for on-device seq2seq
generation under the strict computation and
memory constraints. Compared with the pre-
vious parameter-efficient Transformers, EDGE-
FORMER applies two novel principles for cost-
effective parameterization, allowing it to per-
form better given the same parameter budget;
moreover, EDGEFORMER is further enhanced
by layer adaptation innovation that is proposed
for improving the network with shared layers.
Extensive experiments show EDGEFORMER
can effectively outperform previous parameter-
efficient Transformer baselines and achieve
competitive results under both the computation
and memory constraints. Given the promising
results, we release EDGELM1 – the pretrained
version of EDGEFORMER, which is the first
publicly available pretrained on-device seq2seq
model that can be easily fine-tuned for seq2seq
tasks with strong results, facilitating on-device
seq2seq generation in practice.

1 Introduction

On-device modeling draws increasing attention for
its unique advantages (Dhar et al., 2019). On the
other hand, strict resource constraints prevent many
neural networks performing well in the on-device
setting. In Natural Language Processing (NLP),
on-device sequence-to-sequence (seq2seq) genera-
tion remains challenging, especially for the Trans-
former (Vaswani et al., 2017) under strict resource
constraints in both computation and memory.

To customize the Transformer for seq2seq
tasks in the on-device setting, we propose EDGE-
FORMER – a novel parameter-efficient Trans-
former of the encoder-decoder architecture. EDGE-
FORMER is structurally similar to the standard
Transformer with a deep encoder and shallow de-
coder, but with a modification that it uses an in-

1https://github.com/microsoft/unilm/tree/
master/edgelm
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Figure 1: (a) Vanilla Transformer decoder layer in
which dffn > d; (b) Interleaved Transformer decoder
layer with shared lightweight FFNs in which dffn < d.

terleaved decoder with shared lightweight feed-
forward networks, as shown in Figure 1. The mod-
ified decoder architecture allows EDGEFORMER

to apply two novel principles that we propose for
cost-effective parameterization: 1) encoder-favored
parameterization that suggests we parameterize the
encoder using as many parameters as possible; 2)
load-balanced parameterization that suggests we
balance the load of model parameters to avoid them
being either underused or overused in a neural net-
work with shared parameterization.

In addition to cost-effective parameterization,
EDGEFORMER proposes and applies layer adap-
tation to further improve the model with tied lay-
ers, as Figure 2 shows. Inspired by parameter-
efficient task transfer, we investigate 3 efficient
layer adaptation approaches for improving the per-
formance with negligible cost. We show EDGE-
FORMER (with fewer than 10 million model param-
eters) largely outperforms the strong UNIVERSAL

TRANSFORMER baselines in the on-device setting
with competitive results, and the int8-quantized
EDGEFORMER can perform high-quality on-device
seq2seq generation within around 100ms latency
(20-30 sequence length on average) using two mid-
to-high-end CPU cores and less than 50MB RAM.

The contributions of this work are three-fold:

• This paper is one of the earliest work that
formally studies on-device seq2seq genera-
tion by discussing its challenges and defining
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Figure 2: (a) Encoder layers with shared weights (the same color) without layer adaptation: the tied weights
undermine the specialities of encoder layers to process their specific inputs; (b) Bias-based Layer Adaptation
(Bias-LA) employs free bias terms to adapt layers with tied weights to fit their specific roles well; (c) Adapter-LA
uses a layer-specific LoRA adaptation block with rank r < d for layer adaptation; (d) Prefix-LA uses L layer-specific
tokens (i.e., learnable parameters) as the prefix (dotted square) to adapt the mth layer.

a practical setting with appropriate resource
constraints for the evaluation.

• We propose EDGEFORMER, a parameter-
efficient Transformer with novel cost-effective
parameterization and layer adaptation, achiev-
ing the state-of-the-art result in the on-device
seq2seq generation setting under strict com-
puting and memory resource constraints.

• We introduce and release EDGELM (the pre-
trained EDGEFORMER) – the first publicly
available pretrained on-device seq2seq model
that can be easily fine-tuned for seq2seq tasks
with strong results, which can largely reduce
the effort for delivering a powerful on-device
seq2seq model in practice.

2 Background: Transformer

2.1 Architecture

The Transformer follows the encoder-decoder ar-
chitecture. The Transformer encoder consists of a
stack of encoder layers, each of which has a self-
attention module parameterized by projection ma-
trices for the query, key, value and output: [WQ,
WK , W V , WO] whose shapes are all d × d, fol-
lowed2 by a feed-forward network (FFN) parame-
terized by W f1 ∈ Rd×dffn and W f2 ∈ Rdffn×d.

The Transformer decoder consists of a stack of
decoder layers whose architecture is similar to an
encoder layer except for an additional cross atten-
tion module between self-attention and FFN.

2For simplicity, we omit discussing the layer normalization
and residual connection that are not related with this work.

In summary, we understand that the main param-
eters in an encoder layer i are:

Φei = [W {Q,K,V,O}
ei ,W f1

ei ,W
f2
ei ]

|Φei | = 4d2 + 2d× dencffn. For a decoder layer j,
its main parameters are:

Φdj = [W
{Q,K,V,O}
dj

,W
{Q,K,V,O}
dj

,W f1
dj

,W f2
dj

]

where W
{Q,K,V,O}
dj

is the cross-attention module.
|Φdj | = 8d2 + 2d× ddecffn.

2.2 Parameterization: Full vs Shared
Full Parameterization Full parameterization is
a common parameterization approach for Trans-
former, meaning that each model parameter (ex-
cluding embedding) is independent without being
shared by multiple modules in the network. In a for-
ward pass, each parameter is used only once. Full
parameterization allows parameters to be flexible
to fit their roles well during model training.

Shared Parameterization Despite the advan-
tages of full parameterization, it is criticized to use
large numbers of parameters inefficiently, motivat-
ing shared parameterization where multiple mod-
ules in a network share parameters. For a model
with shared parameterization (e.g., ALBERT), each
model parameter is exploited more than once in a
forward pass. The efficient parameterization can
lead to a better result given the same parameteriza-
tion budget, despite slowing down inference. On
the other hand, given a fixed architecture (i.e., the
same network depth and width), shared parameteri-
zation usually underperforms full parameterization
because it has much fewer free model parameters.
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Layer Module #params d = 512 d = 384 d = 768
#params / FLOPS #params / FLOPS #params / FLOPS

encoder layer
self-attn 4d2

3.15M / 95.4M 1.77M / 53.9M 7.08M / 214M
FFN 8d2

vanilla decoder layer
self-attn 4d2

4.20M / 128M 2.37M / 72.3M 9.45M / 286Mcross-attn 4d2

FFN 8d2

interleaved decoder layer
self-attn 4d2

2.23M / 72.9M 1.25M / 41.3M 5.01M / 162Mcross-attn 4d2

2 shared lightweight FFNs d2/2

Model d = 512 d = 384 d = 768
#params / FLOPS #params / FLOPS #params / FLOPS

6+6 Transformer (full parameterization) 44M / 1.84G 25M / 1.13G 99M / 3.76G
12+2 Transformer (full parameterization) 46M / 1.90G 26M / 1.17G 104M / 3.89G
12+2 UNIVERSAL TRANSFORMER (shared parameterization) 7.4M / 1.90G 4.1M / 1.17G 16.5M / 3.89G
EdgeFormer (Ours) 8.6M / 1.79G 4.8M / 1.11G 19.2M / 3.65G

Table 1: Top: #params and FLOPS for Transformer layers. For the encoder and vanilla decoder layer, dffn = 4d;
while for the interleaved decoder layer, dffn = d/4. Bottom: #params and FLOPS of whole models, where #params
excludes embedding lookup, and FLOPS is measured on a sample with src/tgt length of 30 and 32K vocabulary.

3 Constraints for On-device Seq2seq

Computation On-device computer vision (CV)
models tend to use 1G FLOPS (0.5G MACS) as a
constraint, which is directly followed by previous
work on on-device translation (Wu et al., 2020). In
our work, however, we propose to relax the FLOPS
constraint for typical seq2seq tasks to 2G FLOPS
(1G MACS) because the latency requirement for
on-device seq2seq generation is not so rigid as CV
tasks and it is uncommon for an on-device seq2seq
model to handle too many concurrent requests in
practice. The relaxed constraint allows better pre-
diction quality that strongly correlates with user
experience for seq2seq tasks, but still ensure the
CPU on edge devices to process tens of sentences
per second, which is more than sufficient for an on-
device seq2seq model. In addition to FLOPS that is
a theoretical hardware-independent measurement
for computational cost, we also require the runtime
latency for an input sentence (typically 20 ∼ 30 to-
kens on average) to be within around 100ms using
two mid-to-high-end CPU cores.

Memory In contrast to deploying a model on a
cloud server without caring about memory cost
much, there is a very strict memory constraint for
an on-device model in practice, because a user’s
edge device (e.g., PC) is not only for model hosting;
instead, it usually runs many other (background)
apps and programs at the same time besides the
model. To ensure moderate memory cost, we limit
the number of model parameters (excluding word

embedding lookup table) up to 10 million, follow-
ing previous work (Wu et al., 2020), and require the
runtime memory footprint to be less than 50MB.

4 EdgeFormer

4.1 Architecture

The biggest challenge for an on-device seq2seq
model is regarding the model size and memory
cost. As shown in Table 1, the number of parame-
ters of a standard Transformer-base model (d=512)
is about 45 million (excluding the embedding pa-
rameters), which is far beyond the parameterization
budget (10 million) and unavoidably leads to mas-
sive memory cost despite acceptable FLOPS.

EDGEFORMER is proposed to address the chal-
lenge. Instead of disruptive architectural changes3

as previous research (Wu et al., 2020; Mehta et al.,
2020; Panahi et al., 2021), EDGEFORMER’s archi-
tecture basically follows the standard Transformer
consisting of a 12-layer encoder and 2-layer4 de-
coder, which is efficient in decoding. We mainly
discuss the model with d=512 in this paper since
it can achieve good performance in the on-device
setting as long as it can be appropriately parame-
terized. The minor architectural modification we
propose for EDGEFORMER is using an interleaved

3We basically follow the standard Transformer without
major architectural changes because a standard Transformer
should be more widely compatible and supported than a cus-
tomized model architecture in user devices with various envi-
ronments (e.g., hardware and runtime libraries).

4We do not use 1-layer decoder because it does not consis-
tently perform well (Sun et al., 2021).
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Figure 3: (a) Performance of 6+6 Transformer (d = 512) on the newstest2013 English-German (En-De) translation
dataset (dev set): densely parameterizing the decoder is uneconomical and much less beneficial than parameterizing
the encoder; (b) Comparison of x+2 Transformer with full-/shared-parameterized x encoder layers on newstest2013
En-De dataset: when x > 6, the performance of the Transformer with shared parameterization only improves
marginally even if x continues to increase.

decoder where attention modules are interleaved
with shared lightweight5 FFNs (ddecffn < d; in this
work, ddecffn = d/4) in each decoder layer (shown
in Figure 1). The modification is helpful for cost-
effective parameterization (Section 4.2):

• The interleaved structure makes the architec-
ture of encoder and decoder layers consis-
tent (Ma et al., 2021), facilitating shared pa-
rameterization of attention modules through-
out the encoder and decoder.

• As shown in Table 1, the lightweight FFNs
that interleave attention modules in the de-
coder reduce FLOPS and save a large number
of parameters for decoder FFNs’ parameteri-
zation that is very uneconomical.

4.2 Cost-effective Parameterization
Due to the tight parameterization budget (i.e., 10
million), EDGEFORMER cannot be fully parameter-
ized as in the standard way; instead, it has to adopt
shared parameterization.

As a strong baseline for shared parameteriza-
tion, UNIVERSAL TRANSFORMER lets all its M
encoder layers share 1 group of encoder layer pa-
rameters and all its N decoder layers share 1 group
of decoder layer parameters:

Φe1
tied
= Φe2

tied
= · · · tied

= ΦeM

Φd1
tied
= Φd2

tied
= · · · tied

= ΦdN

5As observed by Kasai et al. (2020), reducing ddecffn does
not hurt the result much, as shown in Table 8 in Appendix A.

Although UNIVERSAL TRANSFORMER is a pop-
ular solution to shared parameterization, it is still
not cost-effective for two reasons:

First, UNIVERSAL TRANSFORMER uses (over)
half of total parameters to parameterize the de-
coder, which is uneconomical. As shown in Figure
3a, given a fixed architecture (6+6 Transformer,
d = 512), densely parameterizing the decoder re-
sults in much less performance gain than parame-
terizing the encoder. This suggests we use as many
parameters as possible to parameterize the encoder
for the performance.

Second, UNIVERSAL TRANSFORMER does not
consider load balance of model parameters, which
was a rarely discussed problem until the recent
emergence of Mixture-of-Expert models (Fedus
et al., 2021). For the Transformers with a deep en-
coder and shallow decoder, UNIVERSAL TRANS-
FORMER’s parameterization method will overbur-
den parameters in the encoder but underutilize pa-
rameters in the decoder. For example, for a 12+2
UNIVERSAL TRANSFORMER, a parameter in the
encoder is used 12 times, while a parameter in the
decoder is used only twice in a forward pass. As
shown in Figure 3b, moderately reusing parame-
ters (e.g., when x ≤ 4) helps better utilize the pa-
rameters, resulting in significant performance gain
without increasing parameters. However, as the
shared parameters are overused (when x > 6), the
performance gain will become marginal, which is
intuitive because a parameter’s capability is limited.
This suggests we balance the load of parameters to
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avoid them being either overused or underused.
Based on the above insights, we parameterize

EDGEFORMER in the following two novel princi-
ples for cost-effective parameterization:

Encoder-favored Parameterization For EDGE-
FORMER, we parameterize its encoder using as
many parameters as possible: except a small num-
ber of parameters (d2/2) for all lightweight FFNs
in the decoder, we use almost all parameters in our
budget to parameterize the encoder. For attention
modules in the decoder, we let them reuse (i.e.,
share) parameters with the attention modules in
the encoder since attention modules in both the en-
coder and decoder work in the same mechanism
and can be effectively shared (Dong et al., 2019).
Thanks to the interleaved decoder architecture that
makes the structure of encoder and decoder layers
consistent, we let the self-attention module in a de-
coder layer share parameters with its corresponding
odd layer in the encoder, and let its cross-attention
module share with the corresponding even layer in
the encoder, inspired by Ma et al. (2021):

W
[Q,K,V,O]
dj

tied
= W [Q,K,V,O]

e2j−1
(1 ≤ j ≤ 2)

W
[Q,K,V,O]
dj

tied
= W [Q,K,V,O]

e2j (1 ≤ j ≤ 2)

Load-balanced Parameterization We try pa-
rameterizing EDGEFORMER with a balanced load
for each model parameter so that each parameter
could be as equally exploited as possible in a for-
ward pass. Given the parameterization budget and
the load balance principle, we create 2 groups of
encoder FFN parameters equally shared by all en-
coder layers, 1 group of decoder FFN parameters is
shared by light FFNs in the decoder, and 4 groups
of attention parameters are shared throughout the
encoder and decoder. Except for parameters in the
encoder FFNs that are used 6 times, other parame-
ters are all used 4 times in a forward pass, resulting
in a load balanced parameterization:

W [Q,K,V,O]
ei

tied
= W [Q,K,V,O]

ei+4
(1 ≤ i < 9)

W [f1,f2]
ei

tied
= W [f1,f2]

ei+2
(1 ≤ i < 11)

W
[f1,f2]
dj

tied
= W

[f1,f2]
d1

(1 ≤ j ≤ 2)

4.3 Layer Adaptation
Shared parameterization causes layers with tied
weights to become less specialized, as discussed in
Section 1. To allow tied layers to be better adapted

to their corresponding roles, we propose layer adap-
tation to further enhance EDGEFORMER. Inspired
by parameter-efficient task transfer methods, we in-
vestigate three efficient layer adaption approaches:

Bias-based Layer Adaptation (Bias-LA) In-
spired by BitFit (Ben Zaken et al., 2021) fine-
tuning with only bias terms, we untie all bias terms
of each layer and use them to specialize the layers
with tied weights, as shown in Figure 2(b). As Bit-
Fit, bias-based layer adaptation introduces very few
additional parameters without inference overhead.

Adapter-based Layer Adaptation (Adapter-LA)
Adapter-based approaches (Houlsby et al., 2019) in-
troduce adapter modules for NLP task transfer with-
out full fune-tuning. We borrow this idea for layer
adaptation by introducing an independent adapter
module for each layer. Specifically, we adopt the
recently proposed LoRA (Hu et al., 2021) as our
layer adapter, as Figure 2(c) shows. In our experi-
ments, we apply the layer adapter to WQ and W V ,
as the original paper of LoRA suggests.

Prefix-based Layer Adaptation (Prefix-LA) In-
spired by recent work (Li & Liang, 2021; Lester
et al., 2021) using a prefix/prompt for task transfer,
we introduce L tokens with learnable parameters
as a specific prefix for each layer to adapt layers
with tied weights, as shown in Figure 2(d). The pre-
fixs are only used for keys and values in attention
modules, which will not introduce much inference
overhead as long as L is moderately set.

Following the encoder-favored principle in Sec-
tion 4.2, we only apply LA to encoder layers.

5 Experiments

5.1 Experimental Setting

We mainly evaluate our approach in Machine Trans-
lation (MT). We select the most popular MT bench-
mark – WMT14 English-German (En-De) transla-
tion task, which is also a touchstone for seq2seq
evaluation, as our main test bed. To compare with
previous work, we also evaluate WMT14 English-
French (En-Fr) translation. We follow the standard
way to train and evaluate evaluate WMT14 En-De
and En-Fr. As Ott et al. (2018), we use a joint
source-target dictionary of 32K Byte Pair Encod-
ing (BPE) for En-De, and 40K BPE for En-Fr. We
mainly use sacreBLEU (Post, 2018) for evaluation.

We select UNIVERSAL TRANSFORMER which is
the most popular and a strong baseline of parameter-
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Model #Params FLOPS sacreBLEU

Teacher 176M 6.7G 29.3

6+6 Transformer (full enc, full dec) 44M 1.8G 28.5
6+6 Transformer (full enc, shared dec) 23M 1.8G 28.2
6+6 Transformer (full dec, shared enc) 28M 1.8G 27.3

12+2 Transformer (full enc, full dec) 46M 1.9G 28.5
12+2 Transformer (full enc, shared dec) 42M 1.9G 28.4
12+2 Transformer (full dec, shared enc) 12M 1.9G 27.2

12+2 UT 7.4M 1.9G 27.0
12+2 UT (dffn = 2560) 8.5M 2.1G 27.2
12+2 UT (dencffn = 3072)1 8.5M 2.3G 27.4
12+2 UT (ddecffn = 3072) 8.5M 2.0G 27.0

EDGEFORMER w/o LA2 8.6M 1.8G 27.7†(1)

EDGEFORMER (Bias-LA) 8.6M 1.8G 27.8
EDGEFORMER (Adapter-LA) (r = 32) 9.4M 1.8G 28.0†(2)

EDGEFORMER (Prefix-LA) (L = 8) 8.6M 1.9G 28.0†(2)

Table 2: WMT14 En-De results. To fairly compare with UNIVERSAL TRANSFORMER (UT) that is originally
smaller than EDGEFORMER, we also test UT with larger FFNs to make its model size comparable to EDGEFORMER.
†(i) denotes p < 0.05 in significance test compared with the model marked with i.

FFNs Load #Params FLOPS sacreBLEU

2 FFNs (dffn = 2048)1 6-6 8.6M 1.8G 27.7

3 FFNs (dffn = 1536) 4-4-4 9.1M 1.6G 27.4†(1)

4 FFNs (dffn = 1024) 3-3-3-3 8.6M 1.4G 27.2†(1)

2 FFNs (dffn = 2048) 1-11 8.6M 1.8G 27.5†(1)

2 FFNs (dffn = 2048) 11-1 8.6M 1.8G 27.4†(1)

Table 3: Performance of EDGEFORMER with various encoder FFN parameterization on WMT14 En-De. Load 6-6
means the 2 groups of FFN parameters are used 6 times each, while Load 1-11 means 1 group of FFN is used once,
and the other is used 11 times.

efficient Transformer for fair comparison. By de-
fault, we apply Seq-KD (Kim & Rush, 2016) to
train models and use the full-parameterized 6+6
Transformer-big (d = 1, 024) model (Vaswani
et al., 2017; Ott et al., 2018) as the teacher.

By default, for each experiment, we train 5 mod-
els with different initializations and report their
average evaluation results for Table 2, 3 and 6
with significance test. For inference, we use beam
search (beam=5).

5.2 Offline Evaluation

We evaluate EDGEFORMER and compare it with
UNIVERSAL TRANSFORMER (UT) on WMT14
En-De. According to Table 2, the EDGEFORMER

without layer adaptation (LA) largely outperforms
UTs. Among the LA approaches, both Adapter-LA
and Prefix-LA are clear to benefit the result with
marginal computational or parameterization cost,
while Bias-LA does not show significant perfor-
mance gain though it is the cheapest.

As discussed in Section 4.2, the advantage
of EDGEFORMER over UT comes from its cost-
effective parameterization. The encoder-favored
principle is again supported by comparing 6+6
Transformers’ results in Table 2, which is consis-
tent with the observation on the dev set in Figure
3a. To further understand the effectiveness of load-
balanced parameterization principles, we conduct
an ablation study by adjusting encoder FFNs in
EDGEFORMER. Table 3 shows the results of EDGE-
FORMER with various FFN parameterization. As
we reduce dffn (e.g., to 1536 or 1024), we can in-
crease the group of encoder FFN parameters and
reduce their load given a fixed parameterization
budget. However, such a strategy leads to a clear
degradation of sacreBLEU. One reason is that the
FFN parameters of a reduced load (3-4 times) are
not so fully utilized as the baseline (6 times) despite
other reasons such as the differences of network
shape (e.g., dffn). To minimize the effects of other
factors, we compare the first group with a balanced
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(a) (b)

Figure 4: The effects of (a) rank r in Adapter-LA, and (b) prefix length L in Prefix-LA on the performance in
WMT14 En-De. Note that r = 64 will lead to exceed our parameterization budget despite better performance.

Model #params FLOPS En-De En-Fr

6+6 Transformer 44M 1.8G 28.3 41.0
12+2 Transformer 46M 1.9G 28.4 41.4
12+2 UT 7.4M 1.9G 26.2 39.2

DeLighT 31.4M - 27.6 39.6
Shapeshifter 8.2M - 26.6 40.8
Lite Transformer (small) 2.9M 0.2G 22.5 35.3
Lite Transformer (medium) 11.7M 0.7G 25.6 39.1
Lite Transformer (big) 17.3M 1.0G 26.5 39.6

EdgeFormer w/o LA 8.6M 1.8G 26.5 39.8
EdgeFormer (Adapter-LA) 9.4M 1.8G 26.9 40.5
EdgeFormer (Prefix-LA) 8.6M 1.9G 26.8 40.3

Table 4: Result comparison to previous parameter-efficient Transformers that have fewer parameters than the
baseline Transformer (around 45M parameters). “-” means that the metrics are unavailable or not comparable in
the original paper. The underlines denote that the metrics cannot meet the on-device requirement. Note that all the
models in this table do not apply Seq-KD.

parameter load (i.e., 6-6) and the last group with a
imbalanced parameter load (1-11 or 11-1), show-
ing load-balanced parameterization is consistently
better than the imbalanced counterparts.

After discussing parameterization, we then an-
alyze the effects of layer adaptation on the results
by mainly focusing on Adapter-LA and Prefix-LA
that both show performance gain. Figure 4 shows
the effects of the rank r in Adapter-LA and prefix
length L in Prefix-LA. As r increases, the model
performance will gradually improve. However,
when r becomes large (e.g., r ≥ 64), it will ex-
ceed our parameterization budget and thus the gain
will become meaningless. As for prefix length
L in Prefix-LA, it is different from r that it will
not keep improving the results as it increases: the
gain can hardly be observed after some length (e.g.,
L = 8), which is similar to the observation in
prefix-tuning (Li & Liang, 2021). Therefore, we
use r = 32 and L = 8 as the default setting to

report the results of Adapter-LA and Prefix-LA.

Finally, we compare EDGEFORMER with re-
cent work on parameter-efficient Transformer mod-
eling. To keep consistency of the training and
evaluation protocols with previous work, we here
give up using Seq-KD to train the models, and re-
port BLEU (Papineni et al., 2002) for comparison.
Specifically, we compare with DeLighT (Mehta
et al., 2020), Shapeshifter (Panahi et al., 2021)
and Lite Transformer (Wu et al., 2020), and show
the results in Table 4. However, it is notable that
the results are not strictly comparable because the
previous studies have their own focus and setting,
which are different from ours. For example, De-
LighT and Lite Transformer focus much more on
FLOPS than the model size, thus they do not a
desirable tradeoff between the model quality and
size; while Shapeshifter’s goal is minimizing the
model size despite an additional 10% ∼ 20% in-
ference overhead. Regardless of these factors that
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WMT14 En-De

Model Disk size (7zip) Peak Memory Latency 1 Latency 2 sacreBLEU

EdgeFormer (Adapter-LA, 32k vocab) 28MB 60MB 65ms 114ms 27.2
EdgeFormer (Adapter-LA, 8k vocab) 15MB 47MB 59ms 101ms 27.1

CoNLL-14

Model Disk size (7zip) Peak Memory Latency 1 Latency 2 F0.5

EdgeFormer (Adapter-LA, 2k vocab) 11MB 42MB 51ms 98ms 50.8

Table 5: Runtime results for int8-quantized EDGEFORMER, in which Latency1 and Latency 2 denote the average
latency per sentence measured on the Intel® Xeon® E-2288G CPU and Qualcomm SM8150 Snapdragon 855 CPU,
respectively. We run through the test set with batch size=1, and use greedy decoding instead of beam search.

Model #Param FLOPS CoNLL14 XSum SQuAD-NQG
F0.5 RG-1 RG-2 RG-L B4 MTR RG-L

Transformer-base 44M 1.8G 50.1 31.2 10.7 24.9 2.6∗ 9.0∗ 26.0∗

Pretrained 12+2 UT (dffn = 2048) 7.4M 1.4G 50.8 36.0 14.5 29.2 19.8 22.2 46.9
Pretrained 12+2 UT (dffn = 3072)1 9.4M 1.9G 51.1 36.7 14.9 29.7 20.1 22.4 47.1

EDGELM 9.4M 1.3G 52.0(1) 37.2(1) 15.4(1) 30.3(1) 20.6(1) 23.0(1) 47.4(1)

Table 6: The performance of EDGELM in comparison with the baselines. ∗ denotes that the results are from Chen
et al. (2019).

prevent fair comparison, EDGEFORMER achieves
26.9 BLEU in En-De under the strict on-device
resource constraints, which outperforms the state-
of-the-art Shapeshifter with the similar model size
despite. It is notable that EDGEFORMER here uses
the same model architecture and training configura-
tion for both En-De and En-Fr, while Shapeshifter
uses different model architecture configurations
specific for En-De and En-Fr, which may account
for its better performance in En-Fr.

5.3 Runtime Evaluation

We conduct experiments in WMT14 En-De trans-
lation and CoNLL-14 Grammatical Error Correc-
tion6 (GEC) benchmark for runtime latency and
memory evaluation using onnxruntime7 that sup-
ports efficient seq2seq decoding. We apply int8-
quantization to EDGEFORMER and test latency on
2 devices: a 2-core Intel® Xeon® E-2288G CPU
(in PC), and a 2-core Qualcomm SM8150 Snap-
dragon 855 CPU (in Pixel 4), which are both cur-
rent mid-to-high end CPUs launched 2-3 years ago.

Table 5 shows runtime evaluation results. With
int8-quantization and smaller vocabulary, EDGE-
FORMER can not only meet the on-device seq2seq
requirements but also maintain its good perfor-
mance, demonstrating its practical values.

6We include experiments details of GEC in Appendix A.
7https://github.com/microsoft/onnxruntime

6 EdgeLM – The Pretrained EdgeFormer

Given the promising results, we introduce
EDGELM – the pretrained8 EDGEFORMER

(Adapter-LA) with 8K sentenpiece vocabulary with
factorized embedding (dembed = 128) through the
same self-supervised task (i.e., masked span infill-
ing) as T5 (Raffel et al., 2019) and make it publicly
available for downstream on-device seq2seq task
fine-tuning.

We evaluate EDGELM in the benchmarks of
three popular seq2seq tasks: CoNLL-14 for Gram-
matical Error Correction (GEC), XSum (Narayan
et al., 2018) for Abstractive Summarization, and
SQuAD-NQG (Du et al., 2017) for Question Gen-
eration. According to Table 6, EDGELM achieves
significantly better performance than the pretrained
UT models as well as the Transformer-base model
trained from scratch. We believe that EDGELM,
as the first publicly released on-device seq2seq
pretrained model, can largely facilitate on-device
seq2seq generation in practice.

7 Related Work

On-device seq2seq generation in NLP is a research
area that has been less explored than on-device CV
and NLU (Tambe et al., 2021). Besides the general
techniques like pruning, compression, quantiza-
tion and knowledge distillation (Fan et al., 2019;

8We include pretraining details in the Appendix B.
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Xu et al., 2020; Li et al., 2022) that are orthogo-
nal to our effort, parameter-efficient Transformer-
based seq2seq modeling is the most related re-
search branch to ours. In this branch, UNIVERSAL

TRANSFORMER (Dehghani et al., 2018) uses cross-
layer sharing method, which is the most popular
solution to parameter efficiency. Takase & Kiyono
(2021) extends UNIVERSAL TRANSFORMER by
studying different ways for layer sharing, and Reid
et al. (2021) proposes to free the first and last en-
coder layer and widen the intermediate layers for
better performance. However, both the approaches
consider parameter-efficiency only without caring
about latency becoming worse.

In addition to work improving parameter effi-
ciency by weight sharing, there is research that
studies lightweight model architecture for seq2seq
learning where early work (Gehring et al., 2017;
Wu et al., 2019) mainly focuses on CNNs, while
recent efforts have tended to switch to attention-
based models such as Mehta et al. (2020). Also,
low-rank factorization has been studied intensively
to make the model tiny (Zhang et al., 2021; Panahi
et al., 2021); and hardware-aware network archi-
tecture search with elastic modeling (Wang et al.,
2020) has been proposed recently for facilitating
deployment of seq2seq models on various devices.
Among previous studies, the work of Wu et al.
(2020) is the most related to ours, which studies
seq2seq generation in an on-device setting. How-
ever, it sets the computational constraint for on-
device seq2seq to be the same with the CV tasks,
which is too strict and unnecessary, as discussed
in Section 3. As a result, their models focus on
FLOPS optimization much more than memory,
leading to an undesirable tradeoff between the
quality and model size for the practical on-device
seq2seq setting which should care about memory
much more than latency. In contrast, our work care-
fully evaluates bottleneck constraints, and proposes
appropriate models with parameterization and layer
adaptation innovations, largely improving the re-
sults for practical on-device seq2seq generation.

8 Conclusion and Future Work

We formally study on-device seq2seq generation,
including defining its practical resource constraint
setting and proposing an appropriate modeling
technology EDGEFORMER. The cost-effective pa-
rameterization and layer adaptation innovations in
EDGEFORMER both prove effective to improve

the results with negligible computation and mem-
ory cost, achieving state-of-the-art results in the
on-device seq2seq generation setting. Our re-
leased pretrained EDGEFORMER – EDGELM can
be easily fine-tuned for downstream seq2seq tasks,
largely facilitating on-device seq2seq generation in
practice.

For future work, we plan to further study load-
balanced parameterization for parameter-efficient
models, which is an interesting and new but seem-
ingly profound machine learning research problem:
instead of naively assuming that all the parameters
are equal in this preliminary study, we suspect that
parameters in different modules (e.g., parameters
in the self-attn and FFN; or parameters in differ-
ent layers) should be under different amounts of
load. We look forward to in-depth research on this
problem, which might be helpful to deepen our
understanding of neural networks.

9 Limitations

EDGEFORMER is a preliminary model proposed
for on-device seq2seq generation setting, which
still has much room for improvement. For exam-
ple, as mentioned in Section 8, the current load
balance mechanism naively assumes that the num-
ber of times that a parameter is used in a forward
pass is equal to its load, which may not be always
true because parameters in different moduels are
different: some parameters may be effectively used
more times than others, which requires deeper un-
derstanding of neural network and the Transformer.
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A Details of Evaluations for MT and GEC

For MT, we follow the setting of Ott et al. (2018)
to train the model on the WMT14 datasets. For En-
De, the training set contains 4.5M parallel sentence
pairs. We use newstest2013 as our dev set. For
En-Fr, there are 36M parallel sentence pairs for
training, and we use newstest2012+2013 as the dev
set.

In GEC evaluation, we follow previous
work (Chen et al., 2020; Zhou et al., 2021) to use
the BEA-19 restricted setting, training with Lang-
8 (Mizumoto et al., 2011), FCE (Yannakoudakis
et al., 2011) and WI+LOCNESS (Bryant et al.,
2019). We validate on CoNLL-13 shared task
dataset (Ng et al., 2013), and test on CoNLL-14
shared task dataset (Ng et al., 2014). After de-
duplicating, we have around 900K sentence pairs
for training. Both the dev (CoNLL-13) and test
(CoNLL-14) have 1.3K sampales. We train a sen-
tencepiece (Kudo & Richardson, 2018) model of
2K vocabulary for tokenization, and evaluate with
the metric of Max-Match (Dahlmeier & Ng, 2012)
F0.5.

For model training configuration, we show in
Table 7; The ablation study into the reduction of
ddecffn is presented in Table 8.

Configurations Values
Number of epochs 1000
Devices 8 Nvidia V100 GPU
Max tokens per GPU 20,000
Update Frequency 4
Optimizer Adam

(β1=0.9, β2=0.99, ϵ=1× 10−8)
Learning rate 1× 10−3

Learning rate scheduler inverse sqrt
Warmup 4000
Weight decay 0.00001
Loss Function label smoothed cross entropy

(label-smoothing=0.1)
Dropout [0.1, 0.2] for MT, [0.3, 0.4, 0.5] for GEC

Table 7: Training details for EDGEFORMER for NMT
and GEC.

ddecffn #Param sacreBLEU

2048 46M 26.5
512 37M 26.4
256 35M 26.4
128 34M 26.4

Table 8: The ablation study into the reduction of ddecffn
on a standard 6+6 Transformer on the dev set.

Configurations Values
Total updates 250,000
Devices 8× 8 Nvidia V100 GPU
Batch size per GPU 128
Sample length 512
Optimizer Adam

(β1=0.9, β2=0.98 ϵ=1× 10−6)
Learning rate 5× 10−4

Learning rate scheduler polynomial
clip norm 2.0
Warmup 10,000
Loss Function cross entropy
Weight decay 0.0
Dropout 0.1

Table 9: Pretraining details for EDGELM.

Configurations Values
Total updates 100,000
Devices 8 Nvidia V100 GPU
Max tokens per GPU 20,000
Optimizer Adam

(β1=0.9, β2=0.98 ϵ=1× 10−6)
Learning rate Vary for different downstream tasks
Learning rate scheduler polynomial
clip norm 1.0
Warmup 8,000
Loss Function cross entropy
Weight decay 0.0
Dropout 0.1

Table 10: Fine-tuning details for EDGELM.

B Configurations of Pretraining and
Fine-tuning

We pretrain EDGEFORMER with the same pretrain
data as RoBERTa (Liu et al., 2019), through the
same pretrain task as T5 (Raffel et al., 2019). The
detailed configuration of pretraining is shown in
Table 9.

For downstream task fine-tuning, we present the
configuration details in Table 10.

C Detailed Evaluation of EdgeLM

In addition to the evaluation results presented in
Table 6, we present more detailed results in Table
11 and 12 to show the performance of EDGELM
in different sizes and with different vocabularies
with factorized embedding parameterization respec-
tively. According to Table 11, EDGELMs consis-
tently outperform the pretrained UTs in the down-
stream tasks under various model sizes with only
70% computation cost of UTs.

According to Table 12, we show that enlarging
the vocabulary size with factorized embedding is
effective to improve abstractive summarization and
question generation tasks, while it appears to have
an adverse effect for GEC. One reason for the per-
formance degradation is that GEC is more sensitive
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Model #Param FLOPS CoNLL-14 Xsum QG
F0.5 RG-1 RG-2 RG-L B4 MTR RG-L

Transformer 44M 1.8G 50.1 31.2 10.7 24.9 2.6 9.0 26.0

Pretrained UT (d = 512, dffn = 3072) 9.4M 1.9G 51.1 36.7 14.9 29.7 20.1 22.4 47.1
EDGELM (d = 512) 9.4M 1.3G 52.0 37.2 15.4 30.3 20.6 23.1 47.4

Pretrained UT (d = 384, dffn = 2432) 5.5M 1.1G 50.1 31.9 11.5 25.7 17.9 21.0 45.9
EDGELM (d = 384) 5.5M 0.8G 50.1 32.3 11.7 26.0 18.9 21.2 45.9

Pretrained UT (d = 768, dffn = 4608) 21.2M 4.2G 52.8 37.3 15.6 30.4 20.9 23.5 47.5
EDGELM (d = 768) 21.4M 2.9G 53.1 37.9 15.9 30.8 21.0 23.6 47.8

Table 11: The comparison between pretrained Universal Transformer (UT) and EdgeLM with Adapter-based layer
adaptation (r = d/8). We enlarge UT’s dffn to let its model size comparable with its EdgeFormer counterpart with
the same d for fair comparison given the same parameter budget though introducing additional cost.

Vocab dembed #Param (including embedding) CoNLL-14 Xsum QG
F0.5 RG-1 RG-2 RG-L B4 MTR RG-L

spm2k 512 10.4M 52.7 36.3 14.8 29.5 19.0 21.7 46.3
spm8k 128 10.5M 52.0 37.2 15.4 30.3 20.6 23.1 47.4

spm16k 64 10.5M 51.6 37.1 15.1 30.0 19.6 22.3 46.7

Table 12: EDGELM (d = 512) with Adapter-LA (r = 32) using different vocabulary and dembed. Except the model
with spm2k whose dembed = d, the models with spm8k and spm16k use factorized embedding to prevent increasing
the total parameters.

to morphological and syntactic information of a
token; when dembed becomes small with factorized
embedding, it may not accurately capture the mor-
phological and syntactic information of the token.
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