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Abstract

Iterative text revision improves text quality by
fixing grammatical errors, rephrasing for bet-
ter readability or contextual appropriateness,
or reorganizing sentence structures through-
out a document. Most recent research has fo-
cused on understanding and classifying differ-
ent types of edits in the iterative revision pro-
cess from human-written text instead of build-
ing accurate and robust systems for iterative
text revision. In this work, we aim to build
an end-to-end text revision system that can it-
eratively generate helpful edits by explicitly
detecting editable spans (where-to-edit) with
their corresponding edit intents and then in-
structing a revision model to revise the de-
tected edit spans. Leveraging datasets from
other related text editing NLP tasks, combined
with the specification of editable spans, leads
our system to more accurately model the pro-
cess of iterative text refinement, as evidenced
by empirical results and human evaluations.
Our system significantly outperforms previous
baselines on our text revision tasks and other
standard text revision tasks, including gram-
matical error correction, text simplification,
sentence fusion, and style transfer. Through
extensive qualitative and quantitative analysis,
we make vital connections between edit inten-
tions and writing quality, and better computa-
tional modeling of iterative text revisions.

1 Introduction

Text revision, naturally, is an iterative process.
Writers are required to simultaneously and re-
peatedly comprehend multiple requirements, such
as covering the content, and following linguistic
norms and discourse conventions, when producing
well-written texts (Flower, 1980; Collins and Gen-
tner, 1980; Vaughan and McDonald, 1986). Most
recent text editing studies have either focused on
general-purpose text revision (Malmi et al., 2019;

*The work was done while Zae Myung Kim was interning
at Grammarly.

Tag Gran. Iter.

LASERTAGGER (Malmi et al., 2019) O S 5
FELIX (Mallinson et al., 2020) O S&P 5
SEQ2EDITS (Stahlberg and Kumar, 2020) O S 5
ITERATER (Du et al., 2022b) 5 S&P 3

DELITERATER (Ours) I S&P 3

Table 1: Comparison with previous works. Gran. for
Granularity: S for sentence-level and P for paragraph-
level. Iter. for Iterativeness. Tag for the type of Edit
Tagging: O for Edit Operations, I for Edit Intentions.

Mallinson et al., 2020; Stahlberg and Kumar, 2020;
Li et al., 2022), or targeted monolingual sequence
transduction tasks individually, such as grammat-
ical error correction (GEC) (Awasthi et al., 2019;
Omelianchuk et al., 2020; Chen et al., 2020), text
simplification (Dong et al., 2019; Kumar et al.,
2020; Omelianchuk et al., 2021; Agrawal et al.,
2021), and text style transfer (Madaan et al., 2020;
Malmi et al., 2020; Reid and Zhong, 2021), among
others.

Despite their progress, these works are quite re-
stricted in their generalizability to practical use
cases: (1) They generally rely on learning edit
operations, such as ADD, KEEP, DELETE, and
REPLACE, which fail to account for many nuanced
edit operations such as complex phrasal or sentence
rewrites such as word reordering (Malmi et al.,
2019) or other complex paragraph-level edits. A
fundamental limitation of these surface-level edit
operations is that they fail to capture the underlying
intentions behind the resulting edit operations, and
hence, do not learn anything about why a part of
text was edited in a certain way. For example, a
certain span of words may be replaced because it
is unclear (CLARITY) or disfluent (FLUENCY); and
depending on this edit intent (as opposed to super-
ficial edit operations), the revised outcome could
be different (Section 5.2). (2) These tagging ap-
proaches are inherently limited as they have been
developed for sentence-level editing (Mallinson
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et al., 2020). (3) Since most of the aforementioned
studies re-purpose existing sentence-level text edit-
ing tasks into monolingual tasks, they are unable to
understand or reason about the iterative nature of
revision, which more closely reflects the human re-
vision process. Table 1 summarizes the comparison
with previous works.

In this work, we propose DELITERATER: A
DELineate-Edit-Iterate approach for the task of
Iterative Text Revision (Du et al., 2022b). Our
approach is composed of three stages: (1) Delin-
eate: We first detect editable spans, the spans of
text that require edits, along with their desired edit
intentions such as coherence and fluency using a
span detection model. (2) Edit: A text revision
model then generates the revised text conditioned
on the detected editable spans. (3) Iterate: The
system then continues to iteratively revise the text
by going back to Stage 1 (Delineate) until it does
not generate further edits or reaches a predefined
maximum revision depth.

The main difference of DELITERATER from
ITERATER (Du et al., 2022b) is that the editable
spans are detected first before starting surface-level
revisions, making revisions more interpretable
and controllable. Also, each editable span is
grounded on corresponding edit intentions, pro-
viding more nuanced reasoning behind the edit op-
erations. We also extend Du et al. (2022b)’s ITER-
ATER dataset (we refer to the augmented dataset as
ITERATER+) by incorporating data from other text
editing tasks, leading to significant improvements
in performance.1

Our method shows significant improvements on
the Iterative Text Editing task, as well as four well-
established monolingual text editing tasks: GEC,
sentence fusion, split & rephrase, text simplifica-
tion, and formality style transfer.

2 Related Work
Our work is most closely related to Du et al.
(2022b), who formally introduced the task of It-
erative Text Revision by releasing an annotated
dataset of iteratively revised texts, and also used it
to provide edit suggestions in a human-in-the-loop
iterative editing setting (Du et al., 2022a). In both
their works, they computationally model the iter-
ative text revision process, leveraging edit intent
information by simply appending it to the input

1The datasets, codes, and models can be found at https:
//github.com/vipulraheja/iterater.

text. However, we improve on their modeling for-
mulation, as evidenced by our experimental results
in a significant way: instead of simply appending
edit intentions at the beginning of any sentence, we
provide more fine-grained edit intention informa-
tion to our text revision model by first detecting
the exact spans which require an edit. Moreover,
by incorporating edit-intention-specific knowledge
from external task-specific datasets, we are able to
push the performance further.

3 DELITERATER

We follow the Iterative Text Revision task as intro-
duced by Du et al. (2022b): given a source docu-
ment Dt−1, at each revision depth t, a text revision
system will apply a set of edits to get the revised
document Dt. The system will continue iterating
revision until the revised document Dt satisfies a
set of predefined stopping criteria, such as reach-
ing a predefined maximum revision depth tmax, or
making no edits between Dt−1 and Dt.

In this section, we describe ITERATER+, the
augmented version of the iterative text revision
dataset (Du et al., 2022b) and the system pipeline
for DELITERATER.

3.1 ITERATER+: Augmented Dataset
We use the Iterative Text Revision dataset
(ITERATER) released by Du et al. (2022a,b) as
our primary dataset. Under their dataset taxon-
omy, each text edit is broadly categorized into one
of two groups: MEANING-CHANGED and NON-
MEANING-CHANGED. Further, edits that belong
to the latter group are further assigned to one of
the following five sub-groups: FLUENCY, COHER-
ENCE, CLARITY, STYLE, and OTHER. This tax-
onomy of edit intents reflects writers’ general “in-
tention" when revising formal documents. It al-
lows us to model the purpose behind each edit of
texts, providing more in-depth information than
just superficial edit actions such as ADD, KEEP,
and DELETE.

In this work, we build upon the ITERATER
dataset by gathering data from other similar text
editing tasks according to the aforementioned tax-
onomy as ITERATER (Section 3.1.2).

3.1.1 Pre-processing
We observe that many edits from the original
dataset were actually MEANING-CHANGED edits,
i.e., the revised text embodied significantly dif-
ferent content from the old text. This often oc-
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Edit Intention Dataset Example Input Example Output

FLUENCY

NUCLE 2014 Technology based on scientific research
requires a wide range of knowledge about
the research.

Technology based on scientific research
requires a wide range of knowledge to
conduct the research.

Lang-8 These days, I write my daily schedule on
a notebook.

These days, I write my daily schedule in
a notebook.

COHERENCE DiscoFuse Their flight is weak. They run quickly
through the tree canopy.

Their flight is weak, but they run quickly
through the tree canopy.

CLARITY

NEWSELA A storm surge is what forecasters con-
sider a hurricane’s most treacherous as-
pect.

A storm surge is considered a hurricane’s
most dangerous aspect.

WikiLarge Wyolica is a two-piece group from Japan. Wyolica is a two person band from Japan.

Split and Rephrase Aaron Deer plays guitar in Indie rock
style whose origins are coming from the
new wave music.

Aaron Deer is a an Indie rock guitar
player. The stylistic origin of indie rock
is new wave music.

STYLE GYAFC They wouldnt want u stepping in. They would not desire your interference.

Table 2: Examples of data instances from external corpora used to create the augmented ITERATER+ dataset.

curred when the revisions were made at a document
level, reorganizing the paragraphs while adding
new contents. In addition, there were also many
cases where significant amounts of texts were ei-
ther added or deleted by the revisions. Since new
content generation is not the scope of our task, we
filtered these type of edits by comparing length ra-
tio and character-level similarity between original
and revised strings, discarding nearly 40% of the
dataset.

3.1.2 Data Augmentation
The ITERATER dataset taxonomy is general
enough to encompass other text editing tasks. For
example, the datasets from the GEC task can be
viewed as datasets for FLUENCY, text simplifica-
tion task as CLARITY edits, sentence fusion or split-
ting as COHERENCE, and formality style transfer as
STYLE. Using this insight, we adopted the follow-
ing external datasets for our system. These datasets
underwent an identical pre-processing routine as
the main dataset.

Fluency We use two prominent corpora for GEC:
the NUS Corpus of Learner English (NUCLE)
(Dahlmeier et al., 2013), which consists of 1,414
essays written by students at the National Univer-
sity of Singapore (NUS); and the NAIST Lang-
8 Corpus of Learner English (Tajiri et al., 2012),
which is one of the largest and most widely used
datasets for GEC. The essays in the NUCLE Cor-
pus were responses to some prompts from various
topics including technology innovation and health
care, and were hand-corrected by professional En-
glish instructors. Lang-8 Corpus, on the other hand,

was created by language learners correcting each
other’s texts. Although these datasets contain multi-
ple fine-grained error categories specific to GEC, in
this work, we consider all errors in these corpora as
FLUENCY, following the comprehensive definition
of fluency in the ITERATER dataset taxonomy.

Clarity We use the Newsela corpus (Xu et al.,
2015) for the Text Simplification task, which con-
sists of 1,130 articles and their simplified ver-
sions which were created by professional editors
at Newsela, an online education platform. We
also use WikiLarge, another benchmark dataset
for the text simplification task. It was constructed
from automatically-aligned complex-simple sen-
tence pairs from English Wikipedia and Simple
English Wikipedia (Zhu et al., 2010; Woodsend
and Lapata, 2011; Kauchak, 2013). We use the
standardized split of this dataset released by Zhang
and Lapata (2017) consisting of 296k complex-
simple sentence pairs. Finally, we use the Split and
Rephrase (Narayan et al., 2017) dataset, which in-
cludes 1.06M instances mapping a single complex
sentence to a sequence of sentences that express
the same meaning. We labeled the edits collected
from these datasets as CLARITY edits.

Coherence We use the DiscoFuse dataset (Geva
et al., 2019), which provides a large collection of
pairs of sentences that were originally from one co-
herent sentence, and segmented into two by a rule-
based method from sports articles and Wikipedia.
The task then involves linking these two sentences
as coherently as possible where it could be done
through inserting a discourse connective or merg-
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Intentions Dataset Sentences Edits
FLUENCY ITERATER 131k 131k

TASK-SPECIFIC 124k 162k

CLARITY ITERATER 109k 109k
TASK-SPECIFIC 22k 28k

COHERENCE ITERATER 28k 26k
TASK-SPECIFIC 133k 145k

STYLE ITERATER 3k 3k
TASK-SPECIFIC 45k 90k

Table 3: Data statistics of ITERATER+. Table 8 con-
tains full data statistics.

ing the input sentences, etc. These dataset samples
were labeled as COHERENCE for our work.

Style We use Grammarly’s Yahoo Answers For-
mality Corpus (GYAFC) (Rao and Tetreault, 2018)
which contains 110k informal and formal sentence
pairs. We note that the notion of STYLE edits can
be quite subjective as it is about conveying writers’
writing preferences, including emotions, tone, and
voice; and informal to formal conversion can be
viewed as one aspect of STYLE. We use the dataset
for learning informal to formal rewriting because
ITERATER dataset has primarily been developed
for mostly formal writing domains such as ArXiv,
Wikipedia and News.

Table 3 shows the statistics and intent distribu-
tions of all datasets after the pre-processing routine.
Table 2 depicts instances of data points from all of
the external corpora mentioned in this section.

3.2 System Pipeline

Our system is arranged in a pipeline where edit
intent classification is conducted at token-level as a
structured prediction task, followed by span-based
text revision where the predicted intent labels are
inserted as tag spans in the input. Figure 1 high-
lights the overall process of the pipeline at a given
revision depth, with an illustrative example. In
the iterative text revision setting, this illustrated
process repeats until either no editable spans are
detected, or a predefined maximum revision depth
is reached.

3.2.1 Intent Span Detection
Rather than predicting a single edit intent at input-
level as done in Du et al. (2022a), our model pre-
dicts intents at token-level. Training of such a
model was difficult without the construction of our
new dataset, since the original ITERATER dataset

contained a lot of noisy revisions that caused the
token-level model to be degenerate.

The intent classification model was trained by
fine-tuning a token-level classification layer on top
of the pre-trained ROBERTA-LARGE model (Liu
et al., 2019), where the input to the model is a plain
text and output is one of the five classes (CLARITY,
COHERENCE, FLUENCY, STYLE, NONE) for every
token in the input. We also experimented with a
multi-task learning by adding an input-level binary
classification layer that predicts if the entire input
needs revisions or not.

3.2.2 Span-Based Text Revision
The token-level predictions of the intent span pre-
diction model are turned into intent-annotated
spans where the part of text that is predicted to
be edited is surrounded with intent tags as shown
in Figure 1. This way, the revision model can focus
on parts of the input that need revisions. Note that
it is possible to have multiple intent spans in which
case the model revises multiple parts of the input.

Following Du et al. (2022b), we also fine-tune
a PEGASUS model (Zhang et al., 2020) which
is a Transformer-based (Vaswani et al., 2017)
sequence-to-sequence (Seq2Seq) model. While
more lightweight non-autoregressive models such
as FELIX (Mallinson et al., 2020) are available, we
opted for using the autoregressive Seq2Seq mod-
els as our main choice of models. This is because
the task of generating text from editable spans is
more involved than generating text from edit oper-
ations, showing better performance as described in
Du et al. (2022b).

4 Quantitative Results

While the recent previous studies on text revision
include FELIX (Mallinson et al., 2020), LaserTag-
ger (Malmi et al., 2019), Seq2Edits (Stahlberg and
Kumar, 2020), and ITERATER Du et al. (2022b),
we mainly compare our system against the latest
work, ITERATER, as it had shown consistent im-
provements over the other aforementioned systems
in revision quality (Du et al., 2022b).

We evaluate our system, DELITERATER, on the
test splits of ITERATER+ dataset which consists of
the original ITERATER set and newly augmented
task-specific datasets from four different text edit-
ing NLP tasks: text simplification, sentence fusion
& splitting, GEC, and formality style transfer, as
described in Section 3.1.2.
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Tim wanted to go to Sarah's birthday party 
<coherence>. But</coherence> he 

<fluency>have an</fluency> test to study for .

Intent Span Detection Span-Based Text Revision

Tim wanted to go to Sarah's birthday party 
, however , he had a test to study for .

Tim wanted to go to Sarah's birthday 
party . But he have an test to study for 

O O C C O F F O O
. . birthday party . But he have an test to ..

Figure 1: Illustration of the DELITERATER pipeline at a given revision depth. While the figure depicts two
sentences, the pipeline works for entire paragraphs.

Training Dataset External Tasks (DELITERATER-*) ITERATER-TEST

Clarity Coherence Fluency Style Clarity Coherence Fluency Style Overall

SS ITERATER+ 49.87 98.06 78.27 71.89 34.08 24.44 63.57 0.42 45.99
SM ITERATER+ 34.23 95.40 77.72 21.81 14.39 17.08 58.47 0.00 32.27

MS ITERATER+ 43.09 97.90 79.27 65.60 33.80 22.43 67.36 0.00 49.13
MM ITERATER+ 43.34 96.80 77.37 71.29 33.98 20.53 64.84 0.00 47.26

Table 4: Performance of models on intent span detection. All the models are named using the XY convention,
where X refers to the Single-sentence (S) vs. Multi-sentence (M) setting and Y refers to the Single-task (S) vs.
Multi-task (M) training setting.

CLARITY-TEST COHERENCE-TEST FLUENCY-TEST STYLE-TEST ITERATER-TEST

B R S B R S B R S B R S B R S

No Edits Baseline 0.59 74.44 23.60 0.84 97.13 31.30 0.75 88.43 25.96 0.28 61.26 15.51 0.86 91.80 29.88

ITERATER-SINGLE 0.59 74.29 27.50 0.71 89.14 33.79 0.76 88.23 36.39 0.29 61.34 18.90 0.84 91.96 35.62
ITERATER-MULTI 0.59 74.29 27.50 0.71 89.14 33.79 0.76 88.23 36.39 0.29 61.34 18.90 0.87 93.19 43.22

DELITERATER-CLARITY 0.62 75.93 36.63 0.34 62.79 22.60 0.25 52.14 27.06 0.04 23.01 28.28 0.55 72.14 26.43
DELITERATER-COHERENCE 0.17 40.52 26.33 0.96 98.74 81.17 0.24 52.20 26.72 0.03 23.79 29.81 0.39 59.74 22.60
DELITERATER-FLUENCY 0.16 40.29 25.93 0.52 77.23 29.09 0.86 92.38 70.83 0.04 25.08 27.66 0.61 75.15 35.18
DELITERATER-STYLE 0.33 59.82 29.93 0.40 72.31 26.82 0.42 73.63 35.31 0.42 68.35 51.60 0.35 65.34 24.53
DELITERATER-ITERATER 0.60 75.95 51.48 0.85 95.58 51.08 0.83 90.44 61.49 0.28 56.36 36.99 0.92 96.18 62.54

DELITERATER-SINGLE 0.65 79.05 57.48 0.96 98.66 80.81 0.87 92.98 73.06 0.48 71.72 60.45 0.92 96.14 62.06
DELITERATER-MULTI 0.66 79.36 58.70 0.96 98.73 81.23 0.87 93.10 73.95 0.49 72.13 61.44 0.92 96.13 64.09

Table 5: Comparison of end-to-end Iterative Text Revision models. B is BLEU, R is ROUGE-L, and S is SARI.

4.1 Intent Span Detection

We hypothesize that the prediction of edit intention
for a span may benefit from the use of information
needed to predict whether an edit is needed or not.
For instance, the prediction of a fluency edit may
benefit from the detection of a grammatical error
in the text. With this idea, we train a ROBERTA-
LARGE model with two different settings:

1. Single-Task: trained for token-level edit inten-
tion classification.

2. Multi-Task: Different task-specific heads
trained for each task (binary classification task
of edit detection, and multi-class edit intention
classification).

We also experimented with varying lengths of
context windows for the edit intent prediction:

1. Single-Sentence: Only the tokens belonging
to a sentence are classified at a given time.

2. Multi-Sentence: For a given sentence for
which the intent span detection needs to hap-
pen, we concatenate the preceding and suc-
ceeding sentence before and after it respec-
tively, to provide additional context to the clas-
sification model.

Table 4 shows a breakdown of the models’ per-
formance on all combinations of the single/multi-
sentence and single/multi-task settings for the in-
tent span detection task. We report F1 scores on
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both the ITERATER dataset, and the test splits of
TASK-SPECIFIC external datasets which we incor-
porated into ITERATER+. We find that the model
with multi-sentence, single-task (MS) setting is the
best performing one overall. We use this model as
our main intent span detection model. In general,
we find that multi-sentence models (MM, MS) per-
form better than single-sentence models (SS, SM).
This can be attributed to the fact that multi-sentence
models have access to more context in their inputs,
and are able to leverage that to predict edits more
accurately. We do notice that the single-sentence
single-task (SS) model performs better on the task-
specific test sets, and that is attributed to the fact
that these datasets are all sentence-level, and did
not contain multiple sentences for any added con-
text.

4.2 Span-Based Text Revision

As mentioned in Section 3.2.2, our main model
(DELITERATER) for span-based text revision was
trained from PEGASUS-LARGE model, following
Du et al. (2022b). While we do not bring in ad-
ditional modeling components to the PEGASUS

model, we emphasize that the successful training
of the model and its performance were heavily de-
pendent on how we constructed the inputs to the
model, i.e, sentence-level vs. token-level (span-
based) intent annotation. Specifically, the input
to the baseline model, ITERATER, was prepared
by adding a sentence-level intent class at the be-
ginning of the sentence, whereas DELITERATER
takes inputs with intent information annotated as
tags within corresponding parts of the inputs as
shown in Fig. 1. In addition, similar to the intent
span detection (Section 4.1), we experimented with
both single-sentence (SINGLE) and multi-sentence
(MULTI) settings.

In Table 5, we report the performance of each
model using three automatic metrics: BLEU (Pa-
pineni et al., 2002), ROUGE-L (Lin, 2004), and
SARI (Xu et al., 2016). We observe that span-based
DELITERATER models outperform the sentence-
level ITERATER models on all test sets. We also
see that the *-MULTI models are generally better
than *-SINGLE models, and this difference is more
prominent in ITERATER-test2 as the test set can
cater for multi-sentence inputs while other task-
specific sets do not.

2We note that all of the test sets that we used are filtered
as specified in Sec. 3.1.1

0:start

1:clarity

1:coherence

1:fluency

1:none

1:style

2:clarity

2:coherence

2:fluency

2:none

2:style

3:clarity

3:coherence

3:fluency

3:none

3:style

4:clarity

4:coherence

4:fluency

4:none

4:style

Figure 2: Illustration of intention trajectories by
DELITERATER for iterative revision on ITERATER-
TEST.

We also note that the performance of models was
greatly influenced by the ITERATER+ dataset that
we collected and pre-processed. To this end, we
report the results of an ablation study on different
portions of the dataset in the mid-section of Table 5,
where DELITERATER-{CLARITY, COHERENCE,
FLUENCY, STYLE} models were trained on each
task-specific dataset only, while DELITERATER-
ITERATER model was trained on the filtered ver-
sion of ITERATER dataset. The results show that
while the individual task-specific models perform
well on their corresponding test sets, the quality of
revision drops significantly when tested on the IT-
ERATER-test. Similarly, the model that was solely
trained on ITERATER dataset does not perform
well on the task-specific test sets. As expected, the
best performance was achieved when the models
were trained on the full ITERATER+ dataset.

5 Qualitative Results

In this section, we analyze the behavior of our
DELITERATER system in greater detail by look-
ing at the development of edit intent trajectories
as we run the system iteratively using its previous
revision Dt−1 to generate the revision at depth t
(Section 5.1). In Section 5.2, we try to probe our
text revision model by modifying the outputs of the
span-based model to see if we can generate diverse
revisions by placing (1) different intents on the
same edit spans, and (2) same intent on different
edit spans.

5.1 Edit intention trajectories by depths

To understand if there is a clear pattern in trajecto-
ries of edit intents with the progression of revision,
Sankey diagrams were drawn for revision results
(t < 5) on each test set. At revision depth t, we
record the number of instances of all possible intent
transitions, INTENTt−1

i → INTENTt
j , defining the

flow for the Sankey diagram.
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0:start

1:clarity

1:coherence

1:fluency

1:none

1:style

2:clarity

2:coherence

2:fluency

2:none

2:style

3:clarity

3:coherence

3:fluency

3:none

3:style

4:clarity

4:coherence

4:fluency

4:none

4:style

(a) Essays written by low level of English skills

0:start

1:clarity

1:coherence

1:fluency

1:none

1:style

2:clarity

2:coherence

2:fluency

2:none

2:style

3:clarity

3:coherence

3:fluency

3:none

3:style

4:clarity

4:coherence

4:fluency

4:none

4:style

(b) Essays written by high level of English skills

Figure 3: Sankey diagrams on ETS Corpus of Non-Native Written English.

Revision Input Revision Output

I <fluency> disagree about
that "young people do not give
enough time to helping their
communities" </fluency>.

I disagree with the state-
ment that "young people
do not give enough time to
helping their communities".

I <clarity> disagree about
that "young people do not give
enough time to helping their
communities" </clarity>.

I disagree that young people
do not give enough time to
helping their communities.

I <coherence> disagree
about that "young people
do not give enough time to
helping their communities"
</coherence>.

I disagree.

I <style> disagree about
that "young people do not give
enough time to helping their
communities" </style>.

I disagree with the state-
ment that "young people
do not give enough time to
helping their communities".

Table 6: Effect of detected edit intentions on generated
revisions.

Figure 2 shows a Sankey diagram for ITER-
ATER-test dataset.3 On this test set, we can ob-
serve that most of the intent sequences are flowing
from CLARITY to CLARITY, followed by edit se-
quences that go into FLUENCY. The diagram is, of
course, influenced by the distribution of edit intents
present in the test set. With the task-specific test
sets, we confirm that the corresponding intents tend
to be the major flow in the diagrams. This begs the
question: would we observe similar results with
documents from the same domain but written by
writers with different levels of English proficiency?

To answer this question, we performed a simi-
lar experiment using English essays from the ETS
Corpus of Non-Native Written English (Blanchard,
Daniel et al., 2014) where writers with different lev-
els of English proficiency answered prompt ques-
tions by composing short essays. Using the val-
idation and test sets of the corpus, we gathered
261 essays separately from two groups: (a) writers
with low English proficiency vs. (b) high English

3The rest of the diagrams are added to the Appendix C

Revision Input Revision Output

I <fluency>disagree about
that "young people do not give
enough time to helping their
communities"</fluency>.

I disagree with the state-
ment that "young people
do not give enough time to
helping their communities".

I <fluency>disagree
about</fluency> that
"young people do not give
enough time to helping their
communities".

I disagree with that "young
people do not give enough
time to helping their com-
munities".

I disagree about that "young
people <clarity>do not give
enough time</clarity> to
helping their communities".

I disagree about that "young
people do not have enough
time to helping their com-
munities".

I disagree about that "young peo-
ple do not give enough time
<clarity>to helping their
communities</clarity>".

I disagree about that "young
people do not give enough
time to help their communi-
ties."

Table 7: Effect of detected edit spans (for the same
intents) on generated revisions.

proficiency. These essays answer 8 different essay
topics, and the number of essays for each topic is
kept the same between the groups.

Figure 3 shows the Sankey diagrams for both
groups, computed using their essays and the cor-
responding iterative revisions. In the figure, we
can identify some distinctive patterns in the flows
of edit intents; for example, more FLUENCY edit
transitions occur for group (a) than (b) which can
be considered as more superficial errors than other
intent types. For group (b), we see more COHER-
ENCE errors that later make transition to CLARITY.

This finding suggests that there could be an opti-
mal path of edit transition for a given document of
a particular domain; which could be learned by a
reinforcement learning algorithm where a reward
would be a combination of automatic scores of
revised documents: something we would like to
explore in future work.

So far, at the current state of the models, we do
sometimes observe some pitfalls where continu-
ously applying the revision model multiple times
either degrades the quality of the text by removing
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Figure 4: Manual pair-wise comparison for document
revisions without MEANING-CHANGED edits.

words or gets stuck in a deadlock position where
the model oscillates between applying and revert-
ing a single revision. The former can be mitigated
by stopping the revision process when a score from
an automatic metric such as SARI decreases. The
latter deadlock case can be filtered heuristically as
well. We point out that these phenomena are also
observed in other text revision models, especially
more so when their training datasets include a lot
of meaning-changed edits that are deletions.

5.2 Effect of intents and spans on revisions

We also try to probe the system to understand the
behaviors of the constituent systems. In particular,
the sensitivity of the revision generation model
to the outputs of the intent span detection model.
To do this, we conducted two analyses: (1) We
modified the edit intentions keeping the editable
span the same; and (2) while keeping the predicted
edit intention the same, we varied the editable span.
By modifying the inputs to the text revision model
in this manner, we analyzed its outputs.

In Table 6, we can observe that placing a FLU-
ENCY intent span revises the less fluent original
sentence by linking a correct preposition for the
verb “disagree” and adding the following noun,
“statement”. Similarly, a CLARITY intent simplifies
the sentence by merging the quoted segment. How-
ever, as shown with the results from COHERENCE

and STYLE intents in the table, the revised outputs
may not always be preferable.

Table 7 shows the effect of varying the length of
editable spans. We see that if there is a change in
the original sentence (i.e. a revision is predicted),
that change only occurs within the bounds of the
editable span. The results obtained with the ed-
itable intent spans suggest that we can control and
influence the model’s generations to a certain ex-

tent.

6 Human Evaluation

To better understand how our system affects the
text quality and the iterative revision process, we
conducted human evaluations to investigate how
do text editing models affect document quality.

We hired a group of proficient linguists to evalu-
ate the quality of the documents being edited across
multiple (up to 3) revisions, where each revision
was annotated by 3 linguists. For each revision, we
randomly shuffle the original and revised texts, and
ask the evaluators to select which one was better
in terms of fluency, coherence, readability, mean-
ing preservation, and overall quality. They could
choose one of the two texts, or neither. Then, we
calculated the score for the quality of the human
revisions as follows: 1 means the revised text is
worse compared to the original text; 2 means the
revised text does not show a better quality than the
original text, or there was no agreement among
the 3 annotators; 3 means that the revised text was
better than the original text.

Figure 4 shows the results of the human evalua-
tion on the aforementioned criteria. We choose our
best-performing model (DELITERATER-MULTI)
trained on ITERATER+ using the delineate-edit-
iterate approach to generate revisions by first iden-
tifying editable spans, and compare with human
revisions and the text revision model from Du et al.
(2022b). We see that our system produces the best
overall results, outperforming the human edits, as
well as ITERATER system in overall quality. This is
a major improvement relative to (Du et al., 2022b)
where model revisions were significantly underper-
formed by human edits in overall quality. Table 9
shows an example of iterative text revision gener-
ated by ITERATER and DELITERATER, respec-
tively.

7 Conclusion and Discussions

We propose DELITERATER: an improved system
for Iterative Text Revision, using a delineate-edit-
iterate framework, consisting of an intent span de-
tection model, and a text revision generation model,
based on the ITERATER framework of Du et al.
(2022b). The edit intent detection model is a token-
level edit-intention classification model which de-
tects editable spans: spans of text that require an
edit along with the type of edit needed. The text re-
vision model is a generative model, which makes re-
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visions to the detected editable spans, conditioned
on their corresponding edit intentions. We also
create ITERATER+: an expanded version of (Du
et al., 2022b) ITERATER dataset by incorporating
data from other text editing NLP tasks. Leveraging
this dataset and the delineate-edit-iterate frame-
work, our system supervises the revision generation
model to reflect both the location, and intentions
behind the desired revision, leading to superior
performance on the Iterative Text Revision task,
compared to other baselines and related works.

Experiments on the standard ITERATER test
dataset, as well as standard NLP text editing
datasets demonstrate the effectiveness of our frame-
work for the task. Moreover, human evaluations
indicate that our system produces the best overall
results, outperforming the human edits, as well as
ITERATER system across all revision depths. Ad-
ditionally, we provide insights into our models by
probing them, and into the progression of iterative
text revision by analyzing the edit intent trajecto-
ries across both our test datasets as well as a dataset
of English essays from the ETS corpus, hinting the
possibility of learning optimal revision paths possi-
bly thorough reinforcement learning. In the future,
we plan to investigate in this direction as well as
improving the general robustness of the system
by task-specific data augmentation with induced
noise.

8 Limitations

We note that the augmented task-specific datasets
were only available at sentence-level. While the
augmentation did improve the models’ perfor-
mance on ITERATER-test set, it still lacked the
contextual information to to unlock the full poten-
tial of multi-sentence modeling. Also, while we
conducted user studies on the quality of the gen-
erated revisions, our current version of work does
not yet provide results obtained with human-in-the-
loop deployment where users are involved in the
iterative revision process along with the revision
system. Another limitation of our work is that the
revision system is geared toward generating formal
writing than informal and casual writing.

9 Ethical Considerations

All the data collected in this work is from pub-
licly available sources, and the original document
authors’ copyrights are respected. During the
data annotation process, all human evaluators are

anonymized to respect their privacy rights. All
human evaluators get a fair wage that is higher
than the minimum wage based on the number of
data points they evaluate. There is no risk that
the harms of our work will disproportionately fall
on marginalized or vulnerable populations. Our
datasets do not contain any identity characteristics
(e.g. gender, race, ethnicity), and will not have
ethical implications of categorizing people.

In terms of our models, we recognize that by
using text generation models as part of our system,
they are susceptible to issues of hallucination and
other potentially harmful content (Maynez et al.,
2020; Gehman et al., 2020). However, since the
focus of our system is on text editing, we are able to
mitigate some of these issues by carefully curating
our datasets. We ignore any data points which lead
to meaning-changing edits, thereby reducing the
chances of hallucination, or generation of new and
potentially harmful content.
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A Statistics on ITERATER+ Dataset

In Table 8 we show detailed statistics of our ITERATER+ dataset, showing before and after the filtering
process.

Split Intent Source Before After

Sentences Edits Sentences Edits

Train

FLUENCY
ITERATER 142k 142k 107k 107k
TASK-SPECIFIC 1.1M 779k 122k 158k

CLARITY
ITERATER 140k 140k 90k 90k
TASK-SPECIFIC 1.69M 6.07M 22k 28k

COHERENCE
ITERATER 70k 70k 24k 24k
TASK-SPECIFIC 4.49M 5.1M 120k 132k

STYLE
ITERATER 3k 3k 2.5k 2.5k
TASK-SPECIFIC 104k 246k 29k 60k

Valid

FLUENCY
ITERATER 17k 17k 11k 11k
TASK-SPECIFIC - - 1k 2k

CLARITY
ITERATER 15k 15k 9k 9.5k
TASK-SPECIFIC 42k 139k 122 170

COHERENCE
ITERATER 8.7k 8.7k 2.5k 2.5k
TASK-SPECIFIC 46k 52k 1k 1.1k

STYLE
ITERATER 366 366 265 265
TASK-SPECIFIC 41k 92k 11k 20k

Test

FLUENCY
ITERATER 20k 20k 13k 13k
TASK-SPECIFIC - - 1.5k 1.9k

CLARITY
ITERATER 17k 17k 10k 10k
TASK-SPECIFIC 45k 149k 132 200

COHERENCE
ITERATER 10k 10k 2k 2k
TASK-SPECIFIC 44k 50k 12k 13k

STYLE
ITERATER 447 447 330 330
TASK-SPECIFIC 19k 45k 5k 10k

Table 8: Dataset splits and sizes. "Before" refers to the raw data statistics before the pre-processing routine (Section
3.1.1), and "After" refers to the data statistics after the pre-processing was applied.

B Training Details

Throughout our experiments, we mostly adopted codes released by Du et al. (2022a,b). We did not
conduct any additional hyper-parameter search, but followed the same hyper-parameter settings as Du
et al. (2022a,b) when training both intent classification and text revision models. We plan to make our
version of codes and final datasets publicly available upon acceptance.

We used Transformers library (Wolf et al., 2020) from Hugging Face to train and run the models
using four NVIDIA V100 GPUs in a distributed data-parallel setting. The intent classification models
(ROBERTA-LARGE) were generally trained to convergence within 10 hours, while the text revision
models (PEGASUS-LARGE) took up to five days to train for 3 epochs using our full ITERATER+ dataset.
We note that we did not introduce any extra model parameters, and therefore the network sizes are identical
to that of the corresponding original models. The models were saved every 2,000 batch steps and selected
based on the validation performance on the ITERATER dataset.

C Edit Intention Trajectories

Figure 5 shows Sankey diagrams drawn for the task-specific test sets of ITERATER+ dataset.

D Document-level Revision Examples

Table 9 shows iterative revisions generated by ITERATER and DELITERATER (ours), respectively.
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t Human Edits ITERATER DELITERATER (ours)

0 The insurgent maoists would be
allowed to return to the govern-
ment. The treaty establishes that
a constitutional asembly should
form in April to rewrite the con-
stitution, formally end the monar-
chy and put together the details of
the new republican system. The
maoist rebels declared a cease
fire and signed a peace treaty,
agreeing to place its troops and
weapons under U.N. supervision.

The insurgent maoists would be
allowed to return to the govern-
ment. The treaty establishes that
a constitutional asembly should
form in April to rewrite the con-
stitution, formally end the monar-
chy and put together the details of
the new republican system. The
maoist rebels declared a cease
fire and signed a peace treaty,
agreeing to place its troops and
weapons under U.N. supervision.

The insurgent maoists would be
allowed to return to the govern-
ment. The treaty establishes that
a constitutional asembly should
form in April to rewrite the con-
stitution, formally end the monar-
chy and put together the details of
the new republican system. The
maoist rebels declared a cease
fire and signed a peace treaty,
agreeing to place its troops and
weapons under U.N. supervision.

1 The insurgent maoists would be
allowed to return to the govern-
ment. The treaty establishes that
a constitutional asembly should
form in April to rewrite the con-
stitution, formally end the monar-
chy and put together the de-
tails of the new republican sys-
tem. The maoist rebels de-
clared a cease fire and signed a
peace treaty, agreeing to place
its troops and weapons under
U.N. United Nations supervi-

sion.

The insurgent maoists

insurgents would be allowed
to return to the government.
The treaty establishes that a
constitutional asembly should
form be formed in April to

rewrite the constitution, for-
mally end the monarchy and
put together the details of the
new republican system. The
maoist Maoist rebels declared

a cease fire and signed a peace
treaty, agreeing to place its
troops and weapons under U.N.
supervision.

The insurgent maoists

insurgents would be allowed
to return to the government.
The treaty It establishes that

a constitutional asembly should
form in April to rewrite the
constitution, formally end the
monarchy and put together the de-
tails of the new republican system.
The maoist rebels Rebels de-

clared a cease fire and signed a
peace treaty, agreeing to place its
troops and weapons under U.N.
supervision.

2 The insurgent maoists Maoists
would be allowed to return to
the government. The treaty
establishes that a constitutional
asembly assembly should

form in April to rewrite the
constitution, formally end the
monarchy and put together
the details of the new repub-
lican system. The maoists
Maoists rebels declared a cease

fire and signed a peace treaty,
agreeing to place its troops and
weapons under United Nations
supervision.

The insurgents would be allowed
to return to the government. The
treaty establishes that a con-
stitutional asembly assembly
should be formed in April to
rewrite the constitution, formally
end the monarchy and put to-
gether the details of the new re-
publican system. The Maoist
rebels declared a cease fire and
signed a peace treaty, agreeing to
place its troops and weapons un-
der U.N. supervision.

The insurgents would be allowed
to return to the government.
It establishes that a A constitu-

tional asembly should form in
April to rewrite the constitu-
tion, formally end the monar-
chy and put together the details
of the new republican system.
Rebels The rebels declared a

cease fire and signed a peace
treaty, agreeing to place its troops
and weapons under U.N. supervi-
sion.

3 - - The insurgents would be allowed
to return to the government.
A constitutional asembly

Constitutional Assembly
should form in April to rewrite
the constitution, formally end
the monarchy and put together
the details of the new republican
system. The rebels Rebels
declared a cease fire and signed a
peace treaty, agreeing to place its
troops and weapons under U.N.
supervision.

Table 9: A sample snippet of iterative text revisions generated by human writer, ITERATER and DELITERATER
(ours), where t is the revision depth and t = 0 indicates the original input text. Note that text represents deletions,
and text represents insertions.
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Figure 5: Sankey diagrams illustrating edit intention trajectories for task-specific test sets
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