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Abstract

Our goal is a teachable reasoning system for
question-answering (QA), where a user can in-
teract with faithful answer explanations, and
correct its errors so that the system improves
over time. Our approach is to augment a QA
model with a dynamic memory of user feed-
back, containing user-supplied corrections to
erroneous model beliefs that users identify dur-
ing interaction. Retrievals from memory are
used as additional context for QA, to help avoid
previous mistakes in similar new situations -
a novel application of memory-based contin-
uous learning. With simulated feedback, we
find that our system (called TeachMe1) contin-
ually improves with time, and without model
retraining, requiring feedback on only 25% of
training examples to reach within 1% of the
upper-bound (feedback on all examples). Sim-
ilarly, in experiments with real users, we ob-
serve a similar trend, with performance improv-
ing by over 15% on a hidden test set after teach-
ing. This suggests new opportunities for using
frozen language models in an interactive setting
where users can inspect, debug, and correct the
model’s beliefs, leading to improved system’s
performance over time.

1 Introduction

Our goal is a teachable question-answering (QA)
system - one that a user can interact with to see
faithful explanations for its answers, debug errors,
and correct them so that the system gradually im-
proves over time (sometimes referred to as explana-
tory interactive machine learning (XIL) (Teso and
Kersting, 2019)). While the benefits of such a sys-
tem are evident (Lakkaraju et al., 2022), the chal-
lenges are evident also: despite recent progress in
explainability (Wiegreffe and Marasović, 2021), it
is often hard to understand how a model arrived at
an answer, and even harder to correct it if it made

1Supplementary data and models are available at https:
//allenai.org/data/teachme

Figure 1: TeachMe augments the basic question-
answering model with a memory of user feedback. (A)
Given a new question, facts retrieved from memory are
used as additional context for the model, influencing its
answers and proofs. (B) If the user disagrees with an
answer, they localize the error in the explanation and
offer corrective feedback, which is added to memory.
(C) These new facts can then be retrieved if the query is
re-asked, helping the system avoid repeating mistakes.
Note that these also help improve answers on new, sim-
ilar questions that are asked later, helping the system
improve over time.

a mistake. In contrast, people are typically able to
provide a chain of reasoning for their decisions, and
may change their mind if a flaw in their knowledge
or reasoning is exposed. Our goal is to similarly
have machines provide reasoned answers to ques-
tions, showing how the answer follows from its in-
ternal knowledge (and possibly externally available
information), and where it is capable of changing
its answer if errors in that knowledge are identified.

Our approach has three components. First,
the system produces answers supported by an
entailment-based chain of reasoning, showing how
the answer follows from the system’s own internal
beliefs2. Second, if an answer is wrong, a user

2We here adopt a simple definition of belief, namely that
a model believes X if it answers "yes" to the question "Is X
true?". Other definitions could also be used.
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can inspect the reasoning to diagnose and correct
the failure. For example in Figure 1, the system
incorrectly concludes that “a magnet can pick up
a penny” from its over-general (false) belief that
“metals are magnetic”. The user can thus correct the
mistake by asserting that “not all metals are mag-
netic”, in particular copper. Finally, to store and
apply the user’s feedback, we augment the model
with a dynamic memory. Given a new question (or
re-asking an old question), TeachMe retrieves user-
supplied facts from this memory. These are then
used as context while generating an entailment-
supported answer to the question, e.g., step (C)
in Figure 1. This helps override prior, erroneous
model beliefs, thus biasing TeachMe to avoid sim-
ilar mistakes in future – a novel application of
memory-based continual learning to belief main-
tenance, in which the model itself remains fixed
(frozen) and retraining is not required.

We evaluate TeachMe using both simulated and
real user feedback. With simulated feedback, us-
ing two existing datasets OBQA (Mihaylov et al.,
2018) and QuaRTz (Tafjord et al., 2019), we find
that TeachMe is able to continuously improve with
time, without retraining, requiring only a quarter of
the feedback annotations available in the original
dataset to reach within 1% of the upper-bound (us-
ing all gold annotations). Similarly with real users,
we find that after they interact with TeachMe on a
small set of questions, the system’s performance on
a hidden test set similarly improves (by over 15%)
without retraining. Our contributions are thus:

1. A novel, memory-augmented architecture en-
abling user corrections to help override erro-
neous model beliefs, thus allowing the over-
all system to gradually improve with time,
without model retraining (the runtime model
remains frozen). While memory-based archi-
tectures have been used previously, ours is the
first to show that user-provided and model-
internal beliefs can be integrated together for
systematic reasoning.

2. A demonstration of the viability of the ap-
proach with both simulated and real users,
showing system improvement on hidden test
questions after users “taught” the system on a
set of training questions.

2 Related Work

Guiding Frozen Language Models and Memory:
Our use of context to modify a (run-time) frozen

model’s behavior is similar to retrieval-based QA
(Ni et al., 2019; Clark et al., 2020), where retrieved
context can improve QA performance. In our case,
however, retrieval is from a dynamic memory of
user-supplied facts, rather than a static corpus, the
memory serving to expand and override model be-
liefs. It also can be seen as a form of prompt en-
gineering (Brown et al., 2020; Rubin et al., 2021),
except using relevant facts rather than few-shot
QA examples, and with novelty on the interactive
collection and management of those facts.

TeachMe’s memory-based feedback is inspired
by the feedback mechanism of BeliefBank (Kass-
ner et al., 2021), in which retrieved memories were
similarly used as context to guide future QA. In Be-
liefBank, however, memories were previous system
answers, without any mechanism for explaining its
reasonong nor being corrected by a user. In con-
trast, TeachMe’s memories are provided by a user,
identified through interaction with system explana-
tions.

TeachMe’s memory is also related to work by
Tandon et al., where user feedback memories were
used but in different ways, namely to repair er-
roneous model outputs via post-processing (Tan-
don et al., 2022a), or to clarify user intent in
GPT3 prompts (Tandon et al., 2022b). In contrast,
TeachMe’s feedback contains corrections and elab-
orations to the model’s internal beliefs themselves.

More generally, while the idea of memory for
improved performance is not new, our way of using
memory is novel: to the best of our knowledge,
TeachMe is the first system that allows a user to
find, extend, and correct its reasoning errors, and
the memory allows the resulting system to improve
over time (continual learning).

Feedback and Interaction: Interaction has been
successfully used to learn in interactive recom-
mender systems, e.g., (Kang et al., 2019; Li et al.,
2021), conversational systems, e.g., BlenderBot
(Shuster et al., 2022), knowledge graphs (Hixon
et al., 2015), and procedural tasks (Li et al., 2020).
Interaction has also been used for data augmen-
tation, by having users identify model biases and
provide additional corrective training examples to
reduce those biases (Kaushik et al., 2020; Lu et al.,
2022). In contrast, our work focuses on learning
corrective feedback in the context of reasoning.
Early AI attempts at having users debug rule-based
representations had limited success, e.g., Teiresias
(Davis, 1977), Convince (Kim and Pearl, 1987).
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Our work can be viewed as a modern formulation
of this goal, using linguistic expressions of the
knowledge stored latently in a model.

Continual Learning: Finally, our system per-
forms a kind of continual learning (Parisi et al.,
2019; Carlson et al., 2010), aiming to correct spe-
cific errors that appear. Recent work has explored
“model editing” - editing model parameters to fix
incorrect answers or add new knowledge (Mitchell
et al., 2021; De Cao et al., 2021; Hase et al., 2021).
However, to date these approaches have only been
demonstrated in a limited context (e.g., correcting
a single error), and even then can lead to uncontrol-
lable out-of-scope changes (Mitchell et al., 2021).
In contrast, our goal is not just to correct a spe-
cific error, but to have that correction generalize to
new problems, and without damaging the model’s
basic problem-solving acumen. Thus, our work
leaves the model fixed, and seeks improvement in
the broader system in which the model is embed-
ded, exploring an alternative and potentially more
interpretable architecture towards this goal.

3 Approach

We adopt a question-centric approach to teaching
and interaction, in which the user (teacher) asks the
system (student) a question that they know the an-
swer to, to probe the system’s knowledge. The sys-
tem then answers it along with a faithful entailment-
based explanation. If the system’s answer is wrong,
the user can interact with the explanation to iden-
tify the erroneous system beliefs that lead to the
incorrect answer, and correct them. Corrections are
stored in a dynamic memory used to influence, and
ideally improve, future system behavior.

We instantiate this approach in a system called
TeachMe, which has three key components:
1. Answering Questions: Given a user’s ques-

tion, TeachMe searches for an entailment-
based line of reasoning for different candidate
answers, and selects the best.

2. Interaction: The user can inspect, locate, and
correct errors in the system beliefs that led to
incorrect answers.

3. Dynamic Memory: TeachMe maintains a dy-
namic memory of user-corrected beliefs, used
to help answer future questions.

We now describe each in turn.

Figure 2: TeachMe’s architecture contains a model and
memory. Given a question, TeachMe generates multiple
answers and proofs, discards those not consistent with
its own beliefs (verification), and presents the best to the
user (teacher). If the answer is wrong, the user interacts
to identify erroneous model beliefs, and add corrections
to memory, which in turn modifies future QA behavior
without model retraining.

3.1 Answering Questions

The key requirement of this component is to show
how an answer systematically follows from the
model’s own beliefs - in other words, provide an
explanation that is both truthful (reflects the sys-
tem’s own beliefs) and faithful (the answer choice
follows from those beliefs). Beyond this, TeachMe
is agnostic as to how this is done - we describe our
approach below, but others could be used.

3.1.1 Candidate Hypothesis Generation
Given a question from the user, TeachMe first gen-
erates candidate answers and converts these into
declarative hypotheses (e.g., “Is the sky (A) blue
(B) yellow” → { H1 = “The sky is blue.”, H2 =
“The sky is yellow.”).3 An N -way multiple choice
question yields N hypotheses. A true/false ques-
tion yields 2 hypotheses. For open-ended questions,
TeachMe first collects N candidate answers gen-
erated by an external QA system (we use Macaw
(Tafjord and Clark, 2021)) using nucleus sampling,
then forms N hypotheses from them.

3.1.2 Entailment Proof Generation
TeachMe then tries to generate a “proof”4 for each
hypothesis H , where here a proof means a set
of premises (sentences) such that the hypothesis
clearly follows from (is entailed by) the premises.

There are several ways such a proof might

3Conversion of a QA pair to a declarative hypothesis D
uses a custom T5-11B model trained on the QA2D dataset
(Demszky et al., 2018).

4We use the word “proof” for convenience but note that
the term is somewhat approximate, as entailment “proofs” do
not have the guarantees of formal, deductive proofs.
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Figure 3: TeachMe’s dialog tree, showing the different ways a user can interact with the system.

be generated. In our case we use Entailer5

(Tafjord et al., 2022), a T5-11B model trained
on EntailmentBank – a large, existing dataset
of such textual entailment proofs (Dalvi et al.,
2021). The input to the model is a hypothesis H ,
plus optionally the question Q, answer A, and a
context of relevant sentences C, and the output
is P , a set of premises (sentences) that entail H .
To ensure the proof is truthful, the system asks
itself “Is pi true?” for each premise pi, reflecting
our definition of belief (footnote 1), and if not, the
proof is rejected. Finally, the proofs are scored,
and the final answer is the hypothesis with the
highest-scoring proof (hence the answer is faithful
to the proof). An example result (H because P ) is:
Plants require CO2 to make their own food because:
1. a plant requires CO2 for photosynthesis
2. Plants create food through photosynthesis

Full details are given in (Tafjord et al., 2022).
Note that such proofs could be generated in other

ways also, for example using chain-of-thought
style, zero-shot prompting to a large model such as
GPT3 (Wei et al., 2022) (continuation in gray):
Plants require CO2 to make their own food.
Explain the last statement with a 2-step reasoning chain:
1. Plants use photosynthesis to produce their own food.
2. Photosynthesis requires CO2 in order to create glucose
from water and sunlight.

5Entailer models are available at https://allenai.org/data/
teachme

followed by verification steps to ensure that each
premise and the entailment itself were believed
by the model, i.e., reflected the model’s “beliefs”
about the world, and to score them. Again, these
could be performed using zero- or few-shot
prompting.

3.2 Interaction

Given the system’s answer plus entailment proof,
users can interact with the system to inspect, de-
bug, and correct system mistakes via a simple user
interface. Specifically, if an answer is entailed by
the system’s beliefs, and the answer is wrong, then
either one of those beliefs must be wrong or the
entailment itself must be invalid. To repair this, the
user can correct an erroneous model belief that they
identify (or block the entailment itself, by adding it
to a list of blocked entailments). Corrected model
beliefs are stored in the dynamic memory. For fu-
ture questions, retrievals from memory are used as
question context to bias the model away from the
prior erroneous beliefs. In this way, user-corrected
beliefs may also help on new, unseen questions.

Figure 3 shows the overall flow of interaction
in TeachMe. The user first poses a question, then
the system attempts to answer it with a supporting
chain of reasoning. If found, the user can critique it
and (if wrong), correct the system’s misunderstand-
ings and/or lack of knowledge using the actions
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shown. If not found, the system tries to elicit user
guidance by showing the user the facts it consid-
ered during search for an answer, to which the user
can respond. After making a change, the system
re-attempts the question, and shows its updated an-
swer and reasoning. When the user is satisfied, the
premises and answer are then noted in memory, for
consistency if those premises are queried about in
future.

A brief example is below, transcribed into textual
format (the original interactions are implemented
graphically using hyperlinks and text boxes, illus-
trated in Appendices B and C). The user first asks a
question, and the system answers incorrectly. The
user volunteers A penny is made of copper, and the
system retries, but now reveals its erroneous belief
that magnets can attract copper. The user points
out this is false, and finally the system succeeds:

U: Can a magnet attract a penny?
S: A magnet can attract a penny because:

1. A magnet can attract magnetic metals
2. A penny is made of magnetic metal
Do you agree?

U: No. A penny is made of copper. [A fact is missing *]
S: A magnet can attract a penny because:

1. A penny is made of copper.
2. A magnet can attract copper.
Do you agree?

U: No. 2 is false. [A fact is false *]
S: A magnet cannot attract a penny because:

1. A penny is made of copper.
2. A magnet cannot attract copper.
Do you agree?

U: yes [Looks good]

As a result of this interaction, the user-asserted
facts (*) have been added to memory:

Memory
... earlier assertions ...
A penny is made of copper.
A magnet cannot attract copper.

Now given a new question, retrievals from memory
are added to the context when answering. Here, the
retrievals include “A magnet cannot attract copper”,
helping the model answer correctly:

U: Can a magnet attract a copper pan?
S: A magnet cannot attract a copper pan because:

1. A cooper pan is made of copper
2. A magnet cannot attract copper
Do you agree?

U: yes [Looks good]

Given its simple nature, we do not make any claims
for this interface in this paper. Rather, it is just one
means by which the memory of corrected model
beliefs can be constructed. Further transcribed ex-
amples (from real users) are in Appendix D.

3.3 Dynamic Memory

The third component of TeachMe is a dynamic
memory, containing a list of assertions (English
sentences), collected through interaction. The
memory serves as a set of additions and overrides
to the model’s latent beliefs, and to our knowl-
edge is the first to show that user-provided and
model-internal beliefs can be integrated together
for systematic reasoning.

Given a question, TeachMe retrieves up to r (=
5) sentences from memory using the question as
the search query, using a standard BM25 search
algorithm6. The retrievals are then used as follows:

As Context: During generation of an answer +
proof (Section 3.1), retrieved facts are provided as
context to the model. This encourages (but does
not force) TeachMe to use these facts in a generated
proof and avoid conflicting facts. In this way, these
user-supplied facts help TeachMe avoid mistakes
that it previously made.

Forced Generation: Given r retrieved sentences,
we also force TeachMe to explore proofs that use
them, to ensure user-supplied sentences are fully
considered by the model. This is done using forced
generation during decoding time, so that each proof
starts with a different sentence as its first premise.
Given r sentences, we generate r forced proofs in
this way, plus a r + 1 proof without forced gen-
eration. This forcing can also be seen as a way
of encouraging diversity in the generations. Note
that many of these proofs may later be rejected if
verification fails. The highest-scoring proof is then
selected. The full algorithm is in Algorithm 1.

4 Experiments and Results

Our goal is that TeachMe’s memory-augmented
architecture will allow users to teach the system
in a general way, adding to and correcting model
beliefs so that its performance improves on new,
unseen questions. To evaluate this, we use both
both simulated and real users. In both cases, users
first provide feedback on a set of training ques-
tions, populating the memory. Then, with no fur-
ther interaction, we measure whether TeachMe’s
performance has improved on a set of hidden test
questions. In all cases, TeachMe’s model is frozen -
any improvements are purely via memory updates.

6We explore alternative retrieval strategies in Section 4.2.3
later
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Algorithm 1 TeachMe’s Overall Control Algo-
rithm

1: procedure ANSWER(Q: question, A: Answer choices,
M : memory of useful facts )

2: E = ϕ // Initialize proofs so far
3: C = search(corpus=M , query=concat(Q,A)
4: for Ai ∈ A do
5: // Generate a hypothesis Hi for each choice Ai

6: Hi = Hypothesisi = QA2D(Q,Ai)
7: for Cj ∈ C ∪ {none} do // for each sent Cj

8: // 1. Generate a proof
9: generate a proof (Pi ⊢ Hi) of Hi with first

10: premise = Cj (details in Section 3.1.2)†

11: // 2. Add the proof to the list of proofs so far:
12: E = E ∪ <(Pi ⊢ Hi), s(Hi), Ai>
13: <Ebest, scorebest, Abest> = Max(E)
14: return answer=Abest, explanation=Ebest

†When the model generates premises Pi, the Q, Ai, and C
are provided as additional model inputs, and the output is
constrained to start with Cj (forced generation).

4.1 Datasets

We evaluate with two existing multiple-choice
datasets, OBQA (Mihaylov et al., 2018) and
QuaRTz (Tafjord et al., 2019). These datasets con-
tain questions that (typically) require multihop rea-
soning, along with a (crowdworker created) gold
1-step entailment proof for every correct answer op-
tion. In addition, among the premises in those gold
proofs, one has been tagged as the “core” (most im-
portant) fact of the proof (e.g., “Metals conduct
electricity”), with several questions sharing the
core fact. These core facts can help us simulate
the user feedback.

For meaningful feedback experiments, there
should be at least topical overlap between train
(teaching) and test (evaluation) partitions. In
OBQA, this topical overlap occurs naturally be-
cause the train/test partitions were created ran-
domly, meaning that questions based on the same
core fact are distributed between train and test.7

QuaRTz, however, was originally partitioned to
remove topical (core fact) overlap between train
and test. As a result, we use just the training par-
tition of QuaRTz, and repartition it randomly into
Train’/Dev’/Test’, leading to a natural topical over-
lap between the new partitions.

The sizes of the partitions we use are OBQA
train/test = 4957/500 examples, and QuaRTz
Train’/Test’ = 1348/557 examples.

7Note that the questions based on the same core fact are
still substantially different, e.g., there are many questions one
can create based on the core fact that “Magnets attract iron.”

4.2 Experiments with a Simulated User

We first measure TeachMe’s ability to learn through
interaction with a simulated user (teacher). In this
scenario, we consider the teacher working through
the training questions, and behaving as follows:
1. If TeachMe answers the question correctly
then no action is taken. This makes the simplifying
assumption that the generated chain of reasoning
is also correct.
2. If TeachMe answers the question incorrectly
then the user will provide feedback to help correct
the system. In the simulated scenario, we take
the core fact in the gold entailment proof as that
user feedback: As the system was wrong, we here
assume that either the model did not know this
core fact, or failed to attend to it when trying to
generate a chain of reasoning for the correct answer.
The (simulated) user thus aims to correct this by
providing that fact. This new fact is then added
to the system’s memory, where it may be recalled
and used for future questions to avoid a similar
mistake in future. Although only an approximation,
it allows us to assess whether this failure-driven
feedback also helps on future, unseen questions.

Once simulated teaching is completed, we then
test the system on a hidden test set (no further
interaction), measuring QA accuracy.

4.2.1 Configurations

We compare the following configurations, all us-
ing the frozen model, i.e., evaluating the impact of
feedback that a deployed system would receive:
1. Direct QA (non-teachable): We measure the
model’s basic ability to directly answer the test
questions, without using a reasoning chain, using
the H → Sd angle. One can loosely think of this
as the “fast thinking” answer.
2. TeachMe (before teaching): Here we mea-
sure TeachMe’s ability to answer the test questions
by generating, scoring, and comparing entailment
proofs for each answer option, when the memory
is in its initial state (empty). One can loosely think
of this as the “slow thinking” answer.
3. TeachMe (after teaching): This is at the end
of simulated teaching scenario, after the simulated
user provided feedback (the appropriate core fact)
for all training questions that TeachMe answered
incorrectly, thus populating the memory.
4. TeachMe (≈ upper bound: feedback for all
answers): As an upper bound, we imagine the
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Figure 4: TeachMe’s performance on the hidden test
sets improves with simulated user feedback (from red
to yellow), improving over direct QA and coming close
(within ≈ 1%) of the upper bound of using feedback on
all answers (grey).

user providing feedback on all training questions,
regardless of whether TeachMe answered them cor-
rectly. To simulate this, TeachMe’s memory is set
to all the core facts used in all training questions.
In this upper-bound scenario, the simulated user is
doing approximately the same work as it took to
create the training dataset proofs in the first place.

4.2.2 Results
The results are shown in Figure 4. Our main find-
ings are as follows:
TeachMe’s Basic Accuracy is Close to that of
Direct Answering: Comparing TeachMe (before
teaching) with direct QA, we see TeachMe’s proof-
based answer accuracy is close, but not quite as
good as, the accuracy for direct QA (72.6% vs.
75.2% OBQA,73.6% vs. 74.1% QuaRTz). It is
encouraging that the scores are loosely comparable,
as it suggests users are critiquing proofs of reason-
able quality. A primary cause of failure is errors by
the two verifiers, in particular the entailment ver-
ifier PH → Se sometimes mis-recognizes a bad
entailment as valid.
Feedback helps on new questions. Most sig-
nificantly, feedback on the training questions has
helped improve performance on the test questions
without requiring model retraining (OBQA:
72.6% to 77.0%; QuaRTz: 73.6% to 75.9%), in-
dicating the viability of the paradigm we are ex-
ploring. The with-memory scores also exceed the
direct QA scores on both datasets.
Feedback reaches within 1% of the upper bound
while only requiring feedback on ≈30% of the
training questions (namely those that the model
answered incorrectly). This suggests that targeted

Figure 5: TeachMe’s performance on OBQA test im-
proves as it sees a larger fraction of training data and
stores feedback for wrong answers in its memory.

feedback is sufficient to obtain near-optimal per-
formance, avoiding the high cost of exhaustively
annotating the proofs for all the training questions,
as was done in the original datasets.

4.2.3 Retrieval Strategies
Facts in memory are indexed by the words in those
facts. We also evaluated alternative indexing strate-
gies, e.g., indexing a fact by the question(s) that
used it in the answer proof, or a combination of
question plus fact, but these did not work as well.
Details and results are in Appendix A.

4.2.4 Improvement with Time
How does TeachMe’s performance improve with
time? To track this, we re-used the OBQA dataset
and measured TeachMe’s performance on the test
set as it sees a larger fraction of training data, stor-
ing the feedback for wrong answers it has seen so
far in its memory. The results were averaged over
3 random orderings of OBQA training data, and
are shown in Figure 5. As can be seen, the per-
formance gradually improves as more feedback is
collected on failing training questions. Note that
a larger memory does not guarantee better perfor-
mance, e.g. when training data increases from 20%
to 30% in Figure 5, because TeachMe may retrieve
distracting facts from memory, resulting in spuri-
ous proofs supporting wrong answers.

4.2.5 Analysis
4.2.6 Success Analysis
When TeachMe changed its (test set) answer from
a wrong answer option (no feedback) to the correct
answer option (with feedback), was that change
for a good reason? Our interest here is whether
TeachMe did indeed recall and use relevant do-
main knowledge appropriately. To explore this,
we analyzed a random sample of 50 of the 74/500
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Figure 6: TeachMe was right for the right reasons in
≈75% of its correct answers. (Examples are shown in
Table E1 in Appendix E).

test cases where such positive flips occurred. Of
these, we found approximately 3/4 resulted from
good reasoning, while approximately 1/4 were not.
Comparing the generated and gold test set proofs,
we found four groupings, illustrated in Figure 6 and
described below (Table E1 in Appendix E provides
examples of all four): 28% (14/50) : the gold core
fact was included in the best scoring proof. 28%
(14/50) : a relevant core fact (though not exactly
the gold core fact) was used. 20% (10/50) : a
remotely related fact was retrieved and used by
the model as the first premise in the proof due to
forced generation (Section 3.3). 24% (12/50) : a
spurious fact was retrieved due to word overlap
with the question, then the model produced an in-
coherent proof connecting it to the correct answer
hypothesis, and scored this proof highest. Although
this error was advantageous in these cases, there
are analogous failure cases where a spurious fact
changes a previously correct answer to incorrect.

4.2.7 Failure Analysis

In cases where retrieved feedback did not help on
new questions, there are four failure modes: knowl-
edge (the relevant knowledge was simply not in
memory); retrieval (the knowledge was there but
not retrieved); reasoning (the knowledge was there,
retrieved, but TeachMe chose to ignore it); and
scoring (the knowledge was retrieved and used,
but the proof for a different answer option scored
higher). To measure the relative frequency of these,
we examine 50 randomly sampled failure cases, de-
scribed below and illustrated in Figure 7 (Table E2
in Appendix E provides examples), and found:
24% (12/50) missing knowledge: The gold sci-
ence fact for the test question was not present in the
corpus. Instead, the model tried to make use of the
facts retrieved from the corpus to construct proofs
but ended up selecting a wrong answer option.
54% (27/50) bad retrieval: The gold science fact

Figure 7: Causes of failure (%) for TeachMe’s incorrect
answers. (Examples in Table E2 in Appendix E).

for the test question was present in the corpus but
the IR module failed to retrieve it among the top-k.
12% (6/50) bad reasoning: The proof generated
for the gold answer option was not good, even when
the retrieval was good. In 5/6 cases, the model
created a bad proof, even though it had correctly
started with the correct fact. In the remaining case,
the gold core fact was retrieved but then ignored.
10% (5/50) bad scoring: While a good proof for
the right answer was generated, it was not scored
highest either due to some of its (true) premises
or entailment being disbelieved by the model, or a
false premise or bad entailment for a wrong answer
being scored highly. Again, further training of the
verifiers would help alleviate this problem.

4.3 Experiments with Real Users

We also ran a small-scale experiment with real
users, to test whether users could in practice im-
prove the system’s performance. For this, we took
31 questions from OBQA, based on five core facts,
that TeachMe struggled with (getting 20/31 of the
questions wrong). We then split them into a train-
ing set containing 1 failing question for each core
fact (total 5 questions), and the remaining 26 ques-
tions as a test set. Our interests were (a) whether
users could successfully interact with the system to
identify and correct TeachMe’s erroneous beliefs
about the 5 training questions, so it could answer
them correctly, and then (b) whether the result of
this teaching carried over to improved performance
on the test set. Transcribed examples of some of
the dialogs are in Appendix D.

4.3.1 Results
The results were averaged over eight users (from
within our organization), and are shown in Figure 8
showing TeachMe’s scores before and after user
interaction. On average, users made 2.7 teaching
actions per question to correct the system (13.5 per
user session for correcting the five questions), with
distribution (%) as follows (see Appendix C for
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Figure 8: TeachMe’s performance (% correct) substan-
tially improves on a hidden test set (from 38% to 55%),
a subset of OBQA, after users correct/expand its knowl-
edge for the training questions. (Results are averaged
over 8 users).

details of these categories): fact is missing (24%),
fact is false (12%), fact is true (6%), bad reasoning
(5%), fact is irrelevant (5%), use old fact (10%),
use new fact (37%). The average completion time
for the task was 19 mins (ranging from 13 to 31
mins). As shown in Figure 8 (first two bars), users
were able to correct/expand TeachMe’s knowledge
to remove almost all its errors on the training set
(raising TeachMe’s training score to 97%). More
importantly, the taught system’s score on the hid-
den test set increased by 17% (38% to 55%), in-
dicating the knowledge provided by the users
generalized to the test set.

4.3.2 Analysis
Of the 208 test answers (26 questions x 8 users), 41
answers changed from incorrect to correct, and 7
changed from correct to incorrect. Of the 41 that
changed to correct (based on an analysis of a sub-
set): ≈70% a relevant fact was recalled and used in
a good proof, ≈10% the recalled facts altered the
model behavior so it generated a good proof with
a (generated) relevant fact, while ≈20% had bad
proofs but (fortuitously) scored highest.
For example, for the question:

Some birds find locations with (A) landmarks
(B) road signs (C) eggs (D) magnetic patterns

the model originally selected a wrong answer
(eggs), and could not generate a proof for the cor-
rect answer. With memory, its retrieval included
the user-supplied fact "Animals can use magnetic
patterns to navigate.", providing crucial knowledge
that the model apparently did not know, and allow-
ing a proof for the right answer to be found.

Similarly for the 7 cases that changed from cor-
rect to incorrect: about half the time (4/7) the sys-
tem did recall a relevant fact, but either ignored it
(2/7) or generated a bad proof (2/7). In the remain-

ing 3/7 cases, there was no relevant fact retrieved,
but the retrievals served to confuse the generator.
For example, for the question:

Gills are used to breath water by what? (A)
salmon (B) fishing boats (C) penguins...

the system originally selected the right answer
(salmon), with an (incorrect) proof for penguins
close behind. With memory, it retrieved the user-
supplied fact "Animals can use magnetic patterns
to navigate.", irrelevant to the question, but enough
when added to the context to slightly change the
verification scores, resulting in the (bad) proof for
penguin being scored highest.

5 Discussion and Conclusion

Our goal is a teachable reasoning system, where
users can interact to see its beliefs and reasoning,
and correct it when it is wrong. We have shown that
by embedding an entailment-based QA model in a
larger system with a dynamic, persistent memory,
users can correct and override model beliefs, re-
sulting in an overall system that can improve over
time without retraining. To our knowledge, this
is the first system to show that user-provided and
model-internal beliefs can be integrated together
for systematic reasoning. This is significant as it
is a step towards systems that can not only interact
with users, but continually learn from them.

Although we have created and evaluated an in-
tegrated system, numerous issues still remain. For
reasoning, methods to avoid uninteresting (near-
tautologous) proofs are needed. For interaction,
we have treated “teaching” primarily as question-
centric debugging, but clearly there are other styles
to explore. Finally while the memory usefully bi-
ases TeachMe for new tasks, the effects of placing
new knowledge in an input context are not fully
predictable, despite careful training. These are all
areas for future exploration.

Despite these, the research agenda is an excit-
ing one, pointing towards future systems that can
learn directly from users in a conversational way,
rather than solely training on large datasets. It also
suggests a way of overcoming the opaqueness of
neural systems, by viewing models as components
in a larger system with a persistent memory and
that can systematically reason. We look forward to
future developments in these directions.
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Limitations

We have shown how a dynamic memory, paired
with a QA system that can provide faithful explana-
tions, can allow users to correct erroneous system
beliefs, and thus improve its performance without
model retraining. While exciting, there are several
limitations with the current approach and opportu-
nities for future work.

First, we have so far only worked with rela-
tively small memories (up to ≈2000 facts, for the
simulated users, Section 4.2). A deployed sys-
tem could potentially acquire orders of magnitude
more user-supplied facts, raising challenges for re-
trieval and memory management. Eventually, one
might want to retrain the model to incorporate these
new/corrected beliefs into the model itself.

Second, as memory grows, it is possible that
conflicting facts may arise in it, either from a user
being inconsistent, or assuming different contexts
for a fact, or from different users. Mechanisms
for belief management would be advantageous to
spot and repair such problems, e.g., (Kassner et al.,
2021).

Third, the approach relies on the system generat-
ing meaningful chains of reasoning for its answers
(in particular, for its incorrect answers) to engage
the user. However, in some cases those chains
are poor (Section 4.2.7), and could be improved
through enhanced proof generation techniques.

In addition, two broader themes merit more ex-
ploration. First, we have treated “teaching” as
question-centric debugging, but clearly there are
broader styles to explore, e.g., the user volunteer-
ing general knowledge up-front, probing what the
system already knows, and following a curriculum.
Second, we have assumed a single-user environ-
ment dealing with factual questions, but a deployed
system may encounter users with different beliefs
about the world, and/or different opinions. This
problem is not new and mechanisms exist to han-
dle this (e.g., for Wikipedia), but would need to be
integrated into this environment too for large-scale
deployment.

Finally, our approach relies on human feedback
on new questions that TeachMe fails to answer or
fails to justify indicating significant human efforts.
We are exploring three mechanisms for reducing
such human efforts: (a) TeachMe can spot some
errors itself by using external text sources to verify
them (b) TeachMe can carefully order the teaching
questions. That way, if the user can debug some

critical system misconceptions early, then many
future questions will be answered correctly (hence
not requiring user input). (c) Ask multiple users,
e.g., factoring the teaching task into a curriculum
of smaller topics ( “magnetism”, “gravity”, “adap-
tation” etc.) for different users to work on.
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Appendix A. Different Memory Indexing
Strategies

As described in Section 4.2.3, TeachMe retrieves up
to r (=5) sentences from memory using the question
as the search query, using a standard BM25 search
algorithm. We evaluate the following alternative
ways of indexing this memory (in all 4 ways, the
“document” is always the fact collected through
interaction but the indexing terms are different):
1) F: Index by the terms in the fact
2) Q: Index by the terms in the question for which
the fact was provided as feedback
3) Q + F: Index by concatenation of the question
and associated fact (For both options 2, 3, if a
fact is useful for multiple questions, it will appear
multiple times in the memory.)
4) Relevant Qs + F: Index by concatenation of the
fact and all the questions it is relevant to (Each fact
appears only once in the memory.)

Table A1 compares the retrieval performance
of these four indexing strategies on OBQA Dev
questions, using the simulated user setup, where we
measure how well the gold fact associated with a
Dev question is retrieved, using an index built from
the Train questions (that also use these gold facts).
In all cases the search query is the question. We
find the simple strategy of indexing by the fact itself
performs the best (used in rest of the experiments
in this paper).

Index by R@1 R@2 R@3 R@5 R@10
F 31.0 39.2 44.2 51.0 58.8
Q 19.0 27.2 30.8 36.6 44.0
Q + F 22.0 29.4 35.8 41.2 50.2
Relevant Qs + F 10.6 14.0 17.0 19.4 25.6

Table A1: Recall of gold fact for OBQA Dev questions
when TeachMe indexed the gold facts for Train ques-
tions in four different ways.
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Appendix B. TeachMe’s Interactive Interface
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Appendix C: Example of Graphical
Interaction

Below shows snippets of the graphical interface
with TeachMe, walking through a path of interac-
tion in the dialog tree shown in Figure 3. First,
the user (playing the role of teacher) has asked
TeachMe the question “Can a magnet attract a
penny?” in the upper box. (The correct answer
is “no”, as pennies are made of the non-magnetic
metal copper). The system has responded with an
(incorrect) answer and proof (blue):

The error in this case is the system’s belief that “A
penny is made of magnetic metal.” (pennies are in
fact made of non-magnetic copper). To indicate the
error, the user clicks on the “No” button in response
to “Do you agree?”, and then here chooses to cor-
rect the error by entering the missing, required
knowledge that “A penny is made of copper.”:

On reasking the question, TeachMe uses this user-
supplied fact as the first part of the proof (via forced
generation), but still gets the answer wrong due to a
different misunderstanding, namely that “A magnet
can attract copper.”

Here the user chooses to correct this mistake by
clicking on [but it’s not true!] next to “A mag-
net can attract copper”, causing the opposite fact
(“A magnet cannot attract copper”) to be added to
memory. Finally the system gets the answer right:

Confirming the answer causes TeachMe to note
both the facts, conclusion, and proof in memory, so
that it will produce the same answer if the question
is reasked. In addition, the stored facts can be
retrieved to help answer future questions, a key
role for the memory.
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Appendix D: Additional Examples of
Interactions

We here provide some additional examples of
real user dialogs with the system, transcribed into
textual format (the original interactions are via
the graphical interface). These examples are all
from the user trials in Section 4.3, using questions
from the OBQA dataset, and are all cases where
TeachMe initially answered incorrectly. The di-
alogs illustrate how the user (blue) used different
actions (annotated in bold square brackets, referenc-
ing actions in Figure C1, Appendix C) to diagnose
and correct the system’s misunderstandings.

U: Gills allow (A) flounder to intake oxygen (B) giraffes to
breathe underwater (C) respiration for sea going birds

S: Gills allow respiration for sea going birds because::
1. Gills are used for breathing by aquatic animals
2. A sea going bird is a kind of aquatic animal
Do you agree?

U: No. Birds do not have gills. [A fact is missing]
S: Gills allow flounder to intake oxygen because:

1. Gills are used for breathing by aquatic animals
2. A flounder is a kind of aquatic animal
Do you agree?

U: yes [Looks good]

U: An example of a fossil is a paw print in what? (A) water
(B) sky (C) air (D) hard stones

S: I can’t find an answer!
Here’s the facts that I considered:
1. Sedimentary rocks are made of hard stones. [but I
think this is false!]
2. A paw print is a kind of imprint.
...
6. Sedimentary rock is made of air. [but I think this is
false!]
7. An example of a fossil is a paw print in sedimentary
rock. [but I think this is false!]
Which fact should I use?

U: 7 is true. [A disbelieved fact is true]
S: I can’t find an answer!

Here’s the facts that I considered:
1. Sedimentary rocks are made of hard stones. [but I
think this is false!]
2. A paw print is a kind of imprint.
...
6. Sedimentary rock is made of air. [but I think this is
false!]
7. An example of a fossil is a paw print in sedimentary
rock.
Which fact should I use?

U: use 1. [Use one of these facts]
S: An example of a fossil is a paw print in hard stones.

because:
1. An example of a fossil is a paw print in sedimentary
rock.
2. Sedimentary rock is made of hard stones.
Do you agree?

U: yes [Looks good]

U: Clouds flit and flow (A) in a bank (B) on the internet
(C) above our heads (D) in cloudless skies

S: I can’t find an answer!

Here’s the facts that I considered:
1. Cloudless skies do not have clouds.
2. Clouds move in the sky.
3. The internet does not have clouds.
4. A bank is a kind of formation.
Which fact should I use?

U: use 2 [Use one of these facts]
S: Clouds flit and flow above our heads. because:

1. Clouds move in the sky.
2. Clouds flit and flow.
Do you agree?

U: No. use The sky is above our heads. [Use a different
fact]

S: Clouds flit and flow above our heads. because:
1. Clouds move in the sky.
2. The sky is above our heads.
Do you agree?

U: yes [Looks good]

U: What’s used by migrating animals to find locations? (A)
GPS satellites (B) our planet’s magnetic patterns ...

S: Migrating animals use GPS satellites to find locations
because:
1. Migrating animals need to find locations.
2. GPS satellites can be used to find locations.
Do you agree?

U: No. Bad reasoning. [Facts ok, but reasoning is bad]
S: I can’t find an answer!

Here’s the facts that I considered:
1. Our planet’s magnetic patterns are formed by the
Earth’s magnetic field.
...
7. GPS satellites can be used to find locations.
Which fact should I use?

U: Migrating animals have an internal magnetic
compass. [A fact is missing]

S: Migrating animals use our planet’s magnetic patterns to
find locations because:
1. Migrating animals have an internal magnetic com-
pass.
2. Migrating animals use compass to find locations.
Do you agree?

U: yes [Looks good]
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Appendix E: Success and Failure Analysis: Examples

Category Question Model generated
answer, best proof Comments

Uses Gold
core fact

Q: Owls are likely
to hunt at
(A) 3pm (B) 2am
(C) 6pm (D) 7am

Owls are likely to hunt at 2am because:
Nocturnal predators hunt during the night.
Owls are a kind of nocturnal predator.
2:00 AM is after midnight.

Model generated reasonable
chain of reasoning justifying
the correct answer
using the gold core fact.

Uses relevant
core fact

Wax can be used
similarly to
(A) wood (B) rubber
(C) water (D) metal

Wax ...similarly to rubber because:
Rubber is a thermal insulator.
Wax is a thermal insulator.

Gold core fact: “wax is a electrical
insulator” was not in top-k retrieval.
But the model used another relevant
fact to construct a good proof.

Uses remotely
relevant fact

Q: They looked where
the log decayed to garden
as it would leave the earth
(A) richer (B) dryer
(C) sandy (D) harder

...leave the earth richer because:
The mantle is a layer of the Earth.
Decaying leaves a layer of soil

on the Earth.
Soil is a kind of resource.
If something decays then that something

will leave the earth richer.

Model includes a remotely relevant
fact in the proof. As the answer
is still entailed, the verifier
approves the proof.

Uses spurious
facts

Q: Dunes can be made
out of the same thing as
product of a rain storm?
(A) clothes (B) food
(C) forests (D) castles

Dunes...same thing as...castles because:
Some birds live in forests.
Some rabbits live in forests.
Some dunes can be made out of

the same thing as castles.

The model includes irrelevant facts
in the proof. As the answer is
still entailed, the verifier does not
catch the redundancy.

Table E1: Examples of success cases where TeachMe answered a test question accurately by justifying the gold
answer choice (see Section 4.2.6 and Figure 6).

Category Question Model generated answer,
best (here, bad) proof Comments

Missing
knowledge

Q: An ice cube placed in
sunlight will
(A) shrink (B) change color
(C) grow (D) freeze

An ice cube ... will grow because:
A glacier is made of ice.
A plant requires sunlight

to grow.

Gold science fact:
"Sunlight produces heat"
is not part of memory

Bad
IR

Q: Which of the following
is warm blooded?
(A) toad (B) snake
(C) turtle (D) skunk

A toad is warm blooded because:
A warm something is a source

of heat.
A toad is a kind of animal.
Animals are warm blooded.

Gold science fact: "A mammal is
warm-blooded." is part of memory
but not in top-k retrieval

Bad
Reasoning

Q: What has more gravity
force than Earth but
less than the sun?
(A) Jupiter (B) the moon
(C) a space station (D) a comet

The moon has ... because:
The Moon orbits the Earth.
The Earth has more mass than

the Moon.
The Moon has more gravity

force than the Earth.
The Sun has more mass than

the Moon.

Gold science fact: "as mass of a
celestial body increases,
the force of gravity on that planet
will increase"
is at rank 4 in the retrieval.
Model incorrectly starts with
less relevant fact and
completes a proof for the wrong
answer option.

Bad
Scoring

Q: Which of these is required
for a plant to enjoy the
product of a rain storm?
(A) xylem (B) luck
(C) magic (D) dirt

Dirt is required...because:
Clouds produce rain.
A plant requires dirt to grow.

Model generated valid proof for correct
answer “xylem” using Gold science fact
(from top-k retrievals): "Xylem carries water
from the roots of a plant to the leaves of a
plant." but premise verifier scored it as
incorrect premise (score=0.045). Hence the
proof for wrong answer was scored higher
than that for the correct answer.

Table E2: Examples of four different failure categories where TeachMe answered a test question incorrectly,
providing a bad proof for the wrong answer (the correct answer option is boldfaced). See Section 4.2.7 and Figure 7.

9480


