
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 8580–8591
December 7-11, 2022 ©2022 Association for Computational Linguistics

Generalizing over Long Tail Concepts for Medical Term Normalization
Beatrice Portelli1,2∗ Simone Scaboro1∗ Enrico Santus3†

Hooman Sedghamiz3 Emmanuele Chersoni4 Giuseppe Serra1

1 University of Udine, Italy
2 University of Naples Federico II, Italy

3 DSIG - Bayer Pharmaceuticals, New Jersey, USA
4 The Hong Kong Polytechnic University, Hong Kong

{portelli.beatrice,scaboro.simone}@spes.uniud.it, esantus@gmail.com,
hooman.sedghamiz@bayer.com, emmanuele.chersoni@polyu.edu.hk, giuseppe.serra@uniud.it

Abstract

Medical term normalization consists in map-
ping a piece of text to a large number of output
classes. Given the small size of the annotated
datasets and the extremely long tail distribu-
tion of the concepts, it is of utmost importance
to develop models that are capable to general-
ize to scarce or unseen concepts. An impor-
tant attribute of most target ontologies is their
hierarchical structure. In this paper we intro-
duce a simple and effective learning strategy
that leverages such information to enhance the
generalizability of both discriminative and gen-
erative models. The evaluation shows that the
proposed strategy produces state-of-the-art per-
formance on seen concepts and consistent im-
provements on unseen ones, allowing also for
efficient zero-shot knowledge transfer across
text typologies and datasets.

1 Introduction

Term normalization is the task of mapping a
variety of natural language expressions to specific
concepts in a dictionary or an ontology. It is a key
component for information processing systems,
and it is extensively used in the medical domain.
In this context, term normalization is often used
to map reported adverse events (AEs) related to
a drug to a medical ontology, such as MedDRA
(Brown et al., 1999). This is a challenging task,
due to the high variability of natural language
input (i.e., from the informality of social media
and conversational transcripts to the formality of
medical and legal reports) and the high cardinality
and long tail distribution of the output concepts.
AEs are usually mappable to different levels of
the same ontology: low-level concepts, which
are closer to layman terms, and higher level
concepts, which encompass the meaning of
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multiple low-level concepts. In MedDRA,1 these
two sets of concepts are called Lowest Level Terms
(LLT), and Preferred Terms (PT) respectively; both
of them have a very high cardinality (48,713 for
LLT and 24,571 for PT, in MedDRA version 23.1).
The following are examples of AEs, with their
corresponding LLTs and PTs:

AE LLT PT
feel like crap feeling unwell malaise
weak knees weakness asthenia

zap me of all energy loss of energy asthenia

Currently this problem is addressed with large
pretrained language models (Gonzalez-Hernandez
et al., 2020), finetuned on medical term nor-
malization datasets, such as SMM4H (Gonzalez-
Hernandez et al., 2020) or CADEC (Karimi et al.,
2015). However, these datasets contain maximum
5,000 samples, distributed on a few PT/LLT classes,
and with a long tail distribution (see Figure 1). Due
to the size and distribution of these datasets, the
resulting models usually perform well on exam-
ples that are seen in the training, but struggle to
generalize on rare or unseen samples.
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Figure 1: Long tail distribution of PTs in the datasets
used for this paper.

To improve the generalization capabilities of
the models on long tail concepts, in this paper,
we suggest to leverage the hierarchical nature of
the medical ontology to enrich the large language
models with domain knowledge before finetuning
on a given training set. Extensive experimental
evaluation on three different datasets shows that

1MedDRA is a five-level hierarchy https://www.meddra.
org/how-to-use/basics/hierarchy, but in this work we
mainly focus on two of the levels: PT and LLT.
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the proposed strategy can be successfully applied
to various model typologies, and it consistently
outperforms other mainstream learning strategies,
showing generalization capabilities not only across
the long tail distribution, but also across text typolo-
gies and datasets. The code and resources needed
to replicate our experiments and test our learning
strategy are publicly available2.

2 Related Work

Medical term normalization is generally regarded
as either a classification or a ranking problem (Yuan
et al., 2022). In the former case, a neural architec-
ture encodes the term into a hidden representation
and outputs a distribution over the classes (Lim-
sopatham and Collier, 2016; Tutubalina et al., 2018;
Niu et al., 2019), but this is difficult to scale to on-
tologies containing thousands of concepts, due to
the absence of comprehensive datasets. In the rank-
ing approach, on the other hand, the goal is to rank
concepts by their similarity to the input term (Lea-
man et al., 2013; Li et al., 2017; Sung et al., 2020):
a system is trained on binary classification, where
terms and matching concepts are the positive sam-
ples, while terms and non-matching concepts are
the negative ones. The raw output of the model is
then used to rank the concepts.

Recent work successfully combined the two ap-
proaches. Ziletti et al. (2022) presented a sys-
tem mixing a BERT-based classifier (Devlin et al.,
2019) and a zero/few-shot learning method to in-
corporate label semantics in the input instances
(Halder et al., 2020), showing improved perfor-
mance in single model and in ensemble settings.

Finally, systems like CODER (Yuan et al.,
2022) and SapBERT (Liu et al., 2021) introduced
novel contrastive pretraining strategies that lever-
age UMLS to improve the medical embeddings of
BERT-based models. While SapBERT leverages
self-alignment methods, CODER maximizes the
similarities between positive term-term pairs and
term-relation-term triples and it claimed state-of-
the-art results on several tasks, including zero-shot
term normalization. Another recent work by Zhang
et al. (2021) introduced an even more extensive pre-
training procedure, based on self-supervision and
a combination of the traditional masked language
modelling with contrastive losses . The strategy
proved to be extremely effective for medical entity

2https://github.com/AilabUdineGit/
ontology-pretraining-code

linking, a kind of term normalization which makes
use of the full original context (instead of using
only the AE).

3 Proposed Learning Strategy: OP+FT

Let’s consider a target ontology (e.g. MedDRA
v23.1) containing two sets of concepts PT = {pi}
and the LLT = {ℓi}. The ontology is structured so
that every ℓi has only one parent pj : parent(ℓi) =
pj , but each pj can be parent of many ℓi. Given a
set of Adverse Events AE = {ai}, every ai can be
univocally mapped to a pj : norm(ai) = pj .

Our objective is to train a large language model
M to encode norm: given a sample (ai, pj), such
that norm(ai) = pj , we want M(ai) = pj .

We propose a learning strategy based on the hi-
erarchical structure of the ontology, composed of
two steps: Ontology Pretraining and Finetuning.

During the first step, we expose the language
model M to all possible output classes pj by lever-
aging the intrinsic hierarchical relation between
LLT and PT. Specifically, we use the parent rela-
tion to create a new set of training samples from
the ontology, pairing each ℓi to its parent concept
pj . In the case of MedDRA, the new set of sam-
ples contains 48,713 (ℓi, pj) pairs, where each pj
appears multiple times, associated with different ℓi.
For example the PT “asthenia” will appear in the
samples (weakness, asthenia), and (loss of energy,
asthenia). As LLTs are more informal than PTs, the
language model M can be pretrained on this new
set of data to gain general knowledge about all the
target classes. This pretraining set is highly simi-
lar to our target dataset (M(ai) = pj), increasing
the model transfer capability. We call this process
“Ontology Pretraining” (OP).

The second step consists in finetuning (FT) an
OP model on a specific term normalization dataset,
which maps every AE ai to the corresponding PT
pj . This step is crucial because the OP model lacks
specific knowledge about the natural language style
of real-world samples. Finetuning will also exploit
the dataset sample distribution to boost the model’s
accuracy on the specific set of pj in the training
set. Note that the FT step can also be applied to
a regular model without OP, resulting in a regular
finetuning.

We hypothesize that the combination of OP+FT
to a discriminative or a generative language model
M will improve its performance on seen concepts
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Dataset
Total

Samples
Train

Samples
Test

Samples
%OUT

Samples
Unique

PTs
SMM4H 1,442 868 ±06 574 ±06 12.49 ±0.94 274
CADEC 5,866 3,540 ±21 2,326 ±21 4.65 ±0.41 488
PROP 4,453 2,658 ±65 1,796 ±65 10.02 ±0.79 634

Table 1: Dimensions of the datasets, reporting the average figures over the three train/test splits (± std), as well as
the number of unique PT terms contained in each dataset.

in the training set, while making it more generaliz-
able to long tail and unseen concepts.

4 Experimental Setting

4.1 Datasets

To investigate the performance of our learning strat-
egy, we used three English datasets for MedDRA
term normalization, with different writing styles.
SMM4H (Gonzalez-Hernandez et al., 2020). Pub-
lic dataset for the challenge SMM4H 2020 - Task 3,
AE normalization. It contains 2,367 tweets, 1,212
of which report AEs with highly informal language,
mapped to a PT/LLT.
CADEC (Karimi et al., 2015). Public dataset con-
taining 1,250 posts from the health forum “Aska-
Patient”, containing user-reported AEs mapped to
a PT/LLT. The language is informal, but still more
medically precise than SMM4H.
PROP. Proprietary dataset provided by Bayer Phar-
maceuticals, containing 2,010 transcripts of phone-
calls with healthcare professionals reporting their
patients’ AEs, mapped to PTs. The language is
more formal and medically accurate.

4.2 Data Preparation

All datasets were preprocessed to obtain samples
containing only (ai, pj) pairs. The samples in
CADEC and SMM4H which were labelled with
an ℓi ∈ LLT were re-labelled with parent(ℓi) =
pj ∈ PT , obtaining a uniform output space for all
datasets containing only PT concepts.

Since the focus of this work is on the generaliza-
tion capabilities of the models, it is important to
test the models on different sets of unseen labels.
For this reason, we created three random splits of
train/test samples using a 60:40 proportion, instead
of using the public fixed train/test split. Given a
train and a test set, every test sample with label pj
falls into one of the following categories:
– IN, if pj is present in the training set;
– OUT, if pj is not present in the training set.
The most important set of samples to measure the
generalization capabilities of the models is OUT.

Table 1 reports figures for the resulting datasets.
CADEC and PROP contain the largest number
of samples (5,866 and 4,453 respectively), while
SMM4H is sensibly smaller, with only 1,442 sam-
ples. The largest datasets also contain the largest
number of PTs: 488 for CADEC and 634 for PROP.
SMM4H only contains 274 PTs instead. Most of
the PTs are unique to one of the three datasets and
do not appear in the other ones, making it impossi-
ble to gain a substantial advantage by combining
them (see Appendix C). We observe that the per-
centage of OUT samples varies from 5% to 12%,
with SMM4H being the most challenging dataset.
The standard deviation is low, showing that the
presence of 5–12% OUT samples is a characteris-
tic of the specific dataset, resulting from its long
tail PT distribution. Note also that the smaller the
dataset, the higher the percentage of OUT samples
in the test set.

4.3 Models

To test the proposed strategy and observe how it
affects generalization, we selected different kinds
of widely-adopted models. In particular, we com-
pare PubMedBERT (Gu et al., 2020), Sci5 (Phan
et al., 2021), GPT-2 (Radford et al., 2019), CODER
(Yuan et al., 2022) and SapBERT (Liu et al., 2021).
PubMedBERT (PMB). It was chosen as an ex-
ample of a BERT-based classifier due to its med-
ical pretraining (PubMed articles) and strong per-
formance in other medical tasks (Gu et al., 2020;
Portelli et al., 2021; Scaboro et al., 2021, 2022).
GPT-2 and Sci5. GPT-2 was selected as an exam-
ple of a general-purpose autoregressive language
model for text generation, while Sci5 was chosen
for its medical pretraining, performed on the same
kind of texts as PMB. The models were trained to
generate a PT, given an input prompt containing
the adverse event.
CODER and SapBERT (SapB). To the best of
our knowledge, CODER and SapBERT are some
of the best dataset-agnostic models for medical
term embeddings. They were both trained on the
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UMLS ontology (Bodenreider, 2004), which is a
super-set of MedDRA, and tested on several term
normalization datasets, showing promising results.
Following both original papers, we use CODER
and SapBERT to generate embeddings for ai and
for all pj ∈ PT . We then select as prediction the
pj that minimizes the cosine similarity with ai.

We also trained both models according to our
proposed strategy. Both models were trained using
the contrastive settings described in their paper and
the respective codebases3.

See Appendix A for training details for all mod-
els and B for more details on the contrastive train-
ing of CODER and SapBERT.

Performance is assessed with the Accuracy met-
ric, but we also report the F1 Score in Appendix
D, as it can give more insights when classes are
unbalanced.

5 Experimental Results

In an ablation-study fashion, we compare the
OP+FT learning strategy with its two components:
OP and FT. Figure 2 contains the results for all
the tested models and training strategies, and is
organized as follows. We display a plot for each
dataset, reporting the accuracy of the models on IN

samples (◦), OUT samples (⋄) and the whole test
set (•). The first column shows the performance of
a basic CODER and SapBERT model without any
additional training. We consider their accuracy on
OUT (⋄) as our generalization goal, and plot them
as solid lines across the chart. The following three
columns display the performance of all the models,
trained with one of the learning strategies (FT, OP
and OP+FT respectively). For tabular results, see
Appendix D.

CODER and SapBERT on their own proved to
be strong baselines across the three datasets. Look-
ing at the first column, they reach 40–50% accuracy
on CADEC and SMM4H (overall, IN and OUT, see
solid lines), and around 15–20% overall accuracy
(•) on PROP.

All learning strategies seemed to be ineffective
on CODER: its performance (gray markers) re-
mains roughly the same across all strategies (FT,
OP or OP+FT). A possible explanation for this be-
haviour is that CODER embeddings are already in
an optimal state according to the training objec-
tives, as they have been trained on a very similar

3CODER: https://github.com/GanjinZero/CODER
SapBERT: https://github.com/cambridgeltl/sapbert

task. In fact, CODER generates predictions using
the similarity between the embeddings, and the sta-
ble performance indicates that there were no drastic
changes in the structure of the embedding space.

A clearer effect of the training strategies can be
seen on SapBERT (lilac markers), although it is
still limited when compared with the other mod-
els. SapBERT embeddings are probably more sub-
ject to adjustments compared to CODER because
the latter was trained for significantly more steps
and using more objective functions, leading to less-
adaptable embeddings.

The following observations apply the other three
models: PMB, GPT-2 and Sci5.
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Figure 2: Accuracy of all models on the three datasets
on IN (◦), OUT (⋄) and all (•) samples.
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The FT strategy (second column), as expected,
works really well for IN (◦) samples: on CADEC
the IN accuracy of all models is over to 80%, while
it is close to 50% for the other two datasets. How-
ever, the OUT accuracy (⋄) is lower than 20% in
all cases (significantly lower than the solid line),
and reaches 0% for PMB, showing that finetuning
alone is not sufficient for classifiers to generalize
on OUT samples in this setting.

The OP strategy (third column), brings the
OUT accuracy of all models on pair with the
CODER/SapBERT baselines, while the IN/overall
accuracy matches or surpasses them. Comparing
OP with FT, we see that the overall accuracy (•)
of the model is generally lower for OP. However,
the performance on OUT (⋄) samples doubles for
generative models, and jumps from 0 to 40% for
PMB. This shows that the first step of our proposed
learning strategy has the desired effect, as it im-
proves the models’ understanding of all the output
classes.

Finally, looking at the models trained with the
OP+FT strategy (fourth column), we see that they
outperform the FT ones on overall and IN accuracy.
The effect is particularly strong on the SMM4H
dataset (cf. PMB FT, 44% and PMB OP+FT, 70%).
At the same time, the performance on OUT (⋄) sam-
ples remains similar to the OP models and close
to the CODER baseline (gray solid line). The only
exception is CADEC, where the performance on
OUT is in-between the baseline and the accuracy
with FT only. This shows that the proposed OP+FT
learning strategy can successfully improve the gen-
eralization capabilities of various language models,
while also improving their overall performance.
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Figure 3: Cross-dataset accuracy for GPT-2 (FT and
OP+FT) on OUT (⋄) and all (•) samples. One plot for
each test dataset; the x-axis reports the training dataset.

We further test the generalization of OP+FT
models in zero-shot, cross-dataset term normal-
ization, normalizing the terms of each dataset with
models that have been trained on one of the other

two. Figure 3 shows the accuracy of GPT-2, with a
plot for each test dataset, different training datasets
on the x-axis, and one column for each learning
strategy (FT or OP+FT). The behaviour of the other
models is similar (see Appendix D). In all columns,
we observe a drop in overall accuracy (•) between
the first data point and the following ones (e.g., cf.
CADEC trained on CADEC and CADEC trained
on SMM4H). However, this drop is larger for FT
models than OP+FT ones (e.g., 35 vs. 20 points on
CADEC). In addition, the OUT accuracy of OP+FT
models remains high regardless of the training set.
This shows that OP+FT models generalize better
than FT models across-dataset. Note that gener-
alization is still challenging when moving from a
dataset with highly informal language to a formal
one (see PROP trained on SMM4H).

6 Conclusions

In this paper, we shed some light on the impor-
tance of generalization for medical term normal-
ization models. We showed that AE normalization
models trained with traditional finetuning, despite
showing high accuracy on leaderboards, have low
generalization capabilities due to the long tail dis-
tribution of the target labels. Our proposed training
strategy (OP+FT), which leverages the hierarchical
structure of the ontology, outperforms traditional
models, while also obtaining state-of-the-art results
in generalization on OUT samples. This was also
demonstrated in a zero-shot normalization setting.
OP+FT showed improvements on discriminative
and generative language models, while it seems to
be less effective on models trained with contrastive
losses. This promising technique could also be
applied to other tasks with massive output spaces
organized in a hierarchical manner.

Limitations

The proposed learning strategy was tested only for
the task of medical term normalization (from ad-
verse events to MedDRA concepts). However, it
would be interesting to test its effectiveness on
other term normalization tasks beyond MedDRA
mapping and outside of the medical domain.

Even restricting the problem to medical term nor-
malization, and using datasets with different text
styles, we only focused on English texts. Medi-
cal ontologies such as MedDRA and UMLS are
released in multiple languages, and the research
community is moving towards multi-lingual ap-
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proaches. In the future, we plan to extend this
strategy to other languages (such as Spanish and
Chinese) and to test the models’ capacity to per-
form crosslingual transfer in zero-shot scenarios.

Acknowledgements

The authors thank Juergen Dietrich, Senior Lead
Data Scientist at Bayer Pharmaceuticals, for the
help in the creation and annotation of the PROP
dataset. Thanks also to the three anonymous re-
viewers for their insightful comments.

References
Olivier Bodenreider. 2004. The Unified Medical Lan-

guage System (UMLS): Integrating Biomedical Ter-
minology. Nucleic Acids Research, 32:D267–70.

Elliot G Brown, Louise Wood, and Sue Wood. 1999.
The Medical Dictionary for Regulatory Activities
(MedDRA). Drug Safety, 20(2):109–117.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL.

Graciela Gonzalez-Hernandez, Ari Z. Klein, Ivan Flo-
res, Davy Weissenbacher, Arjun Magge, Karen
O’Connor, Abeed Sarker, Anne-Lyse Minard, Elena
Tutubalina, Zulfat Miftahutdinov, and Ilseyar Al-
imova. 2020. Proceedings of the COLING Social
Media Mining for Health Applications Workshop &
Shared Task.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2020. Domain-Specific Lan-
guage Model Pretraining for Biomedical Natural Lan-
guage Processing. arXiv preprint arXiv:2007.15779.

Kishaloy Halder, Alan Akbik, Josip Krapac, and Roland
Vollgraf. 2020. Task-aware Representation of Sen-
tences for Generic Text Classification. In Proceed-
ings of COLING.

Sarvnaz Karimi, Alejandro Metke-Jimenez, Madonna
Kemp, and Chenchen Wang. 2015. Cadec: A Cor-
pus of Adverse Drug Event Annotations. Journal of
Biomedical Informatics, 55:73–81.

Robert Leaman, Rezarta Islamaj Doğan, and Zhiyong
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A Training Specifications

Table 2 contains the specifics for the number of
Ontology Pretraining (OP) and Finetuning (FT)
used for all the selected models.

Model
OP

epochs
FT

epochs
OP+FT
epochs

PMB 30 10 30 + 5
GPT-2 30 15 30 + 10
Sci5 40 15 40 + 8

CODER 50 20 50 + 15
SapBERT 30 15 30 + 10

Table 2: Further details about training parameters

Other model-related details:

• PMB A classification head (24,571 output
classes) was added to the base model.

• GPT-2 Given a sample (ai, pj), the in-
put prompt for the model was "INPUT:
a\nMEANING:". The model was trained to
complete the sentence with pj .

• Sci5 Given a sample (ai, pj), the input prompt
for the model was "normalize: a". The
model was trained to respond with a string
containing pj .

• CODER / SapBERT Following their original
papers, we use CODER/SapBERT to normal-
ize an AE a as follows:

p̂ = argmax
p∈P

sim(C(a), C(p))

where sim is a similarity measure (cosine, in
our case), and C(·) is the result of embedding
a term with CODER/SapBERT. p̂ is the pre-
dicted PT, which is compared with the actual
one to evaluate the model.

B Sample Creation for Contrastive
Training

B.1 CODER
CODER leverages on term-term pairs and term-
relation-term triples for its contrastive training
strategy. We create positive/negative samples
for the term-term pairs using the AEs having

equal/different PT, and term-relation-term triples
connecting AEs whose PTs have the same parent .

For example, let’s consider the following (ai, pj)
samples, for which we also report parent(pj):

ai pj parent(pj)
feel like crap malaise Asthenic conditions
weak knees asthenia Asthenic conditions

zap me of all energy asthenia Asthenic conditions

This will generate the following training samples
for CODER:

• positive term-term:
(weak knees, zap me of all energy)
because they share the same pj “asthenia”

• negative term-term:
(weak knees, feel like crap) and
(zap me of all energy, feel like crap)
because they are labelled with a different pj
(“asthenia” vs “malaise”)

• positive term-relation-term:
(weak knees, RO, feel like crap) and
(zap me of all energy, RO, feel like crap),
because their pj share the same parent “As-
thenic conditions”. RO stands for “Related
Other”, one of the standard term relations de-
fined in the UMLS ontology, and we use it to
encode the relation “same granparent”.

This sample generation procedure is repeated for
all samples in the three datasets (SMM4H, CADEC
and PROP), as well as for the additional samples
generated from MedDRA for the OP strategy.

B.2 SapBERT
SapBERT leverages on term-term synonym pairs,
where the positive pairs belong to the same upper-
level concept.

The finetuning script present in the GitHub
repository requires a list of term pairs belong-
ing to the same concept. In the the case of
the three datasets (SMM4H, CADEC and PROP)
we generate the terms pairs as (ℓi, aj), where
parent(ℓi) = norm(aj). For the OP strategy,
the samples are all possible pairs (ℓi, ℓj), where
parent(ℓi) = parent(ℓj).

C Dataset Comparison

Most of the PTs present in the three datasets are
unique to a specific dataset, making it really chal-
lenging to perform transfer learning from one to
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the other without dealing with long-tail and unseen
concepts. The Venn diagram in Figure 4 shows the
number of PT concepts in common between all the
datasets. 706 PTs are unique to one of the three
datasets, 276 are shared among at least two datasets,
and only 98 appear in all three of them. Out of all
the PTs in PROP, 64% are unique (410 out of 634)
to this dataset alone, making it the most challeng-
ing to perform cross-dataset normalization on. The
following most challenging datasets are CADEC
(41% unique PTs) and SMM4H (34% unique PTs).

95 20152

410

29 97
98

SMM4H CADEC

PROP

Figure 4: Venn diagram of the shared/unique PT con-
cepts for the three datasets.

D Complete Results

Tables 3, 4 and 5 include the full results of all tested
models (both Accuracy and F1 Score).

Tables 6, 7, 8, 9 and 10 report the accuracy for all
the cross-dataset experiments (one table for each
model).
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SMM4H
Accuracy

IN OUT overall
CODER 32.34 ±1.22 37.47 ±2.07 32.98 ±1.24

SAPB 42.56 ±0.50 45.98 ±3.60 43.00 ±0.77

FT

CODER 33.20 ±1.53 38.91 ±1.97 33.90 ±1.58

SAPB 42.76 ±1.58 45.02 ±4.84 43.05 ±1.96

PMB 50.26 ±0.95 00.00 ±0.00 44.12 ±1.24

GPT2 72.31 ±1.55 10.02 ±2.21 64.68 ±0.98

SCI5 34.73 ±2.05 12.63 ±3.33 32.06 ±1.84

O
P

CODER 34.20 ±0.62 42.25 ±1.86 35.19 ±0.65

SAPB 44.29 ±1.91 51.25 ±6.04 45.15 ±2.31

PMB 51.33 ±1.15 44.25 ±2.10 50.46 ±1.18

GPT2 41.17 ±0.52 44.48 ±4.90 41.60 ±1.05

SCI5 40.90 ±0.80 40.56 ±6.90 40.90 ±1.48

O
P+

FT

CODER 34.33 ±0.80 43.24 ±1.40 35.43 ±0.83

SAPB 45.75 ±0.66 47.76 ±7.09 46.03 ±1.36

PMB 74.10 ±2.55 37.46 ±4.10 69.64 ±1.80

GPT2 73.71 ±1.29 31.25 ±3.37 68.52 ±1.30

SCI5 60.76 ±0.91 37.87 ±3.21 57.98 ±0.97

F1 Score
IN OUT overall

13.52 ±0.96 23.67 ±1.42 16.34 ±1.14

16.91 ±0.57 29.93 ±3.32 20.23 ±0.20

14.12 ±1.22 24.67 ±1.16 17.14 ±1.34

16.80 ±0.78 29.58 ±4.68 20.10 ±1.17

21.43 ±1.91 00.00 ±0.00 13.68 ±1.43

11.51 ±0.49 07.09 ±1.68 10.43 ±0.48

13.77 ±0.93 05.27 ±2.61 11.83 ±0.42

14.25 ±0.81 27.30 ±1.20 17.93 ±0.83

17.96 ±1.03 35.12 ±4.84 22.27 ±1.45

25.87 ±1.21 27.95 ±0.84 27.51 ±1.41

17.50 ±0.89 24.29 ±4.18 19.63 ±1.47

17.13 ±1.05 22.70 ±2.60 18.99 ±1.37

14.40 ±0.64 28.19 ±1.02 18.18 ±0.65

18.43 ±1.17 32.04 ±5.22 21.92 ±1.66

55.59 ±3.08 22.49 ±2.73 45.62 ±2.51

52.52 ±2.61 19.59 ±2.53 42.20 ±2.68

32.25 ±2.85 23.50 ±2.83 30.08 ±1.77

Table 3: Full metrics (accuracy and F1 score) of all tested models on the SMM4H dataset.

CADEC
Accuracy

IN OUT overall
CODER 35.44 ±0.40 44.79 ±3.35 35.89 ±0.42

SAPB 39.57 ±1.05 51.34 ±4.67 40.14 ±1.14

FT

CODER 39.13 ±1.54 45.96 ±2.15 39.46 ±1.45

SAPB 48.04 ±4.03 46.48 ±4.49 47.97 ±3.70

PMB 82.47 ±0.27 00.00 ±0.00 78.49 ±0.10

GPT2 84.70 ±0.42 07.40 ±0.13 80.97 ±0.45

SCI5 72.80 ±0.12 15.94 ±1.37 70.05 ±0.17

O
P

CODER 41.98 ±0.65 48.06 ±3.12 42.26 ±0.65

SAPB 69.49 ±0.37 50.53 ±1.40 68.58 ±0.37

PMB 73.64 ±0.35 47.05 ±0.50 72.36 ±0.40

GPT2 68.35 ±0.22 43.29 ±2.47 67.14 ±0.22

SCI5 65.99 ±0.58 44.73 ±2.22 64.96 ±0.45

O
P+

FT

CODER 42.08 ±0.80 48.34 ±2.86 42.38 ±0.75

SAPB 62.02 ±2.06 48.44 ±1.74 61.38 ±1.91

PMB 87.18 ±0.33 23.88 ±1.79 84.12 ±0.28

GPT2 86.08 ±0.78 23.92 ±1.09 83.08 ±0.69

SCI5 80.96 ±0.40 37.21 ±4.32 78.85 ±0.52

F1 Score
IN OUT overall

17.78 ±0.43 26.81 ±2.20 19.89 ±0.58

17.44 ±0.63 31.62 ±3.29 20.20 ±0.56

18.72 ±0.54 27.53 ±1.46 20.88 ±0.38

20.25 ±1.50 27.02 ±3.67 22.11 ±0.62

47.64 ±1.29 00.00 ±0.00 33.32 ±1.44

30.97 ±0.50 08.31 ±0.83 25.00 ±0.40

37.02 ±1.63 07.11 ±3.29 29.84 ±1.39

24.40 ±1.78 27.12 ±3.61 25.25 ±1.95

27.48 ±0.81 32.38 ±1.54 29.39 ±0.32

38.46 ±1.36 32.21 ±1.40 38.47 ±0.65

28.76 ±1.20 28.75 ±1.23 29.66 ±1.35

27.10 ±1.09 27.27 ±1.49 27.98 ±0.86

20.77 ±0.66 29.52 ±1.66 23.31 ±0.71

27.20 ±0.82 29.45 ±1.59 28.68 ±0.54

70.43 ±1.00 15.74 ±1.15 55.78 ±0.36

64.17 ±2.89 15.07 ±0.67 51.05 ±1.04

50.09 ±2.36 22.66 ±2.23 44.36 ±2.11

Table 4: Full metrics (accuracy and F1 score) of all tested models on the CADEC dataset.
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PROP
Accuracy

IN OUT overall
CODER 12.58 ±0.44 28.44 ±3.02 14.19 ±0.71

SAPB 20.28 ±0.59 36.54 ±3.61 21.91 ±0.81

FT

CODER 19.88 ±0.89 28.39 ±3.81 20.76 ±1.20

SAPB 33.77 ±2.57 36.34 ±3.71 34.02 ±2.63

PMB 60.20 ±0.34 00.00 ±0.00 54.09 ±0.76

GPT2 65.21 ±0.73 05.75 ±1.22 59.18 ±1.12

SCI5 45.70 ±0.77 12.71 ±1.13 42.34 ±0.61

O
P

CODER 15.29 ±0.24 30.62 ±1.97 16.84 ±0.38

SAPB 24.10 ±0.76 43.80 ±2.54 26.09 ±0.85

PMB 30.99 ±1.00 37.92 ±1.66 31.69 ±1.04

GPT2 24.05 ±0.77 32.89 ±2.23 24.94 ±0.86

SCI5 24.71 ±0.78 32.71 ±4.80 25.49 ±1.12

O
P+

FT

CODER 19.64 ±0.25 32.88 ±2.51 20.98 ±0.28

SAPB 39.88 ±3.20 42.68 ±3.66 40.16 ±3.23

PMB 68.89 ±1.17 25.60 ±1.91 64.50 ±1.48

GPT2 66.90 ±0.61 21.75 ±2.16 62.31 ±1.10

SCI5 54.07 ±0.54 27.42 ±4.77 51.34 ±0.81

F1 Score
IN OUT overall

08.02 ±0.56 16.79 ±1.30 10.79 ±0.83

10.43 ±0.33 22.50 ±2.83 13.67 ±0.83

10.18 ±0.77 15.85 ±2.01 12.23 ±0.84

12.20 ±0.77 22.41 ±2.96 15.35 ±1.14

25.56 ±0.66 00.00 ±0.00 14.66 ±0.96

17.50 ±0.50 07.90 ±0.63 13.91 ±0.31

20.80 ±1.26 07.76 ±0.49 17.31 ±1.51

09.61 ±0.66 17.79 ±0.70 12.35 ±0.51

12.71 ±0.83 27.30 ±2.13 16.67 ±0.93

20.89 ±1.88 23.60 ±1.39 22.75 ±1.66

11.36 ±0.78 19.54 ±3.04 13.38 ±1.18

10.86 ±0.66 19.73 ±1.98 13.10 ±0.85

11.38 ±0.32 19.27 ±1.27 14.22 ±0.51

16.11 ±1.88 26.86 ±2.79 19.61 ±2.09

54.19 ±2.05 16.35 ±1.59 39.66 ±2.77

49.29 ±1.26 13.41 ±1.28 35.12 ±2.52

33.36 ±1.16 17.15 ±2.70 27.89 ±2.35

Table 5: Full metrics (accuracy and F1 score) of all tested models on the PROP dataset.

CODER FT

Test (IN)
CADEC SMM4H PROP

Tr
ai

n

CADEC 39.13 35.80 31.84

SMM4H 37.78 33.20 40.44

PROP 37.83 35.08 19.88

Test (OUT)
CADEC SMM4H PROP

45.96 35.79 08.79

31.87 38.91 09.39

35.73 32.56 28.39

Test (overall)
CADEC SMM4H PROP

39.46 35.82 15.25

36.00 33.90 14.25

37.39 33.85 20.76

CODER OP+FT

Test (IN)
CADEC SMM4H PROP

Tr
ai

n

CADEC 42.08 35.12 33.56

SMM4H 44.90 34.33 43.95

PROP 44.25 38.62 19.64

Test (OUT)
CADEC SMM4H PROP

48.34 35.63 11.34

36.72 43.24 12.81

37.77 32.21 32.88

Test (overall)
CADEC SMM4H PROP

42.38 35.25 17.59

42.42 35.43 17.69

42.85 35.49 20.98

Table 6: Cross-dataset accuracy for CODER FT and CODER OP+FT on the three datasets.
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SapBERT FT

Test (IN)
CADEC SMM4H PROP

Tr
ai

n

CADEC 42.69 35.09 30.80

SMM4H 39.14 39.58 39.92

PROP 32.21 31.07 26.69

Test (OUT)
CADEC SMM4H PROP

34.47 35.32 8.73

23.79 32.42 10.02

29.77 34.97 25.81

Test (overall)
CADEC SMM4H PROP

42.30 35.12 14.94

34.53 38.69 14.71

31.71 32.98 26.60

SapBERT OP+FT

Test (IN)
CADEC SMM4H PROP

Tr
ai

n

CADEC 63.96 45.93 49.29

SMM4H 70.71 46.28 62.73

PROP 68.69 49.77 41.33

Test (OUT)
CADEC SMM4H PROP

47.76 34.72 14.63

61.31 48.43 17.84

48.09 28.82 39.81

Test (overall)
CADEC SMM4H PROP

63.19 42.65 24.39

67.89 46.54 24.90

64.24 39.45 41.17

Table 7: Cross-dataset accuracy for SapBERT FT and SapBERT OP+FT on the three datasets.

PMB FT

Test (IN)
CADEC SMM4H PROP

Tr
ai

n

CADEC 82.47 54.00 51.74

SMM4H 38.82 50.26 31.43

PROP 47.76 39.83 60.20

Test (OUT)
CADEC SMM4H PROP

00.00 00.00 00.00

00.00 00.00 00.00

00.00 00.00 00.00

Test (overall)
CADEC SMM4H PROP

78.49 38.00 14.55

27.16 44.12 04.93

37.48 20.22 54.09

PMB OP+FT

Test (IN)
CADEC SMM4H PROP

Tr
ai

n

CADEC 87.18 61.05 64.95

SMM4H 79.84 74.10 79.24

PROP 75.33 63.33 68.89

Test (OUT)
CADEC SMM4H PROP

23.88 18.76 11.64

53.14 37.46 17.35

39.84 23.86 25.60

Test (overall)
CADEC SMM4H PROP

84.12 48.54 26.64

71.82 69.64 27.07

67.72 43.88 64.50

Table 8: Cross-dataset accuracy for PMB FT and PMB OP+FT on the three datasets.
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GPT-2 FT

Test (IN)
CADEC SMM4H PROP

Tr
ai

n

CADEC 84.70 60.86 60.52

SMM4H 65.73 72.31 69.88

PROP 56.68 52.43 65.21

Test (OUT)
CADEC SMM4H PROP

07.40 03.78 01.51

06.54 10.02 01.84

07.41 03.45 05.75

Test (overall)
CADEC SMM4H PROP

80.97 43.99 18.10

47.94 64.68 12.52

46.08 28.31 59.18

GPT-2 OP+FT

Test (IN)
CADEC SMM4H PROP

Tr
ai

n

CADEC 86.08 62.50 62.56

SMM4H 78.23 73.71 77.98

PROP 72.75 58.96 66.90

Test (OUT)
CADEC SMM4H PROP

23.92 34.21 08.90

26.72 31.25 11.02

27.65 18.72 21.75

Test (overall)
CADEC SMM4H PROP

83.08 54.06 24.00

62.74 68.52 21.54

63.09 39.15 62.31

Table 9: Cross-dataset accuracy for GPT-2 FT and GPT-2 OP+FT on the three datasets.

Sci5 FT

Test (IN)
CADEC SMM4H PROP

Tr
ai

n

CADEC 72.80 44.44 46.20

SMM4H 35.28 34.73 44.05

PROP 29.23 28.44 45.70

Test (OUT)
CADEC SMM4H PROP

15.94 06.86 03.07

10.42 12.63 03.30

15.44 11.14 12.71

Test (overall)
CADEC SMM4H PROP

70.05 33.33 15.19

27.81 32.06 09.71

26.24 19.93 42.34

Sci5 OP+FT

Test (IN)
CADEC SMM4H PROP

Tr
ai

n

CADEC 80.96 56.07 60.35

SMM4H 71.96 60.76 72.82

PROP 63.63 47.74 54.07

Test (OUT)
CADEC SMM4H PROP

37.21 36.86 13.95

52.17 37.87 17.19

40.12 26.95 27.42

Test (overall)
CADEC SMM4H PROP

78.85 50.34 27.02

66.02 57.98 25.92

58.52 37.45 51.34

Table 10: Cross-dataset accuracy for Sci5 FT and Sci5 OP+FT on the three datasets.
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