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Abstract

Noisy labels are ubiquitous in natural language
processing (NLP) tasks. Existing work, namely
learning with noisy labels in NLP, is often lim-
ited to dedicated tasks or specific training pro-
cedures, making it hard to be widely used. To
address this issue, SGD noise has been ex-
plored to provide a more general way to al-
leviate the effect of noisy labels by involving
benign noise in the process of stochastic gra-
dient descent. However, previous studies exert
identical perturbation for all samples, which
may cause overfitting on incorrect ones or opti-
mizing correct ones inadequately. To facilitate
this, we propose a novel stochastic tailor-made
gradient noise (STGN), mitigating the effect of
inherent label noise by introducing tailor-made
benign noise for each sample. Specifically, we
investigate multiple principles to precisely and
stably discriminate correct samples from incor-
rect ones and thus apply different intensities
of perturbation to them. A detailed theoretical
analysis shows that STGN has good properties,
beneficial for model generalization. Experi-
ments on three different NLP tasks demonstrate
the effectiveness and versatility of STGN. Also,
STGN can boost existing robust training meth-
ods.1

1 Introduction

Deep neural networks (DNNs) have notably suc-
ceeded on various natural language processing
(NLP) tasks. However, noisy labels induced by
labeling errors are prevalent in a wide range of
corpora (Jia et al., 2019; Alt et al., 2020). DNNs
can gradually fit correct data (i.e., noise-free data)
and eventually memorize all data, including incor-
rect data (i.e., data with label noise) (Zhang et al.,
2017), which would affect the generalization of
deep models and result in the performance degrada-
tion. Hence, it is pressing and necessary to develop

∗Corresponding author.
1The code is released at https://github.com/tangminji/

STGN-sst.
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Figure 1: Ratios of memorizing incorrect samples (Left,
i.e., training accuracy from incorrect ones (%), smaller
is better) and learning correct samples (Right, i.e., train-
ing accuracy from correct ones (%), larger is better)
during training on SST-5 with 40% label noise. Two
ratios together form the training accuracy (%). Our
method STGN gains more training accuracy on correct
samples than existing method SLN but memorizes much
less label noise.

robust methods in NLP to mitigate the impact of
noisy labels.

To prevent overfitting on noisy labels, previous
work mainly focuses on specific tasks (Jia et al.,
2019; Meng et al., 2021) or relies on additional data
annotations (Jindal et al., 2019; Hedderich et al.,
2021), limiting its wide applications. For example,
Le and Titov (2019) study noisy labels in entity
linking, which depends on the definition of multi-
instance learning. However, the framework is ded-
icated and hard to transfer to other tasks like text
classification. As a general method, regularization
can be applied to enhance generalization of the base
model without excessive limitations. Specifically,
implicit regularization (e.g., learning rate, dropout),
arising regularization effect from optimization, can
guarantee DNNs’ generalization effectively even
non-use of any explicit regularization (Arora et al.,
2019) (e.g., L1 norm regularization).

Among those sources of implicit regularization,
the noise in stochastic gradient descent (SGD noise)
is deemed as a crucial one. Previous studies (Nee-
lakantan et al., 2015; HaoChen et al., 2021; Chen
et al., 2021) inject gaussian noise into different po-
sitions of the gradient in the backpropagation of
DNNs. However, they do not distinguish between
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Method ∇̃θℓ(f, y)

GNMP ∇θℓ(f, y) + σθgθ
σθ > 0, gθ ∈ R1×p,
gθ ∼ N (0, Ip×p)

GNMO (∇f ℓ(f, y) + σfgf ) · ∇θf
σf > 0, gf ∈ R1×c,
gf ∼ N (0, Ic×c)

SLN ∇θℓ(f, y + σygy)
σy > 0, gy ∈ R1×c,
gy ∼ N (0, Ic×c)

Table 1: Comparison of SGD noise variants.

correct and incorrect samples. Each sample is ex-
erted identical perturbation, i.e., the noise with the
same magnitude or homovariance. Fig. 1 shows ra-
tios of memorizing incorrect samples and learning
correct ones of a recent method SLN (Chen et al.,
2021) with different noise intensities (i.e., σy = 0.5,
1.0). We observe an intense disturbance (σy = 1.0)
significantly reduces incorrect samples memoriza-
tion, mitigating overfitting. However, the ability to
learn from correct samples also gets notably sup-
pressed, leading to inadequate optimization.

To address this issue, we investigate a benign
noise called stochastic tailor-made gradient noise
(STGN) to resist inherent label noise, where tailor-
made denotes devising diverse disturbing magni-
tude for correct and incorrect samples. Specifically,
we combine multiple guidelines to separate correct
and incorrect samples precisely, followed by updat-
ing the perturbation of each sample iteratively in a
self-supervised manner. In this way, STGN exerts
large benign noise on incorrect samples to relieve
overfitting and learns correct ones without pertur-
bation to promote sufficient optimization. In Fig. 1,
STGN gains more training accuracy on correct sam-
ples than SLN (σy = 0.5) but memorizes much less
label noise. Besides, we further provide a detailed
theoretical analysis, revealing the mechanism of
STGN facilitating the model generalization.

Experimental results on sentiment analysis,
named entity recognition (NER), and event rela-
tion reasoning demonstrate consistent gain, which
verifies the effectiveness and generality of STGN.
Moreover, benign tailor-made noise can enhance
the generalization of the model efficiently.

2 Preliminaries

2.1 Notations.
LetD = {(xi, yi)}Ni=1 denote the dataset with noisy
labels, where xi is the i-th sample, and yi is its
corresponding label. Let f(x; θ) be the model
with trainable parameters θ ∈ Rp for any exam-

ple (x, y). For a c-class classification task, we have
the output f(x;θ) ∈ Rc (abbr. f ) and the loss of
a sample ℓ(f, y) (abbr. ℓ). During the parame-
ter update phase, a sample contributes ∇θℓ(f, y)
to the gradient descent, where ∇θℓ(f, y) is calcu-
lated by the model optimizer, e.g., SGD, Adam
and AdamW. With SGD noise, the model is trained
with a noisy gradient ∇̃θℓ(f, y). Following the
standard notation of the Jacobian matrix, we have
∇θℓ ∈ R1×p,∇f ℓ ∈ R1×c,∇θf ∈ Rc×p.

2.2 SGD Noise.
SGD noise is a critical one among the sources of im-
plicit regularization (Keskar et al., 2017). Notably,
inherent label noise is harmful to generalization,
while SGD noise contributes to generalization due
to its regularization effect. Therefore, the latter
can be applied to mitigate the effects of the label
noise. Moreover, as a general-purpose regulariza-
tion method, it can be readily integrated into SGD
or its variants and incorporates existing robust train-
ing methods against noisy labels.

2.3 Previous SGD Noise Variants
GNMP. Neelakantan et al. (2015) propose an
SGD noise, adding Gaussian noise gθ with mean-
zero and constant standard deviation σθ on the gra-
dient of loss w.r.t model parameters ∇θℓ(f, y), ob-
taining noisy gradient ∇̃θℓ(f, y).

GNMO. HaoChen et al. (2021) study an SGD
noise induced by Gaussian noise gf with mean-zero
and constant standard deviation σf on the gradient
of loss w.r.t model output ∇f ℓ(f, y), getting noisy
gradient ∇̃θℓ(f, y).

SLN. Chen et al. (2021) devise an SGD noise re-
sulting from stochastic label noise, injecting Gaus-
sian noise gy with mean-zero and constant standard
deviation σy to the one-hot labels y, acquiring noisy
gradient ∇̃θℓ(f, y).

The concrete forms of ∇̃θℓ(f, y) in these meth-
ods are shown in Table 1, respectively. HaoChen
et al. (2021) prove that in an over-parameterized
setting, SLN or GMNO recovers the sparse
groundtruth, whereas GMNP overfits to dense so-
lutions. With the same and small training error,
sparse solutions generalize better than dense so-
lutions, whose intuitive explanation is called Oc-
cam’s razor, and No Free Lunch theorem (Shalev-
Shwartz and Ben-David, 2014). Therefore, GNMO
and SLN are preferable to GNMP at improving
generalization when learning with noisy labels.
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3 Method

3.1 Details of STGN

Previous SGD noise variants fail to consider the
specialty of learning with noisy labels. In their stud-
ies, every sample is disturbed with identical magni-
tude. With no explicit discrimination between cor-
rect and incorrect samples, the intense perturbation
may lead to inadequate model optimization, while
minor disturbance can result in overfitting incorrect
ones. To address this issue, we propose stochas-
tic tailor-made gradient noise (STGN), i.e., in a
mini-batch, we reduce the disturbance on correct
samples and increase the perturbation on incorrect
ones. STGN can be regarded as a kind of SGD
noise, which designs tailor-made stochastic gradi-
ent noise for different samples. The exact format
of our approach is as follows:

(
∇f ℓ(f, y) +

σt
f

S
uf

)
· ∇θf, (1)

where σt
f > 0 denotes disturbance intensity, and

t is the current number of epoch. We add gra-
dient noise sampled from a uniform distribution,
where uf ∈ R1×c and uf ∼ U

(
− Ic×c

2 , Ic×c

2

)
.

Ic×c denotes the c × c identity matrix. Notably,
uf follows a uniform distribution rather than the
Gaussian distribution in previous work. This is
mainly because compared with uniform distribu-
tion, sampling from Gaussian distribution may gen-
erate extremely large values, bringing additional
large random disturbances, which is detrimental to
reducing the perturbation on correct samples. We
use a softmax function S(f(x; θ)) ∈ [0, 1]c to ob-
tain the probability of each class, where S indicates
the softmax output of a sample.

We investigate an SGD noise by perturbing the
gradient of loss w.r.t model output. But unlike ex-
isting studies, the standard deviation σt

f varies with
every epoch’s judgment (i.e., whether the sample
is correct or not) and is updated iteratively. Specifi-
cally, for each sample at the t-th epoch, we enlarge
its σt

f if its label is noisy and diminish its σt
f oth-

erwise. The problem is how to distinguish correct
samples from incorrect ones.

Correct & Incorrect Samples Discrimination.
Deep networks can effectively filter out noise-free
samples from the noisy training data by empirically
treating small-loss examples as correct ones (Jiang
et al., 2018; Han et al., 2018). Inspired by this loss-
based separation, we exploit model loss to separate

noisy data. Let ϵ denote the noise level, measuring
how many noisy labels are corrupted from ground-
truth labels. Here, ϵ is a scalar and can easily be
estimated in practice (Patrini et al., 2017). For any
sample in a mini-batch, we contrive a simple but
effective guideline g1 to determine whether the data
is noise-free or not. g1 is defined as

g1 = sign(ℓ− τ), (2)

where sign(·) is the sign function, and ℓ indicates
the loss of a sample. τ is the ϵ′-th percentile loss in
the mini-batch, where ϵ′ is uniquely determined by
ϵ (e.g., ϵ = 0.4, ϵ′ = (1 - ϵ)·100% = 60(%)). g1 = −1
if ℓ < τ , which implies the sample is noise-free
and conversely g1 = 1. g1 = 0 if ℓ = τ .

However, it is hard to avoid memorizing noisy
labels from the beginning of training since noisy
samples cannot be distinguished without sufficient
training. To alleviate this issue, we initialize σt

f as
constant σf for each example, where σf > 0. Then
we employ more guidelines to facilitate automatic
and precise judgment regarding correct and incor-
rect samples. Specifically, Toneva et al. (2019) find
that samples with label noise are among the most
forgotten ones by DNNs and characterize the phe-
nomenon by defining forgetting events. Namely, if
a training example transitions from being classified
correctly to incorrectly at the t-th epoch, its num-
ber of forgetting events increase by one. Inspired
by the learning dynamics of DNNs, we propose
guideline g2 to separate correct data from incorrect
data as follows:

g2 = sign(ft − λ), (3)

where ft is a sample’s number of forgetting events
at the t-th epoch. λ denotes a threshold to separate
incorrect data from correct ones. g2 = −1 if ft <
λ, which indicates the sample is noise-free and
conversely g2 = 1. g2 = 0 if ft = λ.

By integrating the above guidelines into a gen-
eral framework, we harvest precise and stable ways
for identification. Predictions depending on more
guidelines are analogous to the diversity advantage
in ensemble learning, thus ensuring accurate dis-
crimination results. Sign function imposes impact-
ful constraints on calculating guidelines, guarantee-
ing stable outputs, and avoids drastically changed
outputs among different epochs. Suppose we have
m guidelines in total, which output a total contri-
bution no more than C, we have
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Algorithm 1 STGN training.

Require: Number of epochs T , optimizer O,
mini-batch B = (xi, yi)

nb
i=1 of batch size nb,

constant σf > 0, uf ∼ U
(
− Ic×c

2 , Ic×c

2

)
.

1: σ0
f ← σf ▷ σ0

f ∈ RN

2: for t = 1 to T do
3: Sample B randomly
4: f ← f({xi}nb

i=1; θ) ▷ line 4-5: forward
pass

5: ℓ← ℓ(f, {yi}nb
i=1)

6: S ← Softmax(f ) ▷ obtain each class’s
probability

7: ∇f ℓ← Backward(ℓ, f ) ▷ line 7-13:
backward pass

8: for i = 1, . . . , nb do ▷ each sample in B
9: Σt

i is calculated by Eq. (4)
10: σt

fi ← σt−1
fi + γΣt

i

11: ∇̃f ℓi ← ∇f ℓi +
σt
fi

Si
uf

12: end for
13: ∇̃θℓ← Backward(f, θ)
14: O.step(∇̃θℓ) ▷ update model
15: end for

Σt =
C
m

m∑

j=1

sign(M t
j ), (4)

where M t
j is the j-th method to build the guideline

at the t-th epoch. Let m = 2, C = 1, and Σt denote
a sample’s discriminant output, and we iteratively
update σt

f via

σt
f ← σt−1

f + γΣt, (5)

where Σt ∼ {−1,−0.5, 0, 0.5, 1}, and γ > 0 is
the coefficient. The update of σt

f can be regarded
as a random walk in one-dimensional space driven
by mean-zero updates. Let σt

f ∈ [0, σmax]. Then
a correct (or incorrect) sample will eventually con-
verge to σt

f = 0 (or σt
f = σmax) with high proba-

bility, which meets the goal of STGN. Algorithm 1
depicts the complete implementation process. We
divide the backpropagation process into two sec-
tions (Lines 7, 13). The model first backpropa-
gates from loss ℓ to model output f , obtaining the
gradient ∇f ℓ (Line 7). From Lines 8-12, we in-
ject benign noise into ∇f ℓ, leading to the gradient
∇f ℓ changing to ∇̃f ℓ. After that, it continues the
backpropagation from noisy gradient ∇̃f ℓ to the
learnable parameters θ (Line 13).

3.2 Theoretical Analysis
3.2.1 Properties of STGN
We analyze STGN’s properties from three different
perspectives based on Theorem 1.

Theorem 1. STGN induces noise e ∈ R1×p of
multivariate uniform distribution with mean-zero
and covariance matrix V ∈ Rp×p, where Vi,j =
(σt

f )
2

12

(∇θi
f

S

)T ∇θj
f

S , ∀i, j ∈ {1, · · · , p}. ·
S de-

notes the element-wise division. Note that the stan-
dard deviation of noise on the i-th parameter θi is√
Vi,i =

σt
f

2
√
3

∥∥∥∇θi
f

S

∥∥∥
2
, where ∥·∥ denotes the L2

norm.

Proof. Suppose uf ∈ R1×c,∇θℓ ∈ R1×p,∇f ℓ ∈
R1×c,∇θf ∈ Rc×p,∇θif ∈ Rc×1. The noisy gra-
dient is

∇̃θℓ(f, y) =

(
∇f ℓ(f, y) +

σt
f

S
uf

)
· ∇θf

= ∇θℓ(f, y) +
σt
f

S
uf · ∇θf.

(6)

The noise on∇θℓ(f, y) is e =
σt
f

S uf ·∇θf ∈ R1×p.

Note that uf ∼ U
(
− Ic×c

2 , Ic×c

2

)
, let ei be the i-th

entry of e, and we have

ei = σt
f

c∑

k=1

∂fk
∂θi

ufk

Sk
= σt

f

c∑

k=1

∇θifk
Sk

ufk . (7)

Hence,

E
[
e2i
]
=

(σt
f )

2

12

∥∥∥∥
∇θif

S

∥∥∥∥
2

2

,E [eiej ]=
(σt

f )
2

12

(∇θif

S

)T ∇θjf

S
(8)

Perspective 1: Menon et al. (2019) propose not
overly trusting any single sample to help mitigate
the label noise effect. Besides, Lukasik et al. (2020)
evade overconfidence to improve generalization.
In Theorem 1, S ∈ Rc×1 is in the denomina-
tor (element-wise division) of

√
Vi,i, bringing the

SGD noise introduced by STGN dependent on the
confidence of S. When S is confident (i.e., a term
in S closes to 1 and others to 0), it will lead to high
variance and convergence difficulty since there are
small numbers in the denominator. Therefore, we
derive Property 1 as follows.

Property 1. STGN mitigates overfitting on noisy
labels by preventing overconfident prediction.

Perspective 2: Achille and Soatto (2018) prove
that compared with sharp minima, flat minima in
landscape generalize well. In Theorem 1, ∥∇θif∥2
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is in the numerator of
√
Vi,i. It can be very large

around the sharp landscape, which means the SGD
noise has high variance. The high variance makes
the training hard to converge, which helps escape
from sharp minima. Therefore, we derive Prop-
erty 2 as follows.

Property 2. The standard deviation of the noise√
Vi,i =

σt
f

2
√
3

∥∥∥∇θi
f

S

∥∥∥
2

derived from STGN corre-
lates with the landscape and contributes to gener-
alization.

Perspective 3: In machine learning, Han et al.
(2020) discover optimization shares the goal with
generalization at the beginning of training. Suffi-
cient optimization can evade underfitting. However,
the objective of optimization will diverge from that
of generalization once optimization is well done,
as too much optimization can trigger overfitting.
In Theorem 1, with the training, zero perturbation
(i.e., σt

f → 0) on correct data prompts more thor-
ough optimization, while massive disturbance (i.e.,
σt
f → σmax) on incorrect data alleviates memoriz-

ing noisy labels. The auto-adaptive operations for
correct and incorrect samples ensure no divergence
between the optimization and generalization goals.
Therefore, we derive Property 3 as follows.

Property 3. STGN exerts large perturbation on in-
correct samples while learns correct samples with-
out disturbance, ensuring the goals of optimization
and generalization are always the same.

3.2.2 STGN vs. Existing SGD Noise Variants
To explore the relation between STGN and existing
methods, we summarize the following Theorem 2.

Theorem 2. The existing SGD noise variants are
special cases of STGN. Specifically, STGN would
degenerate to GNMO if σt

f = σf and removing ·
S

is satisfied, and degenerate to SLN when σt
f = σf

condition is met, where σf > 0 is constant.

Proof. Suppose ∇θℓ ∈ R1×p, ∇f ℓ ∈ R1×c,
∇θf ∈ Rc×p, ∇Sℓ ∈ R1×c, ∇θS ∈ Rc×p,
gf ∈ R1×c and gf ∼ N (0, Ic×c), gy ∈ R1×c

and gy ∼ N (0, Ic×c), uf ∈ R1×c and uf ∼
U
(
− Ic×c

2 , Ic×c

2

)
. Due to the mean-zero of the

perturbations (i.e., gf , gy, and uf ), we focus on
analyzing their standard deviations or variances of
the perturbation, which are irrelevant to specific
distributions. Therefore, suppose we ignore the
form of noise distribution in SGD noise.

For GNMO, the noisy gradient is

∇̃θℓ(f, y) = (∇f ℓ(f, y) + σfgf ) · ∇θf

= ∇θℓ(f, y) + σfgf · ∇θf.
(9)

The noise on∇θℓ(f, y) is e = σfgf ·∇θf ∈ R1×p.
Note that gf ∼ N (0, Ic×c). Let ei be the i-th entry
of e, and we have

ei = σf

c∑

k=1

∂fk
∂θi

gfk . (10)

Hence,

E
[
e2i
]
= σ2

f ∥∇θif∥22 ,E [eiej ] = σ2
f (∇θif)

T ∇θjf.
(11)

For STGN in Eq. (6), where we set σt
f = σf and

remove ·
S , Eq. (6) is reduced to Eq. (9).

For SLN, the loss function is restricted to cross-
entropy loss. S = S(f(x)) denotes the softmax
function, and the noisy gradient is as follows.

∇̃θℓ(f, y) = ∇θℓ(f, y + σygy)

= ∇Sℓ(f, y + σygy) · ∇θS

= −
(y + σygy

S

)
· ∇θS

= −
( y

S

)
· ∇θS −

(σygy
S

)
· ∇θS

= ∇θℓ(f, y)− σy

S
gy · ∇θS.

(12)

The noise on ∇θℓ(f, y) is e = −σy

S gy · ∇θS ∈
R1×p. Note that gy ∼ N (0, Ic×c), let ei be the
i-th entry of e, and we have

ei = −σy

c∑

k=1

∂Sk

∂θi

gyk
Sk

. (13)

Hence,

E
[
e2i
]
= σ2

y

∥∥∥∥
∇θiS

S

∥∥∥∥
2

2

,E [eiej ] = σ2
y

(∇θiS

S

)T ∇θjS

S
.

(14)

For STGN in Eq. (6), where we set σt
f = σf ,

STGN is equivalent to SLN (Eq. (6)→Eq. (12)).
Note that∇θf and ∇θS, playing analogous roles,
are not distinguished here.

Theorem 2 shows that the STGN method is uni-
versal and compatible with existing methods. For-
mally, Eq. (11) and Eq. (14) are similar to Eq. (8)
in Theorem 1. In Eq. (11), ∥∇θif∥2 is in the nu-
merator of

√
Vi,i, allowing GNMO also satisfies

Property 2. Besides, in Eq. (14), S ∈ Rc×1 is in the
denominator of

√
Vi,i, making SLN has Property 1

as well. Note that SLN satisfies this property iff
training with cross-entropy loss. However, STGN
does not need to restrict the loss function form.
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Model Method
SST-5

20% 40% 60%

Peak Average Peak Average Peak Average

BERT

Adam 51.15±0.24 48.56±0.15 49.37±0.69 41.35±0.60 40.26±2.28 30.61±0.84
GNMP 50.12±0.11 49.56±0.10 47.56±0.36 46.97±0.33 40.32±0.51 34.84±1.16
GNMO 49.52±1.82 47.00±0.81 47.09±0.15 43.27±2.16 36.86±1.83 29.13±1.32

GCE 51.06±0.26 50.05±0.46 49.35±0.18 46.85±0.34 34.52±3.69 29.68±2.21
SLN 50.32±1.42 49.37±0.44 49.40±0.30 46.71±0.43 41.09±1.09 35.77±1.50

STGN 51.30±0.67 50.44±0.06 49.52±0.81 47.49±0.83 42.96±1.96 39.10±1.93
GCE-STGN 51.70±0.50 50.73±0.20 49.72±0.61 48.11±0.65 39.22±2.20 34.98±2.53

Table 2: Peak accuracy (i.e., maximum test accuracy throughout the training) and Average accuracy (i.e., average
test accuracy over the last five epochs) on SST-5 under different noise levels. Top-2 results are in bold.

4 Experiments

We aim to build robust NLP learning methods on
noisy training sets to achieve well generalization
performance on clean test sets. To this end, we
experiment on three tasks (i.e., sentiment analy-
sis, NER, and event relation reasoning) to test the
effectiveness and generality of STGN. After that,
we examine the theoretical analysis experimentally.
We further explore the influence of hyperparame-
ters and guidelines in STGN through an ablation
study. Due to the limited space, complete experi-
mental settings are in Appendix A.1.

4.1 Sentiment Analysis

We first test the effectiveness of STGN on the Stan-
dard Sentiment Treebank (SST-5) dataset (Socher
et al., 2013). We follow the previous work (Mu-
nikar et al., 2019), adopting BERT as the base
model, and compare with five baselines: 1)
Adam (Kingma and Ba, 2015): the model opti-
mized with vanilla Adam. 2) GNMP (Neelakantan
et al., 2015). 3) GNMO (HaoChen et al., 2021).
4) GCE (Zhang and Sabuncu, 2018): generalized
cross-entropy, a general class of noise-robust loss
function, encompassing CE (i.e., cross-entropy)
and MAE (i.e., mean absolute error). 5) SLN (Chen
et al., 2021): the state-of-the-art (SOTA) baseline
using implicit regularization.

Table 2 reports peak accuracy and average ac-
curacy under 20%, 40%, 60% noise levels, man-
ifesting the model’s generalization performance
from instantaneous peak value and stable mean
perspectives. We observe that, STGN consistently
outperforms all baselines under diverse noise levels
on instantaneous and average test accuracy, which
indicates that STGN can effectively mitigate the
impact of label noise. We also find that apply-
ing an identical base model under higher noise

Method Metric Label Set

1 2 3 4 5 6 7

Adam
Pre. 63.28 72.04 48.48 73.39 57.54 63.47 70.88
Rec. 20.05 27.52 36.07 28.88 44.90 43.53 48.32
F1 30.46 39.82 41.37 41.45 50.44 51.64 57.47

Noise
Model

Pre. 69.52 67.85 49.01 62.58 59.64 54.83 60.89
Rec. 25.60 35.39 37.44 39.63 45.31 50.10 56.26
F1 37.42 46.51 42.45 49.32 51.50 52.36 58.48

STGN
Pre. 72.09 68.77 48.17 64.01 56.54 60.95 65.05
Rec. 27.58 36.48 40.52 43.46 50.03 50.10 55.92
F1 39.90 47.67 44.01 51.77 53.09 55.00 60.14

Table 3: Performance on the test set of NoisyNER mea-
sured by precision (Pre.), recall (Rec.) and F1 scores.
NoisyNER contains 7 label sets that correspond to 7
different noise levels. Top-1 F1 results are in bold.

levels (e.g., under 60% label noise), other base-
lines are more likely to show significant overfitting,
i.e., an apparent gap exists between average accu-
racy and peak accuracy. However, for STGN, the
average accuracy is comparable with its peak ac-
curacy, which signifies good generalization under
STGN. To further validate the validity of STGN
on robust approaches, we impose STGN on top of
GCE (GCE-STGN). We find that STGN can further
boost existing robust training methods, demonstrat-
ing its versatility. Entire optimal hyperparameters
settings are provided in Table 6 of Appendix, and
more experimental settings and details are in Ap-
pendix A.2.

4.2 Named Entity Recognition

To evaluate the effectiveness of STGN when the
label distribution is highly skewed, we experiment
on the NoisyNER dataset (Hedderich et al., 2021),
a noisy corpus in the real world with labels 3.7%
persons (PER), 2.8% locations (LOC), 2.8% orga-
nizations (ORG), and 90.8% non-entity (O). Fol-
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Model Method Step Infer. Goal Infer. Step Ordering

Human 96.5 98.0 97.5

BERT
AdamW

87.4 79.8 81.9
XLNet 86.7 78.3 82.6
GPT-2 83.6 68.6 80.1

RoBERTa
AdamW 88.2 82.0 83.5

AdamW* 88.21±0.08 79.53±0.23 83.00±0.28
STGN 89.24±0.35 81.38±0.37 83.60±0.22

Table 4: Test accuracy (mean±std) on wikiHow of dif-
ferent subtasks. * indicates our reimplementation.
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(b) Trained with 60% label noise.

Figure 2: Ratios of memorizing incorrect samples (Left,
smaller is better) and learning correct samples (Right,
larger is better) during training on SST-5.

lowing Hedderich et al. (2021), we take BiLSTM-
FC as the base model and compare STGN with
two baselines: 1) Adam (Kingma and Ba, 2015):
the baseline in (Hedderich et al., 2021). 2) Noise
Model (Hedderich et al., 2021): variable sampling
400 clean samples to estimate the underlying noise
process at seven different noise levels provided by
NoisyNER. More details are in Appendix A.3.

As shown in Table 3, STGN achieves a signifi-
cant gain of 9.44, 7.85, 2.64, 10.32, 2.65, 3.36, 2.67
on the F1 score over Adam based on noisy label
sets 1 to 7, coming from performance promotion on
recall. Recall values in Adam are too low owing to
imbalanced class distribution. The results highlight
that STGN efficiently enhances capacities of few
positive examples recognition, suitable for imbal-
anced distribution scenario of categories. Besides,
although Noise Model relies on additional data an-
notation, STGN still outperforms it, indicating the
validity of STGN in addressing the class imbalance.
More details can be found in Appendix A.3.

4.3 Event Relation Reasoning

We further test the versatility of STGN and ex-
periment on another real-world noisy corpus wik-
iHow (Zhang et al., 2020). It comprises of three
subtasks Step Inference, Goal Inference, and Step
Ordering, devoted to relation reasoning between
procedural events (i.e., GOAL-STEP relations and
STEP TEMPORAL relations). As shown in Ta-
ble 4, an evident gap exists between the model and
human performance, demonstrating the difficulty
and complexity of the task. STGN achieves consis-
tent performance improvement across all the sub-
tasks compared to AdamW*. More details about
wikiHow, all baselines, and complete experimental
settings are provided in Appendix A.4.

4.4 Property Validation

We further experimentally validate STGN’s prop-
erty from two aspects. First, we validate the func-
tion of tailor-made noise. Fig. 2 demonstrates ratios
of memorizing incorrect samples and learning cor-
rect ones of STGN and SLN under different noise
levels. We observe more training accuracy comes
from correct samples and less derives from incor-
rect ones of STGN relative to SLN, which further
confirms the conclusion in theoretical analysis.

Second, we examine whether STGN can prevent
overconfidence. Fig. 3 depicts the output proba-
bility between Adam and STGN on SST-5 under
diverse noise levels. We reorder the output proba-
bility (including five probability values correspond-
ing to five classes in the fine-grained sentiment
classification task) in ascending order for each sam-
ple and focus on class predictions (x-axis in Fig. 3)
for all samples. We observe that the maximum
output probability in Adam (i.e., the last column is
brighter) is always greater than that in STGN (i.e.,
the last column is darker). While the other four
probability values in Adam (i.e., four-left columns
are darker) are always less than those in STGN
(i.e., four-left columns are brighter), suggesting
that STGN can prevent overconfidence validly.

4.5 Ablation study

We investigate implications of key hyperparame-
ters and guidelines in STGN. All experiments are
conducted on the test set of SST-5.

We first explore the effect of the initial value σf
by changing its value at a specific noise level at a
time. In Fig. 4, we obtain stable and good perfor-
mance concerning both peak accuracy and average
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(c) Trained with 60% label noise.

Figure 3: We visualize the output probability of Adam and STGN on SST-5 under different noise levels, where
blue denotes smaller values and yellow indicates larger values. Each plot shows the predictive output probability
of training samples reordered in ascending order. When given a sample, the x-axis characterizes five probability
values, whose sum equals 1, corresponding to five classes in the fine-grained sentiment classification task. The
y-axis depicts the number of training samples in SST-5.

Method
SST-5

20% 40% 60%

Peak Average Peak Average Peak Average

STGN 52.22 50.44 50.59 48.32 45.11 39.57
w/o g1 51.76 49.95 48.87 47.40 41.09 39.28
w/o g2 50.95 49.95 49.86 47.90 44.75 39.25

Table 5: Peak accuracy and Average accuracy on SST-5
under different noise levels after removing guidelines
g1 or g2.
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Figure 4: Peak accuracy and Average accuracy w.r.t
σf when training on SST-5 under different noise levels.
The results in the blue circle are reported in Table 2.

accuracy regardless of different σf and noise lev-
els, manifesting the robustness of STGN, whose
performance is insensitive to the selection of hyper-
parameters. Table 5 shows the model performance
after removing guidelines g1 or g2. Removing ei-
ther guideline may entail apparent performance
degradation, indicating the validity of g1 and g2.
Moreover, it confirms multiple guidelines benefit
more precise judgment on correct or incorrect data.

5 Related Work

Noisy Labels in NLP. No matter manual or auto-
matic annotation, labeling errors would inevitably
be introduced when labeling large-scale corpora.
To address this issue, existing work has studied
a series of robust methods to mitigate the impact
of noisy labels for NLP tasks. Meng et al. (2021)
propose a noise-robust learning step followed by
a self-training step to train a robust NER model,
utilizing pretrained language models to improve
model generalization. Jindal et al. (2019) introduce
a non-linear processing layer on top of the CNN
model to solve labeling errors using extra clean data
in text classification tasks. In entity linking, Le and
Titov (2019) apply a noise detection component to
disregard noisy samples. Jia et al. (2019) propose
an attention regularization-based method to com-
bat label noise in relation classification. However,
these approaches are developed specifically for a
given task or model architecture, and hardly gen-
eralize to other tasks. Up to now, few works have
concentrated on all-purpose methods to tackle label
noise in NLP. Zhou and Chen (2021) realize de-
noising by developing a general co-regularization
framework, which optimizes several models jointly
with identical structures but diverse parameters,
and thus occupies massive computing resources. In
contrast, STGN is versatile and suitable for many
NLP tasks without introducing much overhead or
model complexity.

Implicit Regularization. Although DNNs in-
volve far more learnable parameters than training
samples, DNNs still have good generalization per-
formance even without explicit regularization. It
prompts researchers to investigate implicit regu-
larization, whose regularization effect comes from
model optimization. Among many factors of im-
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plicit regularization (like batch size and learning
rate (Smith et al., 2018)), SGD noise is viewed as a
critical source (Neelakantan et al., 2015; HaoChen
et al., 2021; Chen et al., 2021). Chen et al. (2021)
first exploit SGD noise to combat sample mislabel-
ing and propose an SGD variant SLN. However,
SLN relies on a specific loss function and may
cause side effects of underfitting when mitigating
overfitting. In this paper, STGN (also a variant of
SGD noise) is not limited to given loss, and exerts
tailor-made noise for correct samples and incorrect
ones, which fulfills the consistent targets between
optimization and generalization.

6 Conclusion

In this paper, STGN exerts different benign noise
intensities on correct and incorrect samples, ensur-
ing the goals of optimization and generalization
are always the same to resist inherent label noise.
We empirically validate the universality and effec-
tiveness of STGN under synthetic label noise and
real-world label noise, demonstrating that STGN
can be applied to many NLP tasks without dedi-
cated framework or excessive clean corpus.

Limitations

We combine two guidelines (g1 and g2) to facilitate
correct and incorrect sample discrimination. Nev-
ertheless, unmistakably filtering out data with label
noise remains challenging. Since our method sup-
ports the extension of more guidelines (Eq. (4)), we
plan to investigate more efficient guidelines from
different perspectives in future work to achieve a
more accurate recognition of noise labels.
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A Appendix

A.1 Experimental Settings

We focus on NLP classification tasks and adopt
cross-entropy as the loss function. Regarding eval-
uation metrics, we apply accuracy in sentiment
analysis and event relation reasoning, and F1 score
in named entity recognition (NER).

We conduct experiments on SST-5 dataset (with
manually corrupted labels) and two real-world
noisy corpora: NoisyNER and wikiHow. The for-
mer facilitates inspecting the specific efficacy of
STGN under different noise levels. We manually
inject symmetric label noise into the corpus, similar
to previous works (Jindal et al., 2019; Chen et al.,
2021). The latter is more practical and complicated.
Moreover, we select diversified model architectures
(e.g., BiLSTM, pretrained models) to be base mod-
els and varied SGD variants (e.g., Adam (Kingma
and Ba, 2015), AdamW (Loshchilov and Hutter,
2018)) to be baselines to justify the universality of
STGN.

During training, we initialize σt
f as σf and em-

pirically set σmax = 2σf , γ = 0.1σf to keep down
the number of hyperparameters. Although we allo-
cate each instance tailor-made perturbation, STGN
is only involved in training. At inference, we take
SGD or its variants as an alternative and hence it
has no effect on model complexity.

Method Optimal Hyperparameters Settings

20% 40% 60%

STGN σf=5e-3, σf=1e-2, σf=1e-2,
λ=2 λ=1 λ=3

GCE-STGN σf=5e-3, σf=1e-2, σf=5e-3,
λ=2 λ=2 λ=2

Table 6: Optimal hyperparameters settings on SST-5 un-
der different noise levels, where STGN or GCE-STGN
denote integrating benign noise induced by STGN into
Adam trained with CE or GCE loss function.

A.2 Sentiment Analysis

Task and Dataset. Sentiment analysis is a signif-
icant task in NLP. The objective of this task is to
predict the polarity of subjective information from
a given source (Pang et al., 2008). This task is
always evaluated on the Stanford Sentiment Tree-
bank (SST-5) (Socher et al., 2013). SST-5 is a fine-
grained sentiment classification dataset, including
very negative, negative, neutral, positive, and very

Label Set 1 2 3 4 5 6 7

Precision 67 73 37 75 48 53 59
Recall 18 27 31 27 41 41 49

F1 28 39 34 40 44 46 54

Table 7: Percentages of correct labels in different label
sets of NoisyNER. Owing to severely skewed label dis-
tribution, precision, recall, and F1 score are reported.

positive labels, which has labels for 11,855 sen-
tences extracted from movie reviews. It comprises
8,544/1,101/2,210 samples as training, validation,
and test set, respectively. We evaluate the proposed
method with manually corrupted labels. The noise
levels are set to 20%, 40% and 60%, respectively.

Experimental Settings. We follow the experi-
ment settings in Munikar et al. (2019) and finetune
the pretrained model BERT of the base-sized ver-
sion for 10 epochs using Adam with batchsize 32,
learning rate 1e-5. Entire optimal hyperparameters
settings are provided in Table 6.

A.3 Named Entity Recognition
Task and Dataset. Named entity recognition
(NER), which aims at detecting real-world entity
mentions from texts, is a fundamental task in NLP.
To evaluate STGN, we experiment on a real-world
noisy dataset NoisyNER (Hedderich et al., 2021),
which uses varying amounts of heuristics during the
automatic annotation process and provides seven
sets of noisy labels. NoisyNER, whose labels in-
volve persons, locations, and organizations, depicts
the NER task based on low-resource Estonian. We
divide the data into 80/10/10 ratios as training, vali-
dation, and test set. Moreover, NoisyNER contains
clean labels, including persons, locations, and orga-
nizations, annotated by experts. The percentage of
correct labels in different label sets of NoisyNER
are indicated in Table 7.

Experimental Settings. In the main paper, we
take BiLSTM-FC as the base model, comprising
a BiLSTM model, a fully connected layer, and a
softmax classification layer. We follow Hedderich
et al. (2021) and train a BiLSTM-FC model for
80 epochs using Adam with a learning rate 1e-
3, state size 300 for each direction of BiLSTM,
size 100 for fully connected layer, fixed FastTest
embeddings (Bojanowski et al., 2017) to embed
tokens. We evaluate with the micro-average F1
score. Entire optimal hyperparameters settings are
provided in Table 8.
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Method Label Set

1 2 3 4 5 6 7

STGN
σf=5e-4, σf=5e-4, σf=5e-4, σf=5e-4, σf=5e-4 σf=1e-3, σf=5e-4
λ=10, λ=10, λ=10, λ=10, λ=7, λ=7, λ=10
ϵ=0.35 ϵ=0.3 ϵ=0.3 ϵ=0.3 ϵ=0.3 ϵ=0.3 ϵ=0.25

Table 8: Optimal hyperparameters settings under label sets 1 to 7 on NoisyNER.

Train Size Val Size Test Size

Step Infer. 336,851 37,427 2,250
Goal Infer. 116,708 18,523 1,703

Step Ordering 752,516 83,612 3,100

Table 9: Statistics of wikiHow dataset.

A.4 Event Relation Reasoning

Task and Dataset. Procedural event relation rea-
soning can be considered as a classification task in
NLP. This reasoning task can be further partitioned
into three subtasks, i.e., reasoning on GOAL-STEP
relation, STEP-GOAL relation, and STEP TEM-
PORAL relation, respectively. For instance, “learn
poses” is a step in the larger goal of “doing yoga”
and “buy a yoga mat” typically precedes “learn
poses” (Zhang et al., 2020). The training set for
each subtask is crawled from the wikiHow web-
site2 and is automatically generated, which brings
in noisy labels unavoidably. The original wikiHow
dataset only comprises the training set and the test
set. We randomly divide a part of the examples
from the training set as the validation set, with a
ratio of 9:1. The statistics of wikiHow are indicated
in Table 9.

Experimental Settings. We reproduce the
strongest baseline with the implementation
by Zhang et al. (2020).3 We finetune the RoBERT
model of the base-sized version using AdamW for
3 epochs (for Step Infer. subtask), 2 epochs (for
Step Ordering subtask), and 5 epochs (for Goal In-
fer. subtask) with learning rate 5e-5, weight decay
0. Because of the large scale of the dataset, we
set the batchsize as 48 and define 1000 steps as an
iteration. Besides, we set σ=5e-4, λ=0, ϵ=0.15 for
three subtasks.

Baselines. We compare STGN with the following
baselines: (1) Human (Zhang et al., 2020), which
reports the human performance on these subtasks.
There is a gap of about 10% to 20% between other

2https://www.wikihow.com/
3https://github.com/zharry29/wikihow-goal-step

baselines and humans, which indicates the task is
challenging. (2) BERT (Devlin et al., 2019), which
finetunes pretrained BERT model on the training
set and reports test accuracy. (3) XLNet (Yang
et al., 2019), which finetunes pretrained XLNet
model and others are the same as BERT. (4) GPT-
2 (Radford et al., 2019), which is identical to BERT
besides finetuning pretrained GPT-2 model. (5)
RoBERTa (Liu et al., 2019), which finetunes pre-
trained RoBERTa model, and the remainder is sim-
ilar to BERT.
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