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Abstract

Keyphrase generation aims to automatically
generate short phrases summarizing an input
document. The recently emerged ONE2SET
paradigm (Ye et al., 2021) generates keyphrases
as a set and has achieved competitive perfor-
mance. Nevertheless, we observe serious cal-
ibration errors outputted by ONE2SET, espe-
cially in the over-estimation of ∅ token (means
“no corresponding keyphrase”). In this paper,
we deeply analyze this limitation and identify
two main reasons behind: 1) the parallel gener-
ation has to introduce excessive ∅ as padding
tokens into training instances; and 2) the train-
ing mechanism assigning target to each slot
is unstable and further aggravates the ∅ to-
ken over-estimation. To make the model well-
calibrated, we propose WR-ONE2SET which
extends ONE2SET with an adaptive instance-
level cost Weighting strategy and a target Re-
assignment mechanism. The former dynam-
ically penalizes the over-estimated slots for
different instances thus smoothing the uneven
training distribution. The latter refines the orig-
inal inappropriate assignment and reduces the
supervisory signals of over-estimated slots. Ex-
perimental results on commonly-used datasets
demonstrate the effectiveness and generality of
our proposed paradigm.

1 Introduction

Keyphrases are short phrases fully encoding the
main information of a given document. They can
not only facilitate readers to quickly understand
the document, but also provide useful information
to many downstream tasks, including document
classification (Hulth and Megyesi, 2006), summa-
rization (Wang and Cardie, 2013), etc.

With the rapid development of deep learning,
keyphrase generation (Meng et al., 2017) has at-
tracted increasing attention due to its ability to pro-
duce phrases that even do not match any contiguous
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Figure 1: An example of ONE2SET paradigm at training
and inference stages. “Assigned Targets (∗-th iteration)”
represents the multiple feasible target permutations gen-
erated by K-step target assignment mechanism at dif-
ferent training iterations. In this case, both “slot2” and
“slot3” are expected to generate keyphrases. However,
they often use ∅ token as supervisory signals, and thus
over-estimate and output ∅ token.

subsequence of the source document.1 Dominant
models of keyphrase generation

are constructed under three paradigms:
ONE2ONE (Meng et al., 2017), ONE2SEQ (Yuan
et al., 2020) and ONE2SET (Ye et al., 2021).
Among these paradigms, ONE2SET exhibits
the state-of-the-art (SOTA) performance. As
illustrated in Figure 1, it considers keyphrase
generation as a set generation task. After padding
keyphrases to a fixed number with special token ∅,
they define multiple slots that individually generate
each keyphrase in parallel. During training, each
slot is assigned with a keyphrase or ∅ token2 via a
K-step target assignment mechanism. Specifically,
the model first generates K tokens from each slot
and then determines the optimal target assignment
using a bipartite matching algorithm (Kuhn, 2010).
The superiority of ONE2SET stems from its
conditional independence, that is, the prediction
distribution of each slot depends only on the given
document other than the order of keyphrases like

1An example is shown in Appendix, Table A.1.
2In this work, we define that the keyphrase can not be a ∅

token.
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ONE2SEQ. This is more compatible with the
unordered property of keyphrases and decreases
the difficulty of the model training (Ye et al.,
2021).

Despite of its success, we observe serious over-
estimation problem on ∅ token, which significantly
affects the generation quality. For example, in Fig-
ure 1, both “slot2” and “slot3” are expected to gen-
erate keyphrases, but ∅ token is over-confidently
given. Two questions naturally arise: 1) what
are reasons behind the over-estimation problem
in ONE2SET? and 2) how can we alleviate them?

In order to answer the first question, we con-
duct extensive analyses, and conclude two reasons.
Firstly, the over-estimation is a by-product inher-
ently carried by the parallel generation. More con-
cretely, excessive ∅ tokens have been introduced
as the padding tokens and served as supervisory
signals in training data. The unbalanced data and
the lack of dependency among slots leads each slot
to learn to commonly generate ∅ token. Secondly,
the K-step target assignment mechanism provides
multiple feasible target permutations that are as-
signed to slots. As shown in Figure 1, the targets of
the given document can be assigned in different per-
mutation at each training iteration, which further
increases the probability of ∅ token to be assigned
as supervisory signal for each slot, thus exacerbat-
ing the over-estimation problem. Both problems
make the learned probabilities of the assigned tar-
gets deviate from its ground truth likelihood, finally
constructing a miscalibrated model.

Consequently, we approach the above problems
from the calibration perspective and propose two
strategies that extend ONE2SET to WR-ONE2SET.
Specifically, an adaptive instance-level cost weight-
ing is first introduced to penalize the over-estimated
slots of different instances. According to the se-
riousness of the issue, instances are rendered dif-
ferent weights, therefore dynamically balancing
the model training. Besides, we propose a target
re-assignment mechanism to refine the original in-
appropriate assignment and reduce the supervisory
signals of ∅ token. In particular, we re-assign
targets for the slots potentially generating fresh
keyphrases but being pre-assigned with ∅ token.
In these ways, WR-ONE2SET is encouraged to
produce well-calibrated probabilities on keyphrase
generation. Overall, major contributions of our
work are three-fold:

• Through in-depth analyses, we point out that

the advanced keyphrase generation architec-
ture ONE2SET suffers from the ∅ token over-
estimation, which is inherently caused by its
parallism and the target assignment mecha-
nism.

• We propose WR-ONE2SET which enhances
the original framework with two effective
strategies to calibrate the over-estimation
problem from the training perspective.

• Extensive experiments on five widely-used
datasets reveal the universal-effectiveness of
our model.

• We release our code at https://github.
com/DeepLearnXMU/WR-One2Set.

2 Related Work

Early studies mainly focus on automatic keyphrase
extraction (Hulth, 2003; Mihalcea and Tarau, 2004;
Nguyen and Kan, 2007; Wan and Xiao, 2008),
which aims to directly extract keyphrases from the
input document. Recently, with the rapid develop-
ment of deep learning, neural network-based mod-
els have been widely used in keyphrase generation.
Typically, these models are based on an attentional
encoder-decoder framework equipped with copy
mechanism, which is able to generate both present
and absent keyphrases (Meng et al., 2017). Gener-
ally, these models are constructed under the follow-
ing paradigms: 1) ONE2ONE (Meng et al., 2017;
Chen et al., 2019a,b). Under this paradigm, the in-
put document is paired with each target keyphrase
to form an independent training instance for model
training. During inference, the models are en-
couraged to produce multiple keyphrases via beam
search. 2) ONE2SEQ (Chan et al., 2019; Yuan et al.,
2020; Chen et al., 2020; Wu et al., 2021). It consid-
ers keyphrase generation as a sequence generation
task, where different keyphrases are concatenated
into a sequence in a predefined order. In this way,
the semantic dependence between keyphrases can
be exploited to benefit keyphrase generation. 3)
ONE2SET (Ye et al., 2021). Unlike ONE2SEQ, this
paradigm considers the keyphrases as a set, which
can be predicted from slots in a parallel manner
and partial target matching algorithm.

Considering that ONE2ONE neglects the correla-
tion among keyphrases, the most popular paradigm
ONE2SEQ exploits the correlation by pre-defining
the keyphrases order for model training and infer-
ence. Nevertheless, ONE2SEQ is the opposite of
the flexible and unordered properties of keyphrases,
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increasing the difficulty of the model training. Due
to the parallelism and the conditional independence,
ONE2SET attracts much attention in the keyphrase
generation community, and achieves the SOTA per-
formance. As this method has just been put for-
ward, it is inevitable to exist imperfections. Hence,
we are committed to analyses and further optimiz-
ing this framework. To the best of our knowledge,
this is the first attempt to improve ONE2SET.

3 Background

Here, we briefly introduce SETTRANS (Ye et al.,
2021), which is based on the ONE2SET paradigm.
It is a Transformer-based, semi-autoregressive
model. Typically, it introduces N slots, each of
which introduces a learnable control code as the
additional decoder input, to generate keyphrases
or ∅ tokens in parallel. Its training involves two
stages: 1) a K-step target assignment mechanism
is firstly used to determine the correspondence be-
tween each prediction and target, and then 2) a
new training objective is introduced to optimize the
whole model. It contains two set losses to sepa-
rately deal with two kinds of keyphrases: present
keyphrases appearing in the input document, and
absent keyphrases that do not match any contigu-
ous subsequence of the document.

K-Step Target Assignment At this stage, the
model predicts K tokens from each slot, where
the predicted probability distributions are also col-
lected. Then, an optimal assignment m between
predictions and targets can be found by a bipartite
matching algorithm (Kuhn, 2010):

m = argmin
m∈M(N)

N∑

i=1

Cmatch(y
m(i),Pi), (1)

where M(N) denotes a set of all N -length target
index permutations, and the optimal permutation m
can be considered as a mapping function from the
slot i to the target index m(i).3 Cmatch(y

m(i),Pi) is
a pair-wise matching loss between the target ym(i)

and the predicted probability distributions Pi of the
slot i. Note that the set of targets are also padded
to size N with ∅ tokens.

Model Optimization with Set Losses During
the second stage, the model is trained with the sum
of two set losses. Concretely, slots are equally

3Please note that instead of following Ye et al. (2021) to
use the function π(i′) mapping the target index i′ to the slot
index π(i′), we use m(i) that is the inverse function of π(i),
so as to facilitate subsequent descriptions.

split into two sets, dealing with the generations of
present and absent keyphrases, respectively. Next,
the above target assignment is performed on these
two sets separately, forming a mapping mp for
present keyphrases, and a mapping ma for absent
keyphrases. Finally, the training objective becomes

L(θ) = −
[ N

2∑

i=1

Lp(θ, ymp(i)) +
N∑

i=N
2
+1

La(θ, yma(i))

]

(2)

Lp(θ, z) =

{
λpre ·

∑|z|
t=1 log p̂

i
t(zt) if z=∅∑|z|

t=1 log p̂
i
t(zt) otherwise

(3)

where λpre is a hyper-parameter used to reduce the
negative effect of excessive ∅ tokens, zt symbol-
izes the t-th token of the target z, and p̂it is the
t-th predicted probability distribution of the i-th
slot using teacher forcing. Meanwhile, La(θ, z)
is defined in the similar way as Lp(θ, z) with a
hyper-parameter λabs.

4 Preliminary Analyses

Although ONE2SET has achieved competitive per-
formance, it still faces one major problem, i.e. ∅ to-
ken over-estimation. This occurs in such slots that
produce ∅ tokens via the vanilla prediction while
are able to generate correct keyphrases through
the non-∅ prediction4. For illustration, we force
all slots to generate non-∅ predictions during in-
ference, where 14.6% of slots can produce correct
ones. However, if we remove this restriction, 34.5%
of these slots directly output ∅ tokens, revealing
the over-estimation of ∅ token. Such kind of mis-
calibration (Guo et al., 2017; Kumar and Sarawagi,
2019) is a common drawback in neural network
based models, which not only seriously hurts the
generation quality of the ONE2SET paradigm, but
also limits the users’ trust towards it.

To understand the reasons behind this, we use
the commonly-used KP20k dataset (Meng et al.,
2017) to train a standard SETTRANS model, where
the assigned targets to the slots of each instance are
recorded during the last 80,000 training steps with
an interval of 8,000 steps. Here, we can obtain two
crucial observations.

Observation 1: Excessive ∅ tokens have been
introduced as the padding tokens and served as
supervisory signals in training data. ONE2SET

models keyphrase generation in a parallel compu-
tation fashion, therefore extensive padding ∅ to-

4When performing the non-∅ prediction, we remove ∅
token from the prediction vocabulary to generate a keyphrase.
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Target Type Pre.KP Slots Abs.KP Slots

∅ 72.4% 80.4%
Target KP 27.6% 19.6%

Table 1: The proportions of ∅ token and target
keyphrases used as supervisory signals during training.
“KP” means keyphrase. “Pre.KP” and “Abs.KP” repre-
sent present and absent keyphrases, respectively.

Instance Type All KP Slots

Instance(#OV-Slot=0) 42.1%
Instance(#OV-Slot=1) 31.9%
Instance(#OV-Slot=2) 15.5%
Instance(#OV-Slot≥3) 10.5%

Table 2: The proportions of instances involving
different numbers of slots over-estimating ∅ token.
Instance(#OV-Slot=n) means the instances containing
n slots over-estimating ∅ token. Please note that the
greater n, the more severe ∅ token over-estimation.

kens are used to make sure the fixed lengths of
different samples. Table 1 shows the proportions
of ∅ token and target keyphrases involved during
the model training. We can observe that on both
present and absent keyphrase slots, ∅ token ac-
counts for the vast majority, exceeding 70%. In
addition, instances suffer from different degrees of
∅ token over-estimation. Table 2 shows the propor-
tions of training instances grouped by the number
of slots over-estimating ∅ token. We can find that
the instances (e.g. Instance(#OV-Slot≥1)) account
for significant proportions, and exist varying de-
grees of ∅ token over-estimation.

Observation 2: The K-step assignment mecha-
nism is unstable and further increases the possibil-
ity of ∅ tokens being served as supervisory signals
for some slots. In spite of the clever design of K-
step assignment mechanism, it unstably provides
different feasible target permutations to slots at the
training time. We argue that this further widens the
gap between the distribution of supervisory signals
and that of the ground-truth.

To illustrate this, we classify the slots of each
instance into three categories according to its tar-
get assignments: 1) Slot(∅), each slot of this cate-
gory is always assigned with ∅ tokens. Apparently,
these slots hardly generate keyphrases after train-
ing; 2) Slot(Target KP), each slot of this category
is always assigned with target keyphrases and thus
it has high probability of generating a keyphrase;
3) Slot(∅+Target KP), each slot is assigned with

Slot Type Pre.KP Slots Abs.KP Slots

Slot(∅) 61.2% 66.4%
Slot(Target KP) 17.6% 9.3%

Slot(∅+Target KP) 21.2% 24.4%

Table 3: The proportions of slots with different target
assignments during the model training. Slot(∅+Target
KP) means the slots are assigned with ∅ tokens and
target keyphrases alternatively at different iterations.
Note that the higher proportions of Slot(∅+Target KP),
the more slots contain unstable supervisory signals.

target keyphrases or ∅ tokens at different iterations
during model training. From Table 3, we can ob-
serve that on both present and absent keyphrase
slots, the proportions of Slot(∅+Target KP) are
quite high, exceeding those of Slot(Target KP).
Quite evidently, the supervisory signals of slots
in Slot(∅+Target KP) are unstable. Those slots
that should be labeled with Target KP are assigned
with ∅ token, further decreasing the probabilities
of these slots generating keyphrases.

5 WR-ONE2SET

As discussed above, the parallelism and the train-
ing mechanism of ONE2SET bring the advantages
of conditional independence, but inherently lead
to the miscalibration of the model. Our principle
is to maintain the primary advantages, and mean-
while, calibrating the model with lightweight strate-
gies. To this end, we propose WR-ONE2SET that
significantly extends the conventional ONE2SET

paradigm in two training aspects, including an
adaptive instance-level cost weighting strategy, and
a target re-assignment mechanism.

To facilitate subsequent descriptions, we sum-
marize all related formal definitions in Appendix,
Table A.2 for better understanding this paradigm.

5.1 Adaptive Instance-Level Cost Weighting

Connection to Observation 1. As analyzed
previously, excessive ∅ tokens lead to the over-
estimation of ∅ token. Although SETTRANS intro-
duces hyper-parameters λpre and λabs to adjust the
training loss of conventional ONE2SET paradigm,
such fixed hyper-parameters are still unable to deal
with this issue well due to the different degrees
of ∅ token over-estimation in different training
instances.

We alternatively develop an adaptive instance-
level cost weighting strategy to dynamically scale
the losses corresponding to ∅ tokens, alleviating
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Figure 2: The procedure of target re-assignment involving two steps: identifying the potential slot set Cp and the
unimportant one Cu, and then employing different re-assignment operations to deal with them, respectively. Here,
“×” represents assigning no supervisory signal to the slots of Cu, and following Ye et al. (2021), we set K = 2.

the class imbalance of training data. Concretely, we
first identify a set of slots, denoted as C!∅, where
each slot is assigned with a keyphrase as super-
visory signal. Intuitively, for each slot i in C!∅,
the degree of ∅ token over-estimation is related to
its two predicted probabilities using teacher forc-
ing (See Section 4): 1) p̂i(ym(i)

0 ), symbolizing the
predicted probability of the first token of assigned
target, and 2) p̂i(∅), denoting the predicted prob-
ability of ∅ token. Thus, we directly use the ra-
tio between p̂i(y

m(i)
0 ) and p̂i(∅) to approximately

quantify the degree of ∅ token over-estimation for
training efficiency. Furthermore, we define this
degree for each instance as

λadp =
1

|C!∅|
·
∑

i∈C!∅

min(
p̂i(y

m(i)
0 )

p̂i(∅)
, 1). (4)

Note that for each slot i in C!∅, if its predicted
probability p̂i(y

m(i)
0 ) is greater than p̂i(∅), it is

considered to have no ∅ token over-estimation,
and we directly limit its ratio to 1.

Finally, we adjust the hyper-parameters λpre and
λabs of Equation 3 into λadp·λpre and λadp·λabs

for each training instance, respectively. Note that,
λadp is dynamically updated during the training
process, and thus is more general for model training
compared with fixed hyper-parameters.

5.2 Target Re-Assignment

Connection to Observation 2. Due to the effect of
K-step target assignment mechanism, many slots
are alternatively assigned with target keyphrases
and ∅ tokens, which decreases the probabilities of
these slots generating correct keyphrases.

We propose a target re-assignment mechanism
to alleviate this issue. As shown in the upper part

of Figure 2, during the process of K-step target
assignment, we first record three kinds of phrases
for each slot i: 1) ym(i), the assigned target of
the slot i; 2) ŷi:K , the first K tokens of the vanilla
prediction from the slot i. Note that ŷi:K may be
a ∅ token; and 3) ȳi:K , the first K tokens of the
non-∅ prediction from the slot i.

Here, we mainly focus on the slots, each of
which is assigned with ϕ token as supervisory sig-
nals and its non-ϕ K-token prediction is consistent
with some targets. For such slot i, if its non-∅
K-token prediction ȳi:K is totally different from
all K-token predictions {ŷi:K}Ni=1, we consider it
has the potential to generate a fresh keyphrase and
boost the model performance. Thus, we include
it into the potential slot set Cp. By contrast, if
its ȳi:K has occurred in the set of {ŷi:K}Ni=1, we re-
gard it as an unimportant slot without effect on the
model performance, and add it into the unimpor-
tant slot set Cu. Back to Figure 2, we observe that
the non-∅K-token prediction of “slot3” is “topic
model”, which is also the K-token prediction of
“slot1” and “slot7”. Thus, “slot3” is an unimpor-
tant slot. Meanwhile, both “slot5” and “slot6” are
potential slots.

Then, as illustrated in the lower part of Figure
2, we employ two target re-assignment operations
to deal with the above two kinds of slots, respec-
tively: 1) we re-assign each slot of Cp with its
best-matched target keyphrase, so as to increase
the probability of this slot generating the target
keyphrase; and 2) we assign no target to each slot
of Cu, which alleviates the problem that the same
target is assigned to different slots as supervisory
signals. In this way, the training losses of slots in
Cu will be masked at this training iteration. Let us
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Model Inspec NUS Krapivin SemEval KP20k
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

Existing Neural Keyphrase Generation Models

CATSEQ(R) 0.225 0.262 0.323 0.397 0.269 0.354 0.242 0.283 0.291 0.367
CATSEQ 0.2815 0.3256 0.3707 0.41910 0.3158 0.3655 0.28714 0.32515 0.3321 0.3771
UNIKEYPHRASE 0.260 0.288 0.415 0.443 — — 0.302 0.322 0.347 0.352
SETTRANS 0.2853 0.3243 0.40612 0.4507 0.32612 0.36412 0.33120 0.35713 0.3585 0.3924
PROMPTKP 0.260 0.294 0.412 0.439 — — 0.329 0.356 0.351 0.355

Our Models

SETTRANS 0.2822 0.3202 0.3995 0.4378 0.3347 0.3684 0.3336 0.3574 0.3592 0.3922
SETTRANS(w/o λpre, λabs) 0.1004 0.1486 0.17318 0.25842 0.1559 0.28016 0.1297 0.1888 0.1917 0.3219
SETTRANS(#SLOT=12) 0.2801 0.3162 0.3879 0.4234 0.3245 0.3693 0.3026 0.3274 0.3473 0.3853
SETTRANS(#SLOT=16) 0.2807 0.3186 0.3847 0.43110 0.3193 0.3621 0.31615 0.35617 0.3422 0.3822
SETTRANS(#SLOT=24) 0.28413 0.32018 0.4001 0.4531 0.3311 0.3675 0.32718 0.35911 0.3601 0.3951

SETTRANS(#SLOT=28) 0.2779 0.3178 0.4021 0.4544 0.3384 0.3746 0.3153 0.3492 0.3554 0.3924
SETTRANS(w/ BATCHING) 0.2817 0.2716 0.3794 0.3584 0.3162 0.2647 0.3008 0.2936 0.3412 0.3043

OUR MODEL 0.3303‡ 0.3513‡ 0.4285‡ 0.4521 0.3604‡ 0.3625 0.3605‡ 0.3702‡ 0.3701 0.3782

Table 4: Results of present keyphrase prediction. Results shown in the upper part are directly cited from their corre-
sponding papers. The subscript denotes the corresponding standard deviation (e.g., 0.3303 indicates 0.330±0.003).
‡ indicates significant at p<0.01 over SETTRANS with 1,000 booststrap tests (Efron and Tibshirani, 1993).

revisit Figure 2, we re-assign “slot5” with “patch
clustering”, “slot6” with “denoising” and no super-
visory signal to “slot3”. Through the above process,
we can convert the original target assignment m
into a new one, where we use the conventional
training objective (See Equation 2) adjusted with
λadp (See Equation 3) to train our model.

6 Experiments

6.1 Setup

Datasets. We train various models and select the
optimal parameters on the KP20k validation dataset
(Meng et al., 2017). Then, we evaluate these mod-
els on five test datasets: Inspec (Hulth, 2003), NUS
(Nguyen and Kan, 2007), Krapivin (Krapivin et al.,
2009), SemEval (Kim et al., 2010), and KP20k. As
implemented in (Yuan et al., 2020; Ye et al., 2021),
we perform data preprocessing including tokeniza-
tion, lowercasing, replacing all digits with the sym-
bol ⟨digit⟩ and removing duplicated instances.

Baselines. We compare our WR-ONE2SET

based model with the following baselines:

• CATSEQ(R) (Yuan et al., 2020). This is
the most popular RNN-based model trained
under the ONE2SEQ paradigm, formulat-
ing keyphrase generation as a sequence-to-
sequence generation task.

• CATSEQ (Ye et al., 2021). It is also trained
under the ONE2SEQ paradigm, but utilizing

Transformer as backbone.
• UNIKEYPHRASE (Wu et al., 2021). This is a

large-scale pre-trained language model trained
to extract and generate keyphrases jointly.

• SETTRANS (Ye et al., 2021). It is our most
important baselines. Besides, we report the
performance of three SETTRANS variants:
SETTRANS(w/o λpre, λabs) that does not
introduce any hyper-parameter to alleviate
the negative effect of excessive ∅ tokens,
SETTRANS(#SLOT=N) that is equipped
with N/2 and N/2 slots for present target
keyphrases and absent ones, respectively, and
SETTRANS(w/ BATCHING) which sorts all
training instances in the increasing order of
target keyphrase numbers and uses batch-wise
randomized order to keep the padding length
optimized.

• PROMPTKP (Wu et al., 2022). It firstly ex-
tracts keywords for automatic prompt con-
struction, and then uses a mask-predict-
based approach to generate the final absent
keyphrase constrained by prompt.

Implementation Details. We use Transformer-
base (Vaswani et al., 2017) to construct all mod-
els. During training, we choose the top 50,002
frequent tokens to form the predefined vocabulary.
We use the Adam optimizer with a learning rate of
0.0001, and a batch size of 12. During inference,
we employ greedy search to generate keyphrases.
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Model Inspec NUS Krapivin SemEval KP20k
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

Existing Neural Keyphrase Generation Models

CATSEQ(R) 0.004 0.008 0.016 0.028 0.018 0.036 0.016 0.028 0.015 0.032
CATSEQ 0.0102 0.0194 0.0282 0.0482 0.0321 0.0604 0.0205 0.0233 0.0231 0.0461
UNIKEYPHRASE 0.012 0.022 0.026 0.037 — — 0.022 0.029 0.032 0.058
SETTRANS 0.0211 0.0343 0.0422 0.0604 0.0477 0.07311 0.0263 0.0345 0.0362 0.0583
PROMPTKP 0.017 0.022 0.036 0.042 — — 0.028 0.032 0.032 0.042

Our Models

SETTRANS 0.0203 0.0314 0.0445 0.0618 0.0502 0.0731 0.0302 0.0371 0.0381 0.0591
SETTRANS(w/o λpre, λabs) 0.0000 0.0000 0.0021 0.0032 0.0041 0.0082 0.0021 0.0032 0.0021 0.0051
SETTRANS(#SLOT=12) 0.0163 0.0276 0.0427 0.06513 0.0475 0.0739 0.0248 0.0318 0.0331 0.0572
SETTRANS(#SLOT=16) 0.0181 0.0302 0.0405 0.0608 0.0453 0.0742 0.0231 0.0311 0.0341 0.0572
SETTRANS(#SLOT=24) 0.0192 0.0295 0.0443 0.0614 0.0465 0.0739 0.0263 0.0354 0.0381 0.0592
SETTRANS(#SLOT=28) 0.0163 0.0265 0.0444 0.0633 0.0431 0.0701 0.0214 0.0272 0.0323 0.0543
SETTRANS(w/ BATCHING) 0.0231 0.0304 0.0505 0.0676 0.0493 0.0599 0.0344 0.0386 0.0452 0.0582

OUR MODEL 0.0252 0.0344 0.0575‡ 0.0713‡ 0.0571‡ 0.0742 0.0403‡ 0.0435‡ 0.0501‡ 0.0642

Table 5: Results of absent keyphrase prediction.

To ensure a fair comparison with SETTRANS, we
also set both slot numbers for present and absent
keyphrases as 10, the target assignment step K as
2, λpre as 0.2 and λabs as 0.1, respectively. Par-
ticularly, we run all experiments three times with
different random seeds and report the average re-
sults, so as to alleviate the impact of the instability
of model training.

Evaluation Metrics. Following previous studies
(Chen et al., 2020; Ye et al., 2021), we use macro
averaged F1@5 and F1@M to evaluate the quality
of both present and absent keyphrases. When using
F1@5, if the prediction number is less than five,
blank keyphrases are added to make the keyphrase
number reach five. Particularly, we employ the
Porter Stemmer5 to remove the identical stemmed
keyphrases.

6.2 Main Results

Table 4 and Table 5 show the prediction results on
present and absent keyphrases, respectively. We
can draw the following conclusions:

First, our reproduced SETTRANS achieves com-
parable performance to Ye et al. (2021). Sec-
ond, when removing both λpre and λabs from SET-
TRANS, its performance significantly drops, show-
ing that the ∅ token over-estimation severely lim-
its its full potential. Third, we observe no im-
provements with different number of slots. Fourth,
the commonly-used batching method for sequence

5https://github.com/nltk/nltk/blob/develop/
nltk/stem/porter.py

Model In-domain Out-domain
F1@5F1@M F1@5F1@M

Present Keyphrase Prediction

OUR MODEL 0.370 0.378 0.370 0.384
w/o RE-ASSIGN 0.368 0.375 0.360 0.377
w/o WEIGHTING 0.365 0.393 0.340 0.374
RE-ASSIGN⇒RAND-ASSIGN 0.368 0.377 0.365 0.380

SETTRANS 0.359 0.392 0.336 0.373

Absent Keyphrase Prediction

OUR MODEL 0.050 0.064 0.043 0.055
w/o RE-ASSIGN 0.047 0.062 0.042 0.053
w/o WEIGHTING 0.043 0.063 0.039 0.052
RE-ASSIGN⇒RAND-ASSIGN 0.048 0.063 0.042 0.053

SETTRANS 0.038 0.059 0.034 0.052

Table 6: Ablation study on keyphrase predictions.

generation is not beneficial for SETTRANS. Fi-
nally, our model significantly surpasses all base-
lines. These results strongly validate the effec-
tiveness and generalization of our WR-ONE2SET

paradigm.

6.3 Ablation Study

To better investigate the effectiveness of our pro-
posed strategies on WR-ONE2SET, we report the
performance of variants of our model on two test
sets: 1) KP20k that is an in-domain one, and 2)
the combination of Inspec, NUS, Krapivin and Se-
mEval, which is out-domain. Here, we mainly
consider three variants: 1) w/o RE-ASSIGN, which
removes the target re-assignment mechanism from
our model; and 2) w/o WEIGHTING. It discards
the adaptive instance-level cost weighting strategy;
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Model In-domain Out-domain

SETTRANS(w/o λpre, λabs) 0.747 0.809
SETTRANS 0.345 0.418
SETTRANS(w/ RE-ASSIGN) 0.301 0.386
SETTRANS(w/ WEIGHTING) 0.240 0.308
OUR MODEL 0.211 0.263

Table 7: The proportions of slots over-estimating ∅
token.

and 3) RE-ASSIGN⇒RAND-ASSIGN. This variant
randomly re-assigns targets to the slots in Cp.

As shown in Table 6, when removing the target
re-assignment mechanism, we observe a perfor-
mance degradation on keyphrase predictions. Like-
wise, the variant w/o WEIGHTING is obviously in-
ferior to our model on most metrics. Therefore, we
believe that our proposed strategies indeed benefit
the generation of keyphrase set.

6.4 Analyses of ∅ Token Over-Estimation

We also compare various models according to the
proportion of slots over-estimating ∅ tokens. Here,
the proportion is the ratio between two slot num-
bers obtained from the whole training data: one
is the number of slots that directly output ∅ token
via the vanilla prediction while generating correct
keyphrases through the non-∅ prediction; and the
other is the number of slots that generate correct
keyphrases via the non-∅ prediction. Table 7 dis-
plays the results. The proportions of SETTRANS

(w/o λpre, λabs) exceeds 70%, demonstrating the
severe ∅ token over-estimation of the ONE2SET

paradigm. By comparison, the proportions of SET-
TRANS decrease, validating the effectiveness of
fixed hyper-parameters λpre and λabs on alleviat-
ing the class imbalance of training data. More-
over, whether adaptive instance-level cost weight-
ing strategy or target re-assignment mechanism is
used alone, the proportions of SETTRANS can be
further reduced. Particularly, our model achieves
the lowest proportions, proving that our strategies
can complement each other.

Besides, following Guo et al. (2017), we show
the reliability diagram of SETTRANS and our
model in Figure 3. It displays the relationship
between the prediction confidence (the predicted
probability of model) and the prediction accuracy
within the confidence interval [0, 0.2]. Especially,
the predictions within the confidence interval [0,
0.2] account for 69.8% of all predictions. Please
note that, if a model is well-calibrated, the gap
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(b) OUR MODEL

Figure 3: Reliability diagrams of SETTRANS and our
model on the in-domain test set. “Gap” (areas marked
with slash) denotes the difference between the prediction
confidence and the prediction accuracy. Smaller gaps
denote better calibrated outputs.

Model In-domain Out-domain
#Pre #Abs Dup #Pre #Abs Dup

ORACLE 3.31 1.95 - 5.53 3.51 -
CATSEQ(R) 3.71 0.55 0.39 3.46 0.72 0.54
CATSEQ 4.64 1.16 0.26 4.34 1.28 0.38
SETTRANS 5.10 2.01 0.08 4.62 2.18 0.08
SETTRANS(w/ RE-ASSIGN) 5.40 2.64 0.10 4.83 2.72 0.09
SETTRANS(w/ WEIGHTING) 6.19 3.12 0.11 5.70 3.56 0.09
OURS MODEL 6.35 3.26 0.10 5.94 3.60 0.10

Table 8: Numbers and duplication ratios of predicted
keyphrases on test datasets. “ORACLE” refers to the
average number of target keyphrases.

between the confidence and the accuracy will be
small. Overall, the gap of our model is less than
that of SETTRANS, which demonstrates that our
proposed strategies can calibrate the predictions
with low confidence.

6.5 Diversity of Predicted Keyphrases

Follow previous studies (Chen et al., 2020; Ye et al.,
2021), we report the average numbers of unique
present and absent keyphrases, and the average
duplication ratios of all predicted keyphrases, so as
to investigate the ability of our model in generating
diverse keyphrases,

Table 8 reports the results. As expected, our
model generates more keyphrases than previous
models and achieves a slightly higher duplication
ratio than SETTRANS, however, significantly lower
than ONE2SEQ-based models. Note that compared
to SETTRANS, the F1@5 and F1@M scores of our
model are significantly improved, which demon-
strates that our model performs much better on
keyphrase generation.
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Slot Type SETTRANS OUR MODEL

Present Keyphrase Prediction

Slot(∅) 61.2% 63.5% (+2.3%)
Slot(Target KP) 17.6% 21.8% (+4.2%)

Slot(∅+Target KP) 21.2% 14.7% (-6.5%)

Absent Keyphrase Prediction

Slot(∅) 66.4% 69.6% (+3.2%)
Slot(Target KP) 9.3% 12.6% (+3.3%)

Slot(∅+Target KP) 24.4% 17.8% (-6.6%)

Table 9: The proportions of slots with different target
assignments for keyphrase predictions.

6.6 Analyses of Target Re-Assignment

Here, we still focus on the assigned targets during
the model training mentioned at the beginning of
Section 4 and conduct two types of analyses to
better understand the effects of our mechanism.

First, we count the proportions of ∅ tokens in as-
signed targets. Specially, the assigned ∅ tokens ac-
counts for 72.4% and 80.4% on present and absent
keyphrase slots, respectively, but decrease to 67.6%
and 72.3% in our model. Second, as implemented
in Section 4, we still classify the instance slots into
three categories and report their proportions in Ta-
ble 9. We can find the proportions of Slots(∅+KP),
where slots are assigned with target keyphrase and
∅ token at different iterations of model training,
sharply decline. Besides, for each slot, we use the
entropy of target assignment distribution to mea-
sure the stability of its supervisory signals. Further-
more, we average the entropy values of all slots
to quantify the stability of supervisory signals for
each instance. Consequently, we find that the en-
tropy decreases in 68.2% of instances, increases in
26.3% of instances, and remain unchanged in 5.5%
of instances. These results indicate that our target
re-assignment mechanism indeed not only reduces
excessive target ∅ tokens, but also alleviates the
instability of supervisory signals.

7 Conclusion

In this paper, we in-depth analyze the serious cali-
bration errors of the ONE2SET paradigm and point
out its underlying reasons. To deal with this is-
sue, we then significantly extend the conventional
ONE2SET into the WR-ONE2SET paradigm with
an adaptive instance-level cost weighting strategy
and a target re-assignment mechanism. Extensive
experiments verify the effectiveness and generality
of our extended paradigm.

In the future, we plan to further refine our WR-
ONE2SET paradigm by considering the semantic
relation between keyphrases. Besides, we will im-
prove our model by introducing variational neural
networks, which have been successfully applied in
many NLP tasks (Zhang et al., 2016a,b; Su et al.,
2018a,b; Liang et al., 2022). Finally, we will lever-
age the abundant knowledge from pre-trained mod-
els to further enhance our model.

Limitations

As mentioned above, serious ∅ token over-
estimation problem exists in ONE2SET paradigm,
leading to a miscalibrated model. To solve this
problem, we propose several strategies based on
conventional ONE2SET using the same fixed hyper-
parameters as Ye et al. (2021). However, hyper-
parameter selection is a labor-intensive, manual,
time-consuming process and affects generation per-
formance deeply. Thus, our future work will focus
on exploring a parameter-free method. Besides, de-
spite achieving impressive performance, our WR-
ONE2SET paradigm is only conducted based on
the Transformer, so that it is essential to leverage
the abundant knowledge from pre-trained models
for better document modeling and keyphrase gen-
eration.
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A Appendix

A.1 Example

Input Document: an image topic model for image denoising. topic model is a powerful tool for the basic document or
image processing tasks. in this study, we introduce a novel image topic model, called latent patch model (lpm), which is
a generative bayesian model and assumes that the image and pixels are connected by a latent patch layer. based on the
lpm, we further propose an image denoising algorithm namely multiple estimate lpm (melpm). unlike other works, the
proposed denoising framework is totally implemented on the latent patch layer, and it is effective for both gaussian white
noises and impulse noises. experimental results demonstrate that lpm performs well in representing images...

Keyphrases: topic model; denoising; patch clustering; semantic learning

Table 10: An example of keyphrase generation. The underlined phrases are present keyphrases that appear in
the document, and other phrases are absent keyphrases that do not match any contiguous subsequence of the
document.

A.2 Formal Definitions

Symbol Definition

∅ A special token representing no corresponding keyphrase.
N The predefined number of slots generating keyphrases or ∅ tokens in parallel.

K
The predefined number of tokens generated from each slot for the conventional target assignment
mechanism.

Pi The predicted probability distributions of the slot i.

p̂i(∗) The predicted probability of a keyphrase from the slot i using teacher forcing. Specially, the j-th
token predictive probability of p̂i(∗) is denoted as p̂ij(∗).

M(N) The set of all N -length target index permutations.

m
The optimal permutation of M(N). It can be considered as a mapping function from the slot i
to the target index m(i). Particularly, we use mp and ma to denote the optimal permutations for
present and absent keyphrases, respectively.

ym(i) The assigned target of the slot i.

λpre, λabs
Two predefined hyper-parameters used to reduce the negative effect of excessive ∅ tokens for
present and absent keyphrase predictions, respectively.

λadp
The degree of ∅ token over-estimation for each instance, which is leveraged to dynamically
scale the losses corresponding to ∅ tokens in our paradigm.

L(θ)
The training loss of the whole model with parameters θ. Moreover, we use Lp(θ, z) to denote
the present keyphrase training loss on the assigned target z. The absent keyphrase training loss
La(θ, z) is defined in a similar way.

ŷi
:K The first K tokens of the prediction from the slot i via the vanilla prediction.

ȳi
:K

The first K tokens of the prediction from the slot i through the non-∅ prediction, where ∅ token
is removed from the prediction vocabulary.

C!∅ The set of slots, each of which is assigned with a keyphrase as supervisory signal.

Cp
The set of potential slots, where each slot has the potential to generate a fresh keyphrase, boosting
the performance of the model.

Cu The unimportant slot set, where each slot has no effect on the model performance.

Table 11: Formal Definitions
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