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Abstract

Unfaithful text generation is a common prob-
lem for text generation systems. In the case of
Data-to-Text (D2T) systems, the factuality of
the generated text is particularly crucial for any
real-world applications. We introduce R2D2,
a training framework that addresses unfaithful
Data-to-Text generation by training a system
both as a generator and a faithfulness discrimi-
nator with additional replacement detection and
unlikelihood learning tasks. To facilitate such
training, we propose two methods for sampling
unfaithful sentences. We argue that the poor en-
tity retrieval capability of D2T systems is one
of the primary sources of unfaithfulness, so in
addition to the existing metrics, we further pro-
pose named entity based metrics to evaluate the
fidelity of D2T generations. Our experimental
results show that R2D2 systems could effec-
tively mitigate the unfaithful text generation,
and they achieve new state-of-the-art results
on FeTaQA, LogicNLG, and ToTTo, all with
significant improvements.

1 Introduction

Data-to-Text generation is the task of generating a
text sequence that describes some salient informa-
tion of a knowledge source. Unlike Text-to-Text
generation whose input source is a text sequence
containing knowledge that is not extracted and rep-
resented in the canonical structured format, we
assume that the input of a Data-to-Text system is
represented in some structured format, e.g., RDF
(Gardent et al., 2017), relational or entity tables
(Lebret et al., 2016; Wiseman et al., 2017). The
Data-to-Text task can be divided into two distinct
components as in many other text generation tasks
(Reiter and Dale, 2000; Gatt and Krahmer, 2018).
The first component involves selecting salient infor-
mation from the structured knowledge either based
on natural language query or other indication of
saliency, and the second component comprises or-
ganizing and planning of the previous selections

to allow realization of the surface text. Although
this task has been studied comprehensively in many
works, from task design, modeling techniques, to
application in different domains (Gardent et al.,
2017; Lebret et al., 2016; Wiseman et al., 2017;
Novikova et al., 2017; Parikh et al., 2020; Nan et al.,
2022), existing Data-to-Text (D2T) systems exhibit
a shortcoming that cannot be neglected: they fail to
reliably generate sentences that are faithful given
the salient content of the input table (Chen et al.,
2020a,b, 2021a; Uehara et al., 2020; Ji et al., 2022).
This limitation prevents the application of D2T sys-
tems in real world scenarios. We therefore need to
investigate possible remedies.

We introduce a framework that prevents unfaith-
ful Data-to-Text generation by training a Data-to-
Text system both as a generator as well as a faith-
fulness discriminator. For faithfulness discrimina-
tion, we adopt the replaced token detection objec-
tive, which was first proposed in ELECTRA (Clark
et al., 2020). It was applied to the pre-training
stage of the large-scale language models for more
sample-efficient training of contextualized repre-
sentations of sentences. ELECTRA is tasked to dis-
criminate between original natural sentences and
token-replaced sentences by locating the positions
of replacement. The replaced tokens are sampled
from a proposal distribution using a generator such
as a Masked Language Model to fill some masked
tokens.

In our work, we perturbed the entailed reference
sentences with two different methods, a knowledge-
based one and a model-based one, to obtain un-
faithful sentences whose surface forms are close
to those of original sentences (therefore having
similar sequence likelihoods), but contradict to the
input table. Then we investigated ways of incorpo-
rating the discrimination task into the existing maxi-
mum likelihood learning. Specifically, we explored
the settings of learning the sentence-level detec-
tion and generation in tandem, and the token-level
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detection and generation in tandem. In addition,
we also experiment with incorporating the unlike-
lihood training objective (Welleck et al., 2019) on
these unfaithful sentences to test its utility.

We conduct experiments on three Data-to-Text
datasets to test the general applicability of our ap-
proach: FeTaQA (Nan et al., 2022), LogicNLG
(Chen et al., 2020a), and ToTTo (Parikh et al.,
2020). Each dataset presents distinct challenges
while faithful generation is a common problem.
We find that adding the faithfulness discrimination
task mitigates the unfaithful Data-to-Text genera-
tion, supported by our results on multiple datasets,
on all of which we are able to achieve new state-
of-the-art results with evident improvements. We
compare and analyze the performance of our sys-
tem and existing state-of-the-art systems. To ensure
the validity of the comparison, we also evaluate var-
ious metrics for their aptness of faithfulness evalu-
ation. We released our model and code at https:
//github.com/Yale-LILY/r2d2.

2 Method

2.1 Preliminaries

The de facto Data-to-Text machine learning task
requires conditional language modeling of the se-
quence pair X = (x1, . . . , xM ), Y = (y1, . . . , yN )
using a neural model parameterized with θ:
pθ(y1, . . . , yN |x1, . . . , xM ), where (y1, . . . , yN )
is a natural language sentence that faithfully de-
scribes the salient part of the input data which is
linearized, along with other contexts such as query
or metadata, into the sequence X = (x1, . . . , xM ).

We want to sample unfaithful sentences that are
in the vicinity of surface forms of reference sen-
tences, therefore also likely to be generated when
only learning with maximum likelihood loss. We
aim to examine the effectiveness of our proposed
discrimination objectives in guiding the D2T model
to attain separable representations for these su-
perficially similar but factually critical sentences,
and more importantly, we investigate how gener-
ation can benefit from these additional objectives
for robustness. We call our method Robust Data-to-
Text with Replacement Detection (R2D2), because
we assign the Data-to-Text model both a genera-
tion task and a discrimination task (replacement
detection). This process is illustrated in Figure 1.

Many existing works that study the unfaith-
ful text generation problem in summarization and
translation have investigated the source of incon-

Figure 1: Illustration of how R2D2 fine-tuning fits the
probability distribution of faithful sentences shown in
a Data-to-Text task, assume the length of sentence is 2
for the visualization purpose.

sistencies between the system output and the in-
put (Cao et al., 2017; Maynez et al., 2020; Goyal
and Durrett, 2020, 2021; Chen et al., 2021a). The
main source of unfaithfulness is that the outputs
contain facts that cannot be entailed (necessary con-
sequence) from any explicitly stated facts or infer-
ences derived from the input table. As we represent
facts with subject-predicate-object triples, these
contradictions originate from wrong predictions of
entities (subject or object), predicates, or wrong
arrangements. This motivates our proposal of dif-
ferent methods of obtaining unfaithful sentences in
Section 2.2. Then we describe two learning objec-
tives that we proposed to add to the Data-to-Text
modeling: 1) replacement detection objective in
Section 2.3; and 2) unlikelihood objective in Sec-
tion 2.4. In Section 2.5, we formulate our R2D2
fine-tuning that leverages these two objectives in
addition to the standard negative log likelihood loss
for robust training of a Data-to-Text model.

2.2 Faithfulness-based Replacement

We aim to obtain sentences that are not entailed
from the input table by replacing entities or pred-
icates in the original sentences. It is challenging
to reliably extract the predicates in canonical form
that can be compared and replaced with one an-
other, but it is feasible to extract and compare enti-
ties from the system generations and the input table.
Therefore we replace a span of tokens that consti-
tute an entity in the original sentence with another
candidate entity comprising one or more tokens.
We adopted a RoBERTa-large-based named entity
recognizer1 to extract all the entities in a sentence.

1https://huggingface.co/Jean-Baptiste/
roberta-large-ner-english

6904

https://github.com/Yale-LILY/r2d2
https://github.com/Yale-LILY/r2d2
https://huggingface.co/Jean-Baptiste/roberta-large-ner-english
https://huggingface.co/Jean-Baptiste/roberta-large-ner-english


List of Assyrian kings | Dynasty of Puzur-Ashur (2025–1749 BC)

King Reign Succession

Erishum I e-ri-šu c. 1905 BC — 
c. 1867 BC (38 years) Son of Ilu-shuma

Ikunum I-ku-nu c. 1867 BC — 
c. 1860 BC (7 years)

Brother of Erishum 
I, son of Ilu-shuma

Sargon I Šarru-ukīn 
"the king is legitimate"

c. 1860 BC — 
c.1821 BC (39 years) Son of Ikunum

Puzur-Ashur II Puzur-Aššur 
"servant of Ashur"

c. 1821 BC — 
c.1813 BC (8 years) Son of Sargon I

Naram-Sin Na-ra-am Sîn 
"beloved of the Moon God Sîn"

c. 1813 BC — 
c.1769 BC (44 years)

Son of Puzur-Ashur 
II

Step 0: Retrieve original sentence.
On the Assyrian King List, Sargon appears as the son and successor of Ikunum, and the    
father and predecessor of Puzur-Ashur II.

Step 1: Identify entities to replace: {Puzur-Ashur II)

Knowledge-Based Perturbation

Step 2: Identify columns of entities.
{Entity: Puzur-Ashur II, 
 Column: King}

Step 3: Select replacement entities 
from the same column.
{King: Erishum I, Ikunum, Sargon I, 
Naram-Sin…}

Step 4: Perturb sentence.
On the Assyrian King List, Sargon 
appears as… predecessor of Erishum I.

Model-Based Perturbation

Step 2: Prepare the context.
On the Assyrian King List, Sargon 
appears as… predecessor of _______

Step 3: Teacher-force the above context 
and predict the continuation using a 
Data-to-Text model.
(D2T Model → Sargon II…)

Step 4: Perturb sentence.
On the Assyrian King List, Sargon 
appears as… predecessor of Sargon II.

Question:
On the Assyrian King List, for whom is Sargon the son and successor of 
and for whom is he the father and predecessor of? 

Figure 2: Knowledge-based and model-based replacement methods for obtaining unfaithful sentences.

To sample one unfaithful sentence, we select one
of these entities, with those located near the end of
the sentence to have a higher probability of being
selected. This way, for the token-level detection
task, the model has more chances of obtaining a
reasonable amount of context for performing dis-
crimination. We propose two different methods of
determining the candidate replacement, which are
illustrated in Figure 2 and described next.

Knowledge-based Method Entities of same
types are usually the suspects of the wrong pre-
dictions. Identifying such entities in other text
generation tasks is nontrivial because their inputs
are unstructured texts, while in D2T, the source
arranges similar entities together. For example,
similar entities can be accessed in the same column
for a table input, or they can be obtained by check-
ing their applicability to certain predicates when
the input is a semantic triple set. Our knowledge-
based replacement method exploits the structure of
the input to retrieve similar entities to find replace-
ments that will lead to contradiction. This process
is illustrated in Figure 2. Note that for the datasets
we experimented on, we assume the entity to be
replaced is the only choice to make the sentence en-
tailed, and replacement of any other entities shown
in the input table will violate the faithfulness of
sentences. This assumption does not necessarily
hold in some examples, on which we will elaborate
in Section 6.

Model-based Method Another way to obtain re-
placement candidates is by sampling from a pro-
posal distribution as in ELECTRA. We sample re-
placements from the baseline Data-to-Text model
by teacher forcing partial sentence up to the en-
tity that needs to be replaced. Next we collect the
D2T model predictions of the continuation with

nucleus sampling (Holtzman et al., 2020), followed
by extracting altered entities shown in the predicted
continuations to determine the replacement candi-
dates. With this approach, we are able to expose
and further train the D2T model with errors of its
own predictions.

2.3 Replacement Detection in Generation

For each entailed sentence Y
(i)

True, we generate N (i)

contradictory sentences which we denote as Y (i,j)
False

for j = 1, . . . , |N (i)|. The number of contradic-
tory sentences we can generate given an entailed
sentence depends on the number of entities found
in the original sentence, the input, and the replace-
ment method applied.

As shown in Figure 3, we add a sentence-level re-
placement detection task to the existing Sequence-
to-Sequence framework by eliciting the decoder
to generate a probability of the teacher-forced sen-
tence being entailed or contradictory at the end of
the generation, similar to the sequence classifica-
tion usage of BART (Lewis et al., 2020), except
that in BART, the same sequence that needs to be
classified is fed into both the encoder and decoder.
The loss for sentence-level replacement detection
is defined by Equation (1).

A more challenging task is to perform a fine-
grained, token-level discrimination, as shown in
Figure 4. Instead of predicting a discrimination
probability at the end of generation, we task the
decoder to perform discrimination at every step
of token generation. Specifically, we use the per-
step last hidden output of the decoder, which en-
codes the source contexts and teacher-forced partial
generation contexts, to compute the discrimination
probability with a linear and sigmoid layer. The
token-level replacement detection loss is defined
by Equation (2).
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LRDsent(X
(i), Y ) = −

[
l · log p(l|Y,X(i)) + (1− l) · log

(
1− p(l|Y,X(i))

)]
(1)

LRDtoken(X
(i), Y ) = −




|Y |∑

t=1

lt · log p(lt|y≤t, X
(i)) + (1− lt) · log

(
1− p(lt|y≤t, X

(i))
)

 (2)

LUL(X
(i), Y

(i,j)
False ) = −




|C(i,j)|∑

t={t|yt∈C(i,j)}
yt · log(1− ŷt) + (1− yt) · log(ŷt) +

|Y (i,j)
False \C(i,j)|∑

t={t|yt /∈C(i,j)}
yt · log(ŷt) + (1− yt) · log(1− ŷt)


 (3)

LNLL(X
(i), Y

(i)
True) = −

|Y (i)
True|∑

t=1

yt · log(ŷt) + (1− yt) · log(1− ŷt) (4)

LR2D2 =

|D|∑

i=1

1

|N (i)|+ 1


λ


LNLL(X

(i), Y
(i)

True) +

|N(i)|∑

j=1

LUL(X
(i), Y

(i,j)
False )


+ (1− λ)


LRD{sent,token}(X

(i), Y
(i)

True) +

|N(i)|∑

j=1

LRD{sent,token}(X
(i), Y

(i,j)
False )




 (5)

Figure 3: R2D2 sentence-level architecture

2.4 Replacement Unlikelihood Training

Unlikelihood training is first proposed in (Welleck
et al., 2019) to address the repetition problem of the
neural text generation. This training objective aims
to decrease the decoder’s probability of generating
tokens that are already seen in the teacher-forced
generation contexts. The applicability of this ob-
jective to the Data-to-Text task is also argued in
(Uehara et al., 2020).

Instead of using the generated tokens to con-
struct the negative candidate set defined for each
step, we define the sentence-level negative candi-
date span C(i,j) for each contradictory sentence
Y

(i,j)
False . The span contains, for each time step, one

replaced token that should have a low probability of
being generated. We calculate the sequence-level
unlikelihood loss for this replaced token span and

<s> Damon Hill completed 53 more laps 
than Michael Schumacher.

Linearized Table <s> Damon Hill completed 53 more laps 
than Jean Alesi.

Faithfulness Replacement

 Seq-to-Seq

O   O   O   O   O   O   R   R 
O: Original
R: Replaced

Linear + SigmoidLinear + SoftmaxRef-{orig, replaced}

NLL Loss

Replacement 
Label

Discriminator Loss

R2D2
Token-level

Unlikelihood Loss

Encoder Decoder

Figure 4: R2D2 token-level architecture

apply regular likelihood loss for other original to-
kens, which we denote as Y (i,j)

False \ C(i,j). We denote
the per step prediction as ŷt = p(yt|y<t, X

(i)).
The unlikelihood loss for the entire sentence is
specified in Equation (3).

2.5 R2D2 Fine-tuning
We propose the final R2D2 fine-tuning loss ob-
jective as in equation (5). It combines a genera-
tion task loss component and a discrimination task
loss component. Each of them is calculated from
one entailed instance and N (i) contradictory in-
stances. The generation task component consists
of a regular negative log likelihood loss for the en-
tailed instance, as described in Equation (4), and
an unlikelihood loss for the contradictory instances.
The discrimination task component contains either
sentence-level or token-level replacement detection
loss for both entailed and contradictory instances.
We use λ to balance the importance between the
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two loss components.

3 Experiments

We first introduce the datasets that we experiment
with in Section 3.1, and the metrics we adopted
for evaluation in Section 3.2. Then we report the
baseline models we are comparing with, and the
implementation and training details in Section 3.3.
In Section 3.4 and 3.5, we report and analyze both
the automatic evaluation results and the human
evaluation results.

3.1 Datasets

FeTaQA (Nan et al., 2022) is a free-form table
question answering dataset. It introduces a task
that requires retrieving the correct contents from
the table based on the question, integrating and
inferring from the retrieved facts, and generating a
free-form answer. Sentences that contain erroneous
selections of facts, even if they appear in the input
table, are still considered as unfaithful, for being
inconsistent with the input question.
LogicNLG (Chen et al., 2020a) is a table-to-text
dataset that requires generation of logically entailed
sentences, with no indication of what is considered
as salient given a table. Since there are numerous
entailed facts that are different from the references
in the surface-form, they propose input-based met-
rics that compare the facts in the generated sen-
tence and those in the input. It is worth noting
that faithfulness to the input is more important for
LogicNLG then faithfulness to the references.
ToTTo (Parikh et al., 2020) is a table-to-text
dataset that contains annotations of salient content
of tables (highlighted table cells). The task does
not require any content selection (when only high-
lighted cells constitute the input), but only text plan-
ning and surface realization of the inputs, which
are expected to be described with full coverage.

3.2 Evaluation Metrics

We report results of a variety of automatic evalu-
ation metrics used in the past studies to provide
a comprehensive comparison of existing meth-
ods and our proposed method. We include fact-
verification based metrics, NLI-Acc (Chen et al.,
2020a,b), which specifically aims to evaluate the
faithfulness of the sentences. We also report string-
based metrics that evaluate the string match be-
tween predictions and references, such as sacre-
BLEU (Post, 2018), ROUGE-{1, 2, L} (Lin, 2004),

TER (Snover et al., 2006), METEOR (Banerjee
and Lavie, 2005), PARENT (Dhingra et al., 2019)
(which also leverages the input data).

NE-based Evaluation Metrics To better under-
stand how the D2T system’s retrieval capability cor-
relates with faithfulness, we propose information-
extraction based metrics that compare the named
entities contained in the generated sentences to
those contained in the reference sentences or in-
put data. We believe these metrics help us better
distinguish between the unfaithfulness caused by
wrong retrieval of entities and that caused by wrong
prediction of predicates/relations. Specifically, we
propose the following indicators:

• Reference coverage (RC): percentage of en-
tities in the reference that are also shown in
the prediction.

• Ref-hit & Input-hit (RI): percentage of enti-
ties shown in the prediction that are shown in
both the reference and input table.

• Ref-hit & Input-miss (RM): percentage of
predicted entities that are shown in the refer-
ence but not the input table. This case is rare
since it indicates the existence of entities that
are not input-grounded in the reference.

• Ref-miss & Input-hit (MI): percentage of
predicted entities that are shown in the table,
but not in the reference. This case identifies
wrong or unnecessary retrieval of entities from
the input (when the indication of saliency is
evident).

• Ref-miss & Input-miss (MM): percentage of
predicated entities that are neither shown in
the table nor the reference. This case identifies
the prediction of entities likely by hallucina-
tion.

Figure 5 and Figure 6 in the Appendix show the
correlation between NE-based metrics and sacre-
BLEU, NLI-Acc, respectively. As expected, the
reference coverage rate positively correlates with
both metrics. While both reference hit and input
hit are important, the rate of predicted entities not
shown in reference negatively correlates with sacre-
BLEU (MI and MM) and NLI-Acc (MI). The trend
is less clear for RM and MM since these are rare
cases, which can also be shown in Table 4. In Sec-
tion A.1 of the Appendix, we also test how the
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Systems
Fact-based String-based

NLI-Acc sacreBLEU Rouge-1/2/L PARENT TER METEOR

Xie et al. (2022) - 29.9 61.77/39.44/51.93 - - 48.53

Reg-FT 74.79 30.5 63.47/41.77/54.04 44.24 66.37 55.2
R2D2-FT 77.93 31.5 63.50/41.71/54.05 45.32 68.55 56.27

Table 1: Automatic evaluation results of different systems on FeTaQA test split.

Systems
Fact-based String-based

NLI-Acc SP-Acc BLEU-1/2/3 sacreBLEU Rouge-1/2/L PARENT TER METEOR

Chen et al. (2021b) 76.9 43.9 49.5/28.6/15.3 - - - - -

Reg-FT 84.11 45.97 51.63/32.24/18.75 18.2 42.74/20.89/36.77 32.36 86.38 36.55
R2D2-FT 85.57 50.80 51.76/32.42/18.65 18.5 42.63/20.73/36.84 31.38 80.97 35.73

Table 2: Automatic evaluation results of different systems on LogicNLG test split.

automatic metrics we reported could reliably detect
the unfaithfulness of the sentences.

3.3 Experiment Settings
Baselines The state-of-the-art system for the
Data-to-Text task is fine-tuned T5 model (Raffel
et al., 2020). We fine-tune T5 ourselves and report
evaluations on FeTaQA, LogicNLG and ToTTo, so
that the learning objective is the key control vari-
able in our comparison.

Implementations We use T5-base as the pre-
trained checkpoint from which we fine-tune either
regularly (Reg-FT) or using our proposed method
(R2D2-FT). For R2D2-FT, we initialize our model
from a checkpoint that has been fine-tuned regu-
larly for 15 epochs, and train the additional linear
layer for sentence or token replacement detection
from random initialization. We find this fine-tuning
warmup help improve the performance in general.
We use the Adafactor optimizer (Shazeer and Stern,
2018) with a learning rate of 5e-5. We use the
batch size of 8 for FeTaQA and 32 for the others.
Our models are trained on one NVIDIA GeForce
RTX 3090 GPU, and each experiment takes around
5-20 hours depending on the dataset size.

R2D2 Configuration To assess the necessity of
the discrimination loss and unlikelihood loss, we
experimented fine-tuning T5 only with the dis-
crimination loss, or only with the unlikelihood
loss, or both (all in addition to the NLL loss).
For discrimination loss, we also experiment with
adding sentence-level or token-level discrimination
to investigate the effect of discrimination granu-
larity in assisting faithful text generation. For all

the training variants above, we also compare two
methods of obtaining the contradictory sentences,
knowledge-based and model-based methods. Since
the number of contradictory sentences obtained
(which we denote as N (i) in Section 2.5) varies
depending on the method used (as shown in Table
7 of the Appendix), we also experiment with us-
ing different numbers of contradictory sentences
in the R2D2 fine-tuning: N (i) = 1 (xsmall),
3 (small), 5 (medium), 10 (large) or max
(full). Since the maximum size of the perturba-
tions obtained by model-based method is small,
we only compared xsmall and full for the
model-based method setting.

3.4 Automatic Evaluation

We report the performance of the previous state-of-
the-art system, T5 fine-tuned only with negative log
likelihood (NLL) loss by ourselves, and the best T5
fine-tuned with R2D2 loss for FeTaQA (Table 1),
LogicNLG (Table 2) and ToTTo (Table 3), based
on metrics used in the existing literature. In Table
4, we also report their performances using the NE-
based metrics that we proposed. We also report the
full experiment results of FeTaQA that contain eval-
uations of different R2D2 configurations in Table
8 of the Appendix.

We obverse that across all the datasets, most of
the systems fine-tuned with different R2D2 config-
urations are able to perform better than system that
is fine-tuned only with NLL loss. As expected,
the improvements are more evident in the fact-
verification-based metrics that evaluate the faith-
fulness of the sentences. As shown in Table 8, we
find that the best R2D2 configuration requires both
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Systems Split
Fact-based String-based

NLI-Acc sacreBLEU Rouge-1/2/L PARENT TER METEOR

All - 47.7 - 57.1 - -
Overlap - - - - - -Kale and Rastogi (2020)

Nonoverlap - 39.6 - 52.6 - -

All 90.29 48.7 75.92/55.99/67.40 58.43 48.53 71.01
Overlap 91.17 56.6 79.95/62.39/72.78 62.88 40.85 75.56Reg-FT

Nonoverlap 89.42 41.0 72.04/49.80/62.20 54.14 55.69 66.54

All 91.27 49.2 75.54/55.59/67.06 59.05 50.40 71.99
Overlap 91.70 56.7 79.42/61.68/72.14 62.89 42.72 76.47R2D2-FT

Nonoverlap 90.86 41.9 71.79/49.69/62.15 55.35 57.57 67.67

Table 3: Automatic evaluation results of systems on ToTTo development split.

the discrimination and the unlikelihood learning
objectives with λ = 0.5 (finding from a parame-
ter sweep of 0.2, 0.5 and 0.8). The contradictory
sentences obtained by knowledge-based perturba-
tion are more beneficial than those obtained by
model-based perturbation. We also find that the
granularity (sentence/token-level) of the discrimi-
nation loss does not seem to affect the performance
much, and that the system performance does not
necessarily improve as we increase the number of
unfaithful sentences used for fine-tuning, and that
the best configuration for N (i) seems to be 3-5 in
most cases.

We examine the improvement of faithfulness
using the NE-based metrics, and find that the cov-
erage of the entities appeared in the reference (RC)
improves across all datasets. For FeTaQA, we
notice that our system is able to retrieve input-
grounded entities more accurately (shown by in-
creased RI and decreased MI scores). For Log-
icNLG which has no right or wrong retrieval of
input-grounded entities as long as the description
of them is faithful, we obverse an evident decline of
MM and increments of both RI and MI (with more
evident gain in MI), indicating that our system is
able to reduce hallucinations of irrelevant entities
and instead retrieving input-grounded ones.

Dataset Systems Split RC RI RM MI MM

FeTaQA Reg A 72.30 69.88 1.48 24.90 3.73
R2D2 A 73.06 70.92 1.62 23.82 3.64

LogicNLG Reg A 37.29 26.07 0.97 61.60 11.36
R2D2 A 37.93 26.62 0.44 67.12 5.82

ToTTo

Reg
A 82.47 74.95 3.14 17.66 4.24
O 84.87 77.95 3.40 15.10 3.54
N 80.14 72.04 2.89 20.14 4.92

R2D2
A 83.24 74.06 3.26 18.31 4.37
O 85.45 76.90 3.63 15.70 3.77
N 81.08 71.30 2.89 20.85 4.95

Table 4: NE-based automatic evaluation result. A, O, N
stands for All, Overlap and Nonoverlap.

Dataset Systems Split Faithfulness
Agreement / κ

Coverage
w.r.t Ref

Agreement / κ

FeTaQA Reg-FT A 61.33 / 0.62 54.83 / 0.46
R2D2-FT A 68.67 / 0.61 61.83 / 0.51

LogicNLG Reg-FT A 40.67 / 0.71 69.00 / 0.36
R2D2-FT A 41.17 / 0.74 66.50 / 0.44

ToTTo

Reg-FT
A 81.00 / 0.41 81.17 / 0.37
O 83.66 / 0.51 82.66 / 0.38
N 78.32 / 0.33 79.66 / 0.37

R2D2-FT
A 83.16 / 0.37 84.67 / 0.34
O 84.34 / 0.45 88.66 / 0.25
N 82.00 / 0.31 80.66 / 0.40

Table 5: Human evaluation result. A, O, N stands for
All, Overlap and Nonoverlap. We measure the total
agreement in % and the Fleiss’ Kappa (κ) (Fleiss, 1971).

3.5 Human Evaluation

Since the automatic evaluations are not always reli-
able in determining the faithful aspect of a sentence,
which can be seen in our metrics reliability test
shown in Table 6: around 14% faithful sentences
are deemed to be unfaithful by the NLI-Acc metric,
and more importantly, it fails to identify around
36% of the unfaithful sentences. We conduct the
human evaluation based on two criteria: a sentence
is (1) faithful if all facts contained are entailed by
the input, and when a question is present in the in-
put, the sentence only contains necessary facts; (2)
adequate with respect to reference if the sentence
contains same or more facts than the reference.
We asked three human evaluators to evaluate 200
samples of each dataset (100 samples in each of the
overlap/nonoverlap split for ToTTo), and each sam-
ple is provided with all the inputs, the reference,
and two system generated sentences. We report the
percentage of faithful and adequate sentences gen-
erated by the baseline system and our system on all
datasets in Table 5, and the results validate R2D2’s
effectiveness in faithful text generation. We notice
that on LogicNLG, the R2D2 generated sentences’
coverage with respect to the reference is lower than

6909



that of the baseline model’s generations, we suspect
that this is because the R2D2 generated sentences
may contain facts that are different from the facts
shown in the reference.

4 Related Work

4.1 Unfaithfulness in Text Generation

In the context of text generation, hallucination
refers to the phenomenon of neural models “gen-
erating unfaithful or nonsensical text” (Ji et al.,
2022). Reasons for such hallucinations are poor
data collection, training design (such as the expo-
sure bias), or that the task expects more output
diversity. Metrics based on information extraction,
question answering, and natural language inference,
have been proposed to measure such hallucination,
which we employ to evaluate the performance and
faithfulness of R2D2.

4.2 Contrastive Learning

Contrastive learning (Hadsell et al., 2006) tasks the
model with maximizing the representation similar-
ity between neighboring examples while minimiz-
ing the similarity between distant examples. Con-
trastive learning has recently been used in various
NLP tasks, including language modeling (Arora
et al., 2022), machine translation (Yang et al., 2019;
Pan et al., 2021), anomaly detection (Manolache
et al., 2021), commonsense reasoning (Zhou et al.,
2021), text summarization (Cao and Wang, 2021;
Liu and Liu, 2021; Xu et al., 2021; Sun and Li,
2021; Wang et al., 2021; Liu et al., 2022), and data-
to-text generation (Uehara et al., 2020). Unlike
Uehara et al. (2020), in which unfaithful sentences
are obtained by replacing a set of keywords (such
as replacing low to high, gain to drop) that only
apply to the finance domain, we propose domain-
independent methods for sampling unfaithful sen-
tences either by exploiting the structure of input
knowledge or utilizing the D2T model’s own mis-
takes.

4.3 Unlikelihood Training

To address the degeneration problems of models
trained only with Maximum Likelihood Estimation,
many works have proposed alternative approaches
(Tu et al., 2016; Li et al., 2020; Holtzman et al.,
2020; Lin et al., 2021). Among them, unlikelihood
training was introduced as a means of decreasing
the probability that the model generates certain to-
kens (Welleck et al., 2019). In a D2T context, we

adopt unlikelihood training to decrease the prob-
ability that the model generates tokens which are
not entailed by the given contexts.

4.4 Evaluation Metrics

Ideally, a data-to-text model should be evaluated
based on its ability to generate logical sentences
verified by the provided reference data. Cur-
rent methods however, typically only compare
the model output summary to the gold summary.
This includes n-gram based (e.g. BLEU, ROUGE,
and METEOR) or edit distance based metrics (e.g.
TER) (Sai et al., 2022), or embedding-based sim-
ilarity metrics (e.g. BERTScore) (Zhang et al.,
2019). Another set of metrics compare the informa-
tion present in the output and the label. This is done
by extracting subject, object, and their relations in
the output and label, and comparing both sets of
elements (Wiseman et al., 2017). We evaluate our
model using multiple metrics to understand differ-
ent aspects of its performance. A comprehensive
investigation of the current evaluation practices for
NLG tasks can be found in Gehrmann et al., 2022.

4.5 Natural Language Inference

Natural language inference (NLI) refers to the task
of classifying whether a hypothesis entails, con-
tradicts, or is unrelated to a premise (Bowman
et al., 2015). In the context of D2T, NLI can be
used to evaluate whether a model’s generated text
can be inferred from the input table (Chen et al.,
2020a). In line with the work of TabFact (Chen
et al., 2020b), LogicNLG (Chen et al., 2020a), and
SnowBall (Shu et al., 2021), R2D2 incorporates
this idea into data-to-text training by using NLI as
a learning objective during the training procedure.

5 Conclusion

In this work, we introduced R2D2, a training frame-
work that mitigates the unfaithful text generation
problem for the D2T task. Training with the regular
maximum likelihood loss can lead to generation
of sentences that are similar to the references but
are unfaithful to the input. We therefore propose
to add a discrimination task and an unlikelihood
training to encourage the model to generate sep-
arable representations of these critical sentences.
We proposed two methods of sampling these un-
faithful sentences: the knowledge-based method
exploits the structure of the input knowledge, and
the model-based method samples the D2T model’s
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own mistakes. We proposed NE-based metrics that
assess the entity retrieval capability of the Data-to-
Text systems, as we argued the incompetence of
which is one of the leading causes of unfaithful-
ness. We experimented on multiple Data-to-Text
datasets of different task constructs, and achieved
noticeable improvements over the state-of-the-art
performance.

6 Limitations

There are some limitations of our knowledge-based
method for obtaining the contradictory sentences,
as its validity depends on the type of sentences
observed in the data-to-text datasets. Comparing
the effectiveness of R2D2 on different datasets and
with different evaluations, we found that FeTaQA
and ToTTo benefit more than LogicNLG. We spec-
ulate this is because many sentences of LogicNLG
describe some entailed facts of entities of a sin-
gle table column (usually involving comparisons),
which usually contain single and less restricted
predicate that could be applied to many homoge-
neous entities, and this would invalidate our per-
turbation methods. We provide one such example
in Figure 7 of the Appendix. We also notice that
for ToTTo, the improvement is less evident than
that for FeTaQA. Besides less room for improve-
ment, we observe no evident change in the entities
retrieved by both systems compared with those
in the reference or input, while human evaluation
indicates there are still around 17% unfaithful sen-
tences. We speculate the source of unfaithfulness
of these sentences are due to wrong predictions of
relations/predicates, which are not captured and
included into the R2D2 fine-tuning by our current
perturbation method. To avoid invalidation of per-
turbation (as in the case of LogicNLG) and also
to capture erroneous relation predictions, a better
perturbation method has to operate on fact triples
instead of entities, but this requires a reliable and
domain-independent fact extraction system, which
we will explore in future.
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ciński, Nick Schoelkopf, Riley Kong, Xiangru Tang,

6912

https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://arxiv.org/abs/1703.09902
https://arxiv.org/abs/1703.09902
https://arxiv.org/abs/1703.09902
https://doi.org/10.48550/ARXIV.2202.06935
https://doi.org/10.48550/ARXIV.2202.06935
https://doi.org/10.48550/ARXIV.2202.06935
https://doi.org/10.18653/v1/2020.findings-emnlp.322
https://doi.org/10.18653/v1/2020.findings-emnlp.322
https://doi.org/10.18653/v1/2021.naacl-main.114
https://doi.org/10.18653/v1/2021.naacl-main.114
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.48550/ARXIV.2202.03629
https://doi.org/10.48550/ARXIV.2202.03629
https://aclanthology.org/2020.inlg-1.14
https://aclanthology.org/2020.inlg-1.14
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.428
https://doi.org/10.18653/v1/2020.acl-main.428
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://proceedings.mlr.press/v139/lin21b.html
https://proceedings.mlr.press/v139/lin21b.html
https://proceedings.mlr.press/v139/lin21b.html
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2021.acl-short.135
https://aclanthology.org/2022.acl-long.207
https://aclanthology.org/2022.acl-long.207
https://doi.org/10.18653/v1/2021.naacl-main.25
https://doi.org/10.18653/v1/2021.naacl-main.25
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173


Mutethia Mutuma, Ben Rosand, Isabel Trindade,
Renusree Bandaru, Jacob Cunningham, Caiming
Xiong, and Dragomir Radev. 2022. FeTaQA: Free-
form Table Question Answering. Transactions of the
Association for Computational Linguistics, 10:35–49.
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A Appendix

A.1 Evaluation Metric Reliability Test
Since many existing automatic metrics for text gen-
eration tasks are not proposed with an aim of re-
flecting the faithfulness of the sentences, an exami-
nation of all metrics reported in our work is crucial
for interpreting the results. As we are able to reli-
ably generate an unfaithful version of most of the
reference texts, we contaminate the references in
the FeTaQA test split in a controlled manner: we
generate five variants of texts with different per-
centage of the references being replaced with their
unfaithful parallel (0% version contains only the
references and 100% version contains only the un-
faithful sentences). We evaluate the variants that
are contaminated to different degrees using the eval-
uation metrics we reported, in order to investigate
how reliable they are in reflecting the faithfulness
of any system generated sentences.

As shown in Table 6, most of the metrics are able
to reflect the degree of unfaithfulness contained in
the prediction texts, though our test only contains
the type of unfaithfulness that originates from erro-
neous selection of entities. A more rigorous study
would test other types of unfaithfulness, such as
wrong prediction of relations or arrangement of en-
tities. Nevertheless, we observe that some metrics,
especially NLI-Acc, are more sensitive to the type
of unfaithfulness that we tested, while an unfaithful
sentence can still obtain a very high BERTScore
(Zhang et al., 2020).

Figure 5: NE-based metrics vs sacreBLEU

Figure 6: NE-based metrics vs NLI-Acc
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% Unfaithful
Sentences

Fact-based String-based NE-based

NLI-Acc sacreBLEU Rouge-1/2/L PARENT TER METEOR BERTScore RC RI RM MI MM

0% (ref.) 86.17 100.0 100/100/100 89.87 0.0 99.99 100.0 99.95 94.15 5.80 0.0 0.05
25% 73.29 96.1 97.62/96.31/97.62 87.23 2.57 98.08 99.43 96.37 90.82 5.67 2.98 0.53
50% 61.21 92.2 95.28/92.63/95.29 84.63 5.18 96.24 98.87 93.01 87.53 5.55 5.86 1.06
75% 48.63 88.3 92.87/88.87/92.87 81.91 7.84 94.36 98.29 89.32 84.33 5.31 8.81 1.54

100% 36.20 84.4 90.47/85.13/90.48 79.16 10.36 92.48 97.72 85.70 80.93 5.24 11.72 2.11

Table 6: Reliability test result of evaluation metrics for detecting unfaithfulness

Dataset
Original

Train-split
Size

Knowledge-based Model-based

FeTaQA 7,325 238,891 (×32.6) 25,313 (×3.5)
LogicNLG 21,873 413,247 (×18.9) 91,183 (×4.2)

ToTTo 120,761 1,165,067 (×9.6) 450,770 (×3.7)

Table 7: Number of obtainable contradictory sentences for the train-split of all datasets.

Figure 7: Sentences for which our current perturbation methods do not apply.
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Discrimination
Loss

Discrimination
Granularity

Unlikelihood
Loss

Perturbation
Method

Perturbation
Size

Fact-based String-based

NLI-Acc sacreBLEU Rouge-1/2/L PARENT TER METEOR

✓ sent-level ✗
Model
based

xsmall 76.83 30.5 63.46/41.57/53.84 44.49 66.47 55.33
full 74.69 29.2 63.08/41.03/53.57 43.01 66.76 54.39

✓ sent-level ✗
Knowledge

based

xsmall 75.79 29.7 63.26/41.08/53.54 43.21 66.65 54.69
small 74.59 29.7 63.53/41.54/54.06 43.43 65.75 54.67
medium 77.13 30.2 63.47/41.43/53.68 43.99 66.96 55.09
large 74.64 29.2 62.57/40.74/53.22 42.74 66.93 53.76
full 73.99 29.4 63.26/41.24153.83 43.45 66.58 54.32

✓ token-level ✗
Model
based

xsmall 75.39 30.3 63.27/40.96/53.66 43.39 67.40 55.16
full 74.44 30.4 63.34/41.24/53.92 44.11 67.30 55.58

✓ token-level ✗
Knowledge

based

xsmall 74.64 30.0 63.01/40.38/53.16 43.15 68.68 55.46
small 75.74 30.8 63.98/41.92/54.39 44.35 66.81 55.75
medium 75.54 30.5 63.41/41.42/53.93 44.36 67.47 55.60
large 74.14 29.9 63.41/41.16/53.68 43.66 67.61 55.31
full 74.94 29.2 63.23/40.73/53.64 42.62 67.89 54.33

✗ - ✓
Model
based

xsmall 74.34 30.2 63.06/40.56/53.41 43.62 68.65 55.22
full 77.33 29.9 62.27/40.16/52.50 43.00 73.97 54.95

✗ - ✓
Knowledge

based

xsmall 75.39 30.0 63.00/40.41/53.49 42.85 67.95 54.93
small 77.93 31.1 63.74/41.68/54.26 44.59 68.43 56.11
medium 77.58 30.8 63.34/41.08/53.70 43.87 68.56 55.77
large 76.29 31.5 63.11/41.20/53.82 45.11 69.93 56.30
full 77.68 31.0 63.17/40.96/53.53 44.20 70.97 56.24

✓ sent-level ✓
Model
based

xsmall 77.58 30.7 63.30/41.14/53.34 44.18 68.48 55.47
full 75.39 29.6 62.43/40.33/52.95 42.45 69.75 54.26

✓ sent-level ✓
Knowledge

based

xsmall 76.14 30.4 63.36/41.03/53.64 43.61 67.89 55.61
small 76.44 31.4 63.56/41.33/53.93 44.68 68.95 56.34
medium 76.59 30.7 63.11/40.75/53.58 43.83 69.73 55.86
large 78.33 31.2 63.41/41.21/53.87 44.87 69.37 56.57
full 78.18 30.9 62.95/40.95/53.26 44.45 71.78 55.81

✓ token-level ✓
Model
based

xsmall 75.28 29.8 62.82/40.33/53.10 42.72 68.92 54.48
full 75.19 29.2 61.88/39.49/52.11 41.68 72.00 54.05

✓ token-level ✓
Knowledge

based

xsmall 75.79 30.7 63.52/41.02/53.75 43.83 68.09 56.19
small 77.73 31.2 63.30/41.01/53.54 44.55 69.52 56.26
medium 77.93 31.5 63.50/41.71/54.05 45.32 68.55 56.27
large 76.78 30.9 62.67/40.76/53.41 43.93 71.47 55.59
full 78.28 30.9 62.50/40.43/53.07 44.29 71.24 55.69

Table 8: Full R2D2 experiment results for FeTaQA.
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