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Abstract

Recent work in training large language models
(LLMs) to follow natural language instructions
has opened up exciting opportunities for natu-
ral language interface design. Building on the
prior success of LLMs in the realm of computer-
assisted creativity, we aim to study if LLMs can
improve the quality of user-generated content
through collaboration. We present CoPoet, a
collaborative poetry writing system. In contrast
to auto-completing a user’s text, CoPoet is con-
trolled by user instructions that specify the at-
tributes of the desired text, such as Write a sen-
tence about ‘love’ or Write a sentence ending in

‘fly’. The core component of our system is a lan-
guage model fine-tuned on a diverse collection
of instructions for poetry writing. Our model
is not only competitive with publicly available
LLMs trained on instructions (InstructGPT),
but is also capable of satisfying unseen com-
positional instructions. A study with 15 qual-
ified crowdworkers shows that users success-
fully write poems with CoPoet on diverse top-
ics ranging from Monarchy to Climate change.
Further, the collaboratively written poems are
preferred by third-party evaluators over those
written without the system.1

1 Introduction

Advancements in large language models (LLMs)
have made remarkable progress towards generating
coherent text in a wide variety of domains. This
has spurred increasing interest in computer-assisted
creativity (See et al., 2019; Elkins and Chun, 2020;
Ramesh et al., 2022; Branwen, 2020) such as build-
ing co-creative assistants for writing stories, poems,
and argumentative essays (Lee et al., 2022; Swan-
son et al., 2021; Uthus et al., 2019; Donahue et al.,
2020; Padmakumar and He, 2022; Du et al., 2022).
The adoption of these technologies hinges on their
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logs from our user study are available at https://github.
com/vishakhpk/creative-instructions

 

 

Write a simile about 'cake'

A cake is like a cloud of joy.  
A cake is like a piece of heaven.  

Suggest a verse to follow the
sentence 'The cake is like a  
cloud of joy'

The frosting is like a rainbow.  
So soft so fluffy, I could cry.  

The cake is like a cloud of joy. 
The frosting is like a rainbow. 
One slice is heaven on Earth, 
A flowing chocolate volcano.

 

Write a poetic sentence that
contains the word 'chocolate'
and ends in 'volcano'

A flowing chocolate volcano.  
I ate so much chocolate and   
erupted like a volcano.  

The cake is like a cloud of joy. 
The frosting is like a rainbow. 
One slice is heaven on Earth,

The cake is like a cloud of joy. 
The frosting is like a rainbow.

The cake is like a cloud of joy.

Poem Draft Interactions

Figure 1: A collaborative poem entitled ’Decadence’,
written with CoPoet assistance. Green text was written
directly by the human, who interacts with CoPoet using
instructions. CoPoet offers multiple suggestions which
the user can accept or reject . The user wrote a four
line poem before indicating completion of the task.

ability to provide appropriate suggestions while be-
ing easy to interact with. However, there has been
limited research on the effectiveness of such col-
laboration, e.g., whether the assistant understands
user intents and whether collaboration improves
the final outcome.

In this paper, we aim to understand the collabo-
ration capabilities of LLMs through a case study of
collaborative poetry writing. Writing a poem is of-
ten a challenging task because it is both open-ended
and highly constrained. Unlike stories or other ar-
gumentative texts, in order to write a poem we need
creative content that satisfies various long- and
short-range form constraints such as rhyme, meter,
and sound, which poses a significant challenge for
end-to-end poem generation systems (Ghazvinine-
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jad et al., 2016; Tian and Peng, 2022; Van de Cruys,
2020; Ormazabal et al., 2022). While LLMs some-
times struggle with long-range coherence, they are
good at providing variations of text that satisfy lo-
cal constraints. This makes them great partners
to humans in poem writing, where humans focus
on the long-range writing plan and the machine
implements the ideas locally.

Effective collaboration in co-creative writing is
challenging as it requires the model to understand
user intention. For example, as shown in Figure 1,
a user may have a rough plan around two related
concepts such as chocolate and volcano, and want
the model to suggest a verse that contains chocolate
and ends with volcano; or they may be looking for
a verse that rhymes with a specific word (rainbow)
to satisfy the constraints. An auto-completion in-
terface is not able to anticipate such user needs and
provide targeted suggestions. To enable richer in-
teraction, we rely on instructional prompts (Wang
et al., 2022; Sanh et al., 2021; Mishra et al., 2022;
Mishra and Nouri, 2022) that act as a natural lan-
guage interface between the user and the assistant.

Specifically, we present CoPoet, a collaborative
poem writing system with a natural language inter-
face. During a writing session, the user can itera-
tively request suggestions through natural language
instructions such as Write a simile about ‘cake’,
and edit their draft based on the suggestions (Fig-
ure 1). To build CoPoet, we finetune a pretrained
sequence-to-sequence model on a parallel corpus
of instruction-output pairs. We obtain the outputs
from publicly available datasets of creative text and
synthesize the corresponding instructions by rules,
including both lexical and rhyming constraints as
well as requests on rhetorical devices.

To understand how well the model follows in-
structions, we test it on instructions with varying
levels of difficulty, from those seen during training
to unseen compositional instructions that contain
multiple constraints. Both automatic and human
evaluation show that our finetuned model satisfies
the constraints 86% of the time, 10% better than a
much larger 175B version of InstructGPT (Brown
et al., 2020). On unseen compositional instructions,
our best model satisfies them 77.6% of the time,
outperforming InstructGPT by a margin of 28%.

To understand its collaboration capabilities, we
run a user study on Amazon Mechanical Turk
(AMT) where CoPoet assists expert crowd workers
(recruited through a qualification test) in writing

Subject
Write a poetic sentence about ‘sun’
O crimson sun, your warming draft’s pulsa-
tion.

End
Write a poetic sentence ending in ‘glory’
Am I exalted here unto that glory.

Rhyme
Write a poetic sentence that ends in a word
which rhymes with ‘replace’
Diminishing for me, with delicate grace.

Next
Sentence

Write a next sentence in a poem given the
previous sentence ‘‘The only thing I know’
‘for sure’
Is that love is hard and can be obscure.

Metaphor
Write a metaphor about ‘brain’
My brain is a tangled mess of circuits.

Simile
Write a simile about ‘making someone feel
desired’
I want to make you feel like a flower near
a hummingbird

Onoma-
topoeia

Write a poetic sentence about ‘bottles’
showcasing onomatopoeia
The stamping of feet and the ring of bottles.

Subject
+ End

Write a poetic sentence about ‘tears’ and
ending in ‘wives’
Awash in the tears of soldier’s wives.

Table 1: Natural language instructions for poem writing
paired with example outputs. Each instruction consists
of a template and an argument.

poems (Section 4). We observe that the recruited
users are able to write coherent and creative poems
on diverse topics ranging from Glass Ceiling to Cli-
mate Change. About 70% of model suggested text
is retained in the final poem and users give CoPoet
a rating of 4.3 out of 5 on both the suggestion qual-
ity and the overall helpfulness. Further, a separate
group of annotators on AMT prefers the collabora-
tively written poems more often than those written
without CoPoet assistance. In particular, we find
model assistance improves rhyming and vocabulary
diversity of the poems.

2 Data

To train a model to follow instructions, we need
<instruction, poem_line> pairs where the text
satisfies the instruction. The key challenge to build-
ing such a model is the lack of parallel data, so
we collect our own dataset of creative writing in-
structions from publicly available poem corpora or
relevant subreddits from Reddit (Table 7).

Based on some initial feedback from profes-
sional poets, we decided to include 3 major
types of instructions: 1) Continuation based in-
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structions that suggest content when writers are
blocked/clueless on how to proceed; 2) Instructions
on Lexical Constraints to enable greater control
of poetic form such as rhyme, sound, and meter.
These are instructions that force language models
to obey specific choices such as generating a line
that contains a specific topic, start word, end word
or a sentence with a particular rhyme; 3) Instruc-
tions on Rhetorical devices that are mostly used for
introducing embellishments and imagery in a poem
such as metaphor, similes, and onomatopoeia.

Table 1 shows the primary instructions used to
train our models. These instructions are crafted by
the authors of the paper, who convert every poem
line to an <instruction, poem_line> pair using
rules.

Each instruction consists of a template (unique
to the instruction type) and one or more arguments,
as can be seen in Table 1. Given a poem line in
the corpus, we reverse-engineer the instruction by
picking a template and extracting the arguments
from the poem line. For continuation instructions,
we use the previous context as the argument. For
instructions on lexical constraints, we extract noun
phrases and start/end words as arguments using
NLTK for tokenization. To construct instructions
on rhymes, we use the CMU dictionary to find
rhyming words.2 We describe more details in Ap-
pendix A on how we create instructions for each
particular type.

To allow models to adapt to linguistic variations
of the instruction templates, we also include para-
phrases of the instruction templates, e.g., instead
of “Write" we also use“Generate”, or instead of
“Write a sentence about” we use “Write a sentence
that contains the word” or “Write a sentence that
includes the word”. In total, our dataset consists of
873,574 <instruction, poem_line> pairs which
we randomly split into 808,180 train and 65,394
held-out validation examples.3 We evaluate perfor-
mance on three test sets of hand-crafted instructions
of varying difficulty (Section 3.2).

3 How Well Do LLMs Follow
Instructions?

In this section, we first describe our models and
baselines, followed by the evaluation results using
both automatic metrics (Section 3.3) and human

2https://pypi.org/project/pronouncing/
3Our dataset is publicly available at https://github.

com/vishakhpk/creative-instructions.

evaluation (Section 3.4).

3.1 Experiment Setup

Model Details We finetune the pretrained T5
(Raffel et al., 2020) and T0 (Sanh et al., 2021)
models from HuggingFace (Wolf et al., 2019) on
the collected data (Section 2) to produce the out-
put given the instruction using cross-entropy loss.
We report results on finetuned T5-3B, T5-11B and
T0-3B models, which are henceforth referred to as
T5-3B-poem, T5-11B-poem, and T0-3B-poem. We
select the hyperparameters by the validation loss:
for T5-11B-poem, we use the Adam optimizer with
a learning rate of 1e−4; for T5-3B-poem and T0-
3B-poem, we use the Adafactor optimizer with a
learning rate of 1e−3. Each model is trained for 3
epochs with early stopping based on validation loss.
We finetune all models on an A100 GPU and use
Deepspeed (Rasley et al., 2020) integration for the
11B model. During finetuning, we restrict the max-
imum sequence length of both the source and the
target to 64 tokens (via truncation).4 At inference
time, we generate output sequences using top-k
sampling with k = 5 and a temperature of 0.7 per
recommendations from earlier work in open-ended
creative text generation (Fan et al., 2018; Holtzman
et al., 2020; Padmakumar and He, 2022).

Baselines We compare our finetuned models with
two other models: (i) the T0pp model (Sanh et al.,
2021), trained on instruction-based prompts from
49 datasets;5 and (ii) the 175B davinci variant of
InstructGPT (Ouyang et al., 2022) that is trained
on human-written instructions on diverse tasks in a
human-in-the-loop fashion. Given an instruction,
we generate text directly (i.e. zero-shot) from T0pp
using top-k sampling (Fan et al., 2018). For In-
structGPT, we evaluate on both zero-shot and few-
shot settings. For zero-shot, the prompt consists
of only the instruction. For few-shot, the prompt
consists of 26 <instruction, poem_line> pairs
from our training data (selected to cover all the
instruction templates), followed by the test instruc-
tion.6 We use the OpenAI API with a temperature
of 0.7, no frequency penalty, and a maximum se-
quence length of 64 to match our setting.

4The length limit is chosen to avoid memory explosion. It
has minimal impact on model performance since most verses
are shorter.

5These include question-answering, summarization,
structure-to-text generation, sentiment and topic classification
tasks but no explicit creative writing tasks.

6The exact prompt can be found in our code repository.
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3.2 Test Sets

While our training instructions cover many tem-
plates and topics, user instructions may deviate
from the training distribution during interaction.
To evaluate the generalization capabilities of the
models, we identify three settings with increasing
difficulty based on whether the instruction tem-
plates or arguments are seen during training.

Known Instruction Templates with Known Ar-
guments (KIKA) The simplest setting requires
the model to generalize to novel combinations of
the templates and arguments. Specifically, we cre-
ate instructions where both the templates and the
arguments are seen in the training set, although
each specific combination is unseen (i.e. the train-
ing and test sets have no overlapping instructions).

Known Instruction Templates with Unknown
Arguments (KIUA) To handle novel concepts
from users, the model must generalize to unseen
arguments, which may include new entities or
phrases. For example, it might be easier for a model
to write a poetic sentence about a known argument
such as beauty, but difficult to write about an un-
known argument beauty without virtue. For this
set, we include instructions where the instruction
templates are seen during training but the corre-
sponding arguments are unseen.

Unknown Compositional Instruction Templates
One of the main benefits of natural language in-
structions is that they can be easily composed in
new ways to cover various user intentions. This is
particularly useful in creative writing because it en-
ables users to request text from the model with mul-
tiple constraints. Therefore, we also test whether
the model understands compositional instructions
using two templates, as seen in Table 2. Our model
is exposed to a single compositional template dur-
ing training: Subject+End. For this test set, we
create a variety of unseen compositions.

In total, we create 242 test examples (82 KIKA,
82 KIUA, 78 compositional) by selecting instruc-
tions according to the above criteria, followed by
manual verification.

3.3 Automatic Evaluation

We evaluate how well the models satisfy constraints
specified in the instructions on each of the test sets
(Section 3.2). We report the success rate of satis-
fying the instructions where the success condition

Start

+End

Write a poetic sentence that starts with the

word ‘Maybe’ and ending in ‘void’

Maybe one day, you will find me in the void

Subject

+Rhyme

Write a poetic sentence that contains the

word ‘breaks’ and ending in a word which

rhymes with ‘bound’

She cracks and breaks and hits the ground.

Next

Sentence

+End

Write a next sentence in a poetry given

the previous sentence ‘Every once a while

I lower the blinds’ and ending in ‘play’

Waiting for someone to call me out to play

Metaphor

+End

Write a metaphor that includes the word

‘film’ and ending in ‘thought’

A film is a petrified fountain of thought.

Table 2: Examples of compositional natural language
instructions for creative tasks paired with their respec-
tive outputs from our test sets.

for each instruction type is listed in Table 3.7

Instruction
Type

Success Condition

Rhyme Last word of the model generation
rhymes with the desired subject using the
CMU Pronouncing Dictionary

Haiku Model generation contains 15–19
syllables and contains the desired subject

Simile /
Metaphor

Model generation contains the desired
subject as well as a comparator

Start / End First/last word of the model generation
matches the desired subject

Subject Model generation contains the desired
subject in the instruction

Table 3: Success conditions for different instruction
templates.

Finetuned Models Have Strong In-Domain Per-
formance but Drop on Out-of-Domain Data
Figure 2 shows the average success rate and stan-
dard deviations of each model on the three test
sets across 5 model inferences to account for vari-
ance in top-k sampling. On both KIKA and KIUA,
T5-11B-poem has the highest average success rate.
T5-3B-poem and T0-3B-poem outperform the few-
shot and zero-shot baselines on both test sets. How-
ever, these finetuned models suffer a big drop in
performance from KIKA to KIUA—T5-11B-poem

7Prior work on instruction tuning reports metrics such
as BLEU score for generation tasks (Sanh et al., 2021; Wei
et al., 2021) and these are unsuitable for our poetry writing
instructions, thus we define custom success conditions.
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suffers a relative drop of 51.09% from a 73.2% suc-
cess rate on KIKA to a 35.8% rate on KIUA. In
contrast, the few-shot InstructGPT baseline only
suffers a relative drop of 30.4% from a success
rate of 46.6% on KIKA to 32.4% on KIUA. This
result is consistent with prior findings that task-
specific finetuning may destroy pretrained repre-
sentation which leads to degrading performance on
other non-finetuning tasks (Aribandi et al., 2021;
Padmakumar et al., 2022). Without finetuning, in-
domain examples are still helpful though: on all
test sets, the InstructGPT few-shot baseline outper-
forms the corresponding zero-shot baseline along
with a reduction in variance across runs.

Larger Models Compose Instructions Better
On compositional instructions, we find that T5-
11B-poem has the best average performance. In
addition, there is a clear performance gap between
the 11B and 3B models, showing the importance of
model scale for composition, similar to recent ob-
servations of emergent abilities in LLMs (Wei et al.,
2022). We also find that few-shot InstructGPT out-
performs T5-3B-poem and T0-3B-poem despite
having no compositional instructions in the prompt.
This indicates that smaller models, when finetuned
on instructions, tend to overfit to templates seen
during training, which hurts their generalization
capability, as also reported in Wei et al. (2021).

3.4 Human Evaluation

Since our automatic metrics are not always accurate
in measuring if an instruction is satisfied, we also
perform human evaluation by having crowd work-
ers manually check if model generations satisfy the
instruction constraints. Given the automatic eval-
uation results in Section 3.3, we compare our best
finetuned model, T5-11B-poem, against the top
performing baseline, few-shot InstructGPT. Specif-
ically, we conduct pairwise comparison: each an-
notator is shown an instruction and generations
from both models.8 They are asked to rate the flu-
ency, accuracy, and creativity of the generation by
answering the following questions:
• Rate the fluency of each verse on a scale of 1–5.

• Does each verse adequately satisfy the instruc-
tion? (Yes/No)

• Which of the two verses is more cre-
8We sample 5 generations from each model and select the

best one using the criteria in Table 3. If multiple candidates
are evaluated as success, we randomly sample one.

KIKA KIUA Compositional
0

20

40

60

80
T5-11B-poem
T5-3B-poem
T0-3B-poem
T0pp
InstructGPT-FS
InstructGPT-ZS

Figure 2: Automatic evaluation of models on KIKA,
KIUA and Compositional test sets. The y axis is the
percentage of instructions that each model successfully
satisfies as determined by the criteria in Table 3. We re-
port results on T5-11B-poem, T5-3B-poem and T0-3B-
poem along with the baselines—zero-shot T0pp (Sanh
et al., 2021) and zero-shot (ZS)/few-shot (FS) Instruct-
GPT (da-vinci) (Ouyang et al., 2022). Each bar shows
the average success rate of 5 model inferences along
with the standard deviation. On average, T5-11B-poem
achieves the highest success rate and InstructGPT is a
strong few-shot baseline that obtains comparable results
on KIUA.

ative/interesting while being coherent and satis-
fying the instruction?

The first two questions evaluate the quality of each
verse against the instruction individually. In ad-
dition to satisfying the constraints in the instruc-
tion with fluent text, we want the model to provide
novel suggestions that are helpful for creative writ-
ing. Thus we also ask the annotators to compare
the two verses and provide a subjective judgement
on which one is more creative. We collect three
annotations for each question and use the majority
vote as the final judgement.

T5-11B-poem Satisfies Instructions Better than
Few-Shot InstructGPT Table 4 shows the hu-
man evaluation results on all three test sets. We
find that, on average, model generations from T5-
11B-poem satisfy the given instructions better on
all three test sets, while InstructGPT is rated to be
more fluent consistently. We find that gap in satis-
fying instructions is largest on the compositional
test set—T5-11B-poem accurately answers 77.6%
of compositional instructions while InstructGPT
only manages 55.2%. Annotators also reported that
verses from T5-11B-poem were marginally more
creative/interesting than InstructGPT on KIKA and
KIUA test sets and less so on the Compositional

6852



T5-11B-poem GPT3-FS

KIKA (82)
Success% 86.2 76.9
Fluency 0.739 0.794
Creative 53.8 46.2

KIUA (82)
Success% 92.5 86.5
Fluency 0.773 0.781
Creative 56.7 43.3

Success% 77.6 55.2

Comp (78) Fluency 0.697 0.751
Creative 47.7 52.3

Table 4: Human evaluation of model generations from
T5-11B-poem and few-shot InstructGPT3 on different
test sets across three metrics: (i) success rate: percent-
age of instructions satisfied; (ii) fluency: average fluency
score on a scale of 5 normalized to [0, 1]; (iii) creativity:
percentage of generations rated to be more creative /
interesting in a pairwise comparison.

test set, indicating that the two models may have
little difference in creativity.9

We observe that InstructGPT is a strong base-
line, outperforming T0pp by a large margin on
automatic metrics, and satisfying nearly 80% of
the instructions in the KIKA and KIUA test sets
according to human evaluation. However, a com-
mon error case on compositional instructions is that
while the model generations almost always contain
the arguments mentioned in the instruction, they do
not always satisfy the constraints correctly—when
asked for a verse that contains the word ‘soul’ and
ends with ‘yellow’, InstructGPT generated the line
“My soul is as yellow as the sun on a summer day”
that contains those arguments but not at the speci-
fied positions.

Takeaways We observe that on average finetuned
models tend to outperform the few-shot baselines
on in-domain instructions (Section 3.3). While
smaller models (T5-3B-poem, T0-3B-poem) have
worse performance on out-of-domain instructions,
finetuned models at scale (T5-11B-poem) general-
izes to compositional instructions effectively, even
outperforming InstructGPT (Section 3.4). The flex-
ibility of composing instructions makes the model
more suitable as a collaborator for a human user;
hence we use T5-11B-poem as the assistant for our
subsequent collaborative experiments.

9The first two questions are less subjective than the third
question. Users unanimously agreed 52.2% of the time on
whether model generations satisfied instructions and only
37.3% on which output is more creative.

4 CoPoet: Collaborative Poem Writing

Our results in Section 3.4 demonstrate CoPoet’s
ability to satisfy the constraints specified in the in-
structions. This presents us with an opportunity
to test the model’s capability in collaborative writ-
ing tasks. We design our user study (Figure 3) to
answer the following two main research questions:

• RQ1: Can users write poems on any topic of
their choice by collaborating with CoPoet?

• RQ2: Does CoPoet help users write better
poems compared to when they write alone?

 

---------- 
---------- 
----------

1) --- 
2) --- 
3) ---

Topic: Decadence 

Solo Writer 

Decadence (1)
Open up Insta and you'll see 
All of the pleasures you'll ever need.
Photos of food, cars, and female models.
All competing for likes and comments.
Social connection broken down,
with many indulgences all around

Decadence (2) 
The cake is like a cloud of joy. 
The frosting is like a rainbow. 
One slice is heaven on Earth, 
A flowing chocolate volcano.

Subjective Majority Vote

"2 is better than 1"

RQ1: Can users collaborate with
CoPoet to write poems?

RQ2: Do collaborative users outperform solo-writers?

CoPoet 

Figure 3: CoPoet user study. We study if users can ef-
fectively collaborate with CoPoet to write poems (RQ1)
and whether writing with CoPoet produces better poems
compared to solo-writers (RQ2).

Interface Design Since we intend to study the
task of collaborative poem writing, we develop
a user interface for our experiments where users
can work on their poem drafts and also query
CoPoet for suggestions using written instructions.
A screenshot of the interface is provided in Fig-
ure 11. In response to each instruction, CoPoet
provides 5 suggestions, each in the form of one
poem line, to the users. The users can then choose
if they wish to incorporate these into their draft.
We instruct them to edit the model output when re-
quired to ensure the overall coherence of the poem.
As seen in Figure 11, users are also provided with
the list of instruction templates used to train the
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model (Section 2). These are intended to commu-
nicate to users the instructions that the model is
trained to respond to, so that they have an idea of
what the model is capable of.10

Experiment Setup We first conduct a qualifica-
tion test on AMT, where we recruit 50 workers to
collaboratively write a poem of four lines using
CoPoet. We require a user to interact with our sys-
tem at least four times (i.e., to issue at least four
instructions). However, we do not enforce that
they use any of the model outputs in response to
their instructions—they are free to ignore all model
suggestions. The authors of the paper then inde-
pendently rank these poems in terms of fluency,
richness in imagery, and creativity. Finally, 15
crowd-workers passed the qualification test. From
now on, we refer to these qualified workers as ex-
perts.

We then collect 50 distinct poems collaboratively
written by our experts using CoPoet, where they
are instructed to write a poem on a topic of their
choice. In order to compare collaborative writ-
ers to solo-writers, we then collect 50 poems on
the same titles from expert writers writing without
model assistance.11 Third-party annotators were
then shown the title and two poems interpreting
it, and instructed to select the one they felt was a
‘descriptive interpretation of the title’. To ensure
a fair judgement, both the poems were identical
in length (4 lines), randomized in order, and with-
out obvious clues in the vocabulary usage. To the
best of our knowledge, there was no underlying
bias that would make it easy for judges to identify
which poems were collaborative and which were
written entirely by humans. The full experiment
design is shown in Figure 3.

RQ1: Can experts write poems successfully on
any topic of their choice by collaborating with
CoPoet?
From our user study, we observe that experts are
able to collaborate with CoPoet and write poems
on diverse topics of their choice, including Climate
Change, Hunger, Glass Ceiling, Decadence etc.
We include more examples in Appendix B. The
full list of titles visualized as a word cloud can be
found in Figure 10.

10We explicitly mention that they can use novel instructions
not present in the templates.

11We ensure that the same author does not write on the
same topic in the two setups.

How do experts use instructions? On average,
experts use 7 instructions per poem. Figure 4 shows
that experts often prefer contextual instructions, i.e.
getting ideas from the model about the Next Sen-
tence given what they have written thus far. The
Topic instruction is also significantly used, which
helps them add control. It is encouraging to see hu-
mans using a total of 87 compositional instructions,
which constitutes almost 24% of the total set of
instructions used. Finally, humans also use figura-
tive embellishments such as Similes or Metaphors
suggested by the model.

Topic+Rhyme
15.2%
Start+End
3.0%
Topic+End
5.8%

Topic
19.1%
End
6.1%

Next Sentence
36.8%

Simile+Metaphor
13.9%

Figure 4: Proportions of the types of instructions used
by experts in the poetry writing task.

Do experts find CoPoet helpful as a writing tool?
We collect judgments from 15 experts to tease out
and characterize the model’s contribution. We are
interested to know whether the model helped in the
writing process by satisfying the instructions, and
how well it served the writers’ needs. We collect
ratings on a Likert scale from 1 (not at all) to 5
(very) on two questions: (i) How accurately does
the model follow instructions? (ii) How helpful
is the model in the process of writing poetry? We
obtain an average score of 4.3 out of 5 on both ques-
tions, suggesting that CoPoet is a useful tool for
poem writing. Table 8 in Appendix A shows some
of the feedback provided by experts, including how
they found the system helpful in situations such as
writers’ block, and how specific instructions helped
them write better.

What fraction of the poems is written by
CoPoet? To quantify the contribution of the
model, we compute the proportion of the submitted
poems that was taken from the model generations.
We calculate this using the Rouge-L recall (Lin and
Rey, 2004) score of the poem lines with respect
to the model suggestions i.e. what fraction of the
poem is found in the generated output of the model.
Each verse is greedily matched to a unique model
suggestion with the largest overlap. The calculation
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Figure 5: Content overlap between sentences of an
individual poem and the corresponding model sugges-
tions calculated using Rouge-L recall. Y axis shows the
percentage of poems out of 50 while X axis shows the
amount of Copoet contribution in terms of Rouge-L.

Relevant % Preferred %

Solo 96 43
Collaborative 98 57

Table 5: Human evaluation of 50 poems written by solo-
writers vs those written by users with CoPoet. Workers
have a slight preference for collaborative poems.

is described in Algorithm 1 in Appendix A. Figure
5 shows that on average 46% of collaborative po-
ems have a Rouge-L recall score greater than 75%,
i.e 75% of the content in the collaborative poems
are obtained from CoPoet suggestions. Addition-
ally, a further 40% of the collaborative poems have
more than half of their content (50-75%) written by
the model. This suggests that the majority of the
text generated by CoPoet is considered high-quality
and usable by the expert users.

RQ2: Can CoPoet help users write better poems
compared to when they write alone? To answer
the above question, we compare poems written by
the set of experts with and without model help, as
detailed in Figure 3. We are interested in measuring
i) whether poems written are relevant, where an rel-
evant poem is defined as descriptive interpretation
of the title, i.e. it is on-topic. ii) whether poems
written by experts with CoPoet are preferred over
poems written by solo-writers.

We recruit a total of 49 third-party annotators to
compare poems written by experts alone to those
written by experts with CoPoet. They are shown
one poem each from a solo-writer and a collabora-
tive writer, both in response to the same title, and
requested to label each poem on whether it is rele-
vant. Additionally, they are asked to choose their
preferred poem between the given pair in terms of
coherence, overall quality, and style. Each pair of
poems is evaluated by 3 distinct annotators. We

then aggregate the judgments via majority voting.
Table 5 shows that both poems written by solo
writers and poems written collaboratively are accu-
rate. We are encouraged to see that collaborative
poems are preferred more than poems written by
solo-writers. These findings suggest that CoPoet
is a helpful tool for poetry writing and instructions
act as a useful vehicle for co-creative writing using
LLMs.

Preferred % Not Preferred %

Diversity 63.0 37.0
Rhyme 72.5 27.5
Perplexity 55.0 45.0

Table 6: Analysis of poems preferred by third-party
annotators based on (i) rhyme (ii) diversity and (iii)
perplexity. Workers’ preference is correlated with the
presence of rhyming and vocabulary diversity.

Potential Factors for User Preference We ac-
knowledge that there is some degree of subjectivity
in the user preferences. To better understand why
a certain poem is preferred by crowd-workers, we
investigate whether certain factors correlate with
their choices. We measure i) Diversity (in terms of
distinct unigrams) ii) Presence of Rhyme (whether
there at least one pair of rhyming lines in the poem),
and iii) Perplexity measured using a pre-trained
GPT-2 model for each poem. As can be seen in
Table 6, crowd-workers preferred poems that are
diverse and have a rhyme scheme 63% and 72.5%
of the time. From Figure 4, we know that our ex-
perts tend to use the model to express their ideas
by eliciting text from the model that contains spe-
cific content but is subject to various constraints
(Topic+Rhyme and the various End instructions).
Here, we observe that these constraints combined
with more diverse vocabulary usage might be con-
tributing to the preference for collaborative poems
over solo poems.

5 Related Work

Collaborative Writing The key challenge in col-
laborative writing is to understand user intent so as
to provide timely and useful suggestions. Prior
work in story writing (Roemmele and Gordon,
2015; Clark et al., 2018) presented sentence-level
continuations at locations specified by a user. Ak-
oury et al. (2020); Lee et al. (2022) took this a step
further providing users with a paragraph of text
which they could further edit in story writing and ar-
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gumentative writing tasks. However, model sugges-
tions of this autocomplete nature were not always
helpful, as they often diverged from the user intent
(Clark et al., 2018) resulting in only a fraction of
generated text being retained (Akoury et al., 2020).
Instead of providing a machine-written draft, Pad-
makumar and He (2022) showed that having the
model rewrite text only at locations specified by
the user results in more helpful suggestions in the
task of creative image captioning.

We focus on the task of collaborative poem writ-
ing, which adds an additional challenge as useful
suggestions need to satisfy several lexical and form
constraints (rhyme, meter, sound). Past work for
this task has used retrieval to provide suggestions
for substitutions at the word and phrase level (Chen
et al., 2014) or verses that follow different styles
(Uthus et al., 2022), but these are unable to dynam-
ically generate novel text. In our work, we utilize
large language models to generate text that satisfies
the various constraints specified by users, with the
added benefit that they can spell out these using
natural language instructions. Concurrent work has
also shown that large language models can help
users write scripts and screenplays (Mirowski et al.,
2022) and longer stories (Yang et al., 2022) by gen-
erating text that incorporates structural context via
prompt chaining.

Interaction with Users Recent work in NLP has
highlighted the success of generative large lan-
guage models as interaction interfaces for the task
of creative writing. Finetuning models on tasks
verbalised as instructions has shown good gener-
alization to unseen instructions (Wei et al., 2021;
Sanh et al., 2021; Mishra et al., 2021; Chung et al.,
2022). In our work, we focus on a suite of instruc-
tions specific to creative writing and additionally
evaluate the instruction-tuning setup with real users
who iteratively ask for suggestions in natural lan-
guage.

In addition to fine-tuning models on instructions,
large language models are also able to generalize to
unseen tasks in a few-shot manner when the task is
specified as part of the prompt in natural language
(Ouyang et al., 2022). Reif et al. (2022) present
a prompting method which performs style trans-
fer in a zero-shot or few-shot manner with only a
natural language instruction describing the target
style without model fine-tuning or exemplars in the
target style. Unlike most of the recent work that
prompts large language models to elicit content

Coenen et al. (2021) frame collaborative writing as
a conversation between a human and a LLM-based
dialog system and show how the spontaneous utili-
ties of conversation support a variety of interactions.
More recently Mishra and Nouri (2022) propose a
prompting strategy where they ask GPT3 specific
questions about mood, tone, occasion, or theme for
the task of poem generation by using GPT3 as an
interaction interface.

6 Conclusion

In this work, we present CoPoet, a collaborative
poetry writing system that is controlled by user
instructions that specify the attributes of any de-
sired text. Our system is built upon a language
model fine-tuned on a diverse collection of instruc-
tions for poetry writing. Empirical results show
that our model is not only competitive with pub-
licly available LLMs trained on instructions (In-
structGPT), but also capable of satisfying unseen
compositional instructions. A further study with 15
qualified crowd-workers shows that users success-
fully write poems with CoPoet on diverse topics,
which are also preferred by third-party evaluators
over poems written by solo-writers. These results
show that language models acting as writing as-
sistants are capable of understanding user intents
and collaborating with them to improve the final
outcome, potentially makes a challenging task such
as poem writing more accessible to users.

Going forward we hope to extend our research
to more challenging instructions such as converting
longer content planning tasks into the instruction
tuning setup to assist users with longer story writ-
ing. To provide more robust assistance, we also
hope to study how to train models that generalize
better to completely unseen instructions. Finally,
we intend to more holistically study the problem of
co-creative writing by not just examining how to
train better assistive models but also how to design
effective user interfaces for end users.

Limitations

Noisy Training Data We note that our dataset is
self-supervised and we use various tools to align
lines of poetry from various sources (Table 7) to
templated instructions. There might be small errors
in the training data such as spelling mistakes in
the lines of poetry (an example from our dataset to
showcase this is the line “Lay silently burid side
by side”) or slightly convoluted instructions (an
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example instruction to highlight this is “Write a po-
etic sentence that speaks of nights grow shorter”).
However, each example in the various test sets (Sec-
tion 3.2) was manually verified by the authors of
this work.

Test Set Size Another potential concern is the
size of the test sets which were small as each in-
struction in these was verified by the authors. We
provide confidence intervals on the model success
rates to mitigate this in Section 3.3.

Design of the User Interface Our user interface
presents templates of instructions to users at the
point when they query the model for assistance
(Figure 11). This primes the users to write instruc-
tions similar to the templates—almost all the in-
structions used by the crowdworkers belonged to
the templates provided in the interface (or novel
combinations of these). In this work, we did not
perform an extensive comparison of different in-
terface designs which could influence the interac-
tion. We further discuss some of the design choices
about the user interface in Appendix C.

Ethics Statement

Although we use language models trained on data
collected from the Web, which have been shown to
have issues with gender bias and abusive language,
the inductive bias of our models should limit in-
advertent negative impacts. Unlike model variants
such as GPT, T5 is a conditional language model,
which provides more control of the generated out-
put. Our poetic parallel corpora are unlikely to con-
tain toxic text and are manually inspected by the
authors.Technological advances in text generation
have had both positive and negative effects. How-
ever, interactive, human-in-the-loop generative sys-
tems designed especially for literary or poetic text
generation such as ours might speed up literary pro-
fessional’s work and make it more enjoyable. We
believe that machine generation of poetic text will
not lead to the exclusion of human poets. Rather, it
will increase human-machine interaction and con-
tinue to enhance human performance.

In order to ensure that there are no privacy is-
sues for our train and validation splits, the poems
were broken down line by line and shuffled ran-
domly.They do not contain any metadata and as
such cannot reproduce the creative value of the
original poems.

Appropriate Remuneration of Crowd-workers
For all our tasks, we recruit from a pool of crowd-
workers in the USA with a minimum of 95% HIT
success rate. To complete the human evaluation of
model outputs satisfying instructions (Section 3.4),
a crowdworker has to read an instruction and two
lines in response to it and answer a total of 5 ques-
tions. On average, this takes slightly less than two
minutes, so we set the payment to $0.50 per HIT.
For the writing tasks (solo and collaborative, Sec-
tion 4), on average our users take 10 minutes to
write a poem, so we set the payment of $2.50 for
each HIT. We also reward writers $0.50 per poem
on submission of poems deemed relevant or a rel-
evant interpretation of the title, per the definition
in Section 4. Over 95% of the poems submitted
received a bonus (Table 5). Finally, for the judg-
ing task of comparing solo-writers and collabora-
tive writers, crowdworkers have to read two poems
and answer 3 questions, which takes on average 1
minute, so we set the payment to $0.25 per HIT.
All of these amounts were calculated according an
hourly rate of 15$ per hour.
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A Appendix

A.1 Creation of Instructions
To create instructions for a particular “Subject" we
detect all possible noun phrases from an individ-
ual poetic sentence and create a natural language
instruction for each of them using the template de-
scribe in Table 1. For “End" we fill the respective
instruction template with the ending word in a sen-
tence. For the“Rhyme" instruction we first find all
rhyming words for the ending word in a sentence
using the CMU Pronouncing Dictionary 12 and then
fill the instruction template with a random rhyming
word to ensure diversity. For the “Next Sentence"
we fill the instruction template with its previous
context sentence from any given poetry. To create
“Metaphor" instruction we crawl websites for out-
puts of the form “NP1 is NP2" and fill NP1 in the
template. A ‘Simile" usually consists of two noun
phrases typically a Subject and an Object with an
usual syntax “NP1 is like NP2". We fill the Subject
NP1 in the instruction template and manually edit it
by expert humans for any inconsistencies. It should
be noted that both output quality and instructions
for Simile and Metaphors are manually inspected
and agreed upon by two expert humans and only

12https://pypi.org/project/pronouncing/

Instruction Type Source Stats

Lexical Constraint
Poetry Translation Corpus
Chakrabarty et al. (2021)

94.5%

Continuation
Poetry Translation Corpus
Chakrabarty et al. (2021)

3.18%

Rhetorical Devices
r/OCPoetry , r/Poetry
Gutenberg Jacobs (2018),
DMDMQ 14

1.12%

Haiku r/Haiku 1.14%

Table 7: Instruction Types along with the source from
where the data is collected.

The AI is very competent and helpful,it’s enjoyable
to work with it.

I think it works very fine and I wish I had this whenever
I had writer’s block.

The best part of the tool is getting help with words at the
end of a sentence and then being able to build off that.

Table 8: Some of the feedback from experts on the
helpfulness of using our CoPoet system.

examples with full agreement are kept in the data.
To create the instruction for ‘Haiku’ we need to fill
the template with its title which is not always read-
ily available. Hence we use YAKE (Campos et al.,
2018, 2020), an unsupervised automatic keyword
extraction method for selecting salient words from
the Haiku that serves as its title. For Onomatopoeia
we compile a lexicon containing words 13 repre-
senting them and then filter out sentences with any
noun subject containing a word from the lexicon.

B Poems from User Study

We attach further examples of poetry written in
collaboration with CoPoet in Figures 6 to 9. These
include instances where the user selects none of
the options presented to them (Figures 6 and 8) and
highly intertwined collaboration where the user
frequently rewrites model output (Figure 9). Addi-
tionally, Figure 10 is a word cloud of the titles of
all the poems written by the users.

C User Interface

A snapshot of our interface during the user study
can be found in Figure 11. The user is presented
with a text box to edit their poem draft along with
a dialog box to query the model. From an initial
pilot, we observed that some users were not able to

13https://kathytemean.wordpress.com/2009/12/29/onomatopoeia-
word-list/
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Write a poetic sentence that contains  
the word 'Mother Earth'

Mother earth, should be so kind.
Mother earth could get no rest.

Write a next sentence in a poetry given the  
previous sentence 'She always tried her best.'

But her heart was shattered, 
But she never felt like she was enough,

Mother earth could get no rest.
Inspite of always trying her best.
It was because her heart was shattered.
As planet earth, smothered by the 
weight, lies bare and tattered. 

 

Write a metaphor about 'climate change'

Climate change is a silent killer. 
Climate change is a famine that slays the
people.

Mother earth could get no rest.
Inspite of always trying her best.

Mother earth could get no rest.

Poem Draft Interactions

Mother earth could get no rest.
Inspite of always trying her best.
It was because her heart was shattered.

 

Write a poetic sentence that contains the  
word 'earth' and ending in 'tattered' 

And the earth, smothered by the weight,  
lies tattered and bare. 
The earth is trembling, the stele is being
ripped and tattered.

Figure 6: Poem entitled ‘Climate Change’ written in
collaboration with CoPoet.

 

 

Write a poetic sentence that contains 
the word 'car'

I sat in my car and listened to the radio. 
A man in his car with the lights on.

Write a poetic sentence that contains 
the word 'loss'

And a sense of loss pervading everything. 
And loss of life, and wounds, that must  
be borne.

I sat in my car and listened to the radio. 
I’d not budge, I didn’t want to go. 
And loss of life, and wounds, that must 
be borne. 
And thou shalt see the judgment 
pronounced upon. 

 

Write a poetic sentence containing 
'judgement' and ending in 'upon'

And thou shalt see the judgment  
pronounced upon. 
And the judgement is nigh on ye upon.

I sat in my car and listened to the radio. 
I’d not budge, I didn’t want to go. 
And loss of life, and wounds, that must 
be borne.

I sat in my car and listened to the 
radio. 
I’d not budge, I didn’t want to go.

I sat in my car and listened to the 
radio. 

Poem Draft Interactions

Figure 7: Poem entitled ‘Courthouse Parking Lot’ writ-
ten in collaboration with CoPoet.

 

 

Write a poetic sentence that contains  
the word 'dreams' 

And he who, in the dreams of the night.
And in your dreams, I am with you.

Write a next sentence in a poetry given the previous  
sentence 'My dreams shatter like a glass ceiling 

As you walk away, dragging a broken shard.
When I see your empty eyes. 

My dreams shatter like a glass ceiling 
As you walk away, dragging a broken 
shard 
I watch you leave, you no longer have 
meaning 
As I lay there in the dark, my heart turns 
hard 

My dreams shatter like a glass ceiling 
As you walk away, dragging a broken  
shard 

My dreams shatter like a glass ceiling 

Poem Draft Interactions

My dreams shatter like a glass ceiling 
As you walk away, dragging a broken  
shard 
I watch you leave, you no longer have  
meaning

 

Write a next sentence in a poetry given the previous  
sentence 'I watch you leave, you no longer have  
meaning' 

As I lay there in the dark, the sand is cold. 
I'm left with nothing, a void of emptiness 

 

Write a simile about 'shattered  
dreams' 

My dreams shattered like a glass bottle.
My dreams shatter like a glass ceiling 

Figure 8: Poem entitled ‘Glass Ceilings’ written in col-
laboration with CoPoet.

 

 

Write a poetic sentence ending in 
'violin' 

I'm not mollycoddled. the storm is my
violin.
A song in their heart and another in the
violin. 

Write a next sentence in a poetry given the previous  
sentence 'She has a song in her heart and another in  
her violin.' 

She plays both with such passion.
She plays them both beautifully. 

She has a song in her heart and another  
in her violin. 
I listen to her play them both  
beautifully, 
In the garden, a riot of color, when the  
harmonies begin.
A flower that has since bloomed where 
grief had been. 

She has a song in her heart and another  
in her violin. 
I listen to her play them both  
beautifully, 

She has a song in her heart and another  
in her violin.

Poem Draft Interactions

She has a song in her heart and another  
in her violin. 
I listen to her play them both  
beautifully, 
In the garden, a riot of color, when the  
harmonies begin.  

Write a poetic sentence that contains the word  
'harmony' and ending in 'begin' 

Then, when thy heart to love again begins.
In the garden, a riot of colour, when the  
harmonies begin. 

Figure 9: Poem entitled ‘Petal Melody’ written in col-
laboration with CoPoet.
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Algorithm 1 Algorithm to compute how much of
final submitted poem is written using model output.

Let S = {i, o} be the set of all instructions requested by
the experts and corresponding model outputs for a single
poem;
sum_RL = 0;n = num_lines(poem)

for each line l ∈ poem do
max_rouge = −1
max_tuple = None
for each (i′, o′) ∈ S do

rouge_score = RougeL(o′, l)
if rouge_score > max_rouge : then

max_rouge = rouge_score
max_tuple = (i′, o′)

end if
end for
sum_RL = sum_RL+max_rouge
S′ = S ; S′ = S′ −max_tuple; S = S′

end for
poem_RL = sum_RL/n

effectively write instructions. As a result, we chose
to provide instruction templates as part of the in-
terface in the form of radio buttons (Figure 11).
This was aimed at informing novice writers of the
kind of instructions that elicit creative lines of text
(rhymes, metaphors, etc.) from the model which
they can then use to write better poems (which
we noted in some feedback obtained from crowd-
workers). However, this also primes the users to
write instructions similar to the templates—almost
all the instructions used by the crowdworkers be-
longed to the templates provided in the interface (or
novel combinations of these). In this work, we did
not perform an extensive comparison of different
interface designs which could influence the effec-
tiveness of human-AI collaboration. Our main goal
is to design and test the instruction tuning setup
specifically for the poetry writing task, which was
why we chose to retain the interface design with
the templates. The user interface ensures that most
of the queries to the model follow the same tem-
plates which need not be the case in deployment.
From very preliminary experiments, we see that
InstructGPT3 outperforms our fine-tuned model on
completely unseen instructions, and we intend to
investigate this setting in detail going forward. We
believe that as we provide users with greater flex-
ibility in how to use the interface, the associated
model must be able to respond robustly to the edge
cases that users might provide and hence needs
extensive rounds of piloting prior to deployment.

Figure 10: Word cloud of different concepts from titles
of Poetry.
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Figure 11: Snapshot of CoPoet: Collaborative Poetry Writing with Instructions
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