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Abstract

Multilingual pretrained models have shown
strong cross-lingual transfer ability. Some
works used code-switching sentences, which
consist of tokens from multiple languages, to
enhance the cross-lingual representation fur-
ther, and have shown success in many zero-shot
cross-lingual tasks. However, code-switched
tokens are likely to cause grammatical inco-
herence in newly substituted sentences, and
negatively affect the performance on token-
sensitive tasks, such as Part-of-Speech (POS)
tagging and Named-Entity-Recognition (NER).
This paper mitigates the limitation of the code-
switching method by not only making the token
replacement but considering the similarity be-
tween the context and the switched tokens so
that the newly substituted sentences are gram-
matically consistent during both training and
inference. We conduct experiments on cross-
lingual POS and NER over 30+ languages, and
demonstrate the effectiveness of our method by
outperforming the mBERT by 0.95 and original
code-switching method by 1.67 on F1 scores.

1 Introduction

Recent studies(Devlin et al., 2019; Lample and
Conneau, 2019; Conneau et al., 2020a) have shown
the success of multilingual corpus pre-training for
cross-lingual knowledge transfer. Some works(Qin
et al., 2020; Yang et al., 2021) further addressed
the effectiveness of code-switching on improving
the performance of multilingual models on zero-
shot cross-lingual tasks(Conneau et al., 2018; Hu
et al., 2020). Though code-switching has shown
great potential and strong generalization ability on
the semantic representation, the newly switched se-
quence fails to consider the token-level coherence.
Specifically, a code-switched sentence consists of
tokens from various languages, and such words are
likely to cause grammatical incoherence, resulting
in an inconsistent context space for the newly sub-
stituted sentence. Also, code-switched tokens are

How do menschen look at and अनुभव 艺术 ?

How do people look at and experience art ?How do people look at and experience art ?

How do Menschen look at and अनुभव 艺术 ?

(b): Ours(a): Code-Switched Training Sentence

SCONJ AUX NOUN VERB ADP CCPNJ VERB NOUN PUNCT 

Ground Truth Labels:Training:

Inference:

人们如何看待和体验艺术?
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Wie betrachten und erleben
Menschen Kunst? 
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Figure 1: Overview of the training and inference for
POS in code-switching and our settings.

conditioned on the original context, for which, dur-
ing the optimization phase, the embedding of sub-
stituted tokens is greatly affected. However, such
updates do not consider the token-level dependency
in their own language and will likely cause inconsis-
tent embedding space during inference. Therefore,
even though code-switching benefits most of the
sentence-level cross-lingual tasks, it still limits the
performance of token-level prediction.

To address such issues, we use an alignment strat-
egy to reduce the gap between original context and
code-switched tokens during training. Specifically,
code-switched tokens are mapped to the original
context so that the newly switched sentences are ex-
pected to be grammatically coherent and maintain
the same contextual space in the same language.
Meanwhile, our approach enables the substituted
tokens not to significantly affect the token-level co-
herence in their own language and keep a consistent
embedding space during inference. We conduct ex-
periments on zero-shot cross-lingual POS and NER
and outperforms both the mBERT and the original
code-switching method by 0.77 and 2.08 on NER
and 1.13 and 1.27 on POS, respectively. We also
make further analysis regarding the performance on
low-resource languages, code-switch contribution,
substitution strategy, and token-level coherence.
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af ar bg bn de el es et eu fa fi
fr he hi hu id it ja jv ko ml mr

ms nl pt ru sw ta tl tr ur vi zh

Table 1: List of 33 languages for building the dictionary.

2 Approach

We conduct cross-lingual tasks in the zero-shot set-
ting, in which only English labeled sentences with
code-switching augmentation are used for training,
and evaluation is performed in all other languages.

2.1 Code-Switching Augmentation
Multilingual Dictionary Construction To build
the dictionary that maps English tokens to other
languages in Table 1, we adopt the parallel sen-
tences from CCMatrix(Schwenk et al., 2021), and
use fast_align(Dyer et al., 2013) to align tokens
from parallel sentences. To keep languages be-
ing equally considered, we sample no more than
1 million sentence pairs for each language. For
each language lg, a bilingual dictionary Dlg is
built as a one-to-many structure based on extracted
alignment, where each English token ten has sev-
eral candidates as Clg

ten = {clg1 , ...clgm}, and the cor-
responding sampling probability are defined as
βlg
C = {βlg

c1 , ...β
lg
cm}. We merge such bilingual dic-

tionaries into one unified dictionary D with respect
to their keys of English tokens. Then for each
English token ten, we have its corresponding can-
didates as Cten = {c1, ...cn}, and sampling proba-
bility as βC = {βc1 , ...βcn}, where n refers to the
number of candidates among all languages, and the
sampling rates are normalized after the merge.

Token Substitution Given the English training
sentences, we decide whether to substitute an En-
glish token based on a substitution ratio α. For
an English token ten that is selected for substitu-
tion, the candidate token tX is sampled following
the probability distribution in dictionary D. We
adopt the dynamic substitution to sample different
substitution sequences for each epoch. We present
analysis of the substitution strategy in Section 3.3.

2.2 Cross-Lingual Transfer
Our approach is built on both the code-switched
sentence SX = {S1X, ...SLX

X }, and original English
sentence Sen = {S1en, ...SLen

en }. To avoid the influ-
ence of the grammatical incoherence,we use an
alignment network to align substituted tokens with
original English context.

Token-Level Alignment We map the code-
switched sentence to the English context by com-
puting the similarity between substituted tokens
and English tokens. The similarity scores are fur-
ther used as the weights to aggregate the embedding
of English tokens, as the calculated potential for
substituted tokens in the switched sequence.

We use the multilingual BERT (mBERT) to en-
code English and code-switched sentences into con-
textualized embedding as Hen = mBERT(Sen),
HX = mBERT(SX) respectively. For any token
S
(k)
X , the similarity score score(k) is computed as:

score(k) = H
(k)
X ∗Hen

T (1)

The final potential of the code-switched token H̃
(k)
X

is the weighted sum of the contextualized embed-
ding Hen , calculated along the time axis.

α
(k)
t =

exp (score
(k)
t )

∑
t′ exp (score

(k)

t′
)

(2)

H̃
(k)
X =

∑

t

α
(k)
t H(t)

en (3)

Eventually, the newly aligned code-switched se-
quence of tokens is represented as H̃X.

Training and Inference During training, the
alignment is applied before the layer input in the
mBERT. We compute H̃i

X from the original layer
input pairs (Hi

X, Hi
en) as in Eq.3, where i refers

to the layer index in mBERT. H̃i
X will be the

new layer input for code-switched sentence. As
lower layers in BERT learns about the syntax in-
formation, we only apply the alignment in lower
six layers to better align the representations for
switched tokens. To optimize the effect of the
ground-truth labels on both the English and code-
switched sequences during training, the final loss
is described as: Loss = L(Hen,Label)+L(HX,Label)

2 ,
where L refers to the loss function. In the inference,
we do not use any code-switch to sentence tokens.

3 Experiment

3.1 Settings
We conduct experiments on two widely-used cross-
lingual datasets for token-level prediction, Univer-
sal Dependencies for POS and WikiANN for NER
(Pan et al., 2017). We adopt mBERT 1 with the

1We adopt the training pipeline from Transformers
and Datasets: https://github.com/huggingface/transformers,
https://github.com/huggingface/datasets
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Model af ar bg nl en et fi fr de el he hi hu id it ja kk
mBERT 87.3 66.4 87.5 87.6 95.3 84.6 82.9 79.5 85.6 53.2 76.8 75.1 80.9 74.3 85.4 58.5 72.5
Mswitch 88.7 70.3 88.8 87.4 95.0 83.7 82.5 79.4 85.8 51.0 78.6 75.7 81.7 73.6 84.6 58.2 72.9
Mours 87.6 69.0 87.7 88.1 95.0 84.5 83.2 79.7 85.9 57.7 80.2 77.0 80.0 74.4 85.6 58.9 74.6

ko zh mr fa pt ru es tl ta te th tr ur vi yo Avg Diff
mBERT 57.4 68.6 70.5 67.4 88.9 84.1 87.8 83.0 63.9 73.5 53.5 70.3 65.2 62.8 61.2 74.73 -
Mswitch 57.8 68.1 65.4 66.6 88.9 83.2 87.9 82.8 63.8 72.5 52.0 69.2 69.5 60.4 60.8 74.59 -0.14
Mours 57.1 68.9 75.0 69.5 89.4 84.4 89.0 82.1 66.1 74.7 57.2 70.0 68.2 62.7 64.6 75.86 +1.13

Table 2: Experiments results for POS

Model af ar bg bn de el en es et eu fa fi fr he
mBERT 81.4 74.6 84.0 78.7 83.8 77.1 89.1 84.1 83.4 77.8 80.8 81.3 86.0 76.0
Mswitch 80.6 74.4 81.8 82.0 83.1 74.3 89.2 77.1 81.9 76.3 77.2 81.3 86.2 75.1
Mours 82.2 74.5 84.4 79.5 84.9 79.5 89.2 82.8 84.5 79.6 79.2 81.7 86.0 76.1

hi hu id it ja jv ka kk ko ml mr ms my nl
mBERT 80.2 80.6 85.0 87.4 43.5 73.7 77.9 69.4 72.4 71.9 75.0 72.7 67.0 85.6
Mswitch 78.0 77.6 85.2 87.4 48.9 74.9 74.2 67.9 71.2 65.1 70.8 75.6 64.8 84.5
Mours 79.3 81.7 85.3 87.7 46.5 75.9 76.9 74.3 72.8 71.2 76.2 76.7 68.0 85.7

pt ru sw ta te th tl tr ur vi yo zh Avg Diff
mBERT 86.0 76.9 79.3 75.1 71.1 20.6 74.4 78.3 73.6 85.6 59.6 64.2 75.62 -
Mswitch 83.1 74.6 78.7 73.0 67.4 20.3 80.6 75.1 66.0 85.6 58.3 63.6 74.31 -1.31
Mours 85.6 78.7 80.3 73.8 72.0 21.1 77.4 78.8 70.4 86.6 62.8 65.8 76.39 +0.77

Table 3: Experiments results for NER

Training Size (GB) # Languages Avg Gain
[0.006, 0.354] 13 +1.91
[0.354, 1.414] 10 +1.03
[1.414, 5.657] 8 +0.62

Table 4: Metric Breakdown on POS results

base configuration. The learning rate is set as 1e−5

for pretrained parameters and 9e−5 for newly ini-
tialized parameters. We use a batch-size of 32,
warmup of 200 steps and patience of 3 on all exper-
iments. We follow the zero-shot setting, in which
we have only the English set for training and all
languages for evaluation. We compare our method
with the original mBERT and code-switching. The
substitution ratio is set to 15% for main experi-
ments. Seed numbers in all experiments keep the
same so that the substituted tokens on both settings
are the same for each run. To reduce the influence
of the randomness caused by the token substitution,
results are averaged by three runs.

3.2 Results

In Table 2 and 3, the code-switching negatively
affects the mBERT by 0.14 on POS and 1.31 on

NER, while our method makes improvement of
1.13 on POS and 0.77 on NER. Our method suc-
cessfully eliminates the code-switching noise and
demonstrates the effectiveness over 30+ languages.

3.3 Analysis

In this section, we perform the analysis on the POS
task, with the default substitution ratio of 15%.

Metric Breakdown To determine how well our
model performs on each language, we breakdown
the evaluation scores based on how much pretrain-
ing data the mBERT used for each language. We
follow the range of training size for each language
as described in Wu and Dredze (2020), and aver-
age the performance gain on the POS task of our
model compared to the original mBERT. As shown
in Table 4, we notice our model has better perfor-
mance gain especially on languages that are less
trained in mBERT. For example, we have achieved
3.8 and 9.6 performance gain on yo and mr, re-
spectively, for which the languages have less than
0.1 GB data in the mBERT training. It indicates
that our alignment strategy enriches the represen-
tation of low-resource tokens, leading to a better
performance on the low-resource languages.
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Model Switched Original
Code-Switch 5.69% 4.05%
Ours 13.84% 2.07%

Table 5: Averaged percentage of the received gradient
for switched and original English tokens.
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Figure 2: Evaluation of different substitution ratios. As
the ratio increases, our method is not affected but the
original code-switching sentences gets worse.

Switching Effectiveness To evaluate whether our
model actually benefits from the switched tokens,
we adopt the gradient attribution test (Ancona et al.,
2018). Specifically, we evaluate the importance of
each token to the model’s prediction by calculating
the gradient for each test input. As in Table 5, we
see the ratio of the received gradient for switched
tokens in our method is much greater than original
English tokens. Also, our model has shown greater
relative importance of the switched tokens than the
vanilla code-switching method. It indicates that
such substituted tokens significantly contribute to
our model’s prediction and benefit the performance.

Substitution Strategy We compare the effect of
different token substitution ratios for original code-
switching and our method. As shown in Figure 2,
our method has consistent greater scores on differ-
ent substitution ratios from 5% to 90%. However,
the performance of original code-switching method
decreases as the substitution percentage increases.
Such results show the stable performance of our
method, in which the code-switched tokens keep
benefiting the cross-lingual knowledge transfer.

Token-Level Coherence We plot the degree of
dispersion between tokens in a sentence to further
analyze whether our method keeps the consistent
context space in both training and inference. Specif-
ically, for both the switched and original tokens,
we retrieve the token embedding from intermediate
(6-th) layers and use the top feature calculated from
the Principle Component Analysis (PCA). In Fig-
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Figure 3: Token-Level density in training.
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Figure 4: Token-Level density in inference.

ure 3, our model has shown a more compact space
for the sequence of tokens and the switched tokens
are also inside the space of the context. However,
the original code-switching method entirely sepa-
rates the substituted tokens apart from the original
context. Also, Figure 4 shows the effectiveness of
our model on keeping a consistent context space
during inference. Tokens in all three languages are
very close in our method but separated apart in the
original code-switched approach. Our model has
demonstrated the effectiveness on keeping a con-
sistent embedding space in training and inference.

4 Related Works

Previous studies(Huang et al., 2019; Liu et al.,
2020a; Gritta and Iacobacci, 2021; Luo et al., 2021)
trained language models on either monolingual or
cross-lingual corpus to learn the multilingual repre-
sentation. Recent works(Wu and Dredze, 2019; Hu
et al., 2020; Conneau et al., 2020b) have proved the
effective zero-shot transferable ability of multilin-
gual models. Researchers(Zhang et al., 2019; Yang
et al., 2020b,a; Qin et al., 2020; Liu et al., 2020b;
Yang et al., 2021) tried to use code-switched sen-
tences to enhance the representation among vari-
ous languages and have been proved the success on
many cross-lingual tasks. We believe our approach
further addresses the limitation the code-switching
on token-level classification.
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5 Conclusion

This paper introduces an alignment strategy to map
the code-switched tokens to original context and
solves the grammatically incoherence in the embed-
ding space of code-switching. Experimental results
on POS and NER along with comprehensive analy-
sis have demonstrated the effectiveness of our ap-
proach on the token-level classification. We think
this work could further address other cross-lingual
tasks and multilingual pretraining.
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Limitation

We do not use any neural-based aligner e.g the
awesome-aligner(Dou and Neubig, 2021), because
we want to make the aligning part simple and ef-
ficient. We believe that some modern methods
or involving grammatical information could help
achieve better aligning results but it is not the point
of this paper. Although the construction of the dic-
tionary is much less computationally expensive, it
must be completed before the training and requires
additional parallel data, which might cause incon-
sistency with the domain of the training text. The
randomness introduced by the code-switching sub-
stitution may affect the overall performance, even
though our method has considered the correlation
between switched tokens and original context.
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